A one-dimensional diffusion model was used to investigate the effects of dense non-aqueous phase liquid (DNAPL) source zone dissolution and remediation on the storage and release of contaminants from aquitards. Source zone dissolution was represented by a power-law source depleti...
IMPACTS OF DNAPL SOURCE TREATMENT ON CONTAMINANT MASS FLUX
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...
Germanium layers grown by zone thermal crystallization from a discrete liquid source
NASA Astrophysics Data System (ADS)
Yatsenko, A. N.; Chebotarev, S. N.; Lozovskii, V. N.; Mohamed, A. A. A.; Erimeev, G. A.; Goncharova, L. M.; Varnavskaya, A. A.
2017-11-01
It is proposed and investigated a method for growing thin uniform germanium layers onto large silicon substrates. The technique uses the hexagonally arranged local sources filled with liquid germanium. Germanium evaporates on very close substrate and in these conditions the residual gases vapor pressure highly reduces. It is shown that to achieve uniformity of the deposited layer better than 97% the critical thickness of the vacuum zone must be equal to l cr = 1.2 mm for a hexagonal arranged system of round local sources with the radius of r = 0.75 mm and the distance between the sources of h = 0.5 mm.
FIELD MEASUREMENTS OF CONTAMINANT FLUX BY INTEGRAL PUMPING TESTS (SAN FRANCISCO, CA)
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of flux measurements before and af...
MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...
THE MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...
Fuel injection staged sectoral combustor for burning low-BTU fuel gas
Vogt, Robert L.
1981-01-01
A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.
Fuel injection staged sectoral combustor for burning low-BTU fuel gas
Vogt, Robert L.
1985-02-12
A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.
Rebich, Richard A.
1994-01-01
Available literature and data were reviewed to quantify data requirements for computer simulation of hydrogeologic effects of liquid waste injection in southeastern Mississippi. Emphasis of each review was placed on quantifying physical properties of current Class I injection zones in Harrison and Jackson Counties. Class I injection zones are zones that are used for injection of hazardous or non-hazardous liquid waste below a formation containing the lowermost underground source of drinking water located within one-quarter of a mile of the injection well. Several mathematical models have been developed to simulate injection effects. The Basic Plume Method was selected because it is commonly used in permit applications, and the Intercomp model was selected because it is generally accepted and used in injection-related research. The input data requirements of the two models were combined into a single data requirement list inclusive of physical properties of injection zones only; injected waste and well properties are not included because such information is site-specific by industry, which is beyond the scope of this report. Results of the reviews of available literature and data indicated that Class I permit applications and standard-reference chemistry and physics texts were the primary sources of information to quantify physical properties of injection zones in Harrison and Jackson Counties. With the exception of a few reports and supplementary data for one injection zone in Jackson County, very little additional information pertaining to physical properties of the injection zones was available in sources other than permit applications and standard-reference texts.
Studies of rotating liquid floating zones on Skylab IV
NASA Technical Reports Server (NTRS)
Carruthers, J. R.; Gibson, E. G.; Klett, M. G.; Facemire, B. R.
1975-01-01
Liquid zones of water, soap solution and soap foam were deployed between two aligned circular disks which were free to rotate about the zone axis in the microgravity environment of Skylab IV. Such a configuration is of interest in the containerless handling of melts for possible future space processing crystal growth experiments. Three basic types of zone surface deformation and instability were observed for these rotational conditions; axisymmetric shape changes under single disk rotation, nonaxisymmetric, whirling, C-modes for long zones with equal rotation of both disks, and capillary wave phenomena for short zones with equal rotation of both disks. The sources of these instabilities and the conditions promoting them are analyzed in detail from video tape recordings of the Skylab experiments.
Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.
2005-01-01
The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838
Inhalation exposure to cleaning products: application of a two-zone model.
Earnest, C Matt; Corsi, Richard L
2013-01-01
In this study, modifications were made to previously applied two-zone models to address important factors that can affect exposures during cleaning tasks. Specifically, we expand on previous applications of the two-zone model by (1) introducing the source in discrete elements (source-cells) as opposed to a complete instantaneous release, (2) placing source cells in both the inner (near person) and outer zones concurrently, (3) treating each source cell as an independent mixture of multiple constituents, and (4) tracking the time-varying liquid concentration and emission rate of each constituent in each source cell. Three experiments were performed in an environmentally controlled chamber with a thermal mannequin and a simplified pure chemical source to simulate emissions from a cleaning product. Gas phase concentration measurements were taken in the bulk air and in the breathing zone of the mannequin to evaluate the model. The mean ratio of the integrated concentration in the mannequin's breathing zone to the concentration in the outer zone was 4.3 (standard deviation, σ = 1.6). The mean ratio of measured concentration in the breathing zone to predicted concentrations in the inner zone was 0.81 (σ = 0.16). Intake fractions ranged from 1.9 × 10(-3) to 2.7 × 10(-3). Model results reasonably predict those of previous exposure monitoring studies and indicate the inadequacy of well-mixed single-zone model applications for some but not all cleaning events.
Ma, Lin; Xu, Zhiwu; Zheng, Kun; Yan, Jiuchun; Yang, Shiqin
2014-03-01
The vibration characteristics of an aluminum surface subjected to ultrasonic waves were investigated with a combination of numerical simulation and experimental testing. The wetting behavior of solder droplets on the vibrating aluminum surface was also examined. The results show that the vibration pattern of the aluminum surface is inhomogeneous. The amplitude of the aluminum surface exceeds the excitation amplitude in some zones, while the amplitude decreases nearly to zero in other zones. The distribution of the zero-amplitude zones is much less dependent on the strength of the vibration than on the location of the vibration source. The surface of the liquid solder vibrates at an ultrasonic frequency that is higher than the vibration source, and the amplitude of the liquid solder is almost twice that of the aluminum surface. The vibration of the surface of the base metal (liquid solder) correlates with the oxide film removal effect. Significant removal of the oxide film can be achieved within 2s when the amplitude of the aluminum surface is higher than 5.4 μm or when the amplitude of the liquid solder surface is higher than 10.2 μm. Copyright © 2013 Elsevier B.V. All rights reserved.
THE IMPACT OF PARTIAL DNAPL SOURCE ZONE REMEDIATION
Dense non-aqueous phase liquids (DNAPL) constitute a long-term source of groundwater contamination and a significant effort is usually required to treat these contaminated waters and bring them back to maximum contaminant level (MCL) required by the regulatory authorities.
Fi...
NASA Astrophysics Data System (ADS)
Krol, M.; Kokkinaki, A.; Sleep, B.
2014-12-01
The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.
NASA Astrophysics Data System (ADS)
Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.
2008-07-01
Simulations of nonpartitioning and partitioning tracer tests were used to parameterize the equilibrium stream tube model (ESM) that predicts the dissolution dynamics of dense nonaqueous phase liquids (DNAPLs) as a function of the Lagrangian properties of DNAPL source zones. Lagrangian, or stream-tube-based, approaches characterize source zones with as few as two trajectory-integrated parameters, in contrast to the potentially thousands of parameters required to describe the point-by-point variability in permeability and DNAPL in traditional Eulerian modeling approaches. The spill and subsequent dissolution of DNAPLs were simulated in two-dimensional domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1, and 3) using the multiphase flow and transport simulator UTCHEM. Nonpartitioning and partitioning tracers were used to characterize the Lagrangian properties (travel time and trajectory-integrated DNAPL content statistics) of DNAPL source zones, which were in turn shown to be sufficient for accurate prediction of source dissolution behavior using the ESM throughout the relatively broad range of hydraulic conductivity variances tested here. The results were found to be relatively insensitive to travel time variability, suggesting that dissolution could be accurately predicted even if the travel time variance was only coarsely estimated. Estimation of the ESM parameters was also demonstrated using an approximate technique based on Eulerian data in the absence of tracer data; however, determining the minimum amount of such data required remains for future work. Finally, the stream tube model was shown to be a more unique predictor of dissolution behavior than approaches based on the ganglia-to-pool model for source zone characterization.
NASA Astrophysics Data System (ADS)
Roy, James W.; Smith, James E.
2007-01-01
Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.
Roy, James W; Smith, James E
2007-01-30
Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.
Integrated reformer and shift reactor
Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.
2006-06-27
A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.
Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, WA. Passive Flux Meters (PFM) and a va...
NASA Astrophysics Data System (ADS)
Wallace, K. A.; Abriola, L.; Chen, M.; Ramsburg, A.; Pennell, K. D.; Christ, J.
2009-12-01
Multiphase, compositional simulators were employed to investigate the spill characteristics and subsurface properties that lead to pool-dominated, dense non-aqueous phase liquid (DNAPL) source zone architectures. DNAPL pools commonly form at textural interfaces where low permeability lenses restrict the vertical migration of DNAPL, allowing for DNAPL to accumulate, reaching high saturation. Significant pooling has been observed in bench-scale experiments and field settings. However, commonly employed numerical simulations rarely predict the pooling suspected in the field. Given the importance of pooling on the efficacy of mass recovery and the down-gradient contaminant signal, it is important to understand the predominant factors affecting the creation of pool-dominated source zones and their subsequent mass discharge. In this work, contaminant properties, spill characteristics and subsurface permeability were varied to investigate the factors contributing to the development of a pool-dominated source zone. DNAPL infiltration and entrapment simulations were conducted in two- and three-dimensional domains using the University of Texas Chemical Compositional (UTCHEM) simulator. A modified version of MT3DMS was then used to simulate DNAPL dissolution and mass discharge. Numerical mesh size was varied to investigate the importance of numerical model parameters on simulations results. The temporal evolution of commonly employed source zone architecture metrics, such as the maximum DNAPL saturation, first and second spatial moments, and fraction of DNAPL mass located in pools, was monitored to determine how the source zone architecture evolved with time. Mass discharge was monitored to identify the link between source zone architecture and down-gradient contaminant flux. Contaminant characteristics and the presence of extensive low permeability lenses appeared to have the most influence on the development of a pool-dominated source zone. The link between DNAPL mass recovery and contaminant mass discharge was significantly influenced by the fraction of mass residing in DNAPL pools. The greater the fraction of mass residing in DNAPL pools the greater the likelihood for significant reductions in contaminant mass discharge at modest levels of mass removal. These results will help guide numerical and experimental studies on the remediation of pool-dominated source zones and will likely guide future source zone characterization efforts.
No Mystery! Water Carved the Outflow Channels on Mars
NASA Astrophysics Data System (ADS)
Coleman, N.
2002-12-01
The enormous outflow channels of Chryse Planitia provide the best evidence that large amounts of water were once released onto the martian surface. The role of water has recently been challenged by the White Mars hypothesis, which claims that the channels were cut by CO2 gas-supported debris flows that also resurfaced the northern plains. Hoffman [Icarus, 2000] refers to a volumetric "misfit" between outburst channels and the chaos source zones. He explains that chaos collapse "...involves regolith alone which generates its own fluids from liquid CO2 and CO2-bearing ices within its own volume." Hoffman [LPSC 32, #1257] argues that release of liquid CO2 produced Aromatum Chaos, and a hypothetical energetic "jet" of gas and debris carved Ravi Vallis. He notes that water would have had to be locally recharged in many episodes to provide enough discharge to form the chaos and channel. However, these assertions appear incorrect because the fluid source was a distant surface impoundment, not local recharge. Carr [Water on Mars, 1996] describes a 400-km-long zone of subsidence that extends northward from Ganges Chasma to the source of Shalbatana Vallis. MOLA data reveal that this subsidence also extends eastward to Aromatum Chaos, the source of Ravi Vallis. The field relations show that a liquid-filled impoundment in Ganges Chasma drained northward via subterranean flowpaths to maintain surface flows in Shalbatana and Ravi Valles. The fact that the flows began at a surface impoundment virtually eliminates liquid CO2 as the flowing agent. Liquid CO2 would not be stable at the surface unless the atmospheric pressure exceeded 5 atm. A recent study by Stewart and Nimmo [JGR, in press] suggests that CO2 in liquid, solid, or clathrate form could not be preserved within the crust over geologic time. Liquid water is much closer to its stability field even on present-day Mars. Large outflow channels, such as Kasei and Tiu-Simud Valles, likely formed through the release of floodwaters dammed by ice and debris, analogous to the scabland flooding of eastern Washington. The water sources were probably ice-covered impoundments in ancestral Valles Marineris canyons. Subice volcanism was a possible source of heat to create liquid water. The former existence of transient water bodies near the surface can help to calibrate models of a volcanic-hydrologic climax during the Hesperian.
NASA Astrophysics Data System (ADS)
Rivett, Michael O.; Wealthall, Gary P.; Dearden, Rachel A.; McAlary, Todd A.
2011-04-01
Reliable prediction of the unsaturated zone transport and attenuation of dissolved-phase VOC (volatile organic compound) plumes leached from shallow source zones is a complex, multi-process, environmental problem. It is an important problem as sources, which include solid-waste landfills, aqueous-phase liquid discharge lagoons and NAPL releases partially penetrating the unsaturated zone, may persist for decades. Natural attenuation processes operating in the unsaturated zone that, uniquely for VOCs includes volatilisation, may, however, serve to protect underlying groundwater and potentially reduce the need for expensive remedial actions. Review of the literature indicates that only a few studies have focused upon the overall leached VOC source and plume scenario as a whole. These are mostly modelling studies that often involve high strength, non-aqueous phase liquid (NAPL) sources for which density-induced and diffusive vapour transport is significant. Occasional dissolved-phase aromatic hydrocarbon controlled infiltration field studies also exist. Despite this lack of focus on the overall problem, a wide range of process-based unsaturated zone — VOC research has been conducted that may be collated to build good conceptual model understanding of the scenario, particularly for the much studied aromatic hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs). In general, the former group is likely to be attenuated in the unsaturated zone due to their ready aerobic biodegradation, albeit with rate variability across the literature, whereas the fate of the latter is far less likely to be dominated by a single mechanism and dependent upon the relative importance of the various attenuation processes within individual site — VOC scenarios. Analytical and numerical modelling tools permit effective process representation of the whole scenario, albeit with potential for inclusion of additional processes — e.g., multi-mechanistic sorption phase partitioning, and provide good opportunity for further sensitivity analysis and development to practitioner use. There remains a significant need to obtain intermediate laboratory-scale and particularly field-scale (actual site and controlled release) datasets that address the scenario as a whole and permit validation of the available models. Integrated assessment of the range of simultaneous processes that combine to influence leached plume generation, transport and attenuation in the unsaturated zone is required. Component process research needs are required across the problem scenario and include: the simultaneous volatilisation and dissolution of source zones; development of appropriate field-scale dispersion estimates for the unsaturated zone; assessment of transient VOC exchanges between aqueous, vapour and sorbed phases and their influence upon plume attenuation; development of improved field methods to recognise and quantify biodegradation of CAHs; establishment of the influence of co-contaminants; and, finally, translation of research findings into more robust practitioner practice.
NASA Astrophysics Data System (ADS)
Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.
2016-02-01
The release of industrial contaminants into the subsurface has led to a rapid degradation of groundwater resources. Contamination caused by Dense Non-Aqueous Phase Liquids (DNAPLs) is particularly severe owing to their limited solubility, slow dissolution and in many cases high toxicity. A greater insight into how the DNAPL source zone behavior and the contaminant release towards the aquifer impact human health risk is crucial for an appropriate risk management. Risk analysis is further complicated by the uncertainty in aquifer properties and contaminant conditions. This study focuses on the impact of the DNAPL release mode on the human health risk propagation along the aquifer under uncertain conditions. Contaminant concentrations released from the source zone are described using a screening approach with a set of parameters representing several scenarios of DNAPL architecture. The uncertainty in the hydraulic properties is systematically accounted for by high-resolution Monte Carlo simulations. We simulate the release and the transport of the chlorinated solvent perchloroethylene and its carcinogenic degradation products in randomly heterogeneous porous media. The human health risk posed by the chemical mixture of these contaminants is characterized by the low-order statistics and the probability density function of common risk metrics. We show that the zone of high risk (hot spot) is independent of the DNAPL mass release mode, and that the risk amplitude is mostly controlled by heterogeneities and by the source zone architecture. The risk is lower and less uncertain when the source zone is formed mostly by ganglia than by pools. We also illustrate how the source zone efficiency (intensity of the water flux crossing the source zone) affects the risk posed by an exposure to the chemical mixture. Results display that high source zone efficiencies are counter-intuitively beneficial, decreasing the risk because of a reduction in the time available for the production of the highly toxic subspecies.
NASA Astrophysics Data System (ADS)
Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M.
2018-04-01
Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of sorption, especially for the case of non-ideal sorption, demonstrating the limitations of employing 2-D predictions for field-scale modeling.
Photoreactor with self-contained photocatalyst recapture
Gering, Kevin L.
2004-12-07
A system for the continuous use and recapture of a catalyst in liquid, comprising: a generally vertical reactor having a reaction zone with generally downwardly flowing liquid, and a catalyst recovery chamber adjacent the reaction zone containing a catalyst consisting of buoyant particles. The liquid in the reaction zone flows downward at a rate which exceeds the speed of upward buoyant migration of catalyst particles in the liquid, whereby catalyst particles introduced into the liquid in the reaction zone are drawn downward with the liquid. A slow flow velocity flotation chamber disposed below the reaction zone is configured to recapture the catalyst particles and allow them to float back into the catalyst recovery chamber for recycling into the reaction zone, rather than being swept downstream. A novel 3-dimensionally adjustable solar reflector directs light into the reaction zone to induce desired photocatalytic reactions within the liquid in the reaction zone.
NASA Astrophysics Data System (ADS)
Zheng, Donghong; Che, Defu
2007-08-01
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas-liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10-3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas-liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.
PARTITIONING INTERWELL TRACER TEST FOR NAPL SOURCE CHARACTERIZATION: A GENERAL OVERVIEW
Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT i...
Zhu, Jianting; Sun, Dongmin
2016-09-01
Groundwater flowing through residual nonaqueous phase liquid (NAPL) source zone will cause NAPL dissolution and generate large contaminant plume. The use of contaminant mass discharge (CMD) measurements in addition to NAPL aqueous phase concentration to characterize site conditions and assess remediation performance is becoming popular. In this study, we developed new and generic numerical models to investigate the significance of groundwater flux temporal variations on the NAPL source dynamics. The developed models can accommodate any temporal variations of groundwater flux in the source zone. We examined the various features of groundwater flux using a few selected functional forms of linear increase/decrease, gradual smooth increase/decrease, and periodic fluctuations with a general trend. Groundwater flux temporal variations have more pronounced effects on the contaminant mass discharge dynamics than the aqueous concentration. If the groundwater flux initially increases, then the reduction in contaminant mass discharge (CMDR) vs. NAPL mass reduction (MR) relationship is mainly downward concave. If the groundwater flux initially decreases, then CMDR vs. MR relationship is mainly upward convex. If the groundwater flux variations are periodic, the CMDR vs. MR relationship tends to also have periodic variations ranging from upward convex to downward concave. Eventually, however, the CMDR vs. MR relationship approaches 1:1 when majority of the NAPL mass becomes depleted. Copyright © 2016 Elsevier B.V. All rights reserved.
Chambers, J E; Wilkinson, P B; Wealthall, G P; Loke, M H; Dearden, R; Wilson, R; Allen, D; Ogilvy, R D
2010-10-21
Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents. Copyright © 2010 S. Yamamoto. Published by Elsevier B.V. All rights reserved.
DEVELOPMENT OF A METHODOLOGY FOR REGIONAL EVALUATION OF CONFINING BED INTEGRITY
For safe underground injection of liquid waste, confining formations must be thick, extensive, and have low permeability. Recognition of faults that extend from the potential injection zone to underground sources of drinking water is critical for evaluation of confining-bed integ...
EVALUATIONS OF DNAPL REMEDIAL PERFORMANCE BASED ON FIELD MEASUREMENTS OF CONTAMINANT FLUX
Under a concentration-based regulatory framework, the benefits of conducting dense nonaqueous phase liquid (DNAPL) source-zone remediation are questionable because of the impracticality of complete DNAPL elimination at most sites. Removing a sufficient mass of DNAPL to achieve c...
CONTROLLED RELEASE, BLIND TEST OF DNAPL REMEDIATION BY ETHANOL FLUSHING
A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile
isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL
remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedia...
NASA Astrophysics Data System (ADS)
Kaye, Andrew J.; Cho, Jaehyun; Basu, Nandita B.; Chen, Xiaosong; Annable, Michael D.; Jawitz, James W.
2008-11-01
This study investigated the benefits of partial removal of dense nonaqueous phase liquid (DNAPL) source zones using enhanced dissolution in eight laboratory scale experiments. The benefits were assessed by characterizing the relationship between reductions in DNAPL mass and the corresponding reduction in contaminant mass flux. Four flushing agents were evaluated in eight controlled laboratory experiments to examine the effects of displacement fluid property contrasts and associated override and underride on contaminant flux reduction ( Rj) vs. mass reduction ( Rm) relationships ( Rj( Rm)): 1) 50% ethanol/50% water (less dense than water), 2) 40% ethyl-lactate/60% water (more dense than water), 3) 18% ethanol/26% ethyl-lactate/56% water (neutrally buoyant), and 4) 2% Tween-80 surfactant (also neutrally buoyant). For each DNAPL architecture evaluated, replicate experiments were conducted where source zone dissolution was conducted with a single flushing event to remove most of the DNAPL from the system, and with multiple shorter-duration floods to determine the path of the Rj( Rm) relationship. All of the single-flushing experiments exhibited similar Rj( Rm) relationships indicating that override and underride effects associated with cosolvents did not significantly affect the remediation performance of the agents. The Rj( Rm) relationship of the multiple injection experiments for the cosolvents with a density contrast with water tended to be less desirable in the sense that there was less Rj for a given Rm. UTCHEM simulations supported the observations from the laboratory experiments and demonstrated the capability of this model to predict Rj( Rm) relationships for non-uniformly distributed NAPL sources.
Trichloroethylene (TCE) is widely used as a solvent in metal processing and electronic manufacturing industries, but waste and spilled TCE often results in blocks of non-aqueous liquid in vadose and saturated zones which become continuous contamination sources for groundwater. El...
Formation of the Vysoká-Zlatno Cu-Au skarn-porphyry deposit, Slovakia
NASA Astrophysics Data System (ADS)
Koděra, Peter; Lexa, Jaroslav; Fallick, Anthony E.
2010-12-01
The central zone of the Miocene Štiavnica stratovolcano hosts several occurrences of Cu-Au skarn-porphyry mineralisation, related to granodiorite/quartz-diorite porphyry dyke clusters and stocks. Vysoká-Zlatno is the largest deposit (13.4 Mt at 0.52% Cu), with mineralised Mg-Ca exo- and endoskarns, developed at the prevolcanic basement level. The alteration pattern includes an internal K- and Na-Ca silicate zone, surrounded by phyllic and argillic zones, laterally grading into a propylitic zone. Fluid inclusions in quartz veinlets in the internal zone contain mostly saline brines with 31-70 wt.% NaCl eq. and temperatures of liquid-vapour homogenization (Th) of 186-575°C, indicating fluid heterogenisation. Garnet contains inclusions of variable salinity with 1-31 wt.% NaCl eq. and Th of 320-360°C. Quartz-chalcopyrite veinlets host mostly low-salinity fluid inclusions with 0-3 wt.% NaCl eq. and Th of 323-364°C. Data from sphalerite from the margin of the system indicate mixing with dilute and cooler fluids. The isotopic composition of fluids in equilibrium with K-alteration and most skarn minerals (both prograde and retrograde) indicates predominantly a magmatic origin (δ18Ofluid 2.5-12.3‰) with a minor meteoric component. Corresponding low δDfluid values are probably related to isotopic fractionation during exsolution of the fluid from crystallising magma in an open system. The data suggest the general pattern of a distant source of magmatic fluids that ascended above a zone of hydraulic fracturing below the temperature of ductile-brittle transition. The magma chamber at ˜5-6 km depth exsolved single-phase fluids, whose properties were controlled by changing PT conditions along their fluid paths. During early stages, ascending fluids display liquid-vapour immiscibility, followed by physical separation of both phases. Low-salinity liquid associated with ore veinlets probably represents a single-phase magmatic fluid/magmatic vapour which contracted into liquid upon its ascent.
Observations of the freeze/thaw performance of lithium fluoride by motion picture photography
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Perry, W. D.
1991-01-01
To gain direct observation of the molten salt phase change, a novel containerless technique was developed where the high surface tension of lithium fluoride was used to suspend a bead of the molten salt inside a specially designed wire cage. By varying the current passing through the wire, the cage also served as a variable heat source. In this way, the freeze/thaw performance of the lithium fluoride could be photographed by motion picture photography without the influence of container walls. The motion picture photography of the lithium fluoride sample revealed several zones during the phase change, a solid zone and a liquid zone, as expected, and a slush zone that was predicted by thermal analysis modeling.
Method for continuously recovering metals using a dual zone chemical reactor
Bronson, Mark C.
1995-01-01
A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing.
The contamination of the subsurface environment by dense non-aqueous phase liquids (DNAPL) is a wide-spread problem that poses a significant threat to soil and groundwater quality. Implementing different remediation techniques can lead to the removal of a high fraction of the DNA...
NASA Astrophysics Data System (ADS)
Zhong, L.; Szecsody, J.; Li, X.; Oostrom, M.; Truex, M.
2010-12-01
In many contamination sites, removal of contaminants by any active remediation efforts is not practical due to the high cost and technological limitations. Alternatively, in situ remediation is expected to be the most important remediation strategy. Delivery of reactive amendment to the contamination zone is essential for the reactions between the contaminants and remedial amendments to proceed in situ. It is a challenge to effectively deliver remedial amendment to the subsurface contamination source areas in both aquifer and vadose zone. In aquifer, heterogeneity induces fluid bypassing the low-permeability zones, resulting in certain contaminated areas inaccessible to the remedial amendment delivered by water injection, thus inhibiting the success of remedial operations. In vadose zone in situ remediation, conventional solution injection and infiltration for amendment delivery have difficulties to achieve successful lateral spreading and uniform distribution of the reactive media. These approaches also tend to displace highly mobile metal and radionuclide contaminants such as hexavalent chromium [Cr(VI)] and technetium (Tc-99), causing spreading of contaminations. Shear thinning fluid and aqueous foam can be applied to enhance the amendment delivery and improve in situ subsurface remediation efficiency under aquifer and vadose zone conditions, respectively. Column and 2-D flow cell experiments were conducted to demonstrate the enhanced delivery and improved remediation achieved by the application of shear thinning fluid and foam injection at the laboratory scale. Solutions of biopolymer xanthan gum were used as the shear thinning delivering fluids. Surfactant sodium lauryl ether sulfate (STEOL CS-330) was the foaming agent. The shear thinning fluid delivery (STFD) considerably improved the sweeping efficiency over a heterogeneous system and enhanced the non-aqueous liquid phase (NAPL) removal. The delivery of amendment into low-perm zones (LPZs) by STFD also increased the persistence of amendment solution in the LPZs after injection. Immobilization of Tc-99 was improved when a reductant was delivered by foam versus by water-based solution to contaminated vadose zone sediments. Foam delivery remarkably improved the lateral distribution of fluids compared to direct liquid injection. In heterogeneous vadose zone formation, foam injection increased the liquid flow in the high permeable zones into which very limited fluid was distributed during liquid infiltration, demonstrating improved amendment distribution uniformity in the heterogeneous system by foam delivery.
Kaye, Andrew J; Cho, Jaehyun; Basu, Nandita B; Chen, Xiaosong; Annable, Michael D; Jawitz, James W
2008-11-14
This study investigated the benefits of partial removal of dense nonaqueous phase liquid (DNAPL) source zones using enhanced dissolution in eight laboratory scale experiments. The benefits were assessed by characterizing the relationship between reductions in DNAPL mass and the corresponding reduction in contaminant mass flux. Four flushing agents were evaluated in eight controlled laboratory experiments to examine the effects of displacement fluid property contrasts and associated override and underride on contaminant flux reduction (R(j)) vs. mass reduction (R(m)) relationships (R(j)(R(m))): 1) 50% ethanol/50% water (less dense than water), 2) 40% ethyl-lactate/60% water (more dense than water), 3) 18% ethanol/26% ethyl-lactate/56% water (neutrally buoyant), and 4) 2% Tween-80 surfactant (also neutrally buoyant). For each DNAPL architecture evaluated, replicate experiments were conducted where source zone dissolution was conducted with a single flushing event to remove most of the DNAPL from the system, and with multiple shorter-duration floods to determine the path of the R(j)(R(m)) relationship. All of the single-flushing experiments exhibited similar R(j)(R(m)) relationships indicating that override and underride effects associated with cosolvents did not significantly affect the remediation performance of the agents. The R(j)(R(m)) relationship of the multiple injection experiments for the cosolvents with a density contrast with water tended to be less desirable in the sense that there was less R(j) for a given R(m). UTCHEM simulations supported the observations from the laboratory experiments and demonstrated the capability of this model to predict R(j)(R(m)) relationships for non-uniformly distributed NAPL sources.
Bubble-facilitated VOC transport: Laboratory experiments and numerical modelling
NASA Astrophysics Data System (ADS)
Mumford, K. G.; Soucy, N. C.
2017-12-01
Most conceptual and numerical models of vapor intrusion assume that the transport of volatile organic compounds (VOCs) from the source to near the building foundation is a diffusion-limited processes. However, the transport of VOCs by mobilized gas bubbles through the saturated zone could lead to increased rates of transport and advection through the unsaturated zone, thereby increasing mass flux and risks associated with vapor intrusion. This mobilized gas could be biogenic (methanogenic) but could also result from the partitioning of VOC to trapped atmospheric gases in light non-aqueous phase liquid (LNAPL) smear zones. The potential for bubble-facilitated VOC transport to increase mass flux was investigated in a series of 1D and 2D laboratory experiments. Pentane source zones were emplaced in sand using sequential drainage and imbibition steps to mimic a water table fluctuation and trap air alongside LNAPL residual. This source was placed below an uncontaminated, water saturated sand (occlusion zone) and a gravel-sized (glass beads) unsaturated zone. Water was pumped laterally through the source zone and occlusion zone to deliver the dissolved gases (air) that are required for the expansion of trapped gas bubbles. Images from 2D flow cell experiments were used to demonstrate fluid rearrangement in the source zone and gas expansion to the occlusion zone, and 1D column experiments were used to measure gas-phase pentane mass flux. This flux was found to be 1-2 orders of magnitude greater than that measured in diffusion-dominated control columns, and showed intermittent behavior consistent with bubble transport by repeated expansion, mobilization, coalescence and trapping. Numerical simulation results under a variety of conditions using an approach that couples macroscopic invasion percolation with mass transfer (MIP-MT) between the aqueous and gas phases will also be presented. The results of this study demonstrate the potential for bubble-facilitated transport to increase transport rates linked to vapor intrusion, and will serve as a basis for further development of conceptual and numerical models to investigate the conditions under which this mechanism may play an important role.
NAPL source zone depletion model and its application to railroad-tank-car spills.
Marruffo, Amanda; Yoon, Hongkyu; Schaeffer, David J; Barkan, Christopher P L; Saat, Mohd Rapik; Werth, Charles J
2012-01-01
We developed a new semi-analytical source zone depletion model (SZDM) for multicomponent light nonaqueous phase liquids (LNAPLs) and incorporated this into an existing screening model for estimating cleanup times for chemical spills from railroad tank cars that previously considered only single-component LNAPLs. Results from the SZDM compare favorably to those from a three-dimensional numerical model, and from another semi-analytical model that does not consider source zone depletion. The model was used to evaluate groundwater contamination and cleanup times for four complex mixtures of concern in the railroad industry. Among the petroleum hydrocarbon mixtures considered, the cleanup time of diesel fuel was much longer than E95, gasoline, and crude oil. This is mainly due to the high fraction of low solubility components in diesel fuel. The results demonstrate that the updated screening model with the newly developed SZDM is computationally efficient, and provides valuable comparisons of cleanup times that can be used in assessing the health and financial risk associated with chemical mixture spills from railroad-tank-car accidents. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Method for continuously recovering metals using a dual zone chemical reactor
Bronson, M.C.
1995-02-14
A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing. 6 figs.
Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes
Nizamoff, Alan J.
1980-01-01
In a coal liquefaction process wherein feed coal is contacted with molecular hydrogen and a hydrogen-donor solvent in a liquefaction zone to form coal liquids and vapors and coal liquids in the solvent boiling range are thereafter hydrogenated to produce recycle solvent and liquid products, the improvement which comprises separating the effluent from the liquefaction zone into a hot vapor stream and a liquid stream; cooling the entire hot vapor stream sufficiently to condense vaporized liquid hydrocarbons; separating condensed liquid hydrocarbons from the cooled vapor; fractionating the liquid stream to produce coal liquids in the solvent boiling range; dividing the cooled vapor into at least two streams; passing the cooling vapors from one of the streams, the coal liquids in the solvent boiling range, and makeup hydrogen to a solvent hydrogenation zone, catalytically hydrogenating the coal liquids in the solvent boiling range and quenching the hydrogenation zone with cooled vapors from the other cooled vapor stream.
Relationship between mass-flux reduction and source-zone mass removal: analysis of field data.
Difilippo, Erica L; Brusseau, Mark L
2008-05-26
The magnitude of contaminant mass-flux reduction associated with a specific amount of contaminant mass removed is a key consideration for evaluating the effectiveness of a source-zone remediation effort. Thus, there is great interest in characterizing, estimating, and predicting relationships between mass-flux reduction and mass removal. Published data collected for several field studies were examined to evaluate relationships between mass-flux reduction and source-zone mass removal. The studies analyzed herein represent a variety of source-zone architectures, immiscible-liquid compositions, and implemented remediation technologies. There are two general approaches to characterizing the mass-flux-reduction/mass-removal relationship, end-point analysis and time-continuous analysis. End-point analysis, based on comparing masses and mass fluxes measured before and after a source-zone remediation effort, was conducted for 21 remediation projects. Mass removals were greater than 60% for all but three of the studies. Mass-flux reductions ranging from slightly less than to slightly greater than one-to-one were observed for the majority of the sites. However, these single-snapshot characterizations are limited in that the antecedent behavior is indeterminate. Time-continuous analysis, based on continuous monitoring of mass removal and mass flux, was performed for two sites, both for which data were obtained under water-flushing conditions. The reductions in mass flux were significantly different for the two sites (90% vs. approximately 8%) for similar mass removals ( approximately 40%). These results illustrate the dependence of the mass-flux-reduction/mass-removal relationship on source-zone architecture and associated mass-transfer processes. Minimal mass-flux reduction was observed for a system wherein mass removal was relatively efficient (ideal mass-transfer and displacement). Conversely, a significant degree of mass-flux reduction was observed for a site wherein mass removal was inefficient (non-ideal mass-transfer and displacement). The mass-flux-reduction/mass-removal relationship for the latter site exhibited a multi-step behavior, which cannot be predicted using some of the available simple estimation functions.
NASA Astrophysics Data System (ADS)
Teramoto, Elias Hideo; Chang, Hung Kiang
2017-03-01
Mass transfer of light non-aqueous phase liquids (LNAPLs) trapped in porous media is a complex phenomenon. Water table fluctuations have been identified as responsible for generating significant variations in the concentration of dissolved hydrocarbons. Based on field evidence, this work presents a conceptual model and a numerical solution for mass transfer from entrapped LNAPL to groundwater controlled by both LNAPL saturation and seasonal water table fluctuations within the LNAPL smear zone. The numerical approach is capable of reproducing aqueous BTEX concentration trends under three different scenarios - water table fluctuating within smear zone, above the smear zone and partially within smear zone, resulting in in-phase, out-of-phase and alternating in-phase and out-of-phase BTEX concentration trend with respect to water table oscillation, respectively. The results demonstrate the model's applicability under observed field conditions and its ability to predict source zone depletion.
Current status of new SAGE project with 51Cr neutrino source
Gavrin, V.; Cleveland, B.; Danshin, S.; ...
2015-03-15
A very short-baseline neutrino oscillation experiment with an intense 51Cr neutrino source is currently under construction at the Baksan Neutrino Observatory of the Institute for Nuclear Research RAS (BNO). The experiment, which is based on the existing SAGE experiment, will use an upgraded Gallium-Germanium Neutrino Telescope (GGNT) and an artificial 51Cr neutrino source with activity ~3 MCi to search for transitions of active neutrinos to sterile states with Δm 2 ~1 eV 2. The neutrino source will be placed in the center of a liquid Ga metal target that is divided into two concentric zones, internal and external. The averagemore » path length of neutrinos in each zone will be the same and the neutrino capture rate will be measured separately in each zone. The oscillation signature, which comes from the ratio of events in the near and far gallium volumes, will be largely free of systematic errors, such as may occur from cross section and source strength uncertainties, and will provide a clean signal of electron neutrino disappearance into a sterile state at baselines of about 0.6 and 2.0 m. The sensitivity to the disappearance of electron neutrinos is expected to be a few percent. Construction of this set of new facilities, including a two-zone tank for irradiation of 50 tons of Ga metal with the intense 51Cr source, as well as additional modules of the GGNT counting and extraction systems, is close to completion. In order to check the new facilities they will first be used for SAGE solar neutrino measurements.« less
Current status of new SAGE project with 51Cr neutrino source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavrin, V.; Cleveland, B.; Danshin, S.
A very short-baseline neutrino oscillation experiment with an intense 51Cr neutrino source is currently under construction at the Baksan Neutrino Observatory of the Institute for Nuclear Research RAS (BNO). The experiment, which is based on the existing SAGE experiment, will use an upgraded Gallium-Germanium Neutrino Telescope (GGNT) and an artificial 51Cr neutrino source with activity ~3 MCi to search for transitions of active neutrinos to sterile states with Δm 2 ~1 eV 2. The neutrino source will be placed in the center of a liquid Ga metal target that is divided into two concentric zones, internal and external. The averagemore » path length of neutrinos in each zone will be the same and the neutrino capture rate will be measured separately in each zone. The oscillation signature, which comes from the ratio of events in the near and far gallium volumes, will be largely free of systematic errors, such as may occur from cross section and source strength uncertainties, and will provide a clean signal of electron neutrino disappearance into a sterile state at baselines of about 0.6 and 2.0 m. The sensitivity to the disappearance of electron neutrinos is expected to be a few percent. Construction of this set of new facilities, including a two-zone tank for irradiation of 50 tons of Ga metal with the intense 51Cr source, as well as additional modules of the GGNT counting and extraction systems, is close to completion. In order to check the new facilities they will first be used for SAGE solar neutrino measurements.« less
NASA Astrophysics Data System (ADS)
Ghamari, Mohsen
In spite of recent attention to renewable sources of energy, liquid hydrocarbon fuels are still the main source of energy for industrial and transportation systems. Manufactures and consumers are consistently looking for ways to optimize the efficiency of fuel combustion in terms of cost, emissions and consumer safety. In this regard, increasing burning rate of liquid fuels has been of special interest in both industrial and transportation systems. Recent studies have shown that adding combustible nano-particles could have promising effects on improving combustion performance of liquid fuels. Combustible nano-particles could enhance radiative and conductive heat transfer and also mixing within the droplet. Polymeric additive have also shown promising effect on improving fire safety by suppressing spreading behavior and splatter formation in case of crash scenario. Polymers are also known to have higher burning rate than regular hydrocarbon fuels. Therefore adding polymeric additive could have the potential to increase the burning rate. In this work, combustion dynamics of liquid fuel droplets with both polymeric and nanoparticle additives is studied in normal gravity. High speed photography is employed and the effect of additive concentration on droplet burning rate, burning time, extinction and soot morphology is investigated. Polymer added fuel was found to have a volatility controlled combustion with four distinct regimes. The first three zones are associated with combustion of base fuel while the polymer burns last and after a heating zone because of its higher boiling point. Polymer addition reduces the burning rate of the base fuel in the first zone by means of increasing viscosity and results in nucleate boiling and increased burning rates in the second and third stages. Overall, polymer addition resulted in a higher burning rate and shorter burning time in most of the scenarios. Colloidal suspensions of carbon-based nanomaterials in liquid fuels were also tested at different particle loadings. It was found that dispersing nanoparticles results in higher burning rate by means of enhanced radiative heat absorption and thermal conductivity. An optimum particle loading was found for each particle type at which the maximum burning rate was achieved. It was observed that the burning rate again starts to reduce after this optimum point most likely due to the formation of large aggregates that reduce thermal conductivity and suppress the diffusion of species.
Effects of Contaminated Site Age on Dissolution Dynamics
NASA Astrophysics Data System (ADS)
Jawitz, J. W.
2004-12-01
This work presents a streamtube-based analytical approach to evaluate reduction in groundwater contaminant flux resulting from partial mass reduction in a nonaqueous phase liquid (NAPL) source zone. The reduction in contaminant flux, Rj, discharged from the source zone is a remediation performance metric that has a direct effect on the fundamental drivers of remediation: protection of human health risks and the environment. Spatial variability is described within a Lagrangian framework where aquifer hydrodynamic heterogeneities are characterized using nonreactive travel time distributions, while NAPL spatial distribution heterogeneity can be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to evaluate the relationship between reduction in contaminant mass, Rm, and Rj. A portion of the contaminant mass in the source zone is assumed to be removed via in-situ flushing remediation, with the initial and final conditions defined as steady-state natural-gradient groundwater flow through the contaminant source zone. The combined effect of aquifer and NAPL heterogeneities are shown to be captured in a single parameter, reactive travel time variability, that was determined to be the most important factor controlling the relationship between Rm and Rj. Increased values of the following parameters are shown to result in more favorable contaminant elution dynamics (i.e., greater flux reduction for a given reduction in mass): aquifer hydrodynamic heterogeneity, NAPL source zone heterogeneity, positive correlation between travel time and NAPL content, and time since the contamination event. Less favorable elution behavior is shown to result from negative correlations between travel time and NAPL content and rate-limited dissolution. The specific emphasis of this presentation is on the effects of the length of time that has elapsed since the contamination event (site age) on the dissolution dynamics.
Segregation Coefficients of Impurities in Selenium by Zone Refining
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Sha, Yi-Gao
1998-01-01
The purification of Se by zone refining process was studied. The impurity solute levels along the length of a zone-refined Se sample were measured by spark source mass spectrographic analysis. By comparing the experimental concentration levels with theoretical curves the segregation coefficient, defined as the ratio of equilibrium concentration of a given solute in the solid to that in the liquid, k = x(sub s)/x(sub l) for most of the impurities in Se are found to be close to unity, i.e., between 0.85 and 1.15, with the k value for Si, Zn, Fe, Na and Al greater than 1 and that for S, Cl, Ca, P, As, Mn and Cr less than 1. This implies that a large number of passes is needed for the successful implementation of zone refining in the purification of Se.
Hydrogenation of carbonaceous materials
Friedman, Joseph; Oberg, Carl L.; Russell, Larry H.
1980-01-01
A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.
2006-11-28
nonuniform permeability fields using the University of Texas Chemical Flooding Simulator ( UTCHEM 9.0) [Center for Petroleum and Geosystems Engineering...Engineering (2000), UTCHEM , Ver- sion 9.0 technical documentation, Univ. of Tex. at Austin, Austin. Chambers, J. E., M. H. Loke, R. D. Ogilvy, and P. I
Wan, Jiamin; Tokunaga, Tetsu K; Kim, Yongman; Wang, Zheming; Lanzirotti, Antonio; Saiz, Eduardo; Serne, R Jeffrey
2008-03-15
The accidental overfilling of waste liquid from tank BX-102 at the Hanford Site in 1951 put about 10 t of U(VI) into the vadose zone. In order to understand the dominant geochemical reactions and transport processes that occurred during the initial infiltration and to help understand current spatial distribution, we simulated the waste liquid spilling event in laboratory sediment columns using synthesized metal waste solution. We found that, as the plume propagated through sediments, pH decreased greatly (as much as 4 units) at the moving plume front. Infiltration flow rates strongly affect U behavior. Slower flow rates resulted in higher sediment-associated U concentrations, and higher flow rates (> or =5 cm/day) permitted practically unretarded U transport. Therefore, given the very high Ksat of most of Hanford formation, the low permeability zones within the sediment could have been most important in retaining high concentrations of U during initial release into the vadose zone. Massive amount of colloids, including U-colloids, formed at the plume fronts. Total U concentrations (aqueous and colloid) within plume fronts exceeded the source concentration by up to 5-fold. Uranium colloid formation and accumulation at the neutralized plume front could be one mechanism responsible for highly heterogeneous U distribution observed in the contaminated Hanford vadose zone.
NASA Technical Reports Server (NTRS)
Litchford, R. J.
2005-01-01
A computational method for the analysis of longitudinal-mode liquid rocket combustion instability has been developed based on the unsteady, quasi-one-dimensional Euler equations where the combustion process source terms were introduced through the incorporation of a two-zone, linearized representation: (1) A two-parameter collapsed combustion zone at the injector face, and (2) a two-parameter distributed combustion zone based on a Lagrangian treatment of the propellant spray. The unsteady Euler equations in inhomogeneous form retain full hyperbolicity and are integrated implicitly in time using second-order, high-resolution, characteristic-based, flux-differencing spatial discretization with Roe-averaging of the Jacobian matrix. This method was initially validated against an analytical solution for nonreacting, isentropic duct acoustics with specified admittances at the inflow and outflow boundaries. For small amplitude perturbations, numerical predictions for the amplification coefficient and oscillation period were found to compare favorably with predictions from linearized small-disturbance theory as long as the grid exceeded a critical density (100 nodes/wavelength). The numerical methodology was then exercised on a generic combustor configuration using both collapsed and distributed combustion zone models with a short nozzle admittance approximation for the outflow boundary. In these cases, the response parameters were varied to determine stability limits defining resonant coupling onset.
Field experiment with liquid manure and enhanced biochar
NASA Astrophysics Data System (ADS)
Dunst, Gerald
2017-04-01
Field experiments with low amounts of various liquid manure enhanced biochars. In 2016 a new machine was developed to inject liquid biochar based fertilizer directly into the crop root zone. A large-scale field experiment with corn and oil seed pumpkin was set-up on 42 hectares on 15 different fields in the south East of Austria. Three treatments were compared: (1) surface spreading of liquid manure as control (common practice), (2) 20 cm deep root zone injection with same amount of liquid manure, and (3) 20 cm deep root zone injection with same amount of liquid manure mixed with 1 to 2 tons of various nutrient enhanced biochars. The biochar were quenched with the liquid phase from a separated digestate from a biogas plant (feedstock: cow manure). From May to October nitrate and ammonium content was analyzed monthly from 0-30cm and 30-60cm soil horizons. At the end of the growing season the yield was determined. The root zone injection of the liquid manure reduced the nitrate content during the first two months at 13-16% compared to the control. When the liquid manure was blended with biochar, Nitrate soil content was lowest (reduction 40-47%). On average the root zone injection of manure-biochar increased the yield by 7% compared to the surface applied control and 3% compared to the root zone injected manure without biochar. The results shows, that biochar is able to reduce the Nitrate load in soils and increase the yield of corn at the same time. The nutrient efficiency of organic liquid fertilizers can be increased.
Total Petroleum Systems of the Carpathian - Balkanian Basin Province of Romania and Bulgaria
Pawlewicz, Mark
2007-01-01
The U.S. Geological Survey defined the Moesian Platform Composite Total Petroleum System and the Dysodile Schist-Tertiary Total Petroleum System, which contain three assessment units, in the Carpathian-Balkanian Basin Province of Romania and Bulgaria. The Moesian Platform Assessment Unit, contained within the Moesian Platform Composite Total Petroleum System, is composed of Mesozoic and Cenozoic rocks within the Moesian platform region of southern Romania and northern Bulgaria and also within the Birlad depression in the northeastern platform area. In Romania, hydrocarbon sources are identified as carbonate rocks and bituminous claystones within the Middle Devonian, Middle Jurassic, Lower Cretaceous, and Neogene stratigraphic sequences. In the Birlad depression, Neogene pelitic strata have the best potential for generating hydrocarbons. In Bulgaria, Middle and Upper Jurassic shales are the most probable hydrocarbon sources. The Romania Flysch Zone Assessment Unit in the Dysodile Schist-Tertiary Total Petroleum System encompasses three structural and paleogeographic subunits within the Pre-Carpathian Mountains region: (1) the Getic depression, a segment of the Carpathian foredeep; (2) the flysch zone of the eastern Carpathian Mountains (also called the Marginal Fold nappe); and (3) the Miocene zone (also called the Sub-Carpathian nappe). Source rocks are interpreted to be Oligocene dysodile schist and black claystone, along with Miocene black claystone and marls. Also part of the Dysodile Schist-Tertiary Total Petroleum System is the Romania Ploiesti Zone Assessment Unit, which includes a zone of diapir folds. This zone lies between the Rimnicu Sarat and Dinibovita valleys and between the folds of the inner Carpathian Mountains and the external flanks of the Carpathian foredeep. The Oligocene Dysodile Schist is considered the main hydrocarbon source rock and Neogene black marls and claystones are likely secondary sources; all are thought to be at their maximum thermal maturation. Undiscovered resources in the Carpathian-Balkanian Basin Province are estimated, at the mean, to be 2,076 billion cubic feet of gas, 1,013 million barrels of oil, and 116 million barrels of natural gas liquids.
NASA Astrophysics Data System (ADS)
McMillan, Lindsay A.; Rivett, Michael O.; Wealthall, Gary P.; Zeeb, Peter; Dumble, Peter
2018-03-01
Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation.
Maa, Peter S.
1978-01-01
A process for liquefying a particulate coal feed to produce useful petroleum-like liquid products which comprises contacting; in a series of two or more coal liquefaction zones, or stages, graded with respect to temperature, an admixture of a polar compound; or compounds, a hydrogen donor solvent and particulate coal, the total effluent being passed in each instance from a low temperature zone, or stage to the next succeeding higher temperature zone, or stage, of the series. The temperature within the initial zone, or stage, of the series is maintained about 70.degree. F and 750.degree. F and the temperature within the final zone, or stage, is maintained between about 750.degree. F and 950.degree. F. The residence time within the first zone, or stage, ranges, generally, from about 20 to about 150 minutes and residence time within each of the remaining zones, or stages, of the series ranges, generally, from about 10 minutes to about 70 minutes. Further steps of the process include: separating the product from the liquefaction zone into fractions inclusive of a liquid solvent fraction; hydrotreating said liquid solvent fraction in a hydrogenation zone; and recycling the hydrogenated liquid solvent mixture to said coal liquefaction zones.
NASA Astrophysics Data System (ADS)
Phelan, Thomas J.; Abriola, Linda M.; Gibson, Jenny L.; Smits, Kathleen M.; Christ, John A.
2015-12-01
In-situ bioremediation, a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs), has proven economical and reasonably efficient for long-term management of contaminated sites. Successful application of this remedial technology, however, requires an understanding of the complex interaction of transport, mass transfer, and biotransformation processes. The bioenhancement factor, which represents the ratio of DNAPL mass transfer under microbially active conditions to that which would occur under abiotic conditions, is commonly used to quantify the effectiveness of a particular bioremediation remedy. To date, little research has been directed towards the development and validation of methods to predict bioenhancement factors under conditions representative of real sites. This work extends an existing, first-order, bioenhancement factor expression to systems with zero-order and Monod kinetics, representative of many source-zone scenarios. The utility of this model for predicting the bioenhancement factor for previously published laboratory and field experiments is evaluated. This evaluation demonstrates the applicability of these simple bioenhancement factors for preliminary experimental design and analysis, and for assessment of dissolution enhancement in ganglia-contaminated source zones. For ease of application, a set of nomographs is presented that graphically depicts the dependence of bioenhancement factor on physicochemical properties. Application of these nomographs is illustrated using data from a well-documented field site. Results suggest that this approach can successfully capture field-scale, as well as column-scale, behavior. Sensitivity analyses reveal that bioenhanced dissolution will critically depend on in-situ biomass concentrations.
Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA
1981-01-01
Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.
Friedman, J.; Oberg, C. L.; Russell, L. H.
1981-06-23
Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.
Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.
2011-12-01
The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and dechlorination kinetics were reflected in a transient, spatially heterogeneous bioavailability number and dissolution enhancement. In agreement with the literature, source zone architecture largely determined the impact of mass transfer on potential dissolution enhancement, with bioavailability decreasing the most at high ganglia to pool ratios. The results of this study suggest that if mass transfer rate limitations are not considered in designing bioremediation applications at DNAPL source zones, the enhancement of DNAPL depletion and the overall effectiveness of enhanced bioremediation may be significantly overestimated.
2005-08-01
Research and iii Development Program, Department of Defense, who in part funded this research (CU- 1295: Impacts of DNAPL Source Zone Treatment : Experimental...Trichlorosilane Treatment and Retardation Factor ....................... 46 Results and D iscussion... treatments . Water entry rates were then experimentally measured for various media treatments altering contact angle. With all other data known, contact
NASA Astrophysics Data System (ADS)
Suchomel, Eric J.; Ramsburg, C. Andrew; Pennell, Kurt D.
2007-12-01
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween® 80) and sodium dihexyl sulfosuccinate (Aerosol® MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl 2 yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (> 30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR = 1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (< 5%) occurring when the total trapping number exceeded 2 × 10 - 5 . These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.
Process for blending coal with water immiscible liquid
Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.
1982-10-26
A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.
Purification and Crystal Growth of Lead Iodide by Physical Vapor Transport Method
NASA Technical Reports Server (NTRS)
Wright, G. W.; Cole, M.; Chen, Y.-F.; Chen, K.-T.; Chen, H.; Chattopadhyay, K.; Burger, A.
1998-01-01
Lead iodide (PbI2) is a layered compound semiconductor being developed as room temperature x- and gamma-ray detector. Compared to the more studied material, mercuric iodide, PbI2 has a higher melting temperature and no phase transition until liquid phase which are indications of better mechanical properties. In this study, the source material was purified by the zone-refining process, and the purest section was extracted from center of the the zone-refined ingot to be grown by physical vapor transport (PVT) method. The zone-refined material and as-grown crystals were characterized by optical microscopy and differential scanning calorimetry (DSC) to reveal the surface morphology, purity and stoichiometry. The results shows that both materials are near-stoichiometric composition, with the purity of the as-grown crystals higher than zone-refined materials. The resistivity of the as-grown crystal (10" Omega-cm) was derived from current-voltage (I-V) measurement, and is 10 times higher than the zone-refined materials. Detail results will be presented and discussed.
Teramoto, Elias Hideo; Chang, Hung Kiang
2017-03-01
Mass transfer of light non-aqueous phase liquids (LNAPLs) trapped in porous media is a complex phenomenon. Water table fluctuations have been identified as responsible for generating significant variations in the concentration of dissolved hydrocarbons. Based on field evidence, this work presents a conceptual model and a numerical solution for mass transfer from entrapped LNAPL to groundwater controlled by both LNAPL saturation and seasonal water table fluctuations within the LNAPL smear zone. The numerical approach is capable of reproducing aqueous BTEX concentration trends under three different scenarios - water table fluctuating within smear zone, above the smear zone and partially within smear zone, resulting in in-phase, out-of-phase and alternating in-phase and out-of-phase BTEX concentration trend with respect to water table oscillation, respectively. The results demonstrate the model's applicability under observed field conditions and its ability to predict source zone depletion. Copyright © 2017 Elsevier B.V. All rights reserved.
Catalytic hydrotreating process
Karr, Jr., Clarence; McCaskill, Kenneth B.
1978-01-01
Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.
Nielson, J.E.; Budahn, J.R.; Unruh, D.M.; Wilshire, H.G.
1993-01-01
Major and trace-element whole rock and mineral variations in composite hornblendite-peridotite xenolith Ba-2-1, from Dish Hill, CA, are due to a single event of metasomatism in the mantle. The hornblendite is the crystallized selvage of a dike conduit charged with incompatible-element-enriched hydrous mafic magma. The magma infiltrated the refractory peridotite wallrock, reacted with its constituent minerals, and simultaneously deposited amphibole. The systematic data from this study show considerable variation in isotopic values and trace elements. These data provide insight into a mantle process that was defined previously from samples without context, lacking evidence about the number or source of metasomatic events. In the contact zone of Ba-2-1, peridotite is enriched in Fe, Ti, CO2) and H2O; clinopyroxene and amphibole also are enriched in Fe and Ti, but clinopyroxene appears slightly depleted in CaO. Compared to chondrites, peridotite, clinopyroxene, and probably amphibole are enriched in light rare earth (LREEcn) and other incompatible trace elements. Values of 87Sr 86Sr and 143Nd 144Nd in the contact zone are close to isotopic equilibrium with the dike. Whole rock and constituent clinopyroxene compositions change to those of refractory peridotite with distance from the contact. These compositional variations were modelled using Gresens' equation for whole-rock major and minor elements, and calculations for isotopic ratios and REEs, which emulate the effects of Chromatographic fractionation. The choice of endmembers was restricted to compositions actually present in mantle samples from Dish Hill. Model results indicate that: 1. (1) the variations can be explained as the result of a single metasomatic event, probably a single pulse of previously fractionated liquid; 2. (2) the ratio of total interacting liquid to peridotite was at least 1:3 by weight in the contact zone; and 3. (3) the composition of the metasomatic liquid changed progressively as it infiltrated beyond that zone. The small distance over which variations occur is due to the small amount of liquid that infiltrated. Only in the contact zone was peridotite wallrock saturated by a liquid composition similar to the dike. Comparison of the Ba-2-1 data with those of another xenolith from Dish Hill suggests that the compositional variations of mantle metasomatism result from both the compositional contrast between the metasomatizing liquid and wallrock and the relative abundances of each. Compositional and volumetric variations of mantle partial melts and their fractionates, and repeated events of melting and reaction in contiguous mantle, can create broad ranges of metasomatic "signatures" from the same process. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, M.A.; Sternfeld, J.N.; Haizlip, J.R.
A high-temperature, vapor-dominated reservoir underlies a portion of the northwest Geysers area, Sonoma County, California. The high-temperature reservoir (HTR) is defined by flowing fluid temperatures exceeding 500/sup 0/F, rock temperatures apparently exceeding 600/sup 0/F, and steam enthalpies of about 1320 Btu/lb. The HTR in the northwest Geysers is probably a deep, evolving system in contrast to the shallower, leaky, and mature steam reservoir(s) in the central and southeastern portions of the field. Before natural venting and nearby production caused pressures to decline, the HTR was a liquid-dominated system with some connate water - the connate water being the source ofmore » the high gas contents, chloride, and unique isotopic composition relative to steam from a typical Geysers reservoir. Therefore, the present boundary between the typical reservoir and HTR is a transient, thermodynamic condition due to the recent evolution of a vapor-dominated zone from a liquid-dominated zone that has yet to cool down. It also demarks a previous liquid-to-vapor interface. Pressure in the two reservoirs is essentially the same because they are in communication with each other. In other words, the temperature change in the HTR is lagging (behind) the pressure change.« less
Wardle, Kent E.
2017-06-06
The present invention provides an annular centrifugal contactor, having a housing adapted to receive a plurality of flowing liquids; a rotor on the interior of the housing; an annular mixing zone, wherein the annular mixing zone has a plurality of fluid retention reservoirs with ingress apertures near the bottom of the annular mixing zone and egress apertures located above the ingress apertures of the annular mixing zone; and an adjustable vane plate stem, wherein the stem can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of the liquid into the rotor.
Pollock, David W.
1986-01-01
Many parts of the Great Basin have thick zones of unsaturated alluvium which might be suitable for disposing of high-level radioactive wastes. A mathematical model accounting for the coupled transport of energy, water (vapor and liquid), and dry air was used to analyze one-dimensional, vertical transport above and below an areally extensive repository. Numerical simulations were conducted for a hypothetical repository containing spent nuclear fuel and located 100 m below land surface. Initial steady state downward water fluxes of zero (hydrostatic) and 0.0003 m yr−1were considered in an attempt to bracket the likely range in natural water flux. Predicted temperatures within the repository peaked after approximately 50 years and declined slowly thereafter in response to the decreasing intensity of the radioactive heat source. The alluvium near the repository experienced a cycle of drying and rewetting in both cases. The extent of the dry zone was strongly controlled by the mobility of liquid water near the repository under natural conditions. In the case of initial hydrostatic conditions, the dry zone extended approximately 10 m above and 15 m below the repository. For the case of a natural flux of 0.0003 m yr−1 the relative permeability of water near the repository was initially more than 30 times the value under hydrostatic conditions, consequently the dry zone extended only about 2 m above and 5 m below the repository. In both cases a significant perturbation in liquid saturation levels persisted for several hundred years. This analysis illustrates the extreme sensitivity of model predictions to initial conditions and parameters, such as relative permeability and moisture characteristic curves, that are often poorly known.
Power, Christopher; Gerhard, Jason I; Karaoulis, Marios; Tsourlos, Panagiotis; Giannopoulos, Antonios
2014-07-01
Practical, non-invasive tools do not currently exist for mapping the remediation of dense non-aqueous phase liquids (DNAPLs). Electrical resistivity tomography (ERT) exhibits significant potential but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites. This study explores the effectiveness of recently developed four-dimensional (4D, i.e., 3D space plus time) time-lapse surface ERT to monitor DNAPL source zone remediation. A laboratory experiment demonstrated the approach for mapping a changing NAPL distribution over time. A recently developed DNAPL-ERT numerical model was then employed to independently simulate the experiment, providing confidence that the DNAPL-ERT model is a reliable tool for simulating real systems. The numerical model was then used to evaluate the potential for this approach at the field scale. Four DNAPL source zones, exhibiting a range of complexity, were initially simulated, followed by modeled time-lapse ERT monitoring of complete DNAPL remediation by enhanced dissolution. 4D ERT inversion provided estimates of the regions of the source zone experiencing mass reduction with time. Results show that 4D time-lapse ERT has significant potential to map both the outline and the center of mass of the evolving treated portion of the source zone to within a few meters in each direction. In addition, the technique can provide a reasonable, albeit conservative, estimate of the DNAPL volume remediated with time: 25% underestimation in the upper 2m and up to 50% underestimation at late time between 2 and 4m depth. The technique is less reliable for identifying cleanup of DNAPL stringers outside the main DNAPL body. Overall, this study demonstrates that 4D time-lapse ERT has potential for mapping where and how quickly DNAPL mass changes in real time during site remediation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Power, C.; Gerhard, J. I.; Tsourlos, P.; Giannopoulos, A.
2011-12-01
Remediation programs for sites contaminated with dense non-aqueous phase liquids (DNAPLs) would benefit from an ability to non-intrusively map the evolving volume and extent of the DNAPL source zone. Electrical resistivity tomography (ERT) is a well-established geophysical tool, widely used outside the remediation industry, that has significant potential for mapping DNAPL source zones. However, that potential has not been realized due to challenges in data interpretation from contaminated sites - in either a qualitative or quantitative way. The objective of this study is to evaluate the potential of ERT to map realistic, evolving DNAPL source zones within complex subsurface environments during remedial efforts. For this purpose, a novel coupled model was developed that integrates a multiphase flow model (DNAPL3D-MT), which generates realistic DNAPL release scenarios, with 3DINV, an ERT model which calculates the corresponding resistivity response. This presentation will describe the developed model coupling methodology, which integrates published petrophysical relationships to generate an electrical resistivity field that accounts for both the spatial heterogeneity of subsurface soils and the evolving spatial distribution of fluids (including permeability, porosity, clay content and air/water/DNAPL saturation). It will also present an example in which the coupled model was employed to explore the ability of ERT to track the remediation of a DNAPL source zone. A field-scale, three-dimensional release of chlorinated solvent DNAPL into heterogeneous clayey sand was simulated, including the subsurface migration and subsequent removal of the DNAPL source zone via dissolution in groundwater. Periodic surveys of this site via ERT applied at the surface were then simulated and inversion programs were used to calculate the subsurface distribution of electrical properties. This presentation will summarize this approach and its potential as a research tool exploring the range of site conditions under which ERT may prove useful in aiding DNAPL site remediation. Moreover, it is expected to provide a cost-effective avenue to test optimum ERT data acquisition, inversion and interpretative tools at contaminated sites.
NASA Astrophysics Data System (ADS)
Goltz, M. N.; Sievers, K. W.; Huang, J.; Demond, A. H.
2012-12-01
The subsurface storage and transport of a Dense Non-Aqueous Phase Liquid (DNAPL) was evaluated using a numerical model. DNAPLs are organic liquids comprised of slightly water-soluble chemicals or chemical mixtures that have a density greater than water. DNAPLs may pool atop low permeability layers upon entering the subsurface. Even with the removal or destruction of most pooled DNAPL mass, small amounts of the remaining contaminant, which had been transported into the low permeability layer, can dissolve into flowing groundwater and continue to act as a contamination source for decades. Recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more mass is stored in the low permeability zones than can be explained by diffusion alone. Observations and experimental evidence indicate that cracks in low permeability layers may have apertures of sufficient size to allow entry of separate phase DNAPL. In this study, a numerical flow and transport model is employed using a dual domain construct (high and low permeability layers) to investigate the impact of DNAPL entry into cracked low permeability zones on dissolved contaminant plume evolution and persistence. This study found that DNAPL within cracks can significantly contribute to down gradient dissolved phase concentrations; however, the extent of this contribution is very dependent upon the rate of DNAPL dissolution. Given these findings, remediation goals may be difficult to meet if source remediation strategies are used which do not account for the effect of cracking upon contaminant transport and storage in low permeability layers.
Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
Rivett, Michael O; Dearden, Rachel A; Wealthall, Gary P
2014-12-01
A detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transect monitoring along/across a controlled streamtube of flow induced by an extraction well positioned at the cell closed end. Integrated analysis of high-resolution DNAPL saturation (Sn) (from cores), dissolved-phase plume concentration (from multilevel samplers), tracer test and permeability datasets was undertaken. DNAPL architecture was determined from soil concentration data using partitioning calculations. DNAPL threshold soil concentrations and low Sn values calculated were sensitive to sorption assumptions. An outcome of this was the uncertainty in demarcation of secondary source zone diffused and sorbed mass that is distinct from trace amounts of low Sn DNAPL mass. The majority of source mass occurred within discrete lenses or pools of DNAPL associated with low permeability geological units. High residual saturation (Sn>10-20%) and pools (Sn>20%) together accounted for almost 40% of the DNAPL mass, but only 3% of the sampled source volume. High-saturation DNAPL lenses/pools were supported by lower permeability layers, but with DNAPL still primarily present within slightly more permeable overlying units. These lenses/pools exhibited approximately linearly declining Sn profiles with increasing elevation ascribed to preferential dissolution of the uppermost DNAPL. Bi-component partitioning calculations on soil samples confirmed that the dechlorination product cDCE (cis-dichloroethene) was accumulating in the TCE DNAPL. Estimated cDCE mole fractions in the DNAPL increased towards the DNAPL interface with the uppermost mole fraction of 0.04 comparable to literature laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4tonnes per annum over a 16m(2) cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies. Copyright © 2014. Published by Elsevier B.V.
Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone
NASA Astrophysics Data System (ADS)
Rivett, Michael O.; Dearden, Rachel A.; Wealthall, Gary P.
2014-12-01
A detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transect monitoring along/across a controlled streamtube of flow induced by an extraction well positioned at the cell closed end. Integrated analysis of high-resolution DNAPL saturation (Sn) (from cores), dissolved-phase plume concentration (from multilevel samplers), tracer test and permeability datasets was undertaken. DNAPL architecture was determined from soil concentration data using partitioning calculations. DNAPL threshold soil concentrations and low Sn values calculated were sensitive to sorption assumptions. An outcome of this was the uncertainty in demarcation of secondary source zone diffused and sorbed mass that is distinct from trace amounts of low Sn DNAPL mass. The majority of source mass occurred within discrete lenses or pools of DNAPL associated with low permeability geological units. High residual saturation (Sn > 10-20%) and pools (Sn > 20%) together accounted for almost 40% of the DNAPL mass, but only 3% of the sampled source volume. High-saturation DNAPL lenses/pools were supported by lower permeability layers, but with DNAPL still primarily present within slightly more permeable overlying units. These lenses/pools exhibited approximately linearly declining Sn profiles with increasing elevation ascribed to preferential dissolution of the uppermost DNAPL. Bi-component partitioning calculations on soil samples confirmed that the dechlorination product cDCE (cis-dichloroethene) was accumulating in the TCE DNAPL. Estimated cDCE mole fractions in the DNAPL increased towards the DNAPL interface with the uppermost mole fraction of 0.04 comparable to literature laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4 tonnes per annum over a 16 m2 cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies.
40 CFR 264.278 - Unsaturated zone monitoring.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...
40 CFR 264.278 - Unsaturated zone monitoring.
Code of Federal Regulations, 2014 CFR
2014-07-01
... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...
40 CFR 264.278 - Unsaturated zone monitoring.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...
40 CFR 264.278 - Unsaturated zone monitoring.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...
40 CFR 264.278 - Unsaturated zone monitoring.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...
NASA Astrophysics Data System (ADS)
Cápiro, Natalie L.; Löffler, Frank E.; Pennell, Kurt D.
2015-11-01
Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0 ± 1.3 and 4.0 ± 1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥ 155 μM) and ethene (≥ 65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate dynamic responses of organohalide-respiring bacteria in a heterogeneous DNAPL source zone, and emphasize the influence of source zone architecture on bioremediation performance.
McMillan, Lindsay A; Rivett, Michael O; Wealthall, Gary P; Zeeb, Peter; Dumble, Peter
2018-03-01
Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Possible fossil H2O liquid-ice interfaces in the Martian crust
NASA Technical Reports Server (NTRS)
Soderblom, L. A.; Wenner, D. B.
1978-01-01
The extensive chaotic and fretted terrains in the equatorial regions of Mars are explained on the basis of the vertical distribution of H2O liquid and ice which once existed in the crust. This account assumes that below the permafrost containing water ice, there was a second zone in which liquid water resided for at least a time. Diagenetic alteration and cementation characterized the material in the subpermafrost zone; above, pristine fragmented material with various ice concentrations was found. Later, the ice-laden zone was stripped away by a number of erosional processes, exposing the former ice-liquid water interface.
Smart lighting using a liquid crystal modulator
NASA Astrophysics Data System (ADS)
Baril, Alexandre; Thibault, Simon; Galstian, Tigran
2017-08-01
Now that LEDs have massively invaded the illumination market, a clear trend has emerged for more efficient and targeted lighting. The project described here is at the leading edge of the trend and aims at developing an evaluation board to test smart lighting applications. This is made possible thanks to a new liquid crystal light modulator recently developed for broadening LED light beams. The modulator is controlled by electrical signals and is characterized by a linear working zone. This feature allows the implementation of a closed loop control with a sensor feedback. This project shows that the use of computer vision is a promising opportunity for cheap closed loop control. The developed evaluation board integrates the liquid crystal modulator, a webcam, a LED light source and all the required electronics to implement a closed loop control with a computer vision algorithm.
Wright, Charles H.
1986-01-01
A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.
Theory and Modeling of Liquid Explosive Detonation
NASA Astrophysics Data System (ADS)
Tarver, Craig M.; Urtiew, Paul A.
2010-10-01
The current understanding of the detonation reaction zones of liquid explosives is discussed in this article. The physical and chemical processes that precede and follow exothermic chemical reaction within the detonation reaction zone are discussed within the framework of the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation. Nonequilibrium chemical and physical processes cause finite time duration induction zones before exothermic chemical energy release occurs. This separation between the leading shock wave front and the chemical energy release needed to sustain it results in shock wave amplification and the subsequent formation of complex three-dimensional cellular structures in all liquid detonation waves. To develop a practical Zeldovich-von Neumann-Doring (ZND) reactive flow model for liquid detonation, experimental data on reaction zone structure, confined failure diameter, unconfined failure diameter, and failure wave velocity in the Dremin-Trofimov test for detonating nitromethane are calculated using the ignition and growth reactive flow model.
Rebound of a coal tar creosote plume following partial source zone treatment with permanganate.
Thomson, N R; Fraser, M J; Lamarche, C; Barker, J F; Forsey, S P
2008-11-14
The long-term management of dissolved plumes originating from a coal tar creosote source is a technical challenge. For some sites stabilization of the source may be the best practical solution to decrease the contaminant mass loading to the plume and associated off-site migration. At the bench-scale, the deposition of manganese oxides, a permanganate reaction byproduct, has been shown to cause pore plugging and the formation of a manganese oxide layer adjacent to the non-aqueous phase liquid creosote which reduces post-treatment mass transfer and hence mass loading from the source. The objective of this study was to investigate the potential of partial permanganate treatment to reduce the ability of a coal tar creosote source zone to generate a multi-component plume at the pilot-scale over both the short-term (weeks to months) and the long-term (years) at a site where there is >10 years of comprehensive synoptic plume baseline data available. A series of preliminary bench-scale experiments were conducted to support this pilot-scale investigation. The results from the bench-scale experiments indicated that if sufficient mass removal of the reactive compounds is achieved then the effective solubility, aqueous concentration and rate of mass removal of the more abundant non-reactive coal tar creosote compounds such as biphenyl and dibenzofuran can be increased. Manganese oxide formation and deposition caused an order-of-magnitude decrease in hydraulic conductivity. Approximately 125 kg of permanganate were delivered into the pilot-scale source zone over 35 days, and based on mass balance estimates <10% of the initial reactive coal tar creosote mass in the source zone was oxidized. Mass discharge estimated at a down-gradient fence line indicated >35% reduction for all monitored compounds except for biphenyl, dibenzofuran and fluoranthene 150 days after treatment, which is consistent with the bench-scale experimental results. Pre- and post-treatment soil core data indicated a highly variable and random spatial distribution of mass within the source zone and provided no insight into the mass removed of any of the monitored species. The down-gradient plume was monitored approximately 1, 2 and 4 years following treatment. The data collected at 1 and 2 years post-treatment showed a decrease in mass discharge (10 to 60%) and/or total plume mass (0 to 55%); however, by 4 years post-treatment there was a rebound in both mass discharge and total plume mass for all monitored compounds to pre-treatment values or higher. The variability of the data collected was too large to resolve subtle changes in plume morphology, particularly near the source zone, that would provide insight into the impact of the formation and deposition of manganese oxides that occurred during treatment on mass transfer and/or flow by-passing. Overall, the results from this pilot-scale investigation indicate that there was a significant but short-term (months) reduction of mass emanating from the source zone as a result of permanganate treatment but there was no long-term (years) impact on the ability of this coal tar creosote source zone to generate a multi-component plume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostrom, Mart; Thorne, Paul D.; White, Mark D.
2003-12-01
Detailed three-dimensional multifluid flow modeling was conducted to assess movement and removal of dense nonaqueous phase liquid (DNAPL) movement at a waste site in Louisiana. The site’s subsurface consists of several permeable zones separated by (semi) confining clays. In the upper subsurface, the two major permeable zones are, starting with the uppermost zone, the +40- and +20-MSL (mean sea level) zones. At the site, a total of 23,000 m3 of DNAPL was emplaced in an open waste pit between 1962 and 1974. In this period, considerable amounts of DNAPL moved into the subsurface. By 1974 a portion of the DNAPLmore » was removed and the waste site was filled with low-permeability materials and closed. During this process, some of the DNAPL was mixed with the fill material and remained at the site. Between 1974 and 2000, no additional DNAPL recovery activities were implemented. In an effort to reduce the DNAPL source, organic liquid has been pumped through a timed-pumping scheme from a total of 7 wells starting in calendar year 2000. The recovery wells are screened in the lower part of the waste fill material. In site investigations, DNAPL has been encountered in the +40-MSL but not in the +20-MSL zone. The following questions are addressed: (1) Where has the DNAPL migrated vertically and laterally? (2) How much further is DNAPL expected to move in the next century? (3) How effective is the current DNAPL pumping in reducing the DNAPL source? The computational domains for the simulations were derived from 3-D interpolations of borehole logs using a geologic interpretation software (EarthvisionTM ) . The simulation results show that DNAPL primarily entered the subsurface in the period 1962 – 1974, when the waste site was operational. After 1974, the infiltration rates dropped dramatically as a result of the infilling of the waste pit. The simulation results indicate that DNAPL moved from the pit into the underlying +40-MSL zone through two contact zones at the west side of the pit. Lateral movement of the DNAPL body has been relatively slow as a result of the high viscosity and the rapidly decreasing driving force after the waste pit was filled in. For all simulations, lateral movement of DNAPL in the period 1962 - 2001 is predicted to be less than 60 m from the two contact areas, while additional movement in the next century is expected to be less than 30 m. No DNAPL is predicted to enter the +20-MSL zone, which agrees with site information. The simulations also clearly demonstrate the minimal effect of the current pumping scheme on source reduction and DNAPL movement.« less
Mateas, Douglas J; Tick, Geoffrey R; Carroll, Kenneth C
2017-09-01
Widely used flushing and in-situ destruction based remediation techniques (i.e. pump-and treat, enhanced-solubilization, and chemical oxidation/reduction) for sites contaminated by nonaqueous phase liquid (NAPL) contaminant sources have been shown to be ineffective at complete mass removal and reducing aqueous-phase contaminant of concern (COC) concentrations to levels suitable for site closure. A remediation method was developed to reduce the aqueous solubility and mass-flux of COCs within NAPL through the in-situ creation of a NAPL mixture source-zone. In contrast to remediation techniques that rely on the rapid removal of contaminant mass, this technique relies on the stabilization of difficult-to-access NAPL sources to reduce COC mass flux to groundwater. A specific amount (volume) of relatively insoluble n-hexadecane (HEXDEC) or vegetable oil (VO) was injected into a trichloroethene (TCE) contaminant source-zone through a bench-scale flow cell port (i.e. well) to form a NAPL mixture of targeted mole fraction (TCE:HEXDEC or TCE:VO). NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE to design optimal NAPL (HEXDEC or VO) injection volumes for the flow-cell experiments. The NAPL-stabilization flow-cell experiments initiated and sustained significant reductions in COC concentration and mass flux due to a combination of both reduced relative permeability (increased NAPL-saturation) and via modification of NAPL composition (decreased TCE mole fraction). Variations in remediation performance (i.e. impacts on TCE concentration and mass flux reduction) between the different HEXDEC injection volumes were relatively minor, and therefore inconsistent with Raoult's Law predictions. This phenomenon likely resulted from non-uniform mixing of the injected HEXDEC with TCE in the source-zone. VO injection caused TCE concentrations and mass-flux to decrease more rapidly than with HEXDEC injections. This phenomenon occurred because the injected VO was observed to mix more uniformly with TCE in the source-zone due to a lower mobilization potential. The relative lower density differences (buoyancy effects) between VO and the flushing solution (water) was the primary factor contributing to the lower mobilization potential for VO. Overall, this study indicated that the delivery of HEXDEC or VO into the toxic TCE source-zone was effective in significantly reducing contaminant aqueous-phase concentration and mass-flux. However, the effectiveness of this in-situ NAPL stabilization technique depends on source delivery, uniform mixing of amendment, and that the amendment remains immobilized within and around the NAPL contaminant source. Copyright © 2017 Elsevier B.V. All rights reserved.
Column Experiments of Smouldering Combustion as a Remediation Technology for NAPL Source Zones
NASA Astrophysics Data System (ADS)
Pironi, P.; Switzer, C.; Rein, G.; Torero, J. L.; Gerhard, J. I.
2008-12-01
Smouldering combustion is an innovative approach that has significant potential for the remediation of industrial sites contaminated by non-aqueous phase liquids (NAPLs). Many common liquid contaminants, including coal tar, solvents, oils and petrochemicals are combustible and release significant amounts of heat when burned. Smouldering combustion is the flameless burning of a condensed fuel that derives heat from surface oxidation reactions. Gerhard et al., 2006 (Eos Trans., 87(52), Fall Meeting Suppl. H24A) presented proof-of-concept experiments demonstrating that NAPLs embedded in a porous medium may be effectively destroyed via smouldering. Based upon that work, it was hypothesized that the process can be self- sustaining, such that, a short duration energy input (i.e., ignition) at a single location is sufficient to generate a reaction that propagates itself through the NAPL source zone until the NAPL is eliminated, provided that enough air is injected into the soil. In this work, this hypothesis is proven via column experiments at the intermediate bench scale (~ 30 cm) utilizing coal tar-contaminated quartz sands. Over 30 such experiments examine the sensitivity of NAPL smouldering to a series of fluid-media system variables and engineering control parameters, including contaminant type, NAPL saturation, water saturation, porous media type and air injection rate. Diagnostic techniques employed to characterize the results include temperature mapping, off-gas analysis (via FTIR), heat front mapping via digital imaging, and pre- and post-treatment soil analysis. The derived relationships between the manipulated system variables and experimental results are providing understanding of the mechanisms controlling the ignition and propagation of liquid smouldering. Such insight is necessary for the ongoing design of both ex situ and in situ pilot applications.
Wright, C.H.
1986-02-11
A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.
2000-06-01
the chemical can contact and fully react with contaminants in situ. The advantage of in situ destruction is that the process is completed in the ground...Because chemical oxidation is primarily targeted at dissolved plumes and is only marginally applicable to DNAPL source zones exhibiting relatively low...refer to a “DNAPL plume .” Certainly, a portion of the chemical components of a DNAPL may become dissolved in ground water, and this solution may spread
2004-08-01
Vinegar , 2002; Bierschenk, et al., 2004; Baker and Kuhlman, 2002). It should be noted that the presence of even small amounts of liquid water will limit...Bioremediation of Trichloroethene.” Environmental Science and Technology, 36(10):2262–68. Stegemeier, G.L., and H.J. Vinegar . 2001. “Thermal Conduction...1134. Vinegar , H.J., G.L. Stegemeier, F.G. Carl, J.D. Stevenson, and R.J. Dudley. 1999. “In Situ Thermal Desorption of Soils Impacted with Chlorinated
Cápiro, Natalie L; Löffler, Frank E; Pennell, Kurt D
2015-11-01
Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0±1.3 and 4.0±1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥155 μM) and ethene (≥65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate dynamic responses of organohalide-respiring bacteria in a heterogeneous DNAPL source zone, and emphasize the influence of source zone architecture on bioremediation performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Systems and methods for reactive distillation with recirculation of light components
Stickney, Michael J [Nassau Bay, TX; Jones, Jr., Edward M.
2011-07-26
Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.
Durai-Swamy, Kandaswamy
1982-01-01
In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.
Assessing Potential Additional PFAS Retention Processes in the Subsurface
NASA Astrophysics Data System (ADS)
Brusseau, M. L.
2017-12-01
Understanding the transport and fate of per- and poly-fluorinated alkyl substances (PFASs) in the subsurface is critical for accurate risk assessments and design of effective remedial actions. Current conceptual and mathematical models are based on an assumption that solid-phase adsorption is the sole source of retention for PFASs. However, additional retention processes may be relevant for PFAS compounds in vadose-zone systems and in source zones that contain trapped immiscible organic liquids. These include adsorption at the air-water interface, partitioning to the soil atmosphere, adsorption at the NAPL-water interface, and absorption by NAPL. A multi-process retention model is proposed to account for these potential additional sources of PFAS retardation. An initial assessment of the relative magnitudes and significance of these retention processes was conducted for three representative PFASs, perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and 8:2 fluorotelomer alcohol (FTOH). Data collected from the literature were used to determine measured or estimated values for the relevant distribution coefficients, which were in turn used to calculate retardation factors for a representative porous medium. Adsorption at the air-water interface was shown to be a primary source of retention for PFOA and PFOS, contributing approximately 80% of total retardation. Adsorption to NAPL-water interfaces and absorption by bulk NAPL were also shown to be significant sources of retention for PFOS and PFOA. The latter process was the predominant source of retention for 8:2 FTOH, contributing 98% of total retardation. These results indicate that we may anticipate significant retention of PFASs by these additional processes. In such cases, retardation of PFASs in source areas may be significantly greater than what is typically estimated based on the standard assumption of solid-phase adsorption as the sole retention mechanism. This has significant ramifications for accurate determination of the migration potential and magnitude of mass flux to groundwater, as well as for calculations of contaminant mass residing in source zones.
A scrutiny of heterogeneity at the TCE Source Area BioREmediation (SABRE) test site
NASA Astrophysics Data System (ADS)
Rivett, M.; Wealthall, G. P.; Mcmillan, L. A.; Zeeb, P.
2015-12-01
A scrutiny of heterogeneity at the UK's Source Area BioREmediation (SABRE) test site is presented to better understand how spatial heterogeneity in subsurface properties and process occurrence may constrain performance of enhanced in-situ bioremediation (EISB). The industrial site contained a 25 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) that was exceptionally well monitored via a network of multilevel samplers and high resolution core sampling. Moreover, monitoring was conducted within a 3-sided sheet-pile cell that allowed a controlled streamtube of flow to be drawn through the source zone by an extraction well. We primarily focus on the longitudinal transect of monitoring along the length of the cell that provides a 200 groundwater point sample slice along the streamtube of flow through the DNAPL source zone. TCE dechlorination is shown to be significant throughout the cell domain, but spatially heterogeneous in occurrence and progress of dechlorination to lesser chlorinated ethenes - it is this heterogeneity in dechlorination that we primarily scrutinise. We illustrate the diagnostic use of the relative occurrence of TCE parent and daughter compounds to confirm: dechlorination in close proximity to DNAPL and enhanced during the bioremediation; persistent layers of DNAPL into which gradients of dechlorination products are evident; fast flowpaths through the source zone where dechlorination is less evident; and, the importance of underpinning flow regime understanding on EISB performance. Still, even with such spatial detail, there remains uncertainty over the dataset interpretation. These includes poor closure of mass balance along the cell length for the multilevel sampler based monitoring and points to needs to still understand lateral flows (even in the constrained cell), even greater spatial resolution of point monitoring and potentially, not easily proven, ethene degradation loss.
Recovery of purified helium or hydrogen from gas mixtures
Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.
1974-01-15
A process is described for the removal of helium or hydrogen from gaseous mixtures also containing contaminants. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatomspheric pressure to preferentially absorb the contaminants in the fluorocarbon. Unabsorbed gas enriched in hydrogen or helium is withdrawn from the absorption zone as product. Liquid fluorocarbon enriched in contaminants is withdrawn separately from the absorption zone. (10 claims)
Modeling CANDU-6 liquid zone controllers for effects of thorium-based fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Aubin, E.; Marleau, G.
2012-07-01
We use the DRAGON code to model the CANDU-6 liquid zone controllers and evaluate the effects of thorium-based fuels on their incremental cross sections and reactivity worth. We optimize both the numerical quadrature and spatial discretization for 2D cell models in order to provide accurate fuel properties for 3D liquid zone controller supercell models. We propose a low computer cost parameterized pseudo-exact 3D cluster geometries modeling approach that avoids tracking issues on small external surfaces. This methodology provides consistent incremental cross sections and reactivity worths when the thickness of the buffer region is reduced. When compared with an approximate annularmore » geometry representation of the fuel and coolant region, we observe that the cluster description of fuel bundles in the supercell models does not increase considerably the precision of the results while increasing substantially the CPU time. In addition, this comparison shows that it is imperative to finely describe the liquid zone controller geometry since it has a strong impact of the incremental cross sections. This paper also shows that liquid zone controller reactivity worth is greatly decreased in presence of thorium-based fuels compared to the reference natural uranium fuel, since the fission and the fast to thermal scattering incremental cross sections are higher for the new fuels. (authors)« less
A high-temperature single-photon source from nanowire quantum dots.
Tribu, Adrien; Sallen, Gregory; Aichele, Thomas; André, Régis; Poizat, Jean-Philippe; Bougerol, Catherine; Tatarenko, Serge; Kheng, Kuntheak
2008-12-01
We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire. Quantum dots are formed by incorporating a narrow zone of CdSe into the nanowire. We observe intense and highly polarized photoluminescence even from a single emitter. Efficient photon antibunching is observed up to 220 K, while conserving a normalized antibunching dip of at most 36%. This is the highest reported temperature for single-photon emission from a nonblinking quantum-dot source and principally allows compact and cheap operation by using Peltier cooling.
Flowmeter for determining average rate of flow of liquid in a conduit
Kennerly, J.M.; Lindner, G.M.; Rowe, J.C.
1981-04-30
This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.
Flowmeter for determining average rate of flow of liquid in a conduit
Kennerly, John M.; Lindner, Gordon M.; Rowe, John C.
1982-01-01
This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.
Subsurface solute transport with one-, two-, and three-dimensional arbitrary shape sources
NASA Astrophysics Data System (ADS)
Chen, Kewei; Zhan, Hongbin; Zhou, Renjie
2016-07-01
Solutions with one-, two-, and three-dimensional arbitrary shape source geometries will be very helpful tools for investigating a variety of contaminant transport problems in the geological media. This study proposed a general method to develop new solutions for solute transport in a saturated, homogeneous aquifer (confined or unconfined) with a constant, unilateral groundwater flow velocity. Several typical source geometries, such as arbitrary line sources, vertical and horizontal patch sources, circular and volumetric sources, were considered. The sources can sit on the upper or lower aquifer boundary to simulate light non-aqueous-phase-liquids (LNAPLs) or dense non-aqueous-phase-liquids (DNAPLs), respectively, or can be located anywhere inside the aquifer. The developed new solutions were tested against previous benchmark solutions under special circumstances and were shown to be robust and accurate. Such solutions can also be used as a starting point for the inverse problem of source zone and source geometry identification in the future. The following findings can be obtained from analyzing the solutions. The source geometry, including shape and orientation, generally played an important role for the concentration profile through the entire transport process. When comparing the inclined line sources with the horizontal line sources, the concentration contours expanded considerably along the vertical direction, and shrank considerably along the groundwater flow direction. A planar source sitting on the upper aquifer boundary (such as a LNAPL pool) would lead to significantly different concentration profiles compared to a planar source positioned in a vertical plane perpendicular to the flow direction. For a volumetric source, its dimension along the groundwater flow direction became less important compared to its other two dimensions.
Light guide technology: using light to enhance safety
NASA Astrophysics Data System (ADS)
Lerner, William S.
2009-05-01
When used to detect extreme temperatures in harsh environments, warning devices have been placed at a distance from the "danger zone" for several reasons. The inability to mix electricity with flammable, caustic, liquid or volatile substances, the limited heat tolerances exhibited by most light sources, and the susceptibility of light sources to damage from vibration, have made the placement of a warning light directly within these harsh environments impossible. This paper describes a system that utilizes a beam of light to provide just such a warning. This system can be used with hard-wired or wireless sensors, side-light illumination, image projection and image transfer. The entire system may be self-contained and portable.
Process for Nitrogen Oxide Waste Conversion to Fertilizer
NASA Technical Reports Server (NTRS)
Lueck, Dale E. (Inventor); Parrish, Clyde F. (Inventor)
2003-01-01
The present invention describes a process for converting vapor streams from sources containing at least one nitrogen-containing oxidizing agent therein to a liquid fertilizer composition comprising the steps of: a) directing a vapor stream containing at least one nitrogen-containing oxidizing agent to a first contact zone; b) contacting said vapor stream with water to form nitrogen oxide(s) from said at least one nitrogen-containing oxidizing agent; c) directing said acid(s) as a second stream to a second contact zone; d) exposing said second stream to hydrogen peroxide which is present within said second contact zone in a relative amount of at least 0.1% by weight of said second stream within said second contact zone to convert at least some of any nitrogen oxide species or ions other than in the nitrate form present within said second stream to nitrate ion; e) sampling said stream within said second contact zone to determine the relative amount of hydrogen peroxide within said second contact zone; f) adding hydrogen peroxide to said second contact zone when a level of hydrogen peroxide less than 0.1 % by weight in said second stream is determined by said sampling; g) adding a solution comprising potassium hydroxide to said second stream to maintain a pH between 6.0 and 11.0 within said second stream within said second contact zone to form a solution of potassium nitrate; and h) removing said solution of potassium nitrate from said second contact zone.
Process and Equipment for Nitrogen Oxide Waste Conversion to Fertilizer
NASA Technical Reports Server (NTRS)
Lueck, Dale E. (Inventor); Parrish, Clyde F. (Inventor)
2000-01-01
The present invention describes a process for converting vapor streams from sources containing at least one nitrogen-containing oxidizing agent therein to a liquid fertilizer composition comprising the steps of: (1) directing a vapor stream containing at least nitrogen-containing oxidizing agent to a first contact zone; (2) contacting said vapor stream with water to form nitrogen oxide(s) from said at least one nitrogen- containing oxidizing agent; (3) directing said acid(s) as a second stream to a second contact zone; (4) exposing said second stream to hydrogen peroxide which is present within said second contact zone in a relative amount of at least 0.1% by weight of said second stream within said second contact zone to convert at least some of any nitrogen oxide species or ions other than in the nitrite form present within said second stream to nitrate ion; (5) sampling said stream within said second contact zone to determine the relative amount of hydrogen peroxide within said second contact zone; (6) adding hydrogen peroxide to said second contact zone when a level on hydrogen peroxide less than 0.1% by weight in said second stream is determined by said sampling; (7) adding a solution comprising potassium hydroxide to said second stream to maintain a pH between 6.0 and 11.0 within said second stream within said second contact zone to form a solution of potassium nitrate; and (8) removing sais solution of potassium nitrate from said second contact zone.
NASA Astrophysics Data System (ADS)
Kerr, A. C.; Marriner, G. F.; Arndt, N. T.; Tarney, J.; Nivia, A.; Saunders, A. D.; Duncan, R. A.
1996-04-01
Gorgona Island, Colombia is remarkable not only because it contains the only Phanerozoic komatiites, but also because it has mafic to ultramafic lavas with a wide range of compositions, from moderately enriched to extremely depleted (relative to Bulk Earth). The komatiite flows are, in many respects similar to Archaean komatiites; they formed from MgO-rich (18%) liquids and have upper spinifex zones and lower cumulate zones. The cumulate zones of Archaean komatiites contain many solid grains, in contrast more than 90% of the olivine in the Gorgona cumulates is highly skeletal. This combined with the fact that the Gorgona cumulate zones are thinner than those in Archaean komatiites, suggests that the komatiite magma became strongly superheated en route to the surface. The komatiites have trace element contents intermediate between those of the basalts and the ultramafic tuffs. Some basalts have isotope compositions indicative of long-term enrichment in incompatible elements, whereas other basalts and ultramafic volcanics have isotopic signatures that imply corresponding depletion. It is apparent that the plume source region of the Gorgona magmas was markedly heterogeneous, with at least two source components contributing to the observed variation in composition. This heterogeneity may have resulted from the incorporation of different components into the plume source, or it may be the result of complex melting and melt extraction processes during the ascent of a heterogeneous plume. Despite earlier suggestions that there may have been a significant age gap between depleted komatiite and basalt flows and the enriched basalts, new 40Ar- 39Ar dating of basalts and gabbros are more consistent with all being generated at 87 Ma during formation of the Caribbean/Colombian plateau, possibly at the Galapagos hotspot.
Puigserver, Diana; Herrero, Jofre; Torres, Mònica; Cortés, Amparo; Nijenhuis, Ivonne; Kuntze, Kevin; Parker, Beth L; Carmona, José M
2016-09-01
In the transition zone between aquifers and basal aquitards, the perchloroethene pools at an early time in their evolution are more recalcitrant than those elsewhere in the aquifer. The aim of this study is to demonstrate that the biodegradation of chloroethenes from aged pools (i.e., pools after decades of continuous groundwater flushing and dissolution) of perchloroethene is favored in the transition zone. A field site was selected where an aged pool exists at the bottom of a transition zone. Two boreholes were drilled to obtain sediment and groundwater samples to perform chemical, isotopic, molecular, and clone library analyses and microcosm experiments. The main results were as follows: (i) the transition zone is characterized by a high microbial richness; (ii) reductively dechlorinating microorganisms are present and partial reductive dechlorination coexists with denitrification, Fe and Mn reduction, and sulfate reduction; (iii) reductively dechlorinating microorganisms were also present in the zone of the aged pool; (v) the high concentrations of perchloroethene in this zone resulted in a decrease in microbial richness; (vi) however, the presence of fermenting microorganisms supplying electrons for the reductively dechlorinating microorganisms prevented the reductive dechlorination to be inhibited. These findings suggest that biostimulation and/or bioaugmentation could be applied to promote complete reductive dechlorination and to enhance the dissolution of more nonaqueous phase liquids (DNAPL).
CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe
NASA Astrophysics Data System (ADS)
Tower, J. P.; Tobin, S. P.; Kestigian, M.; Norton, P. W.; Bollong, A. B.; Schaake, H. F.; Ard, C. K.
1995-05-01
Impurity levels were tracked through the stages of substrate and liquid phase epitaxy (LPE) layer processing to identify sources of elements which degrade infrared photodetector performance. Chemical analysis by glow discharge mass spectrometry and Zeeman corrected graphite furnace atomic absorption effectively showed the levels of impurities introduced into CdZnTe substrate material from the raw materials and the crystal growth processes. A new purification process (in situ distillation zone refining) for raw materials was developed, resulting in improved CdZnTe substrate purity. Substrate copper contamination was found to degrade the LPE layer and device electrical properties, in the case of lightly doped HgCdTe. Anomalous HgCdTe carrier type conversion was correlated to certain CdZnTe and CdTe substrate ingots.
NASA Astrophysics Data System (ADS)
Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.
2014-09-01
By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.
NASA Astrophysics Data System (ADS)
Roy, J. W.; Smith, J. E.
2006-12-01
A number of mechanisms can lead to the presence of disconnected bubbles or ganglia of gas phase in groundwater. When associated with or near a DNAPL phase, the disconnected gas phase experiences mass transfer of dissolved gases including the volatile components of the DNAPL. The properties of the gas phase interface, such as interfacial tension and contact angle, can also be affected. This work addresses the behavior of spontaneous continual growth of initially trapped seed gas bubbles within DNAPL source zones. Three different experiments were performed in a 2-dimensional transparent flow cell 15 cm by 20 cm by 1.5 cm. In each case, a DNAPL pool was created within larger glass beads over smaller glass beads that served as a capillary barrier. The DNAPL consisted of either a 1:2 (v/v) tetrachloroethene (PCE) to benzene mixture, single component PCE, or single component TCE. The experiments effectively demonstrate spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone. A cycle of gas phase growth and mobilization was facilitated by the presence of secondary seed bubbles left behind due to snap-off during vertical bubble (ganglion) mobilization. This gas phase growth process was relatively slow but continuous and could be expected to continue until the NAPL is completely dissolved. Some implications of the demonstrated behavior for water flow and mass transfer within and near the DNAPL source zone are highlighted.
19 CFR 146.65 - Classification, valuation, and liquidation.
Code of Federal Regulations, 2014 CFR
2014-04-01
...; DEPARTMENT OF THE TREASURY (CONTINUED) FOREIGN TRADE ZONES Transfer of Merchandise From a Zone § 146.65... summary is filed with Customs. (b) Valuation—(1) Total zone value. The total zone value of merchandise.... 1401a, 1500). The total zone value shall be that price actually paid or payable to the zone seller in...
19 CFR 146.65 - Classification, valuation, and liquidation.
Code of Federal Regulations, 2013 CFR
2013-04-01
...; DEPARTMENT OF THE TREASURY (CONTINUED) FOREIGN TRADE ZONES Transfer of Merchandise From a Zone § 146.65... summary is filed with Customs. (b) Valuation—(1) Total zone value. The total zone value of merchandise.... 1401a, 1500). The total zone value shall be that price actually paid or payable to the zone seller in...
19 CFR 146.65 - Classification, valuation, and liquidation.
Code of Federal Regulations, 2012 CFR
2012-04-01
...; DEPARTMENT OF THE TREASURY (CONTINUED) FOREIGN TRADE ZONES Transfer of Merchandise From a Zone § 146.65... summary is filed with Customs. (b) Valuation—(1) Total zone value. The total zone value of merchandise.... 1401a, 1500). The total zone value shall be that price actually paid or payable to the zone seller in...
Condensation induced water hammer driven sterilization
Kullberg, Craig M.
2004-05-11
A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.
In this paper, a screening model for flow of a nonaqueous phase liquid (NAPL) and associated chemical transport in the vadose zone is developed. he model is based on kinematic approximation of the governing equations for both the NAPL and a partitionable chemical constituent. he ...
NASA Astrophysics Data System (ADS)
Oba, Takeru; Ueno, Ichiro; Kaneko, Toshihiro
2017-11-01
We focus on particle behavior due to thermocapillary-driven convection in a half-zone liquid bridge of high-Prandtl number fluid. It has been known that the suspended particles exhibit a unique solid-like structure known as 'particle accumulation structure (PAS)' in a rotating frame of reference with traveling-type hydrothermal wave. It is said that PAS is caused by interaction between particles and the free surface of a half-zone liquid bridge. Such structures arise even under small Stokes number conditions. When observing PAS two-dimensionally, it looks like a closed single string, but the actual movement of particles is different. Therefore we employ three-dimensional particle tracking velocimetry to the half-zone liquid bridge of 2.5 mm in radius and 1.7 mm in height, and detect the particle behaviors close to the free surface. We explain the spatio-temporal correlation between the solid-like global structure of PAS and the local particle motions, and make comparisons with proposed physical models of PAS formation.
Updated Conceptual Model for the 300 Area Uranium Groundwater Plume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachara, John M.; Freshley, Mark D.; Last, George V.
2012-11-01
The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactionsmore » between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.« less
Evaluating time-lapse ERT for monitoring DNAPL remediation via numerical simulation
NASA Astrophysics Data System (ADS)
Power, C.; Karaoulis, M.; Gerhard, J.; Tsourlos, P.; Giannopoulos, A.
2012-12-01
Dense non-aqueous phase liquids (DNAPLs) remain a challenging geoenvironmental problem in the near subsurface. Numerous thermal, chemical, and biological treatment methods are being applied at sites but without a non-destructive, rapid technique to map the evolution of DNAPL mass in space and time, the degree of remedial success is difficult to quantify. Electrical resistivity tomography (ERT) has long been presented as highly promising in this context but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites where the initial condition (DNAPL mass, DNAPL distribution, subsurface heterogeneity) is typically unknown. Recently, a new numerical model was presented that couples DNAPL and ERT simulation at the field scale, providing a tool for optimizing ERT application and interpretation at DNAPL sites (Power et al., 2011, Fall AGU, H31D-1191). The objective of this study is to employ this tool to evaluate the effectiveness of time-lapse ERT to monitor DNAPL source zone remediation, taking advantage of new inversion methodologies that exploit the differences in the target over time. Several three-dimensional releases of chlorinated solvent DNAPLs into heterogeneous clayey sand at the field scale were generated, varying in the depth and complexity of the source zone (target). Over time, dissolution of the DNAPL in groundwater was simulated with simultaneous mapping via periodic ERT surveys. Both surface and borehole ERT surveys were conducted for comparison purposes. The latest four-dimensional ERT inversion algorithms were employed to generate time-lapse isosurfaces of the DNAPL source zone for all cases. This methodology provided a qualitative assessment of the ability of ERT to track DNAPL mass removal for complex source zones in realistically heterogeneous environments. In addition, it provided a quantitative comparison between the actual DNAPL mass removed and that interpreted by ERT as a function of depth below the water table, as well as an estimate of the minimum DNAPL saturation changes necessary for an observable response from ERT.
Fatta, D; Naoum, D; Loizidou, M
2002-04-01
Leachates are generated as a result of water or other liquid passing through waste at a landfill site. These contaminated liquids originate from a number of sources, including the water produced during the decomposition of the waste as well as rain-fall which penetrates the waste and dissolves the material with which it comes into contact. The penetration of the rain-water depends on the nature of the landfill (e.g. surface characteristics, type and quantity of vegetation, gradient of layers, etc). The uncontrolled infiltration of leachate into the vadose (unsaturated) zone and finally into the saturated zone (groundwater) is considered to be the most serious environmental impact of a landfill. In the present paper the water flow and the pollutant transport characteristics of the Ano Liosia Landfill site in Athens (Greece) were simulated by creating a model of groundwater flows and contaminant transport. A methodology for the model is presented. The model was then integrated into the Ecosim system which is a prototype funded by the EU, (Directorate General XIII: Telematics and Environment). This is an integrated environmental monitoring and modeling system, which supports the management of environmental planning in urban areas.
NASA Astrophysics Data System (ADS)
Becker, J. G.; Seagren, E. A.
2006-12-01
The presence of dense non-aqueous phase liquids (DNAPLs) at many chlorinated ethene-contaminated sites can greatly extend the time frames needed to reduce dissolved contaminants to regulatory levels using bioremediation. However, it has been demonstrated that mass removal from chlorinated ethene DNAPLs can potentially be enhanced through dehalorespiration of dissolved contaminants near the NAPL-water interface. Although promising, the amount of "bioenhancement" that can be achieved under optimal conditions is currently not known, and the real significance and engineering potential of this phenomenon currently are not well understood, in part because it can be influenced by a complex set of factors, including DNAPL properties, hydrodynamics, substrate concentrations, and microbial competition for growth substrates. In this study it is hypothesized that: (1) different chlorinated ethene-respiring strains may dominate within different zones of a contaminant plume emanating from a DNAPL source zone due to variations in substrate availability, and microbial competition for chlorinated ethenes and/or electron donors; and (2) the outcome of competitive interactions near the DNAPL source zone will affect the longevity of DNAPL source zones by influencing the degree of dissolution bioenhancement, while the outcome of competitive interactions further downgradient will determine the extent of contaminant dechlorination. To demonstrate the validity of the proposed hypothesis, a series of simple, "proof-of-concept," mathematical simulations evaluating the effects of competitive interactions on the distribution of dehalorespirers at the DNAPL-water interface, the dissolution of tetrachloroethene (PCE), and extent of PCE detoxification were performed in a model competition scenario, in which Dehalococcoides ethenogenes and another dehalorespirer (Desulfuromonas michiganensis) compete for the electron acceptor (PCE) and/or electron donor. The model domain for this evaluation simulates a contaminant-source zone consisting of DNAPL ganglia trapped in a subsurface porous medium that slowly releases organic pollutants into the groundwater flowing past it. The model used in the simulations was based on a biokinetic model recently developed by Becker [Environ. Sci. Technol. 40(14):4473-4480] to describe competition among PCE-respiring populations in a homogenous continuously-stirred tank reactor. Becker's model was expanded by adding terms for chlorinated ethene partitioning between the DNAPL and aqueous phases, as well as advection and dispersion of aqueous chlorinated ethenes. The results of these preliminary simulations demonstrate that the outcome of competition between populations for growth substrates can have a significant impact on bioenhancement and, thus, on DNAPL source zone longevity. Although these proof-of- concept simulations do not incorporate all of the complexity of actual field systems, the modeling results are useful for identifying which parameters are important in determining the outcome of competition in the different scenarios and its impact on DNAPL dissolution. This information is needed to understand how biostimulation and bioaugmentation affect bioenhancement by stimulating different populations and develop bioremediation strategies that incorporate these treatment technologies while balancing the twin clean-up goals of reduced source longevity and complete detoxification.
Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site
NASA Astrophysics Data System (ADS)
Morse, J. G.; Wellman, D. M.; Gephart, R.
2010-12-01
The Central Plateau of the Hanford Site in Washington State contains some 800 waste disposal sites where 1.7 trillion liters of contaminated water was once discharged into the subsurface. Most of these sites received liquids from the chemical reprocessing of spent uranium fuel to recover plutonium. In addition, 67 single shell tanks have leaked or are suspected to have leaked 3.8 million liters of high alkali and aluminate rich cesium-contaminated liquids into the sediment. Today, this inventory of subsurface contamination contains an estimated 550,000 curies of radioactivity and 150 million kg (165,000 tons) of metals and hazardous chemicals. Radionuclides range from mobile 99Tc to more immobilized 137Cs, 241Am, uranium, and plutonium. A significant fraction of these contaminants likely remain within the deep vadose zone. Plumes of groundwater containing tritium, nitrate, 129I and other contaminants have migrated through the vadose zone and now extend outward from the Central Plateau to the Columbia River. During most of Hanford Site history, subsurface studies focused on groundwater monitoring and characterization to support waste management decisions. Deep vadose zone studies were not a priority because waste practices relied upon that zone to buffer contaminant releases into the underlying aquifer. Remediation of the deep vadose zone is now central to Hanford Site cleanup because these sediments can provide an ongoing source of contamination to the aquifer and therefore to the Columbia River. However, characterization and remediation of the deep vadose zone pose some unique challenges. These include sediment thickness; contaminant depth; coupled geohydrologic, geochemical, and microbial processes controlling contaminant spread; limited availability and effectiveness of traditional characterization tools and cleanup remedies; and predicting contaminant behavior and remediation performance over long time periods and across molecular to field scales. The U.S Department of Energy recognizes these challenges and is committed to a sustained, focused effort of continuing to apply existing technologies where feasible while investing and developing in new innovative, field-demonstrated capabilities supporting longer-term basic and applied research to establish the technical underpinning for solving intractable deep vadose zone problems and implementing final remedies. This approach will rely upon Multi-Project Teams focusing on coordinated projects across multiple DOE offices, programs, and site contractors plus the facilitation of basic and applied research investments through implementing a Deep Vadose Zone Applied Field Research Center and other scientific studies.
In this paper, a screening model for flow of a nonaqueous phase liquid (NAPL) and associated chemical transport in the vadose zone is developed. The model is based on kinematic approximation of the governing equations for both the NAPL and a partitionable chemical constituent. Th...
Li, Mengyan; Van Orden, E Tess; DeVries, David J; Xiong, Zhong; Hinchee, Rob; Alvarez, Pedro J
2015-02-01
1,4-Dioxane (dioxane) is relatively recalcitrant to biodegradation, and its physicochemical properties preclude effective removal from contaminated groundwater by volatilization or adsorption. Through this microcosm study, we assessed the biodegradation potential of dioxane for three sites in California. Groundwater and sediment samples were collected at various locations at each site, including the presumed source zone, middle and leading edge of the plume. A total of 16 monitoring wells were sampled to prepare the microcosms. Biodegradation of dioxane was observed in 12 of 16 microcosms mimicking natural attenuation within 28 weeks. Rates varied from as high as 3,449 ± 459 µg/L/week in source-zone microcosms to a low of 0.3 ± 0.1 µg/L/week in microcosms with trace level of dioxane (<10 µg/L as initial concentration). The microcosms were spiked with (14)C-labeled dioxane to assess the fate of dioxane. Biological oxidizer-liquid scintillation analysis of bound residue infers that 14C-dioxane was assimilated into cell material only in microcosms exhibiting significant dioxane biodegradation. Mineralization was also observed per (14)CO2 recovery (up to 44% of the amount degraded in 28 weeks of incubation). Degradation and mineralization activity significantly decreased with increasing distance from the contaminant source area (p < 0.05), possibly due to less acclimation. Furthermore, both respiked and repeated microcosms prepared with source-zone samples from Site 1 confirmed relatively rapid dioxane degradation (i.e., 100 % removal by 20 weeks). These results show that indigenous microorganisms capable of degrading dioxane are present at these three sites, and suggest that monitored natural attenuation should be considered as a remedial response.
NASA Astrophysics Data System (ADS)
Nebel, O.; Arculus, R. J.; Ivanic, T. J.; Nebel-Jacobsen, Y. J.
2013-10-01
Most layered mafic intrusions (LMI) are formed via multiple magma injections into crustal magma chambers. These magmas are originally sourced from the mantle, likely via plume activity, but may interact with the overriding lithosphere during ascent and emplacement in the crust. The magma injections lead to the establishment of different layers and zones with complex macroscopic, microscopic and cryptic compositional layering through magmatic differentiation and associated cumulate formation, sometimes accompanied by crustal assimilation. These complex mineralogical and petrological processes obscure the nature of the mantle sources of LMI, and typically have limited the degree to which parental liquids can be fully characterised. Here, we present Lu-Hf isotope data for samples from distinct layers of the Upper Zone of the Windimurra Igneous Complex (WIC), an immense late-Archean LMI in the West Australian Yilgarn Craton. Lu-Hf isotope systematics of whole rocks are well correlated (MSWD=5.6, n=17) with an age of ˜3.05±0.05 Ga and initial ɛHf˜+8. This age, however, is older than whole rock Sm-Nd and zircon U-Pb ages of the intrusion, both of which are ca. 2.8 Ga. Stratigraphically-controlled initial Hf isotope variations (associated with multiple episodes of emplacement at ca. 2.8 Ga) indicate isotope mixing between a near-chondritic and an ultra-radiogenic component, the latter with ɛHf[2.8 Ga]>+15. This Hf isotope mixing creates a pseudochron-relationship at the time of intrusion of ˜250 Myr that is superimposed on subsequent radiogenic ingrowth after crystallisation, generating an age that predates the actual emplacement event. Mixing between late-stage crystallisation products (melt + crystals) from the Middle Zone and replenishing, plume-derived liquids was followed by crystal accumulation in a chemically evolving magma chamber. The ultra-radiogenic Hf isotope endmember in the WIC mantle source requires parent-daughter ratios consistent with very early formation in Earth history, akin to early Archean komatiitic plume sources. We propose that plume-derived melts that formed the Windimurra LMI reacted with ancient refractory lithospheric keels already underpinning ancient cratons, creating a melt with extremely high ɛHf[t]. Melting a refractory component with super-chondritic, time-integrated high Lu/Hf, in this case by plume-lithosphere interaction, simultaneously accounts for the extreme Hf isotope signals, Hf-Nd isotope decoupling, and difference in radiometric Lu-Hf and Sm-Nd ages.
Assurance of reliability and safety in liquid hydrocarbons marine transportation and storing
NASA Astrophysics Data System (ADS)
Korshunov, G. I.; Polyakov, S. L.; Shunmin, Li
2017-10-01
The problems of assurance of safety and reliability in the liquid hydrocarbons marine transportation and storing are described. The requirements of standard IEC61511 have to be fulfilled for the load/unload in tanker’s system under dynamic loads on the pipeline system. The safety zones for fires of the type “fireball” and the spillage have to be determined when storing the liquid hydrocarbons. An example of the achieved necessary safety level of the duplicated load system, the conditions of the pipelines reliable operation under dynamic loads, the principles of the method of the liquid hydrocarbons storage safety zones under possible accident conditions are represented.
Phase equilibria constraints on models of subduction zone magmatism
NASA Astrophysics Data System (ADS)
Myers, James D.; Johnston, Dana A.
Petrologic models of subduction zone magmatism can be grouped into three broad classes: (1) predominantly slab-derived, (2) mainly mantle-derived, and (3) multi-source. Slab-derived models assume high-alumina basalt (HAB) approximates primary magma and is derived by partial fusion of the subducting slab. Such melts must, therefore, be saturated with some combination of eclogite phases, e.g. cpx, garnet, qtz, at the pressures, temperatures and water contents of magma generation. In contrast, mantle-dominated models suggest partial melting of the mantle wedge produces primary high-magnesia basalts (HMB) which fractionate to yield derivative HAB magmas. In this context, HMB melts should be saturated with a combination of peridotite phases, i.e. ol, cpx and opx, and have liquid-lines-of-descent that produce high-alumina basalts. HAB generated in this manner must be saturated with a mafic phase assemblage at the intensive conditions of fractionation. Multi-source models combine slab and mantle components in varying proportions to generate the four main lava types (HMB, HAB, high-magnesia andesites (HMA) and evolved lavas) characteristic of subduction zones. The mechanism of mass transfer from slab to wedge as well as the nature and fate of primary magmas vary considerably among these models. Because of their complexity, these models imply a wide range of phase equilibria. Although the experiments conducted on calc-alkaline lavas are limited, they place the following limitations on arc petrologic models: (1) HAB cannot be derived from HMB by crystal fractionation at the intensive conditions thus far investigated, (2) HAB could be produced by anhydrous partial fusion of eclogite at high pressure, (3) HMB liquids can be produced by peridotite partial fusion 50-60 km above the slab-mantle interface, (4) HMA cannot be primary magmas derived by partial melting of the subducted slab, but could have formed by slab melt-peridotite interaction, and (5) many evolved calc-alkaline lavas could have been formed by crystal fractionation at a range of crustal pressures.
Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng
2017-01-01
Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems. However, nitrogen removal efficiency is usually limited due to the low carbon/nitrogen (C/N) ratio. A common solution is to add external carbon sources, but amount of liquid is difficult to determine. Therefore, a combined wood-chip-framework substrate (with wood, slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem. Results show that the removal rate of ammonia nitrogen (NH 4 + -N), total nitrogen (TN) and chemical oxygen demand (COD) could reach 37.5%-85%, 57.4%-86%, 32.4%-78%, respectively, indicating the combined substrate could diffuse sufficient oxygen for the nitrification process (slag and gravel zone) and provide carbon source for denitrification process (wood-chip zone). The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip, respectively. Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process, while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process. This study provides a new idea for wetland treatment of high-strength nitrogen wastewater. Copyright © 2016. Published by Elsevier B.V.
Process for the separation of components from gas mixtures
Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.
1973-10-01
A process for the removal, from gaseous mixtures of a desired component selected from oxygen, iodine, methyl iodide, and lower oxides of carbon, nitrogen, and sulfur is described. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatmospheric pressure to preferentially absorb the desired component in the fluorocarbon. Unabsorbed constituents of the gaseous mixture are withdrawn from the absorption zone. Liquid fluorocarbon enriched in the desired component is withdrawn separately from the zone, following which the desired component is recovered from the fluorocarbon absorbent. (Official Gazette)
Modeling 3H-3He Gas-Liquid Phase Transport for Interpretation of Groundwater Age
NASA Astrophysics Data System (ADS)
Carle, S. F.; Esser, B.; Moran, J. E.
2009-12-01
California’s Groundwater Ambient Monitoring and Assessment (GAMA) Program has measured many hundreds of tritium (3H) and helium-3 (3He) concentrations in well water samples to derive estimates of groundwater age at production and monitoring wells in California basins. However, a 3H-3He age differs from an ideal groundwater age tracer in several respects: (1) the radioactive decay of 3H results in the accumulation of 3He being first-order with respect to 3H activity (versus a zero-order age-mass accumulation process for an ideal tracer), (2) surface concentrations of 3H as measured in precipitation over the last several decades have not been uniform, and (3) the 3H-3He “clock” begins at the water table and not at the ground surface where 3H source measurements are made. To better understand how these non-idealities affect interpretation of 3H-3He apparent groundwater age, we are modeling coupled gas-liquid phase flow and 3H-3He transport including processes of radiogenic decay, phase equilibrium, and molecular diffusion for water, air, 3H, and 3He components continuously through the vadose zone and saturated zone. Assessment of coupled liquid-gas phase processes enables consideration of 3H-3He residence time and dispersion within the vadose zone, including partitioning of tritiogenic 3He to the gas phase and subsequent diffusion into the atmosphere. The coupled gas-liquid phase modeling framework provides direct means to compare apparent 3H-3He age to ideal mean or advective groundwater ages for the same groundwater flow conditions. Examples are given for common groundwater flow systems involving areal recharge, discharge to streams or long-screened wells, and aquifer system heterogeneity. The Groundwater Ambient Monitoring and Assessment program is sponsored by the California State Water Resources Control Board and carried out in cooperation with the U.S. Geological Survey. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Hydraulic displacement of dense nonaqueous phase liquids for source zone stabilization.
Alexandra, Richards; Gerhard, Jason I; Kueper, Bernard H
2012-01-01
Hydraulic displacement is a mass removal technology suitable for stabilization of a dense, nonaqueous phase liquid (DNAPL) source zone, where stabilization is defined as reducing DNAPL saturations and reducing the risk of future pool mobilization. High resolution three-dimensional multiphase flow simulations incorporating a spatially correlated, heterogeneous porous medium illustrate that hydraulic displacement results in an increase in the amount of residual DNAPL present, which in turn results in increased solute concentrations in groundwater, an increase in the rate of DNAPL dissolution, and an increase in the solute mass flux. A higher percentage of DNAPL recovery is associated with higher initial DNAPL release volumes, lower density DNAPLs, more heterogeneous porous media, and increased drawdown of groundwater at extraction wells. The fact that higher rates of recovery are associated with more heterogeneous porous media stems from the fact that larger contrasts in permeability provide for a higher proportion of capillary barriers upon which DNAPL pooling and lateral migration can occur. Across all scenarios evaluated in this study, the ganglia-to-pool (GTP) ratio generally increased from approximately 0.1 to between approximately 0.3 and 0.7 depending on the type of DNAPL, the degree of heterogeneity, and the imposed hydraulic gradient. The volume of DNAPL recovered as a result of implementing hydraulic displacement ranged from between 9.4% and 45.2% of the initial release volume, with the largest percentage recovery associated with 1,1,1 trichloroethane, the least dense of the three DNAPLs considered. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.
Europa, tidally heated oceans, and habitable zones around giant planets
NASA Astrophysics Data System (ADS)
Reynolds, R. T.; McKay, C. P.; Kasting, J. F.
Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. Europa could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such a case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of eons and in which life could perhaps evolve. A zone around a giant planet is defined in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In this solar system, this radiatively-heated habitable zone contains the earth.
Europa, tidally heated oceans, and habitable zones around giant planets
NASA Technical Reports Server (NTRS)
Reynolds, Ray T.; Mckay, Christopher P.; Kasting, James F.
1987-01-01
Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. Europa could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such a case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of eons and in which life could perhaps evolve. A zone around a giant planet is defined in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In this solar system, this radiatively-heated habitable zone contains the earth.
Oscillatory hydraulic testing as a strategy for NAPL source zone monitoring: Laboratory experiments
NASA Astrophysics Data System (ADS)
Zhou, YaoQuan; Cardiff, Michael
2017-05-01
Non-aqueous phase liquids (NAPLs) have a complex mode of transport in heterogeneous aquifers, which can result in pools and lenses of NAPLs (the "source zone") that are difficult to detect and can cause long-term contamination via slow dissolution into groundwater (the "dissolved plume"). Characterizing the extent and evolution of NAPL contamination within the source zone is a useful strategy for designing and adapting appropriate remedial actions at many contaminated sites. As a NAPL flows into a given aquifer volume, the effective hydraulic conductivity (K) and specific storage (Ss) of the volume changes associated with the viscosity and compressibility of the impinging fluid, meaning that NAPL movement may be detectable with hydraulic testing. Recently, the use of oscillatory pumping tests - in which sinusoidal pumping variations are implemented and oscillatory pressure changes are detected at monitoring locations - has been suggested as a low-impact hydraulic testing strategy for characterizing aquifer properties (Cardiff et al., 2013; Zhou et al., 2016). Here, we investigate this strategy in an experimental laboratory sandbox where dyed vegetable oil is injected and allowed to migrate as a NAPL. Initial qualitative analyses demonstrate that measurable changes in pressure signal amplitude and phase provide clear evidence for NAPL plume emplacement and migration. Using the approach developed in Zhou et al. (2016), we then apply tomographic analyses to estimate the location of effective K changes (representing fluid changes) and their movement throughout time. This approach provides a method for monitoring ongoing NAPL movement without net extraction or injection of fluid, making it advantageous in field remediation applications.
Fire control method and analytical model for large liquid hydrocarbon pool fires
NASA Technical Reports Server (NTRS)
Fenton, D. L.
1986-01-01
The dominate parameter governing the behavior of a liquid hydrocarbon (JP-5) pool fire is wind speed. The most effective method of controlling wind speed in the vicinity of a large circular (10 m dia.) pool fire is a set of concentric screens located outside the perimeter. Because detailed behavior of the pool fire structure within one pool fire diameter is unknown, an analytical model supported by careful experiments is under development. As a first step toward this development, a regional pool fire model was constructed for the no-wind condition consisting of three zones -- liquid fuel, combustion, and plume -- where the predicted variables are mass burning rate and characteristic temperatures of the combustion and plume zones. This zone pool fire model can be modified to incorporate plume bending by wind, radiation absorption by soot particles, and a different ambient air flow entrainment rate. Results from the zone model are given for a pool diameter of 1.3 m and are found to reproduce values in the literature.
NASA Astrophysics Data System (ADS)
Ayub, R.; Obenour, D. R.; Keyworth, A. J.; Genereux, D. P.; Mahinthakumar, K.
2016-12-01
Groundwater contamination by nutrients (nitrogen and phosphorus) is a major concern in water table aquifers that underlie agricultural areas in the mid-Atlantic Coastal Plain of the United States. High nutrient concentrations leaching into shallow groundwater can lead to human health problems and eutrophication of receiving surface waters. Liquid manure from concentrated animal feeding operations (CAFOs) stored in open-air lagoons and applied to spray fields can be a significant source of nutrients to groundwater, along with septic waste. In this study, we developed a model-based methodology for source apportionment and vulnerability assessment using sparse groundwater quality sampling measurements for Duplin County, North Carolina (NC), obtained by the NC Department of Environmental Quality (NC DEQ). This model provides information relevant to management by estimating the nutrient transport through the aquifer from different sources and addressing the uncertainty of nutrient contaminant propagation. First, the zones of influence (dependent on nutrient pathways) for individual groundwater monitoring wells were identified using a two-dimensional vertically averaged groundwater flow and transport model incorporating geologic uncertainty for the surficial aquifer system. A multiple linear regression approach is then applied to estimate the contribution weights for different nutrient source types using the nutrient measurements from monitoring wells and the potential sources within each zone of influence. Using the source contribution weights and their uncertainty, a probabilistic vulnerability assessment of the study area due to nutrient contamination is performed. Knowledge of the contribution of different nutrient sources to contamination at receptor locations (e.g., private wells, municipal wells, stream beds etc.) will be helpful in planning and implementation of appropriate mitigation measures.
Jubin, Robert T.; Randolph, John D.
1991-01-01
The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.
Wang, Yulai; Yang, Changming; Li, Jianhua; Shen, Shuo
2014-09-01
Dissolved organic matter (DOM) that is derived from the soil of riparian buffer zones has a complex chemical composition, and it plays an important role in the transport and transformation of pollutants. To identify the source of DOM and to better understand its chemical and structural properties, we collected 33 soil samples from zones with fluctuating water levels along the major rivers on Chongming Island, evaluated the DOM contents in riparian soil, analyzed the chemical composition and functional groups and traced DOM origins by using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) combined with clustering analysis. All sampling sites were divided into four groups by principal component analysis (PCA) on the basis of the DOM molecules. The results showed that there was no significant difference in the DOM contents between every two groups; however, the DOM fractions differed significantly among the different site groups in the following order: Σ lipids and Σ proteins>Σ sugars and Σ fatty acids>Σ amino acids, Σ indoles and Σ alkaloids. DOM in the riparian buffer zones originated from riparian plants, domestic sewage and agricultural activities, and the hydrophobic and amphiphilic fractions accounting for over 60% of the identified molecules were the dominant fractions. Our study has confirmed the heterogeneous properties of DOM, and it is of vital importance to isolate and characterize the various DOM fractions at the molecular level for a better understanding of the behavior and roles of DOM in the natural environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Importance of Water for Life
NASA Astrophysics Data System (ADS)
Westall, Frances; Brack, André
2018-03-01
Liquid water is essential for life as we know it, i.e. carbon-based life. Although other compound-solvent pairs that could exist in very specific physical environments could be envisaged, the elements essential to carbon and water-based life are among the most common in the universe. Carbon molecules and liquid water have physical and chemical properties that make them optimised compound-solvent pairs. Liquid water is essential for important prebiotic reactions. But equally important for the emergence of life is the contact of carbon molecules in liquid water with hot rocks and minerals. We here review the environmental conditions of the early Earth, as soon as it had liquid water at its surface and was habitable. Basing our approach to life as a "cosmic phenomenon" (de Duve 1995), i.e. a chemical continuum, we briefly address the various hypotheses for the origin of life, noting their relevance with respect to early environmental conditions. It appears that hydrothermal environments were important in this respect. We continue with the record of early life noting that, by 3.5 Ga, when the sedimentary environment started being well-preserved, anaerobic life forms had colonised all habitable microenvironments from the sea floor to exposed beach environments and, possibly, in the photic planktonic zone of the sea. Life on Earth had also evolved to the relatively sophisticated stage of anoxygenic photosynthesis. We conclude with an evaluation of the potential for habitability and colonisation of other planets and satellites in the Solar System, noting that the most common life forms in the Solar System and probably in the Universe would be similar to terrestrial chemotrophs whose carbon source is either reduced carbon or CO2 dissolved in water and whose energy would be sourced from oxidized carbon, H2, or other transition elements.
Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone
Milly, Paul C.D.
1996-01-01
The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (<1 mm y−1), as it may be at many locations in a desert landscape, the thermal vapor flux must be balanced mostly by a matric‐potential‐induced upward flux of water. This return flux may include both vapor and liquid components. Below any near‐surface zone of weather‐related fluctuations of matric potential, maintenance of this upward flux requires an increase with depth in the annual mean matric potential; this theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field observations, regarding the seasonal variations of matric potential at a given depth. The conceptual model of unsaturated zone water transport developed here implies the possibility of near‐surface trapping of any aqueous constituent introduced at the surface.
MPS solidification model. Analysis and calculation of macrosegregation in a casting ingot
NASA Technical Reports Server (NTRS)
Poirier, D. R.; Maples, A. L.
1985-01-01
Work performed on several existing solidification models for which computer codes and documentation were developed is presented. The models describe the solidification of alloys in which there is a time varying zone of coexisting solid and liquid phases; i.e., the S/L zone. The primary purpose of the models is to calculate macrosegregation in a casting or ingot which results from flow of interdendritic liquid in this S/L zone during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, is modeled as flow through a porous medium. In Model 1, the steady state model, the heat flow characteristics are those of steady state solidification; i.e., the S/L zone is of constant width and it moves at a constant velocity relative to the mold. In Model 2, the unsteady state model, the width and rate of movement of the S/L zone are allowed to vary with time as it moves through the ingot. Each of these models exists in two versions. Models 1 and 2 are applicable to binary alloys; models 1M and 2M are applicable to multicomponent alloys.
An examination of anticipated g-jitter on Space Station and its effects on materials processes
NASA Technical Reports Server (NTRS)
Nelson, Emily
1992-01-01
Information on anticipated g-jitter on Space Station Freedom and the effect of the jitter on materials processes is given in viewgraph form. It was concluded that g-jitter will dominate the acceleration environment; that it is a 3D multifrequency phenomenon; and that it varies dramatically in orientation. Information is given on calculated or measured sources of residual acceleration, aerodynamic drag, Shuttle acceleration measurements, the Space Station environment, tolerable g-levels as a function of frequency, directional solidification, vapor crystal growth, protein crystal growth, float zones, and liquid bridges.
Process to make structured particles
Knapp, Angela Michelle; Richard, Monique N; Luhrs, Claudia; Blada, Timothy; Phillips, Jonathan
2014-02-04
Disclosed is a process for making a composite material that contains structured particles. The process includes providing a first precursor in the form of a dry precursor powder, a precursor liquid, a precursor vapor of a liquid and/or a precursor gas. The process also includes providing a plasma that has a high field zone and passing the first precursor through the high field zone of the plasma. As the first precursor passes through the high field zone of the plasma, at least part of the first precursor is decomposed. An aerosol having a second precursor is provided downstream of the high field zone of the plasma and the decomposed first material is allowed to condense onto the second precursor to from structured particles.
NASA Astrophysics Data System (ADS)
Buruaem, Lucas Moreira; de Castro, Ítalo Braga; Hortellani, Marcos Antonio; Taniguchi, Satie; Fillmann, Gilberto; Sasaki, Silvio Tarou; Varella Petti, Mônica Angélica; Sarkis, Jorge Eduardo de Souza; Bícego, Márcia Caruso; Maranho, Luciane Alves; Davanso, Marcela Bergo; Nonato, Edmundo Ferraz; Cesar, Augusto; Costa-Lotufo, Leticia Veras; Abessa, Denis Moledo de Souza
2013-09-01
Santos-São Vicente Estuarine System is a highly populated coastal zone in Brazil and where it is located the major port of Latin America. Historically, port activities, industrial and domestic effluents discharges have constituted the main sources of contaminants to estuarine system. This study aimed to assess the recent status of sediment quality from 5 zones of Port of Santos by applying a lines-of-evidence approach through integrating results of: (1) acute toxicity of whole sediment and chronic toxicity of liquid phases; (2) grain size, organic matter, organic carbon, nitrogen, phosphorus, trace metals, polycyclic aromatic hydrocarbons, linear alkylbenzenes and butyltins; (3) benthic community descriptors. Results revealed a gradient of increasing contamination for metals and organic compounds, alongside with their geochemical carriers. Sediment liquid phases were more toxic compared to whole sediment. Low number of species and individuals indicated the impoverishment of benthic community. The use of site-specific sediment quality guidelines was more appropriate to predict sediment toxicity. The integration of results through Sediment Quality Triad approach and principal component analysis allowed observing the effects of natural stressors and dredging on sediment quality and benthic distribution. Even with recent governmental efforts to control, pollution is still relevant in Port of Santos and a threat to local ecosystems.
Pesticide residues in drinking water and associated risk to consumers in Ethiopia.
Mekonen, Seblework; Argaw, Roba; Simanesew, Aklilu; Houbraken, Michael; Senaeve, David; Ambelu, Argaw; Spanoghe, Pieter
2016-11-01
Access to safe and reliable drinking water is vital for a healthy population. However, surface water may be contaminated with pesticides because of the nearby agricultural areas as well as from household application. Water samples were collected from water sources in Jimma zone and Addis Ababa, Ethiopia. The extraction and clean up of the samples were undertaken using liquid-solid and liquid-liquid methods. Human exposure was assessed by calculating the estimated daily intake (EDI) of pesticides in water and compared with the acceptable daily intake (ADI) and the acute reference dose (ARfD). The mean concentrations of 2,4-D, malathion, diazinon and fenpropimorph were 1.59-13.90 μg/l and 0.11-138 µg/l in Jimma and Addis Ababa water sources, respectively. The residue level of some of the pesticides were above the European drinking water guide line values, which is an indication of an illegal use of pesticides in the study areas. Concerning human health risk estimation, there was no acute risk (EDI < ARfD). However, chronic risks to human health were observed from exposure to diazinon and fenpropimorph (EDI > ADI) for Jimma and Addis Ababa populations, respectively. A comprehensive monitoring is required to reduce the level of pesticide residues in the water and to minimize particularly the long term human health risks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Method for rigless zone abandonment using internally catalyzed resin system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R.C.
1980-02-19
A zone of a subterranean formation penetrated by a well bore is permanently plugged by injecting a liquid resin system containing at least one thermosetting resin and at least one curing agent or catalyst therefor into the formation and injecting into the wellbore following the resin system, a second liquid containing at least one chain stopping compound to react with one component in the resin system to prevent any of the resin system remaining in the well bore from crosslinking to a sufficient crosslink density to form a solid in the wellbore. Preferably, the second liquid also contains a fluidmore » loss additive to minimize loss of the second liquid from the wellbore to the formation. The method permits a zone to be plugged off and abandoned without the need to erect a drilling rig to drill out excess plugging material remaining in the wellbore. In a preferred embodiment, the resin system comprises the diglycidyl ether of bisphenol a and polymethylene phenylamine in ethylene glycol ethyl ether, and the preferred second liquid is monoethanolamine in ethylene glycol ethyl ether as a solvent with ethylcellulose and silic flour to control fluid loss.« less
Ehrlich, G.G.; Godsy, E.M.; Pascale, C.A.; Vecchioli, John
1979-01-01
An industrial waste liquid containing organonitrile compounds and nitrate ion has been injected into the lower limestone of the Floridan aquifer near Pensacola, Florida since June 1975. Chemical analyses of water from monitor wells and backflow from the injection well indicate that organic carbon compounds are converted to CO2 and nitrate is converted to N2. These transformations are caused by bacteria immediately after injection, and are virtually completed within 100 m of the injection well. The zone near the injection well behaves like an anaerobic filter with nitrate respiring bacteria dominating the microbial flora in this zone.Sodium thiocyanate contained in the waste is unaltered during passage through the injection zone and is used to detect the degree of mixing of injected waste liquid with native water at a monitor well 312 m (712 ft) from the injection well. The dispersivity of the injection zone was calculated to be 10 m (33 ft). Analyses of samples from the monitor well indicate 80 percent reduction in chemical oxygen demand and virtually complete loss of organonitriles and nitrate from the waste liquid during passage from the injection well to the monitor well. Bacterial densities were much lower at the monitor well than in backflow from the injection well.
NASA Astrophysics Data System (ADS)
Boudreau, A. E.; Meurer, W. P.
The major platinum-group elements (PGE) concentrations in layered intrusions are typically associated with zones in which the sulfide abundance begins to increase. In a number of layered intrusions, there is also a distinct stratigraphic separation in the peak concentrations of the PGE from those of the base metals, gold and sulfur through these zones. These stratigraphic ``offsets'' are characterized by a lower, typically S-poor, Pt- and Pd-enriched zone overlain by a zone enriched in the base metals, S and Au. The separations amount to a few decimeters to several tens of meters. In some instances, the high Pt and Pd concentrations are associated with trivial amounts of sulfide. Theoretical considerations suggest that these offsets can be modeled as chromatographic peaks that develop during an infiltration/reaction process. Using Pd as a typical PGE and Cu as a typical base metal, a numeric model is developed that illustrates how metal separations can develop in a vapor-refining zone as fluid evolved during solidification of a cumulus pile leaches sulfide and redeposits it higher in the crystal pile. The solidification/degassing ore-element transport is coupled with a compaction model for the crystal pile. Solidification resulting from conductive cooling through the base of the compacting column leads to an increasing volatile concentration in the intercumulus liquid until it reaches fluid saturation. Separation and upward migration of this fluid lead to an upward-migrating zone of increasingly higher bulk water contents as water degassed from underlying cumulates enriches overlying, fluid-undersaturated interstitial liquids. Sulfide is resorbed from the degassing regions and is reprecipitated in these vapor-undersaturated interstitial liquids, producing a zone of relatively high modal sulfide that also migrates upward with time. Owing to its strong preference for sulfide, Pd is not significantly mobile until all sulfide is resorbed. The result is a zone of increasing PGE enrichment that follows the sulfide resorption front as solidification/degassing continues. In detail, the highest Pd concentrations occur stratigraphically below the peak in S and base metals. The high Pd/S ratio mimics values conventionally interpreted as the result of high (silicate liquid)/(sulfide liquid) mass ratios (``R'' values). However, in this case, the high Pd/S ratio is the result of a chromatographic/reaction front enrichment and not a magmatic sulfide-saturation event.
NASA Technical Reports Server (NTRS)
Chrest, Anne; Daprato, Rebecca; Burcham, Michael; Johnson, Jill
2018-01-01
The National Aeronautics and Space Administration (NASA), Kennedy Space Center (KSC), has adopted high-resolution site characterization (HRSC) sampling techniques during baseline sampling prior to implementation of remedies to confirm and refine the conceptual site model (CSM). HRSC sampling was performed at Contractors Road Heavy Equipment Area (CRHE) prior to bioremediation implementation to verify the extent of the trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source area (defined as the area with TCE concentrations above 1% solubility) and its daughter product dissolved plume that had been identified during previous HRSC events. The results of HRSC pre-bioremediation implementation sampling suggested that the TCE source area was larger than originally identified during initial site characterization activities, leading to a design refinement to improve electron donor distribution and increase the likelihood of achieving remedial objectives. Approach/Activities: HRSC was conducted from 2009 through 2014 to delineate the vertical and horizontal extent of chlorinated volatile organic compounds (CVOCs) in the groundwater. Approximately 2,340 samples were collected from 363 locations using direct push technology (DPT) groundwater sampling techniques. Samples were collected from up to 14 depth intervals at each location using a 4-foot sampling screen. This HRSC approach identified a narrow (approx. 5 to 30 feet wide), approximately 3,000 square foot TCE DNAPL source area (maximum detected TCE concentration of 160,000 micrograms per liter [micro-g/L] at DPT sampling location DPT0225). Prior to implementation of a bioremediation interim measure, HRSC baseline sampling was conducted using DPT groundwater sampling techniques. Concentrations of TCE were an order of magnitude lower than previous reported (12,000 micro-g/L maximum at DPT sampling location DPT0225) at locations sampled adjacent to previous sampling locations. To further evaluate the variability in concentrations observed additional sampling was conducted in 2016. The results identified higher concentrations than originally detected within the previously defined source area and the presence of source zone concentrations upgradient of the previously defined source area (maximum concentration observed 570,000 micro-g/L). The HRSC baseline sampling data allowed for a revision of the bioremediation design prior to implementation. Bioremediation was implemented within the eastern portion of the source area in November and December 2016 and quarterly performance monitoring was completed in March and June 2017. Reductions in CVOC concentrations from baseline were observed at all performance monitoring wells in the treatment area, and by June 2017, an approximate 95% CVOC mass reduction was observed based on monitoring well sampling results. Results/Lessons Learned: The results of this project suggest that, due to the complexity of DNAPL source zones, HRSC during pre-implementation baseline sampling in the TCE source zone was an essential strategy for verifying the treatment area and depth prior to remedy implementation. If the upgradient source zone mass was not identified prior to bioremediation implementation, the mass would have served as a long-term source for the dissolved plume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentzis, T.; Goodarzi, F.; Mukhopadhyay, P.K.
The hydrocarbon potential of the Mesozoic succession in the vicinity of King Christian Island in central Sverdrup Basin was evaluated on the basis of maturation parameters and knowledge of the regional geology. The triassic Schei Point Group, which is the main source rock interval in Sverdrup Basin, is in the mature stage of hydrocarbon generation (Ro > 0.60%). The type of organic matter is mainly planktonic marine algae and bituminite, deposited in an offshore shelf setting. Rock-eval T{sub max} values are in the range 428--444 C, in general agreement with reflectance. Organic richness is indicated by the high hydrogen indexmore » (HI) values in the shales (in excess of 300 mg HC/gTOC). Less rich source rocks are found in the Jurassic-age Jameson Bay and Ringnes formations, in accordance with previous studies in the nearby Lougheed and Melville islands. Numerous oil and gas fields have been discovered in King Christian Island to date. Geology shows that the presence or absence of liquid and gaseous hydrocarbons in the reservoirs is related to the development of a system of faults and fractures in the successions stratigraphically above the source rocks. These zones have acted as conduits for oil and gas migration and, ultimately, loss. The presence of bitumen staining and numerous populations of solid bitumen, interpreted as allochthonously derived, support the theory of hydrocarbon migration in the King Christian Island succession. Migration has taken place over a vertical distance of 800 m to 1500 m. Problems were encountered in measuring vitrinite reflectance, related mainly to the presence of cavings, bitumen staining, vitrinite typing, oxidation of organic matter, and effect of igneous intrusions. The thermal effect from igneous sills and dykes resulted in thermal cracking of liquid hydrocarbons to gaseous in certain areas. A zone of paleo-overpressure was identified near the contact between a thick sandstone unit and overlying shales exhibiting a kinky vitrinite reflectance profile.« less
NASA Astrophysics Data System (ADS)
Mateas, D. J.; Tick, G.; Carroll, K. C.
2016-12-01
A remediation method was developed to reduce the aqueous solubility and mass-flux of target NAPL contaminants through the in-situ creation of a NAPL mixture source-zone. This method was tested in the laboratory using equilibrium batch tests and two-dimensional flow-cell experiments. The creation of two different NAPL mixture source zones were tested in which 1) volumes of relatively insoluble n-hexadecane (HEX) or vegetable oil (VO) were injected into a trichloroethene (TCE) contaminant source-zone; and 2) pre-determined HEX-TCE and VO-TCE mixture ratio source zones were emplaced into the flow cell prior to water flushing. NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE and toluene (TOL) and to design optimal NAPL (HEX or VO) injection volumes for the flow-cell experiments. Uniform NAPL mixture source-zones were able to quickly decrease contaminant mass-flux, as demonstrated by the emplaced source-zone experiments. The success of the HEX and VO injections to also decrease mass flux was dependent on the ability of these injectants to homogeneously mix with TCE source-zone. Upon injection, both HEX and VO migrated away from the source-zone, to some extent. However, the lack of a steady-state dissolution phase and the inefficient mass-flux-reduction/mass-removal behavior produced after VO injection suggest that VO was more effective than HEX for mixing and partitioning within the source-zone region to form a more homogeneous NAPL mixture with TCE. VO appears to be a promising source-zone injectant-NAPL due to its negligible long-term toxicity and lower mobilization potential.
Tabbara, Hadi
2003-01-01
Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.
Europa, tidally heated oceans, and habitable zones around giant planets.
Reynolds, R T; McKay, C P; Kasting, J F
1987-01-01
Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. In our own solar system, Europa, one of the Galilean satellites of Jupiter, could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of Aeons and in which life could perhaps evolve. We define a zone around a giant planet in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In our solar system, this radiatively-heated habitable zone contains the Earth.
Whiskers growth and self-healing in Ti-based metallic glasses during ion irradiation
NASA Astrophysics Data System (ADS)
Zhang, Kun; Hu, Zheng; Zhao, Ziqiang; Wei, Bingchen; Li, Yansen; Wei, Yuhang
2018-04-01
Ti-based metallic glasses were subjected to a 20 MeV Cl4+ ion radiation under liquid-nitrogen cooling. Their responses, as well as effects of the electronic excitation and nucleus-nucleus collision were evaluated. The collision cascade during irradiation typically changes the structure by increasing the liquid-like zone/cluster, or the content of the free volume. However, along the ion incident depth, the structure change is inhomogeneous. Numerous whiskers appear and aggregate on the side of the irradiation surface, which are several micrometers away from the edge. This corresponds with the maximum collision depth obtained by the Monte Carlo simulation, where nuclear loss plays a dominant role. Moreover, the liquid-like zone continually forms, which add to the whiskers growth and subsequent self-healing. Results suggest that the irradiation-induced local shear stress combines with the well-localized liquid-like zone results in the observed phenomena. This study demonstrates that metallic glasses have high morphological instability under ion irradiation, which assets can pave new paths for their further applications.
Coal hydrogenation and deashing in ebullated bed catalytic reactor
Huibers, Derk T. A.; Johanson, Edwin S.
1983-01-01
An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.
TANK ISSUES: DESIGN AND PLACEMENT OF FLOATING LIQUID MONITORING WELLS
Liquid product monitoring is the predominant method of external leak detection where the water table is within the zone of excavation. his paper discusses the use of liquid product monitors at new and old tank installations for detecting leaks from underground hydrocarbon storage...
Zhang, Changyong; Werth, Charles J; Webb, Andrew G
2007-05-15
A direct visualization method using magnetic resonance imaging (MRI) was developed to characterize sand grain size distribution, nonaqueous phase liquid (NAPL) source zone architecture, and aqueous flowpaths in a three-dimensional (3-D) flowcell (26.5 cm x 10.5 cm x 10.5 cm) packed with a heterogeneous distribution of five different sand fractions. All images were acquired at a resolution of 0.1875 cm x 0.1875 cm x 0.225 cm. A 1H image of pore water resolved the heterogeneous permeability field; grain size differences as small as 0.1 mm could be distinguished. A time series of 1H images of water doped with the paramagnetic tracer MnCl2 were acquired and used to obtain voxel-scale breakthrough curves. Water preferentially flowed through coarse sands before NAPL release. After NAPL release, the flow bypassed NAPLzones, and bypassing was more evident for high NAPL saturation zones. A time series of 19F images of NAPL were acquired and used to determine voxel-scale NAPL saturation (Sn) during dissolution. Results show that 93% of NAPL mass was in the coarsest sand, most NAPL was trapped as pools and not as residual ganglia, NAPL saturation increased with depth, and the NAPL dissolution front moved vertically from the top to the bottom of the flowcell during the first 170 pore volumes of waterflushed. NAPL component effluent concentrations initially increased due to the development of flow in zones with decreasing NAPL saturation. Flowpath images suggest that this occurs as NAPL transitions from pools (Sn > 0.15) to residual ganglia. The results highlight the importance of flow bypassing and provide the opportunity to develop more accurate NAPL dissolution models.
Evdokimova, Galina A; Mozgova, Natalya P
2015-01-01
The work provides a comparative analysis of changes in soil properties in the last 10-13 years along the pollution gradient of air emissions from Kandalaksha aluminium plant in connection with the reduction of their volume. The content of the priority pollutant fluorine (F) in atmospheric precipitation and in the organic horizon of soil in the plant impact zone significantly decreased in 2011-2013 compared to 2001. The aluminium concentrations reduced only in immediate proximity to the plant (2 km). The fluorine, calcium (Ca) and magnesium (Mg) concentrations are higher in liquid phase compared to solid phase thus these elements can migrated to greater distances from the pollution source (up to 15-20 km). Silicon (Si), aluminium (Al), iron (Fe) and phosphorus (P) can be found only in solid phases and in fall-out within the 5 km. The acidity of soil litter reduced by 2 pH units in the proximity to the plot within the 2 km. The zone of maximum soil contamination decreased from 2.5 km to 1.5 km from the emission source, the zones of heavy and moderate pollution reduced by 5 km in connection with the reduction of pollutant emissions in the plant. A high correlation between the fluorine concentrations in vegetables and litter was found. Higher fluorine concentrations in the soil result in its accumulation in plants. Mosses accumulate fluorine most intensively.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-34-2012] Foreign-Trade Zone 45--Portland, OR, Authorization of Production Activity, Shimadzu USA Manufacturing, Inc., (Analytical Instruments-- Liquid Chromatographs and Mass Spectrometer Production), Canby, OR The Port of Portland, grantee of FTZ 45, submitted a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felicelli, S.D.; Poirier, D.R.; Heinrich, J.C.
The formation of macrosegregation defects known as freckles was simulated using a three-dimensional finite element model that calculates the thermosolutal convection and macrosegregation during the dendritic solidification of multicomponent alloys. A recently introduced algorithm was used to calculate the complicated solidification path of alloys of many components, which can accommodate liquidus temperatures that are general functions of liquid concentrations. The calculations are started from an all-liquid state, and the growth of the mushy zone is followed in time. Simulations are started from an all-liquid state, and the growth of the mushy zone is followed in time. Simulations of a Ni-Al-Ta-Wmore » alloy were performed on a rectangular cylinder until complete solidification. The results reveal details of the formation of freckles not previously observed in two-dimensional simulations. Liquid plumes in the form of chimney convection emanate from channels within the mushy zone, with similar qualitative features previously observed in transparent systems. Associated with the formation of channels, there is a complex three-dimensional flow produced by the interaction of the different solutal buoyancies of the alloy solutes. Regions of enhanced solid growth develop around the channel mouths, which are visualized as volcanoes on top of the mushy zone. The prediction of volcanoes differs from previous calculations with multicomponent alloys in two dimensions, in which the volcanoes were not nearly as apparent. These and other features of freckle formation phenomena are illustrated.« less
Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K; Wang, Zheming; Dixit, Suvasis; Steefel, Carl I; Saiz, Eduardo; Kunz, Martin; Tamura, Nobumichi
2009-04-01
A saline-alkaline brine containing high concentration of U(VI) was accidentally spilled at the Hanford Site in 1951, introducing 10 tons of U into sediments under storage tank BX-102. U concentrations in the deep vadose zone and groundwater plumes increase with time, yet how the U has been migrating is not fully understood. We simulated the spill event in laboratory soil columns, followed by aging, and obtained spatially resolved U partitioning and speciation along simulated plumes. We found after aging, at apparent steady state, that the pore aqueous phase U concentrations remained surprisingly high (up to 0.022 M), in close agreement with the recently reported high U concentrations (up to 0.027 M) in the vadose zone plume (1). The pH values of aged pore liquids varying from 10 to 7, consistent with the measured pH of the field borehole sediments varying from 9.5 to 7.4 (2), from near the plume source to the plume front. The direct measurements of aged pore liquids together with thermodynamic calculations using a Pitzer approach revealed that UO2(CO3)3(4-) is the dominant aqueous U species within the plume body (pH 8-10), whereas Ca2UO2(CO3)3 and CaUO2(CO3)32- are also significant in the plume frontvicinity (pH 7-8), consistent with that measured from field borehole pore-waters (3). U solid phase speciation varies at different locations along the plume flow path and even within single sediment grains, because of location dependent pore and micropore solution chemistry. Our results suggest that continuous gravity-driven migration of the highly stable U02(CO3)34 in the residual carbonate and sodium rich tank waste solution is likely responsible for the detected growing U concentrations in the vadose zone and groundwater.
Kinetic limitations on tracer partitioning in ganglia dominated source zones.
Ervin, Rhiannon E; Boroumand, Ali; Abriola, Linda M; Ramsburg, C Andrew
2011-11-01
Quantification of the relationship between dense nonaqueous phase liquid (DNAPL) source strength, source longevity and spatial distribution is increasingly recognized as important for effective remedial design. Partitioning tracers are one tool that may permit interrogation of DNAPL architecture. Tracer data are commonly analyzed under the assumption of linear, equilibrium partitioning, although the appropriateness of these assumptions has not been fully explored. Here we focus on elucidating the nonlinear and nonequilibrium partitioning behavior of three selected alcohol tracers - 1-pentanol, 1-hexanol and 2-octanol in a series of batch and column experiments. Liquid-liquid equilibria for systems comprising water, TCE and the selected alcohol illustrate the nonlinear distribution of alcohol between the aqueous and organic phases. Complete quantification of these equilibria facilitates delineation of the limits of applicability of the linear partitioning assumption, and assessment of potential inaccuracies associated with measurement of partition coefficients at a single concentration. Column experiments were conducted under conditions of non-equilibrium to evaluate the kinetics of the reversible absorption of the selected tracers in a sandy medium containing a uniform entrapped saturation of TCE-DNAPL. Experimental tracer breakthrough data were used, in conjunction with mathematical models and batch measurements, to evaluate alternative hypotheses for observed deviations from linear equilibrium partitioning behavior. Analyses suggest that, although all tracers accumulate at the TCE-DNAPL/aqueous interface, surface accumulation does not influence transport at concentrations typically employed for tracer tests. Moreover, results reveal that the kinetics of the reversible absorption process are well described using existing mass transfer correlations originally developed to model aqueous boundary layer resistance for pure-component NAPL dissolution. Copyright © 2011 Elsevier B.V. All rights reserved.
Brusseau, Mark L
2018-02-01
A comprehensive understanding of the transport and fate of per- and poly-fluoroalkyl substances (PFAS) in the subsurface is critical for accurate risk assessments and design of effective remedial actions. A multi-process retention model is proposed to account for potential additional sources of retardation for PFAS transport in source zones. These include partitioning to the soil atmosphere, adsorption at air-water interfaces, partitioning to trapped organic liquids (NAPL), and adsorption at NAPL-water interfaces. An initial assessment of the relative magnitudes and significance of these retention processes was conducted for two PFAS of primary concern, perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), and an example precursor (fluorotelomer alcohol, FTOH). The illustrative evaluation was conducted using measured porous-medium properties representative of a sandy vadose-zone soil. Data collected from the literature were used to determine measured or estimated values for the relevant distribution coefficients, which were in turn used to calculate retardation factors for the model system. The results showed that adsorption at the air-water interface was a primary source of retention for both PFOA and PFOS, contributing approximately 50% of total retention for the conditions employed. Adsorption to NAPL-water interfaces and partitioning to bulk NAPL were also shown to be significant sources of retention. NAPL partitioning was the predominant source of retention for FTOH, contributing ~98% of total retention. These results indicate that these additional processes may be, in some cases, significant sources of retention for subsurface transport of PFAS. The specific magnitudes and significance of the individual retention processes will depend upon the properties and conditions of the specific system of interest (e.g., PFAS constituent and concentration, porous medium, aqueous chemistry, fluid saturations, co-contaminants). In cases wherein these additional retention processes are significant, retardation of PFAS in source areas would likely be greater than what is typically estimated based on the standard assumption of solid-phase adsorption as the sole retention mechanism. This has significant ramifications for accurate determination of the migration potential and magnitude of mass flux to groundwater, as well as for calculations of contaminant mass residing in source zones. Both of which have critical implications for human-health risk assessments. Copyright © 2017 Elsevier B.V. All rights reserved.
Iron snow in the Martian Core?
NASA Astrophysics Data System (ADS)
Davies, C. J.; Pommier, A.
2017-12-01
The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The termination of the dynamo is intimately tied to the thermochemical evolution of the core-mantle system and therefore to the present-day physical state of the Martian core. The standard model predicts that the Martian dynamo failed because thermal convection stopped and the core remained entirely liquid until the present. Here we consider an alternative hypothesis that the Martian core crystallized from the top down in the so-called iron snow regime. We derive energy-entropy equations describing the long-timescale thermal and magnetic evolution of the core that incorporate the self-consistent formation of a snow layer that freezes out pure iron and is assumed to be on the liquidus; the iron sinks and remelts in the deeper core, acting as a possible source for magnetic field generation. Compositions are in the FeS system, with a sulfur content up to 16 wt%. The values of the different parameters (core radius, density and CMB pressure) are varied within bounds set by recent internal structure models that satisfy existing geodetic constraints (planetary mass, moment of inertia and tidal Love number). The melting curve and adiabat, CMB heat flow and thermal conductivity were also varied, based on previous experimental and numerical works. We observe that the formation of snow zones occurs for a wide range of interior and thermal structure properties and depends critically on the initial sulfur concentration. Gravitational energy release and latent heat effects arising during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies a significant fraction of the core. Our results suggest that snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have an initial S concentration of about 10wt.% and snow zones that occupy approximately the top 100 km of the present-day Martian core.
Focused ion beam direct micromachining of DOEs
NASA Astrophysics Data System (ADS)
Khan Malek, Chantal; Hartley, Frank T.; Neogi, Jayant
2000-09-01
We discuss here the capability of direct manufacture of various high- resolution diffractive optics, in particular regarding micromachining of DOEs in 3D. Preliminary demonstrations were made in 2-D using an automated FIB system operated at 30 KeV with a Gallium liquid metal ion source and equipped with a gas injection system (GIS). Gratings with a 20 nm line width and zone plates with 32 nm outer ring were milled in a reactive atmosphere (iodine) directly through 3.5 (mu) m and 800 nm of gold respectively. Plans for combining FIB and X-ray lithography to make diffractive optical elements (DOEs) for JPL are also mentioned.
Evidence for Different Reaction Pathways for Liquid and Granular Micronutrients in a Calcareous Soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hettiarachchi, Ganga M.; McLaughlin, Mike J.; Scheckel, Kirk G.
2008-06-16
The benefits of Mn and Zn fluid fertilizers over conventional granular products in calcareous sandy loam soils have been agronomically demonstrated. We hypothesized that the differences in the effectiveness between granular and fluid Mn and Zn fertilizers is due to different Mn and Zn reaction processes in and around fertilizer granules and fluid fertilizer bands. We used a combination of several synchrotron-based x-ray techniques, namely, spatially resolved micro-x-ray fluorescence (?-XRF), micro-x-ray absorption near edge structure spectroscopy (?-XANES), and bulk-XANES and -extended x-ray absorption fine structure (EXAFS) spectroscopy, along with several laboratory-based x-ray techniques to speciate different fertilizer-derived Mn and Znmore » species in highly calcareous soils to understand the chemistry underlying the observed differential behavior of fluid and granular micronutrient forms. Micro-XRF mapping of soil-fertilizer reactions zones indicated that the mobility of Mn and Zn from liquid fertilizer was greater than that observed for equivalent granular sources of these micronutrients in soil. After application of these micronutrient fertilizers to soil, Mn and Zn from liquid fertilizers were found to remain in comparatively more soluble solid forms, such as hydrated Mn phosphate-like, Mn calcite-like, adsorbed Zn-like, and Zn silicate-like phases, whereas Mn and Zn from equivalent granular sources tended to transform into comparatively less soluble solid forms such as Mn oxide-like, Mn carbonate-like, and Zn phosphate-like phases.« less
NASA Astrophysics Data System (ADS)
Fuzier, Sylvie; Coutier Delgosha, Olivier; Coudert, S. Ébastien; Dazin, Antoine
2011-11-01
The physical description of hydrodynamic cavitation is complex as it includes strongly unsteady, turbulent and phase change phenomena. Because the bubbles in the cavitation area render this zone opaque, nonintrusive experimental observation inside this zone is difficult and little is known about the detailed bubble, flow structure and physics inside. A novel approach using LIF-PIV to investigate the dynamics inside the cavitation area generated through a venturi is presented. The velocity in the liquid and of the bubbles are measured simultaneously and correlated with areas of various bubble structure. The influence of the bubble structure on the turbulence in the liquid is also studied.
Method of extracting iodine from liquid mixtures of iodine, water and hydrogen iodide
Mysels, Karol J.
1979-01-01
The components of a liquid mixture consisting essentially of HI, water and at least about 50 w/o iodine are separated in a countercurrent extraction zone by treating with phosphoric acid containing at least about 90 w/o H.sub.3 PO.sub.4. The bottom stream from the extraction zone is substantially completely molten iodine, and the overhead stream contains water, HI, H.sub.3 PO.sub.4 and a small fraction of the amount of original iodine. When the water and HI are present in near-azeotropic proportions, there is particular advantage in feeding the overhead stream to an extractive distillation zone wherein it is treated with additional concentrated phosphoric acid to create an anhydrous HI vapor stream and bottoms which contain at least about 85 w/o H.sub.3 PO.sub.4. Concentration of these bottoms provides phosphoric acid infeed for both the countercurrent extraction zone and for the extractive distillation zone.
Liquid metal ion source and alloy
Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.
1988-10-04
A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.
Chow, Lorac S.; Leonard, Ralph A.
1993-01-01
A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.
Chow, L.S.; Leonard, R.A.
1993-10-19
A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.
Iron snow in the Martian core?
NASA Astrophysics Data System (ADS)
Davies, Christopher J.; Pommier, Anne
2018-01-01
The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The dynamo was probably powered by planetary cooling and so its termination is intimately tied to the thermochemical evolution and present-day physical state of the Martian core. Bottom-up growth of a solid inner core, the crystallization regime for Earth's core, has been found to produce a long-lived dynamo leading to the suggestion that the Martian core remains entirely liquid to this day. Motivated by the experimentally-determined increase in the Fe-S liquidus temperature with decreasing pressure at Martian core conditions, we investigate whether Mars' core could crystallize from the top down. We focus on the "iron snow" regime, where newly-formed solid consists of pure Fe and is therefore heavier than the liquid. We derive global energy and entropy equations that describe the long-timescale thermal and magnetic history of the core from a general theory for two-phase, two-component liquid mixtures, assuming that the snow zone is in phase equilibrium and that all solid falls out of the layer and remelts at each timestep. Formation of snow zones occurs for a wide range of interior and thermal properties and depends critically on the initial sulfur concentration, ξ0. Release of gravitational energy and latent heat during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies at least 400 km of the core. Snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have ξ0 ≈ 10% and snow zones that occupy approximately the top 100 km of the present-day Martian core.
Possible fossil H2O liquid-ice interfaces in the Martian crust
Soderblom, L.A.; Wenner, D.B.
1978-01-01
Throughout the northern equatorial region of Mars, extensive areas have been uniformly stripped, roughly to a constant depth. These terrains vary widely in their relative ages. A model is described here to explain this phenomenon as reflecting the vertical distribution of H2O liquid and ice in the crust. Under present conditions the Martian equatorial regions are stratified in terms of the stability of water ice and liquid water. This arises because the temperature of the upper 1 or 2 km is below the melting point of ice and liquid is stable only at greater depth. It is suggested here that during planetary outgassing earlier in Martian history H2O was injected into the upper few kilometers of the crust by subsurface and surface volcanic eruption and lateral migration of the liquid and vapor. As a result, a discontinuity in the physical state of materials developed in the Martian crust coincident with the depth of H2O liquid-ice phase boundary. Material above the boundary remained pristine; material below underwent diagenetic alteration and cementation. Subsequently, sections of the ice-laden zone were erosionally stripped by processes including eolian deflation, gravitational slump and collapse, and fluvial transport due to geothermal heating and melting of the ice. The youngest plains which display this uniform stripping may provide a minimum stratigraphic age for the major period of outgassing of the planet. Viking results suggest that the total amount of H2O outgassed is less than half that required to fill the ice layer, hence any residual liquid eventually found itself in the upper permafrost zone or stored in the polar regions. Erosion stopped at the old liquid-ice interface due to increased resistance of subjacent material and/or because melting of ice was required to mobilize the debris. Water ice may remain in uneroded regions, the overburden of debris preventing its escape to the atmosphere. Numerous morphological examples shown in Viking and Mariner 9 images suggest interaction of impact, volcanic, and gravitational processes with the ice-laden layer. Finally, volcanic eruptions into ice produces a highly oxidized friable amorphous rock, palagonite. Based on spectral reflectance properties, these materials may provide the best analog to Martian surface materials. They are easily eroded, providing vast amounts of eolian debris, and have been suggested (Toulmin et al., 1977) as possible source rocks for the materials observed at the Viking landing sites. ?? 1978.
Short residence time coal liquefaction process including catalytic hydrogenation
Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.
1982-05-18
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.
Short residence time coal liquefaction process including catalytic hydrogenation
Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.
1982-05-18
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.
NASA Astrophysics Data System (ADS)
Li, K. Betty; Goovaerts, Pierre; Abriola, Linda M.
2007-06-01
Contaminant mass discharge across a control plane downstream of a dense nonaqueous phase liquid (DNAPL) source zone has great potential to serve as a metric for the assessment of the effectiveness of source zone treatment technologies and for the development of risk-based source-plume remediation strategies. However, too often the uncertainty of mass discharge estimated in the field is not accounted for in the analysis. In this paper, a geostatistical approach is proposed to estimate mass discharge and to quantify its associated uncertainty using multilevel transect measurements of contaminant concentration (C) and hydraulic conductivity (K). The approach adapts the p-field simulation algorithm to propagate and upscale the uncertainty of mass discharge from the local uncertainty models of C and K. Application of this methodology to numerically simulated transects shows that, with a regular sampling pattern, geostatistics can provide an accurate model of uncertainty for the transects that are associated with low levels of source mass removal (i.e., transects that have a large percentage of contaminated area). For high levels of mass removal (i.e., transects with a few hot spots and large areas of near-zero concentration), a total sampling area equivalent to 6˜7% of the transect is required to achieve accurate uncertainty modeling. A comparison of the results for different measurement supports indicates that samples taken with longer screen lengths may lead to less accurate models of mass discharge uncertainty. The quantification of mass discharge uncertainty, in the form of a probability distribution, will facilitate risk assessment associated with various remediation strategies.
Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding
NASA Astrophysics Data System (ADS)
Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.
2015-07-01
Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.
Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding
Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.
2015-01-01
Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.
Toward Broadband Source Modeling for the Himalayan Collision Zone
NASA Astrophysics Data System (ADS)
Miyake, H.; Koketsu, K.; Kobayashi, H.; Sharma, B.; Mishra, O. P.; Yokoi, T.; Hayashida, T.; Bhattarai, M.; Sapkota, S. N.
2017-12-01
The Himalayan collision zone is characterized by the significant tectonic setting. There are earthquakes with low-angle thrust faulting as well as continental outerrise earthquakes. Recently several historical earthquakes have been identified by active fault surveys [e.g., Sapkota et al., 2013]. We here investigate source scaling for the Himalayan collision zone as a fundamental factor to construct source models toward seismic hazard assessment. As for the source scaling for collision zones, Yen and Ma [2011] reported the subduction-zone source scaling in Taiwan, and pointed out the non-self-similar scaling due to the finite crustal thickness. On the other hand, current global analyses of stress drop do not show abnormal values for the continental collision zones [e.g., Allmann and Shearer, 2009]. Based on the compile profiling of finite thickness of the curst and dip angle variations, we discuss whether the bending exists for the Himalayan source scaling and implications on stress drop that will control strong ground motions. Due to quite low-angle dip faulting, recent earthquakes in the Himalayan collision zone showed the upper bound of the current source scaling of rupture area vs. seismic moment (< Mw 8.0), and does not show significant bending of the source scaling. Toward broadband source modeling for ground motion prediction, we perform empirical Green's function simulations for the 2009 Butan and 2015 Gorkha earthquake sequence to quantify both long- and short-period source spectral levels.
Multicompartment Liquid-Cooling/Warming Protective Garments
NASA Technical Reports Server (NTRS)
Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.
2005-01-01
Shortened, multicompartment liquid-cooling / warming garments (LCWGs) for protecting astronauts, firefighters, and others at risk of exposure to extremes of temperature are undergoing development. Unlike prior liquid-circulation thermal-protection suits that provide either cooling or warming but not both, an LCWG as envisioned would provide cooling at some body locations and/or heating at other locations, as needed: For example, sometimes there is a need to cool the body core and to heat the extremities simultaneously. An LCWG garment of the type to be developed is said to be shortened because the liquid-cooling and - heating zones would not cover the whole body and, instead, would cover reduced areas selected for maximum heating and cooling effectiveness. Physiological research is under way to provide a rational basis for selection of the liquid-cooling and -heating areas. In addition to enabling better (relative to prior liquid-circulation garments) balancing of heat among different body regions, the use of selective heating and cooling in zones would contribute to a reduction in the amount of energy needed to operate a thermal-protection suit.
André, L; Lamy, E; Lutz, P; Pernier, M; Lespinard, O; Pauss, A; Ribeiro, T
2016-02-01
The electrical resistivity tomography (ERT) method is a non-intrusive method widely used in landfills to detect and locate liquid content. An experimental set-up was performed on a dry batch anaerobic digestion reactor to investigate liquid repartition in process and to map spatial distribution of inoculum. Two array electrodes were used: pole-dipole and gradient arrays. A technical adaptation of ERT method was necessary. Measured resistivity data were inverted and modeled by RES2DINV software to get resistivity sections. Continuous calibration along resistivity section was necessary to understand data involving sampling and physicochemical analysis. Samples were analyzed performing both biochemical methane potential and fiber quantification. Correlations were established between the protocol of reactor preparation, resistivity values, liquid content, methane potential and fiber content representing liquid repartition, high methane potential zones and degradations zones. ERT method showed a strong relevance to monitor and to optimize the dry batch anaerobic digestion process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vapor-dominated zones within hydrothermal systems: evolution and natural state
Ingebritsen, S.E.; Sorey, M.L.
1988-01-01
Three conceptual models illustrate the range of hydrothermal systems in which vapor-dominated conditions are found. The first model (model I) represents a system with an extensive near-vaporstatic vapor-dominated zone and limited liquid throughflow and is analogous to systems such as The Geysers, California. Models II and III represent systems with significant liquid throughflow and include steam-heated discharge features at higher elevations and high-chloride springs at lower elevations connected to and fed by a single circulation system at depth. In model II, as in model I, the vapor-dominated zone has a near-vaporstatic vertical pressure gradient and is generally underpressured with respect to local hydrostatic pressure. The vapor-dominated zone in model III is quite different, in that phase separation takes place at pressures close to local hydrostatic and the overall pressure gradient is near hydrostatic. -from Authors
Process to make core-shell structured nanoparticles
Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N
2014-01-07
Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.
HabEx and the Search for Biosignatures Around Nearby Stars
NASA Astrophysics Data System (ADS)
Domagal-Goldman, Shawn David; Habitable Exoplanet Science and Technology Definition Team
2018-01-01
The Habitable Exoplanet Imaging mission (HabEx) is one of four flagship mission concepts currently under study for the upcoming 2020 Decadal Survey of Astronomy and Astrophysics. One of HabEx’s main goals will be a thorough study of planetary systems in our stellar neighborhood. This will include the characterization of any rocky planets in the habitable zones of these systems. Rocky habitable zone planets are, by definition, worlds with the potential to host global liquid water surface oceans, and therefore the potential to harbor global biospheres. HabEx’s characterization of these worlds will include a search for signs of life on these planets. These signatures will be primarily spectroscopic in nature, and result from the suite of gases emitted by biota at the planet’s surface. In this poster, we will discuss HabEx’s abilities to detect potential biosiagnature gases, and the extent to which it can discrimninate biological sources of these gases from non-biological “false positives.”
Nanosecond liquid crystalline optical modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.
2016-07-26
An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying themore » electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.« less
Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling
NASA Technical Reports Server (NTRS)
Lee, M. C. (Inventor)
1985-01-01
Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.
Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon
Diener, Michael D.; Alford, J. Michael; Nabity, James; Hitch, Bradley D.
2007-01-02
The present invention provides a combustion apparatus for the production of carbon nanomaterials including fullerenes and fullerenic soot. Most generally the combustion apparatus comprises one or more inlets for introducing an oxygen-containing gas and a hydrocarbon fuel gas in the combustion system such that a flame can be established from the mixed gases, a droplet delivery apparatus for introducing droplets of a liquid hydrocarbon feedstock into the flame, and a collector apparatus for collecting condensable products containing carbon nanomaterials that are generated in the combustion system. The combustion system optionally has a reaction zone downstream of the flame. If this reaction zone is present the hydrocarbon feedstock can be introduced into the flame, the reaction zone or both.
A strategy for low cost development of incremental oil in legacy reservoirs
Attanasi, E.D.
2016-01-01
The precipitous decline in oil prices during 2015 has forced operators to search for ways to develop low-cost and low-risk oil reserves. This study examines strategies to low cost development of legacy reservoirs, particularly those which have already implemented a carbon dioxide enhanced oil recovery (CO2 EOR) program. Initially the study examines the occurrence and nature of the distribution of the oil resources that are targets for miscible and near-miscible CO2 EOR programs. The analysis then examines determinants of technical recovery through the analysis of representative clastic and carbonate reservoirs. The economic analysis focusses on delineating the dominant components of investment and operational costs. The concluding sections describe options to maximize the value of assets that the operator of such a legacy reservoir may have that include incremental expansion within the same producing zone and to producing zones that are laterally or stratigraphically near main producing zones. The analysis identified the CO2 recycle plant as the dominant investment cost item and purchased CO2 and liquids management as a dominant operational cost items. Strategies to utilize recycle plants for processing CO2 from multiple producing zones and multiple reservoir units can significantly reduce costs. Industrial sources for CO2 should be investigated as a possibly less costly way of meeting EOR requirements. Implementation of tapered water alternating gas injection schemes can partially mitigate increases in fluid lifting costs.
Method of making single crystal fibers
NASA Technical Reports Server (NTRS)
Westfall, Leonard J. (Inventor)
1990-01-01
Single crystal fibers are made from miniature extruded ceramic feed rods. A decomposable binder is mixed with powders to inform a slurry which is extruded into a small rod which may be sintered, either in air or in vacuum, or it may be used in the extruded and dried condition. A pair of laser beams focuses onto the tip of the rod to melt it thereby forming a liquid portion. A single crystal seed fiber of the same material as the feed rod contacts this liquid portion to establish a zone of liquid material between the feed rod and the single crystal seed fiber. The feed rod and the single crystal feed fiber are moved at a predetermined speed to solidify the molten zone onto the seed fiber while simultaneously melting additional feed rod. In this manner a single crystal fiber is formed from the liquid portion.
Monodisperse, polymeric microspheres produced by irradiation of slowly thawing frozen drops
NASA Technical Reports Server (NTRS)
Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chung, Sang-Kun (Inventor); Colvin, Michael S. (Inventor); Chang, Manchium (Inventor)
1991-01-01
Monodisperse, polymeric microspheres are formed by injecting uniformly shaped droplets of radiation polymerizable monomers, preferably a biocompatible monomer, having covalent binding sites such as hydroxyethylmethacrylate, into a zone, impressing a like charge on the droplet so that they mutually repel each other, spheroidizing the droplets within the zone and collecting the droplets in a pool of cryogenic liquid. As the droplets enter the liquid, they freeze into solid, glassy microspheres, which vaporizes a portion of the cryogenic liquid to form a layer. The like-charged microspheres, suspended within the layer, move to the edge of the vessel holding the pool, are discharged, fall and are collected. The collected microspheres are irradiated while frozen in the cryogenic liquid to form latent free radicals. The frozen microspheres are then slowly thawed to activate the free radicals which polymerize the monomer to form evenly-sized, evenly-shaped, monodisperse polymeric microspheres.
Pyrolysis reactor and fluidized bed combustion chamber
Green, Norman W.
1981-01-06
A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.
High-pressure calorimeter chamber tests for liquid oxygen/kerosene (LOX/RP-1) rocket combustion
NASA Technical Reports Server (NTRS)
Masters, Philip A.; Armstrong, Elizabeth S.; Price, Harold G.
1988-01-01
An experimental program was conducted to investigate the rocket combustion and heat transfer characteristics of liquid oxygen/kerosene (LOX/RP-1) mixtures at high chamber pressures. Two water-cooled calorimeter chambers of different combustion lengths were tested using 37- and 61-element oxidizer-fuel-oxidizer triplet injectors. The tests were conducted at nominal chamber pressures of 4.1, 8.3, and 13.8 MPa abs (600, 1200, and 2000 psia). Heat flux Q/A data were obtained for the entire calorimeter length for oxygen/fuel mixture ratios of 1.8 to 3.3. Test data at 4.1 MPa abs compared favorably with previous test data from another source. Using an injector with a fuel-rich outer zone reduced the throat heat flux by 47 percent with only a 4.5 percent reduction in the characteristic exhaust velocity efficiency C* sub eff. The throat heat transfer coefficient was reduced approximately 40 percent because of carbon deposits on the chamber wall.
Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan
2013-08-01
Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Zhang, Y. Q.; Adebiyi, Adebimpe
1989-01-01
Progress performed on each task is described. Order of magnitude analyses related to liquid zone sensitivity and thermo-capillary flow sensitivity are covered. Progress with numerical models of the sensitivity of isothermal liquid zones is described. Progress towards a numerical model of coupled buoyancy-driven and thermo-capillary convection experiments is also described. Interaction with NASA personnel is covered. Results to date are summarized and they are discussed in terms of the predicted space station acceleration environment. Work planned for the second year is also discussed.
Solidification in direct metal deposition by LENS processing
NASA Astrophysics Data System (ADS)
Hofmeister, William; Griffith, Michelle
2001-09-01
Thermal imaging and metallographic analysis were used to study Laser Engineered Net Shaping (LENS™) processing of 316 stainless steel and H13 tool steel. The cooling rates at the solid-liquid interface were measured over a range of conduction conditions. The length scale of the molten zone controls cooling rates during solidification in direct metal deposition. In LENS processing, the molten zone ranges from 0.5 mm in length to 1.5 mm, resulting in cooling rates at the solid-liquid interface ranging from 200 6,000 Ks-1.
Kepler: NASA's First Mission Capable of Finding Earth-Size Planets
NASA Technical Reports Server (NTRS)
Borucki, William J.
2009-01-01
Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning
NASA Astrophysics Data System (ADS)
Chan, T. P.; Govindaraju, Rao S.
2006-10-01
Remediation schemes for contaminated sites are often evaluated to assess their potential for source zone reduction of mass, or treatment of the contaminant between the source and a control plane (CP) to achieve regulatory limits. In this study, we utilize a stochastic stream tube model to explain the behavior of breakthrough curves (BTCs) across a CP. At the local scale, mass dissolution at the source is combined with an advection model with first-order decay for the dissolved plume. Field-scale averaging is then employed to account for spatial variation in mass within the source zone, and variation in the velocity field. Under the assumption of instantaneous mass transfer from the source to the moving liquid, semi-analytical expressions for the BTC and temporal moments are developed, followed by derivation of expressions for effective velocity, dispersion, and degradation coefficients using the method of moments. It is found that degradation strongly influences the behavior of moments and the effective parameters. While increased heterogeneity in the velocity field results in increased dispersion, degradation causes the center of mass of the plume to shift to earlier times, and reduces the dispersion of the BTC by lowering the concentrations in the tail. Modified definitions of effective parameters are presented for degrading solutes to account for the normalization constant (zeroth moment) that keeps changing with time or distance to the CP. It is shown that anomalous dispersion can result for high degradation rates combined with wide variation in velocity fluctuations. Implications of model results on estimating cleanup times and fulfillment of regulatory limits are discussed. Relating mass removal at the source to flux reductions past a control plane is confounded by many factors. Increased heterogeneity in velocity fields causes mass fluxes past a control plane to persist, however, aggressive remediation between the source and CP can reduce these fluxes.
49 CFR 173.133 - Assignment of packing group and hazard zones for Division 6.1 materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... atmospheric pressure. Note 2: A liquid in Division 6.1 meeting criteria for Packing Group I, Hazard Zones A or... 49 Transportation 2 2012-10-01 2012-10-01 false Assignment of packing group and hazard zones for... Group Assignments and Exceptions for Hazardous Materials Other Than Class 1 and Class 7 § 173.133...
Solidification of II-VI Compounds in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Gillies, D. C.; Volz, M. P.; Mazuruk, K.; Motakef, S.; Dudley, M.; Matyi, R.
1999-01-01
This project is aimed at using a rotating magnetic field (RMF) to control fluid flow and transport during directional solidification of elemental and compound melts. Microgravity experiments have demonstrated that small amounts of residual acceleration of less than a micro-g can initiate and prolong fluid flow, particularly when there is a static component of the field perpendicular to the liquid solid interface. Thus a true diffusion boundary layer is not formed, and it becomes difficult to verify theories of solidification or to achieve diffusion controlled solidification. The RMF superimposes a stirring effect on an electrically conducting liquid, and with appropriate field strengths and frequencies, controlled transport of material through a liquid column can be obtained. As diffusion conditions are precluded and complete mixing conditions prevail, the technique is appropriate for traveling solvent zone or float zone growth methods in which the overall composition of the liquid can be maintained throughout the growth experiment. Crystals grown by RMF techniques in microgravity in previous, unrelated missions have shown exceptional properties. The objective of the project is two-fold, namely (1) using numerical modeling to simulate the behavior of a solvent zone with applied thermal boundary conditions and demonstrate the effects of decreasing gravity levels, or an increasing applied RMF, or both, and (2) to grow elements and II-VI compounds from traveling solvent zones both with and without applied RMFs, and to determine objectively how well the modeling predicts solidification parameters. Numerical modeling has demonstrated that, in the growth of CdTe from a tellurium solution, a rotating magnetic field can advantageously modify the shape of the liquid solid interface such that the interface is convex as seen from the liquid. Under such circumstances, the defect structure is reduced as any defects which are formed tend to grow out and not propagate. The flow of liquid, however, is complex due to the competing flow induced by the rotating magnetic field and the buoyancy driven convection. When the acceleration forces are reduced to one thousandth of gravity, the flow pattern is much simplified and well controlled material transport through the solvent zone can be readily achieved. Triple axis diffractometry and x-ray synchrotron topography have demonstrated that there is no significant improvement in crystal quality for HgCdTe grown on earth from a tellurium solution when a rotating magnetic field is applied. However, modeling shows that the flow in microgravity with a rotating magnetic field would produce a superior product.
Automatic development of normal zone in composite MgB2/CuNi wires with different diameters
NASA Astrophysics Data System (ADS)
Jokinen, A.; Kajikawa, K.; Takahashi, M.; Okada, M.
2010-06-01
One of the promising applications with superconducting technology for hydrogen utilization is a sensor with a magnesium-diboride (MgB2) superconductor to detect the position of boundary between the liquid hydrogen and the evaporated gas stored in a Dewar vessel. In our previous experiment for the level sensor, the normal zone has been automatically developed and therefore any energy input with the heater has not been required for normal operation. Although the physical mechanism for such a property of the MgB2 wire has not been clarified yet, the deliberate application might lead to the realization of a simpler superconducting level sensor without heater system. In the present study, the automatic development of normal zone with increasing a transport current is evaluated for samples consisting of three kinds of MgB2 wires with CuNi sheath and different diameters immersed in liquid helium. The influences of the repeats of current excitation and heat cycle on the normal zone development are discussed experimentally. The aim of this paper is to confirm the suitability of MgB2 wire in a heater free level sensor application. This could lead to even more optimized design of the liquid hydrogen level sensor and the removal of extra heater input.
Modeling Snow Regime in Cores of Small Planetary Bodies
NASA Astrophysics Data System (ADS)
Boukaré, C. E.; Ricard, Y. R.; Parmentier, E.; Parman, S. W.
2017-12-01
Observations of present day magnetic field on small planetary bodies such as Ganymede or Mercury challenge our understanding of planetary dynamo. Several mechanisms have been proposed to explain the origin of magnetic fields. Among the proposed scenarios, one family of models relies on snow regime. Snow regime is supported by experimental studies showing that melting curves can first intersect adiabats in regions where the solidifying phase is not gravitationaly stable. First solids should thus remelt during their ascent or descent. The effect of the snow zone on magnetic field generation remains an open question. Could magnetic field be generated in the snow zone? If not, what is the depth extent of the snow zone? How remelting in the snow zone drive compositional convection in the liquid layer? Several authors have tackled this question with 1D-spherical models. Zhang and Schubert, 2012 model sinking of the dense phase as internally heated convection. However, to our knowledge, there is no study on the convection structure associated with sedimentation and phase change at planetary scale. We extend the numerical model developped in [Boukare et al., 2017] to model snow dynamics in 2D Cartesian geometry. We build a general approach for modeling double diffusive convection coupled with solid-liquid phase change and phase separation. We identify several aspects that may govern the convection structure of the solidifying system: viscosity contrast between the snow zone and the liquid layer, crystal size, rate of melting/solidification and partitioning of light components during phase change.
Experimental study of the solid-liquid interface in a yield-stress fluid flow upstream of a step
NASA Astrophysics Data System (ADS)
Luu, Li-Hua; Pierre, Philippe; Guillaume, Chambon
2014-11-01
We present an experimental study where a yield-stress fluid is implemented to carefully examine the interface between a liquid-like unyielded region and a solid-like yielded region. The studied hydrodynamics consists of a rectangular pipe-flow disturbed by the presence of a step. Upstream of the step, a solid-liquid interface between a dead zone and a flow zone appears. This configuration can both model geophysical erosion phenomenon in debris flows or find applications for industrial extrusion processes. We aim to investigate the dominant physical mechanism underlying the formation of the static domain, by combining the rheological characterization of the yield-stress fluid with local measurements of the related hydrodynamic parameters. In this work, we use a model fluid, namely polymer micro-gel Carbopol, that exhibits a Hershel-Bulkley viscoplastic rheology. Exploiting the fluid transparency, the flow is monitored by Particle Image Velocimetry thanks to internal visualization technique. In particular, we demonstrate that the flow above the dead zone roughly behaves as a plug flow whose velocity profile can successfully be described by a Poiseuille equation including a Hershel-Bulkley rheology (PHB theory), with exception of a thin zone at the close vicinity of the static domain. The border inside the flow zone above which the so-called PHB flow starts, is found to be the same regardless of the flow rate and to move with a constant velocity that increases with the flow rate. We interpret this feature as a slip frontier.
Stephenson, Michael J.; Eby, Robert S.
1978-01-01
This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.
Chepyala, Divyabharathi; Tsai, I-Lin; Liao, Hsiao-Wei; Chen, Guan-Yuan; Chao, Hsi-Chun; Kuo, Ching-Hua
2017-03-31
An increased rate of drug abuse is a major social problem worldwide. The dried blood spot (DBS) sampling technique offers many advantages over using urine or whole blood sampling techniques. This study developed a simple and efficient ultra-high-performance liquid chromatography-ion booster-quadrupole time-of-flight mass spectrometry (UHPLC-IB-QTOF-MS) method for the analysis of abused drugs and their metabolites using DBS. Fifty-seven compounds covering the most commonly abused drugs, including amphetamines, opioids, cocaine, benzodiazepines, barbiturates, and many other new and emerging abused drugs, were selected as the target analytes of this study. An 80% acetonitrile solvent with a 5-min extraction by Geno grinder was used for sample extraction. A Poroshell column was used to provide efficient separation, and under optimal conditions, the analytical times were 15 and 5min in positive and negative ionization modes, respectively. Ionization parameters of both electrospray ionization source and ion booster (IB) source containing an extra heated zone were optimized to achieve the best ionization efficiency of the investigated abused drugs. In spite of their structural diversity, most of the abused drugs showed an enhanced mass response with the high temperature ionization from an extra heated zone of IB source. Compared to electrospray ionization, the ion booster (IB) greatly improved the detection sensitivity for 86% of the analytes by 1.5-14-fold and allowed the developed method to detect trace amounts of compounds on the DBS cards. The validation results showed that the coefficients of variation of intra-day and inter-day precision in terms of the signal intensity were lower than 19.65%. The extraction recovery of all analytes was between 67.21 and 115.14%. The limits of detection of all analytes were between 0.2 and 35.7ngmL -1 . The stability study indicated that 7% of compounds showed poor stability (below 50%) on the DBS cards after 6 months of storage at room temperature and -80°C. The reported method provides a new direction for abused drug screening using DBS. Copyright © 2017 Elsevier B.V. All rights reserved.
Gonzalez, Aroa Garcia; Taraba, Lukáš; Hraníček, Jakub; Kozlík, Petr; Coufal, Pavel
2017-01-01
Dasatinib is a novel oral prescription drug proposed for treating adult patients with chronic myeloid leukemia. Three analytical methods, namely ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis, were developed, validated, and compared for determination of the drug in the tablet dosage form. The total analysis time of optimized ultra high performance liquid chromatography and capillary zone electrophoresis methods was 2.0 and 2.2 min, respectively. Direct ultraviolet detection with detection wavelength of 322 nm was employed in both cases. The optimized sequential injection analysis method was based on spectrophotometric detection of dasatinib after a simple colorimetric reaction with folin ciocalteau reagent forming a blue-colored complex with an absorbance maximum at 745 nm. The total analysis time was 2.5 min. The ultra high performance liquid chromatography method provided the lowest detection and quantitation limits and the most precise and accurate results. All three newly developed methods were demonstrated to be specific, linear, sensitive, precise, and accurate, providing results satisfactorily meeting the requirements of the pharmaceutical industry, and can be employed for the routine determination of the active pharmaceutical ingredient in the tablet dosage form. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasma carburizing with surface micro-melting
NASA Astrophysics Data System (ADS)
Balanovsky, A. E.; Grechneva, M. V.; Van Huy, Vu; Ponomarev, B. B.
2018-03-01
This paper presents carburizing the surface of 20 low carbon steel using electric arc and graphite prior. A carbon black solution was prepared with graphite powder and sodium silicate in water. A detailed analysis of the phase structure and the distribution profile of the sample hardness after plasma treatment were given. The hardened layer consists of three different zones: 1 – the cemented layer (thin white zone) on the surface, 2 – heat-affected zone (darkly etching structure), 3 – the base metal. The experimental result shows that the various microstructures and micro-hardness profiles were produced depending on the type of graphite coating (percentage of liquid glass) and processing parameters. The experiment proved that the optimum content of liquid glass in graphite coating is 50–87.5%. If the amount of liquid glass is less than 50%, adhesion to metal is insufficient. If liquid glass content is more than 87.5%, carburization of a metal surface does not occur. A mixture of the eutectic lamellar structure, martensite and austenite was obtained by using graphite prior with 67% sodium silicate and the levels of the hardness layer increased to around 1000 HV. The thickness of the cemented layer formed on the surface was around 200 μm. It is hoped that this plasma surface carburizing treatment could improve the tribological resistance properties.
Skylab 3 and 4 science demonstrations: Preliminary report
NASA Technical Reports Server (NTRS)
Bannister, T. C.
1974-01-01
Twelve science demonstrations were accomplished on the Skylab 3 and 4 missions. These were defined in response to crew requests for time-gap fillers and were designed to be accomplished using onboard equipment. The following 12 are described and the preliminary results are given: liquid floating zone; diffusion in liquids; ice melting; immiscible liquids; liquid films; gyroscope; Rochelle salt growth; deposition of silver crystals; fluid mechanics series; neutron environment; orbital mechanics; and charged particle mobility.
Geothermal hydrology of Valles Caldera and the southwestern Jemez Mountains, New Mexico
Trainer, Frank W.; Rogers, Robert J.; Sorey, M.L.
2000-01-01
The Jemez Mountains in north-central New Mexico are volcanic in origin and have a large central caldera known as Valles Caldera. The mountains contain the Valles geothermal system, which was investigated during 1970-82 as a source of geothermal energy. This report describes the geothermal hydrology of the Jemez Mountains and presents results of an earlier 1972-75 U.S. Geological Survey study of the area in light of more recent information. Several distinct types of thermal and nonthermal ground water are recognized in the Jemez Mountains. Two types of near-surface thermal water are in the caldera: thermal meteoric water and acid sulfate water. The principal reservoir of geothermal fluids is at depth under the central and western parts of the caldera. Nonthermal ground water in Valles Caldera occurs in diverse perched aquifers and deeper valley-fill aquifers. The geothermal reservoir is recharged by meteorically derived water that moves downward from the aquifers in the caldera fill to depths of 6,500 feet or more and at temperatures reaching about 330 degrees Celsius. The heated geothermal water rises convectively to depths of 2,000 feet or less and mixes with other ground water as it flows away from the geothermal reservoir. A vapor zone containing steam, carbon dioxide, and other gases exists above parts of the liquid-dominated geothermal zone. Two subsystems are generally recognized within the larger geothermal system: the Redondo Creek subsystem and the Sulphur Creek subsystem. The permeability in the Redondo Creek subsystem is controlled by stratigraphy and fault-related structures. Most of the permeability is in the high-angle, normal faults and associated fractures that form the Redondo Creek Graben. Faults and related fractures control the flow of thermal fluids in the subsystem, which is bounded by high-angle faults. The Redondo Creek subsystem has been more extensively studied than other parts of the system. The Sulphur Springs subsystem is not as well defined. The upper vapor-dominated zone in the Sulphur Creek subsystem is separated from the liquid-dominated zone by about 800 feet of sealed caldera-fill rock. Acid springs occur at the top of the vapor zone in the Sulphur Springs area. Some more highly permeable zones within the geothermal reservoir are interconnected, but the lack of interference effects among some wells during production tests suggests effective hydraulic separation along some subsystem boundaries. Chemical and thermal evidence suggests that the Sulphur Springs subsystem may be isolated from the Redondo Creek subsystem and each may have its own zone of upflow and lateral outflow. The area of the entire geothermal reservoir is estimated to be about 12 to 15 square miles; its western limit generally is thought to be at the ring-fracture zone of the caldera. The top of the reservoir is generally considered to be the bottom of a small- permeability 'caprock' that is about 2,000 to 3,000 feet below land surface. Estimated thicknesses to the bottom of the reservoir range from 2,000 to 6,000 feet. Reservoir temperatures measured in exploration wells range from 225 degrees Celsius just below the caprock to about 330 degrees Celsius in deeper drill holes. Pressures measured in exploration wells in the Redondo Creek area ranged from 450 to 1,850 pounds per square inch. Steam-producing zones have been encountered above the liquid- dominated zones in wells, but the extent of steam zones is not well defined. The reservoir contains a near-neutral, chloride-type water containing about 7,000 milligrams per liter dissolved solids. No thermal springs in the caldera have geochemical characteristics similar to those of the geothermal reservoir fluids sampled in wells. Oxygen-18 and deuterium isotope concentrations of geothermal reservoir fluid indicate a meteoric origin. The moat valleys in
Predicting DNAPL Source Zone and Plume Response Using Site-Measured Characteristics
2017-05-19
FINAL REPORT Predicting DNAPL Source Zone and Plume Response Using Site- Measured Characteristics SERDP Project ER-1613 MAY 2017...Final Report 3. DATES COVERED (From - To) 2007 - 2017 4. TITLE AND SUBTITLE PREDICTING DNAPL SOURCE ZONE AND PLUME RESPONSE USING SITE- MEASURED ...historical record of concentration and head measurements , particularly in the near-source region. For each site considered, currently available data
Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux
NASA Astrophysics Data System (ADS)
Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.
2017-12-01
Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order-of-magnitude reductions. Additionally, sites may require monitoring for a minimum of 5-years in order to sufficiently evaluate remedial performance. The study shows that enhanced anaerobic source zone bioremediation contributed to a modest reduction of source zone contaminant mass discharge and appears to have mitigated rebound of chlorinated ethenes.
Controlled short residence time coal liquefaction process
Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.
1982-05-04
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.
Catalytic bioreactors and methods of using same
Worden, Robert Mark; Liu, Yangmu Chloe
2017-07-25
Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.
Klunder, Edgar B [Bethel Park, PA
2011-08-09
The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.
Kepler-22b -- Comfortably Circling within the Habitable Zone
2011-12-05
This diagram compares our own solar system to Kepler-22, a star system containing the first habitable zone planet -- the sweet spot around a star where temperatures are right for water to exist in its liquid form, discovered by NASA Kepler mission.
Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction
MacArthur, J.B.; Comolli, A.G.; McLean, J.B.
1989-10-17
A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.
Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction
MacArthur, James B.; Comolli, Alfred G.; McLean, Joseph B.
1989-01-01
A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.
NASA Astrophysics Data System (ADS)
Wang, Yun; Chen, Ken S.
2016-05-01
In the present work, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Analysis is performed on a dimensionless parameter Da0 introduced in our previous paper [Y. Wang and K. S. Chen, Chemical Engineering Science 66 (2011) 3557-3567] and the parameter is further evaluated in a realistic fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.
Wang, Yun; Chen, Ken S.
2016-03-21
In the present study, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Here, analysis is performed on a dimensionless parameter Da 0 introduced in our previous paper and the parameter is further evaluated in a realisticmore » fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da 0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.« less
Three-dimensional Monte Carlo calculation of some nuclear parameters
NASA Astrophysics Data System (ADS)
Günay, Mehtap; Şeker, Gökmen
2017-09-01
In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium (Be) zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR), energy multiplication factor (M), heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.
NASA Astrophysics Data System (ADS)
Günay, M.; Şarer, B.; Kasap, H.
2014-08-01
In the present investigation, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa ferritic steel structural material and 99-95 % Li20Sn80-1-5 % SFG-Pu, 99-95 % Li20Sn80-1-5 % SFG-PuF4, 99-95 % Li20Sn80-1-5 % SFG-PuO2 the molten salt-heavy metal mixtures, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium zone with the width of 3 cm was used for the neutron multiplicity between liquid first wall and blanket. The contributions of each isotope in fluids on the nuclear parameters of a fusion-fission hybrid reactor such as tritium breeding ratio, energy multiplication factor, heat deposition rate were computed in liquid first wall, blanket and shield zones. Three-dimensional analyses were performed by using Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.
49 CFR 173.133 - Assignment of packing group and hazard zones for Division 6.1 materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... pressure. Note 2: A liquid in Division 6.1 meeting criteria for Packing Group I, Hazard Zones A or B stated... 49 Transportation 2 2014-10-01 2014-10-01 false Assignment of packing group and hazard zones for... Group Assignments and Exceptions for Hazardous Materials Other Than Class 1 and Class 7 § 173.133...
49 CFR 173.133 - Assignment of packing group and hazard zones for Division 6.1 materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... pressure. Note 2: A liquid in Division 6.1 meeting criteria for Packing Group I, Hazard Zones A or B stated... 49 Transportation 2 2013-10-01 2013-10-01 false Assignment of packing group and hazard zones for... Group Assignments and Exceptions for Hazardous Materials Other Than Class 1 and Class 7 § 173.133...
Coal liquefaction with subsequent bottoms pyrolysis
Walchuk, George P.
1978-01-01
In a coal liquefaction process wherein heavy bottoms produced in a liquefaction zone are upgraded by coking or a similar pyrolysis step, pyrolysis liquids boiling in excess of about 1000.degree. F. are further reacted with molecular hydrogen in a reaction zone external of the liquefaction zone, the resulting effluent is fractionated to produce one or more distillate fractions and a bottoms fraction, a portion of this bottoms fraction is recycled to the reaction zone, and the remaining portion of the bottoms fraction is recycled to the pyrolysis step.
Habitable Planets with Dynamic System of Global Air-Liquid-Solid Planet and Life
NASA Astrophysics Data System (ADS)
Miura, Y.; Kato, T.
2017-11-01
Habitable zone is dynamic three phase states (air-liquid-solid), which will be obtained in water-planet with volatile exchanges. Water and carbon-bearing grains at older extraterrestrial stones suggest that there are no global ocean water system.
Kepler-186f, the First Earth-size Planet in the Habitable Zone Artist Concept
2014-04-17
This artist concept depicts Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone, a range of distance from a star where liquid water might pool on the planet surface.
Liu, Feng; Tian, Yu; Ding, Yi; Li, Zhipeng
2016-11-01
Wastewater primary sedimentation sludge was prepared into fermentation liquid as denitrification carbon source, and the main components of fermentation liquid was short-chain volatile fatty acids. Meanwhile, the acetic acid and propionic acid respectively accounted for about 29.36% and 26.56% in short-chain volatile fatty acids. The performance of fermentation liquid, methanol, acetic acid, propionic acid and glucose used as sole carbon source were compared. It was found that the denitrification rate with fermentation liquid as carbon source was 0.17mgNO3(-)-N/mg mixed liquor suspended solid d, faster than that with methanol, acetic acid, and propionic acid as sole carbon source, and lower than that with glucose as sole carbon source. For the fermentation liquid as carbon source, the transient accumulation of nitrite was insignificantly under different initial total nitrogen concentration. Therefore, the use of fermentation liquid for nitrogen removal could improve denitrification rate, and reduce nitrite accumulation in denitrification process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Surface Structure Formation in Direct Chill (DC) Casting of Al Alloys
NASA Astrophysics Data System (ADS)
Bayat, Nazlin; Carlberg, Torbjörn
2014-05-01
The aim of this study is to increase the understanding of the surface zone formation during direct chill (DC) casting of aluminum billets produced by the air slip technology. The depth of the shell zone, with compositions deviating from the bulk, is of large importance for the subsequent extrusion productivity and quality of final products. The surface microstructures of 6060 and 6005 aluminum alloys in three different surface appearances—defect free, wavy surface, and spot defects—were studied. The surface microstructures and outer appearance, segregation depth, and phase formation were investigated for the mentioned cases. The results were discussed and explained based on the exudation of liquid metal through the mushy zone and the fact that the exudated liquid is contained within a surface oxide skin. Outward solidification in the surface layer was quantitatively analyzed, and the oxide skin movements explained meniscus line formation. Phases forming at different positions in the segregation zone were analyzed and coupled to a cellular solidification in the exudated layer.
Seismic Borehole Monitoring of CO2 Injection in an Oil Reservoir
NASA Astrophysics Data System (ADS)
Gritto, R.; Daley, T. M.; Myer, L. R.
2002-12-01
A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO2 into a hydrofracture zone, based on P- and S-wave data. A high-frequency piezo-electric P-wave source and an orbital-vibrator S-wave source were used to generate waves that were recorded by hydrophones as well as three-component geophones. The injection well was located about 12 m from the source well. During the pre-injection phase water was injected into the hydrofrac-zone. The set of seismic experiments was repeated after a time interval of 7 months during which CO2 was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO2 within the hydrofracture. Furthermore it was intended to determine which experiment (cross well or single well) is best suited to resolve these features. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5%). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6%). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous (~ 50%) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5%. Both, velocity and Poisson estimates indicate the dissolution of CO2 in the liquid phase of the reservoir accompanied by a pore-pressure increase. The single well data supported the findings of the cross well experiments. P- and S-wave velocities as well as Poisson ratios were comparable to the estimates of the cross well data.
NASA Astrophysics Data System (ADS)
Pervin, Mollika; Ghergut, Iulia; Graf, Thomas; Peche, Aaron
2016-04-01
Most geothermal reservoirs are of the liquid-dominated type, and their unexploited-state pressure profile approximately follows the hydrostatic gradient. In very hot liquid-dominated systems, temperature typically follows a boiling-point-for-depth (BPD) relationship. By contrast, vapor-dominated systems exhibit (in their unexploited state) surprisingly small vertical gradients of temperature and pressure, such that a constantly high temperature is encountered over a large vertical thickness, while their pressure approximately follows vapour pressure, pvap(T°). This implies that (Pruess 1985, Truesdell and White 1973): (i) for a vapor-dominated reservoir to exist, it must be sealed laterally - otherwise it would be flooded by neighboring groundwaters with hydrostatic p profile, and (ii) liquid water should somehow be present in the whole system - otherwise p values would not be constrained by the pvap(T°) relationship for water. Historically, one of the most puzzling aspects of vapor-dominated systems was the large amount of heat flowing upwards, while vertical T° gradients remained negligible. This mechanism was deemed as 'heat pipe'(HP) (Eastman 1968): In the central zone of a vapor-dominated system, both vapor and liquid are mobile; vapor flows upwards, condenses at shallower depth, and the liquid condensate flows downwards. Due to the large amount of latent enthalpy released in vapor condensation, the vapor-liquid counter-flow can generate large rates of heat flow with negligible net mass transport (Pruess 1985). In order to be able to exploit two-phase (including vapor-dominated) reservoirs in a sustainable manner, one first needs to understand the conditions under which a two-phase (or a vapor-dominated) system has evolved naturally, and which have led to its present (quasi-) steady undisturbed state. Past studies have found that HP can exist in two distinct states, corresponding to liquid-dominated and vapor-dominated p profiles, respectively. Within this work, we explore some mechanisms and geologic controls that can lead to the formation of extensive vapor-dominated zones within a two-phase system. In particular, we investigate the effect of vertical heterogeneity of permeability (stratified reservoir, containing a permeability barrier) on the liquid water saturation profile within a modified HP model. Though in field observations liquid water has been directly encountered only within the condensation zone at reservoir top, it was speculated that large amounts of liquid water might also exist below the condensation zone. This is of great practical significance to the exploitation of vapor-dominated reservoirs, as their longevity depends on the fluid reserves in place. Within this work, we demonstrate by numerical simulations of a modified HP model that high values of liquid water saturation (>0.8) can prevail even far below the condensation zone. Such findings are useful as a baseline for future calculations regarding the economic exploitation of vapor-dominated systems, where premature productivity drop (or dry-out) is the main issue of concern. References: Eastman, G. Y:, 1968: The heat pipe. Scientific American, 218(5):38-46. Preuss, K. A., 1985: A quantitative model of vapor-dominated geothermal reservoirs as heat pipes in fractured porous rock, Transactions, Geothermal Resources. Council, 9(2), 353-361. Truesdell, A. H., and White, D.E. 1973: Production of superheated Steam from Vapor- dominated geothermal reservoirs. Geothermics, 2(3-4), 154-173
Fiber Laser Weldability of Austenitic Nickel Alloys
NASA Astrophysics Data System (ADS)
Watson, Jonathan
Recent developments of fiber lasers allow for easier beam delivery facilitating greater applications for laser welding in industry. Welding with high energy density heat sources allows for faster travel speeds, faster cooling rates, and smaller heat affected zones. However, there is a still a lack of knowledge base on how laser welding process parameters affect the weldability of austenitic nickel alloys. In this work, laser welds were made on several austenitic nickel alloys from different alloy families: HAYNESRTM 214RTM alloy, HAYNESRTM 282RTM alloy, HAYNESRTM 230RTM alloy, HAYNESRTM HR-120RTM alloy, HAYNESRTM HR-160 RTM alloy, HAYNESRTM 188 alloy, HAYNESRTM 718 alloy. Welds were made at 25 mm/s at laser powers ranging from 400 to 600 Watts. Solidification cracking was observed in cross-sections of the fusion zone of HR-160RTM alloy and HR-120RTM alloy. Dendritic solidification was found in all alloys, and partitioning within the dendritic structure compared well with Scheil calculations performed using ThermoCalc software. A eutectic liquid rich in carbide forming elements was found at the interdendritic regions in 188, 230RTM, 282 RTM, and 718 alloys and was quantified by processing backscatter electron images of the fusion zone. This interdendritic liquid was found to back fill solidification cracks that formed in the fusion zone during weldability testing. Transverse Varestraint and Sigma-Jig testing were performed to rank the weldability of alloys. During Transvarestraint testing, the ram drop timing was recorded in relation to the laser output, and a type R thermocouple was also placed in the laser path, and the approximate cooling rate of the fusion zone was recorded and used to calculate the solidification cracking temperature range. Rankings of the weldability compared well between Sigma-Jig and Transvarestraint testing, with the exception of 214 alloy and HR-120 alloy, which ranked much better and worse, respectively in Sigma-Jig tests. A possible explanation for this difference is the higher thermal conductivity and lower yields strength of 214 alloy and high temperatures, allowing it to accommodate more stress in the Sigma-Jig test. The final ranking of alloys from more weldable to less weldable by Sigma-Jig testing is 188, 214, 282, 718, 230, HR-120, and HR-160. The final ranking by maximum crack length in Transvarestraint specimens listed from more weldable to less weldable is: 188, 282, HR-120, 718, 230, 214, and HR-160.
PULSED AIR SPARGING IN AQUIFERS CONTAMINATED WITH DENSE NONAQUEOUS PHASE LIQUIDS
Air sparging was evaluated for remediation of tetrachloroethylene (PCE) present as dense nonaqueous phase liquid (DNAPL) in aquifers. A two-dimensional laboratory tank with a transparent front wall allowed for visual observation of DNAPL mobilization. A DNAPL zone 50 cm high was ...
The habitable zone and extreme planetary orbits.
Kane, Stephen R; Gelino, Dawn M
2012-10-01
The habitable zone for a given star describes the range of circumstellar distances from the star within which a planet could have liquid water on its surface, which depends upon the stellar properties. Here we describe the development of the habitable zone concept, its application to our own solar system, and its subsequent application to exoplanetary systems. We further apply this to planets in extreme eccentric orbits and show how they may still retain life-bearing properties depending upon the percentage of the total orbit which is spent within the habitable zone. Key Words: Extrasolar planets-Habitable zone-Astrobiology.
NASA Astrophysics Data System (ADS)
Schaefer, Andreas; Wenzel, Friedemann
2017-04-01
Subduction zones are generally the sources of the earthquakes with the highest magnitudes. Not only in Japan or Chile, but also in Pakistan, the Solomon Islands or for the Lesser Antilles, subduction zones pose a significant hazard for the people. To understand the behavior of subduction zones, especially to identify their capabilities to produce maximum magnitude earthquakes, various physical models have been developed leading to a large number of various datasets, e.g. from geodesy, geomagnetics, structural geology, etc. There have been various studies to utilize this data for the compilation of a subduction zone parameters database, but mostly concentrating on only the major zones. Here, we compile the largest dataset of subduction zone parameters both in parameter diversity but also in the number of considered subduction zones. In total, more than 70 individual sources have been assessed and the aforementioned parametric data have been combined with seismological data and many more sources have been compiled leading to more than 60 individual parameters. Not all parameters have been resolved for each zone, since the data completeness depends on the data availability and quality for each source. In addition, the 3D down-dip geometry of a majority of the subduction zones has been resolved using historical earthquake hypocenter data and centroid moment tensors where available and additionally compared and verified with results from previous studies. With such a database, a statistical study has been undertaken to identify not only correlations between those parameters to estimate a parametric driven way to identify potentials for maximum possible magnitudes, but also to identify similarities between the sources themselves. This identification of similarities leads to a classification system for subduction zones. Here, it could be expected if two sources share enough common characteristics, other characteristics of interest may be similar as well. This concept technically trades time with space, considering subduction zones where we have likely not observed the maximum possible event yet. However, by identifying sources of the same class, the not-yet observed temporal behavior can be replaced by spatial similarity among different subduction zones. This database aims to enhance the research and understanding of subduction zones and to quantify their potential in producing mega earthquakes considering potential strong motion impact on nearby cities and their tsunami potential.
NASA Astrophysics Data System (ADS)
Živanović, Vladimir; Jemcov, Igor; Dragišić, Veselin; Atanacković, Nebojša
2017-04-01
Delineation of sanitary protection zones of groundwater source is a comprehensive and multidisciplinary task. Uniform methodology for protection zoning for various type of aquifers is not established. Currently applied methods mostly rely on horizontal groundwater travel time toward the tapping structure. On the other hand, groundwater vulnerability assessment methods evaluate the protective function of unsaturated zone as an important part of groundwater source protection. In some particular cases surface flow might also be important, because of rapid transfer of contaminants toward the zones with intense infiltration. For delineation of sanitary protection zones three major components should be analysed: vertical travel time through unsaturated zone, horizontal travel time through saturated zone and surface water travel time toward intense infiltration zones. Integrating the aforementioned components into one time-dependent model represents a basis of presented method for delineation of groundwater source protection zones in rocks and sediments of different porosity. The proposed model comprises of travel time components of surface water, as well as groundwater (horizontal and vertical component). The results obtained using the model, represent the groundwater vulnerability as the sum of the surface and groundwater travel time and corresponds to the travel time of potential contaminants from the ground surface to the tapping structure. This vulnerability assessment approach do not consider contaminant properties (intrinsic vulnerability) although it can be easily improved for evaluating the specific groundwater vulnerability. This concept of the sanitary protection zones was applied at two different type of aquifers: karstic aquifer of catchment area of Blederija springs and "Beli Timok" source of intergranular shallow aquifer. The first one represents a typical karst hydrogeological system with part of the catchment with allogenic recharge, and the second one, the groundwater source within shallow intergranular alluvial aquifer, dominantly recharged by river bank filtration. For sanitary protection zones delineation, the applied method has shown the importance of introducing all travel time components equally. In the case of the karstic source, the importance of the surface flow toward ponor zones has been emphasized, as a consequence of rapid travel time of water in relation to diffuse infiltration from autogenic part. When it comes to the shallow intergranular aquifer, the character of the unsaturated zone gets more prominent role in the source protection, as important buffer of the vertical movement downward. The applicability of proposed method has been shown regardless of the type of the aquifer, and at the same time intelligible results of the delineated sanitary protection zones are possible to validate with various methods. Key words: groundwater protection zoning, time dependent model, karst aquifer, intergranular aquifer, groundwater source protection
On the Onset of Thermocapillary Convection in a Liquid bridge
NASA Astrophysics Data System (ADS)
Shukla, Kedar
Thermo capillary convection refers to motion driven by the application of a temperature gradient along the interface. The temperature gradient may be large enough to cause oscillations in the basic state of the fluid. The vast majority of the liquid bridge investigations performed aboard on the sounding rockets or the space shuttles [1, 2] focused on the float zone processes because the process has been regarded as a candidate for the space based manufacturing of semiconductor materials. Although the buoyancy effect is avoided in the floating zone techniques during space operation, it experiences surface tension driven convection initiated by the temperature gradient along the free surface of the zone [3]. The appearance of the oscillatory thermo capillary convection couples with the solidification processes leads to the striations and results into the degradation of the crystals [4, 5]. The half zone consists of the liquid bridge held between two solid, planar end walls across which a temperature gradient is applied. Thus the basic state of thermo capillary convection consists of a single toroidal roll with the surface motion directed downwards from the hot upper disc to the cold lower one. Bennacer et al [6] studied how different axial profiles of the heat flux affect the flow patterns and transition from ax symmetric steady to ax symmetric oscillatory flow. The three dimensional instability of liquid bridges located between isothermal differentially heated disks were studied by several authors [7-14]. The interface deformation caused by the gravity jitters depends on the volume of the liquid bridge and cause changes in the physical properties of the liquid, which ultimately influence the basic state of the fluid [15-16]. The paper discusses Marangoni convection in a liquid bridge subject to g-jitters in a micro gravity environment. The parametric excitement of the liquid bridge with surface tension variation along with the free surface is considered. We will follow the method of Shukla [17] for Boussinesq flow to model the convective instability in an axisymmetric flow in the liquid bridge. The surface deformation caused by g-jitters and its effects on the onset of oscillatory flow will be examined. References: [1] Grodzka, P.G. and Bannister, T.C., Heat flow and convection demonstration experiments abord Appolo 14, Science (Washington, D.C.), Vol.176, May 1972, pp. 506-508. [2] Bannister, T C., etal, NASA, TMX-64772, 1973. [3] Shukla, K.N. Hydrodynamics of Diffusive Processes, Applied Mechanics Review, Vol.54, No.5, 2001, pp. 391-404. [4] Chen, G., Lizee, A., Roux, B.,, Bifurcation analysis of the thermo capillary convection in cylindrical liquid bridge, J Crystal growth, Vol. 180, 1997, pp.638-647. [5] Imaishi, N., Yasuhiro, S., Akiyama, Y and Yoda, S., Numerical simulation of oscillatory Marangoni flow in half zone liquid bridge of low Prandtl number fluid, J., Crystal Growth, Vol. 230, 2001, pp. 164-171. [6] Bennacer, R., Mohamad, A.A., Leonardi, E., The effect o heat flux distribution on thermo capillary convection in a sideheated liquid bridge, Numer. Heat transfer, Part A, vol. 41, 2002, pp. 657-671. [7] Kuhlmann, H C., Rath, H J., Hydrodynamic instabilities in Cylindrical thermocapillary liquid bridges, J Fluid Mech., Vol. 247,1993, pp. 247-274. [8] Wanshura, M., Shevtsova, V M, Kuhlmann, H C and Rath, H J., Convective instability in thermocapillary liquid bridges, Phys. Fluids, Vol. 7, 1995, pp. 912-925. [9] Kasperski, G., Batoul, A., Labrosse, G., Up to the unsteadiness of axisymmetric thermocapillary low in a laterally heated liquid bridge, Phys. Fluids, Vol. 12, 2000, pp. 103-119. [10] Lappa, M., Savino, R., Monti, R., Three dimensional numerical simulation of Marangoni instabilities in non cylindrical liquid bridges in microgravity, Int. J Heat Mass Transfer, Vol. 44, 2001, pp. 1983-2003 [11] Zeng, Z, Mizuseki, H., Simamura, K., Fukud, T. Higashino, K, Kawaazoe, Y., Three dimensional oscillatory thermocapillary convection in liquid bridgeunder microgravity, Int. J heat Mass Transf., Vol. 44, 2001, pp. 3765-3774. [12] Kamotani, Y., Wang, L, Hatta, S., Wang, A., Yoda, S., Free surface heat loss effect on Oscillatory thermocapillary flow in a liquid bridges of high Prandtl number fluids, Int. J heat Mass Transfer, Vol. 46, 2003, pp. 3211-3220.
Microstructure and thermoelectric properties of doped p-type CoSb3 under TGZM effect
NASA Astrophysics Data System (ADS)
Wang, Hongqiang; Li, Shuangming; Li, Xin; Zhong, Hong
2017-05-01
The Co-96.9 wt% Sb hypoeutectic alloy doped by 0.12 wt% YbFe was solidified in a Bridgman-type furnace based on temperature gradient zone melting (TGZM) effect. A mushy zone was observed between the complete liquid zone and the solid zone at different thermal stabilization time ranging from 15 min to 40 h. The mushy-zone solidified microstructures of the alloy only consist of CoSb3 and Sb phase. After 40 h thermal stabilization time, the volume fraction of CoSb3 in the mushy zone increases significantly up to 99.6% close to the solid-liquid interface. The hardness and fracture toughness of doped CoSb3 can reach 7.01 ± 0.69 GPa and 0.78 ± 0.08 MPa·m1/2, respectively. Meanwhile, the thermoelectric properties of the alloy were measured ranging from room temperature (RT) to 850 K. The Seebeck coefficient of the specimen prepared by TGZM effect after 40 h could reach 155 μV/K and the ZT value is 0.47 at 660 K, showing that it is feasible to prepare CoSb3 bulk material via TGZM effect. As a simple and one-step solidification method, the TGZM technique could be applied in the preparation of skutterudite compounds.
Simultaneous treatment of SO2 containing stack gases and waste water
NASA Technical Reports Server (NTRS)
Poradek, J. C.; Collins, D. D. (Inventor)
1978-01-01
A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.
Kanak, B.E.; Stephenson, M.J.
1980-01-11
A method is described for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.
Method for improving dissolution efficiency in gas-absorption and liquid extraction processes
Kanak, Brant E.; Stephenson, Michael J.
1981-01-01
This invention is a method for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, E.A.; Westbury, H.M. Jr.
The F- and H-Area Seepage Basins received liquid waste from the F and H chemical separation facilities from 1955 through 1988. Tree mortality in seepline fed wetlands down-slope from the basins was observed in the late 1970`s, and investigations were conducted to determine the cause and source of the impacts. Analysis of the soil and water in the tree-kill zones demonstrated a strong chemical linkage with the F- and H-Area seepage basins. Although no single cause of the mortality was determined, it was believed to be the result of interactions of alterations in the hydrology and erosional deposition, along withmore » lowering of pH and increased conductivity, sodium, aluminum, and nitrogen compounds. A mild drought during the growing season may also have increased the concentration of the chemical contaminants in the soils matrix. In 1988, the F- and H-Area Seepage Basins were closed and covered with a clay cap to reduce the rate of dispersion of the contaminants in the soil beneath the basins. Subsequent studies of the chemical composition of the tree-kill zone groundwater and toxicological characteristics of the seepline soil have shown a reduced contaminant flux. In 1993, an initial vegetation study was undertaken to determine the level of recovery by the plant communities in the tree-kill zones. This study repeats the initial vegetation investigation in order to further analyze and characterize the recovery of plant communities in the zones after an additional year of growth.« less
Influence of a strong sample solvent on analyte dispersion in chromatographic columns.
Mishra, Manoranjan; Rana, Chinar; De Wit, A; Martin, Michel
2013-07-05
In chromatographic columns, when the eluting strength of the sample solvent is larger than that of the carrier liquid, a deformation of the analyte zone occurs because its frontal part moves at a relatively high velocity due to a low retention factor in the sample solvent while the rear part of the analyte zone is more retained in the carrier liquid and hence moves at a lower velocity. The influence of this solvent strength effect on the separation of analytes is studied here theoretically using a mass balance model describing the spatio-temporal evolution of the eluent, the sample solvent and the analyte. The viscosity of the sample solvent and carrier fluid is supposed to be the same (i.e. no viscous fingering effects are taken into account). A linear isotherm adsorption with a retention factor depending upon the local concentration of the liquid phase is considered. The governing equations are numerically solved by using a Fourier spectral method and parametric studies are performed to analyze the effect of various governing parameters on the dispersion and skewness of the analyte zone. The distortion of this zone is found to depend strongly on the difference in eluting strength between the mobile phase and the sample solvent as well as on the sample volume. Copyright © 2013 Elsevier B.V. All rights reserved.
Su, Shiliang; Li, Dan; Zhang, Qi; Xiao, Rui; Huang, Fang; Wu, Jiaping
2011-02-01
The increasingly serious river water pollution in developing countries poses great threat to environmental health and human welfare. The assignment of river function to specific uses, known as zoning, is a useful tool to reveal variations of water environmental adaptability to human impact. Therefore, characterizing the temporal trend and identifying responsible pollution sources in different functional zones could greatly improve our knowledge about human impacts on the river water environment. The aim of this study is to obtain a deeper understanding of temporal trends and sources of water pollution in different functional zones with a case study of the Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites in four categories of functional zones during the period 1996-2004. An exploratory approach, which combines smoothing and non-parametric statistical tests, was applied to characterize trends of four significant parameters (permanganate index, ammonia nitrogen, total cadmium and fluoride) accounting for differences among different functional zones identified by discriminant analysis. Aided by GIS, yearly pollution index (PI) for each monitoring site was further mapped to compare the within-group variations in temporal dynamics for different functional zones. Rotated principal component analysis and receptor model (absolute principle component score-multiple linear regression, APCS-MLR) revealed that potential pollution sources and their corresponding contributions varied among the four functional zones. Variations of APCS values for each site of one functional zone as well as their annual average values highlighted the uncertainties associated with cross space-time effects in source apportionment. All these results reinforce the notion that the concept of zoning should be taken seriously in water pollution control. Being applicable to other rivers, the framework of management-oriented source apportionment is thus believed to have potentials to offer new insights into water management and advance the source apportionment framework as an operational basis for national and local governments. © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Martel, Richard; Robertson, Timothy James; Doan, Minh Quan; Thiboutot, Sonia; Ampleman, Guy; Provatas, Arthur; Jenkins, Thomas
2008-01-01
Energetic materials contamination was investigated at the former Explosives Factory Maribyrnong, Victoria, Australia. Spectrophotometric/high performance liquid chromatography (HPLC) analysis was utilised to delineate a 5 tonne crystalline 2,4,6-trinitrotoluene (TNT) source in a former process waste lagoon that was found to be supplying contaminant leachate to the surficial clay aquitard with a maximum-recorded concentration of 7.0 ppm TNT. Groundwater within underlying sand and gravel aquifers was found to be uncontaminated due to upward hydraulic gradients resulting in slow plume development and propagation. Adsorption and microcosm test results from a parallel study were used as input parameters to simulate aqueous TNT transport in the clay aquitard using ATRANS20 software. The simulated TNT plume was localised within a few metres of the source, and at steady state, though leaching rate calculations suggest that without mitigation or other changes to the system, persistence of the source would be approximately 2,000 years. Remediation strategies may involve removal of the near surface source zone and infilling with an impermeable capping to impede leaching while facilitating ongoing natural attenuation by anaerobic degradation.
Plasma-catalyzed fuel reformer
Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele
2013-06-11
A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.
Kashcheev, V V; Chekin, S Yu; Maksioutov, M A; Tumanov, K A; Menyaylo, A N; Kochergina, E V; Kashcheeva, P V; Gorsky, A I; Shchukina, N V; Karpenko, S V; Ivanov, V K
2016-08-01
The paper presents an analysis of the incidence of cerebrovascular diseases (CeVD) in the cohort of Russian workers involved in recovery tasks after the Chernobyl accident. The studied cohort consists of 53,772 recovery operation workers (liquidators) who arrived in the zone of the Chernobyl accident within the first year after this accident (26 April 1986-26 April 1987). The mean external whole body dose in the cohort was 0.161 Gy, while individual doses varied from 0.0001 Gy to 1.42 Gy. During the follow-up period 1986-2012, a total of 23,264 cases of CeVD were diagnosed as a result of annual health examinations. A Poisson regression model was applied for estimation of radiation risks and for an assessment of other risk factors of CeVD. The following factors were considered as risk factors for CeVD: the dose, duration of the liquidators' work in the Chernobyl zone, and the concomitant diseases (hypertension, ischemic heart disease, atherosclerosis, and diabetes). The baseline incidence of CeVD is statistically significantly (p < 0.001) associated with all studied concomitant diseases. The incidence of CeVD has revealed a statistically significant dose response with the lack of a latent period and with the average ERR/Gy = 0.45, 95% CI: (0.28, 0.62), p < 0.001. Radiation risks of CeVD statistically significantly (p = 0.03) varied with the duration of liquidators' stay in the Chernobyl zone; for those who stayed in the Chernobyl zone less than 6 wk, ERR/Gy = 0.64, 95% CI = (0.38; 0.93), p < 0.001. Among studied concomitant diseases, diabetes mellitus statistically significantly (p = 0.002) increases the radiation risk of CeVD: for liquidators with diagnosed diabetes, ERR/Gy = 1.29.
Kashcheev, V V; Chekin, S Yu; Karpenko, S V; Maksioutov, M A; Menyaylo, A N; Tumanov, K A; Kochergina, E V; Kashcheeva, P V; Gorsky, A I; Shchukina, N V; Lovachev, S S; Vlasov, O K; Ivanov, V K
2017-07-01
This paper continues a series of publications that analyze the impact of radiation on incidence of circulatory system diseases in the cohort of Russian recovery operation workers (liquidators) and presents the results of the analysis of cardiovascular disease (CVD) incidence. The studied cohort consists of 53,772 liquidators who arrived in the Chernobyl accident zone within the first year after the accident (26 April 1986 to 26 April 1987). The individual doses varied from 0.0001 Gy to 1.42 Gy, and the mean external whole body dose in the cohort was 0.161 Gy. A total of 27,456 cases of CVD were diagnosed during the follow-up period 1986-2012 as a result of annual health examinations. A Poisson regression model was applied to estimate radiation risks and other risk factors associated with CVD. The following factors were identified as risk factors for CVD: the dose, duration of the liquidators' work in the Chernobyl zone, and concomitant diseases (diabetes mellitus, hypertension, overweight, and alcohol dependence). The baseline incidence of CVD is statistically significantly (p < 0.001) associated with all studied concomitant diseases. The incidence of CVD has revealed a statistically significant dose response with the lack of a latent period and with the average ERR Gy = 0.47, 95% CI = 0.31, 0.63, p < 0.001. Radiation risks of CVD statistically significantly (p = 0.01) varied with the duration of liquidators' stay in the Chernobyl zone; for those who stayed in the Chernobyl zone less than 6 wk, ERR/Gy = 0.80, 95% CI = 0.53; 1.08, p < 0.001.
Microorganism mediated liquid fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troiano, Richard
Herein disclosed is a method for producing liquid hydrocarbon product, the method comprising disintegrating a hydrocarbon source; pretreating the disintegrated hydrocarbon source; solubilizing the disintegrated hydrocarbon source to form a slurry comprising a reactant molecule of the hydrocarbon source; admixing a biochemical liquor into the slurry, wherein the biochemical liquor comprises at least one conversion enzyme configured to facilitate bond selective photo-fragmentation of said reactant molecule of the hydrocarbon source, to form liquid hydrocarbons via enzyme assisted bond selective photo-fragmentation, wherein said conversion enzyme comprises reactive sites configured to restrict said reactant molecule such that photo-fragmentation favorably targets a preselectedmore » internal bond of said reactant molecule; separating the liquid hydrocarbons from the slurry, wherein contaminants remain in the slurry; and enriching the liquid hydrocarbons to form a liquid hydrocarbon product. Various aspects of such method/process are also discussed.« less
Flow of a Non-Newtonian Liquid with a Free Surface
NASA Astrophysics Data System (ADS)
Borzenko, E. I.; Shrager, G. R.
2016-07-01
A fountain flow of a non-Newtonian liquid filling a vertical plane channel was investigated. The problem of this flow was solved by the finite-difference method on the basis of a system of complete equations of motion with natural boundary conditions on the free surface of the liquid. The stability of calculations was provided by regularization of the rheological Ostwald-de Waele law. It is shown that the indicated flow is divided into a zone of two-dimensional flow in the neighborhood of the free surface and a zone of one-dimensional flow at a distance from this surface. A parametric investigation of the dependence of the kinetic characteristics of the fountain flow and the behavior of its free surface on the determining criteria of this flow and its rheological parameters has been performed.
Efficient growth of HTS films with volatile elements
Siegal, M.P.; Overmyer, D.L.; Dominguez, F.
1998-12-22
A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.
Oil-in-water emulsions for encapsulated delivery of reactive iron particles.
Berge, Nicole D; Ramsburg, C Andrew
2009-07-01
Treatment of dense nonaqueous phase liquid (DNAPL) source zones using suspensions of reactive iron particles relies upon effective transport of the nano- to submicrometer scale iron particles within the subsurface. Recognition that poor subsurface transport of iron particles results from particle-particle and particle-soil interactions permits development of strategies which increase transport. In this work, experiments were conducted to assess a novel approach for encapsulated delivery of iron particles within porous media using oil-in-water emulsions. Objectives of this study included feasibility demonstration of producing kinetically stable, iron-containing, oil-in-water emulsions and evaluating the transport of these iron-containing, oil-in-water emulsions within water-saturated porous media. Emulsions developed in this study have mean droplet diameters between 1 and 2 microm, remain kinetically stable for > 1.5 h, and possess densities (0.996-1.00 g/mL at 22 degrees C) and dynamic viscosities (2.4-9.3 mPa x s at 22 degrees C and 20 s(-1)) that are favorable to transport within DNAPL source zones. Breakthrough curves and post-experiment extractions from column experiments conducted with medium and fine sands suggest little emulsion retention (< 0.20% wt) at a Darcy velocity of 0.4 m/day. These findings demonstrate that emulsion encapsulation is a promising method for delivery of iron particles and warrants further investigation.
NASA Astrophysics Data System (ADS)
Brown, W. L.; Toplis, M. J.
2003-04-01
Due to slow NaSi-CaAl exchange in plagioclase, the proportion of the anorthite component (An) may be considered essentially a primary feature in magmatic bodies such as small layered intrusions. Thus, An provides a potential window into the evolution of such magmatic systems on various length scales. In order to assess the utility of this approach, 13 thin sections covering the principal zones and sub-zones of the Layered Series of the Skaergaard intrusion, East Greenland, were studied. In each thin section 90 to 150 analyses of plagioclase were made using an electron microprobe. Analyses were made in grain centres and at grain edges, particular attention being paid to plagioclase-plagioclase contacts. The cores of large and moderately sized crystals show narrow compositional ranges, 90% of analyses lying within 3 mol% of the mean. In accordance with previous studies, we find that mean core compositions vary continuously with stratigraphic height, from ˜An70 at the lowest levels, to ˜An30 at the top of Upper Zone (UZ). Rim compositions of touching plagioclase also show strong maxima in their mode, but the variation of this composition with stratigraphic height is distinctly different from that of crystal cores. In the Lower Zone (LZ) and lower Middle Zone (MZ), the most abundant rim compositions are systematically An50± 1, core and rim compositions converging in the lower MZ. In the upper MZ to UZ, rim compositions are very similar to corresponding cores, but locally may be more evolved, particularly when plagioclase is intergrown with quartz. The systematic decrease of An as a function of stratigraphic height is strong evidence in favour of fractional crystallization of the main liquid. However, the fact that plagioclase zoning does not extend to nearly pure albite in the vast majority of rocks implies mobility of intercumulus liquid. If compaction (expulsion) were the mechanism responsible for this, it would be difficult to explain the remarkably constant cut-off in rim compositions at An50 in the LZ and lower MZ. On the other hand, this cut-off corresponds to the An content at magnetite saturation, which leads us to propose that the observed features are the result of a density inversion in the liquid following oxide saturation. This density inversion causes the intercumulus liquid to become gravitationally unstable relative to the overlying main liquid leading to compositional convection in the upper LZ and MZ, a hypothesis consistent with the adcumulus texture of those rocks.
Yung, Loïc; Lagron, Jérôme; Cazaux, David; Limmer, Matt; Chalot, Michel
2017-05-01
Chlorinated ethenes (CE) are among the most common volatile organic compounds (VOC) that contaminate groundwater, currently representing a major source of pollution worldwide. Phytoscreening has been developed and employed through different applications at numerous sites, where it was generally useful for detection of subsurface chlorinated solvents. We aimed at delineating subsurface CE contamination at a chlor-alkali facility using tree core data that we compared with soil data. For this investigation a total of 170 trees from experimental zones was sampled and analyzed for perchloroethene (PCE) and trichloroethene (TCE) concentrations, measured by solid phase microextraction gas chromatography coupled to mass spectrometry. Within the panel of tree genera sampled, Quercus and Ulmus appeared to be efficient biomonitors of subjacent TCE and PCE contamination, in addition to the well known and widely used Populus and Salix genera. Among the 28 trees located above the dense non-aqueous phase liquid (DNAPL) phase zone, 19 tree cores contained detectable amounts of CE, with concentrations ranging from 3 to 3000 μg L -1 . Our tree core dataset was found to be well related to soil gas sampling results, although the tree coring data were more informative. Our data further emphasized the need for choosing the relevant tree species and sampling periods, as well as taking into consideration the nature of the soil and its heterogeneity. Overall, this low-invasive screening method appeared useful to delineate contaminants at a small-scale site impacted by multiple sources of chlorinated solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Concentric micro-nebulizer for direct sample insertion
Fassel, V.A.; Rice, G.W.; Lawrence, K.E.
1984-03-06
A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05mm. The dead volume of the inner tube is less than about 5 microliters.
Concentric micro-nebulizer for direct sample insertion
Fassel, Velmer A.; Rice, Gary W.; Lawrence, Kimberly E.
1986-03-11
A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05 mm. The dead volume of the inner tube is less than about 5 microliters.
Plant Community Development within the F- and H-Area Tree-Kill Zones - Changes form 1994 to 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, E.A.
2000-12-15
The F- and H-Area Seepage Basins received liquid waste from the F and H chemical separation facilities from 1955 through 1988. Tree mortality in seepline-fed wetlands downslope from the basins was observed in the late 1970's, and investigations were conducted to determine the cause and source of the impacts (Loehle and Gladden, 1988; Mackey, 1988; Haselow et al., 1990; LeBlanc and Loehle, 1990; Greenwood et al., 1990). Analysis of the soil and water in the tree-kill zones demonstrated a strong chemical linkage with the F- and H-Area Seepage Basins (Killian et al., 1987a, 1987b). Although no single cause of themore » mortality was determined, it was believed to be the result of interactions of alterations in the hydrology and erosional deposition, along with lowering of pH and increased conductivity, sodium, aluminum, and nitrogen compounds (Looney et al, 1988). A mild drought during the growing season may also have increased the concentration of the chemical contaminants in the soil matrix.« less
ELECTROMAGNETIC STIRRING IN ZONE REFINING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, I.; Frank, F.C.; Marshall, S.
1958-02-01
The efficiency of the zone refining process can obviously be increased by stirring the molten zone to disperse the impurity-rich layer at the solid- liquid surface. Induction heating is sometimes preferred to radiant heat because it produces more convection, but no marked improvement has been reported. Pfann and Dorsi(1967) have described a method of stirring the melt by passing an electric current through the ingot and compressing a magnetic field across the molten zone. Preliminary results obtained by using a rotating magnetic field us the stirring agent during the purification of aluminum are described. (A.C.)
Consideration of probability of bacterial growth for Jovian planets and their satellites
NASA Technical Reports Server (NTRS)
Taylor, D. M.; Berkman, R. M.; Divine, N.
1974-01-01
Environmental parameters affecting growth of bacteria are compared with current atmospheric models for Jupiter and Saturn, and with the available physical data for their satellites. Different zones of relative probability of growth are identified for Jupiter and Saturn. Of the more than two dozen satellites, only the largest (Io, Europa, Ganymede, Callisto, and Titan) are found to be interesting biologically. Titan's atmosphere may produce a substantial greenhouse effect providing increased surface temperatures. Models predicting a dense atmosphere are compatible with microbial growth for a range of pressures at Titan's surface. For Titan's surface the probability of growth would be enhanced if: (1) the surface is entirely or partially liquid; (2) volcanism is present; or (3) access to internal heat sources is significant.
Water at the Phoenix landing site
NASA Astrophysics Data System (ADS)
Smith, Peter Hollingsworth
The Phoenix mission investigated patterned ground and climate in the northern arctic region of Mars for 5 months starting May 25, 2008. A shallow ice table was uncovered by the robotic arm in a nearby polygon's edge and center at depths of 5-15 cm. In late summer snowfall and frost blanket the surface at night; water ice and vapor constantly interact with the soil. Analysis reveals an alkaline Ph with CaCO 3 , aqueous minerals, and salts making up several wt% of the soil; liquid water is implicated as having been important in creating these components. In combination with the oxidant perchlorate (~1 wt%), an energy source for terrestrial microbes, and a prior epoch of higher temperatures and humidity, this region may have been a habitable zone.
Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S
2013-02-12
A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.
NASA Astrophysics Data System (ADS)
Sievers, K. W.; Goltz, M. N.; Huang, J.; Demond, A. H.
2011-12-01
Dense Non-Aqueous Phase Liquids (DNAPLs), which are chemicals and chemical mixtures that are heavier than and only slightly soluble in water, are a significant source of groundwater contamination. Even with the removal or destruction of most DNAPL mass, small amounts of remaining DNAPL can dissolve into flowing groundwater and continue as a contamination source for decades. One category of DNAPLs is the chlorinated aliphatic hydrocarbons (CAHs). CAHs, such as trichloroethylene and carbon tetrachloride, are found to contaminate groundwater at numerous DoD and industrial sites. DNAPLs move through soils and groundwater leaving behind residual separate phase contamination as well as pools sitting atop low permeability layers. Recently developed models are based on the assumption that dissolved CAHs diffuse slowly from pooled DNAPL into the low permeability layers. Subsequently, when the DNAPL pools and residual DNAPL are depleted, perhaps as a result of a remediation effort, the dissolved CAHs in these low permeability layers still remain to serve as long-term sources of contamination, due to so-called "back diffusion." These recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more DNAPL and/or dissolved CAH is stored in the low permeability zones than can be explained on the basis of diffusion alone. One explanation for these field observations is that there is enhanced transport of dissolved CAHs and/or DNAPL into the low permeability layers due to cracking. Cracks may allow for advective flow of water contaminated with dissolved CAHs into the layer as well as possible movement of pure phase DNAPL into the layer. In this study, a multiphase numerical flow and transport model is employed in a dual domain (high and low permeability layers) to investigate the impact of cracking on DNAPL and CAH movement. Using literature values, the crack geometry and spacing was varied to model and compare four scenarios: (1) CAH diffusion only into cracks, (2) CAH advection-dispersion into cracks, (3) separate phase DNAPL movement into the cracks, and (4) CAH diffusion into an uncracked low permeability clay layer. For each scenario, model simulations are used to show the evolution and persistence of groundwater contamination downgradient of the DNAPL source.
Analysis of dead zone sources in a closed-loop fiber optic gyroscope.
Chong, Kyoung-Ho; Choi, Woo-Seok; Chong, Kil-To
2016-01-01
Analysis of the dead zone is among the intensive studies in a closed-loop fiber optic gyroscope. In a dead zone, a gyroscope cannot detect any rotation and produces a zero bias. In this study, an analysis of dead zone sources is performed in simulation and experiments. In general, the problem is mainly due to electrical cross coupling and phase modulation drift. Electrical cross coupling is caused by interference between modulation voltage and the photodetector. The cross-coupled signal produces spurious gyro bias and leads to a dead zone if it is larger than the input rate. Phase modulation drift as another dead zone source is due to the electrode contamination, the piezoelectric effect of the LiNbO3 substrate, or to organic fouling. This modulation drift lasts for a short or long period of time like a lead-lag filter response and produces gyro bias error, noise spikes, or dead zone. For a more detailed analysis, the cross-coupling effect and modulation phase drift are modeled as a filter and are simulated in both the open-loop and closed-loop modes. The sources of dead zone are more clearly analyzed in the simulation and experimental results.
Thermohydraulic behavior of the liquid metal target of a spallation neutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Y.
1996-06-01
The author presents work done on three main problems. (1) Natural circulation in double coaxial cylindircal container: The thermohydraulic behaviour of the liquid metal target of the spallation neutron source at PSI has been investigated. The configuration is a natural-circulation loop in a concentric double-tube-type container. The results show that the natural-circulation loop concept is valid for the design phase of the target construction, and the current specified design criteria will be fulfilled with the proposed parameter values. (2) Flow around the window: Water experiments were performed for geometry optimisation of the window shape of the SINQ container for avoidingmore » generating recirculation zones at peripheral area and the optimal cooling of the central part of the beam entrance window. Flow visualisation technique was mainly used for various window shapes, gap distance between the window and the guide tube edge. (3) Flow in window cooling channels: Flows in narrow gaps of cooling channels of two different types of windows were studied by flow visualisation techniques. One type is a slightly curved round cooling channel and the other is hemispherical shape, both of which have only 2 mm gap distance and the water inlet is located on one side and flows out from the opposite side. In both cases, the central part of the flow area has lower velocity than peripheral area.« less
Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes
NASA Technical Reports Server (NTRS)
Flynn, Michael T (Inventor); Baertsch, Robert (Inventor); Trent, Jonathan D (Inventor); Liggett, Travis A (Inventor); Gormly, Sherwin J (Inventor); Delzeit, Lance D (Inventor); Buckwalter, Patrick W (Inventor); Embaye, Tsegereda N (Inventor)
2013-01-01
Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.
Growth of II-VI Solid Solutions in the Presence of a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Gillies, D. C; Motakef, S.; Dudley, M.; Matyi, R.; Volz, H.
1999-01-01
The application of a rotating magnetic field (RMF)in the frequency range 60-400 Hz and field strength of the order of 2-8 mT to crystal growth has received increasing attention in recent years. To take full advantage of the control of fluid flow by the forces applied by the field, the liquid column must be electrically conducting. Also, the application of RMF to the directional solidification of a column of liquid can result in complete mixing in the resultant solid. Thus, the technique of RMF is suited to solvent zones and float zones where the composition of the liquid is more readily controlled. In the work we report on, numerical modeling has been applied to II-VI systems, particularly tellurium based traveling heater techniques (THM). Results for a spectrum of field strengths and acceleration levels will be presented. These show clearly the effects of competing buoyancy forces and electromagnetic stirring. Crystals of cadmium zinc telluride and mercury cadmium telluride have been grown terrestrially from a tellurium solvent zone. The effects of the RMF during these experiments will be demonstrated with micrographs showing etch pits, white beam x-ray synchrotron topographs and triple axis x-ray diffraction.
Composition for preventing a resin system from setting up in a well bore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R. C.
1981-06-09
A zone of a subterranean formation penetrated by a well bore is permanently plugged by injecting a liquid resin system containing at least one thermosetting resin and at least one curing agent or catalyst therefor into the formation and injecting into the wellbore following the resin system, a second liquid containing at least one chain stopping compound to react with one component in the resin system to prevent any of the resin system remaining in the well bore from crosslinking to a sufficient crosslink density to form a solid in the wellbore. Preferably, the second liquid also contains a fluidmore » loss additive to minimize loss of the second liquid from the wellbore to the formation. The method permits a zone to be plugged off and abandoned without the need to erect a drilling rig to drill out excess plugging material remaining in the wellbore. In a preferred embodiment, the resin system comprises the diglycidyl ether of bisphenol a and polymethylene phenylamine in ethylene glycol ethyl ether, and the preferred second liquid is monoethanolamine in ethylene glycol ethyl ether as a solvent with ethylcellulose and silica flour to control fluid loss.« less
Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications
NASA Astrophysics Data System (ADS)
Czerwinski, Frank; Birsan, Gabriel
2017-04-01
The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.
NASA Astrophysics Data System (ADS)
Hiebert, R. S.; Bekker, A.; Houlé, M. G.; Wing, B. A.; Rouxel, O. J.
2016-10-01
Assimilation by mafic to ultramafic magmas of sulfur-bearing country rocks is considered an important contributing factor to reach sulfide saturation and form magmatic Ni-Cu-platinum group element (PGE) sulfide deposits. Sulfur-bearing sedimentary rocks in the Archean are generally characterized by mass-independent fractionation of sulfur isotopes that is a result of atmospheric photochemical reactions, which produces isotopically distinct pools of sulfur. Likewise, low-temperature processing of iron, through biological and abiotic redox cycling, produces a range of Fe isotope values in Archean sedimentary rocks that is distinct from the range of the mantle and magmatic Fe isotope values. Both of these signals can be used to identify potential country rock assimilants and their contribution to magmatic sulfide deposits. We use multiple S and Fe isotopes to characterize the composition of the potential iron and sulfur sources for the sulfide liquids that formed the Hart deposit in the Shaw Dome area within the Abitibi greenstone belt in Ontario (Canada). The Hart deposit is composed of two zones with komatiite-associated Ni-Cu-PGE mineralization; the main zone consists of a massive sulfide deposit at the base of the basal flow in the komatiite sequence, whereas the eastern extension consists of a semi-massive sulfide zone located 12 to 25 m above the base of the second flow in the komatiite sequence. Low δ56Fe values and non-zero δ34S and Δ33S values of the komatiitic rocks and associated mineralization at the Hart deposit is best explained by mixing and isotope exchange with crustal materials, such as exhalite and graphitic argillite, rather than intrinsic fractionation within the komatiite. This approach allows tracing the extent of crustal contamination away from the deposit and the degree of mixing between the sulfide and komatiite melts. The exhalite and graphitic argillite were the dominant contaminants for the main zone of mineralization and the eastern extension zone of the Hart deposit, respectively. Critically, the extent of contamination, as revealed by multiple S and Fe isotope systematics, is greatest within the deposit and decreases away from it within the komatiite flow. This pattern points to a local source of crustal contamination for the mantle-derived komatiitic melt and a low degree of homogenization between the mineralization and the surrounding lava flow. Coupled S and Fe isotope patterns like those identified at the Hart deposit may provide a useful tool for assessing the potential of a komatiitic sequence to host Ni-Cu-(PGE).
Field-scale forward and back diffusion through low-permeability zones
NASA Astrophysics Data System (ADS)
Yang, Minjune; Annable, Michael D.; Jawitz, James W.
2017-07-01
Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle.
Field-scale forward and back diffusion through low-permeability zones.
Yang, Minjune; Annable, Michael D; Jawitz, James W
2017-07-01
Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.
Phase transformations in an ascending adiabatic mixed-phase cloud volume
NASA Astrophysics Data System (ADS)
Pinsky, M.; Khain, A.; Korolev, A.
2015-04-01
Regimes of liquid-ice coexistence that may form in an adiabatic parcel ascending at constant velocity at freezing temperatures are investigated. Four zones with different microphysical structures succeeding one another along the vertical direction have been established. On the basis of a novel balance equation, analytical expressions are derived to determine the conditions specific for each of these zones. In particular, the necessary and sufficient conditions for formation of liquid water phase within an ascending parcel containing only ice particles are determined. The results are compared to findings reported in earlier studies. The role of the Wegener-Bergeron-Findeisen mechanism in the phase transformation is analyzed. The dependence of the phase relaxation time on height in the four zones is investigated on the basis of a novel analytical expression. The results obtained in the study can be instrumental for analysis and interpretation of observed mixed-phase clouds.
Isotope Fractionation by Diffusion in Liquids (Final Technical Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Frank
The overall objective of the DOE-funded research by grant DE-FG02-01ER15254 was document and quantify kinetic isotope fractionations during chemical and thermal (i.e., Soret) diffusion in liquids (silicate melts and water) and in the later years to include alloys and major minerals such as olivine and pyroxene. The research involved both laboratory experiments and applications to natural settings. The key idea is that major element zoning on natural geologic materials is common and can arise for either changes in melt composition during cooling and crystallization or from diffusion. The isotope effects associated with diffusion that we have documented are the keymore » for determining whether or not the zoning observed in a natural system was the result of diffusion. Only in those cases were the zoning is demonstrably due to diffusion can use independently measured rates of diffusion to constrain the thermal evolution of the system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guffey, F.D.; Holper, P.A.
The Western Research Institute is currently developing a process for the recovery of distillable liquid products from alternate fossil fuel sources such as tar sand and oil shale. The processing concept is based on recycling a fraction of the produced oil back into the reactor with the raw resource. This concept is termed the recycle oil pyrolysis and extraction (ROPE{sup TM}) process. The conversion of the alternate resource to a liquid fuel is performed in two stages. The first recovery stage is performed at moderate temperatures (325--420{degrees}C [617--788{degrees}F]) in the presence of product oil recycle. The second stage is performedmore » at higher temperatures (450--540{degrees}C [842--1004{degrees}F]) in the absence of product oil. The experiments reported here were performed Asphalt Ridge tar sand in the all-glass laboratory simulation reactor to simulate (1) the recycling of SAE 50 weight oil in the recycle oil pyrolysis zone and (2) to evaluate the potential catalytic effects of the sand matrix.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guffey, F.D.; Holper, P.A.
The Western Research Institute is currently developing a process for the recovery of distillable liquid products from alternate fossil fuel sources such as tar sand and oil shale. The processing concept is based on recycling a fraction of the produced oil back into the reactor with the raw resource. This concept is termed the recycle oil pyrolysis and extraction (ROPE{sup TM}) process. The conversion of the alternate resource to a liquid fuel is performed in two stages. The first recovery stage is performed at moderate temperatures (325--420{degrees}C (617--788{degrees}F)) in the presence of product oil recycle. The second stage is performedmore » at higher temperatures (450--540{degrees}C (842--1004{degrees}F)) in the absence of product oil. The experiments reported here were performed Asphalt Ridge tar sand in the all-glass laboratory simulation reactor to simulate (1) the recycling of SAE 50 weight oil in the recycle oil pyrolysis zone and (2) to evaluate the potential catalytic effects of the sand matrix.« less
Assessing Planetary Habitability: Don't Forget Exotic Life!
NASA Astrophysics Data System (ADS)
Schulze-Makuch, Dirk
2012-05-01
With the confirmed detection of more than 700 exoplanets, the temptation looms large to constrain the search for extraterrestrial life to Earth-type planets, which have a similar distance to their star, a similar radius, mass and density. Yet, a look even within our Solar System points to a variety of localities to which life could have adapted to outside of the so-called Habitable Zone (HZ). Examples include the hydrocarbon lakes on Titan, the subsurface ocean environment of Europa, the near- surface environment of Mars, and the lower atmosphere of Venus. Recent Earth analog work and extremophile investigations support this notion, such as the discovery of a large microbial community in a liquid asphalt lake in Trinidad (as analog to Titan) or the discovery of a cryptoendolithic habitat in the Antarctic desert, which exists inside rocks, such as beneath sandstone surfaces and dolerite clasts, and supports a variety of eukaryotic algae, fungi, and cyanobacteria (as analog to Mars). We developed a Planetary Habitability Index (PHI, Schulze-Makuch et al., 2011), which was developed to prioritize exoplanets not based on their similarity to Earth, but whether the extraterrestrial environment could, in principle, be a suitable habitat for life. The index includes parameters that are considered to be essential for life such as the presence of a solid substrate, an atmosphere, energy sources, polymeric chemistry, and liquids on the planetary surface. However, the index does not require that this liquid is water or that the energy source is light (though the presence of light is a definite advantage). Applying the PHI to our Solar System, Earth comes in first, with Titan second, and Mars third.
Continuous process for forming sheet metal from an alloy containing non-dendritic primary solid
Flemings, Merton C.; Matsuniya, Tooru
1983-01-01
A homogeneous mixture of liquid-solid metal is shaped by passing the composition from an agitation zone onto a surface moving relative to the exit of the agitation zone. A portion of the composition contacting the moving surface is solidified and the entire composition then is formed.
) US 2,947,472 CENTRIFUGE APPARATUS - Urey, H. C.; Skarstrom, C; Cohen, K; August 2, 1960 (to U. S Commission) This patent is concerned with a heavy water enriched uranium power reactor capable of producing reactor where the stream from both reaction zone and absorber zone is separated from the liquid and solid
Electrospray ion source with reduced analyte electrochemistry
Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN
2011-08-23
An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.
Electrospray ion source with reduced analyte electrochemistry
Kertesz, Vilmos; Van Berkel, Gary J
2013-07-30
An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.
Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds
Borrás-Linares, Isabel; Stojanović, Zorica; Quirantes-Piné, Rosa; Arráez-Román, David; Švarc-Gajić, Jaroslava; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio
2014-01-01
In an extensive search for bioactive compounds from plant sources, the composition of different extracts of rosemary leaves collected from different geographical zones of Serbia was studied. The qualitative and quantitative characterization of 20 rosemary (Rosmarinus officinalis) samples, obtained by microwave-assisted extraction (MAE), was determined by high performance liquid chromatography coupled to electrospray quadrupole-time of flight mass spectrometry (HPLC–ESI-QTOF-MS). The high mass accuracy and true isotopic pattern in both MS and MS/MS spectra provided by the QTOF-MS analyzer enabled the characterization of a wide range of phenolic compounds in the extracts, including flavonoids, phenolic diterpenes and abietan-type triterpenoids, among others. According to the data compiled, rosemary samples from Sokobanja presented the highest levels in flavonoids and other compounds such as carnosol, rosmaridiphenol, rosmadial, rosmarinic acid, and carnosic acid. On the other hand, higher contents in triterpenes were found in the extracts of rosemary from Gložan (Vojvodina). PMID:25391044
Informing hazardous zones for on-board maritime hydrogen liquid and gas systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaylock, Myra L.; Pratt, Joseph William; Bran Anleu, Gabriela A.
The significantly higher buoyancy of hydrogen compared to natural gas means that hazardous zones defined in the IGF code may be inaccurate if applied to hydrogen. This could place undue burden on ship design or could lead to situations that are unknowingly unsafe. We present dispersion analyses to examine three vessel case studies: (1) abnormal external vents of full blowdown of a liquid hydrogen tank due to a failed relief device in still air and with crosswind; (2) vents due to naturally-occurring boil-off of liquid within the tank; and (3) a leak from the pipes leading into the fuel cellmore » room. The size of the hydrogen plumes resulting from a blowdown of the tank depend greatly on the wind conditions. It was also found that for normal operations releasing a small amount of "boil- off" gas to regulate the pressure in the tank does not create flammable concentrations.« less
NASA Astrophysics Data System (ADS)
Falta, R. W.
2004-05-01
Analytical solutions are developed that relate changes in the contaminant mass in a source area to the behavior of biologically reactive dissolved contaminant groundwater plumes. Based on data from field experiments, laboratory experiments, numerical streamtube models, and numerical multiphase flow models, the chemical discharge from a source region is assumed to be a nonlinear power function of the fraction of contaminant mass removed from the source zone. This function can approximately represent source zone mass discharge behavior over a wide range of site conditions ranging from simple homogeneous systems, to complex heterogeneous systems. A mass balance on the source zone with advective transport and first order decay leads to a nonlinear differential equation that is solved analytically to provide a prediction of the time-dependent contaminant mass discharge leaving the source zone. The solution for source zone mass discharge is coupled semi-analytically with a modified version of the Domenico (1987) analytical solution for three-dimensional reactive advective and dispersive transport in groundwater. The semi-analytical model then employs the BIOCHLOR (Aziz et al., 2000; Sun et al., 1999) transformations to model sequential first order parent-daughter biological decay reactions of chlorinated ethenes and ethanes in the groundwater plume. The resulting semi-analytic model thus allows for transient simulation of complex source zone behavior that is fully coupled to a dissolved contaminant plume undergoing sequential biological reactions. Analyses of several realistic scenarios show that substantial changes in the ground water plume can result from the partial removal of contaminant mass from the source zone. These results, however, are sensitive to the nature of the source mass reduction-source discharge reduction curve, and to the rates of degradation of the primary contaminant and its daughter products in the ground water plume. Aziz, C.E., C.J. Newell, J.R. Gonzales, P. Haas, T.P. Clement, and Y. Sun, 2000, BIOCHLOR Natural Attenuation Decision Support System User's Manual Version 1.0, US EPA Report EPA/600/R-00/008 Domenico, P.A., 1987, An analytical model for multidimensional transport of a decaying contaminant species, J. Hydrol., 91: 49-58. Sun, Y., J.N. Petersen, T.P. Clement, and R.S. Skeen, 1999, A new analytical solution for multi-species transport equations with serial and parallel reactions, Water Resour. Res., 35(1): 185-190.
Behzadian, Farnaz; Yerushalmi, Laleh; Alimahmoodi, Mahmood; Mulligan, Catherine N
2013-08-01
The hydrodynamic characteristics and the overall volumetric oxygen transfer coefficient of a new multi-environment bioreactor which is an integrated part of a wastewater treatment system, called BioCAST, were studied. This bioreactor contains several zones with different environmental conditions including aerobic, microaerophilic and anoxic, designed to increase the contaminant removal capacity of the treatment system. The multi-environment bioreactor is designed based on the concept of airlift reactors where liquid is circulated through the zones with different environmental conditions. The presence of openings between the aerobic zone and the adjacent oxygen-depleted microaerophilic zone changes the hydrodynamic properties of this bioreactor compared to the conventional airlift designs. The impact of operating and process parameters, notably the hydraulic retention time (HRT) and superficial gas velocity (U(G)), on the hydrodynamics and mass transfer characteristics of the system was examined. The results showed that liquid circulation velocity (V(L)), gas holdup (ε) and overall volumetric oxygen transfer coefficient (k(L)a(L)) increase with the increase of superficial gas velocity (U(G)), while the mean circulation time (t(c)) decreases with the increase of superficial gas velocity. The mean circulation time between the aerobic zone (riser) and microaerophilic zone (downcomer) is a stronger function of the superficial gas velocity for the smaller openings (1/2 in.) between the two zones, while for the larger opening (1 in.) the mean circulation time is almost independent of U(G) for U(G) ≥ 0.023 m/s. The smaller openings between the two zones provide higher mass transfer coefficient and better zone generation which will contribute to improved performance of the system during treatment operations.
Method for forming synthesis gas using a plasma-catalyzed fuel reformer
Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele
2015-04-28
A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.
Spherical loudspeaker array for local active control of sound.
Rafaely, Boaz
2009-05-01
Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.
NASA Astrophysics Data System (ADS)
Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi
2018-03-01
The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.
Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.
2009-08-20
A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55more » Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where transuranic radionuclides have been co-disposed with acidic liquid waste, transport through the vadose zone for considerable distances has occurred. For example, at the 216-Z-9 Crib, plutonium-239 and americium-241 have moved to depths in excess of 36 m (118 ft) bgs. Acidic conditions increase the solubility of these contaminants and reduce adsorption to mineral surfaces. Subsequent neutralization of the acidity by naturally occurring calcite in the vadose zone (particularly in the Cold Creek unit) appears to have effectively stopped further migration. The vast majority of transuranic contaminants disposed to the vadose zone on the Hanford Site (10,200 Ci [86%] of plutonium-239; 27,900 Ci [97%] of americium-241; and 41.8 Ci [78%] of neptunium-237) were disposed in sites within the PFP Closure Zone. This closure zone is located within the 200 West Area (see Figures 1.1 and 3.1). Other closure zones with notably high quantities of transuranic contaminant disposal include the T Farm Zone with 408 Ci (3.5%) plutonium-239, the PUREX Zone with 330 Ci (2.8%) plutonium-239, 200-W Ponds Zone with 324 Ci (2.8%) plutonium-239, B Farm Zone with 183 Ci (1.6%) plutonium-239, and the REDOX Zone with 164 Ci (1.4%) plutonium 239. Characterization studies for most of the sites reviewed in the document are generally limited. The most prevalent characterization methods used were geophysical logging methods. Characterization of a number of sites included laboratory analysis of borehole sediment samples specifically for radionuclides and other contaminants, and geologic and hydrologic properties. In some instances, more detailed research level studies were conducted. Results of these studies were summarized in the document.« less
NASA Astrophysics Data System (ADS)
Sychev, Ilya; Koulakov, Ivan; El Khrepy, Sami; Al-Arifi, Nassir
2017-01-01
Harrat Lunayyir is a relatively young basaltic field in Saudi Arabia located at the western margin of the Arabian Peninsula. In April-June 2009, strong seismic activity and ground deformations at this site marked the activation of the magma system beneath Harrat Lunayyir. In this study, we present new three-dimensional models of the attenuation of P and S waves during the unrest in 2009 based on the analysis of t*. We measured 1658 and 3170 values of t* for P and S waves, respectively, for the same earthquakes that were previously used for travel time tomography. The resulting anomalies of the P and S wave attenuation look very similar. In the center of the study area, we observe a prominent high-attenuation pattern, which coincides with the most active seismicity at shallow depths and maximum ground deformations. This high-attenuation zone may represent a zone of accumulation and ascending of gases, which originated at depths of 5-7 km due to the decompression of ascending liquid volatiles. Based on these findings and previous tomography studies, we propose that the unrest at Harrat Lunayyir in 2009 was triggered by a sudden injection of unstable liquid volatiles from deeper magma sources. At some depths, they were transformed to gases, which caused the volume to increase, and this led to seismic activation in the areas of phase transformations. The overpressurized gases ultimately found the weakest point in the rigid basaltic cover at the junction of several tectonic faults and escaped to the surface.
NASA Astrophysics Data System (ADS)
El Khrepy, Sami; Koulakov, Ivan; Al-Arifi, Nassir; Sychev, Ilya
2017-04-01
Harrat Lunayyir is a relatively young basaltic field in Saudi Arabia located at the western margin of the Arabian Peninsula. In April-June 2009, strong seismic activity and ground deformations at this site marked the activation of the magma system beneath Harrat Lunayyir. In this study, we present new three-dimensional models of the attenuation of P and S waves during the unrest in 2009 based on the analysis of t*. We measured 1658 and 3170 values of t* for P and S waves, respectively, for the same earthquakes that were previously used for travel time tomography. The resulting anomalies of the P and S wave attenuation look very similar. In the center of the study area, we observe a prominent high-attenuation pattern, which coincides with the most active seismicity at shallow depths and maximum ground deformations. This high-attenuation zone may represent a zone of accumulation and ascending of gases, which originated at depths of 5-7 km due to the decompression of ascending liquid volatiles. Based on these findings and previous tomography studies, we propose that the unrest at Harrat Lunayyir in 2009 was triggered by a sudden injection of unstable liquid volatiles from deeper magma sources. At some depths, they were transformed to gases, which caused the volume to increase, and this led to seismic activation in the areas of phase transformations. The overpressurized gases ultimately found the weakest point in the rigid basaltic cover at the junction of several tectonic faults and escaped to the surface.
STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS
This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...
Removing sulphur oxides from a fluid stream
Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan
2014-04-08
A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.
Brusseau, M. L.; Hatton, J.; DiGuiseppi, W.
2011-01-01
The long-term impact of source-zone remediation efforts was assessed for a large site contaminated by trichloroethene. The impact of the remediation efforts (soil vapor extraction and in-situ chemical oxidation) was assessed through analysis of plume-scale contaminant mass discharge, which was measured using a high-resolution data set obtained from 23 years of operation of a large pump-and-treat system. The initial contaminant mass discharge peaked at approximately 7 kg/d, and then declined to approximately 2 kg/d. This latter value was sustained for several years prior to the initiation of source-zone remediation efforts. The contaminant mass discharge in 2010, measured several years after completion of the two source-zone remediation actions, was approximately 0.2 kg/d, which is ten times lower than the value prior to source-zone remediation. The time-continuous contaminant mass discharge data can be used to evaluate the impact of the source-zone remediation efforts on reducing the time required to operate the pump-and-treat system, and to estimate the cost savings associated with the decreased operational period. While significant reductions have been achieved, it is evident that the remediation efforts have not completely eliminated contaminant mass discharge and associated risk. Remaining contaminant mass contributing to the current mass discharge is hypothesized to comprise poorly-accessible mass in the source zones, as well as aqueous (and sorbed) mass present in the extensive lower-permeability units located within and adjacent to the contaminant plume. The fate of these sources is an issue of critical import to the remediation of chlorinated-solvent contaminated sites, and development of methods to address these sources will be required to achieve successful long-term management of such sites and to ultimately transition them to closure. PMID:22115080
NASA Astrophysics Data System (ADS)
Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.
2018-04-01
An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.
CONTINUOUSLY SENSITIVE BUBBLE CHAMBER
Good, R.H.
1959-08-18
A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.
The DNAPL challenge: Is there a case for partial source removal?
NASA Astrophysics Data System (ADS)
Kavanaugh, M. C.; Rao, P. S. C.
2003-04-01
Despite significant advances in the science and technology of DNAPL source zone characterization, and DNAPL removal technologies over the past two decades, source remediation has not become a standard objective at most DNAPL sites. Few documented cases of DNAPL source removal have been published, and achievement of the usual cleanup metric in these source zones, namely, meeting Maximum Contaminant Levels ("MCLs") is rare. At most DNAPL sites, removal of sufficient amounts of DNAPL from the source zones to achieve MCLs is considered technically impracticable, taking cost into consideration. Leaving substantial quantities of DNAPL in source zones and instituting appropriate technologies to eliminate continued migration of groundwater plumes emanating from these source zones requires long-term reliability of barrier technologies (hydraulic or physical), and the permanence institutional controls. This strategy runs the risk of technical or institutional failures and possible liabilities associated with natural resource damage claims. To address this challenge, the U.S. Environmental Protection Agency ("EPA") established a panel of experts ("Panel") on DNAPL issues to provide their opinions on the overarching question of whether DNAPL source remediation is feasible. This Panel, co-chaired by the authors of this paper, has now prepared a report summarizing the opinions of the Panel on the key question of whether DNAPL source removal is achievable. This paper will present the findings of the Panel, addressing such issues as the current status of DNAPL source characterization and remediation technologies, alternative metrics of success for DNAPL source remediation, the potential benefits of partial DNAPL source depletion, and research needs to address data gaps that hinder the more widespread implementation of source removal strategies.
Laser-Induced Fluorescence and Synthetic Jet Fuel Analysis in the Ultra Compact Combustor
2009-12-01
In the primary zone, high- temperature, high-pressure air enters from the compressor and flows around fuel injectors spraying atomized liquid -droplet...chemical reaction in which synthesis gas , a mixture of carbon monoxide and hydrogen, is converted into liquid hydrocarbons of various forms. The most...the fuel lines needed to be rebuilt due to a recent COAL lab renovation. The liquid fuel system had not been used for nearly two years so some
Dense nonaqueous phase liquids (DNAPLs) are immiscible with water and can give rise to highly fingered fluid distributions when infiltrating through water-saturated porous media. In this paper, a conceptual mobile¯immobile¯zone (MIZ) model is pr...
Meeker, G.P.
1995-01-01
Many coarse-grained calcium- aluminum-rich inclusions (CAIs) contain features that are inconsistent with equilibrium liquid crystallization models of origin. Spinel-free islands (SFIs) in spinel-rich cores of Type B CAIs are examples of such features. One model previously proposed for the origin of Allende 5241, a Type B1 CAI containing SFIs, involves the capture and assimilation of xenoliths by a liquid droplet in the solar nebula (El Goresy et al, 1985; MacPherson et al 1989). This study reports new textural and chemical zoning data from 5241 and identifies previously unrecognized chemical zoning patterns in the melilite mantle and in a SFI. -from Author
Assessment of macroseismic intensity in the Nile basin, Egypt
NASA Astrophysics Data System (ADS)
Fergany, Elsayed
2018-01-01
This work intends to assess deterministic seismic hazard and risk analysis in terms of the maximum expected intensity map of the Egyptian Nile basin sector. Seismic source zone model of Egypt was delineated based on updated compatible earthquake catalog in 2015, focal mechanisms, and the common tectonic elements. Four effective seismic source zones were identified along the Nile basin. The observed macroseismic intensity data along the basin was used to develop intensity prediction equation defined in terms of moment magnitude. Expected maximum intensity map was proven based on the developed intensity prediction equation, identified effective seismic source zones, and maximum expected magnitude for each zone along the basin. The earthquake hazard and risk analysis was discussed and analyzed in view of the maximum expected moment magnitude and the maximum expected intensity values for each effective source zone. Moderate expected magnitudes are expected to put high risk at Cairo and Aswan regions. The results of this study could be a recommendation for the planners in charge to mitigate the seismic risk at these strategic zones of Egypt.
Detonation Reaction Zones in Condensed Explosives
NASA Astrophysics Data System (ADS)
Tarver, Craig M.
2006-07-01
Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich - von Neumann - Doling (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes are discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).
Electrohydrodynamically driven large-area liquid ion sources
Pregenzer, Arian L.
1988-01-01
A large-area liquid ion source comprises means for generating, over a large area of the surface of a liquid, an electric field of a strength sufficient to induce emission of ions from a large area of said liquid. Large areas in this context are those distinct from emitting areas in unidimensional emitters.
Wang, JiaWei; Shang, Lei; Light, Kelly; O'Loughlin, Jennifer; Paradis, Gilles; Gray-Donald, Katherine
2015-08-01
Little is known about the influence of different forms of added sugar intake on diet quality or their association with obesity among youth. Dietary intake was assessed by three 24-h recalls in 613 Canadian children (aged 8-10 years). Added sugars (mean of 3-day intakes) were categorized according to source (solid or liquid). Dietary intake and the Canadian Healthy Eating Index (« HEI-C ») were compared across tertiles of solid and liquid added sugars separately as were adiposity indicators (body mass index (BMI), fat mass (dual-energy X-ray absorptiometry), and waist circumference). Cross-sectional associations were examined in linear regression models adjusting for age, sex, energy intake, and physical activity (7-day accelerometer). Added sugar contributed 12% of total energy intake (204 kcal) on average, of which 78% was from solid sources. Higher consumption of added sugars from either solid or liquid source was associated with higher total energy, lower intake of micronutrients, vegetables and fruit, and lower HEI-C score. Additionally liquid sources were associated with lower intake of dairy products. A 10-g higher consumption of added sugars from liquid sources was associated with 0.4 serving/day lower of vegetables and fruit, 0.4-kg/m(2) higher BMI, a 0.5-kg higher fat mass, and a 0.9-cm higher waist circumference whereas the associations of added sugars from solid sources and adiposity indicators tended to be negative. In conclusion, higher consumption of added sugar from either solid or liquid sources was associated with lower overall diet quality. Adiposity indicators were only positively associated with added sugars from liquid sources.
Fang, Yingtong; Li, Quan; Shao, Qian; Wang, Binghai; Wei, Yun
2017-07-21
The alkaloids from lotus (Nelumbo nucifera Gaertn) are effective in lowering hyperlipemia and level of cholesterol. However, there is not a general method for their separation. In this work, a general ionic liquid pH-zone-refining countercurrent chromatography method for isolation and purification of six alkaloids from the whole lotus plant was successfully established by using ionic liquids as the modifier of the two-phase solvent system. The conditions of ionic liquid pH-zone-refining countercurrent chromatography, involving solvent systems, concentration of retainer and eluter, types of ionic liquids, the content of ionic liquids as well as ionic liquids posttreatment, were optimized to improve extraction efficiency. Finally, the separation of these six alkaloids was performed with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water-[C 4 mim][PF 6 ] at a volume ratio of 5:2:2:8:0.1, where 10mM TEA was added to the organic stationary phase as a retainer and 3mM HCl was added to the aqueous mobile phase as an eluter. As a result, six alkaloids including N-nornuciferine, liensinine, nuciferine, isoliensinine, roemerine and neferine were successfully separated with the purities of 97.0%, 90.2%, 94.7%, 92.8%, 90.4% and 95.9%, respectively. The established general method has been respectively applied to the crude samples of lotus leaves and lotus plumules. A total of 37.3mg of liensinine, 57.7mg of isoliensinine and 179.9mg of neferine were successfully purified in one run from 1.00g crude extract of lotus plumule with the purities of 93.2%, 96.5% and 98.8%, respectively. Amount of 45.6mg N-nornuciferine, 21.6mg nuciferine and 11.7mg roemerine was obtained in one step separation from 1.05g crude extract of lotus leaves with the purity of 96.9%, 95.6% and 91.33%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner
NASA Astrophysics Data System (ADS)
Chong, Cheng Tung; Hochgreb, Simone
2015-03-01
The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.
Personal sound zone reproduction with room reflections
NASA Astrophysics Data System (ADS)
Olik, Marek
Loudspeaker-based sound systems, capable of a convincing reproduction of different audio streams to listeners in the same acoustic enclosure, are a convenient alternative to headphones. Such systems aim to generate "sound zones" in which target sound programmes are to be reproduced with minimum interference from any alternative programmes. This can be achieved with appropriate filtering of the source (loudspeaker) signals, so that the target sound's energy is directed to the chosen zone while being attenuated elsewhere. The existing methods are unable to produce the required sound energy ratio (acoustic contrast) between the zones with a small number of sources when strong room reflections are present. Optimization of parameters is therefore required for systems with practical limitations to improve their performance in reflective acoustic environments. One important parameter is positioning of sources with respect to the zones and room boundaries. The first contribution of this thesis is a comparison of the key sound zoning methods implemented on compact and distributed geometrical source arrangements. The study presents previously unpublished detailed evaluation and ranking of such arrangements for systems with a limited number of sources in a reflective acoustic environment similar to a domestic room. Motivated by the requirement to investigate the relationship between source positioning and performance in detail, the central contribution of this thesis is a study on optimizing source arrangements when strong individual room reflections occur. Small sound zone systems are studied analytically and numerically to reveal relationships between the geometry of source arrays and performance in terms of acoustic contrast and array effort (related to system efficiency). Three novel source position optimization techniques are proposed to increase the contrast, and geometrical means of reducing the effort are determined. Contrary to previously published case studies, this work presents a systematic examination of the key problem of first order reflections and proposes general optimization techniques, thus forming an important contribution. The remaining contribution considers evaluation and comparison of the proposed techniques with two alternative approaches to sound zone generation under reflective conditions: acoustic contrast control (ACC) combined with anechoic source optimization and sound power minimization (SPM). The study provides a ranking of the examined approaches which could serve as a guideline for method selection for rooms with strong individual reflections.
Catalytic two-stage coal hydrogenation and hydroconversion process
MacArthur, James B.; McLean, Joseph B.; Comolli, Alfred G.
1989-01-01
A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr
2015-11-09
Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shownmore » the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.« less
Nechaeva, Daria; Shishov, Andrey; Ermakov, Sergey; Bulatov, Andrey
2018-06-01
An easily performed miniaturized, cheap, selective and sensitive procedure for the determination of H 2 S in fuel oil samples based on a headspace liquid-phase microextraction followed by a cyclic voltammetry detection using a paper-based analytical device (PAD) was developed. A modified wax dipping method was applied to fabricate the PAD. The PAD included hydrophobic zones of sample and supporting electrolyte connecting by hydrophilic channel. The zones of sample and supporting electrolyte were connected with nickel working, platinum auxiliary and Ag/AgCl reference electrodes. The analytical procedure included separation of H 2 S from fuel oil sample based on the headspace liquid-phase microextraction in alkaline solution. Then, sulfide ions solution obtained and supporting electrolyte were dropped on the zones followed by analyte detection at + 0.45 V. Under the optimized conditions, H 2 S concentration in the range from 2 to 20 mg kg -1 had a good linear relation with the peak current. The limit of detection (3σ) was 0.6 mg kg -1 . The procedure was successfully applied to the analysis of fuel oil samples. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Control of highly pathogenic avian influenza (HPAI) has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a containment area under permit. Non-pasteurized liquid egg (NPLE) is one such commodity for which movements ma...
NASA Astrophysics Data System (ADS)
Pantazidou, Marina; Liu, Ke
2008-02-01
This paper focuses on parameters describing the distribution of dense nonaqueous phase liquid (DNAPL) contaminants and investigates the variability of these parameters that results from soil heterogeneity. In addition, it quantifies the uncertainty reduction that can be achieved with increased density of soil sampling. Numerical simulations of DNAPL releases were performed using stochastic realizations of hydraulic conductivity fields generated with the same geostatistical parameters and conditioning data at two sampling densities, thus generating two simulation ensembles of low and high density (three-fold increase) of soil sampling. The results showed that DNAPL plumes in aquifers identical in a statistical sense exhibit qualitatively different patterns, ranging from compact to finger-like. The corresponding quantitative differences were expressed by defining several alternative measures that describe the DNAPL plume and computing these measures for each simulation of the two ensembles. The uncertainty in the plume features under study was affected to different degrees by the variability of the soil, with coefficients of variation ranging from about 20% to 90%, for the low-density sampling. Meanwhile, the increased soil sampling frequency resulted in reductions of uncertainty varying from 7% to 69%, for low- and high-uncertainty variables, respectively. In view of the varying uncertainty in the characteristics of a DNAPL plume, remedial designs that require estimates of the less uncertain features of the plume may be preferred over others that need a more detailed characterization of the source zone architecture.
NASA Astrophysics Data System (ADS)
Szymon Borkowski, Andrzej; Kwiatkowska-Malina, Jolanta
2016-04-01
Spatial disposition of chemical elements including heavy metals in the soil environment is a very important information during preparation of the thematic maps for the environmental protection and/or spatial planning. This knowledge is also essential for the earth's surface and soil's monitoring, designation of areas requiring improvement including remediation. The main source of anthropogenic pollution of soil with heavy metals are industry related to the mining coal and liquid fuels, mining and metallurgy, chemical industry, energy production, waste management, agriculture and transport. The geochemical maps as a kind of specific thematic maps made on the basis of datasets obtained from the Polish Geological Institute's resources allow to get to know the spatial distribution of different chemical elements including heavy metals in soil. The results of the research carried out by the Polish Geological Institute showed strong contamination in some regions in Poland mainly with arsenic, cadmium, lead and nickel. For this reason it was the point to prepare geochemical maps showing contamination of soil with heavy metals, and determine main sources of contamination and zones where heavy metals concentration was higher than acceptable contents. It was also presented a summary map of soil contamination with heavy metals. Additionally, location of highly contaminated zones was compiled with predominant in those areas types of arable soils and then results were thoroughly analyzed. This information can provide a base for further detailed studies on the soil contamination with heavy metals.
Fluid inclusions in minerals from the geothermal fields of Tuscany, Italy
Belkin, H.; de Vivo, B.; Gianelli, G.; Lattanzi, P.
1985-01-01
A reconnaissance study on fluid inclusions from the geothermal fields of Tuscany indicates that the hydrothermal minerals were formed by fluids which were, at least in part, boiling. Four types of aqueous inclusions were recognized: (A) two-phase (liquid + vapor) liquid rich, (B) two-phase (vapor + liquid) vapor rich, (C) polyphase hypersaline liquid rich and (D) three phase-H2O liquid + CO2 liquid + CO2-rich vapor. Freezing and heating microthermometric determinations are reported for 230 inclusions from samples from six wells. It is suggested that boiling of an originally homogeneous, moderately saline, CO2-bearing liquid phase produced a residual hypersaline brine and a CO2-rich vapor phase. There are indications of a temperature decrease in the geothermal field of Larderello, especially in its peripheral zones. ?? 1985.
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2011 CFR
2011-07-01
... affected source. (5) For pumps in light liquid service in an MCPU that has no continuous process vents and.../vapor and light liquid service at an existing source, you may elect to comply with the requirements in... light liquid service in an MCPU that has no continuous process vents and is part of an existing source...
Li, Liang; Hale, McKenzie; Olsen, Petra; Berge, Nicole D
2014-11-01
Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250°C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roshandell, Melika
A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding from the experimental component of the research was that hydrates can burn completely, and that they burn most rapidly just after ignition and then burn steadily when some of the water in the dissociated zone is allowed to drain away. Excessive surfactant in the water creates a foam layer around the hydrate that acts as an insulator. The layer prevents sufficient heat flux from reaching the hydrate surface below the foam to release additional methane and the hydrate flame extinguishes. No self-healing or ice-freezing processes were observed in any of the combustion experiments. There is some variability, but a typical hydrate flame is receiving between one and two moles of water vapor from the liquid dissociated zone of the hydrate for each mole of methane it receives from the dissociating solid region. This limits the flame temperature to approximately 1800 K. In the theoretical portion of the study, a physical model using an energy balance from methane combustion was developed to understand the energy transfer between the three phases of gas, liquid and solid during the hydrate burn. Also this study provides an understanding of the different factors impacting the hydrate's continuous burn, such as the amount of water vapor in the flame. The theoretical study revealed how the water layer thickness on the hydrate surface, and its effect on the temperature gradient through the dissociated zone, plays a significant role in the hydrate dissociation rate and methane release rate. Motivated by the above mentioned observation from the theoretical analysis, a 1-D two-phase numerical simulation based on a moving front model for hydrate dissociation from a thermal source was developed. This model was focused on the dynamic growth of the dissociated zone and its effect on the dissociation rate. The model indicated that the rate of hydrate dissociation with a thermal source is a function of the dissociated zone thickness. It shows that in order for a continuous dissociation and methane release, some of the water from the dissociated zone needs to be drained. The results are consistent with the experimental observations. The understanding derived from the experiments and the numerical model permitted a brief exploration into the potential effects of pressure on the combustion of methane hydrates. The prediction is that combustion should improve under high pressure conditions because the evaporation of water is suppressed allowing more energy into the dissociation. Future experiments are needed to validate these initial findings.
Matthieu, D.E.; Carroll, K.C.; Mainhagu, J.; Morrison, C.; McMillan, A.; Russo, A.; Plaschke, M.
2013-01-01
The objective of this study was to characterize the temporal behavior of contaminant mass discharge, and the relationship between reductions in contaminant mass discharge and reductions in contaminant mass, for a very heterogeneous, highly contaminated source-zone field site. Trichloroethene is the primary contaminant of concern, and several lines of evidence indicate the presence of organic liquid in the subsurface. The site is undergoing groundwater extraction for source control, and contaminant mass discharge has been monitored since system startup. The results show a significant reduction in contaminant mass discharge with time, decreasing from approximately 1 to 0.15 kg/d. Two methods were used to estimate the mass of contaminant present in the source area at the initiation of the remediation project. One was based on a comparison of two sets of core data, collected 3.5 years apart, which suggests that a significant (~80%) reduction in aggregate sediment-phase TCE concentrations occurred between sampling events. The second method was based on fitting the temporal contaminant mass discharge data with a simple exponential source-depletion function. Relatively similar estimates, 784 and 993 kg, respectively, were obtained with the two methods. These data were used to characterize the relationship between reductions in contaminant mass discharge (CMDR) and reductions in contaminant mass (MR). The observed curvilinear relationship exhibits a reduction in contaminant mass discharge essentially immediately upon initiation of mass reduction. This behavior is consistent with a system wherein significant quantities of mass are present in hydraulically poorly accessible domains for which mass removal is influenced by rate-limited mass transfer. The results obtained from the present study are compared to those obtained from other field studies to evaluate the impact of system properties and conditions on mass-discharge and mass-removal behavior. The results indicated that factors such as domain scale, hydraulic-gradient status (induced or natural), and flushing-solution composition had insignificant impact on the CMDR-MR profiles and thus on underlying mass-removal behavior. Conversely, source-zone age, through its impact on contaminant distribution and accessibility, was implicated as a critical factor influencing the nature of the CMDR-MR relationship. PMID:23528743
Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus
2011-04-23
A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D columnmore » and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.« less
2017-02-22
The TRAPPIST-1 system contains a total of seven planets, all around the size of Earth. Three of them -- TRAPPIST-1e, f and g -- dwell in their star's so-called "habitable zone." The habitable zone, or Goldilocks zone, is a band around every star (shown here in green) where astronomers have calculated that temperatures are just right -- not too hot, not too cold -- for liquid water to pool on the surface of an Earth-like world. While TRAPPIST-1b, c and d are too close to be in the system's likely habitable zone, and TRAPPIST-1h is too far away, the planets' discoverers say more optimistic scenarios could allow any or all of the planets to harbor liquid water. In particular, the strikingly small orbits of these worlds make it likely that most, if not all of them, perpetually show the same face to their star, the way our moon always shows the same face to the Earth. This would result in an extreme range of temperatures from the day to night sides, allowing for situations not factored into the traditional habitable zone definition. The illustrations shown for the various planets depict a range of possible scenarios of what they could look like. The system has been revealed through observations from NASA's Spitzer Space Telescope and the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope, as well as other ground-based observatories. The system was named for the TRAPPIST telescope. http://photojournal.jpl.nasa.gov/catalog/PIA21424
NASA Astrophysics Data System (ADS)
de Barros, Felipe P. J.
2018-07-01
Quantifying the uncertainty in solute mass discharge at an environmentally sensitive location is key to assess the risks due to groundwater contamination. Solute mass fluxes are strongly affected by the spatial variability of hydrogeological properties as well as release conditions at the source zone. This paper provides a methodological framework to investigate the interaction between the ubiquitous heterogeneity of the hydraulic conductivity and the mass release rate at the source zone on the uncertainty of mass discharge. Through the use of perturbation theory, we derive analytical and semi-analytical expressions for the statistics of the solute mass discharge at a control plane in a three-dimensional aquifer while accounting for the solute mass release rates at the source. The derived solutions are limited to aquifers displaying low-to-mild heterogeneity. Results illustrate the significance of the source zone mass release rate in controlling the mass discharge uncertainty. The relative importance of the mass release rate on the mean solute discharge depends on the distance between the source and the control plane. On the other hand, we find that the solute release rate at the source zone has a strong impact on the variance of the mass discharge. Within a risk context, we also compute the peak mean discharge as a function of the parameters governing the spatial heterogeneity of the hydraulic conductivity field and mass release rates at the source zone. The proposed physically-based framework is application-oriented, computationally efficient and capable of propagating uncertainty from different parameters onto risk metrics. Furthermore, it can be used for preliminary screening purposes to guide site managers to perform system-level sensitivity analysis and better allocate resources.
Computerized Workstation for Tsunami Hazard Monitoring
NASA Astrophysics Data System (ADS)
Lavrentiev-Jr, Mikhail; Marchuk, Andrey; Romanenko, Alexey; Simonov, Konstantin; Titov, Vasiliy
2010-05-01
We present general structure and functionality of the proposed Computerized Workstation for Tsunami Hazard Monitoring (CWTHM). The tool allows interactive monitoring of hazard, tsunami risk assessment, and mitigation - at all stages, from the period of strong tsunamigenic earthquake preparation to inundation of the defended coastal areas. CWTHM is a software-hardware complex with a set of software applications, optimized to achieve best performance on hardware platforms in use. The complex is calibrated for selected tsunami source zone(s) and coastal zone(s) to be defended. The number of zones (both source and coastal) is determined, or restricted, by available hardware resources. The presented complex performs monitoring of selected tsunami source zone via the Internet. The authors developed original algorithms, which enable detection of the preparation zone of the strong underwater earthquake automatically. For the so-determined zone the event time, magnitude and spatial location of tsunami source are evaluated by means of energy of the seismic precursors (foreshocks) analysis. All the above parameters are updated after each foreshock. Once preparing event is detected, several scenarios are forecasted for wave amplitude parameters as well as the inundation zone. Estimations include the lowest and the highest wave amplitudes and the least and the most inundation zone. In addition to that, the most probable case is calculated. In case of multiple defended coastal zones, forecasts and estimates can be done in parallel. Each time the simulated model wave reaches deep ocean buoys or tidal gauge, expected values of wave parameters and inundation zones are updated with historical events information and pre-calculated scenarios. The Method of Splitting Tsunami (MOST) software package is used for mathematical simulation. The authors suggest code acceleration for deep water wave propagation. As a result, performance is 15 times faster compared to MOST, original version. Performance gain is achieved by compiler options, use of optimized libraries, and advantages of OpenMP parallel technology. Moreover, it is possible to achieve 100 times code acceleration by using modern Graphics Processing Units (GPU). Parallel evaluation of inundation zones for multiple coastal zones is also available. All computer codes can be easily assembled under MS Windows and Unix OS family. Although software is virtually platform independent, the most performance gain is achieved while using the recommended hardware components. When the seismic event occurs, all valuable parameters are updated with seismic data and wave propagation monitoring is enabled. As soon as the wave passes each deep ocean tsunameter, parameters of the initial displacement at source are updated from direct calculations based on original algorithms. For better source reconstruction, a combination of two methods is used: optimal unit source linear combination from preliminary calculated database and direct numerical inversion along the wave ray between real source and particular measurement buoys. Specific dissipation parameter along with the wave ray is also taken into account. During the entire wave propagation process the expected wave parameters and inundation zone(s) characteristics are updated with all available information. If recommended hardware components are used, monitoring results are available in real time. The suggested version of CWTHM has been tested by analyzing seismic precursors (foreshocks) and the measured tsunami waves at North Pacific for the Central Kuril's tsunamigenic earthquake of November 15, 2006.
Analytical solutions describing the time-dependent DNAPL source-zone mass and contaminant discharge rate are used as a flux-boundary condition in a semi-analytical contaminant transport model. These analytical solutions assume a power relationship between the flow-averaged sourc...
NASA Astrophysics Data System (ADS)
Brovelli, A.; Robinson, C.; Barry, A.; Kouznetsova, I.; Gerhard, J.
2008-12-01
Various techniques have been proposed to enhance biologically-mediated reductive dechlorination of chlorinated solvents in the subsurface, including the addition of fermentable organic substrate for the generation of H2 as an electron donor. One rate-limiting factor for enhanced dechlorination is the pore fluid pH. Organic acids and H+ ions accumulate in dechlorination zones, generating unfavorable conditions for microbial activity (pH < 6.5). The pH variation is a nonlinear function of the amount of reduced chlorinated solvents, and is affected by the organic material fermented, the chemical composition of the pore fluid and the soil's buffering capacity. Consequently, in some cases enhanced remediation schemes rely on buffer injection (e.g., bicarbonate) to alleviate this problem, particularly in the presence of solvent nonaqueous phase liquid (NAPL) source zones. However, the amount of buffer required - particularly in complex, evolving biogeochemical environments - is not well understood. To investigate this question, this work builds upon a geochemical numerical model (Robinson et al., Science of the Total Environment, submitted), which computes the amount of additional buffer required to maintain the pH at a level suitable for bacterial activity for batch systems. The batch model was coupled to a groundwater flow/solute transport/chemical reaction simulator to permit buffer optimization computations within the context of flowing systems exhibiting heterogeneous hydraulic, physical and chemical properties. A suite of simulations was conducted in which buffer optimization was examined within the bounds of the minimum concentration necessary to sustain a pH favorable to microbial activity and the maximum concentration to avoid excessively high pH values (also not suitable to bacterial activity) and mineral precipitation (e.g., calcite, which may lead to pore-clogging). These simulations include an examination of the sensitivity of this buffer concentration range to aquifer heterogeneity and groundwater velocity. This work is part of SABRE (Source Area BioREmediation), a collaborative international research project that aims to evaluate and improve enhanced bioremediation of chlorinated solvent source zones. In this context, numerical simulations are supporting the upscaling of the technique, including identifying the most appropriate buffer injection strategies for field applications
Marble, J.C.; Brusseau, M.L.; Carroll, K.C.; Plaschke, M.; Fuhrig, L.; Brinker, F.
2015-01-01
The purpose of this study is to examine the development and effectiveness of a persistent dissolved-phase treatment zone, created by injecting potassium permanganate solution, for mitigating discharge of contaminant from a source zone located in a relatively deep, low-permeability formation. A localized 1,1-dichloroethene (DCE) source zone comprising dissolved- and sorbed-phase mass is present in lower permeability strata adjacent to a sand/gravel unit in a section of the Tucson International Airport Area (TIAA) Superfund Site. The results of bench-scale studies conducted using core material collected from boreholes drilled at the site indicated that natural oxidant demand was low, which would promote permanganate persistence. The reactive zone was created by injecting a permanganate solution into multiple wells screened across the interface between the lower-permeability and higher-permeability units. The site has been monitored for nine years to characterize the spatial distribution of DCE and permanganate. Permanganate continues to persist at the site, and a substantial and sustained decrease in DCE concentrations in groundwater has occurred after the permanganate injection.. These results demonstrate successful creation of a long-term, dissolved-phase reactive-treatment zone that reduced mass discharge from the source. This project illustrates the application of in-situ chemical oxidation as a persistent dissolved-phase reactive-treatment system for lower-permeability source zones, which appears to effectively mitigate persistent mass discharge into groundwater. PMID:26300570
Prevention of deleterious deposits in a coal liquefaction system
Carr, Norman L.; Prudich, Michael E.; King, Jr., William E.; Moon, William G.
1984-07-03
A process for preventing the formation of deleterious coke deposits on the walls of coal liquefaction reactor vessels involves passing hydrogen and a feed slurry comprising feed coal and recycle liquid solvent to a coal liquefaction reaction zone while imparting a critical mixing energy of at least 3500 ergs per cubic centimeter of reaction zone volume per second to the reacting slurry.
Influence of water mist on propagation and suppression of laminar premixed flame
NASA Astrophysics Data System (ADS)
Belyakov, Nikolay S.; Babushok, Valeri I.; Minaev, Sergei S.
2018-03-01
The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.
Starch-based Antimicrobial Films Incorporated with Lauric Acid and Chitosan
NASA Astrophysics Data System (ADS)
Salleh, E.; Muhamad, I. I.
2010-03-01
Antimicrobial (AM) packaging is one of the most promising active packaging systems. Starch-based film is considered an economical material for antimicrobial packaging. This study aimed at the development of food packaging based on wheat starch incorporated with lauric acid and chitosan as antimicrobial agents. The purpose is to restrain or inhibit the growth of spoilage and/or pathogenic microorganisms that are contaminating foods. The antimicrobial effect was tested on B. substilis and E. coli. Inhibition of bacterial growth was examined using two methods, i.e. zone of inhibition test on solid media and liquid culture test (optical density measurements). The control and AM films (incorporated with chitosan and lauric acid) were produced by casting method. From the observations, AM films exhibited inhibitory zones. Interestingly, a wide clear zone on solid media was observed for B. substilis growth inhibition whereas inhibition for E. coli was not as effective as B. substilis. From the liquid culture test, the AM films clearly demonstrated a better inhibition against B. substilis than E. coli.
Surface recrystallization theory of the wear of copper in liquid methane
NASA Technical Reports Server (NTRS)
Bill, R. C.; Wisander, D. W.
1974-01-01
Copper was subjected to sliding against 440C in liquid methane. The normal load range was from 1/4 to 2 kilograms, and the sliding velocity range was from 3.1 to 25 meters per second. Over this range of experimental parameters, the wear rate of the copper rider was found to be proportional to the sliding velocity squared and to the normal load. Transmission electron microscopy was used to study the dislocation structure in the copper very near the wear scar surface. It was found that near the wear scar surface, the microstructure was characterized by a fine-cell recrystallized zone in which individual dislocations could be distinguished in the cell walls. The interiors of the cells, about 0.5 micrometer in diameter, were nearly dislocation free. Below the recrystallized layer was a zone that was intensely cold worked by the friction process. With increasing depth, this intensely cold worked zone gradually became indistinguishable from the partially cold worked bulk of the copper, representative of the initial condition of the material.
On the Structure of the Mixing Zone at an Unstable Contact Boundary
NASA Astrophysics Data System (ADS)
Meshkov, E. E.
2018-01-01
The interface between two media of different densities (contact boundary) moving with an acceleration directed from the less dense medium to the more dense one is unstable (Rayleigh-Taylor instability) [1, 2]. The initial perturbations of the interface grow indefinitely and, as a result, a medium mixing zone growing with time is formed at the interface. The structure of such a mixing zone at gas-gas and gas-liquid interfaces is discussed on the basis of laboratory experiments on shock tubes of various types. It is concluded that the regions of turbulent and laminar flows are combined in the mixing zone.
NASA Astrophysics Data System (ADS)
Xiaoying, Jin; Huijun, Jin
2017-04-01
Permafrost degradation caused by climate warming has markedly changed ecological environment in the Source Area of the Yellow River, in the northeast of the Qinghai Tibetan Plateau. However, related research about ecological impact of permafrost degradation is limited in this area. More attentions should be paid to the impact of permafrost degradation on alpine grassland. In this study vegetation characteristics (plant species composition, vegetation cover and biomass, etc.) at different permafrost degradation stages (as represented by the continuous and discontinuous permafrost zone, transitional zone, and seasonally frozen ground zone) is investigated. The results showed that (1) there are total 64 species in continuous and discontinuous permafrost zone, transitional zone, and seasonally frozen ground zone, and seasonally frozen ground zone has more species than transitional zone and permafrost zone, (2) sedge is the dominant species in three zones. But Shrub only presented in the seasonally frozen ground zone. These results suggest that permafrost degradation affect the species number and species composition of alpine grassland.
Investigation of spherical loudspeaker arrays for local active control of sound.
Peleg, Tomer; Rafaely, Boaz
2011-10-01
Active control of sound can be employed globally to reduce noise levels in an entire enclosure, or locally around a listener's head. Recently, spherical loudspeaker arrays have been studied as multiple-channel sources for local active control of sound, presenting the fundamental theory and several active control configurations. In this paper, important aspects of using a spherical loudspeaker array for local active control of sound are further investigated. First, the feasibility of creating sphere-shaped quiet zones away from the source is studied both theoretically and numerically, showing that these quiet zones are associated with sound amplification and poor system robustness. To mitigate the latter, the design of shell-shaped quiet zones around the source is investigated. A combination of two spherical sources is then studied with the aim of enlarging the quiet zone. The two sources are employed to generate quiet zones that surround a rigid sphere, investigating the application of active control around a listener's head. A significant improvement in performance is demonstrated in this case over a conventional headrest-type system that uses two monopole secondary sources. Finally, several simulations are presented to support the theoretical work and to demonstrate the performance and limitations of the system. © 2011 Acoustical Society of America
Zachara, John M; Long, Philip E; Bargar, John; Davis, James A; Fox, Patricia; Fredrickson, Jim K; Freshley, Mark D; Konopka, Allan E; Liu, Chongxuan; McKinley, James P; Rockhold, Mark L; Williams, Kenneth H; Yabusaki, Steve B
2013-04-01
We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (
NASA Astrophysics Data System (ADS)
Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan E.; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steve B.
2013-04-01
We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 μg/L or 0.126 μmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (< one pore volume). At the Rifle site, slow oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influence plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of residual, contaminant U; the rates of current kinetic processes (both biotic and abiotic) influencing U(VI) solid-liquid distribution; the presence of detrital organic matter and the resulting spatial heterogeneity in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer hydraulic properties. The comparative analysis of these sites provides important guidance to the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water interaction that are common world-wide.
NASA Astrophysics Data System (ADS)
Loukili, A.; Desplanches, H.; Gaston Bonhomme, Y.; Chevalier, J. L.; Bruxelmane, M.; Ouazzani Chahdi, T.; El Ghadraoui, H.
1999-03-01
The power consumption is measured for non-newtonian gas-liquid systems. The useful zone situated beyond the flooding point was defined by using the power caracteristics plot and hydrodynamic observations. Correlations were established in dimensional or adimensional form, to estimate the stirrer speed at the flooding point, and the power consumption in the working zone. Those correlations established in a large scale of rheological behaviour, for two kind of impellers in different geometrical ratios and for two tanks for scaling up, are used to compare an axial impeller (the thinny profile propeller) to a radial one (the Rushton's disc turbine). La puissance d'agitation est mesurée pour des systèmes gaz-liquides non-newtoniens rhéofluidifiants. Le domaine utile de fonctionnement du réacteur gaz-liquide, situé au-delà du point de désengorgement complet, est défini à partir de la courbe caractéristique de puissance et d'observations hydrodynamiques. Des corrélations sont établies sous forme dimensionnelle ou adimensionnelle pour prédire la vitesse d'agitation au point de charge, et la puissance consommée dans la zone utile. Ces corrélations définies pour une gamme étendue de comportements rhéofluidifiants, pour différentes géomètries de mobiles et sur deux tailles de cuves en extrapolation, permettent en outre de comparer deux mobiles, l'un axial et l'autre radial.
NASA Astrophysics Data System (ADS)
Ramos, Débora Toledo; Lazzarin, Helen Simone Chiaranda; Alvarez, Pedro J. J.; Vogel, Timothy M.; Fernandes, Marilda; do Rosário, Mário; Corseuil, Henry Xavier
2016-10-01
The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100 L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2 years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈ 22 mg L- 1)) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0 years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2 years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants.
Ramos, Débora Toledo; Lazzarin, Helen Simone Chiaranda; Alvarez, Pedro J J; Vogel, Timothy M; Fernandes, Marilda; do Rosário, Mário; Corseuil, Henry Xavier
2016-10-01
The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈22mgL -1 )) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei
2015-02-01
The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.
Mirus, Benjamin B.; Perkins, Kim S.; Nimmo, John R.
2011-01-01
Waste byproducts associated with operations at the Idaho Nuclear Technology and Engineering Center (INTEC) have the potential to contaminate the eastern Snake River Plain (ESRP) aquifer. Recharge to the ESRP aquifer is controlled largely by the alternating stratigraphy of fractured volcanic rocks and sedimentary interbeds within the overlying vadose zone and by the availability of water at the surface. Beneath the INTEC facilities, localized zones of saturation perched on the sedimentary interbeds are of particular concern because they may facilitate accelerated transport of contaminants. The sources and timing of natural and anthropogenic recharge to the perched zones are poorly understood. Simple approaches for quantitative characterization of this complex, variably saturated flow system are needed to assess potential scenarios for contaminant transport under alternative remediation strategies. During 2009-2011, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, employed data analysis and numerical simulations with a recently developed model of preferential flow to evaluate the sources and quantity of recharge to the perched zones. Piezometer, tensiometer, temperature, precipitation, and stream-discharge data were analyzed, with particular focus on the possibility of contributions to the perched zones from snowmelt and flow in the neighboring Big Lost River (BLR). Analysis of the timing and magnitude of subsurface dynamics indicate that streamflow provides local recharge to the shallow, intermediate, and deep perched saturated zones within 150 m of the BLR; at greater distances from the BLR the influence of streamflow on recharge is unclear. Perched water-level dynamics in most wells analyzed are consistent with findings from previous geochemical analyses, which suggest that a combination of annual snowmelt and anthropogenic sources (for example, leaky pipes and drainage ditches) contribute to recharge of shallow and intermediate perched zones throughout much of INTEC. The source-responsive fluxes model was parameterized to simulate recharge via preferential flow associated with intermittent episodes of streamflow in the BLR. The simulations correspond reasonably well to the observed hydrologic response within the shallow perched zone. Good model performance indicates that source-responsive flow through a limited number of connected fractures contributes substantially to the perched-zone dynamics. The agreement between simulated and observed perched-zone dynamics suggest that the source-responsive fluxes model can provide a valuable tool for quantifying rapid preferential flow processes that may result from different land management scenarios.
Dominant seismic sources for the cities in South Sumatra
NASA Astrophysics Data System (ADS)
Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya
2017-07-01
Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.
NASA Astrophysics Data System (ADS)
Seel, Kevin; Reddemann, Manuel A.; Kneer, Reinhold
2018-03-01
Although the interaction of automotive sprays with thin films is of high technical relevance for IC engine applications, fundamental knowledge about underlying physical mechanisms is still limited. This work presents a systematic study of the influence of the film's initial thickness—homogeneously spread over a flat wall before the initial spray impingement—on film surface structures and thickness after the interaction. For this purpose, interferometric film thickness measurements and complementary high-speed visualizations are used. By gradually increasing the initial film thickness on a micrometer scale, a shift from a regime of liquid deposition (increasing film thickness with respect to initial film thickness) to a regime of liquid removal (decreasing film thickness with respect to initial film thickness) is observed at the stagnation zone of the impinging spray. This transition is accompanied by the formation of radially propagating surface waves, transporting liquid away from the stagnation zone. Wavelengths and amplitudes of the surface waves are increased with increasing initial film thickness.
2009-09-01
nuclear industry for conducting performance assessment calculations. The analytical FORTRAN code for the DNAPL source function, REMChlor, was...project. The first was to apply existing deterministic codes , such as T2VOC and UTCHEM, to the DNAPL source zone to simulate the remediation processes...but describe the spatial variability of source zones unlike one-dimensional flow and transport codes that assume homogeneity. The Lagrangian models
A liquid hydrocarbon deuteron source for neutron generators
NASA Astrophysics Data System (ADS)
Schwoebel, P. R.
2017-06-01
Experimental studies of a deuteron spark source for neutron generators using hydrogen isotope fusion reactions are reported. The ion source uses a spark discharge between electrodes coated with a deuterated hydrocarbon liquid, here Santovac 5, to inhibit permanent electrode erosion and extend the lifetime of high-output neutron generator spark ion sources. Thompson parabola mass spectra show that principally hydrogen and deuterium ions are extracted from the ion source. Hydrogen is the chief residual gas phase species produced due to source operation in a stainless-steel vacuum chamber. The prominent features of the optical emission spectra of the discharge are C+ lines, the hydrogen Balmer Hα-line, and the C2 Swan bands. Operation of the ion source was studied in a conventional laboratory neutron generator. The source delivered an average deuteron current of ˜0.5 A nominal to the target in a 5 μs duration pulse at 1 Hz with target voltages of -80 to -100 kV. The thickness of the hydrocarbon liquid in the spark gap and the consistency thereof from spark to spark influences the deuteron yield and plays a role in determining the beam-focusing characteristics through the applied voltage necessary to break down the spark gap. Higher breakdown voltages result in larger ion beam spots on the target and vice-versa. Because the liquid self-heals and thereby inhibits permanent electrode erosion, the liquid-based source provides long life, with 104 pulses to date, and without clear evidence that, in principle, the lifetime could not be much longer. Initial experiments suggest that an alternative cylindrical target-type generator design can extract approximately 10 times the deuteron current from the source. Preliminary data using the deuterated source liquid as a neutron-producing target are also presented.
Fluidized bed selective pyrolysis of coal
Shang, J.Y.; Cha, C.Y.; Merriam, N.W.
1992-12-15
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.
Fluidized bed selective pyrolysis of coal
Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.
1992-01-01
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.
NASA Astrophysics Data System (ADS)
Marble, J.; Carroll, K. C.; Brusseau, M. L.; Plaschke, M.; Brinker, F.
2013-12-01
Source zones located in relatively deep, low-permeability formations provide special challenges for remediation. Application of permeable reactive barriers, in-situ thermal, or electrokinetic methods would be expensive and generally impractical. In addition, the use of enhanced mass-removal approaches based on reagent injection (e.g., ISCO, enhanced-solubility reagents) is likely to be ineffective. One possible approach for such conditions is to create a persistent treatment zone for purposes of containment. This study examines the efficacy of this approach for containment and treatment of contaminants in a lower permeability zone using potassium permanganate (KMnO4) as the reactant. A localized 1,1-dichloroethene (DCE) source zone is present in a section of the Tucson International Airport Area (TIAA) Superfund Site. Characterization studies identified the source of DCE to be located in lower-permeability strata adjacent to the water table. Bench-scale studies were conducted using core material collected from boreholes drilled at the site to measure DCE concentrations and determine natural oxidant demand. The reactive zone was created by injecting ~1.7% KMnO4 solution into multiple wells screened within the lower-permeability unit. The site has been monitored for ~8 years to characterize the spatial distribution of DCE and permanganate. KMnO4 continues to persist at the site, demonstrating successful creation of a long-term reactive zone. Additionally, the footprint of the DCE contaminant plume in groundwater has decreased continuously with time. This project illustrates the application of ISCO as a reactive-treatment system for lower-permeability source zones, which appears to effectively mitigate persistent mass flux into groundwater.
Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC
Roberts, George W.; Tao, John C.
1985-01-01
In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.
NASA Astrophysics Data System (ADS)
Sharma, S. P.; Biswas, A.
2012-12-01
South Purulia Shear Zone (SPSZ) is an important region for prospecting of uranium mineralization. Geological studies and hydro-uranium anomaly suggest the presence of Uranium deposit around Raghunathpur village which lies about 8 km north of SPSZ. However, detailed geophysical investigations have not been carried out in this region for investigation of uranium mineralization. Since surface signature of uranium mineralization is not depicted near the location, a deeper subsurface source is expected for hydro uranium anomaly. To delineate the subsurface structure and to investigate the origin of hydro-uranium anomaly present in the area, Vertical Electrical Sounding (VES) using Schlumberger array and Gradient Resistivity Profiling (GRP) were performed at different locations along a profile perpendicular to the South Purulia Shear Zone. Apparent resistivity computed from the measured sounding data at various locations shows a continuously increasing trend. As a result, conventional apparent resistivity data is not able to detect the possible source of hydro uranium anomaly. An innovative approach is applied which depicts the apparent conductivity in the subsurface revealed a possible connection from SPSZ to Raghunathpur. On the other hand resistivity profiling data suggests a low resistive zone which is also characterized by low Self-Potential (SP) anomaly zone. Since SPSZ is characterized by the source of uranium mineralization; hydro-uranium anomaly at Raghunathpur is connected with the SPSZ. The conducting zone has been delineated from SPSZ to Raghunathpur at deeper depths which could be uranium bearing. Since the location is also characterized by a low gravity and high magnetic anomaly zone, this conducting zone is likely to be mineralized zone. Keywords: Apparent resistivity; apparent conductivity; Self Potential; Uranium mineralization; shear zone; hydro-uranium anomaly.
The Assembly and Emplacement of the Mushy Magma Model: A Historical Perspective
NASA Astrophysics Data System (ADS)
Bergantz, G. W.
2012-12-01
The "mush model" for magmatic systems has emerged as an alternative to the classic notion of a silicate liquid dominated reservoir, the so-called big tank model. The mush model is motivated by a concurrence of geochemical, geophysical and geological observations and new ideas on multiphase fluid dynamics. This presentation will review the historical development and remaining open questions about the mush model as it pertains to silicic systems. The observation that rhyolites have extreme depletions in Sr, Ba and Eu, as well as depletions in Zr and LREE, precluded an origin by direct crustal melting, instead requiring crystallization differentiation. This initially motivated the sidewall crystallization model, where less dense, evolved liquid originated and percolated upwards through a crystal-rich boundary zone, adjacent to a liquid dominated reservoir. The 'defrosting' or remobilization of this sidewall was proposed as a mechanism for producing complex temporal signatures in erupted suites, and this notion later found additional support in the recognition of so-called 'antecrysts.' Lab bench scale tank models of crystallizing salt solutions were offered as analogs for these boundary layer driven magmatic systems. However, it was recognized that features of this boundary layer model that did not agree with seismic, gravity and magnetotelluric, and geological observations. Seismic studies of silicic systems typically indicate P-wave velocity anomalies of 15% or greater for both shallow and deeper systems. But they do not show velocity anomalies that would indicate substantial regions of pure liquid in the core. Rather, the geophysical anomalies, are consistent with a with a spatially extensive crystal mush with an overlying thin melt lens. In addition the observation that erupted crystal poor liquids abruptly transition into crystal rich magmas with interstitial liquid compositions that are nearly identical to the crystal poor ones, provides evidence of a geometrical and source relationship between crystal poor and subjacent crystal rich mush. Lastly, it was appreciated that the boundary layer fluid dynamic models lacked geological verisimilitude, and invoked assumptions on heat transfer rates that were not in accord with geological conditions. Taken together this required a new conceptual model that could honor a broader range of constraints, and led to the 'full chamber' mush model as described by Hildreth (2001, 2004, 2007) and subsequently Bachmann and Bergantz (2004, 2008). However there are many open questions about this model, particularly how they are assembled, the physics of melt movement and mixing, and the way they respond to open system events. For example it is now recognized that crystal mushes can be remobilized rapidly and mineral isotopic and trace element zoning requires that the mush can go through some re-melting, consistent with the unzipping model of Burgisser and Bergantz (2011).
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
Park, Kyoung-Duck; Park, Doo Jae; Lee, Seung Gol; Choi, Geunchang; Kim, Dai-Sik; Byeon, Clare Chisu; Choi, Soo Bong; Jeong, Mun Seok
2014-02-21
A resonant shift and a decrease of resonance quality of a tuning fork attached to a conventional fiber optic probe in the vicinity of liquid is monitored systematically while varying the protrusion length and immersion depth of the probe. Stable zones where the resonance modification as a function of immersion depth is minimized are observed. A wet near-field scanning optical microscope (wet-NSOM) is operated for a sample within water by using such a stable zone.
A New Method to Grow SiC: Solvent-Laser Heated Floating Zone
NASA Technical Reports Server (NTRS)
Woodworth, Andrew A.; Neudeck, Philip G.; Sayir, Ali
2012-01-01
The solvent-laser heated floating zone (solvent-LHFZ) growth method is being developed to grow long single crystal SiC fibers. The technique combines the single crystal fiber growth ability of laser heated floating zone with solvent based growth techniques (e.g. traveling solvent method) ability to grow SiC from the liquid phase. Initial investigations reported in this paper show that the solvent-LHFZ method readily grows single crystal SiC (retains polytype and orientation), but has a significant amount of inhomogeneous strain and solvent rich inclusions.
Neutron crosstalk between liquid scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.
2015-05-01
We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators wasmore » modeled to illustrate the improvement of the mass reconstruction.« less
On the prediction of spray angle of liquid-liquid pintle injectors
NASA Astrophysics Data System (ADS)
Cheng, Peng; Li, Qinglian; Xu, Shun; Kang, Zhongtao
2017-09-01
The pintle injector is famous for its capability of deep throttling and low cost. However, the pintle injector has been seldom investigated. To get a good prediction of the spray angle of liquid-liquid pintle injectors, theoretical analysis, numerical simulations and experiments were conducted. Under the hypothesis of incompressible and inviscid flow, a spray angle formula was deduced from the continuity and momentum equations based on a control volume analysis. The formula was then validated by numerical and experimental data. The results indicates that both geometric and injection parameters affect the total momentum ratio (TMR) and then influence the spray angle formed by liquid-liquid pintle injectors. TMR is the pivotal non-dimensional number that dominates the spray angle. Compared with gas-gas pintle injectors, spray angle formed by liquid-liquid injectors is larger, which benefits from the local high pressure zone near the pintle wall caused by the impingement of radial and axial sheets.
Rapid Crystallization of the Bishop Magma
NASA Astrophysics Data System (ADS)
Gualda, G. A.; Anderson, A. T.; Sutton, S. R.
2007-12-01
Substantial effort has been made to understand the longevity of rhyolitic magmas, and particular attention has been paid to the systems in the Long Valley area (California). Recent geochronological data suggest discrete magma bodies that existed for hundreds of thousands of years. Zircon crystallization ages for the Bishop Tuff span 100-200 ka, and were interpreted to reflect slow crystallization of a liquid-rich magma. Here we use the diffusional relaxation of Ti zoning in quartz to investigate the longevity of the Bishop magma. We have used such an approach to show the short timescales of crystallization of Ti-rich rims on quartz from early- erupted Bishop Tuff. We have now recognized Ti-rich cores in quartz that can be used to derive the timescales of their crystallization. We studied four samples of the early-erupted Bishop. Hand-picked crystals were mounted on glass slides and polished. Cathodoluminescence (CL) images were obtained using the electron microprobe at the University of Chicago. Ti zoning was documented using the GeoSoilEnviroCARS x-ray microprobe at the Advanced Photon Source (Argonne National Lab). Quartz crystals in all 4 samples include up to 3 Ti-bearing zones: a central core (50-100 μm in diameter, ca. 50 ppm Ti), a volumetrically predominant interior (~40 ppm Ti), and in some crystals a 50-100 μm thick rim (50 ppm Ti). Maximum estimates of core residence times were calculated using a 1D diffusion model, as the time needed to smooth an infinitely steep profile to fit the observed profile. Surprisingly, even for the largest crystals studied - ca. 2 mm in diameter - core residence times are less than 1 ka. Calculated growth rates imply that even cm-sized crystals crystallized in less than 10 ka. Crystal size distribution data show that crystals larger than 3 mm are exceedingly rare, such that the important inference is that the bulk of the crystallization of the early-erupted Bishop magma occurred in only a few thousand years. This timescale is 2 orders of magnitude smaller than the shortest durations derived from geochronology. In the current paradigm, this implies that the Bishop magma existed virtually free of crystals for 100-200 ka. Occasional recharge of the system could cause resorption of crystals. The challenge, however, is to explain how a large- volume, liquid- and volatile-rich system, was prevented from erupting for over 100 ka. The trouble is such that it puts into question the whole concept of a long-lived, liquid-rich magma body. Evidence has accumulated to show that the Bishop magma was stratified and did not convect during crystallization, the stratification was established prior to phenocryst crystallization, and crystal migration did not significantly perturb the stratification. All these are simpler to explain if liquid-rich magma only existed for a short period of time, and we estimate the time as being on the order of 1 ka. The geospeedometric timescale inferred can be reconciled with the geochronological evidence if we interpret zircon crystallization ages as reflecting episodic growth in response to waxing and waning of a mushy body, rather than continuous crystallization from liquid-rich magma in a long-lived, large-volume magma body. We speculate that only after 100-200 ka did favorable conditions emerge and allowed for the generation of a large volume of liquid-rich magma. Once such a body of magma was established, it progressed rather quickly towards eruption.
Sound Visualization and Holography
ERIC Educational Resources Information Center
Kock, Winston E.
1975-01-01
Describes liquid surface holograms including their application to medicine. Discusses interference and diffraction phenomena using sound wave scanning techniques. Compares focussing by zone plate to holographic image development. (GH)
Crucible-free pulling of germanium crystals
NASA Astrophysics Data System (ADS)
Wünscher, Michael; Lüdge, Anke; Riemann, Helge
2011-03-01
Commonly, germanium crystals are grown after the Czochralski (CZ) method. The crucible-free pedestal and floating zone (FZ) methods, which are widely used for silicon growth, are hardly known to be investigated for germanium. The germanium melt is more than twice as dense as liquid silicon, which could destabilize a floating zone. Additionally, the lower melting point and the related lower radiative heat loss is shown to reduce the stability especially of the FZ process with the consequence of a screw-like crystal growth. We found that the lower heat radiation of Ge can be compensated by the increased convective cooling of a helium atmosphere instead of the argon ambient. Under these conditions, the screw-like growth could be avoided. Unfortunately, the helium cooling deteriorates the melting behavior of the feed rod. Spikes appear along the open melt front, which touch on the induction coil. In order to improve the melting behavior, we used a lamp as a second energy source as well as a mixture of Ar and He. With this, we found a final solution for growing stable crystals from germanium by using both gases in different parts of the furnace. The experimental work is accompanied by the simulation of the stationary temperature field. The commercially available software FEMAG-FZ is used for axisymmetric calculations. Another tool for process development is the lateral photo-voltage scanning (LPS), which can determine the shape of the solid-liquid phase boundary by analyzing the growth striations in a lateral cut of a grown crystal. In addition to improvements of the process, these measurements can be compared with the calculated results and, hence, conduce to validate the calculation.
NASA Astrophysics Data System (ADS)
Chu, R. K.; Anderton, C.; Weston, D. J.; Carrell, A. A.; Paša-Tolić, L.; Veličković, D.; Tfaily, M.
2017-12-01
The rhizosphere consists of a diverse community of plants, bacteria and fungi that are interacting with each other and with complex soil matrix they occupy. By studying the chemical signaling and processes that occur within this dynamic microenvironment, we will further our understanding of the symbiotic and competitive interaction within microbial communities. Field studies and bulk analyses shed light on the mechanisms by which environmental perturbations alter carbon and nitrogen cycling, but what is less clear are the intra- and interspecies molecular transformations and transactions between the different constituents within the rhizosphere. Chemical imaging by liquid extraction surface analysis mass spectrometry (LESA-MS) is a highly sensitive technique capable of providing both spatial and molecular information. Here, we examined the chemical interactions among a tripartite system of peat moss (Sphagnum fallax), cyanobacteria (Nostoc muscorium), and fungus (Trizdiaspa). We coupled LESA source to both a 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS), for ultrahigh mass resolution and mass accuracy results, and a Thermo Velos-LTQ mass spectrometer, for tandem MS of selected molecules to increase confidence in molecular identifications. With LESA-MS approach we spatially probed the tripartite interactions and isolated cultures using a coordinate system that can be mapped back and overlaid onto the original image. Using this method, we mapped an array of metabolic distributions within the model sphagnum microbiome. For instance, we identified carbendazim, an anti-fungal agent, distributed within the interaction zone between the bacteria and fungi, while glyceropcholine and sucrose were localized within the sphagnum and fungus interaction zone. Further analysis will look into larger metabolites, lipids, and small proteins.
Warwick, Peter D.
2017-09-27
The U.S. Geological Survey (USGS) recently conducted an assessment of the undiscovered, technically recoverable oil and gas potential of Tertiary strata underlying the onshore areas and State waters of the northern Gulf of Mexico coastal region. The assessment was based on a number of geologic elements including an evaluation of hydrocarbon source rocks, suitable reservoir rocks, and hydrocarbon traps in an Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System defined for the region by the USGS. Five conventional assessment units (AUs) were defined for the Midway (Paleocene) and Wilcox (Paleocene-Eocene) Groups, and the Carrizo Sand of the Claiborne Group (Eocene) interval including: (1) the Wilcox Stable Shelf Oil and Gas AU; (2) the Wilcox Expanded Fault Zone Gas and Oil AU; (3) the Wilcox-Lobo Slide Block Gas AU; (4) the Wilcox Slope and Basin Floor Gas AU; and (5) the Wilcox Mississippi Embayment AU (not quantitatively assessed).The USGS assessment of undiscovered oil and gas resources for the Midway-Wilcox-Carrizo interval resulted in estimated mean values of 110 million barrels of oil (MMBO), 36.9 trillion cubic feet of gas (TCFG), and 639 million barrels of natural gas liquids (MMBNGL) in the four assessed units. The undiscovered oil resources are almost evenly divided between fluvial-deltaic sandstone reservoirs within the Wilcox Stable Shelf (54 MMBO) AU and deltaic sandstone reservoirs of the Wilcox Expanded Fault Zone (52 MMBO) AU. Greater than 70 percent of the undiscovered gas and 66 percent of the natural gas liquids (NGL) are estimated to be in deep (13,000 to 30,000 feet), untested distal deltaic and slope sandstone reservoirs within the Wilcox Slope and Basin Floor Gas AU.
Microgravity Experiment: The Fate of Confined Shock Waves
NASA Astrophysics Data System (ADS)
Kobel, P.; Obreschkow, D.; Dorsaz, N.; de Bosset, A.; Farhat, M.
2007-11-01
Shockwave induced cavitation is a form of hydrodynamic cavitation generated by the interaction of shock waves with vapor nuclei and microscopic impurities. Both the shock waves and the induced cavitation are known as sources of erosion damage in hydraulic industrial systems and hence represent an important research topic in fluid dynamics. Here we present the first investigation of shock wave induced cavitation inside closed and isolated liquid volumes, which confine the shock wave by reflections and thereby promise a particularly strong coupling with cavitation. A microgravity platform (ESA, 42^nd parabolic flight campaign) was used to produce stable water drops with centimetric diameters. Inside these drops, a fast electrical discharge was generated to release a strong shock wave. This setting results in an amplified form of shockwave induced cavitation, visible in high-speed images as a transient haze of sub-millimetric bubbles synchronized with the shockwave radiation. A comparison between high-speed visualizations and 3D simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.
Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km 2 (75 mi 2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agenciesmore » (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.« less
Portable NIR bottled liquid explosive detector
NASA Astrophysics Data System (ADS)
Itozaki, Hideo; Ono, Masaki; Ito, Shiori; Uekawa, Keisuke; Miyato, Yuji; Sato-Akaba, Hideo
2016-05-01
A near infrared bottled liquid scanner has been developed for security check at airports for anti-terrorism. A compact handheld liquid scanner has been developed using an LED as a light source, instead of a halogen lamp. An LED has much smaller size, longer life time and lower power consumption than those of the lamp. However, it has narrower wave band. Here, we tried to use LEDs to scan liquids and showed the possibility that LEDs can be used as a light source of liquid detector.
NASA Astrophysics Data System (ADS)
Koproch, Nicolas; Popp, Steffi; Köber, Ralf; Beyer, Christof; Bauer, Sebastian; Dahmke, Andreas
2016-04-01
Shallow thermal energy storage has great potential for heat storage especially in urban and industrial areas. However, frequently existing organic groundwater contaminations in such areas were currently seen as exclusion criteria for thermal use of the shallow subsurface, since increased contaminant discharge is feared as consequence of heating. Contaminant discharge is influenced by a complex interaction of processes and boundary conditions as e.g. solubility, dispersion, viscosity and degradation, where there is still a lack of experimental evidence of the temperature dependent interaction. Even existing studies on basic influencing factors as e.g. temperature dependent solubilities show contradictory results. Such knowledge gaps should be reduced to improve the basis and liability of numerical model simulations and the knowledge base to enable a more differentiated and optimized use of resources. For this purpose batch as well as 1- and 2-dimensional experimental studies concerning the temperature dependent release of TCE (trichloroethylene) from a NAPL (non aqueous phase liquid) source are presented and discussed. In addition, this experimental studies are accompanied by a numerical model verification, where extensions of existing numerical model approaches on basis of this obtained experimental results are developed. Firstly, temperature dependent TCE solubility data were collected using batch experiments with significantly better temperature resolution compared to earlier studies, showing a distinct minimum at 35°C and increased solubility towards 5°C and 70°C. Secondly, heated 1-dimensional stainless steel columns homogenously filled with quartz sand were used to quantify source zone depletion and contaminant discharge at 10-70°C. Cumulative mass discharge curves indicated two blob categories with distinct differences in dissolution kinetics. Increasing the temperature showed here an increase of the amount of fast dissolving blobs indicating higher NAPL-water contact areas. Thirdly, heatable 2D-tanks (40 cm x 25 cm x 10 cm) homogenously filled with quartz sand and percolated by distilled H2O were used to investigate the dissolution behavior and plume development of TCE from a residual source zone (5 cm x 5 cm x 10 cm) at 10-70°C. Using NAPL source zone saturation of 5% (Case A) and 20% (Case B) two exemplary cases of a depleted and a fresh source zone were investigated. TCE outflow concentrations in case A increased continuously with increasing temperature, but were controlled by the temperature-dependent solubility in Case B. The experimental results showed that the TCE mass transfer rate has a minimum at about 40°C, if dissolution is non-rate limited and a continuous increase with increasing temperature for rate-limited systems. Implementation of temperature dependent NAPL dissolution and two different blob categories with different mass transfer rate coefficients in the OpenGeoSys code proved successful in reproducing the experimental results. Acknowledgments: The presented work is part of the ANGUS+ project (03EK3022) funded by the German Ministry of Education and Research (BMBF).
UV Habitable Zones Further Constrain Possible Life
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-02-01
Where should we search for life in the universe? Habitable zones are traditionallydetermined based on the possibility of liquid water existing on a planet but ultraviolet (UV) radiation also plays a key role.The UV Habitable ZoneSchematic showing how the traditional habitable zones location and width changes around different types of stars. The UV habitable zone also hasdifferent locations and widths depending on the mass and metallicity of the star. [NASA/Kepler Mission/Dana Berry]Besides the presence of liquid water, there are other things life may need to persist. For life as we know it, one important elementis moderate UV radiation: if a planet receives too little UV flux, many biological compounds cant be synthesized. If it receives too much, however, then terrestrial biological systems (e.g. DNA) can be damaged.To determinethe most likely place to findpersistent life, we should therefore look for the region where a stars traditional habitable zone, within which liquid water is possible, overlaps with its UV habitable zone, within which the UV flux is at the right level to support life.Relationship between the stellar mass and location of the boundaries of the traditional and UV habitable zones for a solar-metallicity star. din and dout denote inner and outer boundaries, respectively. ZAMS and TMS denote when the star joins and leaves the main sequence, respectively. The traditional and UV habitable zones overlap only for stars of 11.5 solar masses. [Adapted from Oishi and Kamaya 2016]Looking for OverlapIn a recent study, two scientists from the National Defense Academy of Japan, Midori Oishi and Hideyuki Kamaya, explored howthe location of this UV habitable zone and that of its overlap with the traditional habitable zone might be affected by a stars mass and metallicity.Oishi and Kamaya developed a simple evolutional model of the UV habitable zone in stars in the mass range of 0.084 solar masses with metallicities of roughly solar metallicity (Z=0.02), a tenth of solar metallicity, and a hundredth of solar metallicity.They calculate the location of the inner and outer UV habitable zone boundaries for each star at the beginning and end of its main-sequence life. They then determine the region for which the UV habitable zone and the traditional habitable zone overlap which maximizes the potential to support persistent life.The Field NarrowsRelationship between the stellar mass and location of the boundaries of the traditional and UV habitable zones for a star of one hundredth solar metallicity. The traditional and UV habitable zones do not overlap for stars of any mass. [Adapted from Oishi and Kamaya 2016]Oishi and Kamaya find that taking the UV habitable zone into account unsurprisingly decreases the places where persistent life might be found. For solar-metallicity stars, for instance, only those stars between 1.01.5 solar masses even have overlapping traditional and UV habitable zones.As metallicity of the host star decreases, the overlapping regions decrease as well: at a metallicity of one hundredth that of the Sun (Z=0.0002), the UV and traditional habitable zones do not overlap for any mass star.The authors point out that this does not necessarily mean that such stars cant support life. Stellar activity such as flares and coronal mass ejections can temporarily increase UV flux, possibly providing enough to make up for low steady-state flux. And oceans on planetary surfaces could shield potential life from UV flux that is too high.Nonetheless, the estimates of the UV habitable zone in this study help us to narrow down the most probableplaces for findinglife in the universe.CitationMidori Oishi and Hideyuki Kamaya 2016 ApJ 833 293. doi:10.3847/1538-4357/833/2/293
Mainhagu, Jon; Morrison, C.; Truex, Michael J.; ...
2014-08-05
A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. Amore » well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.« less
NASA Astrophysics Data System (ADS)
Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf
2017-04-01
A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions contribute less to the image quality as fracture zone azimuth increases. Our optimization methodology is best suited for designing future field surveys with a favorable benefit-cost ratio in areas with significant à priori knowledge. Moreover, our optimization workflow is valuable for selecting useful subsets of acquired data for optimum target-oriented processing.
NASA Astrophysics Data System (ADS)
Somei, K.; Asano, K.; Iwata, T.; Miyakoshi, K.
2012-12-01
After the 1995 Kobe earthquake, many M7-class inland earthquakes occurred in Japan. Some of those events (e.g., the 2004 Chuetsu earthquake) occurred in a tectonic zone which is characterized as a high strain rate zone by the GPS observation (Sagiya et al., 2000) or dense distribution of active faults. That belt-like zone along the coast in Japan Sea side of Tohoku and Chubu districts, and north of Kinki district, is called as the Niigata-Kobe tectonic zone (NKTZ, Sagiya et al, 2000). We investigate seismic scaling relationship for recent inland crustal earthquake sequences in Japan and compare source characteristics between events occurring inside and outside of NKTZ. We used S-wave coda part for estimating source spectra. Source spectral ratio is obtained by S-wave coda spectral ratio between the records of large and small events occurring close to each other from nation-wide strong motion network (K-NET and KiK-net) and broad-band seismic network (F-net) to remove propagation-path and site effects. We carefully examined the commonality of the decay of coda envelopes between event-pair records and modeled the observed spectral ratio by the source spectral ratio function with assuming omega-square source model for large and small events. We estimated the corner frequencies and seismic moment (ratio) from those modeled spectral ratio function. We determined Brune's stress drops of 356 events (Mw: 3.1-6.9) in ten earthquake sequences occurring in NKTZ and six sequences occurring outside of NKTZ. Most of source spectra obey omega-square source spectra. There is no obvious systematic difference between stress drops of events in NKTZ zone and others. We may conclude that the systematic tendency of seismic source scaling of the events occurred inside and outside of NKTZ does not exist and the average source scaling relationship can be effective for inland crustal earthquakes. Acknowledgements: Waveform data were provided from K-NET, KiK-net and F-net operated by National Research Institute for Earth Science and Disaster Prevention Japan. This study is supported by Multidisciplinary research project for Niigata-Kobe tectonic zone promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.
Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam
NASA Astrophysics Data System (ADS)
Anisimov, S. I.; Zhakhovsky, V. V.; Inogamov, N. A.; Murzov, S. A.; Khokhlov, V. A.
2017-06-01
This paper considers the effect of an ultrashort laser pulse on a thin gold film on a glass substrate at a focal spot size near 1 μm. We analyse the motion and thermal history of a film that has peeled off from the substrate in the heating spot as a consequence of melting. The detached zone is shown to form a domeshaped bump whose motion is hindered by surface tension. After the dome stops and turns back, towards the substrate, a jet begins to grow on its top. Concurrently, because of the heat dissipation in the film, melt recrystallisation begins, involving first the dome and then the jet. The liquid part of the jet elongates and breaks up into droplets because of the Plateau-Rayleigh instability development. The formation of a neck and the detachment of the last droplet occur in the solidification zone between the crystalline and liquid parts of the jet. The propagation of the crystallisation zone in the jet leads the necking process, so neck disruption occurs in the solid phase under nonequilibrium crystallisation conditions (the melt temperature is hundreds of kelvins lower than the melting point), at limiting mechanical stress and at high deformation rates. As a result, the jet transforms into a high needle with an extremely small tip radius (a few nanometres).
On the Biohabitability of M-dwarf Planets
NASA Astrophysics Data System (ADS)
Wandel, A.
2018-04-01
The recent detection of Earth-sized planets in the habitable zone of Proxima Centauri, Trappist-1, and many other nearby M-type stars has led to speculations whether liquid water and life actually exist on these planets. To a large extent, the answer depends on their yet unknown atmospheres, which may, however, be within observational reach in the near future by JWST, ELT, and other planned telescopes. We consider the habitability of planets of M-type stars in the context of their atmospheric properties, heat transport, and irradiation. Instead of the traditional definition of the habitable zone, we define the biohabitable zone, where liquid water and complex organic molecules can survive on at least part of the planetary surface. The atmospheric impact on the temperature is quantified in terms of the heating factor (a combination of greenhouse heating, stellar irradiation, albedo, etc.) and heat redistribution (horizontal energy transport). We investigate the biohabitable domain (where planets can support surface liquid water and organics) in terms of these two factors. Our results suggest that planets orbiting M-type stars may have life-supporting temperatures, at least on part of their surface, for a wide range of atmospheric properties. We apply this analyses to Proxima Cen b and the Trappist-1 system. Finally, we discuss the implications for the search of biosignatures and demonstrate how they may be used to estimate the abundance of photosynthesis and biotic planets.
Multi-Zone Liquid Thrust Chamber Performance Code with Domain Decomposition for Parallel Processing
NASA Technical Reports Server (NTRS)
Navaz, Homayun K.
2002-01-01
Computational Fluid Dynamics (CFD) has considerably evolved in the last decade. There are many computer programs that can perform computations on viscous internal or external flows with chemical reactions. CFD has become a commonly used tool in the design and analysis of gas turbines, ramjet combustors, turbo-machinery, inlet ducts, rocket engines, jet interaction, missile, and ramjet nozzles. One of the problems of interest to NASA has always been the performance prediction for rocket and air-breathing engines. Due to the complexity of flow in these engines it is necessary to resolve the flowfield into a fine mesh to capture quantities like turbulence and heat transfer. However, calculation on a high-resolution grid is associated with a prohibitively increasing computational time that can downgrade the value of the CFD for practical engineering calculations. The Liquid Thrust Chamber Performance (LTCP) code was developed for NASA/MSFC (Marshall Space Flight Center) to perform liquid rocket engine performance calculations. This code is a 2D/axisymmetric full Navier-Stokes (NS) solver with fully coupled finite rate chemistry and Eulerian treatment of liquid fuel and/or oxidizer droplets. One of the advantages of this code has been the resemblance of its input file to the JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee) standard TDK code, and its automatic grid generation for JANNAF defined combustion chamber wall geometry. These options minimize the learning effort for TDK users, and make the code a good candidate for performing engineering calculations. Although the LTCP code was developed for liquid rocket engines, it is a general-purpose code and has been used for solving many engineering problems. However, the single zone formulation of the LTCP has limited the code to be applicable to problems with complex geometry. Furthermore, the computational time becomes prohibitively large for high-resolution problems with chemistry, two-equation turbulence model, and two-phase flow. To overcome these limitations, the LTCP code is rewritten to include the multi-zone capability with domain decomposition that makes it suitable for parallel processing, i.e., enabling the code to run every zone or sub-domain on a separate processor. This can reduce the run time by a factor of 6 to 8, depending on the problem.
Sodium purification apparatus and method
Gould, Marc I. [Van Nuys, CA
1980-03-04
An apparatus for and method of collecting and storing oxide impurities contained in high-temperature liquid alkali metal. A method and apparatus are provided for nucleating and precipitating oxide impurities by cooling, wherein the nucleation and precipitation are enhanced by causing a substantial increase in pressure drop and corresponding change in the velocity head of the alkali metal. Thereafter the liquid alkali metal is introduced into a quiescent zone wherein the liquid velocity is maintained below a specific maximum whereby it is possible to obtain high oxide removal efficiencies without the necessity of a mesh or filter.
McMahon, P.B.; Böhlke, J.K.; Kauffman, L.J.; Kipp, K.L.; Landon, M.K.; Crandall, C.A.; Burow, K.R.; Brown, C.J.
2008-01-01
In 2003–2005, systematic studies in four contrasting hydrogeologic settings were undertaken to improve understanding of source and transport controls on nitrate movement to public supply wells (PSW) in principal aquifers of the United States. Chemical, isotopic, and age tracer data show that agricultural fertilizers and urban septic leachate were the primary sources of large nitrate concentrations in PSW capture zones at Modesto, California (Central Valley aquifer system) and York, Nebraska (High Plains aquifer). Urban septic leachate and fertilizer (possibly nonfarm) were the primary sources of large nitrate concentrations in PSW capture zones at Woodbury, Connecticut (glacial aquifer system), and Tampa, Florida (Floridan aquifer system), respectively. Nitrate fluxes to the water table were larger in agricultural settings than urban settings, indicating that it would be beneficial to reduce PSW capture zone areas in agricultural regions. Mixing calculations indicate that about 50 to 85% of the nitrate in water from the PSW could be from those modern anthropogenic sources, with the remainder coming from sources in old (>50 years) recharge or sources in young recharge in undisturbed settings such as forests. Excess N2 concentrations and age tracers showed that denitrification at Modesto occurred gradually (first‐order rate constant of 0.02/a) in a thick reaction zone following a ∼30‐year lag time after recharge. Denitrification generally was not an important nitrate sink at Woodbury. At York and Tampa, denitrification occurred rapidly (0.5 to 6/a) in thin reaction zones in fine‐grained sediments that separated the anoxic PSW producing zones from overlying oxic, high‐nitrate ground water. Particle tracking showed that a major pathway by which anthropogenic nitrate reached the York and Tampa PSW was by movement through long well screens crossing multiple hydrogeologic units (York) and by movement through karst features (Tampa), processes which reduced ground water residence times in the denitrifying zones. These results illustrate how PSW vulnerability to nitrate contamination depends on complex variations and interactions between contaminant sources, reaction rates, transit times, mixing, and perturbation of ground water flow in contrasting hydrogeologic settings.
NASA Astrophysics Data System (ADS)
McMahon, P. B.; BöHlke, J. K.; Kauffman, L. J.; Kipp, K. L.; Landon, M. K.; Crandall, C. A.; Burow, K. R.; Brown, C. J.
2008-04-01
In 2003-2005, systematic studies in four contrasting hydrogeologic settings were undertaken to improve understanding of source and transport controls on nitrate movement to public supply wells (PSW) in principal aquifers of the United States. Chemical, isotopic, and age tracer data show that agricultural fertilizers and urban septic leachate were the primary sources of large nitrate concentrations in PSW capture zones at Modesto, California (Central Valley aquifer system) and York, Nebraska (High Plains aquifer). Urban septic leachate and fertilizer (possibly nonfarm) were the primary sources of large nitrate concentrations in PSW capture zones at Woodbury, Connecticut (glacial aquifer system), and Tampa, Florida (Floridan aquifer system), respectively. Nitrate fluxes to the water table were larger in agricultural settings than urban settings, indicating that it would be beneficial to reduce PSW capture zone areas in agricultural regions. Mixing calculations indicate that about 50 to 85% of the nitrate in water from the PSW could be from those modern anthropogenic sources, with the remainder coming from sources in old (>50 years) recharge or sources in young recharge in undisturbed settings such as forests. Excess N2 concentrations and age tracers showed that denitrification at Modesto occurred gradually (first-order rate constant of 0.02/a) in a thick reaction zone following a ˜30-year lag time after recharge. Denitrification generally was not an important nitrate sink at Woodbury. At York and Tampa, denitrification occurred rapidly (0.5 to 6/a) in thin reaction zones in fine-grained sediments that separated the anoxic PSW producing zones from overlying oxic, high-nitrate ground water. Particle tracking showed that a major pathway by which anthropogenic nitrate reached the York and Tampa PSW was by movement through long well screens crossing multiple hydrogeologic units (York) and by movement through karst features (Tampa), processes which reduced ground water residence times in the denitrifying zones. These results illustrate how PSW vulnerability to nitrate contamination depends on complex variations and interactions between contaminant sources, reaction rates, transit times, mixing, and perturbation of ground water flow in contrasting hydrogeologic settings.
Low NO sub x heavy fuel combustor concept program
NASA Technical Reports Server (NTRS)
Russell, P.; Beal, G.; Hinton, B.
1981-01-01
A gas turbine technology program to improve and optimize the staged rich lean low NOx combustor concept is described. Subscale combustor tests to develop the design information for optimization of the fuel preparation, rich burn, quick air quench, and lean burn steps of the combustion process were run. The program provides information for the design of high pressure full scale gas turbine combustors capable of providing environmentally clean combustion of minimally of minimally processed and synthetic fuels. It is concluded that liquid fuel atomization and mixing, rich zone stoichiometry, rich zone liner cooling, rich zone residence time, and quench zone stoichiometry are important considerations in the design and scale up of the rich lean combustor.
Zero VOC, Coal Tar Free Splash Zone Coating (SZC)
2011-09-01
marketed a millable gum polysulfide known as the first synthetic rubber commercially made in the United States. Today, there are several liquid...polysulfide polymers have the same excellent overall solvent resistance properties as the millable gum polysulfides. However, the liquid polysulfides...to the epoxide group and displaces the tertiary amine to form a covalent sulfur-carbon bond. The tertiary amine is regenerated and is then available
Komor, Stephen C.; Magner, Joseph A.
1996-01-01
This study evaluates processes that affect nitrate concentrations in groundwater beneath riparian zones in an agricultural watershed. Nitrate pathways in the upper 2 m of groundwater were investigated beneath wooded and grass-shrub riparian zones next to cultivated fields. Because trees can be important components of the overall nitrate pathway in wooded riparian zones, water sources used by riparian trees and possible effects of trees on nitrate concentrations in groundwater were also investigated. Average nitrate concentrations in shallow groundwater beneath the cultivated fields were 5.5 mg/L upgradient of the wooded riparian zone and 3.5 mg/L upgradient of the grass-shrub zone. Shallow groundwater beneath the fields passed through the riparian zones and discharged into streams that had average nitrate concentrations of 8.5 mg/L (as N). Lateral variations of δD values in groundwater showed that mixing among different water sources occurred beneath the riparian zones. In the wooded riparian zone, nitrate concentrations in shallow groundwater were diluted by upwelling, nitrate-poor, deep groundwater. Upwelling deep groundwater contained ammonium with a δ15N of 5‰ that upon nitrification and mixing with nitrate in shallow groundwater caused nitrate δ15N values in shallow groundwater to decrease by as much as 19.5‰. Stream water penetrated laterally beneath the wooded riparian zone as far as 19 m from the stream's edge and beneath the grass-shrub zone as far as 27 m from the stream's edge. Nitrate concentrations in shallow groundwater immediately upgradient of where it mixed with stream water averaged 0.4 mg/L in the wooded riparian zone and 0.8 mg/L near the grass-shrub riparian zone. Nitrate concentrations increased toward the streams because of mixing with nitrate-rich stream water. Because nitrate concentrations were larger in stream water than shallow groundwater, concentrated nitrate in the streams cannot have come from shallow groundwater at these sites. Water sources of riparian trees were identified by comparing δD values of sap water, soil water, groundwater, and stream water. Soil water was the main water source for trees in the outer 4 to 6 m of one part of the wooded riparian zone and outer 10 m of another part. Groundwater was a significant water source for trees closer to the streams where the water table was less than about 2.1 to 2.7 m below the surface. No evidence was found in the nitrate concentration profiles that trees close to the streams that took up groundwater through their roots also took up nitrate from groundwater. The lack of such evidence is attributed to the nitrate concentration profiles being insufficiently sensitive indicators of nitrate removal by trees.
Capillary Ion Concentration Polarization for Power-Free Salt Purification
NASA Astrophysics Data System (ADS)
Park, Sungmin; Jung, Yeonsu; Cho, Inhee; Kim, Ho-Young; Kim, Sung Jae
2014-11-01
In this presentation, we experimentally and theoretically demonstrated the capillary based ion concentration polarization for power-free salt purification system. Traditional ion concentration polarization phenomenon has been studied for a decade for both fundamental nanoscale fluid dynamics and novel engineering applications such as desalination, preconcentration and energy harvesting devices. While the conventional system utilizes an external power source, the system based on capillary ion concentration polarization is capable of perm-selective ion transportation only by capillarity so that the same ion depletion zone can be formed without any external power sources. An ion concentration profile near the nanostructure was tracked using fluorescent probes and analyzed by solving the modified Nernst-Planck equation. As a result, the concentration in the vicinity of the nanostructure was at least 10 times lower than that of bulk electrolyte and thus, the liquid absorbed into the nanostructure had the low concentration. This mechanism can be used for the power free salt purification system which would be significantly useful in underdeveloped and remote area. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1301-02.
Szarka, Mate; Guttman, Andras
2017-10-17
We present the application of a smartphone anatomy based technology in the field of liquid phase bioseparations, particularly in capillary electrophoresis. A simple capillary electrophoresis system was built with LED induced fluorescence detection and a credit card sized minicomputer to prove the concept of real time fluorescent imaging (zone adjustable time-lapse fluorescence image processor) and separation controller. The system was evaluated by analyzing under- and overloaded aminopyrenetrisulfonate (APTS)-labeled oligosaccharide samples. The open source software based image processing tool allowed undistorted signal modulation (reprocessing) if the signal was inappropriate for the actual detection system settings (too low or too high). The novel smart detection tool for fluorescently labeled biomolecules greatly expands dynamic range and enables retrospective correction for injections with unsuitable signal levels without the necessity to repeat the analysis.
Plant hydrocarbon recovery process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzadzic, P.M.; Price, M.C.; Shih, C.J.
1982-01-26
A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within themore » range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.« less
NASA Astrophysics Data System (ADS)
Feng, Caixia; Bi, Xianwu; Liu, Shen; Hu, Ruizhong
2014-05-01
The Baiyangping Cu-Ag polymetallic ore district is located in the northern part of the Lanping-Simao foreland fold belt, which lies between the Jinshajiang-Ailaoshan and Lancangjiang faults in western Yunnan Province, China. The source of ore-forming fluids and materials within the eastern ore zone were investigated using fluid inclusion, rare earth element (REE), and isotopic (C, O, and S) analyses undertaken on sulfides, gangue minerals, wall rocks, and ores formed during the hydrothermal stage of mineralization. These analyses indicate: (1) The presence of five types of fluid inclusion, which contain various combinations of liquid (l) and vapor (v) phases at room temperature: (a) H2O (l), (b) H2O (l) + H2O (v), (c) H2O (v), (d) CmHn (v), and (e) H2O (l) + CO2 (l), sometimes with CO2 (v). These inclusions have salinities of 1.4-19.9 wt.% NaCl equivalents, with two modes at approximately 5-10 and 16-21 wt.% NaCl equivalent, and homogenization temperatures between 101 °C and 295 °C. Five components were identified in fluid inclusions using Raman microspectrometry: H2O, dolomite, calcite, CH4, and N2. (2) Calcite, dolomitized limestone, and dolomite contain total REE concentrations of 3.10-38.93 ppm, whereas wall rocks and ores contain REE concentrations of 1.21-196 ppm. Dolomitized limestone, dolomite, wall rock, and ore samples have similar chondrite-normalized REE patterns, with ores in the Huachangshan, Xiaquwu, and Dongzhiyan ore blocks having large negative δCe and δEu anomalies, which may be indicative of a change in redox conditions during fluid ascent, migration, and/or cooling. (3) δ34S values for sphalerite, galena, pyrite, and tetrahedrite sulfide samples range from -7.3‰ to 2.1‰, a wide range that indicates multiple sulfur sources. The basin contains numerous sources of S, and deriving S from a mixture of these sources could have yielded these near-zero values, either by mixing of S from different sources, or by changes in the geological conditions of seawater sulfate reduction to sulfur. (4) The C-O isotopic analyses yield δ13C values from ca. zero to -10‰, and a wider range of δ18O values from ca. +6 to +24‰, suggestive of mixing between mantle-derived magma and marine carbonate sources during the evolution of ore-forming fluids, although potential contributions from organic carbon and basinal brine sources should also be considered. These data indicate that ore-forming fluids were derived from a mixture of organism, basinal brine, and mantle-derived magma sources, and as such, the eastern ore zone of the Baiyangping polymetallic ore deposit should be classified as a “Lanping-type” ore deposit.
NASA Astrophysics Data System (ADS)
Thornber, C. R.; Rowe, M. C.; Adams, D. T.; Orr, T. R.
2010-12-01
Near-continuous eruption of Kilauea Volcano since 1983 has yielded an extensive record of glass, phenocryst and melt-inclusion chemistry from well-quenched lava that can be correlated with geophysical and geological monitoring data. Eruption temperatures are determined using glass thermometry. Microbeam evaluation of phenocryst mineralogy, morphology, texture, zoning and melt inclusions helps to constrain magma storage and transport within the edifice and to track the evolution of shallow magmatic plumbing during this prolonged eruptive era. For most of this eruption up to April 2001, east rift lava was olivine-phyric and olivine-liquid relations indicated equilibrium crystallization during summit-to-rift magma transport. From 2001 to present, most lava erupted from vents near Pu`u O`o has been a relatively low-temperature “hybrid”, characterized by a disequilibrium low-pressure phenocryst assemblage. Olivine (Fo81.5-80.5) coexists with phenocrysts of lower temperature clinopyroxene (±plagioclase, ±Fe-rich olivine). Mixing between hotter and cooler magma is texturally documented by complex pyroxene zoning and resorption and olivine overgrowths on resorbed pyroxene. The co-magmatic mixing is not apparent in bulk lava analyses, since both components are fractionates of parent magmas with indistinguishable trace-element signatures. Post-2001 rift-zone lava indicates perpetual flushing of stored magma by hotter recharge magma rising from the mantle source. Geophysical and gas monitoring data confirm an increase in magma supply to Kilauea Volcano between 2001 and 2008, which we have interpreted as increasing the efficiency of the flushing process. Since March 2008, the petrology of the new summit lava lake and contemporaneously erupted rift zone lava provides new perspective on complexities of magma degassing, crystallization and mixing prior to rift eruption. Bulk lava chemistry, SIMS and LA-ICPMS analyses of matrix glasses and olivine melt-inclusions in both rift zone lava and summit tephra reveal identical trace-element concentrations, thus confirming that both eruption sites share a common magma source. Because Kilauea magma degasses all of its primary sulfur (~1200 to 1500 ppm) at pressures less than 100 bars, shallow summit-to-rift magma mixing and crystallization is quantified by study of relative sulfur concentrations in melt inclusions. For higher temperature magma at the summit, olivine (Fo82.0-83.5) contains melt inclusions with 600-1400 ppm S. A small population of rift zone phenocrysts have similar sulfur contents, while typical rift zone olivine inclusions contain 300-700 ppm S. Complex zoned pyroxene phenocrysts with multiple inclusions have trapped melts of low to high sulfur concentrations ranging from100 to 1000 ppm. Collectively, these microbeam observations provide evidence for dynamic pre-eruptive comingling between hotter, sulfur-rich magma rising beneath the summit with a denser, cooler and degassed pyroxene-bearing magma mush, prior to eruption on the east rift.
Vapor Intrusion Estimation Tool for Unsaturated Zone Contaminant Sources. User’s Guide
2016-08-30
324449 Page Intentionally Left Blank iii Executive Summary Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants...strength and location, vadose zone transport, and a model for estimating movement of soil -gas vapor contamination into buildings. The tool may be...framework for estimating the impact of a vadose zone contaminant source on soil gas concentrations and vapor intrusion into a building
A statistical test for the habitable zone concept
NASA Astrophysics Data System (ADS)
Checlair, J.; Abbot, D. S.
2017-12-01
Traditional habitable zone theory assumes that the silicate-weathering feedback regulates the atmospheric CO2 of planets within the habitable zone to maintain surface temperatures that allow for liquid water. There is some non-definitive evidence that this feedback has worked in Earth history, but it is untested in an exoplanet context. A critical prediction of the silicate-weathering feedback is that, on average, within the habitable zone planets that receive a higher stellar flux should have a lower CO2 in order to maintain liquid water at their surface. We can test this prediction directly by using a statistical approach involving low-precision CO2 measurements on many planets with future instruments such as JWST, LUVOIR, or HabEx. The purpose of this work is to carefully outline the requirements for such a test. First, we use a radiative-transfer model to compute the amount of CO2 necessary to maintain surface liquid water on planets for different values of insolation and planetary parameters. We run a large ensemble of Earth-like planets with different masses, atmospheric masses, inert atmospheric composition, cloud composition and level, and other greenhouse gases. Second, we post-process this data to determine the precision with which future instruments such as JWST, LUVOIR, and HabEx could measure the CO2. We then combine the variation due to planetary parameters and observational error to determine the number of planet measurements that would be needed to effectively marginalize over uncertainties and resolve the predicted trend in CO2 vs. stellar flux. The results of this work may influence the usage of JWST and will enhance mission planning for LUVOIR and HabEx.
The Seismotectonic Model of Southern Africa
NASA Astrophysics Data System (ADS)
Midzi, Vunganai; Mulabisana, Thifelimbulu; Manzunzu, Brassnavy
2013-04-01
Presented in this report is a summary of the major structures and seismotectonic zones in Southern Africa (Botswana, Lesotho, Namibia, South Africa and Swaziland), which includes available information on fault plane solutions and stress data. Reports published by several experts contributed much to the prepared zones. The work was prepared as part of the requirements for the SIDA/IGCP Project 601 titled "Seismotectonics and Seismic Hazards in Africa" as well as part of the seismic source characterisation of the GEM-Africa Seismic hazard study. The seismic data used are part of the earthquake catalogue being prepared for the GEM-Africa project, which includes historical and instrumental records as collected from various agencies. Seventeen seismic zones/sources were identified and demarcated using all the available information. Two of the identiied sources are faults with reliable evidence of their activity. Though more faults have been identified in unpublished material as being active, more work is being carried out to obtain information that can be used to characterise them before they are included in the seismotectonic model. Explanations for the selected boundaries of the zones are also given in the report. It should be noted that this information is the first draft of the seismic source zones of the region. Futher interpreation of the data is envisaged which might result in more than one version of the zones.
Sihota, Natasha J; Singurindy, Olga; Mayer, K Ulrich
2011-01-15
In order to gain regulatory approval for source zone natural attenuation (SZNA) at hydrocarbon-contaminated sites, knowledge regarding the extent of the contamination, its tendency to spread, and its longevity is required. However, reliable quantification of biodegradation rates, an important component of SZNA, remains a challenge. If the rate of CO(2) gas generation associated with contaminant degradation can be determined, it may be used as a proxy for the overall rate of subsurface biodegradation. Here, the CO(2)-efflux at the ground surface is measured using a dynamic closed chamber (DCC) method to evaluate whether this technique can be used to assess the areal extent of the contaminant source zone and the depth-integrated rate of contaminant mineralization. To this end, a field test was conducted at the Bemidji, MN, crude oil spill site. Results indicate that at the Bemidji site the CO(2)-efflux method is able to both delineate the source zone and distinguish between the rates of natural soil respiration and contaminant mineralization. The average CO(2)-efflux associated with contaminant degradation in the source zone is estimated at 2.6 μmol m(-2) s(-1), corresponding to a total petroleum hydrocarbon mineralization rate (expressed as C(10)H(22)) of 3.3 g m(-2) day(-1).
NASA Astrophysics Data System (ADS)
Lawter, A.; Qafoku, N. P.; Garcia, W.; Lee, B.; Freedman, V. L.
2017-12-01
At the Hanford site in eastern Washington, depending on the particular waste site, radionuclide (Tc99/I129) laden liquid waste was not of a sufficient volume to carry the contamination through the vadose zone to the groundwater. Contaminants are therefore retained in the vadose zone, which represents a continuous source of these contaminants to groundwater through flux created by precipitation recharge. Deployment of treatment technologies in the vadose zone that will intercept flow from vadose zone recharge and sequester contaminants is needed for future groundwater protection. In this study, first we tested zero valent iron (ZVI) and sulfur modified iron (SMI) to determine the feasibility of using these materials to intercept Tc migrating from the vadose zone into the groundwater. Secondly, this study focused on testing the ZVI and SMI in conjunction with several potential amendments needed for capture of additional contaminants present (e.g., IO3) to immobilize contaminants both individually and combined. Previous testing has shown removal of IO3 by incorporation into calcite; these experiments test the effect of ZVI/SMI on the efficiency of the removal of IO3 by calcite and vice versa. Preliminary results have shown strong removal of high Tc concentrations (i.e., 22 ppm or 44 ppm) at solid to solution ratios of 1 g to 100 mL, but when the solid and the Tc concentration was scaled down to more field relevant conditions (i.e., 0.42 ppm), the Tc removal was slower and the amount of Tc removed (per gram of Fe solid) was decreased. In some tests, results indicated that there is no interference from IO3 on Tc removal, but presence of ZVI/SMI has a negative impact on the removal of IO3 by calcite incorporation, likely due to the fast reduction of iodate to iodide by the ZVI/SMI (iodide is usually not incorporated into calcite).
Contamination-Free Sonoreactor for the Food Industry
NASA Astrophysics Data System (ADS)
Dion, Jean-Luc
A new sonoreactor technology is presented here, which should open vast development possibilities in various fields of chemical, pharmaceutical, and food industries. It should give a decisive impulse to sonochemistry in these various areas. These exclusive systems use high-power converging acoustic waves in a tube to produce a relatively large volume confined acoustic cavitation zone in flowing liquid reagents. It is well known that numerous chemical reactions are strongly accelerated when they take place inside such a zone. The new cylindrical sonoreactors do not contaminate the processed liquids with erosion products as other devices do. The processing conditions can be widely varied with pressure, power, temperature, and flow rate. The processing capacity of the largest models may be up to several tons per hour, using an electric power input of about 50 kW.
Crystal defects in solar cells produced by the method of thermomigration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozovskii, V. N.; Lomov, A. A.; Lunin, L. S.
2017-03-15
The results of studying the crystal structure of regions in silicon, recrystallized during the course of thermomigration of the liquid Si–Al zone in the volume of the silicon substrate, are reported (similar regions doped with an acceptor impurity are used to obtain high-voltage solar cells). X-ray methods (including measurements of both diffraction-reflection curves and topograms) and also high-resolution electron microscopy indicate that single-crystal regions in the form of a series of thin strips or rectangular grids are formed as a result of the thermomigration of liquid zones. Dislocation half-loops are detected in the surface layers of the front and backmore » surfaces of the substrate. (311)-type defects are observed in the recrystallized regions.« less
Ullrich, Thomas; Wesenberg, Dirk; Bleuel, Corinna; Krauss, Gerd-Joachim; Schmid, Martin G; Weiss, Michael; Gübitz, Gerald
2010-10-01
The development of methods for the separation of the enantiomers of fenoterol by chiral HPLC and capillary zone electrophoresis (CZE) is described. For the HPLC separation precolumn fluorescence derivatization with naphthyl isocyanate was applied. The resulting urea derivatives were resolved on a cellulose tris(3,5-dimethylphenylcarbamate)-coated silica gel column employing a column switching procedure. Detection was carried out fluorimetrically with a detection limit in the low ng/mL range. The method was adapted to the determination of fenoterol enantiomers in rat heart perfusates using liquid-liquid extraction. As an alternative a CE method was used for the direct separation of fenoterol enantiomers comparing different cyclodextrin derivatives as chiral selectors. Copyright © 2010 John Wiley & Sons, Ltd.
An Earth-sized planet in the habitable zone of a cool star.
Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck
2014-04-18
The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.
Improvement in ultraviolet based decontamination rate using meta-materials
NASA Astrophysics Data System (ADS)
Enaki, Nicolae A.; Bazgan, Sergiu; Ciobanu, Nellu; Turcan, Marina; Paslari, Tatiana; Ristoscu, Carmen; Vaseashta, Ashok; Mihailescu, Ion N.
2017-09-01
We propose a method of decontamination using photon-crystals consisting of microspheres and fiber optics structures with various geometries. The efficient decontamination using the surface of the evanescent zone of meta-materials opens a new perspective in the decontamination procedures. We propose different topological structures of meta-materials to increase the contact surface of UV radiation with contaminated liquid. Recent observation of the trapping of dielectric particles along the fibers help us propose a new perspective on the new possibilities to trap the viruses, bacteria and other microorganisms from liquids, in this special zone, where the effective UV coherent Raman decontamination becomes possible. The nonlinear theory of the excitation of vibration modes of bio-molecule of viruses and bacteria is revised, taking into consideration the bimodal coherent states in coherent Raman excitation of biomolecules.
NASA Astrophysics Data System (ADS)
Ravi Shankar, A.; Gopalakrishnan, G.; Balusamy, V.; Kamachi Mudali, U.
2009-11-01
Commercially pure titanium (Ti) has been selected for the fabrication of dissolver for the proposed fast reactor fuel reprocessing plant at Kalpakkam, India. In the present investigation, microstructural changes and corrosion behavior of tungsten inert gas (TIG) welds of Ti grade-1 and grade-2 with different heat inputs were carried out. A wider heat affected zone was observed with higher heat inputs and coarse grains were observed from base metal toward the weld zone with increasing heat input. Fine and more equiaxed prior β grains were observed at lower heat input and the grain size increased toward fusion zone. The results indicated that Ti grade-1 and grade-2 with different heat inputs and different microstructures were insensitive to corrosion in liquid, vapor, and condensate phases of 11.5 M nitric acid tested up to 240 h. The corrosion rate in boiling liquid phase (0.60-0.76 mm/year) was higher than that in vapor (0.012-0.039 mm/year) and condensate phases (0.04-0.12 mm/year) of nitric acid for Ti grade-1 and grade-2, as well as for base metal for all heat inputs. Potentiodynamic polarization experiment carried out at room temperature indicated higher current densities and better passivation in 11.5 M nitric acid. SEM examination of Ti grade-1 welds for all heat inputs exposed to liquid phase after 240 h showed corrosion attack on the surface, exposing Widmanstatten microstructure containing acicular alpha. The continuous dissolution of the liquid-exposed samples was attributed to the heterogeneous microstructure and non-protective passive film formation.
NASA Astrophysics Data System (ADS)
Tarai, U. K.; Robi, P. S.; Pal, Sukhomay
2018-04-01
A Ni-Cr-Fe-Si-B based interlayer material was developed by mechanical alloying (MA) process in a high-energy planetary ball mill. Equiaxed alloy powders of size 12 µm was obtained after milling for 50 hours. X-ray diffraction analysis of the milled powder revealed that milling of elemental powders initially resulted in microcrystalline alloy powder having face centered cubic structure, which on subsequent milling resulted in nano-crystallice alloy powder with a crystallite size of 3.2 nm. XRD analysis also reveals formation of metastable eutectic alloys resulting in lowering of the melting point of the interlayer material to 1025 °C. IN 718 superalloy samples were joined at 1050°C using the developed interlayer. A homogeneous joint was formed by the newly developed interlayer material. Three different zones were observed at the bond (i) isothermally solidified zone, (ii) diffusion affected zone and (iii) unaffected base metal. In the diffusion-affected zone, boron was present at the grain boundaries of Ni γ matrix in bulky metal borides form. The diffusion of boron from interlayer material into the base material was mechanism of isothermal solidification and bond formation in transient liquid phase bonding of IN 718.
NASA Astrophysics Data System (ADS)
Maity, Joydeep; Pal, Tapan Kumar
2012-07-01
In the present study, the transient liquid-phase diffusion bonding of an aluminum metal matrix composite (6061-15 wt.% SiCp) has been investigated for the first time using a mixed Cu-Ni powder interlayer at 560 °C, 0.2 MPa, for different holding times up to 6 h. The microstructure of the isothermally solidified zone contains equilibrium precipitate CuAl2, metastable precipitate Al9Ni2 in the matrix of α-solid solution along with the reinforcement particles (SiC). On the other hand, the microstructure of the central bond zone consists of equilibrium phases such as NiAl3, Al7Cu4Ni and α-solid solution along with SiC particles (without any segregation) and the presence of microporosities. During shear test, the crack originates from microporosities and propagates along the interphase interfaces resulting in poor bond strength for lower holding times. As the bonding time increases, with continual diffusion, the structural heterogeneity is diminished, and the microporosities are eliminated at the central bond zone. Accordingly, after 6-h holding, the microstructure of the central bond zone mainly consists of NiAl3 without any visible microporosity. This provides a joint efficiency of 84% with failure primarily occurring through decohesion at the SiC particle/matrix interface.
NASA Astrophysics Data System (ADS)
Cejas, Cesare M.; Castaing, Jean-Christophe; Hough, Larry; Frétigny, Christian; Dreyfus, Rémi
2017-12-01
We characterize the water repartition within the partially saturated (two-phase) zone (PSZ) during evaporation from mixed wettable porous media by controlling the wettability of glass beads, their sizes, and as well the surrounding relative humidity. Here, capillary numbers are low and under these conditions, the percolating front is stabilized by gravity. Using experimental and numerical analyses, we find that the PSZ saturation decreases with the Bond number, where packing of smaller particles have higher saturation values than packing made of larger particles. Results also reveal that the extent (height) of the PSZ, as well as water saturation in the PSZ, both increase with wettability. We also numerically calculate the saturation exclusively contained in connected liquid films and results show that values are less than the expected PSZ saturation. These results strongly reflect that the two-phase zone is not solely made up of connected capillary networks but also made of disconnected water clusters or pockets. Moreover, we also find that global saturation (PSZ + full wet zone) decreases with wettability, confirming that greater quantity of water is lost via evaporation with increasing hydrophilicity. These results show that connected liquid films are favored in more-hydrophilic systems while disconnected water pockets are favored in less-hydrophilic systems.
Secondary electron ion source neutron generator
Brainard, John P.; McCollister, Daryl R.
1998-01-01
A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof
Delaney, David F.; Maevsky, Anthony
1980-01-01
Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)
NASA Astrophysics Data System (ADS)
Olson, Mitchell R.; Sale, Tom C.
2015-06-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (> 96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (< 4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (> 10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to > 99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time.
Cornell Mixing Zone Expert System
This page provides an overview Cornell Mixing Zone Expert System water quality modeling and decision support system designed for environmental impact assessment of mixing zones resulting from wastewater discharge from point sources
Integration of stripping of fines slurry in a coking and gasification process
DeGeorge, Charles W.
1980-01-01
In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.
NASA Astrophysics Data System (ADS)
Ishihara, T.
2003-12-01
The existence of magnetic anomalies along east-west trending fracture zones in the north Pacific is well known. These anomalies are particularly prominent in the Cretaceous magnetic quiet zone, where no comparable anomalies are observed other than those associated with the Hawaiian Ridge and the Musician Seamounts in a newly compiled magnetic anomaly map. Model calculation was conducted using old magnetic and bathymetric data collected in the Cretaceous magnetic quiet zone. Two-dimensional simple models along north-south lines, which cross the Mendocino, Pioneer, Murray, Molokai and Clarion Fracture Zones, were constructed in order to clarify the sources of these magnetic anomalies. In these model calculations, it was assumed that the source bodies have normal remanent magnetizations with their inclinations of about
NASA Astrophysics Data System (ADS)
Mannig, C. E.
2005-12-01
The chemistry of subduction-zone fluids is complicated by melt-vapor miscibility and the existence of critical end-points in rock-H2O systems. It is commonly assumed that fluids in subduction zones attain properties intermediate in composition between hydrous silicate liquid and H2O, and that such fluids possess enhanced material transport capabilities. However, the relevance of supercritical, intermediate fluids to subduction zones presents four problems. (1) Albite-H2O is typically used as an analogue system, but the favorable position of its critical curve is not representative; critical curves for polymineralic subduction-zone lithologies lie at substantially higher P. (2) Even if albite-H2O is relevant, jadeite may interfere because of its different solubility and the positive clapeyron slope of its solidus, which points to liquid-structure changes that could cause reappearance of the liquid+vapor field. (3) Critical curves are features of very H2O-rich compositions; low-porosity, H2O-poor natural systems will coexist with intermediate fluids only over a narrow PT interval. (4) Intermediate fluids are expected only over short length scales because their migration will likely result in compositional shifts via reaction and mineral precipitation in the mantle wedge. Although supercritical, intermediate fluids are probably relatively unimportant in subduction zones, they reflect a chemical process that may hold the key to understanding high- P mass transfer. Miscibility in melt-vapor systems is a consequence of polymerization of dissolved components, primarily Si ± Al, Na and Ca. This behavior yields, e.g., aqueous Si-Si, Si-Al, Si-Na-Al, and Si-Ca oxide dimers and other multimers of varying stoichiometry (silicate polymers), even in subcritical, dilute, H2O-rich vapor. Silicate polymers in subcritical aqueous solutions have been inferred from high- P mineral-solubility experiments. The abundance of these species at high P shows that the chemistry of aqueous fluids in subduction-zones differs fundamentally from the more familiar ionic solutions of the upper crust. This has important consequences for minor element transport. Measurements of Fe, phosphorous and Ti solubility reveal that dissolved concentrations rise with increased aqueous albite content at fixed P and T, with maximum enhancements exceeding 10X at melt saturation. Subcritical silicate polymerization thus permits transport of low solubility components via their substitution into sites on aqueous multimers constructed of "polymer formers" such as Na, Al, and Si, even in dilute solutions. The partitioning of elements between the bulk fluid, the polymer network, and the rock matrix likely controls the overall compositional evolution of subduction-zone fluids. Because they form over a wider PT and bulk X range, subcritical silicate polymers in dilute solutions are likely responsible for more mass transfer in subduction zones than intermediate, supercritical fluids.
Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport
Baehr, A.L.; Hoag, G.E.; Marley, M.C.
1989-01-01
Organic liquids inadvertently spilled and then distributed in the unsaturated zone can pose a long-term threat to ground water. Many of these substances have significant volatility, and thereby establish a premise for contaminant removal from the unsaturated zone by inducing advective air-phase transport with wells screened in the unsaturated zone. In order to focus attention on the rates of mass transfer from liquid to vapour phases, sand columns were partially saturated with gasoline and vented under steady air-flow conditions. The ability of an equilibrium-based transport model to predict the hydrocarbon vapor flux from the columns implies an efficient rate of local phase transfer for reasonably high air-phase velocities. Thus the success of venting remediations will depend primarily on the ability to induce an air-flow field in a heterogeneous unsaturated zone that will intersect the distributed contaminant. To analyze this aspect of the technique, a mathematical model was developed to predict radially symmetric air flow induced by venting from a single well. This model allows for in-situ determinations of air-phase permeability, which is the fundamental design parameter, and for the analysis of the limitations of a single well design. A successful application of the technique at a site once contaminated by gasoline supports the optimism derived from the experimental and modeliing phases of this study, and illustrates the well construction and field methods used to document the volatile contaminant recovery. ?? 1989.
Marble, Justin C.; Carroll, Kenneth C.; Janousek, Hilary; Brusseau, Mark L.
2010-01-01
The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment. PMID:20685008
Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites.
Adamson, David T; de Blanc, Phillip C; Farhat, Shahla K; Newell, Charles J
2016-08-15
Management of groundwater sites impacted by 1,4-dioxane can be challenging due to its migration potential and perceived recalcitrance. This study examined the extent to which 1,4-dioxane's persistence was subject to diffusion of mass into and out of lower-permeability zones relative to co-released chlorinated solvents. Two different release scenarios were evaluated within a two-layer aquifer system using an analytical modeling approach. The first scenario simulated a 1,4-dioxane and 1,1,1-TCA source zone where spent solvent was released. The period when 1,4-dioxane was actively loading the low-permeability layer within the source zone was estimated to be <3years due to its high effective solubility. While this was approximately an order-of-magnitude shorter than the loading period for 1,1,1-TCA, the mass of 1,4-dioxane stored within the low-permeability zone at the end of the simulation period (26kg) was larger than that predicted for 1,1,1-TCA (17kg). Even 80years after release, the aqueous 1,4-dioxane concentration was still several orders-of-magnitude higher than potentially-applicable criteria. Within the downgradient plume, diffusion contributed to higher concentrations and enhanced penetration of 1,4-dioxane into the low-permeability zones relative to 1,1,1-TCA. In the second scenario, elevated 1,4-dioxane concentrations were predicted at a site impacted by migration of a weak source from an upgradient site. Plume cutoff was beneficial because it could be implemented in time to prevent further loading of the low-permeability zone at the downgradient site. Overall, this study documented that 1,4-dioxane within transmissive portions of the source zone is quickly depleted due to characteristics that favor both diffusion-based storage and groundwater transport, leaving little mass to treat using conventional means. Furthermore, the results highlight the differences between 1,4-dioxane and chlorinated solvent source zones, suggesting that back diffusion of 1,4-dioxane mass may be serving as the dominant long-term "secondary source" at many contaminated sites that must be managed using alternative approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bondarenko, Yu. A.; Echin, A. B.; Kolodyazhnyi, M. Yu.; Surova, V. A.
2017-11-01
Peculiarities of the structure of a refractory eutectic alloy of the Nb - Si system, formed by the method of directed crystallization with liquid-metal coolant, have been studied. Characteristic zones of microstructure of the ingot obtained upon directed crystallization are considered, the alloy composition is analyzed, and volume fractions of phases in the Nb - Si composite are determined.
Flat liquid crystal diffractive lenses with variable focus and magnification
NASA Astrophysics Data System (ADS)
Valley, Pouria
Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2pi zone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm2/2mlambda, where r m is mth zone radius, and lambda is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (+/-2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera phones. A business plan centered on this technology was developed as part of the requirements for the minor in entrepreneurship from the Eller College of Management. An industrial analysis is presented in this study that involves product development, marketing, and financial analyses (Appendix I).
CONTROLLED FIELD STUDY ON THE USE OF NITRATE AND OXYGEN FOR BIOREMEDIATION OF A GASOLINE SOURCE ZONE
Controlled releases of unleaded gasoline were used to evaluate the biotransformation of the soluble aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene isomers, trimethylbenzene isomers, and naphthalene) within a source zone using nitrate and oxygen as electron accepto...
Earthquake Forecasting in Northeast India using Energy Blocked Model
NASA Astrophysics Data System (ADS)
Mohapatra, A. K.; Mohanty, D. K.
2009-12-01
In the present study, the cumulative seismic energy released by earthquakes (M ≥ 5) for a period 1897 to 2007 is analyzed for Northeast (NE) India. It is one of the most seismically active regions of the world. The occurrence of three great earthquakes like 1897 Shillong plateau earthquake (Mw= 8.7), 1934 Bihar Nepal earthquake with (Mw= 8.3) and 1950 Upper Assam earthquake (Mw= 8.7) signify the possibility of great earthquakes in future from this region. The regional seismicity map for the study region is prepared by plotting the earthquake data for the period 1897 to 2007 from the source like USGS,ISC catalogs, GCMT database, Indian Meteorological department (IMD). Based on the geology, tectonic and seismicity the study region is classified into three source zones such as Zone 1: Arakan-Yoma zone (AYZ), Zone 2: Himalayan Zone (HZ) and Zone 3: Shillong Plateau zone (SPZ). The Arakan-Yoma Range is characterized by the subduction zone, developed by the junction of the Indian Plate and the Eurasian Plate. It shows a dense clustering of earthquake events and the 1908 eastern boundary earthquake. The Himalayan tectonic zone depicts the subduction zone, and the Assam syntaxis. This zone suffered by the great earthquakes like the 1950 Assam, 1934 Bihar and the 1951 Upper Himalayan earthquakes with Mw > 8. The Shillong Plateau zone was affected by major faults like the Dauki fault and exhibits its own style of the prominent tectonic features. The seismicity and hazard potential of Shillong Plateau is distinct from the Himalayan thrust. Using energy blocked model by Tsuboi, the forecasting of major earthquakes for each source zone is estimated. As per the energy blocked model, the supply of energy for potential earthquakes in an area is remarkably uniform with respect to time and the difference between the supply energy and cumulative energy released for a span of time, is a good indicator of energy blocked and can be utilized for the forecasting of major earthquakes. The proposed process provides a more consistent model of gradual accumulation of strain and non-uniform release through large earthquakes and can be applied in the evaluation of seismic risk. The cumulative seismic energy released by major earthquakes throughout the period from 1897 to 2007 of last 110 years in the all the zones are calculated and plotted. The plot gives characteristics curve for each zone. Each curve is irregular, reflecting occasional high activity. The maximum earthquake energy available at a particular time in a given area is given by S. The difference between the theoretical upper limit given by S and the cumulative energy released up to that time is calculated to find out the maximum magnitude of an earthquake which can occur in future. Energy blocked of the three source regions are 1.35*1017 Joules, 4.25*1017 Joules and 0.12*1017 in Joules respectively for source zone 1, 2 and 3, as a supply for potential earthquakes in due course of time. The predicted maximum magnitude (mmax) obtained for each source zone AYZ, HZ, and SPZ are 8.2, 8.6, and 8.4 respectively by this model. This study is also consistent with the previous predicted results by other workers.
Active hold-down for heat treating
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr. (Inventor)
1986-01-01
The object of the disclosure is to provide a vacuum hold-down for holding thin sheets to a support surface, which permits the thin sheet to change dimensions as it is held down. The hold-down includes numerous holes in the support surface, through which a vacuum is applied from a vacuum source. The holes are arranged in zones. The vacuum is repeatedly interrupted at only one or a few zones, while it continues to be applied to other zones, to allow the workpiece to creep along that interrupted zone. The vacuum to different zones is interrupted at different times, as by a slowly turning valve number, to allow each zone of the workpiece to creep. A positive pressure may be applied from a pressured air source to a zone when the vacuum is interrupted there, to help lift the corresponding workpiece zone off the surface to aid in creeping. The workpiece may undergo dimensional changes because of heating, cooling, drying, or other procedure.
Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis.
Lessels, Jason S; Tetzlaff, Doerthe; Birkel, Christian; Dick, Jonathan; Soulsby, Chris
2016-01-01
Mixing of waters within riparian zones has been identified as an important influence on runoff generation and water quality. Improved understanding of the controls on the spatial and temporal variability of water sources and how they mix in riparian zones is therefore of both fundamental and applied interest. In this study, we have combined topographic indices derived from a high-resolution Digital Elevation Model (DEM) with repeated spatially high-resolution synoptic sampling of multiple tracers to investigate such dynamics of source water mixing. We use geostatistics to estimate concentrations of three different tracers (deuterium, alkalinity, and dissolved organic carbon) across an extended riparian zone in a headwater catchment in NE Scotland, to identify spatial and temporal influences on mixing of source waters. The various biogeochemical tracers and stable isotopes helped constrain the sources of runoff and their temporal dynamics. Results show that spatial variability in all three tracers was evident in all sampling campaigns, but more pronounced in warmer dryer periods. The extent of mixing areas within the riparian area reflected strong hydroclimatic controls and showed large degrees of expansion and contraction that was not strongly related to topographic indices. The integrated approach of using multiple tracers, geospatial statistics, and topographic analysis allowed us to classify three main riparian source areas and mixing zones. This study underlines the importance of the riparian zones for mixing soil water and groundwater and introduces a novel approach how this mixing can be quantified and the effect on the downstream chemistry be assessed.
Effects of capillary heterogeneity on vapor-liquid counterflow in porous media
NASA Astrophysics Data System (ADS)
Stubos, A. K.; Satik, C.; Yortsos, Y. C.
1992-06-01
Based on a continuum description, the effect of capillary heterogeneity, induced by variation in permeability, on the steady state, countercurrent, vapor-liquid flow in porous media is analyzed. It is shown that the heterogeneity acts as a body force that may enhance or diminish gravity effects on heat pipes. Selection rules that determine the steady states reached in homogeneous, gravity-driven heat pipes are also formulated. It is shown that the 'infinite' two-phase zone may terminate by a substantial change in the permeability somewhere in the medium. The two possible sequences, liquid-liquid dominated-dry, or liquid-vapor dominated-dry find applications in geothermal systems. Finally, it is shown that although weak heterogeneity affects only gravity controlled flows, stronger variations in permeability can give rise to significant capillary effects.
Liu, Shan; Chen, Hui; Zhou, Guang-Jie; Liu, Shuang-Shuang; Yue, Wei-Zhong; Yu, Shen; Sun, Kai-Feng; Cheng, Hefa; Ying, Guang-Guo; Xu, Xiang-Rong
2015-12-01
The occurrence and spatial distribution of 40 steroids in the environmental matrices of the Hailing Bay region, South China Sea, were investigated by rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS). Seventeen, 14 and 11 of 40 steroids were detected with the concentrations ranging from 0.04 (testosterone) to 40.00 ng/L (prednisolone), 1.33 (4-hydroxy-androst-4-ene-17-dione) to 1855 ng/L (androsta-1,4-diene-3,17-dione) and <0.19 (androsta-1,4-diene-3,17-dione) to 2.37 ng/g (progesterone) in the seawater, the municipal sewage discharged effluent and the sediment samples, respectively. The concentrations and risk quotients (RQs) of the steroids detected in the water samples decreased in the order of municipal sewage discharge site>wharves~aquaculture zones~tourism areas>offshore areas. The distribution of steroids in the marine environment was significantly correlated with the levels of chemical oxygen demand (COD) and ammonium nitrogen (NH4-N). Source analysis indicated that untreated municipal sewage was the main source of steroids in the marine environment. Furthermore, progesterone was found to be a reliable chemical indicator to surrogate different steroids in both the water and sediment phases based on the correlation analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry
NASA Astrophysics Data System (ADS)
Gucker, Sarah M. N.
The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges. This steam plasma creates its own gas pocket via field emission. This steam plasma is shown to have strong decontamination properties, with residual effects lasting beyond two weeks that continue to decompose contaminants. Finally, a "two-dimensional bubble" was developed and demonstrated as a novel diagnostic device to study the gas-water interface, the reaction zone. This device is shown to provide convenient access to the reaction zone and decomposition of various wastewater simulants is investigated.
NASA Astrophysics Data System (ADS)
Ludwig, Wolfgang; Eggl, Siegfried; Neubauer, David; Leitner, Johannes; Firneis, Maria; Hitzenberger, Regina
2014-05-01
Recent fields of interest in exoplanetary research include studies of potentially habitable planets orbiting stars outside of our Solar System. Habitable Zones (HZs) are currently defined by calculating the inner and the outer limits of the mean distance between exoplanets and their central stars based on effective solar fluxes that allow for maintaining liquid water on the planet's surface. Kasting et al. (1993), Selsis et al. (2007), and recently Kopparapu et al. (2013) provided stellar flux limits for such scenarios. We compute effective solar fluxes for Earth-like planets using Earth-like and other atmospheric scenarios including atmospheres with high level and low level clouds. Furthermore we provide habitability limits for solvents other than water, i.e. limits for the so called Life Supporting Zone, introduced by Leitner et al. (2010). The Life Supporting Zone (LSZ) encompasses many habitable zones based on a variety of liquid solvents. Solvents like ammonia and sulfuric acid have been identified for instance by Leitner et al (2012) as possibly life supporting. Assuming planets on circular orbits, the extent of the individual HZ is then calculated via the following equation, d(i,o) = [L/Lsun*1/S(i,o)]**0.5 au, where L is the star's luminosity, and d(i,o) and S(i,o) are the distances to the central star for the inner and the outer edge and effective insolation for inner and the outer edge of the HZ, respectively. After generating S(i,o) values for a selection of solvents, we provide the means to determine LSZ boundaries for main sequence stars. Effective flux calculations are done using a one dimensional radiative convective model (Neubauer et al. 2011) based on a modified version of the open source radiative transfer software Streamer (Key and Schweiger, 1998). Modifications include convective adjustments, additional gases for absorption and the use of an offline cloud model, which allow us to observe the influence of clouds on effective stellar fluxes. Kasting, J.F., Whitmire, D.P., & Reynolds, R.T. 1993, Icar, 101, 108 Key JR, Schweiger AJ (1998) Geosci 24:443-451. Kopparapu, R.J., et al. 2013 ApJ 765, 131 Leitner, J. J., Schwarz, R., Firneis, M. G., Hitzenberger, R., and Neubauer, D., Astrobiology Science Conference 2010, 26-29 April 2010, League City, USA, 2010 Leitner, J.J., Schulze-Makuch, D., Firneis, M.G., Hitzenberger, R., Neubauer, D., 2012 Paleontology Journal 46 (9), 1091 Neubauer, D., Vrtala, A., Leitner, J.J., Firneis, M.G., Hitzenberger, R., 2011 Origins of Life and Evolution of Biospheres, 41, 545-552 Selsis, F., Kasting, J.F., Levrard, B., et al. 2007b, A&A, 476, 137
The Impact of State Enterprise Zones on Urban Manufacturing Establishments
ERIC Educational Resources Information Center
Greenbaum, Robert T.; Engberg, John B.
2004-01-01
Since the early 1980s, the vast majority of states have implemented enterprise zones. This paper analyzes urban zones in six states, examining the factors that states use to choose zone locations and the subsequent effect of the zones on business activity and employment. The source of outcome data is the U.S. Bureau of Census' longitudinal…
Capillary zone electrophoresis-mass spectrometer interface
D`Silva, A.
1996-08-06
A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.
Capillary zone electrophoresis-mass spectrometer interface
D'Silva, Arthur
1996-08-06
A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.
Secondary electron ion source neutron generator
Brainard, J.P.; McCollister, D.R.
1998-04-28
A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.
CONTAMINANT FLUX RESPONSES TO THERMAL TREATMENT OF DNAPL SOURCE ZONES (ABSTRACT ONLY)
Contaminant flux is being proposed as a metric to help elucidate the benefits of DNAPL source-zone remedial efforts. While it is clear that aggressive remediation technologies can rapidly remove DNAPL mass, experience has shown that complete removal is often not practicable. H...
Johnson, Alexander; Brace, Christopher
2015-01-01
Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.
Sodium purification apparatus and method
Gould, M.I.
1980-03-04
An apparatus for and method of collecting and storing oxide impurities contained in high-temperature liquid alkali metal are disclosed. A method and apparatus are provided for nucleating and precipitating oxide impurities by cooling, wherein the nucleation and precipitation are enhanced by causing a substantial increase in pressure drop and corresponding change in the velocity head of the alkali metal. Thereafter the liquid alkali metal is introduced into a quiescent zone wherein the liquid velocity is maintained below a specific maximum whereby it is possible to obtain high oxide removal efficiencies without the necessity of a mesh or filter. 1 fig.
Radiometric liquid level gauge with linear-detection (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaeser, M.; Emmelmann, K.P.
1973-09-01
A description is given of a radiometric liquid level gauge with linear detection. It consists of a set of radioactive sources (e.g., /sup 137/Cs) with quadratic graduation in their activities, of a scintillation counter with electronic back-up unit and of a slender tube. The tube, sources and scintillation counter form a compact snd easily transportsble liquid level gauge. It is-especially adapted for liquid level measurements in slender, difficulty accessible and opaque containers. The device supplements the different methods for liquid level measurement with a new variant which is adopted for many cases in practice. (auth)
Geochemical Evidence for a Terrestrial Magma Ocean
NASA Technical Reports Server (NTRS)
Agee, Carl B.
1999-01-01
The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet geochemically differentiated. Subsequent convective and other mixing processes may operate over time to obscure geochemical evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the geochemical traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite-depleted part of the upper mantle transition zone.
NASA Technical Reports Server (NTRS)
Hall, L. R.; Finger, R. W.
1972-01-01
Fracture and crack growth resistance characteristics of 304 stainless steel alloy weldments as relating to retesting of cryogenic vessels were examined. Welding procedures were typical of those used in full scale vessel fabrication. Fracture resistance survey tests were conducted in room temperature air, liquid nitrogen and liquid hydrogen. In air, both surface-flawed and center-cracked panels containing cracks in weld metal, fusion line, heat-affected zone, or parent metal were tested. In liquid nitrogen and liquid hydrogen, tests were conducted using center-cracked panels containing weld centerline cracks. Load-unload, sustained load, and cyclic load tests were performed in air or hydrogen gas, liquid nitrogen, and liquid hydrogen using surface-flawed specimens containing weld centerline cracks. Results were used to evaluate the effectiveness of periodic proof overloads in assuring safe and reliable operation of over-the-road cryogenic dewars.
Sewage sludge dewatering using flowing liquid metals
Carlson, Larry W.
1986-01-01
A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.
Kwicklis, Edward M.; Wolfsberg, Andrew V.; Stauffer, Philip H.; Walvoord, Michelle Ann; Sully, Michael J.
2006-01-01
Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (??D, ??18O) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to characterize the uncertainty in moisture fluxes. ?? Soil Science Society of America.
Carrasco Pancorbo, Alegría; Cruces-Blanco, Carmen; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto
2004-11-03
A sensitive, rapid, efficient, and reliable method for the separation and determination of phenolic acids by capillary zone electrophoresis has been carried out. A detailed method optimization was carried out to separate 14 different compounds by studying parameters such as pH, type and concentration of buffer, applied voltage, and injection time. The separation was performed within 16 min, using a 25 mM sodium borate buffer (pH 9.6) at 25 kV with 8 s of hydrodynamic injection. With this method and using a liquid-liquid extraction system, with recovery values around 95%, it has been possible to detect small quantities of phenolic acids in olive oil samples. This is apparently the first paper showing the quantification of this specific family of phenolic compounds in virgin olive oil samples.
Surface contouring by controlled application of processing fluid using Marangoni effect
Rushford, Michael C.; Britten, Jerald A.
2003-04-29
An apparatus and method for modifying the surface of an object by contacting said surface with a liquid processing solution using the liquid applicator geometry and Marangoni effect (surface tension gradient-driven flow) to define and confine the dimensions of the wetted zone on said object surface. In particular, the method and apparatus involve contouring or figuring the surface of an object using an etchant solution as the wetting fluid and using realtime metrology (e.g. interferometry) to control the placement and dwell time of this wetted zone locally on the surface of said object, thereby removing material from the surface of the object in a controlled manner. One demonstrated manifestation is in the deterministic optical figuring of thin glasses by wet chemical etching using a buffered hydrofluoric acid solution and Marangoni effect.
Apparatus For Etching Or Depositing A Desired Profile Onto A Surface
Rushford, Michael C.; Britten, Jerald A.
2004-05-25
An apparatus and method for modifying the surface of an object by contacting said surface with a liquid processing solution using the liquid applicator geometry and Marangoni effect (surface tension gradient-driven flow) to define and confine the dimensions of the wetted zone on said object surface. In particular, the method and apparatus involve contouring or figuring the surface of an object using an etchant solution as the wetting fluid and using real-time metrology (e.g. interferometry) to control the placement and dwell time of this wetted zone locally on the surface of said object, thereby removing material from the surface of the object in a controlled manner. One demonstrated manifestation is in the deterministic optical figuring of thin glasses by wet chemical etching using a buffered hydrofluoric acid solution and Marangoni effect.
Solidification Sequence of Spray-Formed Steels
NASA Astrophysics Data System (ADS)
Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro
2016-02-01
Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.
Aerosol Delivery for Amendment Distribution in Contaminated Vadose Zones
NASA Astrophysics Data System (ADS)
Hall, R. J.; Murdoch, L.; Riha, B.; Looney, B.
2011-12-01
Remediation of contaminated vadose zones is often hindered by an inability to effectively distribute amendments. Many amendment-based approaches have been successful in saturated formations, however, have not been widely pursued when treating contaminated unsaturated materials due to amendment distribution limitations. Aerosol delivery is a promising new approach for distributing amendments in contaminated vadose zones. Amendments are aerosolized and injected through well screens. During injection the aerosol particles are transported with the gas and deposited on the surfaces of soil grains. Resulting distributions are radially and vertically broad, which could not be achieved by injecting pure liquid-phase solutions. The objectives of this work were A) to characterize transport and deposition behaviors of aerosols; and B) to develop capabilities for predicting results of aerosol injection scenarios. Aerosol transport and deposition processes were investigated by conducting lab-scale injection experiments. These experiments involved injection of aerosols through a 2m radius, sand-filled wedge. A particle analyzer was used to measure aerosol particle distributions with time, and sand samples were taken for amendment content analysis. Predictive capabilities were obtained by constructing a numerical model capable of simulating aerosol transport and deposition in porous media. Results from tests involving vegetable oil aerosol injection show that liquid contents appropriate for remedial applications could be readily achieved throughout the sand-filled wedge. Lab-scale tests conducted with aqueous aerosols show that liquid accumulation only occurs near the point of injection. Tests were also conducted using 200 g/L salt water as the aerosolized liquid. Liquid accumulations observed during salt water tests were minimal and similar to aqueous aerosol results. However, particles were measured, and salt deposited distal to the point of injection. Differences between aqueous and oil deposition are assumed to occur due to surface interactions, and susceptibility to evaporation of aqueous aerosols. Distal salt accumulation during salt water aerosol tests suggests that solid salt forms as salt water aerosols evaporate. The solid salt aerosols are less likely to deposit, so they travel further than aqueous aerosols. A numerical model was calibrated using results from lab-scale tests. The calibrated model was then used to simulate field-scale aerosol injection. Results from field-scale simulations suggest that effective radii of influence on the scale of 8-10 meters could be achieved in partially saturated sand. The aerosol delivery process appears to be capable distributing oil amendments over considerable volumes of formation at concentrations appropriate for remediation purposes. Thus far, evaporation has limited liquid accumulation observed when distributing aqueous aerosols, however, results from salt water experiments suggest that injection of solid phase aerosols can effectively distribute water soluble amendments (electron donor, pH buffer, oxidants, etc.). Utilization of aerosol delivery could considerably expand treatment options for contaminated vadose zones at a wide variety of sites.
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2013 CFR
2013-07-01
... connectors at your affected source. (5) For pumps in light liquid service in an MCPU that has no continuous... connectors in gas/vapor and light liquid service at an existing source, you may elect to comply with the... in light liquid service in an MCPU that has no continuous process vents and is part of an existing...
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2014 CFR
2014-07-01
... connectors at your affected source. (5) For pumps in light liquid service in an MCPU that has no continuous... connectors in gas/vapor and light liquid service at an existing source, you may elect to comply with the... in light liquid service in an MCPU that has no continuous process vents and is part of an existing...
40 CFR 63.2480 - What requirements must I meet for equipment leaks?
Code of Federal Regulations, 2012 CFR
2012-07-01
... connectors at your affected source. (5) For pumps in light liquid service in an MCPU that has no continuous... connectors in gas/vapor and light liquid service at an existing source, you may elect to comply with the... in light liquid service in an MCPU that has no continuous process vents and is part of an existing...
Novel cryogenic sources for liquid droplet and solid filament beams
NASA Astrophysics Data System (ADS)
Grams, Michael P.
Two novel atomic and molecular beam sources have been created and tested consisting first of a superfluid helium liquid jet, and secondly a solid filament of argon. The superfluid helium apparatus is the second of its kind in the world and uses a modified liquid helium cryostat to inject a cylindrical stream of superfluid helium into vacuum through glass capillary nozzles with diameters on the order of one micron created on-site at Arizona State University. The superfluid beam is an entirely new way to study superfluid behavior, and has many new applications such as superfluid beam-surface scattering, beam-beam scattering, and boundary-free study of superfluidity. The solid beam of argon is another novel beam source created by flowing argon gas through a capillary 50 microns in diameter which is clamped by a small copper plate to a copper block kept at liquid nitrogen temperature. The gas subsequently cools and solidifies plugging the capillary. Upon heating, the solid plug melts and liquid argon exits the capillary and immediately freezes by evaporative cooling. The solid filaments may find application as wall-less cryogenic matrices, or targets for laser plasma sources of extreme UV and soft x-ray sources.
The energy release in earthquakes, and subduction zone seismicity and stress in slabs. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Vassiliou, M. S.
1983-01-01
Energy release in earthquakes is discussed. Dynamic energy from source time function, a simplified procedure for modeling deep focus events, static energy estimates, near source energy studies, and energy and magnitude are addressed. Subduction zone seismicity and stress in slabs are also discussed.
NASA Astrophysics Data System (ADS)
Zhong, L.; Lee, M. H.; Lee, B.; Yang, S.
2016-12-01
Delivery of nutrient to and establish a slow release carbon source in the vadose zone and capillary fringe zone is essential for setting up of a long-lasting bioremediation of contaminations in those zones. Conventional solution-based injection and infiltration approaches are facing challenges to achieve the delivery and remedial goals. Aqueous silica suspensions undergo a delayed gelation process under favorite geochemical conditions. The delay in gelation provides a time window for the injection of the suspension into the subsurface; and the gelation of the amendment-silica suspension enables the amendment-laden gel to stay in the target zone and slowly release the constituents for contaminant remediation. This approach can potentially be applied to deliver bio-nutrients to the vadose zone and capillary fringe zone for enhanced bioremediation and achieve remedial goals. This research was conducted to demonstrate delayed gelation of colloidal silica suspensions when carbon sources were added and to prove the gelation occurs in sediments under vadose conditions. Sodium lactate, vegetable oil, ethanol, and molasses were tested as the examples of carbon source (or nutrient) amendments. The rheological properties of the silica suspensions during the gelation were characterized. The influence of silica, salinity, nutrient concentrations, and the type of nutrients was studied. The kinetics of nutrient release from silica-nutrient gel was quantified using molasses as the example, and the influence of suspension gelation time was evaluated. The injection behavior of the suspensions was investigated by monitoring their viscosity changes and the injection pressures when the suspensions were delivered into sediment columns.
Joint Cross Well and Single Well Seismic Studies at Lost Hills, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritto, Roland; Daley, Thomas M.; Myer, Larry R.
2002-06-25
A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO{sub 2} into a hydrofracture zone, based on P- and S-wave data. A high-frequency piezo-electric P-wave source and an orbital-vibrator S-wave source were used to generate waves that were recorded by hydrophones as well as three-component geophones. The injection well was located about 12 m from the source well. During the pre-injection phase water was injected into the hydrofrac-zone. The set of seismic experiments was repeated after a time interval of 7 months during which CO{sub 2} wasmore » injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO{sub 2} within the hydrofracture. Furthermore it was intended to determine which experiment (cross well or single well) is best suited to resolve these features. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5%). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6%). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous ({approx} 50%) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5%. Both, velocity and Poisson estimates indicate the dissolution of CO{sub 2} in the liquid phase of the reservoir accompanied by a pore-pressure increase. The single well data supported the findings of the cross well experiments. P- and S-wave velocities as well as Poisson ratios were comparable to the estimates of the cross well data. The cross well experiment did not detect the presence of the hydrofracture but appeared to be sensitive to overall changes in the reservoir and possibly the presence of a fault. In contrast, the single well reflection data revealed an arrival that could indicate the presence of the hydrofracture between the source and receiver wells, while it did not detect the presence of the fault, possibly due to out of plane reflections.« less
Daily, William D.; Laine, Daren L.; Laine, Edwin F.
2001-01-01
Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.
Daily, William D.; Laine, Daren L.; Laine, Edwin F.
1997-01-01
Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.
Daily, W.D.; Laine, D.L.; Laine, E.F.
1997-08-26
Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.
This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.
Li, Lei; Wang, Tie-yu; Wang, Xiaojun; Xiao, Rong-bo; Li, Qi-feng; Peng, Chi; Han, Cun-liang
2016-04-15
Based on comprehensive consideration of soil environmental quality, pollution status of river, environmental vulnerability and the stress of pollution sources, a technical method was established for classification of priority area of soil environmental protection around the river-style water sources. Shunde channel as an important drinking water sources of Foshan City, Guangdong province, was studied as a case, of which the classification evaluation system was set up. In detail, several evaluation factors were selected according to the local conditions of nature, society and economy, including the pollution degree of heavy metals in soil and sediment, soil characteristics, groundwater sensitivity, vegetation coverage, the type and location of pollution sources. Data information was mainly obtained by means of field survey, sampling analysis, and remote sensing interpretation. Afterwards, Analytical Hierarchy Process (AHP) was adopted to decide the weight of each factor. The basic spatial data layers were set up respectively and overlaid based on the weighted summation assessment model in Geographical Information System (GIS), resulting in a classification map of soil environmental protection level in priority area of Shunde channel. Accordingly, the area was classified to three levels named as polluted zone, risky zone and safe zone, which respectively accounted for 6.37%, 60.90% and 32.73% of the whole study area. Polluted zone and risky zone were mainly distributed in Lecong, Longjiang and Leliu towns, with pollutants mainly resulted from the long-term development of aquaculture and the industries containing furniture, plastic constructional materials and textile and clothing. In accordance with the main pollution sources of soil, targeted and differentiated strategies were put forward. The newly established evaluation method could be referenced for the protection and sustainable utilization of soil environment around the water sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-08-01
In this project, in situ remediation technologies are being tested and evaluated for both source control and mass removal of dense, non-aqueous phase liquid (DNAPL) compounds in low permeability media (LPM). This effort is focused on chlorinated solvents (e.g., trichloroethylene and perchloroethylene) in the vadose and saturated zones of low permeability, massive deposits, and stratified deposits with inter-bedded clay lenses. The project includes technology evaluation and screening analyses and field-scale testing at both clean and contaminated sites in the US and Canada. Throughout this project, activities have been directed at understanding the processes that influence DNPAL compound migration and treatmentmore » in LPM and to assessing the operation and performance of the remediation technologies developed and tested. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
Uranium in the Surrounding of San Marcos-Sacramento River Environment (Chihuahua, Mexico)
Rentería-Villalobos, Marusia; Cortés, Manuel Reyes; Mantero, Juan; Manjón, Guillermo; García-Tenorio, Rafael; Herrera, Eduardo; Montero-Cabrera, Maria Elena
2012-01-01
The main interest of this study is to assess whether uranium deposits located in the San Marcos outcrops (NW of Chihuahua City, Mexico) could be considered as a source of U-isotopes in its surrounding environment. Uranium activity concentrations were determined in biota, ground, and surface water by either alpha or liquid scintillation spectrometries. Major ions were analyzed by ICP-OES in surface water and its suspended matter. For determining uranium activity in biota, samples were divided in parts. The results have shown a possible lixiviation and infiltration of uranium from geological substrate into the ground and surface water, and consequently, a transfer to biota. Calculated annual effective doses by ingestion suggest that U-isotopes in biota could not negligibly contribute to the neighboring population dose. By all these considerations, it is concluded that in this zone there is natural enhancement of uranium in all environmental samples analyzed in the present work. PMID:22536148
NASA Astrophysics Data System (ADS)
Dileep Kumar, V.; Barnwal, Tripti A.; Mukherjee, Jaya; Gantayet, L. M.
2010-02-01
For effective evaporation of refractory metal, electron beam is found to be most suitable vapour generator source. Using electron beam, high throughput laser based purification processes are carried out. But due to highly concentrated electron beam, the vapour gets ionised and these ions lead to dilution of the pure product of laser based separation process. To estimate the concentration of these ions and extraction potential requirement to remove these ions from vapour stream, experiments have been conducted using aluminium as evaporant. The aluminium ingots were placed in water cooled copper crucible. Inserts were used to hold the evaporant, in order to attain higher number density in the vapour processing zone and also for confining the liquid metal. Parametric studies with beam power, number density and extraction potential were conducted. In this paper we discuss the trend of the generation of thermal ions and electrostatic field requirement for extraction.
Meyer, Rikke Louise; Zeng, Raymond Jianxiong; Giugliano, Valerio; Blackall, Linda Louise
2005-05-01
The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO(3)(-) accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes.
NASA Technical Reports Server (NTRS)
Steele, I. M.; Smith, J. V.; Skirius, C.
1985-01-01
Cathodoluminescence has been applied to look for textural features of olivine in carbonaceous meteorites relevant to the unresolved dispute over the origin of the olivine, whether from a vapor or a liquid. Cathodoluminescence photographs of forsterite grains in Murchison (C2) and Allende (C3) meteorites presented here reveal a blue core with planar boundaries to a red or dark rim. High-precision electron microprobe analyses have been performed which reveal unusually large amounts of the 'minor' elements Al, Ti, and Ca in the blue cores of these forsterites, suggesting formation by crystallization at high temperatures from a source rich in these metals. Following conclusions drawn from previous analyses of olivine in meteorites, it is argued that the minor element signature should be able to characterize olivines in micrometeorites and in deep-sea particles.
Cumulative Ocean Volume Estimates of the Solar System
NASA Astrophysics Data System (ADS)
Frank, E. A.; Mojzsis, S. J.
2010-12-01
Although there has been much consideration for habitability in silicate planets and icy bodies, this information has never been quantitatively gathered into a single approximation encompassing our solar system from star to cometary halo. Here we present an estimate for the total habitable volume of the solar system by constraining our definition of habitable environments to those to which terrestrial microbial extremophiles could theoretically be transplanted and yet survive. The documented terrestrial extremophile inventory stretches environmental constraints for habitable temperature and pH space of T ~ -15oC to 121oC and pH ~ 0 to 13.5, salinities >35% NaCl, and gamma radiation doses of 10,000 to 11,000 grays [1]. Pressure is likely not a limiting factor to life [2]. We applied these criteria in our analysis of the geophysical habitable potential of the icy satellites and small icy bodies. Given the broad spectrum of environmental tolerance, we are optimistic that our pessimistic estimates are conservative. Beyond the reaches of our inner solar system's conventional habitable zone (Earth, Mars and perhaps Venus) is Ceres, a dwarf planet in the habitable zone that could possess a significant liquid water ocean if that water contains anti-freezing species [3]. Yet further out, Europa is a small icy satellite that has generated much excitement for astrobiological potential due to its putative subsurface liquid water ocean. It is widely promulgated that the icy moons Enceladus, Triton, Callisto, Ganymede, and Titan likewise have also sustained liquid water oceans. If oceans in Europa, Enceladus, and Triton have direct contact with a rocky mantle hot enough to melt, hydrothermal vents could provide an energy source for chemotrophic organisms. Although oceans in the remaining icy satellites may be wedged between two layers of ice, their potential for life cannot be precluded. Relative to the Jovian style of icy satellites, trans-neptunian objects (TNOs) - icy bodies located beyond the orbit of Neptune - have received little consideration for their potential as abodes for life. Aided by radiogenic heating, the largest TNOs could still support subsurface liquid water oceans [4]. Calculations of the size and frequency of the largest (>500 km diameter) TNOs as well as the likely thermal histories of these objects suggest that the total volume of liquid water in these bodies may be greater than that of the rest of the solar system combined. [1] Baross et al. (2007) The Limits of Organic Life in Planetary Systems, National Academies Press, Washington, D.C. [2] Sharma et al. (2002) Nature 295, 1514-1516. [3] Castillo-Rogez, J.C. and T.B. McCord (2010) Icarus 205, 443-459. [4] Hussmann et al.(2006) Icarus 195. 258-273.
Hackley, P.C.; Ewing, T.E.
2010-01-01
The middle Eocene Claiborne Group was assessed for undiscovered conventional hydrocarbon resources using established U.S. Geological Survey assessment methodology. This work was conducted as part of a 2007 assessment of Paleogene-Neogene strata of the northern Gulf of Mexico Basin, including the United States onshore and state waters (Dubiel et al., 2007). The assessed area is within the Upper Jurassic-CretaceousTertiary composite total petroleum system, which was defined for the assessment. Source rocks for Claiborne oil accumulations are interpreted to be organic-rich, downdip, shaley facies of the Wilcox Group and the Sparta Sand of the Claiborne Group; gas accumulations may have originated from multiple sources, including the Jurassic Smackover Formation and the Haynesville and Bossier shales, the Cretaceous Eagle Ford and Pearsall (?) formations, and the Paleogene Wilcox Group and Sparta Sand. Hydrocarbon generation in the basin started prior to deposition of Claiborne sediments and is currently ongoing. Primary reservoir sandstones in the Claiborne Group include, from oldest to youngest, the Queen City Sand, Cook Mountain Formation, Sparta Sand, Yegua Formation, and the laterally equivalent Cockfield Formation. A geologic model, supported by spatial analysis of petroleum geology data, including discovered reservoir depths, thicknesses, temperatures, porosities, permeabilities, and pressures, was used to divide the Claiborne Group into seven assessment units (AUs) with three distinctive structural and depositional settings. The three structural and depositional settings are (1) stable shelf, (2) expanded fault zone, and (3) slope and basin floor; the seven AUs are (1) lower Claiborne stable-shelf gas and oil, (2) lower Claiborne expanded fault-zone gas, (3) lower Claiborne slope and basin-floor gas, (4) lower Claiborne Cane River, (5) upper Claiborne stable-shelf gas and oil, (6) upper Claiborne expanded fault-zone gas, and (7) upper Claiborne slope and basin-floor gas. Based on Monte Carlo simulation of justified input parameters, the total estimated mean undiscovered conventional hydrocarbon resources in the seven AUs combined are 52 million bbl of oil, 19.145 tcf of natural gas, and 1.205 billion bbl of natural gas liquids. This article describes the conceptual geologic model used to define the seven Claiborne AUs, the characteristics of each AU, and the justification behind the input parameters used to estimate undiscovered resources for each AU. The great bulk of undiscovered hydrocarbon resources are predicted to be nonassociated gas and natural gas liquids contained in deep (mostiy >12,000-ft [3658 m], present-day drilling depths), overpressured, structurally complex outer shelf or slope and basin-floor Claiborne reservoirs. The continuing development of these downdip objectives is expected to be the primary focus of exploration activity for the onshore middle Eocene Gulf Coast in the coming decades. ?? 2010 U.S. Geological Survey. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Hong, Tianzhen
We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less
Chen, Yixing; Hong, Tianzhen
2018-02-20
We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less
Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M
2013-02-01
Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.
Laser ultrasonic investigations of vertical Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Queheillalt, Douglas Ted
The many difficulties associated with the growth of premium quality CdTe and (Cd,Zn)Te alloys has stimulated an interest in the development of a non-invasive ultrasonic approach to monitor critical growth parameters such as the solid-liquid interface position and shape during vertical Bridgman growth. This sensor methodology is based upon the recognition that in most materials, the ultrasonic velocity (and the elastic stiffness constants that control it) of the solid and liquid phases are temperature dependent and an abrupt increase of the longitudinal wave velocity occurs upon solidification. The laser ultrasonic approach has also been used to measure the ultrasonic velocity of solid and liquid Cd0.96Zn0.04Te as a function of temperature up to 1140°C. Using longitudinal and shear wave velocity values together with data for the temperature dependent density allowed a complete evaluation of the temperature dependent single crystal elastic stiffness constants for solid and the adiabatic bulk modulus for liquid Cd0.96Zn0.04 Te. It was found that the ultrasonic velocities exhibited a strong monotonically decreasing function of temperature in the solid and liquid phases and the longitudinal wave indicated an abrupt almost 50% decrease upon melting. Because ray propagation in partially solidified bodies is complex and defines the sensing methodology, a ray tracing algorithm has been developed to analyze two-dimensional wave propagation in the diametral plane of cylindrical solid-liquid interfaces. Ray path, wavefront and time-of-flight (TOF) projections for rays that travel from a source to an arbitrarily positioned receiver on the diametral plane have been calculated and compared to experimentally measured data on a model liquid-solid interface. The simulations and the experimental results reveal that the interfacial region can be identified from transmission TOF data and when used in conjunction with a nonlinear least squares reconstruction algorithm, the interface geometry (i.e. axial location and shape) can be precisely recovered and the ultrasonic velocities of both solid and liquid phases obtained. To gain insight into the melting and solidification process, a single zone VB growth furnace was integrated with the laser ultrasonic sensor system and used to monitor the melting-solidification and directional solidification characteristics of Cd0.96Zn 0.04Te.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, R.B.; Nguyen, B.
Earthquake activity in the New Madrid Seismic Zone had been monitored by regional seismic networks since 1975. During this time period, over 3,700 earthquakes have been located within the region bounded by latitudes 35{degrees}--39{degrees}N and longitudes 87{degrees}--92{degrees}W. Most of these earthquakes occur within a 1.5{degrees} x 2{degrees} zone centered on the Missouri Bootheel. Source parameters of larger earthquakes in the zone and in eastern North America are determined using surface-wave spectral amplitudes and broadband waveforms for the purpose of determining the focal mechanism, source depth and seismic moment. Waveform modeling of broadband data is shown to be a powerful toolmore » in defining these source parameters when used complementary with regional seismic network data, and in addition, in verifying the correctness of previously published focal mechanism solutions.« less
LMFBR fuel assembly design for HCDA fuel dispersal
Lacko, Robert E.; Tilbrook, Roger W.
1984-01-01
A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.
The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, I.; Montemurro, G.; Aguilera, E.
A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mgmore » HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.« less
Hanson, Stanley L.; Perkins, David M.
1995-01-01
The construction of a probabilistic ground-motion hazard map for a region follows a sequence of analyses beginning with the selection of an earthquake catalog and ending with the mapping of calculated probabilistic ground-motion values (Hanson and others, 1992). An integral part of this process is the creation of sources used for the calculation of earthquake recurrence rates and ground motions. These sources consist of areas and lines that are representative of geologic or tectonic features and faults. After the design of the sources, it is necessary to arrange the coordinate points in a particular order compatible with the input format for the SEISRISK-III program (Bender and Perkins, 1987). Source zones are usually modeled as a point-rupture source. Where applicable, linear rupture sources are modeled with articulated lines, representing known faults, or a field of parallel lines, representing a generalized distribution of hypothetical faults. Based on the distribution of earthquakes throughout the individual source zones (or a collection of several sources), earthquake recurrence rates are computed for each of the sources, and a minimum and maximum magnitude is assigned. Over a period of time from 1978 to 1980 several conferences were held by the USGS to solicit information on regions of the United States for the purpose of creating source zones for computation of probabilistic ground motions (Thenhaus, 1983). As a result of these regional meetings and previous work in the Pacific Northwest, (Perkins and others, 1980), California continental shelf, (Thenhaus and others, 1980), and the Eastern outer continental shelf, (Perkins and others, 1979) a consensus set of source zones was agreed upon and subsequently used to produce a national ground motion hazard map for the United States (Algermissen and others, 1982). In this report and on the accompanying disk we provide a complete list of source areas and line sources as used for the 1982 and later 1990 seismic hazard maps for the conterminous U.S. and Alaska. These source zones are represented in the input form required for the hazard program SEISRISK-III, and they include the attenuation table and several other input parameter lines normally found at the beginning of an input data set for SEISRISK-III.
Peculiarities of CO2 sequestration in the Permafrost area
NASA Astrophysics Data System (ADS)
Guryeva, Olga; Chuvilin, Evgeny; Moudrakovski, Igor; Lu, Hailong; Ripmeester, John; Istomin, Vladimir
2010-05-01
Natural gas and gas-condensate accumulations in North of Western Siberia contain an admixture of CO2 (about 0.5-1.0 mol.%). Recently, the development and transportation of natural gas in the Yamal peninsula has become of interest to Russian scientists. They suggest liquifaction of natural gas followed by delivery to consumers using icebreaking tankers. The technique of gas liquefaction requires CO2 to be absent from natural gas, and therefore the liquefaction technology includes the amine treatment of gas. This then leads to a problem with utilization of recovered CO2. It is important to note, that gas reservoirs in the northern part of Russia are situated within the Permafrost zone. The thickness of frozen sediment reaches 500 meters. That is why one of the promising places for CO2 storage can be gas-permeable collectors in under-permafrost horizons. The favorable factors for preserving CO2 in these places are as follows: low permeability of overlying frozen sediments, low temperatures, the existence of a CO2 hydrate stability zone, and the possibility of sequestration at shallow depths (less then 800-1000 meters). When CO2 (in liquid or gas phase) is pumped into the under-permafrost collectors it is possible that some CO2 migrates towards the hydrate stability zone and hydrate-saturated horizons can be formed. This can result on the one hand in the increase of effective capacity of the collector, and on the other hand, in the increase of isolating properties of cap rock. Therefore, CO2 injection sometimes can be performed without a good cap rock. In connection with the abovementioned, to elaborate an effective technology for CO2 injection it is necessary to perform a comprehensive experimental investigation with computer simulation of different utilization schemes, including the process of CO2 hydrate formation in porous media. There are two possible schemes of hydrate formation in pore medium of sediments: from liquid CO2 or the gas. The pore water in the sediment may be either in frozen or liquid states. To study these processes, an experimental investigation of hydrate formation kinetics from liquid and gaseous CO2 has been performed using the method of NMR imaging*. Experiments were made with samples of quartz sand (particles' diameter 0,21-0,297mm) with different water saturation in the range of temperatures between -3 and +8oC and pressures between 3 and 6 MPa. The experiments performed revealed the main regularities of hydrate accumulation from liquid CO2 in sediment. The influence of temperature on the rate of pore hydrate growth was analyzed. For example, the rate of hydrate growth at +7.2oC was 6 times smaller then at -3 оС. Fast hydrate formation from liquid CO2 was observed in sand samples with water saturation below 20-30%. With an increase in water saturation to 50%, the rate of hydrate formation decreased significantly, and when water saturation was 60% or more, nucleation was not observed during the time of the experiment (1-3 days). Experimental results revealed that pressure variation in the range between 4 and 6 MPa does not have any influence on the kinetics of hydrate formation from liquid CO2. Comparison of kinetics of hydrate formation from liquid and gas CO2 showed that hydrate accumulation is faster from gas CO2 then from liquid CO2. Thus, 50% of pore water that reacted with liquid CO2 transformed into hydrate in 0.8 hours after nucleation, and when reacted with CO2-gas, it transformed in 0.3 hours. The completed experiments allowed us to consider the peculiarities of hydrate formation and filtration of liquid and gaseous CO2 towards the hydrate stability zone, which is important to take into account during the elaboration of industrial techniques of CO2 injection in under-permafrost collectors. * Experiments have been made in the laboratory of NRC of Canada.
The Role of Marangoni Convection for the FZ-Growth of Silicon
NASA Technical Reports Server (NTRS)
Dold, P.; Corell, A.; Schweizer, M.; Kaiser, Th.; Szofran, F.; Nakamura, S.; Hibiya, T.; Benz, K. W.
1998-01-01
Fluctuations of the electrical resistivity due to inhomogeneous dopant distribution are still a serious problem for the industrial processing yield of doped silicon crystals. In the case of silicon floating-zone growth, the main sources of these inhomogeneities are time- dependent flows in the liquid phase during the growth process. Excluding radio frequency (RF) induced convection, buoyancy and thermocapillary (Marangoni) convection are the two natural reasons for fluid flow. Both originate from temperature/concentration gradients in the melt, buoyancy convection through thermal/concentrational volume expansion, and thermocapillary convection through the temperature/concentration dependence of the surface tension. To improve the properties of grown crystals, knowledge of the strength, the characteristic, and the relation of these two flow mechanisms is essential. By the use of microgravity, the effect and the strength of buoyancy (gravity dependent) and thermocapillary (gravity independent) convection can be separated and clarified. Applying magnetic fields, both convective modes can be influenced: fluid flow can either be damped (static magnetic fields) or overlaid by a regular flow regime (rotating magnetic fields). Two complementary approaches have been pursued: Silicon full zones (experiments on the German sounding rockets TEXUS 7, 12, 22, 29, and 36) with the maximum temperature at half of the zone height and silicon half zones (experiments on the Japanese sounding rockets TR-IA4 and 6) with the maximum temperature at the top of the melt. With the full zone arrangement, the intensity and the frequency of the dopant striations could be determined and the critical Marangoni number could be identified. The half zone configuration is suited to classify the flow pattern and to measure the amplitude and the frequency of temperature fluctuations in the melt by inserting thermocouples or temperature sensors into the melt. All experiments have been carried out in monoellipsoid mirror furnaces. Typical zone geometries are approx. 8 to 14 mm in diameter and height. The crystals grown under microgravity are compared to crystals grown in static axial magnetic fields (B<5 tesla) and in transversal rotating magnetic fields (B<7.5 mT / f=50 Hz). Experimental results are completed by 3D numerical simulations: the obtained temperature and concentration distribution in the melt confirm the damping effect of rotating magnetic fields and explain the change in the radial segregation under static magnetic fields.
VLEACH is a one-dimensional, finite difference model for making preliminary assessments of the effects on ground water from the leaching of volatile, sorbed contaminants through the vadose zone. The program models four main processes: liquid-phase advection, solid-phase sorption,...
Fodor, R.V.; Moore, R.B.
1994-01-01
The 1960 Kapoho lavas of Kilauea's east rift zone contain 1-10 cm xenoliths of olivine gabbro, olivine gabbro-norite, and gabbro norite. Textures are poikilitic (ol+sp+cpx in pl) and intergranular (cpx+pl??ol??opx). Poikilitic xenoliths, which we interpret as cumulates, have the most primitive mineral compositions, Fo82.5, cpx Mg# 86.5, and An80.5. Many granular xenoliths (ol and noritic gabbro) contain abundant vesicular glass that gives them intersertal, hyaloophitic, and overall 'open' textures to suggest that they represent 'mush' and 'crust' of a magma crystallization environment. Their phase compositions are more evolved (Fo80-70, cpx Mg# 82-75, and An73-63) than those of the poikilitic xenoliths. Associated glass is basaltic, but evolved (MgO 5 wt%; TiO2 3.7-5.8 wt%). The gabbroic xenolith mineral compositions fit existing fractional crystallization models that relate the origins of various Kilauea lavas to one another. FeO/MgO crystal-liquid partitioning is consistent with the poikilitic ol-gabbro assemblage forming as a crystallization product from Kilauea summit magma with ???8 wt% MgO that was parental to evolved lavas on the east rift zone. For example, least squares calculations link summit magmas to early 1955 rift-zone lavas (???5 wt% MgO) through ???28-34% crystallization of the ol+sp+cpx+pl that comprise the poikilitic ol-gabbros. The other ol-gabbro assemblages and the olivine gabbro-norite assemblages crystallized from evolved liquids, such as represented by the early 1955 and late 1955 lavas (???6.5 wt% MgO) of the east rift zone. The eruption of 1960 Kapoho magmas, then, scoured the rift-zone reservoir system to entrain portions of cumulate and solidification zones that had coated reservoir margins during crystallization of prior east rift-zone magmas. ?? 1994 Springer-Verlag.
Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule.
Smith, Derrick M; Kapoor, Yash; Klinzing, Gerard R; Procopio, Adam T
2018-06-10
Fused deposition modeling (FDM) 3D printing (3DP) has a potential to change how we envision manufacturing in the pharmaceutical industry. A more common utilization for FDM 3DP is to build upon existing hot melt extrusion (HME) technology where the drug is dispersed in the polymer matrix. However, reliable manufacturing of drug-containing filaments remains a challenge along with the limitation of active ingredients which can sustain the processing risks involved in the HME process. To circumvent this obstacle, a single step FDM 3DP process was developed to manufacture thin-walled drug-free capsules which can be filled with dry or liquid drug product formulations. Drug release from these systems is governed by the combined dissolution of the FDM capsule 'shell' and the dosage form encapsulated in these shells. To prepare the shells, the 3D printer files (extension '.gcode') were modified by creating discrete zones, so-called 'zoning process', with individual print parameters. Capsules printed without the zoning process resulted in macroscopic print defects and holes. X-ray computed tomography, finite element analysis and mechanical testing were used to guide the zoning process and printing parameters in order to manufacture consistent and robust capsule shell geometries. Additionally, dose consistencies of drug containing liquid formulations were investigated in this work. Copyright © 2018 Elsevier B.V. All rights reserved.
Controlled environment crop production - Hydroponic vs. lunar regolith
NASA Technical Reports Server (NTRS)
Bugbee, Bruce G.; Salisbury, Frank B.
1989-01-01
The potential of controlled environment crop production in a lunar colony is discussed. Findings on the effects of optimal root-zone and aerial environments derived as part of the NASA CELSS project at Utah State are presented. The concept of growing wheat in optimal environment is discussed. It is suggested that genetic engineering might produce the ideal wheat cultivar for CELSS (about 100 mm in height with fewer leaves). The Utah State University hydroponic system is outlined and diagrams of the system and plant container construction are provided. Ratio of plant mass to solution mass, minimum root-zone volume, maintenance, and pH control are discussed. A comparison of liquid hydrophonic systems and lunar regoliths as substrates for plant growth is provided. The physiological processes that are affected by the root-zone environment are discussed including carbon partitioning, nutrient availability, nutrient absorption zones, root-zone oxygen, plant water potential, root-produced hormones, and rhizosphere pH control.
Rotary adsorbers for continuous bulk separations
Baker, Frederick S [Oak Ridge, TN
2011-11-08
A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.
Mapping the Habitable Zone of Exoplanets with a 2D Energy Balance Model
NASA Astrophysics Data System (ADS)
Moon, Nicole Taylor; Dr. Lisa Kaltenegger, Dr. Ramses Ramirez
2018-01-01
Traditionally, the habitable zone has been defined as the distance at which liquid water could exist on the surface of a rocky planet. However, different complexity models (simplified and fast:1D, and complex and time-intense:3D) models derive different boundaries for the habitable zone. The goal of this project was to test a new intermediate complexity 2D Energy Balance model, add a new ice albedo feedback mechanism, and derive the habitable zone boundaries. After completing this first project, we also studied how other feedback mechanisms, such as the presence of clouds and the carbonate-silicate cycle, effected the location of the habitable zone boundaries using this 2D model. This project was completed as part of a 2017 summer REU program hosted by Cornell's Center for Astrophysics and Plantary Sciecne and in partnership with the Carl Sagan Institute.
Highlighting non-uniform temperatures close to liquid/solid surfaces
NASA Astrophysics Data System (ADS)
Noirez, L.; Baroni, P.; Bardeau, J. F.
2017-05-01
The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = -0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.
21 CFR 600.15 - Temperatures during shipment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Virus Vaccine Live Do. Measles Virus Vaccine Live Do. Mumps Virus Vaccine Live Do. Fresh Frozen Plasma −18 °C or colder. Liquid Plasma 1 to 10 °C. Plasma −18 °C or colder. Platelet Rich Plasma Between 1... Vaccine (Liquid Product) 0 °C or colder. Source Plasma −5 °C or colder. Source Plasma Liquid 10 °C or...
21 CFR 600.15 - Temperatures during shipment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Virus Vaccine Live Do. Measles Virus Vaccine Live Do. Mumps Virus Vaccine Live Do. Fresh Frozen Plasma −18 °C or colder. Liquid Plasma 1 to 10 °C. Plasma −18 °C or colder. Platelet Rich Plasma Between 1... Vaccine (Liquid Product) 0 °C or colder. Source Plasma −5 °C or colder. Source Plasma Liquid 10 °C or...
21 CFR 600.15 - Temperatures during shipment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Virus Vaccine Live Do. Measles Virus Vaccine Live Do. Mumps Virus Vaccine Live Do. Fresh Frozen Plasma −18 °C or colder. Liquid Plasma 1 to 10 °C. Plasma −18 °C or colder. Platelet Rich Plasma Between 1... Vaccine (Liquid Product) 0 °C or colder. Source Plasma −5 °C or colder. Source Plasma Liquid 10 °C or...
21 CFR 600.15 - Temperatures during shipment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Virus Vaccine Live Do. Measles Virus Vaccine Live Do. Mumps Virus Vaccine Live Do. Fresh Frozen Plasma −18 °C or colder. Liquid Plasma 1 to 10 °C. Plasma −18 °C or colder. Platelet Rich Plasma Between 1... Vaccine (Liquid Product) 0 °C or colder. Source Plasma −5 °C or colder. Source Plasma Liquid 10 °C or...
21 CFR 600.15 - Temperatures during shipment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Virus Vaccine Live Do. Measles Virus Vaccine Live Do. Mumps Virus Vaccine Live Do. Fresh Frozen Plasma −18 °C or colder. Liquid Plasma 1 to 10 °C. Plasma −18 °C or colder. Platelet Rich Plasma Between 1... Vaccine (Liquid Product) 0 °C or colder. Source Plasma −5 °C or colder. Source Plasma Liquid 10 °C or...
NASA Technical Reports Server (NTRS)
Latourrette, T. Z.; Burnett, D. S.
1992-01-01
Experimental measurements of U and the partition coefficients between clinopyroxene and synthetic and natural basaltic liquid are presented. The results demonstrate that crystal-liquid U-Th fractionation is fO2-dependent and that U in terrestrial magmas is not entirely tetravalent. During partial melting, the liquid will have a Th/U ratio less than the clinopyroxene in the source. The observed U-238 - Th-230 disequilibrium in MORB requires that the partial melt should have a U/Th ratio greater than the bulk source and therefore cannot result from clinopyroxene-liquid partitioning. Further, the magnitudes of the measured partition coefficients are too small to generate significant U-Th fractionation in either direction. Assuming that clinopyroxene contains the bulk of the U and Th in the MORB source, the results indicate that U-238 - Th-230 disequilibrium in MORB may not be caused by partial melting at all.
Estimating organic maturity from well logs, Upper Cretaceous Austin Chalk, Texas Gulf coast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, G.A.; Berg, R.R.
1990-09-01
The Austin Chalk is both a source rock for oil and a fractured reservoir, and the evaluation of its organic maturity from well logs could be an aid to exploration and production. Geochemical measurements have shown three zones of organic maturity for source materials: (1) an immature zone to depths of 6,000 ft, (2) a peak-generation and accumulation zone from 6,000 to 6,500 ft, and (3) a mature, expulsion and migration zone below 6,500 ft. The response of common well logs identifies these zones. True resistivity (R{sub t}) is low in the immature zone, increases to a maximum in themore » peak-generation zone, and decreases to intermediate values in the expulsion zone. Density and neutron porosities are different in the immature zone but are nearly equal in the peak generation and expulsion zones. Correlations with conventional core analyses indicate that R{sub t} values between 9 and 40 ohm-m in the expulsion zone reflect a moveable oil saturation of 10 to 20% in the rock matrix. The moveable saturation provides oil from the matrix to fractures and is essential for sustained oil production. Therefore, the evaluation of moveable oil from well logs could be important in exploration.« less
Juckem, Paul F.; Corsi, Steven R.; McDermott, Colleen; Kleinheinz, Gregory; Fogarty, Lisa R.; Haack, Sheridan K.; Johnson, Heather E.
2013-01-01
Fecal Indicator Bacteria (FIB) concentrations in beach water have been used for many years as a criterion for closing beaches due to potential health concerns. Yet, current understanding of sources and transport mechanisms that drive FIB occurrence remains insufficient for accurate prediction of closures at many beaches. Murphy Park Beach, a relatively pristine beach on Green Bay in Door County, Wis., was selected for a study to evaluate FIB sources and transport mechanisms. Although the relatively pristine nature of the beach yielded no detection of pathogenic bacterial genes and relatively low FIB concentrations during the study period compared with other Great Lakes Beaches, its selection limited the number of confounding FIB sources and associated transport mechanisms. The primary sources of FIB appear to be internal to the beach rather than external sources such as rivers, storm sewer outfalls, and industrial discharges. Three potential FIB sources were identified: sand, swash-zone groundwater, and Cladophora mats. Modest correlations between FIB concentrations in these potential source reservoirs and FIB concentrations at the beach from the same day illustrate the importance of understanding transport mechanisms between FIB sources and the water column. One likely mechanism for transport and dispersion of FIB from sand and Cladophora sources appears to be agitation of Cladophora mats and erosion of beach sand due to storm activity, as inferred from storm indicators including turbidity, wave height, current speed, wind speed, sky visibility, 24-hour precipitation, and suspended particulate concentration. FIB concentrations in beach water had a statistically significant relation (p-value ‹0.05) with the magnitude of these storm indicators. In addition, transport of FIB in swash-zone groundwater into beach water appears to be driven by groundwater recharge associated with multiday precipitation and corresponding increased swash-zone groundwater discharge at the beach, as indicated by an increase in the specific conductance of beach water. Understanding the dynamics of FIB sources (sand, swash-zone groundwater, and Cladophora) and transport mechanisms (dispersion and erosion from storm energy, and swash-zone groundwater discharge) is important for improving predictions of potential health risks from FIB in beach water.
Bedada, Selamawit Yilma; Gallagher, Kathleen; Aregay, Aron Kassahun; Mohammed, Bashir; Maalin, Mohammed Adem; Hassen, Hassen Abdisemed; Ali, Yusuf Mohammed; Braka, Fiona; Kilebou, Pierre M'pele
2017-01-01
Communication is key for the successful implementation of polio vaccination campaigns. The purpose of this study is to review and analyse the sources of information utilized by caregivers during polio supplementary immunization activities (SIAs) in Somali, Ethiopia in 2014 and 2015. Data on sources of information about the polio campaign were collected post campaign from caregivers by trained data collectors as part of house to house independent monitoring. The sources of information analysed in this paper include town criers (via megaphones), health workers, religious leaders, kebele leaders (Kebele is the lowest administrative structure in Ethiopia), radio, television, text message and others. The repetition of these sources of information was analysed across years and zones for trends. Polio vaccination campaign coverage was also reviewed by year and zones within the Somali region in parallel with the major sources of information used in the respective year and zones. 57,745 responses were used for this analysis but the responses were received from < or = 57,745 individuals since some of them may provide more than one response. Moreover, because sampling of households is conducted independently during each round of independent monitoring, the same household may have been included more than once in our analysis. The methodology used for independent monitoring does not allow for the calculation of response rates. Monitors go from house to house until information from 20 households is received. From the total 57,745 responses reviewed, over 37% of respondents reported that town criers were their source for information about the 2014 and 2015 polio SIAs. Zonal trends in using town criers as a major source of information in both study years remained consistent except in two zones. 87.5% of zones that reported at least 90% coverage during both study years had utilized town criers as a major source of information while the rest (12.5%) used health workers. We found that town criers were consistently the major source of information about the polio campaigns for Somali region parents and caregivers during polio immunization days held in 2014 and 2015. Health workers and kebele leaders were also important sources of information about the polio campaign for parents.
Stability and normal zone propagation in YBCO CORC cables
Majoros, M.; Sumption, M. D.; Collings, E. W.; ...
2016-03-11
In this study, a two layer conductor on round core cable was tested for stability and normal zone propagation at 77 K in a liquid nitrogen bath. The cable was instrumented with voltage taps and wires on each strand over the cable’s central portion (i.e. excluding the end connections of the cable with the outside world). A heater was placed in the central zone on the surface of the cable, which allowed pulses of various powers and durations to be generated. Shrinking (recovering) and expanding (not recovering) normal zones have been detected, as well as stationary zones which were inmore » thermal equilibrium. Such stationary thermal equilibrium zones did not expand or contract, and hit a constant upper temperature while the heater current persisted; they are essentially a form of Stekly stability. Overall, the cable showed a high degree of stability. Notably, it was able to carry a current of 0.45I c cable with maximum temperature of 123 K for one minute without damage.« less
NASA Astrophysics Data System (ADS)
Brusseau, M. L.; Carroll, K. C.; Baker, J. B.; Allen, T.; DiGuiseppi, W.; Hatton, J.; Morrison, C.; Russo, A. E.; Berkompas, J. L.
2011-12-01
A large-scale permanganate-based in-situ chemical oxidation (ISCO) effort has been conducted over the past ten years at a federal Superfund site in Tucson, AZ, for which trichloroethene (TCE) is the primary contaminant of concern. Remediation performance was assessed by examining the impact of treatment on contaminant mass discharge, an approach that has been used for only a very few prior ISCO projects. Contaminant mass discharge tests were conducted before and after permanganate injection to measure the impact at the source-zone scale. The results indicate that ISCO caused a significant reduction in mass discharge (approximately 75%). The standard approach of characterizing discharge at the source-zone scale was supplemented with additional characterization at the plume scale, which was evaluated by examining the change in contaminant mass discharge associated with the pump-and-treat system. The integrated contaminant mass discharge decreased by approximately 70%, consistent with the source-zone-scale measurements. The integrated mass discharge rebounded from 0.1 to 0.2 Kg/d within one year after cessation of permanganate injections, after which it has been stable for several years. Collection of the integrated contaminant mass discharge data throughout the ISCO treatment period provided a high-resolution, real-time analysis of the site-wide impact of ISCO, thereby linking source-zone remediation to impacts on overall risk. The results indicate that ISCO was successful in reducing contaminant mass discharge at this site, which comprises a highly heterogeneous subsurface environment. Analysis of TCE sediment concentration data for core material collected before and after ISCO supports the hypothesis that the remaining mass discharge is associated in part with poorly-accessible contaminant mass residing within lower-permeability zones.
Brusseau, M L; Carroll, K C; Allen, T; Baker, J; Diguiseppi, W; Hatton, J; Morrison, C; Russo, A; Berkompas, J
2011-06-15
A large-scale permanganate-based in situ chemical oxidation (ISCO) effort has been conducted over the past ten years at a federal Superfund site in Tucson, AZ, for which trichloroethene (TCE) is the primary contaminant of concern. Remediation performance was assessed by examining the impact of treatment on contaminant mass discharge, an approach that has been used for only a very few prior ISCO projects. Contaminant mass discharge tests were conducted before and after permanganate injection to measure the impact at the source-zone scale. The results indicate that ISCO caused a significant reduction in mass discharge (approximately 75%). The standard approach of characterizing discharge at the source-zone scale was supplemented with additional characterization at the plume scale, which was evaluated by examining the change in contaminant mass discharge associated with the pump-and-treat system. The integrated contaminant mass discharge decreased by approximately 70%, consistent with the source-zone-scale measurements. The integrated mass discharge rebounded from 0.1 to 0.2 kg/d within one year after cessation of permanganate injections, after which it has been stable for several years. Collection of the integrated contaminant mass discharge data throughout the ISCO treatment period provided a high-resolution, real-time analysis of the site-wide impact of ISCO, thereby linking source-zone remediation to impacts on overall risk. The results indicate that ISCO was successful in reducing contaminant mass discharge at this site, which comprises a highly heterogeneous subsurface environment. Analysis of TCE sediment concentration data for core material collected before and after ISCO supports the hypothesis that the remaining mass discharge is associated in part with poorly accessible contaminant mass residing within lower-permeability zones.
NASA Astrophysics Data System (ADS)
Sharkov, E. V.; Chistyakov, A. V.; Shchiptsov, V. V.; Bogina, M. M.; Frolov, P. V.
2018-03-01
Magmatic oxide mineralization widely developed in syenite-gabbro intrusive complexes is an important Fe and Ti resource. However, its origin is hotly debatable. Some researchers believe that the oxide ores were formed through precipitation of dense Ti-magnetite in an initial ferrogabbroic magma (Bai et al., 2012), whereas others consider them as a product of immiscible splitting of Fe-rich liquid during crystallization of Fe-Ti basaltic magma (Zhou et al., 2013). We consider this problem with a study of the Middle Paleoproterozoic (2086 ± 30 Ma) Elet'ozero Ti-bearing layered intrusive complex in northern Karelia (Baltic Shield). The first ore-bearing phase of the complex is mainly made up of diverse ferrogabbros, with subordinate clinopyroxenites and peridotites. Fe-Ti oxides (magnetite, Ti-magnetite, and ilmenite) usually account for 10-15 vol %, reaching 30-70% in ore varieties. The second intrusive phase is formed by alkaline and nepheline syenites. Petrographical, mineralogical, and geochemical data indicate that the first phase of the intrusion was derived from a moderately alkaline Fe-Ti basaltic melt, while the parental melt of the second phase was close in composition to alkaline trachyte. The orebodies comprise disseminated and massive ores. The disseminated Fe-Ti oxide ores make up lenses and layers conformable to general layering. Massive ores occur in subordinate amounts as layers and lenses, as well as cross-cutting veins. Elevated Nb and Ta contents in Fe-Ti oxides makes it possible to consider them complex ores. It is shown that the Fe-Ti oxide mineralization is related to the formation of a residual (Fe,Ti)-rich liquid, which lasted for the entire solidification history of the first intrusive phase. The liquid originated through multiple enrichment of Fe and Ti in the crystallization zone of the intrusion owing to the following processes: (1) precipitation of silicate minerals in the crystallization zone with a corresponding increase in the Fe and Ti contents in an interstitial melt; and (2) periodic accumulation of the residual melt in front of this zone. Unlike liquid immiscibility leading to melt splitting into two phases, this liquid dissolved the residual components of the melt. Correspondingly, such an Fe-rich liquid has unusual properties and requires further study.
Soil water nitrate concentrations in giant cane and forest riparian buffer zones
Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver
2003-01-01
Soil water nitrate concentrations in giant cane and forest riparian buffer zones along Cypress Creek in southern Illinois were compared to determine if the riparian zones were sources or sinks for nitrogen in the rooting zone. Suction lysimeters were used to collect soil water samples from the lower rooting zone in each of the two vegetation types. The cane riparian...
PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES
The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...
A field pilot study was conducted to evaluate the performance of a combined ferrous sulfate/sodium dithionite solution for in situ treatment of a saturated zone hexavalent chromium source area at a former ferrochromium alloy production facility in Charleston, S.C. The saturate...
Distributed watershed modeling of design storms to identify nonpoint source loading areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endreny, T.A.; Wood, E.F.
1999-03-01
Watershed areas that generate nonpoint source (NPS) polluted runoff need to be identified prior to the design of basin-wide water quality projects. Current watershed-scale NPS models lack a variable source area (VSA) hydrology routine, and are therefore unable to identify spatially dynamic runoff zones. The TOPLATS model used a watertable-driven VSA hydrology routine to identify runoff zones in a 17.5 km{sup 2} agricultural watershed in central Oklahoma. Runoff areas were identified in a static modeling framework as a function of prestorm watertable depth and also in a dynamic modeling framework by simulating basin response to 2, 10, and 25 yrmore » return period 6 h design storms. Variable source area expansion occurred throughout the duration of each 6 h storm and total runoff area increased with design storm intensity. Basin-average runoff rates of 1 mm h{sup {minus}1} provided little insight into runoff extremes while the spatially distributed analysis identified saturation excess zones with runoff rates equaling effective precipitation. The intersection of agricultural landcover areas with these saturation excess runoff zones targeted the priority potential NPS runoff zones that should be validated with field visits. These intersected areas, labeled as potential NPS runoff zones, were mapped within the watershed to demonstrate spatial analysis options available in TOPLATS for managing complex distributions of watershed runoff. TOPLATS concepts in spatial saturation excess runoff modelling should be incorporated into NPS management models.« less
Widdowson, M.A.; Chapelle, F.H.; Brauner, J.S.; ,
2003-01-01
A method is developed for optimizing monitored natural attenuation (MNA) and the reduction in the aqueous source zone concentration (??C) required to meet a site-specific regulatory target concentration. The mathematical model consists of two one-dimensional equations of mass balance for the aqueous phase contaminant, to coincide with up to two distinct zones of transformation, and appropriate boundary and intermediate conditions. The solution is written in terms of zone-dependent Peclet and Damko??hler numbers. The model is illustrated at a chlorinated solvent site where MNA was implemented following source treatment using in-situ chemical oxidation. The results demonstrate that by not taking into account a variable natural attenuation capacity (NAC), a lower target ??C is predicted, resulting in unnecessary source concentration reduction and cost with little benefit to achieving site-specific remediation goals.
NASA Astrophysics Data System (ADS)
Serchan, S. P.; Wondzell, S. M.; Haggerty, R.; Pennington, R.; Feris, K. P.; Sanfilippo, A. R.; Reeder, W. J.; Tonina, D.
2016-12-01
Hyporheic zone biogeochemical processes can influence stream water chemistry. Some estimates show that 50-90% stream water CO2 is produced in the hyporheic zone through heterotrophic metabolism of organic matter, usually supplied from the stream as dissolved organic carbon (DOC). Preliminary results from our well network at the HJ Andrews WS1, indicate that dissolved inorganic carbon (DIC) is 1.5-2 times higher in the hyporheic zone than in stream water. Conversely, DOC (mg/L) is 1.5 times higher in stream water than in the hyporheic zone throughout the year. Overall, the hyporheic zone appears to be a net source of DIC. However, the increase in DIC along hyporheic flow paths is approximately 10-times greater than the loss of DOC, suggesting that metabolism of buried particulate organic carbon (POC) is a major source of organic carbon for microbial metabolism. However, we cannot completely rule out alternative sources of DIC, especially those originating in the overlying riparian soil, because hyporheic processes are difficult to isolate in well networks. To study hyporheic zone biogeochemical processes, particularly the transformation of organic carbon to inorganic carbon species, we designed and built six replicate 2-m long hyporheic mesocosms in which we are conducting DOC amendment experiments. We examine the role of DOC quality and quantity on hyporheic respiration by injecting labile (acetate) and refractory (fulvic acid) organic carbon and comparing rates of O2 consumption, DOC loss, and DIC gains against a control. We expect that stream source DOC is limiting in this small headwater stream, forcing hyporheic metabolism to rely on buried POC. However, the long burial time of POC suggests it is likely of low quality so that supplying labile DOC in stream water should shift hyporheic metabolism away from POC rather than increase the overall rate of metabolism. Future experiments will examine natural sources of DOC (stream periphyton, leaf, and soil humic horizon leachates), the breakdown of wood buried in the hyporheic zone, and the role of temperature and nutrients in controlling the rate at which buried POC is metabolized.
The ZONMET thermodynamic and kinetic model of metal condensation
NASA Astrophysics Data System (ADS)
Petaev, Michail I.; Wood, John A.; Meibom, Anders; Krot, Alexander N.; Keil, Klaus
2003-05-01
The ZONMET model of metal condensation is a FORTRAN computer code that calculates condensation with partial isolation-type equilibrium partitioning of the 19 most abundant elements among 203 gaseous and 488 condensed phases and growth in the nebula of a zoned metal grain by condensation from the nebular gas accompanied by diffusional redistribution of Ni, Co, and Cr. Of five input parameters of the ZONMET model (chemical composition of the system expressed as the dust/gas [ D/ G] ratio, nebular pressure [ Ptot], isolation degree [ξ], cooling rate ( CR), and seed size), only two—the D/ G ratio and the CR of the nebular source region of a zoned Fe,Ni grain—are important in determining the grain radius and Ni, Co, and Cr zoning profiles. We found no evidence for the supercooling during condensation of Fe,Ni metal that is predicted by the homogeneous nucleation theory. The model allows estimates to be made of physicochemical parameters in the CH chondrite nebular source regions. Modeling growth and simultaneous diffusional redistribution of Ni, Co, and Cr in the zoned metal grains of CH chondrites reveals that the condensation zoning profiles were substantially modified by diffusion while the grains were growing in the nebula. This means that previous estimates of the physicochemical conditions in the nebular source regions of CH and CB chondrites, based on measured zoning profiles of Ni, Co, Cr, and platinum group elements in Fe,Ni metal grains, need to be corrected. The two zoned metal grains in the PAT 91456 and NWA 470 CH chondrites studied so far require nebular source regions with different chemical compositions ( D/ G = 1 and D/ G = 4, respectively) and thermal histories characterized by variable cooling rates ( CR = 0.011 + 0.0022 × Δ T K/h and CR = 0.05 + 0.0035 × Δ T K/h, respectively). It appears that the metal grains of the CH chondrites were formed in multiple nebular source regions or in different events within the same source region as the CB chondrite metal grains were formed.
NASA Astrophysics Data System (ADS)
Zhang, Renping
2017-12-01
A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.
Hunt, Andrew G.; Lambert, Rebecca B.; Fahlquist, Lynne
2010-01-01
This report evaluates dissolved noble gas data, specifically helium-3 and helium-4, collected by the U.S. Geological Survey, in cooperation with the San Antonio Water System, during 2002-03. Helium analyses are used to provide insight into the sources of groundwater in the freshwater/saline-water transition zone of the San Antonio segment of the Edwards aquifer. Sixty-nine dissolved gas samples were collected from 19 monitoring wells (categorized as fresh, transitional, or saline on the basis of dissolved solids concentration in samples from the wells or from fluid-profile logging of the boreholes) arranged in five transects, with one exception, across the freshwater/saline-water interface (the 1,000-milligrams-per-liter dissolved solids concentration threshold) of the Edwards aquifer. The concentration of helium-4 (the dominant isotope in atmospheric and terrigenic helium) in samples ranged from 63 microcubic centimeters per kilogram at standard temperature (20 degrees Celsius) and pressure (1 atmosphere) in a well in the East Uvalde transect to 160,587 microcubic centimeters per kilogram at standard temperature and pressure in a well in the Kyle transect. Helium-4 concentrations in the 10 saline wells generally increase from the western transects to the eastern transects. Increasing helium-4 concentrations from southwest to northeast in the transition zone, indicating increasing residence time of groundwater from southwest to northeast, is consistent with the longstanding conceptualization of the Edwards aquifer in which water recharges in the southwest, flows generally northeasterly (including in the transition zone, although more slowly than in the fresh-water zone), and discharges at major springs in the northeast. Excess helium-4 was greater than 1,000 percent for 60 of the 69 samples, indicating that terrigenic helium is largely present and that most of the excess helium-4 comes from sources other than the atmosphere. The helium data of this report cannot be used to identify sources of groundwater in and near the transition zone of the Edwards aquifer in terms of specific geologic (stratigraphic) units or hydrogeologic units (aquifers or confining units). However, the data indicate that the source or sources of the helium, and thus the water in which the helium is dissolved, in the transition zone are mostly terrigenic in origin rather than atmospheric. Whether most helium in and near the transition zone of the Edwards aquifer originated either in rocks outside the transition zone and at depth or in the adjacent Trinity aquifer is uncertain; but most of the helium in the transition zone had to enter the transition zone from the Trinity aquifer because the Trinity aquifer is the hydrogeologic unit immediately beneath and laterally adjacent to the transition zone of the Edwards aquifer. Thus the helium data support a hypothesis of sufficient hydraulic connection between the Trinity and Edwards aquifers to allow movement of water from the Trinity aquifer to the transition zone of the Edwards aquifer.
Coda Q Attenuation and Source Parameters Analysis in North East India Using Local Earthquakes
NASA Astrophysics Data System (ADS)
Mohapatra, A. K.; Mohanty, W. K.; Earthquake Seismology
2010-12-01
Alok Kumar Mohapatra1* and William Kumar Mohanty1 *Corresponding author: alokgpiitkgp@gmail.com 1Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, West Bengal, India. Pin-721302 ABSTRACT In the present study, the quality factor of coda waves (Qc) and the source parameters has been estimated for the Northeastern India, using the digital data of ten local earthquakes from April 2001 to November 2002. Earthquakes with magnitude range from 3.8 to 4.9 have been taken into account. The time domain coda decay method of a single back scattering model is used to calculate frequency dependent values of Coda Q (Qc) where as, the source parameters like seismic moment(Mo), stress drop, source radius(r), radiant energy(Wo),and strain drop are estimated using displacement amplitude spectrum of body wave using Brune's model. The earthquakes with magnitude range 3.8 to 4.9 have been used for estimation Qc at six central frequencies 1.5 Hz, 3.0 Hz, 6.0 Hz, 9.0 Hz, 12.0 Hz, and 18.0 Hz. In the present work, the Qc value of local earthquakes are estimated to understand the attenuation characteristic, source parameters and tectonic activity of the region. Based on a criteria of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events the study region has been classified into three zones such as the Tibetan Plateau Zone (TPZ), Bengal Alluvium and Arakan-Yuma Zone (BAZ), Shillong Plateau Zone (SPZ). It follows the power law Qc= Qo (f/fo)n where, Qo is the quality factor at the reference frequency (1Hz) fo and n is the frequency parameter which varies from region to region. The mean values of Qc reveals a dependence on frequency, varying from 292.9 at 1.5 Hz to 4880.1 at 18 Hz. Average frequency dependent relationship Qc values obtained of the Northeastern India is 198 f 1.035, while this relationship varies from the region to region such as, Tibetan Plateau Zone (TPZ): Qc= 226 f 1.11, Bengal Alluvium and Arakan-Yuma Zone (BAZ) : Qc= 301 f 0.87, Shillong Plateau Zone (SPZ): Qc=126 fo 0.85. It indicates Northeastern India is seismically active but comparing of all zones in the study region the Shillong Plateau Zone (SPZ): Qc= 126 f 0.85 is seismically most active. Where as the Bengal Alluvium and Arakan-Yuma Zone (BAZ) are less active and out of three the Tibetan Plateau Zone (TPZ)is intermediate active. This study may be useful for the seismic hazard assessment. The estimated seismic moments (Mo), range from 5.98×1020 to 3.88×1023 dyne-cm. The source radii(r) are confined between 152 to 1750 meter, the stress drop ranges between 0.0003×103 bar to 1.04×103 bar, the average radiant energy is 82.57×1018 ergs and the strain drop for the earthquake ranges from 0.00602×10-9 to 2.48×10-9 respectively. The estimated stress drop values for NE India depicts scattered nature of the larger seismic moment value whereas, they show a more systematic nature for smaller seismic moment values. The estimated source parameters are in agreement to previous works in this type of tectonic set up. Key words: Coda wave, Seismic source parameters, Lapse time, single back scattering model, Brune's model, Stress drop and North East India.
Assessing Habitability: Lessons from the Phoenix Mission
NASA Technical Reports Server (NTRS)
Stoker, Carol R.
2013-01-01
The Phoenix mission's key objective was to search for a habitable zone. The Phoenix lander carried a robotic arm with digging scoop to collect soil and icy material for analysis with an instrument payload that included volatile mineral and organic analysis(3) and soil ionic chemistry analysis (4). Results from Phoenix along with theoretical modeling and other previous mission results were used to evaluate the habitability of the landing site by considering four factors that characterize the environments ability to support life as we know it: the presence of liquid water, the presence of an energy source to support metabolism, the presence of nutrients containing the fundamental building blocks of life, and the absence of environmental conditions that are toxic to or preclude life. Phoenix observational evidence for the presence of liquid water (past or present) includes clean segregated ice, chemical etching of soil grains, calcite minerals in the soil and variable concentrations of soluble salts5. The maximum surface temperature measured was 260K so unfrozen water can form only in adsorbed films or saline brines but warmer climates occur cyclically on geologically short time scales due to variations in orbital parameters. During high obliquity periods, temperatures allowing metabolism extend nearly a meter into the subsurface. Phoenix discovered 1%w/w perchlorate salt in the soil, a chemical energy source utilized by a wide range of microbes. Nutrient sources including C, H, N, O, P and S compounds are supplied by known atmospheric sources or global dust. Environmental conditions are within growth tolerance for terrestrial microbes. Summer daytime temperatures are sufficient for metabolic activity, the pH is 7.8 and is well buffered and the projected water activity of a wet soil will allow growth. In summary, martian permafrost in the north polar region is a viable location for modern life. Stoker et al. presented a formalism for comparing the habitability of various regions visited to date on Mars that involved computing a habitability probability, defined as the product of probabilities for the presence of liquid water (P(sub lw)), energy (P(sub e)), nutrients (P(sub ch)), and a benign environment (P(sub b)). Using this formalism, they argued that the Phoenix site was the most habitable of any site visited to date by landed missions and warranted a follow up mission to search for modern evidence of life. This paper will review that conclusion in view of more recent information from the Mars Exploration Rovers and Mars Science Lander missions.
Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones
NASA Astrophysics Data System (ADS)
Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.
2009-12-01
Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low-saturation ganglia, while diffusion within the DNAPL should be considered for larger NAPL pools. These results offer important insights to the monitoring and interpretation of bioremediation strategies employed within DNAPL source zones.
NASA Astrophysics Data System (ADS)
Singh, A. P.; Mishra, O. P.
2015-10-01
In order to understand the processes involved in the genesis of monsoon induced micro to moderate earthquakes after heavy rainfall during the Indian summer monsoon period beneath the 2011 Talala, Saurashtra earthquake (Mw 5.1) source zone, we assimilated 3-D microstructures of the sub-surface rock materials using a data set recorded by the Seismic Network of Gujarat (SeisNetG), India. Crack attributes in terms of crack density (ε), the saturation rate (ξ) and porosity parameter (ψ) were determined from the estimated 3-D sub-surface velocities (Vp, Vs) and Poisson's ratio (σ) structures of the area at varying depths. We distinctly imaged high-ε, high-ξ and low-ψ anomalies at shallow depths, extending up to 9-15 km. We infer that the existence of sub-surface fractured rock matrix connected to the surface from the source zone may have contributed to the changes in differential strain deep down to the crust due to the infiltration of rainwater, which in turn induced micro to moderate earthquake sequence beneath Talala source zone. Infiltration of rainwater during the Indian summer monsoon might have hastened the failure of the rock by perturbing the crustal volume strain of the causative source rock matrix associated with the changes in the seismic moment release beneath the surface. Analyses of crack attributes suggest that the fractured volume of the rock matrix with high porosity and lowered seismic strength beneath the source zone might have considerable influence on the style of fault displacements due to seismo-hydraulic fluid flows. Localized zone of micro-cracks diagnosed within the causative rock matrix connected to the water table and their association with shallow crustal faults might have acted as a conduit for infiltrating the precipitation down to the shallow crustal layers following the fault suction mechanism of pore pressure diffusion, triggering the monsoon induced earthquake sequence beneath the source zone.