Science.gov

Sample records for liquid waste products

  1. Value added liquid products from waste biomass pyrolysis using pretreatments.

    PubMed

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition. PMID:26298257

  2. Value added liquid products from waste biomass pyrolysis using pretreatments.

    PubMed

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition.

  3. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength.

  4. Enzymatic hydrolysis of pretreated waste paper--source of raw material for production of liquid biofuels.

    PubMed

    Brummer, Vladimir; Jurena, Tomas; Hlavacek, Viliam; Omelkova, Jirina; Bebar, Ladislav; Gabriel, Petr; Stehlik, Petr

    2014-01-01

    Enzymatic hydrolysis of waste paper is becoming a perspective way to obtain raw material for production of liquid biofuels. Reducing sugars solutions that arise from the process of saccharification are a precursors for following or simultaneous fermentation to ethanol. Different types of waste paper were evaluated, in terms of composition and usability, in order to select the appropriate type of the waste paper for the enzymatic hydrolysis process. Novozymes® enzymes NS50013 and NS50010 were used in a laboratory scale trials. Technological conditions, which seem to be the most suitable for hydrolysis after testing on cellulose pulp and filter paper, were applied to hydrolysis of widely available waste papers - offset paper, cardboard, recycled paper in two qualities, matte MYsol offset paper and for comparison again on model materials. The highest yields were achieved for the cardboard, which was further tested using various pretreatment combinations in purpose of increasing the hydrolysis yields.

  5. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOEpatents

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  6. Optimization of extraction of phenolic acids from a vegetable waste product using a pressurized liquid extractor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato tubers are eaten worldwide for their nutritional value, but potato peels are often disposed as waste. This study identified the phenolic acids content in potato peels, tuber, and developed an optimized method for extraction of phenolic acids from potato peels using a pressurized liquid extrac...

  7. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    SciTech Connect

    Sun, Ning; Xu, Feng; Sathitsuksanoh, Noppadon; Thompson, Vicki S.; Cafferty, Kara; Li, Chenlin; Tanjore, Deepti; Narani, Akash; Pray, Todd R.; Simmons, Blake A.; Singh, Seema

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  8. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.

    PubMed

    Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger

    2016-09-01

    Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs. PMID:26996262

  9. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.

    PubMed

    Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger

    2016-09-01

    Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs.

  10. Blending municipal solid waste with corn stover for sugar production using ionic liquid process.

    PubMed

    Sun, Ning; Xu, Feng; Sathitsuksanoh, Noppadon; Thompson, Vicki S; Cafferty, Kara; Li, Chenlin; Tanjore, Deepti; Narani, Akash; Pray, Todd R; Simmons, Blake A; Singh, Seema

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production. However, its heterogeneity is the major barrier to efficient conversion to biofuels. MSW paper mix was generated and blended with corn stover (CS). It has been shown that both of them can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme-free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released. There is a correlation between the viscosity profile and hydrolysis efficiency; low viscosity of the hydrolysate generally corresponds to high sugar yields. Overall, the results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries. PMID:25817030

  11. Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels.

    PubMed

    Romero, M J A; Pizzi, A; Toscano, G; Busca, G; Bosio, B; Arato, E

    2016-01-01

    Deoxygenation of waste cooking vegetable oil and Jatropha curcas oil under nitrogen atmosphere was performed in batch and semi-batch experiments using CaO and treated hydrotalcite (MG70) as catalysts at 400 °C. In batch conditions a single liquid fraction (with yields greater than 80 wt.%) was produced containing a high proportion of hydrocarbons (83%). In semi-batch conditions two liquid fractions (separated by a distillation step) were obtained: a light fraction and an intermediate fraction containing amounts of hydrocarbons between 72-80% and 85-88% respectively. In order to assess the possible use of the liquid products as alternative fuels a complete chemical characterization and measurement of their properties were carried out. PMID:25869843

  12. Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels.

    PubMed

    Romero, M J A; Pizzi, A; Toscano, G; Busca, G; Bosio, B; Arato, E

    2016-01-01

    Deoxygenation of waste cooking vegetable oil and Jatropha curcas oil under nitrogen atmosphere was performed in batch and semi-batch experiments using CaO and treated hydrotalcite (MG70) as catalysts at 400 °C. In batch conditions a single liquid fraction (with yields greater than 80 wt.%) was produced containing a high proportion of hydrocarbons (83%). In semi-batch conditions two liquid fractions (separated by a distillation step) were obtained: a light fraction and an intermediate fraction containing amounts of hydrocarbons between 72-80% and 85-88% respectively. In order to assess the possible use of the liquid products as alternative fuels a complete chemical characterization and measurement of their properties were carried out.

  13. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2016-01-25

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box-Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min(-1) and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  14. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2016-01-25

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box-Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min(-1) and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry. PMID:26444486

  15. Methane production from cattle waste in laboratory reactors at 40/sup 0/ and 60/sup 0/C after solid-liquid separation

    SciTech Connect

    Rorick, M.B.; Spahr, S.L.; Bryant, M.P.

    1980-11-01

    Whole dairy waste and liquid effluent separated from the same waste with a solid-liquid separator were fermented at mesophilic and thermophilic temperatures. Chemical analyses of the two materials were similar. Methane production was superior in thermophilic reactors. With substrates adjusted to 4.1% volatile solids, average methane production at 60/sup 0/C (166 ml/g volatile solids fed to reactors at 3- and 6-day retention time) was as efficient as at 40/sup 0/C (162 ml/g at 5- and 10-day retention times). Thermophilic reactors produced 1.67 liter methane/liter reactor per day as compared to .93 liter for mesophilic reactors. Efficiency of methanogenesis was no greater for whole waste than for separated effluent. Production of methane for the two substrates averaged over retention times and temperatures was 156 ml/g volatile solids fed to reactor for whole waste and 173 ml/g for separated effluent.

  16. Waste form product characteristics

    SciTech Connect

    Taylor, L.L.; Shikashio, R.

    1995-01-01

    The Department of Energy has operated nuclear facilities at the Idaho National Engineering Laboratory (INEL) to support national interests for several decades. Since 1953, it has supported the development of technologies for the storage and reprocessing of spent nuclear fuels (SNF) and the resultant wastes. However, the 1992 decision to discontinue reprocessing of SNF has left nearly 768 MT of SNF in storage at the INEL with unspecified plans for future dispositioning. Past reprocessing of these fuels for uranium and other resource recovery has resulted in the production of 3800 M{sup 3} calcine and a total inventory of 7600 M{sup 3} of radioactive liquids (1900 M{sup 3} destined for immediate calcination and the remaining sodium-bearing waste requiring further treatment before calcination). These issues, along with increased environmental compliance within DOE and its contractors, mandate operation of current and future facilities in an environmentally responsible manner. This will require satisfactory resolution of spent fuel and waste disposal issues resulting from the past activities. A national policy which identifies requirements for the disposal of SNF and high level wastes (HLW) has been established by the Nuclear Waste Policy Act (NWPA) Sec.8,(b) para(3)) [1982]. The materials have to be conditioned or treated, then packaged for disposal while meeting US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. The spent fuel and HLW located at the INEL will have to be put into a form and package that meets these regulatory criteria. The emphasis of Idaho Chemical Processing Plant (ICPP) future operations has shifted toward investigating, testing, and selecting technologies to prepare current and future spent fuels and waste for final disposal. This preparation for disposal may include mechanical, physical and/or chemical processes, and may differ for each of the various fuels and wastes.

  17. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    PubMed

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-01-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.

  18. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    PubMed

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-01-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils. PMID:26515426

  19. Method for treating liquid wastes

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

    1995-12-26

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

  20. Method for treating liquid wastes

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Singh, Prahlad; Ketring, Alan R.

    1995-01-01

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

  1. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent-A Study Using Soybean Plants.

    PubMed

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; LeBihan, Yann; Buelna, Gerardo

    2016-03-01

    With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60-70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33-100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.

  2. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent-A Study Using Soybean Plants.

    PubMed

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; LeBihan, Yann; Buelna, Gerardo

    2016-03-01

    With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60-70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33-100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil. PMID:26541163

  3. Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles.

    PubMed

    Lin, Kae-Long

    2007-09-01

    In this study, we employ the following operating conditions: varied pressure (25 kgf/cm(2)), sintering temperature (900-1200 degrees C), sintering time (6h), percentage of thin film transistor liquid crystal display (TFT-LCD) waste glass by weight (0-50%) and temperature rising at a rate of 5 degrees C/min, to fabricate clay tiles. The sintering characteristics of the clay blended with TFT-LCD waste glass tiles are examined to evaluate the feasibility of the reuse of TFT-LCD waste glass. TFT-LCD waste glass contains large amounts of glass. The TCLP leaching concentrations all met the ROC EPAs current regulatory thresholds. The addition of TFT-LCD waste glass to the mixture, increased the apparent weight loss. The incorporation of 50% TFT-LCD waste glass resulted in a significant increase in the porosity ratio of the specimens compared to the porosity ratio of the ceramic tile containing TFT-LCD waste glass. The main constituent in both the clay tile and the clay with TFT-LCD waste glass samples is quartz. Increasing the temperature resulted in an increase in the flexural strength and resistance to abrasion in the tiles. The porosity ratio decreases as shrinkage increases. The relation between the porosity ratio and the hardness of the tiles used in the study is also shown. PMID:17367925

  4. Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles.

    PubMed

    Lin, Kae-Long

    2007-09-01

    In this study, we employ the following operating conditions: varied pressure (25 kgf/cm(2)), sintering temperature (900-1200 degrees C), sintering time (6h), percentage of thin film transistor liquid crystal display (TFT-LCD) waste glass by weight (0-50%) and temperature rising at a rate of 5 degrees C/min, to fabricate clay tiles. The sintering characteristics of the clay blended with TFT-LCD waste glass tiles are examined to evaluate the feasibility of the reuse of TFT-LCD waste glass. TFT-LCD waste glass contains large amounts of glass. The TCLP leaching concentrations all met the ROC EPAs current regulatory thresholds. The addition of TFT-LCD waste glass to the mixture, increased the apparent weight loss. The incorporation of 50% TFT-LCD waste glass resulted in a significant increase in the porosity ratio of the specimens compared to the porosity ratio of the ceramic tile containing TFT-LCD waste glass. The main constituent in both the clay tile and the clay with TFT-LCD waste glass samples is quartz. Increasing the temperature resulted in an increase in the flexural strength and resistance to abrasion in the tiles. The porosity ratio decreases as shrinkage increases. The relation between the porosity ratio and the hardness of the tiles used in the study is also shown.

  5. Utilization of solid and liquid waste generated during ethanol fermentation process for production of gaseous fuel through anaerobic digestion--a zero waste approach.

    PubMed

    Narra, Madhuri; Balasubramanian, Velmurugan

    2015-03-01

    Preliminary investigations were performed in the laboratory using batch reactors at 10% solid concentration for the assessment of the biogas production at thermophilic and mesophilic temperatures using solid residues generated during ethanol fermentation process. One kg of solid residues (left after enzyme extraction and enzymatic hydrolysis) from thermophilic reactors (TR1 and TR2) produced around 131 and 84L of biogas, respectively, whereas biogas production from mesophilic reactors (MR1 and MR2) was 86 and 62L, respectively. After 20 and 35days of retention time, the TS and VS reductions from TR1, TR2 and MR1, MR2 were found to be 39.2% and 35.0%, 67.3% and 61.0%, 21.0% and 18.0%, 34.7% and 27.8%, respectively. Whereas the liquid waste was treated using four laboratory anaerobic hybrid reactors (AHRs) with two different natural and synthetic packing media at 15-3days HRTs. AHRs packed with natural media showed better COD removal efficiency and methane yield.

  6. Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source.

    PubMed

    Chanasit, Wankuson; Hodgson, Brian; Sudesh, Kumar; Umsakul, Kamontam

    2016-07-01

    Conditions for the optimal production of polyhydroxyalkanoate (PHA) by Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) were determined by response surface methodology. These were an initial carbon to nitrogen ratio (C/N) of 40 (mole/mole), an initial pH of 7.0, and a temperature of 35 °C. A biomass and PHA concentration of 3.65 g/L and about 2.6 g/L (77% DCW), respectively, were achieved in a growth associated process using 20 g/L glycerol in the BLW after 36 h of exponential growth. The PHA monomer compositions were 3HB (3-hydroxybutyrate), a short-chain-length-PHA, and the medium-chain-length-PHA e.g. 3-hydroxyoctanoate and 3-hydroxydecanoate. Both the phbC and phaC genes were characterized. The phbC enzyme had not been previously detected in a Pseudomonas mendocina species. A 2.15 g/L of an exopolysaccharide, alginate, was also produced with a similar composition to that of other Pseudomonas species. PMID:26981955

  7. Chemical Waste and Allied Products.

    PubMed

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste. PMID:27620094

  8. Chemical Waste and Allied Products.

    PubMed

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste.

  9. Electrochemical treatment of liquid wastes

    SciTech Connect

    Hobbs, D.T.

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  10. Liquid centrifugation for nuclear waste partitioning

    SciTech Connect

    Bowman, C.D.

    1992-03-11

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF{sub 2} salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the {sup 137}Cs and {sup 135}Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10{sup 7} and the fraction of {sup 137}CS in {sup 133}Cs being as low as a few parts in 10{sup 5}. A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components.

  11. Electrochemical treatment of liquid wastes

    SciTech Connect

    Hobbs, D.

    1996-10-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories.

  12. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: Influence of lapse time of reaction

    SciTech Connect

    Lee, Kyong-Hwan . E-mail: khwanlee@kier.re.kr; Shin, Dae-Hyun

    2007-07-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 deg. C) and high (400 deg. C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 deg. C was firstly aromatic products and then olefin products, while at 400 deg. C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 deg. C) and 83 min (at 400 deg. C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the

  13. Improved production of propionic acid driven by hydrolyzed liquid containing high concentration of l-lactic acid from co-fermentation of food waste and sludge.

    PubMed

    Li, Xiang; Zhang, Wenjuan; Ma, Li; Lai, Sizhou; Zhao, Shu; Chen, Yinguang; Liu, Yanan

    2016-11-01

    This study investigated the feasibility of improved production propionic acid-enriched volatile fatty acid (VFA) from high concentration (Cs) of food waste and waste activated sludge (WAS) via lactic acid pathway by using of Propionibacterium acidipropionici. It was observed that production of l-lactate overwhelmed to d-lactate at first stage, which improved from 3.21 to 35.45gCOD/L with increase of substrate Cs. However, kinetic model analysis indicated that P. acidipropionici growth rate μmax was decreased with increase of l-lactate concentration, which explained second stage free cell fermentation of propionic acid was inhibited when fed by first stage liquid from R-40, R-55 and R-70. Then, the fibrous bed bioreactor was employed to eliminate the feed inhibition. The maximal percentage of propionic acid (68.3%) and production (16.31gCOD/L) was obtained by feeding liquid of R-55, which was improved by 3.33 folds compared to the free cell fermentation. PMID:27614154

  14. Reduction of INTEC Analytical Radioactive Liquid Wastes

    SciTech Connect

    V. J. Johnson; J. S. Hu; A. G. Chambers

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  15. Reduction of INTEC Analytical Radioactive Liquid Waste

    SciTech Connect

    Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  16. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols

    SciTech Connect

    Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

  17. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  18. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  19. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  20. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  1. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  2. Analysis of induced radionuclides in replacement parts and liquid wastes in a medical cyclotron solely used for production of 18F for [18F]FDG.

    PubMed

    Mochizuki, S; Ishigure, N; Ogata, Y; Kobayashi, T

    2013-04-01

    Radioactivities produced in replacement parts and liquid wastes in a medical cyclotron used to produce (18)F for [(18)F]FDG with 10MeV protons were analyzed. Nineteen radionuclides were found in the replacement parts and liquid wastes. Among them, long-lived (56)Co in the Havar foils is critical in terms of radioactive waste management. The estimated dose level of exposure for the operating staff during the replacement of parts was around 310μSv/y, which is smaller than the recommended dose limit for workers.

  3. Method for solidifying liquid radioactive wastes

    DOEpatents

    Berreth, Julius R.

    1976-01-01

    The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.

  4. Solid and Liquid Waste Drying Bag

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  5. A study of waste liquid crystal display generation in mainland China.

    PubMed

    Liu, Zhifeng; Xu, Zeying; Huang, Haihong; Li, Bingbing

    2016-01-01

    The generation of liquid crystal display waste is becoming a serious social problem. Predicting liquid crystal display waste status is the foundation for establishing a recycling network; however, the difficulty in predicting liquid crystal display waste quantity lies in data mining. In order to determine the quantity and the distribution of liquid crystal display waste in China, the four top-selling liquid crystal display products (liquid crystal display TVs, desktop PCs, notebook PCs, and mobile phones) were selected as study objects. Then, the extended logistic model and market supply A method was used to predict the quantity of liquid crystal display waste products. Moreover, the distribution of liquid crystal display waste products in different regions was evaluated by examining the consumption levels of household equipment. The results revealed that the quantity of waste liquid crystal displays would increase rapidly in the next decade. In particular, the predicted quantity of waste liquid crystal displays would rise to approximately 4.262 × 10(9) pieces in 2020, and the total display area (i.e. the surface area of liquid crystal display panels) of waste liquid crystal displays would reach 5.539 × 10(7) m(2). The prediction on the display area of waste liquid crystal display TVs showed that it would account for 71.5% of the total display area by 2020. Meanwhile, the quantity of waste mobile phones would significantly grow, increasing 5.8 times from 2012 to 2020. In terms of distribution, Guangdong is the top waste liquid crystal display-generating province in China, followed by Jiangsu, Shandong, Henan, Zhejiang, and Sichuan. Considering its regional characteristics, Guangdong has been proposed to be the most important location of the recycling network. PMID:26542394

  6. A study of waste liquid crystal display generation in mainland China.

    PubMed

    Liu, Zhifeng; Xu, Zeying; Huang, Haihong; Li, Bingbing

    2016-01-01

    The generation of liquid crystal display waste is becoming a serious social problem. Predicting liquid crystal display waste status is the foundation for establishing a recycling network; however, the difficulty in predicting liquid crystal display waste quantity lies in data mining. In order to determine the quantity and the distribution of liquid crystal display waste in China, the four top-selling liquid crystal display products (liquid crystal display TVs, desktop PCs, notebook PCs, and mobile phones) were selected as study objects. Then, the extended logistic model and market supply A method was used to predict the quantity of liquid crystal display waste products. Moreover, the distribution of liquid crystal display waste products in different regions was evaluated by examining the consumption levels of household equipment. The results revealed that the quantity of waste liquid crystal displays would increase rapidly in the next decade. In particular, the predicted quantity of waste liquid crystal displays would rise to approximately 4.262 × 10(9) pieces in 2020, and the total display area (i.e. the surface area of liquid crystal display panels) of waste liquid crystal displays would reach 5.539 × 10(7) m(2). The prediction on the display area of waste liquid crystal display TVs showed that it would account for 71.5% of the total display area by 2020. Meanwhile, the quantity of waste mobile phones would significantly grow, increasing 5.8 times from 2012 to 2020. In terms of distribution, Guangdong is the top waste liquid crystal display-generating province in China, followed by Jiangsu, Shandong, Henan, Zhejiang, and Sichuan. Considering its regional characteristics, Guangdong has been proposed to be the most important location of the recycling network.

  7. Bioprocessing of a stored mixed liquid waste

    SciTech Connect

    Wolfram, J.H.; Rogers, R.D.; Finney, R.

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actual mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.

  8. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  9. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  10. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  11. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  12. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  13. Liquid low level waste management expert system

    SciTech Connect

    Ferrada, J.J.; Abraham, T.J. ); Jackson, J.R. )

    1991-01-01

    An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs.

  14. AVLIS production plant waste management plan

    SciTech Connect

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  15. 324 Bldg Liquid Waste Handling System Functional Design Criteria

    SciTech Connect

    HAM, J.E.

    1999-12-16

    The 324 Building in the 300 Area of the Hanford Site, is preparing to design, construct, and operate the Liquid Waste Handling System (LWHS). The system will include transfer, collection, treatment, and disposal of radiological and mixed liquid waste.

  16. Used powdex resin for liquid waste processing

    SciTech Connect

    Pearson, C.J.; Bramblett, J.W.

    1995-05-01

    Powdex resin has traditionally been used on the Secondary side for condensate polishing. The resins on these polishers are backwashed periodically based on chemical breakthrough or high differential pressure. Upon the backwash, the ion exchange capacity on the powdex resin is not completely exhausted. In the past, this partially used powdex resin was sluiced to a liner and treated as waste for disposal. In an effort to reduce radioactivity being released from segregated, high chemical concentration wastes, the idea of trying used powdex resin was initiated. In 1992, Duke Power Company began processing problem liquid waste streams with used Secondary powdex and subsequent decanting of the waste water for release. the results have shown significant reductions in the activity of this water. This paper will detail the history, method, and the results of using Secondary powdex for liquid radwaste processing. It will also describe the benefits, such as: (1) Processing waste streams not suitable for bead resin demineralizers. (2) Ability to process large volumes of waste water in a short period of time. (3) Recycling media thought to be useless. (4) > 80% Reduction in activity of water processed. (5) Overall curies reduction. (6) Improved bead demineralizer performance.

  17. Biological production of products from waste gases

    DOEpatents

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  18. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    PubMed

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  19. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    PubMed

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions. PMID:22452230

  20. Waste products in highway construction. Final report

    SciTech Connect

    Han, C.

    1993-04-01

    The report presents waste materials and products for highway construction. The general legislation, local liability, and research projects related to waste materials are outlined. The waste materials and products presented include waste paving materials, industrial ash materials, taconite tailing materials, waste tire rubber materials and products, building rubble materials, incinerator ash products and materials, waste glass materials, waste shingle materials and products, waste plastics products, and slag materials. For each waste category, the legislation and restrictions, material properties, construction and application, field performance, and recycling at the end of service life if available are discussed.

  1. Liquid effluent services and solid waste disposal interface control document

    SciTech Connect

    Carlson, A.B.

    1994-10-27

    This interface control document between Liquid Effluent Services (LES) and Solid Waste Disposal (SWD) establishes the functional responsibilities of each division where interfaces exist between the two divisions. The document includes waste volumes and timing for use in planning the proper waste management capabilities. The interface control document also facilitates integration of existing or planned waste management capabilities of the Liquid Effluent Services and Solid Waste divisions.

  2. Effects of complexometric compounds found in liquid and solid oil shale waste products on release of chemical elements from retorted shale

    SciTech Connect

    Esmaili, E.; Carroll, R.B.; Jackson, L.P.

    1985-05-01

    Complexometric compounds found in oil shale wastes may have the ability to increase the release of trace elements from retorted oil shale when the solid and liquid wastes are codisposed. A laboratory investigation was conducted on the effects of various complexing agents found in liquid and solid oil shale wastes on the leachability of retorted shales. In batch experiments retorted shale samples were contacted with deionized-distilled water (DDW) and 10 different aqueous solutions of complexing agents. These agents included sodium-oxalate, ammonium-carbonate, sodium-thiosulfate, 2-pyridone, 2-hydroxy-6-methylpyridine, potassium-thiocyanate, acetonitrile, sodium-acetate, acetamide, and nicotinic acid. DDW leachate results were used as a baseline to compare with the results for aqueous complexometric leachates. Some of these agents aided in higher release of arsenic, boron, selenium, lead, and vanadium from the solids. The same complexing agents had different effects on different retorted shales, indicating that the results for one retorted shale may or may not be representative of other retorted shales. This is due to differences in mineralogical residence of elements in various retorted shales and differences in leachate chemical systems of various retorted shales. Concentration of cadium and cobalt did not exceed the quantitation limits of these elements in any of the leachates in this study. 10 refs., 15 tabs.

  3. Membrane technologies for liquid radioactive waste treatment

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1999-01-01

    The paper deals with some problems concerning reduction of radioactivity of liquid low-level nuclear waste streams (LLLW). The membrane processes as ultrafiltration (UF), seeded ultrafiltration (SUF), reverse osmosis (RO) and membrane distillation (MD) were examined. Ultrafiltration enables the removal of particles with molecular weight above cut-off of UF membranes and can be only used as a pre-treatment stage. The improvement of removal is achieved by SUF, employing macromolecular ligands binding radioactive ions. The reduction of radioactivity in LLLW to very low level were achieved with RO membranes. The results of experiments led the authors to the design and construction of UF+2RO pilot plant. The development of membrane distillation improve the selectivity of membrane process in some cases. The possibility of utilisation of waste heat from cooling system of nuclear reactors as a preferable energy source can significantly reduce the cost of operation.

  4. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  5. Development of characterization protocol for mixed liquid radioactive waste classification

    SciTech Connect

    Zakaria, Norasalwa; Wafa, Syed Asraf; Wo, Yii Mei; Mahat, Sarimah

    2015-04-29

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as ‘problematic’ waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  6. Development of characterization protocol for mixed liquid radioactive waste classification

    NASA Astrophysics Data System (ADS)

    Zakaria, Norasalwa; Wafa, Syed Asraf; Wo, Yii Mei; Mahat, Sarimah

    2015-04-01

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as `problematic' waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  7. Polyhydroxyalkanoates production from waste biomass

    NASA Astrophysics Data System (ADS)

    Nor Aslan, A. K. H.; Mohd Ali, M. D.; Morad, N. A.; Tamunaidu, P.

    2016-06-01

    Polyhydroxyalkanoates (PHAs) is a group of biopolymers that are extensively researched for such purpose due to the biocompatibility with mammal tissue and similar properties with conventional plastic. However, commercialization of PHA is impended by its high total production cost, which half of it are from the cost of pure carbon source feedstock. Thus, cheap and sustainable feedstocks are preferred where waste materials from various industries are looked into. This paper will highlight recent studies done on PHA production by utilizing crop and agro waste material and review its potential as alternative feedstock.

  8. Future radioactive liquid waste streams study

    SciTech Connect

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  9. Waste product profile: Household batteries

    SciTech Connect

    Miller, C. )

    1994-04-01

    This is the fourteenth in a series of profiles -- brief, factual listings of the solid waste management characteristics of materials in the waste stream. These profiles highlight a product, explain how it fits into integrated waste management systems, and provide current data on recycling and markets for the product. This profile does not cover wet cell lead-acid batteries such as car batteries. Household batteries include primary batteries, which cannot be recharged, and secondary (rechargeable) batteries. Household batteries are available in many sizes including bottom, AAA, AA, C, D, N, and 9-volt. In 1991, 3.8 billion household batteries, or 145,000 tons, were incinerated or landfilled in the US. Due to a limited number of programs collecting batteries, the recycling rate is very small. An EPA study estimated than in 1989, 52% of the cadmium and 88% of the mercury in MSW came from household batteries.

  10. Continuous Liquid Interface Production (CLIP)

    NASA Astrophysics Data System (ADS)

    Tumbleston, John

    Continuous liquid interface production (CLIP) can rapidly produce 3D parts using a range of polymeric materials. A DLP-based form of additive manufacturing, CLIP proceeds via projecting a sequence of UV images through an oxygen-permeable, UV-transparent window below a liquid resin bath. A thin uncured liquid layer, or dead zone, is created above the window and maintains a liquid interface below the advancing part. Above the dead zone, the curing part is drawn out of the resin bath creating suction forces that renew reactive liquid resin. The dead zone is created due to oxygen inhibition of photopolymerization, a process that is traditionally a nuisance in other photopolymerization applications. However, for CLIP oxygen inhibition and creation of the dead zone allows for a continuous mode of printing where UV exposure, resin renewal, and part elevation are conducted simultaneously. This continual process is fundamentally different from traditional bottom-up stereolithography printers where these steps must be conducted in separate and discrete steps. Furthermore, the relatively gentle nature of CLIP due to the established dead zone enables the use of unique materials with a wide range of mechanical properties. This presentation will showcase the CLIP technology and provide a detailed picture of interactions between different resin and process parameters. New applications for 3D printing that span the micro- to macro-scale enabled by CLIP's combination of unique materials and part production speed will also be presented.

  11. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    PubMed

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW.

  12. Existing data on the 216-Z liquid waste sites

    SciTech Connect

    Owens, K.W.

    1981-05-01

    During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing data together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.

  13. Dielectric Properties of Low-Level Liquid Waste

    SciTech Connect

    L. E. Lagos; M. A. Ebadian

    1998-10-20

    The purpose of this study was to develop a data collection containing values for the dielectric properties of various low-level liquid waste (LLLW) simulants measured as a function of frequency, temperature, and composition. The investigation was motivated by current interest in the use of microwave processing for the treatment of radioactive waste. A large volume of transuranic liquid and sludge produced by the U.S. Department of Defense (DOD) during the production of nuclear fiel bars is stored at several U.S. Department of Energy (DOE) sites around the United States. Waste storage and disposal space is scarce, expensive, and must be minimized. Thus, several DOE sites are pursuing the use of microwave heating as a means of achieving volume reduction and solidification of low-level liquid wastes. It is important to know which microwave frequencies should be employed tc achieve the most efficient processing at a range of different temperatures. The dielectric properties of the LLLW simulants can be utilized to determine the optimum frequencies for use with a particular LLLW or with other LLLWS of similar composition. Furthermore, nonlinear thermal processes, such as thermal runaway, which occur in the material being treated cannot be modeled without a knowledge of the temperature dependence of the dielectric properties. Often, this data does not exist; however, when it does, only very limited data near room temperature are available. The data collection generated in this study can be used to predict the behavior of a variety of microwave thermal treatment technologies, which have the potential of substantially reducing the volume of the LLLWS that are currently stored at many DOE sites. This information should help the users of the microwave reduction and solidification technology to optimize microwave processes used in the treatment of LLLW. The microwave reduction and solidification technology has clear advantages over other methods of reducing LLLWS. These

  14. Cement encapsulation of low-level waste liquids. Final report

    SciTech Connect

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of liquid high-level radioactive waste at the West Valley Demonstration Project (WVDP) was essential to ensuring the success of high-level waste (HLW) vitrification. By chemically separating the HLW from liquid waste, it was possible to achieve a significant reduction in the volume of HLW to be vitrified. In addition, pretreatment made it possible to remove sulfates, which posed several processing problems, from the HLW before vitrification took place.

  15. Concepts for detritiation of waste liquids

    SciTech Connect

    King, C.M.; Van Brunt, V.; Garber, A.R.; King, R.B.

    1991-12-31

    Tritium is formed in thermal nuclear reactors both by neutron activation of elements such as deuterium and lithium and by ternary fission in the fuel. It is a weak beta-emitter with a short half-life, 12.3 years, and its radiological significance in reactor discharges is very low. In heavy-water-cooled and -moderated reactors, such as the SRS reactors, the tritium concentration in the moderator is sufficiently high to cause a potential hazard to operators, so research and development programs have been carried out on processes to remove the tritium. Detritiation of light water has also been the subject of major R&D efforts world-wide, because reprocessing operations can generate significant quantities of tritium in liquid waste, and high concentrations of tritium may arise in some aqueous streams in future fusion reactors. This paper presents a review of some of the methods that have been proposed, studied, and developed for removal of tritium from light and heavy water, along with some new concepts for aqueous detritiation directly from liquid oxide (HTO) bearing feed streams.

  16. Concepts for detritiation of waste liquids

    SciTech Connect

    King, C.M. ); Van Brunt, V.; Garber, A.R. ); King, R.B. . Dept. of Chemistry)

    1991-01-01

    Tritium is formed in thermal nuclear reactors both by neutron activation of elements such as deuterium and lithium and by ternary fission in the fuel. It is a weak beta-emitter with a short half-life, 12.3 years, and its radiological significance in reactor discharges is very low. In heavy-water-cooled and -moderated reactors, such as the SRS reactors, the tritium concentration in the moderator is sufficiently high to cause a potential hazard to operators, so research and development programs have been carried out on processes to remove the tritium. Detritiation of light water has also been the subject of major R D efforts world-wide, because reprocessing operations can generate significant quantities of tritium in liquid waste, and high concentrations of tritium may arise in some aqueous streams in future fusion reactors. This paper presents a review of some of the methods that have been proposed, studied, and developed for removal of tritium from light and heavy water, along with some new concepts for aqueous detritiation directly from liquid oxide (HTO) bearing feed streams.

  17. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    SciTech Connect

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  18. Treatability Variance for Containerised Liquids in Mixed Debris Waste - 12101

    SciTech Connect

    Alstatt, Catherine M.

    2012-07-01

    The TRU Waste Processing Center (TWPC) is a Department of Energy facility whose mission is to receive and process for appropriate disposal legacy Contact Handled (CH) and Remote Handled (RH) waste, including debris waste stored at various DOE Oak Ridge facilities. Acceptable Knowledge (AK) prepared for the waste characterizes the waste as mixed waste, meaning it is both radioactive and regulated under the Resource Conservation and Recovery Act (RCRA). The AK also indicates that a number of the debris waste packages contain small amounts of containerised liquids. The documentation indicates liquid wastes generated in routine lab operations were typically collected for potential recovery of valuable isotopes. However, during activities associated with decontamination and decommissioning (D and D), some containers with small amounts of liquids were placed into the waste containers with debris waste. Many of these containers now hold from 2.5 milliliters (ml) to 237 ml of liquid; a few contain larger volumes. At least some of these containers were likely empty at the time of generation, but documentation of this condition is lacking. Since WIPP compliant AK is developed on a waste stream basis, rather than an individual container basis, and includes every potential RCRA hazardous constituent within the waste stream, it is insufficient for the purpose of characterizing individual containers of liquid. Debris waste is defined in 40 CFR 268.2(g) as 'solid material exceeding a 60 mm particle size that is intended for disposal and that is: a manufactured object; or plant or animal matter; or natural geologic material'. The definition further states that intact containers of hazardous waste that are not ruptured and that retain at least 75% of their original volume are not debris. The prescribed treatment is removal of intact containers from the debris waste, and treatment of their contents to meet specific Land Disposal Restrictions (LDR) standards. This is true for

  19. Biological production of liquid fuels from biomass

    SciTech Connect

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  20. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  1. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  2. Remotely operated organic liquid waste incinerator for the fuels and materials examination facility

    SciTech Connect

    Sales, W.L.; Barker, R.E.; Hershey, R.B.

    1980-01-01

    The search for a practical method for the disposal of small quantities of oraganic liquid waste, a waste product of metallographic sample preparation at the Fuels and Materials Examination Facility has led to the design of an incinerator/off-gas system to burn organic liquid wastes and selected organic solids. The incinerator is to be installed in a shielded inert-atmosphere cell, and will be remotely operated and maintained. The off-gas system is a wet-scrubber and filter system designed to release particulate-free off-gas to the FMEF Building Exhaust System.

  3. OBSERVATIONS ON WASTE DESTRUCTION IN LIQUID INJECTION INCINERATORS

    EPA Science Inventory

    Various factors affecting the performance of a subscale liquid injection incinerator simulator are discussed. The mechanisms by which waste escapes incineration within the spray flame are investigated for variations in atomization quality, flame stoichiometry. and the initial was...

  4. Biomass gasification for liquid fuel production

    SciTech Connect

    Najser, Jan E-mail: vaclav.peer@vsb.cz; Peer, Václav E-mail: vaclav.peer@vsb.cz

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  5. Biomass gasification for liquid fuel production

    NASA Astrophysics Data System (ADS)

    Najser, Jan; Peer, Václav; Vantuch, Martin

    2014-08-01

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  6. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  7. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect

    Varvas, M.; Putnik, H.; Johnsson, B.

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  8. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    SciTech Connect

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  9. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    SciTech Connect

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-02-25

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

  10. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    SciTech Connect

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  11. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    SciTech Connect

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-12-31

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States` first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  12. In-Situ Chemical Precipitation of Radioactive Liquid Waste - 12492

    SciTech Connect

    Osmanlioglu, Ahmet Erdal

    2012-07-01

    This paper presented in-situ chemical precipitation for radioactive liquid waste by using chemical agents. Results are reported on large-scale implementation on the removal of {sup 137}Cs, {sup 134}Cs and {sup 60}Co from liquid radioactive waste generating from Nuclear Research and Training Centre. Total amount of liquid radioactive waste was 35 m{sup 3} and main radionuclides were Cs-137, Cs- 134 and Co-60. Initial radioactivity concentration of the liquid waste was 2264, 17 and 9 Bq/liter for Cs-137, Cs-134 and Co-60 respectively. Potassium ferro cyanide was selected as chemical agent at high pH levels 8-10 according to laboratory tests. After the process, radioactive sludge precipitated at the bottom of the tank and decontaminated clean liquid was evaluated depending on discharge limits. By this precipitation method decontamination factors were determined as 60, 9 and 17 for Cs-137, Cs-134 and Co-60 respectively. At the bottom of the tank radioactive sludge amount was 0.98 m{sup 3}. It was transferred by sludge pumps to cementation unit for solidification. By in situ chemical processing 97% of volume reduction was achieved. Using the optimal concentration of 0.75 M potassium ferro cyanide about 98% of the {sup 137}Cs can be removed at pH 8. The Potassium ferro cyanide precipitation method could be used successfully in large scale applications with nickel and ferrum agents for removal of Cs-137, Cs-134 and Co- 60. Although DF values of laboratory test were much higher than in-situ implementation, liquid radioactive waste was decontaminated successfully by using potassium ferro cyanide. Majority of liquid waste were discharged as clean liquid. %97.2 volumetric amount of liquid waste was cleaned and discharged at the original site. Reduced amount of sludge transportation in drums is more economical and safer method than liquid transportation. Although DF values could be different for each of applications related to main specifications of original liquid waste, this

  13. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    EPA Science Inventory

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  14. Corrosion experience in calcination of liquid nuclear waste

    SciTech Connect

    Zimmerman, C A

    1980-01-01

    The Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory became operational in 1963. Since that time, approximately 13,337,137 litres (3,523,375 gallons) of liquid nuclear wastes, generated during the reprocessing of spent nuclear fuel materials, have been reduced to dry granular solids. The volume reduction is about seven or eight gallons of liquid waste to one gallon of dry granular solids. This paper covers some of the corrosion experiences encountered in over fifteen years of operating that calcination facility. 7 figures, 7 tables.

  15. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

  16. ICPP radioactive liquid and calcine waste technologies evaluation. Interim report

    SciTech Connect

    Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

    1994-06-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

  17. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    SciTech Connect

    Penzin, R.A.; Sarychev, G.A.

    2012-07-01

    the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical composition, including those

  18. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  19. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, James L.; Chen, Guang Jiong

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  20. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste.

    PubMed

    Chen, Xiang; Yan, Wei; Sheng, Kuichuan; Sanati, Mehri

    2014-02-01

    Co-digestion of food waste and green waste was conducted with six feedstock mixing ratios to evaluate biogas production. Increasing the food waste percentage in the feedstock resulted in an increased methane yield, while shorter retention time was achieved by increasing the green waste percentage. Food waste/green waste ratio of 40:60 was determined as preferred ratio for optimal biogas production. About 90% of methane yield was obtained after 24.5 days of digestion, with total methane yield of 272.1 mL/g VS. Based the preferred ratio, effect of total solids (TS) content on co-digestion of food waste and green waste was evaluated over a TS range of 5-25%. Results showed that methane yields from high-solids anaerobic digestion (15-20% TS) were higher than the output of liquid anaerobic digestion (5-10% TS), while methanogenesis was inhibited by further increasing the TS content to 25%. The inhibition may be caused by organic overloading and excess ammonia.

  1. RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES

    SciTech Connect

    Robin M. Stewart

    1999-09-29

    magnetic field was evaluated. Field results indicated good removal of this mercury fraction from the Y-12 waters. In addition, this sorbent is easily regenerated by simply removing the magnetic field and flushing the columns with water. The fourth sorbent is still undergoing laboratory development, but results to date indicate exceptionally high mercury sorption capacity. The sorbent is capable of removing all forms of mercury typically present in natural and industrial waters, including Hg{sup 2+}, elemental mercury, methyl mercury, and colloidal mercury. The process possesses very fast kinetics, which allows for higher flow rates and smaller treatment units. These sorbent technologies, used in tandem or individually depending on the treatment needs, can provide DOE sites with a cost-effective method for reducing mercury concentrations to very low levels mandated by the regulatory community. In addition, the technologies do not generate significant amounts of secondary wastes for disposal. Furthermore, the need for improved water treatment technologies is not unique to the DOE. The new, stringent requirements on mercury concentrations impact other government agencies as well as the private sector. Some of the private-sector industries needing improved methods for removing mercury from water include mining, chloralkali production, chemical processing, and medical waste treatment. The next logical step is to deploy one or more of these sorbents at a contaminated DOE site or at a commercial facility needing improved mercury treatment technologies. A full-scale deployment is planned in fiscal year 2000.

  2. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  3. Waste treatment in silicon production operations

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor); Tambo, William (Inventor)

    1985-01-01

    A battery of special burners, each adapted for the treatment of a particular range of waste material formed during the conversion of metallurgical grade silicon to high purity silane and silicon, is accompanied by a series arrangement of filters to recover fumed silica by-product and a scrubber to recover muriatic acid as another by-product. All of the wastes are processed, during normal and plant upset waste load conditions, to produce useful by-products in an environmentally acceptable manner rather than waste materials having associated handling and disposal problems.

  4. Method for processing wastes resulting from production of phosphorus

    SciTech Connect

    Alzhanov, T.M.; Bykov, V.I.; Chernogorenko, V.B.; Dmitrenko, V.V.; Ishkhanov, E.S.; Kipchakbaev, A.D.; Koverya, V.M.; Lynchak, K.A.; Markovsky, E.A.; Muchnik, S.V.; Pobortsev, M.E.; Sapian, V.G.; Sergienko, V.Y.; Vopilov, A.N.

    1980-03-11

    The method comprises processing slime and off-gases resulting from the production of phosphorus with an aqueous solution of copper sulphate having a concentration of from 15 to 50% at a temperature within the range of from 20* to 80* C. As a result, two products are obtained, i.e., a liquid product and a solid one. The solid product containing mainly copper phosphide as well as fluorides and chlorides of alkali metals and silicon, and silicates of calcium and aluminum, is used as a modifying and refining agent for hypereutectic silumines and for the manufacture of a copper-phosphorus alloy. The liquid product containing phosphoric acid, sulphuric acid and copper sulphate is used as starting product for the preparation of a copper-containing fertilizer. The method according to the present invention makes it possible to modify the production of phosphorus so as to eliminate the formation of secondary wastes and improve the environmental control.

  5. Consumption and production waste: another externality of tobacco use

    PubMed Central

    Novotny, T.; Zhao, F.

    1999-01-01

    OBJECTIVE—To describe the waste produced by and environmental implications of individual cigarette consumption (filter tips, packages, and cartons) and tobacco manufacturing.
STUDY SELECTION—All available articles and reports published since 1970 related to cigarette consumption and production waste were reviewed.
DATA SOURCES—Global cigarette consumption data were used to estimate cigarette butt and packaging waste quantities. Data from the Center for Marine Conservation's International Coastal Cleanup Project were used to describe some environmental impacts of tobacco-related trash. Data from the United States Environmental Protection Agency's (EPA's) Toxics Release Inventory and reported global cigarette consumption totals were used to estimate waste production from cigarette manufacturing.
DATA EXTRACTION AND SYNTHESIS—In 1995, an estimated 5.535 trillion cigarettes (27 675 million cartons and 276 753 million packages) were sold by the tobacco industry globally. Some of the wastes from these products were properly deposited, but a large amount of tobacco consumption waste ends up in the environment. Some is recovered during environmental clean-up days. For the past eight years (1990-1997), cigarette butts have been the leading item found during the International Coastal Cleanup Project; they accounted for 19.1% of all items collected in 1997. The tobacco manufacturing process produces liquid, solid, and airborne waste. Among those wastes, some materials, including nicotine, are designated by the EPA as Toxics Release Inventory (TRI) chemicals. These are possible environmental health hazards. In 1995, the global tobacco industry produced an estimated 2262 million kilograms of manufacturing waste and 209 million kilograms of chemical waste. In addition, total nicotine waste produced in the manufacture of reduced nicotine cigarettes was estimated at 300 million kilograms.
CONCLUSIONS—Laws against littering relative to cigarette butts

  6. [The investigation of the composition of liquid radioactive waste].

    PubMed

    Suslov, A V; Suslova, I N; Bagiian, A; Leonov, V V; Kapustin, V K

    2008-01-01

    In investigation the process of composition sediment of liquid unorganic radioactive waste, that are forming in cistern-selectors at PNPI RAS, it was discovered apart from great quantity of ions of different metals and radionuclides considerable maintenance of organic material (to 30% and more from volume of sediment) unknown origin. A supposition was made about its microbiological origin. Investigation shows, that the main microorganisms, setting this sediment, are the bacterious of Pseudomonas kind, capable of effectively bind in process of grow the radionuclide 90Sr, that confirms the potential posibility of using this microorganisms for bioremediation of liquid low radioactive wastes (LRW).

  7. LANL Waste acceptance criteria, Chapter 3, radioactive liquid waste treatment facility

    SciTech Connect

    McClenahan, Robert L.

    2006-08-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) receives and treats aqueous radioactive wastewater generated at Los Alamos National Laboratory (LANL) to meet he discharge criteria specified in a National Pollution Discharge Elimination System (NPDES) permit. The majority of this wastewater is received at the RL WTF through a network of buried pipelines, known as the Radioactive Liquid Waste Collection System (RLWCS). Other wastewater is transported to the RL WTF by truck. The Waste Acceptance Criteria (WAC) outlined in this Chapter are applicable to all radioactive wastewaters which are conveyed to the Technical Area 50(T A-50), RL WTF by the RL WCS or by truck.

  8. Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams

    SciTech Connect

    COZZI, ALEX

    2004-02-18

    At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

  9. Liquid and Gaseous Waste Operations Department Annual Operating Report, CY 1993

    SciTech Connect

    Maddox, J.J.; Scott, C.B.

    1994-02-01

    This report summarizes the activities of the waste management operations section of the liquid and gaseous waste operations department at ORNL for 1993. The process waste, liquid low-level waste, gaseous waste systems activities are reported, as well as the low-level waste solidification project. Upgrade activities is the various waste processing and treatment systems are summarized. A maintenance activity overview is provided, and program management, training, and other miscellaneous activities are covered.

  10. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... of Exploration Plans (ep) § 250.217 What solid and liquid wastes and discharges information and... product wastes) likely to be generated by your proposed exploration activities. Describe: (1) The...

  11. A Canadian Solution for Management of Mixed Liquid Waste - 13384

    SciTech Connect

    Suryanarayan, Sriram; Husain, Aamir

    2013-07-01

    Mixed liquid wastes (MLW) from Canadian nuclear facilities consist of solvents, PCB (Poly Chlorinated Biphenyls) and non-PCB contaminated oils and aqueous wastes. Historically, MLW drums were shipped to a licensed US facility for destruction via incineration. This option is relatively expensive considering the significant logistics and destruction costs involved. In addition, commercial waste destruction facilities in US cannot accept PCB wastes from non-US jurisdictions. Because of this, Kinectrics has recently developed a novel and flexible process for disposing both PCB as well as non-PCB contaminated MLW within Canada. This avoids the need for cross-border shipments which significantly reduces the complexity and cost for waste disposal. This paper presents an overview of the various approaches and activities undertaken to date by Kinectrics for successfully processing and disposing the MLW drums. A summary of the results, challenges and how they were overcome are also presented. (authors)

  12. Process for immobilizing radioactive boric acid liquid wastes

    SciTech Connect

    Greenhalgh, Wilbur O.

    1986-01-01

    A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  13. Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559

    SciTech Connect

    Schmitz, Mark A.; Crouse, Thomas N.

    2012-07-01

    Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

  14. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    SciTech Connect

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  15. Supported liquid inorganic membranes for nuclear waste separation

    SciTech Connect

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  16. Fluid dynamics of liquid egg products.

    PubMed

    Kumbár, Vojtěch; Strnková, Jana; Nedomová, Šárka; Buchar, Jaroslav

    2015-06-01

    The rheological behavior of liquid egg products (egg yolk, egg white, and whole liquid egg) was studied using a concentric cylinder viscometer. Eggs of three poultry specimens were used: hen (Isa Brown), Japanese quail (Coturnix japonica), and goose (Anser anser f. domestica). Rheological behavior was pseudoplastic and flow curves fitted by the power law model (Herschel-Bulkley and Ostwald-De Waele). The meaning of rheological parameters on friction factors and velocity profiles during flow of liquid egg products in tube has been shown. PMID:25761859

  17. Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Freer, J.; Freer, E.; Bond, A.

    1996-07-01

    The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

  18. Groundwater impact assessment report for the 1325-N Liquid Waste Disposal Facility

    SciTech Connect

    Alexander, D.J.; Johnson, V.G.

    1993-09-01

    In 1943 the Hanford Site was chosen as a location for the Manhattan Project to produce plutonium for use in nuclear weapons. The 100-N Area at Hanford was used from 1963 to 1987 for a dual-purpose, plutonium production and steam generation reactor and related operational support facilities (Diediker and Hall 1987). In November 1989, the reactor was put into dry layup status. During operations, chemical and radioactive wastes were released into the area soil, air, and groundwater. The 1325-N LWDF was constructed in 1983 to replace the 1301-N Liquid Waste Disposal Facility (1301-N LWDF). The two facilities operated simultaneously from 1983 to 1985. The 1301-N LWDF was retired from use in 1985 and the 1325-N LWDF continued operation until April 1991, when active discharges to the facility ceased. Effluent discharge to the piping system has been controlled by administrative means. This report discusses ground water contamination resulting from the 1325-N Liquid Waste Disposal facility.

  19. Biochemical process of low level radioactive liquid simulation waste containing detergent

    SciTech Connect

    Kundari, Noor Anis Putra, Sugili; Mukaromah, Umi

    2015-12-29

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0

  20. Removal of Radioactive Nuclides from Mo-99 Acidic Liquid Waste - 13027

    SciTech Connect

    Hsiao, Hsien-Ming; Pen, Ben-Li

    2013-07-01

    About 200 liters highly radioactive acidic liquid waste originating from Mo-99 production was stored at INER (Institute of Nuclear Energy Research). A study regarding the treatment of the radioactive acidic liquid waste was conducted to solve storage-related issues and allow discharge of the waste while avoiding environmental pollution. Before discharging the liquid waste, the acidity, NO{sub 3}{sup -} and Hg ions in high concentrations, and radionuclides must comply with environmental regulations. Therefore, the treatment plan was to neutralize the acidic liquid waste, remove key radionuclides to reduce the dose rate, and then remove the nitrate and mercury ions. Bench tests revealed that NaOH is the preferred solution to neutralize the high acidic waste solution and the pH of solution must be adjusted to 9∼11 prior to the removal of nuclides. Significant precipitation was produced when the pH of solution reached 9. NaNO{sub 3} was the major content in the precipitate and part of NaNO{sub 3} was too fine to be completely collected by filter paper with a pore size of approximately 3 μm. The residual fine particles remaining in solution therefore blocked the adsorption column during operation. Two kinds of adsorbents were employed for Cs-137 and a third for Sr-90 removal to minimize cost. For personnel radiation protection, significant lead shielding was required at a number of points in the process. The final process design and treatment facilities successfully treated the waste solutions and allowed for environmentally compliant discharge. (authors)

  1. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  2. Modified microspheres for cleaning liquid wastes from radioactive nuclides

    SciTech Connect

    Danilin, Lev; Drozhzhin, Valery

    2007-07-01

    An effective solution of nuclear industry problems related to deactivation of technological and natural waters polluted with toxic and radioactive elements is the development of inorganic sorbents capable of not only withdrawing radioactive nuclides, but also of providing their subsequent conservation under conditions of long-term storage. A successful technical approach to creation of sorbents can be the use of hollow aluminosilicate microspheres. Such microspheres are formed from mineral additives during coal burning in furnaces of boiler units of electric power stations. Despite some reduction in exchange capacity per a mass unit of sorbents the latter have high kinetic characteristics that makes it possible to carry out the sorption process both in static and dynamic modes. Taking into account large industrial resources of microspheres as by-products of electric power stations, a comparative simplicity of the modification process, as well as good kinetic and capacitor characteristics, this class of sorbents can be considered promising enough for solving the problems of cleaning liquid radioactive wastes of various pollution levels. (authors)

  3. Disposable products in the hospital waste stream.

    PubMed Central

    Gilden, D. J.; Scissors, K. N.; Reuler, J. B.

    1992-01-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were sorted and weighed, and potential waste reductions from recycling and substituting reusable items were calculated. Business paper, trash liners, diapers, custom surgical packs, paper gowns, plastic suction bottles, and egg-crate pads were among the 20 top items and were analyzed individually. Data from sorted trash documented potential waste reductions through recycling and substitution of 78, 41, and 18 tonnes per year (1 tonne = 1,000 kg = 1.1 tons) from administration, the operating room, and adult wards, respectively (total hospital waste was 939 tonnes per year). We offer specific measures to substantially reduce nonhazardous hospital waste through substitution, minimization, and recycling of select disposable products. Images PMID:1595242

  4. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    SciTech Connect

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support.

  5. Microbial consortium role in processing liquid waste of vegetables in Keputran Market Surabaya as organic liquid fertilizer ferti-plus

    NASA Astrophysics Data System (ADS)

    Rizqi, Fauziah; Supriyanto, Agus; Lestari, Intan; Lita Indri D., L.; Elmi Irmayanti, A.; Rahmaniyah, Fadilatur

    2016-03-01

    Many activities in this market is directly proportional to increase production of vegetables waste, especially surabaya. Therefore, in this study aims to utilize liquid waste of vegetables into liquid organic fertilizer by mixing microbial consorsium. The microbial consorsium consist of Azotobacter chrococcum, Azospirillum brasilense, Rhizobium leguminosarum, Bacillus subtilis, Bacillus megaterium, Pseudomonas putida, and Pseudomonas fluorescens. Ttreatment of microbial concentrations (5%, 10%, 15%) and the length of the incubation period (7 days, 14 days, 21 days) used in this research. The parameters used are: C/N ratio, levels of CNP, and BOD value. This study uses a standard organic fertilizer value according SNI19-7030-2004, The results show the value of C/N ratio comply with the ISO standards. C levels showed an increase during the incubation period but not compare with standards. N levels that compare with standards are microbial treatment in all group concentration except control group with an incubation period of 21 days is > 7. P levels compare with the existing standards in the group of microbe concentration of 10% and 15% during the incubation period. The value of the initial BOD liquid waste of vegetable is 790.25 mg / L, this value indicates that the waste should not go into the water body. Accordingly, the results of this study can not be used as a liquid organic fertilizer, but potentially if it is used as a natural career or build natural soil. The Building natural soil is defined as the natural ingredients that can be used to improve soil properties.

  6. Enhanced fermentable sugar production from kitchen waste using various pretreatments.

    PubMed

    Hafid, Halimatun Saadiah; Rahman, Nor'Aini Abdul; Md Shah, Umi Kalsom; Baharudin, Azhari Samsu

    2015-06-01

    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production.

  7. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective August 23, 2005, the waste specified in 40 CFR part 261 as EPA Hazardous Waste Number K181, and soil...

  8. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective August 23, 2005, the waste specified in 40 CFR part 261 as EPA Hazardous Waste Number K181, and soil...

  9. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective August 23, 2005, the waste specified in 40 CFR part 261 as EPA Hazardous Waste Number K181, and soil and.../or pigments production wastes. 268.20 Section 268.20 Protection of Environment...

  10. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective August 23, 2005, the waste specified in 40 CFR part 261 as EPA Hazardous Waste Number K181, and soil and.../or pigments production wastes. 268.20 Section 268.20 Protection of Environment...

  11. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  12. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  13. Production of Fungal Glucoamylase for Glucose Production from Food Waste

    PubMed Central

    Lam, Wan Chi; Pleissner, Daniel; Lin, Carol Sze Ki

    2013-01-01

    The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (kd) 2.20 × 10−3 minutes−1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes. PMID:24970186

  14. Fuel gas production by microwave plasma in liquid

    SciTech Connect

    Nomura, Shinfuku; Toyota, Hiromichi; Tawara, Michinaga; Yamashita, Hiroshi; Matsumoto, Kenya

    2006-06-05

    We propose to apply plasma in liquid to replace gas-phase plasma because we expect much higher reaction rates for the chemical deposition of plasma in liquid than for chemical vapor deposition. A reactor for producing microwave plasma in a liquid could produce plasma in hydrocarbon liquids and waste oils. Generated gases consist of up to 81% hydrogen by volume. We confirmed that fuel gases such as methane and ethylene can be produced by microwave plasma in liquid.

  15. The symbiotic relationship between waste burning and safety in liquid metal reactors

    SciTech Connect

    Nelson, J.V.; Dobbin, K.D.; Kessler, S.F.; Wootan, D.W.; Omberg, R.P.; Waltar, A.E.

    1993-06-01

    The relationship between the transmutation of minor actinides and fission products, and safety related reactivity feedbacks in liquid metal reactors (LMR) was explored. Several design features appear promising for performing waste transmutation while retaining the desirable safety characteristics. Innovative variations of conventional LMR configurations and compositions establish symbiotic relationships between plutonium fuel, minor actinides, and fission products. These relationships enhance safety characteristics of the core and provide acceptable fuel and burnup performance. Although a specific design has not been developed, an LMR capable of transmuting the minor actinides and fission products from up to 10 comparable light water reactors while retaining desirable safety features, appears to be feasible.

  16. Liquid and Gaseous Waste Operations Department annual operating report CY 1994

    SciTech Connect

    Maddox, J.J.; Scott, C.B.

    1995-03-01

    This report presents details about the operation of the liquid and gaseous waste department of Oak Ridge National Laboratory for the calendar year 1994. Topics discussed include; process waste system, upgrade activities, low-level liquid radioactive waste solidification project, maintenance activities, and other activities such as training, audits, and tours.

  17. Statistical process control: An approach to quality assurance in the production of vitrified nuclear waste

    SciTech Connect

    Pulsipher, B.A.; Kuhn, W.L.

    1987-02-01

    Current planning for liquid high-level nuclear wastes existing in the US includes processing in a liquid-fed ceramic melter to incorporate it into a high-quality glass, and placement in a deep geologic repository. The nuclear waste vitrification process requires assurance of a quality product with little or no final inspection. Statistical process control (SPC) is a quantitative approach to one quality assurance aspect of vitrified nuclear waste. This method for monitoring and controlling a process in the presence of uncertainties provides a statistical basis for decisions concerning product quality improvement. Statistical process control is shown to be a feasible and beneficial tool to help the waste glass producers demonstrate that the vitrification process can be controlled sufficiently to produce an acceptable product. This quantitative aspect of quality assurance could be an effective means of establishing confidence in the claims to a quality product. 2 refs., 4 figs.

  18. Waste product profile: Magazines and catalogs

    SciTech Connect

    Miller, C. )

    1994-04-01

    This is the fifteenth in a series of profiles -- brief, factual listings of the solid waste management characteristics of materials in the waste stream. These profiles highlight a product, explain how it fits into integrated waste management systems, and provide current data on recycling and markets for the product. Most magazines and catalogs are printed on coated, groundwood paper. Clay, by far the most common coating, is used to help smooth the paper surface and to create an optimum surface to which glossy inks can adhere. Groundwood is the same kind of paper used for newspapers. A two-sided coated paper sheet used for magazines will normally have 30--35% clay and filler and 65--70% paper fiber. EPA estimated a 10.7 % magazine recycling rate for 1990. This is 300,000 tons of magazines. Due to increased demand, one million tons were recycled in 1993.

  19. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  20. The Sonophysics and Sonochemistry of Liquid Waste Quantification and Remediation

    SciTech Connect

    Matula, Thomas J.

    1998-06-01

    This research is being conducted to (a) perform an in-depth and comprehensive study of the fundamentals of acoustic cavitation and nonlinear bubble dynamics, (b) elucidate the fundamental physics of sonochemical reactions, (c) examine the potential of sonoluminescence to quantify and monitor the presence of alkali metals and other elements in waste liquids, (d) design and evaluate more effective sonochemical reactors for waste remediation, and (e) determine the optimal acoustical parameters in the use of sonochemistry for liquid-waste-contaminant remediation. So far cells have been designed for multibubble sonoluminescence (MBSL) and single-bubble sonoluminescence (SBSL) spectroscopy experiments. Positive results have been obtained in both systems using a Raman system which covers the wavelength range from 790 to 1,070 nm. Further progress from year-1 involved the use of the newly discovered technique of changing the pressure head above the cavitation field to increase the light emission from MBSL. A second method for changing the pressure head involves pressure-jumping, whereby the pressure in the head space above the solution is quickly increased to a new steady value.

  1. Production of hydrogen from municipal solid waste

    SciTech Connect

    Coleman, S.L.

    1995-11-01

    The Gasification of Municipal Solid Waste (MSW) includes gasification and the process for producing a gasificable slurry from raw MSW by using high pressures of steam. A potential energy source, MSW is a composite of organic materials such as: paper, wood, food waste, etc. There are different paper grades producing different results with low-quality paper forming better slurries than high-quality papers; making MSW a difficult feedstock for gasification. The objective of the bench-scale laboratory work has been to establish operating conditions for a hydrothermal pre-processing scheme for municipal solid waste (MSW) that produces a good slurry product that can be pumped and atomized to the gasifier for the production of hydrogen. Batch reactors are used to determine product yields as a function of hydrothermal treatment conditions. Various ratios of water-to-paper were used to find out solid product, gas product, and soluble product yields of MSW. Experimental conditions covered were temperature, time, and water to feed ratio. Temperature had the strongest effect on product yields.

  2. Recovering low-turbidity cutting liquid from silicon slurry waste.

    PubMed

    Tsai, Tzu-Hsuan; Shih, Yu-Pei

    2014-04-30

    In order to recover a low-turbidity polyalkylene glycol (PAG) liquid from silicon slurry waste by sedimentation, temperatures were adjusted, and acetone, ethanol or water was used as a diluent. The experimental results show that the particles in the waste would aggregate and settle readily by using water as a diluent. This is because particle surfaces had lower surface potential value and weaker steric stabilization in PAG-water than in PAG-ethanol or PAG-acetone solutions. Therefore, water is the suggested diluent for recovering a low-turbidity PAG (<100 NTU) by sedimentation. After 50 wt.% water-assisted sedimentation for 21 days, the solid content of the upper liquid reduced to 0.122 g/L, and the turbidity decreased to 44 NTU. The obtained upper liquid was then vacuum-distillated to remove water. The final recovered PAG with 0.37 NTU had similar viscosity and density to the unused PAG and could be reused in the cutting process.

  3. High-temperature vitrification of Hanford residual-liquid waste in a continuous melter

    SciTech Connect

    Barnes, S.M.

    1980-04-01

    Over 270 kg of high-temperature borosilicate glass have been produced in a series of three short-term tests in the High-Temperature Ceramic Melter vitrification system at PNL. The glass produced was formulated to vitrify simulated Hanford residual-liquid waste. The tests were designed to (1) demonstrate the feasibility of utilizing high-temperature, continuous-vitrification technology for the immobilization of the residual-liquid waste, (2) test the airlift draining technique utilized by the high-temperature melter, (3) compare glass produced in this process to residual-liquid glass produced under laboratory conditions, (4) investigate cesium volatility from the melter during waste processing, and (5) determine the maximum residual-liquid glass production rate in the high-temperature melter. The three tests with the residual-liquid composition confirmed the viability of the continuous-melting vitrification technique for the immobilization of this waste. The airlift draining technique was demonstrated in these tests and the glass produced from the melter was shown to be less porous than the laboratory-produced glass. The final glass produced from the second test was compared to a glass of the same composition produced under laboratory conditions. The comparative tests found the glasses to be indistinguishable, as the small differences in the test results fell within the precision range of the characterization testing equipment. The cesium volatility was examined in the final test. This examination showed that 0.44 wt % of the cesium (assumed to be cesium oxide) was volatilized, which translates to a volatilization rate of 115 mg/cm/sup 2/-h.

  4. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    PubMed

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology.

  5. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    PubMed

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology. PMID:25022835

  6. Waste product profile: Polyethylene terephthalate

    SciTech Connect

    Miller, C.

    1996-02-01

    Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks are the primary product packaged in PET. Salad dressing, peanut butter, and other household and consumer products also use PET bottles. PET is also used for film, sheeting for cups and food trays, ovenable trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early `70s. Because it is an ``engineered`` resin, it is more expensive than commodity resins such as high-density polyethylene (HDPE). The primary market for recycled PET is the fiber industry, which uses PET for carpet fiber, sweaters and other clothing, and for other uses. Recycled PET can also be used for food and beverage containers. Export markets, particularly Asian countries, are becoming increasingly important.

  7. Liquid and Gaseous Waste Operations Department annual operating report, CY 1991

    SciTech Connect

    Maddox, J.J.; Scott, C.B.

    1992-03-01

    This report discusses work at the Liquid and Gaseous Waste Operations Department of ORNL. An operating summary, upgrade activities and maintenance activities are presented for the Process Waste Treatment Plant, Nonradiological Wastewater Treatment Plant, and Runoff Treatment Facility.

  8. Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312

    SciTech Connect

    Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H.; Grandjean, A.; Prevost, T.; Valery, J.F.; Shilova, E.; Viel, P.

    2012-07-01

    Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in

  9. Disposal of liquid radioactive wastes through wells or shafts

    SciTech Connect

    Perkins, B.L.

    1982-01-01

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  10. Efficiency of inductively torch plasma operating at atmospheric pressure on destruction of chlorinated liquid wastes- A path to the treatment of radioactive organic halogen liquid wastes

    NASA Astrophysics Data System (ADS)

    Kamgang-Youbi, G.; Poizot, K.; Lemont, F.

    2012-12-01

    The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ~4 kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl3 feed rates up to 400 g·h-1 with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g·kWh-1. The conversion end products were identified and assayed by online FTIR spectroscopy (CO2, HCl and H2O) and redox titration (Cl2). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released (< 1 g·h-1) even with high waste feed rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO2 and H2O have been found in the final off-gases composition.

  11. Wastes and by-products - alternatives for agricultural use

    SciTech Connect

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  12. Furfural production using ionic liquids: A review.

    PubMed

    Peleteiro, Susana; Rivas, Sandra; Alonso, José Luis; Santos, Valentín; Parajó, Juan Carlos

    2016-02-01

    Furfural, a platform chemical with a bright future, is commercially obtained by acidic processing of xylan-containing biomass in aqueous media. Ionic liquids (ILs) can be employed in processed for furfural manufacture as additives, as catalysts and/or as reaction media. Depending on the IL utilized, externally added catalysts (usually, Lewis acids, Brönsted acids and/or solid acid catalysts) can be necessary to achieve high reaction yields. Oppositely, acidic ionic liquids (AILs) can perform as both solvents and catalysts, enabling the direct conversion of suitable substrates (pentoses, pentosans or xylan-containing biomass) into furfural. Operating in IL-containing media, the furfural yields can be improved when the product is continuously removed along the reaction (for example, by stripping or extraction), to avoid unwanted side-reactions leading to furfural consumption. These topics are reviewed, as well as the major challenges involved in the large scale utilization of ILs for furfural production.

  13. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... boilers that burn hazardous waste? 63.1217 Section 63.1217 Protection of Environment ENVIRONMENTAL..., and Hydrochloric Acid Production Furnaces § 63.1217 What are the standards for liquid fuel boilers... emission standard under § 63.1219(a)(2); (3) For cadmium and lead combined, except for an area source...

  14. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    SciTech Connect

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  15. Heavy metals removal from contaminated sewage sludge by naturally fermented raw liquid from pineapple wastes.

    PubMed

    Dacera, Dominica Del Mundo; Babel, Sandhya

    2007-01-01

    The large amount of unutilised pineapple wastes produced every year in tropical countries, particularly in Thailand, adds to the existing environmental pollution problems of the country. This study investigated the utilisation of pineapple wastes to treat another form of waste (sludge) from wastewater treatment facilities in Thailand. Laboratory scale studies were carried out to determine the potential of using naturally fermented raw liquid from pineapple wastes as a source of citric acid in the extraction of Cr, Cu, Pb, Ni and Zn from anaerobically digested sewage sludge. Results of the leaching study revealed its effectiveness in extracting Zn (at 92%) at pH 3.67 and a short leaching time of only 2 h, and Ni at almost 60% removal at the same leaching time. Chromium removal was also high at almost 75% at a longer leaching time of 11 days. Variation in metal removal efficiencies may also be attributed to the forms of metals in sludge, with metals predominantly in the exchangeable and oxidisable phases showing ease of leachability (such as Zn). Compared to citric acid, at pH approaching 4.0, naturally fermented raw liquid seemed to be more effective in the removal of Zn and Cu at the same leaching time of 2 h, and Cr at a longer leaching time of 11 days. The pineapple pulp, which is a by-product of the process, can still be used as animal feed because of its high protein content. PMID:17951878

  16. Incineration of radioactive organic liquid wastes by underwater thermal plasma

    NASA Astrophysics Data System (ADS)

    Mabrouk, M.; Lemont, F.; Baronnet, J. M.

    2012-12-01

    This work deals with incineration of radioactive organic liquid wastes using an oxygen thermal plasma jet, submerged under water. The results presented here are focused on incineration of three different wastes: a mixture of tributylphosphate (TBP) and dodecane, a perfluoropolyether oil (PFPE) and trichloroethylene (TCE). To evaluate the plutonium behavior in used TBP/dodecane incineration, zirconium is used as a surrogate of plutonium; the method to enrich TBP/dodecane mixture in zirconium is detailed. Experimental set-up is described. During a trial run, CO2 and CO contents in the exhaust gas are continuously measured; samples, periodically taken from the solution, are analyzed by appropriate chemical methods: contents in total organic carbon (COT), phosphorus, fluoride and nitrates are measured. Condensed residues are characterized by RX diffraction and SEM with EDS. Process efficiency, during tests with a few L/h of separated or mixed wastes, is given by mineralization rate which is better than 99.9 % for feed rate up to 4 L/h. Trapping rate is also better than 99 % for phosphorous as for fluorine and chlorine. Those trials, with long duration, have shown that there is no corrosion problems, also the hydrogen chloride and fluoride have been neutralized by an aqueous solution of potassium carbonate.

  17. [Hygienic assessment of waste of soda production].

    PubMed

    Samutin, N M; Vaisman, Y I; Rudakova, L V; Kalinina, E V; Glushankova, I S; Batrakova, G M

    2013-01-01

    The object of investigations was soda industry waste. Slimes are formed at slimes storage which occupy considerable areas and are considered to be the source of permanent impact on the hydrosphere objects. Slimes storage placement within settlement boundaries and water protection zone of large watercourses leads to the deterioration of sanitary, hygienic and environmental situation and to the rising of risks to health of communities. Waste processing with getting new materials on the base of soda industry waste with wide application is seems to be one of the way for problem solving. It is essential to take into account sanitary and hygienic characteristics of slimes within justifying possible directions of its use. Thus, researches concerning assessment of physical, chemical and toxicological waste characteristics are considered to be actual. The aim of researches is to examine physical, chemical and toxicological characteristics of soda production slimes for justifying directions of its use including delivery of new materials respondent to the all regulatory sanitary and hygienic requirements. Experimental investigations of assessment physical, chemical and toxicological characteristics of slimes were carried out according to standard methods. Within assessment of toxicological slimes characteristics the following test-objects were used: Ceriodaphnia affinis, Paramecium caudatum. As a result of investigations watered slime samples were determined to be referred to the 4th hazard level (low-hazard) waste; samples with preliminary mechanical dehydration are referred to the 5th hazard level (practically nonhazardous) waste for environment. These are correspond to the 3rd and 4th hazard level according to sanitary regulations, respectively.

  18. Food waste and food processing waste for biohydrogen production: a review.

    PubMed

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed.

  19. Food waste and food processing waste for biohydrogen production: a review.

    PubMed

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. PMID:24121591

  20. Development of Concentration and Calcination Technology For High Level Liquid Waste

    SciTech Connect

    Pande, D.P.

    2006-07-01

    The concentrated medium and high-level liquid radio chemicals effluents contain nitric acid, water along with the dissolved chemicals including the nitrates of the radio nuclides. High level liquid waste contain mainly nitrates of cesium, strontium, cerium, zirconium, chromium, barium, calcium, cobalt, copper, pickle, iron etc. and other fission products. This concentrated solution requires further evaporation, dehydration, drying and decomposition in temperature range of 150 to 700 deg. C. The addition of the calcined solids in vitrification pot, instead of liquid feed, helps to avoid low temperature zone because the vaporization of the liquid and decomposition of nitrates do not take place inside the melter. In our work Differential and thermo gravimetric studies has been carried out in the various stages of thermal treatment including drying, dehydration and conversion to oxide forms. Experimental studies were done to characterize the chemicals present in high-level radioactive waste. A Rotary Ball Kiln Calciner was used for development of the process because this is amenable for continuous operation and moderately good heat transfer can be achieved inside the kiln. This also has minimum secondary waste and off gases generation. The Rotary Ball Kiln Calciner Demonstration facility system was designed and installed for the demonstration of calcination process. The Rotary Ball Kiln Calciner is a slowly rotating slightly inclined horizontal tube that is externally heated by means of electric resistance heating. The liquid feed is sprayed onto the moving bed of metal balls in a slowly rotating calciner by a peristaltic type-metering pump. The vaporization of the liquid occurs in the pre-calcination zone due to counter current flow of hot gases. The dehydration and denitration of the solids occurs in the calcination zone, which is externally heated by electrical furnace. The calcined powder is cooled in the post calcination portion. It has been demonstrated that the

  1. Treatment of low-level radioactive waste liquid by reverse osmosis

    SciTech Connect

    Buckley, L.P.; Sen Gupta, S.K.; Slade, J.A.

    1995-12-31

    The processing of low-level radioactive waste (LLRW) liquids that result from operation of nuclear power plants with reverse osmosis systems is not common practice. A demonstration facility is operating at Chalk River Laboratories (of Atomic Energy of Canada Limited), processing much of the LLRW liquids generated at the site from a multitude of radioactive facilities, ranging from isotope production through decontamination operations and including chemical laboratory drains. The reverse osmosis system comprises two treatment steps--spiral wound reverse osmosis followed by tubular reverse osmosis--to achieve an average volume reduction factor of 30:1 and a removal efficiency in excess of 99% for most radioactive and chemical species. The separation allows the clean effluent to be discharged without further treatment. The concentrated waste stream of 3 wt% total solids is further processed to generate a solid product. The typical lifetimes of the membranes have been nearly 4000 hours, and replacement was required based on increased pressure drops and irreversible loss of permeate flux. Four years of operating experience with the reverse osmosis system, to demonstrate its practicality and to observe and record its efficiency, maintenance requirements and effectiveness, have proven it to be viable for volume reduction and concentration of LLRW liquids generated from nuclear-power-plant operations.

  2. Properties required by extractants and diluents for the decontamination of liquid wastes using supported liquid membranes

    SciTech Connect

    Dozol, J.F.; Rouquette, H.; Eymard, S.; Tournois, B.

    1993-12-31

    Macrocyclic extractants are now being studied more and more often for the decontamination of radioactive liquid wastes: coronands (crown ethers, azacrown...) and cryptands. As these very sophisticated compounds are expensive, the best technique is supported liquid membranes which need a very low extractant inventory. This paper deals with the properties required by the extractant and the diluent in order to be used in an SLM device and to ensure a stable and efficient SLM: solubility of the extractant in organic compounds and in aqueous solutions; size of crown ether cavities; influence of the substituent groups on the selectivity of the crown ether; and influence of the properties of the diluent (polarity, transport of acidity) on the efficiency of the process and on the stability of the membrane (interfacial tension between the organic and aqueous phases, solubility in the aqueous phase). The influence of these parameters is illustrated by experiments performed in order to remove strontium and cesium from high sodium content liquid waste. The studies described in this paper are focused on the decategorization of evaporator concentrates arising from the reprocessing of spent fuel.

  3. Production of metal waste forms from spent fuel treatment

    SciTech Connect

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-02-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities.

  4. A&M. Hot liquid waste holding tanks. Camera faces southeast. Located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste holding tanks. Camera faces southeast. Located in vicinity of TAN-616, hot liquid waste treatment plant. Date: November 13, 1953. INEEL negative no. 9159 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  5. Liquid Culture Production of Fungal Microsclerotia.

    PubMed

    Jackson, Mark A; Payne, Angela R

    2016-01-01

    Fungal microsclerotia ("small" sclerotia) are compact hyphal aggregates, typically 50-600 μm in diameter, that are formed under unfavorable nutritional and/or environmental conditions. These structures are often melanized and desiccated to some degree containing endogenous nutritional reserves for use when favorable conditions return. Many fungi, mostly plant pathogens, produce microsclerotia as a survival structure. Liquid culture methods have been developed for producing microsclerotia of the Ascomycota Metarhizium spp, Colletotrichum truncatum, Mycoleptodiscus terrestris, and Trichoderma spp. While these fungi have varying culture conditions that optimize microsclerotia production, all share common nutritional and environmental requirements for microsclerotia formation. Described are the general liquid culture techniques, media components, and harvesting and drying methods necessary to produce stable microsclerotial granules of these fungi. PMID:27565493

  6. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 23, 2005, the waste specified in 40 CFR part 261 as EPA Hazardous Waste Number K181, and soil and... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment...

  7. Cellulose-based films prepared directly from waste newspapers via an ionic liquid.

    PubMed

    Xia, Guangmei; Wan, Jiqiang; Zhang, Jinming; Zhang, Xiaoyu; Xu, Lili; Wu, Jin; He, Jiasong; Zhang, Jun

    2016-10-20

    Waste newspapers, composed of cellulose (>60wt%), lignin (∼15wt%), hemicellulose (∼10wt%) and other additives, are one kind of low-cost, easily collected and abundant resources. In order to get value-added products from this waste, in this work an attempt was made to directly convert waste newspapers into cellulose-based films by employing an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a solvent. Most of the organic substances in this waste were dissolved quickly in AmimCl under mild conditions, and then coagulated and dried. Although containing lignin, hemicellulose and inorganic additives, the regenerated cellulose-based films were smooth, compact and semi-transparent, and exhibited good mechanical properties. If the newspaper/AmimCl solution was filtered to remove undissolved inorganic substances, the regenerated films became transparent and had a tensile strength of 80MPa. Thus, this work provides a new, simple and highly efficient way to achieve a high-valued utilization of waste newspapers for packaging and wrapping. PMID:27474561

  8. Cellulose-based films prepared directly from waste newspapers via an ionic liquid.

    PubMed

    Xia, Guangmei; Wan, Jiqiang; Zhang, Jinming; Zhang, Xiaoyu; Xu, Lili; Wu, Jin; He, Jiasong; Zhang, Jun

    2016-10-20

    Waste newspapers, composed of cellulose (>60wt%), lignin (∼15wt%), hemicellulose (∼10wt%) and other additives, are one kind of low-cost, easily collected and abundant resources. In order to get value-added products from this waste, in this work an attempt was made to directly convert waste newspapers into cellulose-based films by employing an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a solvent. Most of the organic substances in this waste were dissolved quickly in AmimCl under mild conditions, and then coagulated and dried. Although containing lignin, hemicellulose and inorganic additives, the regenerated cellulose-based films were smooth, compact and semi-transparent, and exhibited good mechanical properties. If the newspaper/AmimCl solution was filtered to remove undissolved inorganic substances, the regenerated films became transparent and had a tensile strength of 80MPa. Thus, this work provides a new, simple and highly efficient way to achieve a high-valued utilization of waste newspapers for packaging and wrapping.

  9. Potential useful products from solid wastes.

    PubMed

    Golueke, C G; Diaz, L F

    1991-10-01

    Wastes have been aptly defined as "items, i.e. resources, that have been discarded because their possessors no longer have an apparent use for them". Accordingly, "wastes" have a significance only in relation to the items and those who have discarded them. The discarded items now are resources awaiting reclamation. Reclamation usually involves either salvage or conversion--or in modern terminology, "reuse" or "recycling". Reclamation for reuse consists in refurbishing or other upgrading without significantly altering original form and composition. Examples of wastes amenable to reuse are containers (bottles, etc.), cartons and repairable tires. With "recycling" (i.e. conservation), the discarded items are processed such that they become raw material, i.e. resources in the manufacture of "new" products. The variety of processes is wide, ranging from simply physical (grinding) through thermal (melting, gasification, combustion), to biological (composting, biogasification, hydrolysis, microbial protein production). In the paper, reuse and recycling (conversion) are evaluated in terms of advantages and disadvantages (limitations) and their respective technologies are described and discussed in detail.

  10. Short communication: a food-systems approach to assessing dairy product waste.

    PubMed

    Ridoutt, B G; Baird, D L; Bastiaans, K; Darnell, R; Hendrie, G A; Riley, M; Sanguansri, P; Syrette, J; Noakes, M; Keating, B A

    2014-10-01

    Concern about world population increase, food security, and the environmental burdens of food production have made food-waste reduction a social and environmental priority. In this context, the quantification of dairy product waste is especially difficult due to the varied means of disposal, by solid and liquid waste streams, and due to inclusion as an ingredient in many processed foods. In this study, food intake data from the Australian National Nutrition Survey (>13,000 participants; >4,500 food items) were disaggregated into basic foods and total national dairy product intake was expressed in whole-milk equivalents. This result was compared with total domestic milk supply, indicating a level of waste of 29% for dairy products in the Australian food system. With national food-waste reduction targets becoming increasingly common, reliable estimates of food waste at the national scale are important for goal setting, baseline reporting, and performance monitoring. For this purpose, the systems approach to assessing food waste demonstrated in this project is deemed to have advantages over other common methods of food-waste assessment, such as bin audits, waste diaries, and surveys.

  11. Short communication: a food-systems approach to assessing dairy product waste.

    PubMed

    Ridoutt, B G; Baird, D L; Bastiaans, K; Darnell, R; Hendrie, G A; Riley, M; Sanguansri, P; Syrette, J; Noakes, M; Keating, B A

    2014-10-01

    Concern about world population increase, food security, and the environmental burdens of food production have made food-waste reduction a social and environmental priority. In this context, the quantification of dairy product waste is especially difficult due to the varied means of disposal, by solid and liquid waste streams, and due to inclusion as an ingredient in many processed foods. In this study, food intake data from the Australian National Nutrition Survey (>13,000 participants; >4,500 food items) were disaggregated into basic foods and total national dairy product intake was expressed in whole-milk equivalents. This result was compared with total domestic milk supply, indicating a level of waste of 29% for dairy products in the Australian food system. With national food-waste reduction targets becoming increasingly common, reliable estimates of food waste at the national scale are important for goal setting, baseline reporting, and performance monitoring. For this purpose, the systems approach to assessing food waste demonstrated in this project is deemed to have advantages over other common methods of food-waste assessment, such as bin audits, waste diaries, and surveys. PMID:25064645

  12. Direct utilization of human liquid wastes by plants in a closed ecosystem

    NASA Astrophysics Data System (ADS)

    Lisovsky, G. M.; Gitelson, J. I.; Shilenko, M. P.; Gribovskaya, I. V.; Trubachev, I. N.

    1997-01-01

    Model experiments in phytotrons have shown that urea is able to cover 70% of the demand in nitrogen of the conveyer cultivated wheat. At the same time wheat plants can directly utilize human liquid wastes. In this article by human liquid wastes the authors mean human urine only. In a long-term experiment on ``man-higher plants'' system with two crewmen, plants covered 63 m^2, with wheat planted to - 39.6 m^2. For 103 days, complete human urine (total amount - 210.7 l) was supplied into the nutrient solution for wheat. In a month and a half NaCl supply into the nutrient solution stabilized at 0.9-1.65 g/l. This salination had no marked effect on wheat production. The experiment revealed the realistic feasibility to directly involve liquid wastes into the biological turnover of the life support system. The closure of the system, in terms of water, increased by 15.7% and the supply of nutrients for wheat plants into the system was decreased. Closedness of biological turnover of matter in a man-made ``man - higher plants'' ecological system might involve, among other processes, direct utilization of human liquid wastes by plants. The amount of urine comprises 15-20% of the total amount of water cycling within the system including water as part of food, household, hygiene and potable water necessary for man. What is more, it they contains most nitrogen-bearing compounds emitted by man, almost all of the NaCl and some other substances involved in the biological turnover. Human liquid wastes can be utilized either by preliminary physical-chemical treatment (evaporating or freezing out the water, finally oxidizing the organic matter, isolating the mineral components required for plants, etc.) and further involvement of the obtained products or by direct application into the nutrient solution for plants. The challenge of direct utilization is that plants have no need of Na^+ and Cl^-, and also the organic forms of nitrogen emitted by man cannot fully meet the demand of

  13. Microbial products from sweet potato wastes

    SciTech Connect

    Nghiem, N.P.

    1982-01-01

    Microbial production of methane from alkaline sweet potato wastes was studied. Assessment of methane production potential was based on total COD of the wastes. A single-stage and a two-stage system were studied. In both systems, to ensure stable operation and high performance, methane fermenters had to be initially seeded with large quantities of methane formers. A 50% inoculum (based on total fermenter volume) was found to be most effective. Methane formers tended to aggregate to form spherical particles which had extremely high settling rates, this eliminated the requirement of cell recycle. In both single-stage and two-stage systems the rates of gas production was sufficiently fast to induce thorough mixing of the fermenter contents. At low residence times of two and four days the two-stage system achieved significantly higher conversions. Gas production started almost immediately after feeding the methane fermenter of the two-stage system. The conversions in the methane fermenter of a two-stage system could be predicted by a model based on Contois' kinetics. The composition of the gas produced in this fermenter could also be predicted from the distribution of the organic acids in the effluent from the acid fermenter. The acid formation stage was studied in a chemostat operated at a fixed residence time of 5.5 hours. The highest yield of 0.09 g protein/g glucose consumed was obtained at pH 5.5 and 37/sup 0/C.

  14. Microbiology of formation waters from the deep repository of liquid radioactive wastes Severnyi.

    PubMed

    Nazina, Tamara N; Kosareva, Inessa M; Petrunyaka, Vladimir V; Savushkina, Margarita K; Kudriavtsev, Evgeniy G; Lebedev, Valeriy A; Ahunov, Viktor D; Revenko, Yuriy A; Khafizov, Robert R; Osipov, George A; Belyaev, Sergey S; Ivanov, Mikhail V

    2004-07-01

    The presence, diversity, and geochemical activity of microorganisms in the Severnyi repository of liquid radioactive wastes were studied. Cultivable anaerobic denitrifiers, fermenters, sulfate-reducers, and methanogens were found in water samples from a depth of 162-405 m below sea level. Subsurface microorganisms produced methane from [2-(14)C]acetate and [(14)C]CO(2), formed hydrogen sulfide from Na(2) (35)SO(4), and reduced nitrate to dinitrogen in medium with acetate. The cell numbers of all studied groups of microorganisms and rates of anaerobic processes were higher in the zone of dispersion of radioactive wastes. Microbial communities present in the repository were able to utilise a wide range of organic and inorganic compounds and components of waste (acetate, nitrate, and sulfate) both aerobically and anaerobically. Bacterial production of gases may result in a local increase of the pressure in the repository and consequent discharge of wastes onto the surface. Microorganisms can indirectly decrease the mobility of radionuclides due to consumption of oxygen and production of sulfide, which favours deposition of metals. These results show the necessity of long-term microbiological and radiochemical monitoring of the repository.

  15. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system.

    PubMed

    Zhang, Cunsheng; Su, Haijia; Tan, Tianwei

    2013-10-01

    To avoid the inhibition from both of waste oil and high concentrations of cationic elements, anaerobic digestion of food waste in a dual solid-liquid (ADSL) system was examined in this present paper. Results from batch test indicated that a higher methane yield could be obtained in the ADSL system. The methane yield of food solid waste (FSW), food liquid waste (FLW) and raw food waste (RFW) were 643, 659 and 581 mL/g-VS, respectively. In semi-continuous anaerobic digestion, the optimum organic loading rates (OLR) for FSW, FLW and RFW were 9, 4 and 7 g-VS/L/d, respectively. The total methane production of RFW and ADSL systems, based on 1 kg-VS(RFW), were 405 and 460 L, respectively, indicating that the methane production increased by 13.6% in the ADSL system. The optimum C/N ratio, redistribution of metal element and lower content of waste oil in FSW explain the higher methane production.

  16. Liquid wastes and industrial sludge. New investigation fields to recycle metals

    SciTech Connect

    Meux, E.; Leclerc, N.; Peneliau, F.; Muller, P.

    1999-07-01

    The aim of this work is to propose some alternatives to the landfilling of metallic hydroxide sludge coming from the classical physico-chemical treatment of liquid wastes containing metallic cations. A downstream treatment was investigated. It consists of a selective leaching of filter-press cakes. This chemical treatment allows the elimination of toxic metals from the sludge and produces an inertized residue. An upstream treatment was studied: the selective precipitation of metallic cations. In this case, it is possible to obtain zinc sulfide and iron oxide. These products meet the acceptance conditions for the zinc and steel industry.

  17. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  18. Converting citrus waste to ethanol and other co-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of citrus processing waste (CPW) generated during juice production into value added co-products is an important aspect of the juice industry as it offers a solution to waste disposal issues. Currently the practice of drying citrus waste to produce citrus pulp pellets (CPP) for use as catt...

  19. Layerless fabrication with continuous liquid interface production

    PubMed Central

    Janusziewicz, Rima; Tumbleston, John R.; Quintanilla, Adam L.; Mecham, Sue J.; DeSimone, Joseph M.

    2016-01-01

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology. PMID:27671641

  20. MECHANISMS GOVERNING TRANSIENTS FROM THE BATCH INCINERATION OF LIQUID WASTES IN ROTARY KILNS

    EPA Science Inventory

    When "containerized" liquid wastes, bound on sorbents. are introduced into a rotary kiln in a batch mode, transient phenomena in-volving heat transfer into, and waste mass transfer out of, the sorbent can oromote the raoid release of waste vaoor into the kiln environment. This ra...

  1. Remediation of Hanford's N-reactor liquid waste disposal sites.

    PubMed

    Sitsler, Robert B; DeMers, Steven K

    2003-02-01

    Hanford's N-Reactor operated from 1963 to 1987 generating approximately 9 x 10(7) m3 of radioactive and hazardous liquid effluent as a result of reactor operations. Two liquid waste disposal sites, essentially large trenches designed to filter contaminants from the water as it percolates through the soil column, were established to dispose of the effluent. The discharges to the sites included cooling water from the reactor primary, spent fuel storage, and periphery systems, along with miscellaneous drainage from reactor support facilities. Today, both sites are classified as Treatment Storage and Disposal Facilities under the Resource Conservation and Recovery Act of 1976, which makes them priority sites for remediation. The two sites cover approximately 4,100 m2 and 9,300 m2, respectively. Remediation of the sites requires removing a combined total of approximately 2.6 x 10(8) kg of contaminated soil and debris. Principal radionuclides contained in the soil/debris are 60Co, 137Cs, 239Pu, and 90Sr. Remediation of these waste sites requires demolishing concrete structures and excavating, hauling, and disposing of contaminated soils in work areas containing high levels of contamination and whole body dose rates in excess of 1 mSv h-1. The work presents unique radiological control challenges, such as minimizing external dose to workers in a constantly changing outdoor work environment, maintaining contamination control during removal of a water distribution trough filled with highly contaminated sludge, and minimizing outdoor airborne contamination during size reduction of highly contaminated pipelines. Through innovative approaches to dose reduction and contamination control, Hanford's Environmental Restoration Contractor has met the challenge, completing the first phase on schedule and with a total project exposure below the goal of 0.1 person-Sv. PMID:12564346

  2. 324 Building liquid waste handling and removal system project plan

    SciTech Connect

    Ham, J.E.

    1998-07-29

    This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan.

  3. Evaluation of various agro-wastes for traditional black soap production.

    PubMed

    Taiwo, O E; Osinowo, F A

    2001-08-01

    The agricultural wastes, cocoa-pod husks, palm-bunch waste, sorghum chaff and groundnut shells, which are normally thrown away have been used in the production of black soap. Unlike other soaps which are made from oils and chemicals, black soap is made from oils and agro-wastes ashes. Chemical analysis indicated that the liquid extract from the ashes of the different agro-wastes used contained various amounts of potassium and sodium compounds. The most common ingredient in the agro-wastes was potassium carbonate. The amount of potassium carbonate was 56.73 +/- 0.16% in cocoa-pod ash, 43.15 +/- 0.13% in palm-bunch ash, 16.65 +/- 0.05% in groundnut shell ash and 12.40 +/- 0.08% in sorghum chaff ash. Soaps made from the agro-wastes ashes had excellent solubility, consistency, cleansing and lathering abilities.

  4. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    SciTech Connect

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of these tests are presented in the paper.

  5. Low-level liquid waste decontamination by ion exchange

    SciTech Connect

    Campbell, D.O.; Lee, D.D.; Dillow, T.A.

    1991-12-01

    Improved processes are being developed to treat contaminated liquid wastes that have been and continue to be generated at Oak Ridge National Laboratory. Both inorganic and organic ion-exchange methods have given promising results. Nickel and cobalt hexacyanoferrate(2) compounds are extremely selective for cesium removal, with distribution coefficients in excess of 10{sup 6} and remarkable insensitivity to competition from sodium and potassium. They tend to lose effectiveness at pH > {approximately}11, but some formulations are useful for limited periods of time up to pH {approximately}13. Sodium titanate is selective for strontium removal at high pH. The separations are so efficient that simple batch processes can yield large decontamination factors while generating small volumes of solid waste. A resorcinol-based resin developed at the Savannah River Site gave superior cesium removal, compared with other organic ion exchangers; the distribution coefficient was limited primarily by competition from potassium and was nearly independent of sodium. The optimum pH was {approximately}12.5. It was much less effective for strontium removal, which was limited by competition from sodium. 8 refs., 6 figs., 9 tabs.

  6. 40 CFR 761.62 - Disposal of PCB bulk product waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from organic liquids disposed of in the landfill unit. (ii) Leachate is collected from the landfill unit and monitored for PCBs. (3) Any release of PCBs (including but not limited to leachate) from the... to simulate leachate generation. (2) Any person may dispose of PCB bulk product waste other...

  7. Biodiesel production using waste frying oil

    SciTech Connect

    Charpe, Trupti W.; Rathod, Virendra K.

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

  8. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  9. Recovery of valuable materials from waste liquid crystal display panel.

    PubMed

    Li, Jinhui; Gao, Song; Duan, Huabo; Liu, Lili

    2009-07-01

    Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 degrees C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO(3):H(2)O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 degrees C.

  10. Recovery of valuable materials from waste liquid crystal display panel

    SciTech Connect

    Li Jinhui Gao Song; Duan Huabo; Liu Lili

    2009-07-15

    Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 deg. C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO{sub 3}:H{sub 2}O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 deg. C.

  11. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges... (dpp) and Development Operations Coordination Documents (docd) § 250.248 What solid and liquid wastes... following solid and liquid wastes and discharges information and cooling water intake information...

  12. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges... What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and discharges information and cooling water...

  13. Cleaner production: Minimizing hazardous waste in Indonesia

    SciTech Connect

    Bratasida, D.L.

    1996-12-31

    In the second long-term development plan, industry plays a significant role in economic growth. In Indonesia, industries grow very fast; such fast growth can adversely effect the environment. Exploitation of assets can mean depletion of natural resources and energy, which, if incorrectly managed, can endanger human life and the environment. The inefficient use of natural resources will accelerate their exhaustion and generate pollution, resulting in environmental damage and threats to economic development and human well being. In recent years, changes in the approach used to control pollution have been necessary because of the increasing seriousness of the problems. Initial environmental management strategies were based on a carrying capacity approach; the natural assimilative capacity accommodated the pollution load that was applied. The environmental management strategies adopted later included technologies applied to the end of the discharge point (so-called {open_quotes}end-of-pipe{close_quotes} treatments). Until now, environmental management strategies focused on end-of-pipe approaches that control pollutants after they are generated. These approaches concentrate on waste treatment and disposal to control pollution and environmental degradation. However, as industry develops, waste volumes continue to increase, thereby creating further environmental problems. In addition, the wastes produced tend to have more complex characteristics and are potentially more difficult to treat for a reasonable cost. There are often technical and financial obstacles to regulatory compliance if waste treatment is relied on as the only means of achieving environmental objectives. Consequently, the reactive end-of-pipe treatment approach has been changed to a proactive cleaner production approach. This approach is based on the concept of sustainable development and is designed to prevent pollution as well as to protect natural resources and the quality of the environment.

  14. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    SciTech Connect

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

  15. Thermophilic methane production from cattle waste.

    PubMed Central

    Varel, V H; Isaacson, H R; Bryant, M P

    1977-01-01

    Methane production from waste of cattle fed a finishing diet was investigated, using four 3-liter-working volume anaerobic digestors at 60 degrees C. At 55 degrees C a start-up culture, in which waste was the only source of bacteria, was generated within 8 days and readily adapted to 60 degrees C, where efficiency of methanogenesis was greater. Increasing the temperature from 60 to 65 degrees C tended to drastically lower efficiency. When feed concentrations of volatile solids (VS, organic matter) were increased in steps of 2% after holding for 1 months at a given concentration, the maximum concentrations for efficient fermentation were 8.2, 10.0, 11.6, and 11.6% for the retention times (RT) of 3, 6, 9, and 12 days, respectively. The VS destructions for these and lower feed concentrations were 31 to 37, 36 to 40, 47 to 49 and 51 to 53% for the 3-, 6-, 9-, and 12-day RT digestors, respectively, and the corresponding methane production rates were about 0.16, 0.18, 0.20, and 0.22 liters/day per g of VS in the feed. Gas contained 52 to 57% methane. At the above RT and feed concentrations, alkalinity rose to 5,000 to 7,700 mg of CaCo3 per liter (pH to 7.5 to 7.8), NH3 plus NH4+ to 64 to 90 mM, and total volatile acids to 850 to 2,050 mg/liter as acetate. The 3-day RT digestor was quite stable up to 8.2% feed VS and at this feed concentration produced methane at the very high rate of 4.5 liters/day per liter of digestor. Increasing the percentage of feed VS beyond those values indicated above resulted in greatly decreased organic matter destruction and methane production, variable decrease in pH, and increased alkalinity, ammonia, and total volatile acid concentrations, with propionate being the first to accumulate in large amounts. In a second experiment with another lot of waste, the results were similar. These studies indicate that loading rates can be much higher than those previously thought useful for maximizing methanogenesis from cattle waste. PMID:557954

  16. The use of waste ceramic tile in cement production

    SciTech Connect

    Ay, N.; Uenal, M.

    2000-03-01

    In ceramic tile production, because of various reasons, unsold fired products come out. These are waste tiles and only a little part of them are used. Remainings create environmental problems. If these waste tiles are used in cement production, this pollution decreases. In this study, usage of waste tile as pozzolan was studied. Waste tile was added into Portland cement in 25%, 30%, 35%, and 40% weight ratios. Pozzolanic properties of waste tile and setting time, volume stability, particle size, density, specific surface area, and strength of cement including waste tile were investigated. The test results indicated that the waste tiles show pozzolanic properties, and chemical and physical properties of the cement including tile conforms to cement standard up to the addition of 35% waste tile.

  17. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    DOEpatents

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  18. Solid state anaerobic co-digestion of yard waste and food waste for biogas production.

    PubMed

    Brown, Dan; Li, Yebo

    2013-01-01

    Food and yard wastes are available year round at low cost and have the potential to complement each other for SS-AD. The goal of this study was to determine optimal feedstock/effluent (F/E) and food waste/yard waste mixing ratios for optimal biogas production. Co-digestion of yard and food waste was carried out at F/E ratios of 1, 2, and 3. For each F/E ratio, food waste percentages of 0%, 10%, and 20%, based on dry volatile solids, were evaluated. Results showed increased methane yields and volumetric productivities as the percentage of food waste was increased to 10% and 20% of the substrate at F/E ratios of 2 and 1, respectively. This study showed that co-digestion of food waste with yard waste at specific ratios can improve digester operating characteristics and end performance metrics over SS-AD of yard waste alone. PMID:23131652

  19. Solid state anaerobic co-digestion of yard waste and food waste for biogas production.

    PubMed

    Brown, Dan; Li, Yebo

    2013-01-01

    Food and yard wastes are available year round at low cost and have the potential to complement each other for SS-AD. The goal of this study was to determine optimal feedstock/effluent (F/E) and food waste/yard waste mixing ratios for optimal biogas production. Co-digestion of yard and food waste was carried out at F/E ratios of 1, 2, and 3. For each F/E ratio, food waste percentages of 0%, 10%, and 20%, based on dry volatile solids, were evaluated. Results showed increased methane yields and volumetric productivities as the percentage of food waste was increased to 10% and 20% of the substrate at F/E ratios of 2 and 1, respectively. This study showed that co-digestion of food waste with yard waste at specific ratios can improve digester operating characteristics and end performance metrics over SS-AD of yard waste alone.

  20. Health impact assessment of liquid biofuel production.

    PubMed

    Fink, Rok; Medved, Sašo

    2013-01-01

    Bioethanol and biodiesel as potential substitutes for fossil fuels in the transportation sector have been analyzed for environmental suitability. However, there could be impacts on human health during the production, therefore adverse health effects have to be analyzed. The aim of this study is to analyze to what health risk factors humans are exposed to in the production of biofuels and what the size of the health effects is. A health impact assessment expressed as disability adjusted life years (DALYs) was conducted in SimaPro 7.1 software. The results show a statistically significant lower carcinogenic impact of biofuels (p < 0.05) than fossil fuels. Meanwhile, the impact of organic respirable compounds is smaller for fossil fuels (p < 0.05) than for biofuels. Analysis of inorganic compounds like PM₁₀,₂.₅, SO₂ or NO(x) shows some advantages of sugar beet bioethanol and soybean biodiesel production (p < 0.05), although production of sugarcane bioethanol shows larger impacts of respirable inorganic compounds than for fossil fuels (p < 0.001). Although liquid biofuels are made of renewable energy sources, this does not necessary mean that they do not represent any health hazards. PMID:22774773

  1. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    NASA Astrophysics Data System (ADS)

    Handayani, Prima Astuti; Abdullah, dan Hadiyanto

    2015-12-01

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.

  2. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    SciTech Connect

    Handayani, Prima Astuti; Abdullah; Hadiyanto, Dan

    2015-12-29

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.

  3. Some methods of human liquid and solid wastes utilization in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Tikhomirova, N. A.; Ushakova, S. Á.; Tikhomirov, A. Á.; Zolotukhin, I. G.; Gribovskaya, I. V.; Gros, J. B.

    The possibility of stepwise utilization of human liquid and solid wastes with the purpose of an increase of a closure degree of bioregenerative life support systems BLSS and sodium chloride inclusion in the organic matter turnover was investigated On the first stage urine and faeces were subjected to oxidation by Yu A Kudenko physicochemical method On the next stage the products of human liquid and solid wastes oxidation were used for roots nutrition of wheat grown by substrate culture method Soil-like substrate the technology of which was described earlier was used as a substrate After the wheat cultivation the irrigational solution and the solution obtained in the result of substrate washing containing mineral elements not absorbed by the plants were used for cultivation of salt-tolerant Salicornia europaea plants The above-ground biomass of these vegetables can be used as a food and roots washed from dissoluble mineral elements can be added to the soil-like substrate Four consecutive wheat and Salicornia europaea vegetations were cultivated In the result of this complex technology of wheat and Salicornia europaea cultivation the soil-like substrate salinization by NaCl introduced into the irrigational solution together with the products of urine oxidation has considerably decreased

  4. Conditioning of Boron-Containing Low and Intermediate Level Liquid Radioactive Waste - 12041

    SciTech Connect

    Gorbunova, Olga A.; Kamaeva, Tatiana S.

    2012-07-01

    Improved cementation of low and intermediate level radioactive waste (ILW and LLW) aided by vortex electromagnetic treatment as well as silica addition was investigated. Positive effects including accelerated curing of boron-containing cement waste forms, improve end product quality, decreased product volume and reduced secondary LRW volume from equipment decontamination were established. These results established the possibility of boron-containing LRW cementation without the use of neutralizing alkaline additives that greatly increase the volume of the final product intended for long-term storage (burial). Physical (electromagnetic) treatment in a vortex mixer can change the state of LRW versus chemical treatment. By treating the liquid phase of cement solution only, instead of the whole solution, and using fine powder and nano-particles of ferric oxides instead of separable ferromagnetic cores for the activating agents the positive effect are obtained. VET for 1 to 3 minutes yields boron-containing LRW cemented products of satisfactory quality. Silica addition at 10 % by weight will accelerate curing and solidification and to decrease radionuclide leaching rates from boron-containing cement products. (authors)

  5. Microwave-assisted pyrolysis of biomass for liquid biofuels production.

    PubMed

    Yin, Chungen

    2012-09-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by "microwave dielectric heating" effects. This paper presents a state-of-the-art review of microwave-assisted pyrolysis of biomass. First, conventional fast pyrolysis and microwave dielectric heating is briefly introduced. Then microwave-assisted pyrolysis process is thoroughly discussed stepwise from biomass pretreatment to bio-oil collection. The existing efforts are summarized in a table, providing a handy overview of the activities (e.g., feedstock and pretreatment, reactor/pyrolysis conditions) and findings (e.g., pyrolysis products) of various investigations.

  6. ICPP radioactive liquid and calcine waste technologies evaluation final report and recommendation

    SciTech Connect

    1995-04-01

    Using a formalized Systems Engineering approach, the Latched Idaho Technologies Company developed and evaluated numerous alternatives for treating, immobilizing, and disposing of radioactive liquid and calcine wastes at the Idaho Chemical Processing Plant. Based on technical analysis data as of March, 1995, it is recommended that the Department of Energy consider a phased processing approach -- utilizing Radionuclide Partitioning for radioactive liquid and calcine waste treatment, FUETAP Grout for low-activity waste immobilization, and Glass (Vitrification) for high-activity waste immobilization -- as the preferred treatment and immobilization alternative.

  7. Production of liquid hydrocarbon and ether mixtures

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1989-05-16

    An integrated process is described for the production of ether-rich liquid fuels, comprising: (a) etherifying a mixture of excess lower alkyl alcohol and aliphatic hydrocarbon feedstock rich in C/sub 4/+isoalkenes in the presence of acid etherification catalyst whereby lower alkyl tertiary alkyl ethers are produced; (b) separating etherification effluent from step(a) to provide a gasoline stream rich in C/sub 5/+ ethers and a stream comprising unreacted alcohol and alkenes; (c) contacting the unreacted alcohol and alkenes with an acidic metallosilicate zeolite conversion catalyst under olefinic and oxygenates conversion conditions at a temperature of at least 200/sup 0/C (392/sup 0/F) whereby a conversion effluent stream rich in C/sub 4/+ isoalkenes is produced; (d) recycling at least a portion of the conversion effluent stream to step (a) for etherification.

  8. Phosphate bonded structural products from high volume wastes

    DOEpatents

    Singh, Dileep; Wagh, Arun S.

    1998-01-01

    A method to produce structural products from benign waste is provided comprising mixing pretreated oxide with phosphoric acid to produce an acid solution, mixing the acid solution with waste particles to produce a slurry, and allowing the slurry to cure. The invention also provides for a structural material comprising waste particles enveloped by an inorganic binder.

  9. Phosphate bonded structural products from high volume wastes

    DOEpatents

    Singh, D.; Wagh, A.S.

    1998-12-08

    A method to produce structural products from benign waste is provided comprising mixing pretreated oxide with phosphoric acid to produce an acid solution, mixing the acid solution with waste particles to produce a slurry, and allowing the slurry to cure. The invention also provides for a structural material comprising waste particles enveloped by an inorganic binder. 1 fig.

  10. Reduction of Sodium Nitrate Liquid Waste in Nuclear Reprocessing Plants

    SciTech Connect

    Numata, M.; Mihara, S.; Kojima, S.; Ito, H.; Kato, T.

    2006-07-01

    Sodium nitrate solution has been generated from nuclear reprocessing plant as a result of neutralization of nitric acid. The sodium nitrate has been immobilized by bitumen, cement or other material in the site and waste packages have been produced. In order to reduce an environmental impact of the waste packages from the reprocessing plant, it is preferable to decompose nitrate ion to harmless gases such as nitrogen. A combination of formic acid and catalyst has been proposed for this purpose. But, the method is inadequate for a full decomposition of the nitrate ion. In addition, a mixture of NO and NO{sub 2} is produced during the reaction. Formaldehyde and hydrazine were selected as reductants and a combined use of Pd-Cu catalyst was tried to decompose the nitrate ion. As a result, the nitrate ion can almost entirely be decomposed without any generation of NO and NO{sub 2}. The test was conducted by 1 L flask. In case of formaldehyde, nitrate ion concentration can be reduced from 0.017 mol/l to 3.9x10{sup -4} mol/l. In case of hydrazine, nitrate concentration can be decreased from 2.8 mol/l to 9.5 x 10{sup -3} mol/l and ammonium ion is detected. The ammonium ion concentration in the final solution is 0.12 mol/l when 2.8 mol/l nitrate is reduced by hydrazine. Chemical reactions for formaldehyde on the Pd-Cu catalyst are estimated as combination of: NO{sub 3-} + HCHO = NO{sub 2-} + HCOOH; 2NO{sub 2-} + 3HCOOH = N{sub 2} + 3CO{sub 2} + 2H{sub 2}O + 2OH-; 4NO{sub 2-} + 3HCHO = 2N{sub 2} + 3CO{sub 2} + H{sub 2}O + 4OH-. the other hand, for hydrazine with the Pd-Cu catalyst: 3N{sub 2}H{sub 4} = 2NH{sub 3} + 2N{sub 2} + 3H{sub 2}; NO{sub 3-} + H{sub 2} = NO{sub 2-} + H{sub 2}O; NO{sub 2-} + NH{sub 3} = N{sub 2} + H{sub 2}O + OH-. The fundamental research shows that the combination usage of the Pd-Cu catalyst and formaldehyde or hydrazine is applicable for the reduction of nitrate liquid waste in the nuclear reprocessing plant. (authors)

  11. Secondary wastes and high explosive residues generated during production of main high explosive charges for nuclear weapons

    SciTech Connect

    Jardine, L.J.; McGee, J.T.

    1994-02-01

    This study identifies the sources of high-explosive (HE) residues and hazardous and nonhazardous wastes generated during the production of the main HE charges for nuclear weapons, and estimates their quantities and characteristics. The results can be used as a basis for design of future handling and treatment systems for solid and liquid HE residues and wastes at any proposed new HE production facilities. This paper outlines a general methodology for documenting and estimating the volumes and characteristics of the solid and liquid HE residues and hazardous and nonhazardous wastes. We prepared volume estimates by applying this method to actual past Pantex plant HE production operations. To facilitate the estimating, we separated the HE main-charge production process into ten discrete unit operations and four support operations, and identified the corresponding solid and liquid HE residues and waste quantities. Four different annual HE main-charge production rates of 100, 500, 1000, and 2000 HE units/yr were assumed to develop the volume estimates and to establish the sensitivity of the estimates to HE production rates. The total solids (HE residues and hazardous and nonhazardous wastes) estimated range from 800 to 2800 ft{sup 3}/yr and vary uniformly with the assumed HE production rate. The total liquids estimated range from 73,000 to 1,448,000 gal/yr and also vary uniformly with the assumed production rate.

  12. Production of hydroxyapatite from waste mussel shells

    NASA Astrophysics Data System (ADS)

    Jones, Mark I.; Barakat, Haneen; Patterson, Darrell Alec

    2011-10-01

    This work describes the formation of Hydroxyaptite, Ca10(PO4)6(OH)2, from waste mussel shells from the New Zealand aquaculture industry. The raw shells are first calcined to produce lime (CaO) and then reacted in a purpose built reactor to form the Hydroxyapatite (HA) in a low temperature batch process. The calcination was studied in terms of the effects of temperature, heating rate, holding time, nitrogen flow rate and particle size. The crystals formed in the batch reactor were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Photoelectron Spectroscopy (XPS). Optimised conditions in the calcination stage resulted in powder with around 95% conversion to lime. The as-produced HA showed poor crystallinity and the presence of impurities, although both of these features were improved by a suitable post heat treatment process. The post treated material showed good crystallinity and was comparable to commercially produced material. Preliminary biocompatibility experiments showed that the HA stimulated cell growth and promoted mineralization. The production of HA from mussel shells in a room temperature, ambient pressure process is not only a sustainable use of waste material, but also from an industrial point of view the process has considerable potential for reducing costs associated with both starting materials and energy.

  13. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    PubMed

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  14. Disposal of heavy metal waste sludges in ceramic products

    SciTech Connect

    Wolfe, T.D.

    1990-06-01

    The report gives the results of a laboratory investigation of the feasibility of incorporating heavy metal waste sludges into ceramic products. Samples were fabricated by combining heavy metal waste sludges with bricks, roof tile, or vitrified clay pipe. The samples were then tested, using standard leaching tests. Test methods and results are presented and large scale process details are given. Detailed cost data were given for using waste and not using waste in the process to enable a comparison.

  15. Environmental data package for ORNL Solid Waste Storage Area Four, the adjacent intermediate-level liquid waste transfer line, and the liquid waste pilot pit area

    SciTech Connect

    Davis, E.C.; Shoun, R.R.

    1986-09-01

    The Oak Ridge National Laboratory Remedial Action Program has determined through its review of past environmental studies that Solid Waste Storage Area Four (SWSA-4) continually releases radioactivity to White Oak Creek and therefore requires application of the site stabilization and remedial actions outlined under the 3004u provisions of the Resource Conservation and Recovery Act. Under these provisions, a Remedial Investigation/Feasibility Study (RI/FS) forms the basis for determining the extent of actions. This report assembles available historical and environmental data relative to the SWSA-4 waste area grouping (WAG), which includes the 9.3-ha SWSA-4 site, the adjacent abandoned intermediate-level liquid waste transfer line, and the experimental pilot pit area. The rationale for grouping these three waste management units into the SWSA-4 WAG is the fact that they each lie in the same hydrologic unit and share a common tributary to White Oak Creek. The results of this compilation demonstrate that although a considerable number of studies have been carried out in SWSA-4, needs such as installation of water quality wells and continued monitoring and reporting of hydrologic data still exist. These needs will become even more critical as the RI/FS process proceeds and remedial measures for the site are considered. Fewer studies have been carried out to characterize the extent of contamination at the waste transfer line and the pilot pit area. Alternatives for characterizing and stabilizing these two minor components of the SWSA-4 WAG are presented; however, extensive remedial actions do not appear to be warranted.

  16. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    SciTech Connect

    Del Signore, John C.

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  17. Energy and materials flows in the production of liquid and gaseous oxygen

    SciTech Connect

    Shen, S.; Wolsky, A.M.

    1980-08-01

    Liquid and gaseous oxygen is produced in an energy-intensive air separation processo that also generates nitrogen. More than 65% of the cost of oxygen is attributable to energy costs. Energy use and materials flows are analyzed for various air separation methods. Effective approaches to energy and material conservation in air separation plants include efficient removal of contaminants (carbon dioxide and water), centralization of air products user-industries so that large air separation plants are cost-effective and the energy use in transportation is minimized, and increased production of nitrogen. Air separation plants can produce more than three times more nitrogen than oxygen, but present markets demand, at most, only 1.5 times more. Full utlization of liquid and gaseous nitrogen should be encouraged, so that the wasted separation energy is minimized. There are potential markets for nitrogen in, for example, cryogenic separation of metallic and plastic wastes, cryogenic particle size reduction, and production of ammonia for fertilizer.

  18. Bio gas oil production from waste lard.

    PubMed

    Hancsók, Jeno; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al(2)O(3) catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280-380°C, P = 20-80 bar, LHSV = 0.75-3.0  h(-1) and H(2)/lard ratio: 600  Nm(3)/m(3)). In case of the isomerization at the favourable process parameters (T = 360-370°C, P = 40-50 bar, LHSV = 1.0  h(-1) and H(2)/hydrocarbon ratio: 400  Nm(3)/m(3)) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms. PMID:21403875

  19. A Regulatory Analysis and Reassessment of U.S. Environmental Protection Agency Listed Hazardous Waste Numbers for Applicability to the INTEC Liquid Waste System

    SciTech Connect

    Gilbert, K.L.; Venneman, T.E.

    1998-12-01

    This report concludes that there are four listed hazardous waste numbers (F001, F002, F005, and U134) applicable to the waste in the Process Equipment Waste Evaporator (PEWE) liquid waste system at the Idaho National Engineering and Environmental Laboratory. The chemical constituents associated with these listed hazardous waste numbers, including those listed only for ignitability are identified. The RCRA Part A permit application hazardous waste numbers identify chemical constituents that may be treated or stored by the PEWE liquid waste system either as a result of a particular characteristic (40 CFR, Subpart C) or as a result of a specific process (40 CFR 261, Subpart D). The RCRA Part A permit application for the PEWE liquid waste system identifies the universe of Environmental Protection Agency (EPA) hazardous waste numbers [23 characteristic (hazardous waste codes) numbers and 105 listed numbers (four F-listed hazardous waste numbers, 20 P-listed hazardous waste numbers, and 81 U-listed hazardous waste numbers)] deemed acceptable for storage and treatment. This evaluation, however, identifies only listed wastes (and their chemical constituents) that have actually entered the PEWE liquid waste system and would, therefore, be assigned to the PEWE liquids and treatment residuals.

  20. Liquid and Gaseous Waste Operations Department annual operating report, CY 1995

    SciTech Connect

    Maddox, J.J.; Scott, C.B.

    1996-03-01

    This report describes the operating activities, upgrade activities, maintenance, and other activities regarding liquid and gaseous low level radioactive waste management at the Oak Ridge National Laboratory. Miscellaneous activities include training, audits, tours, and environmental restoration support.

  1. Disposal of Liquid Wastes from Parlors and Milkhouses. Special Circular 154.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This circular provides information to assist in assessing the pollution potential of liquid wastes from parlors and milkhouses. Approaches to resolving problems through stabilization lagoons, irrigation, and tank collection as mandated in statutory authority are discussed. (CS)

  2. A&M. Hot liquid waste building (TAN616) under construction. Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste building (TAN-616) under construction. Camera facing northeast. Date: November 25, 1953. INEEL negative no. 9232 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. A&M. Hot liquid waste building (TAN616). Interior of evaporator control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste building (TAN-616). Interior of evaporator control room. Date: 1962. INEEL negative no. 62-6824 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. Declassification of radioactive liquid wastes generated in radio immune assay [corrected] (RIA) laboratories.

    PubMed

    Sancho, M; Arnal, J M; Villaescusa, J I; Campayo, J M; Verdú, G

    2005-01-01

    Radioactive liquid wastes of low-medium activity level are generated in radio immune assay (RIA) laboratories, which are also potentially infectious because of the pathogens from patient blood. The most common way of managing these wastes consists of a temporal storage, for partial radioactivity decay, followed by management by an authorised company. The object of this work is to study the viability of treating radioactive liquid wastes coming from RIA using membrane techniques in order to reduce their volume, which would mean an improvement from the radiological point of view and a decrease in management costs. This paper describes the results of some experiments carried out with RIA real wastes, by means of processes such as ultrafiltration and reverse osmosis. It has been proved that waste volume can be significantly reduced, obtaining a treated liquid that is free of pathogens and organic matter and with an activity level around the environmental background.

  5. Functions and requirements document, WESF decoupling project, low-level liquid waste system

    SciTech Connect

    Rasmussen, J.H., Fluor Daniel Hanford

    1997-02-27

    The Waste Encapsulation and Storage Facility (WESF) was constructed in 1974 to encapsulate and store cesium and strontium which were isolated at B Plant from underground storage tank waste. The WESF, Building 225-B, is attached physically to the west end of B Plant, Building 221-B, 200 East area. The WESF currently utilizes B Plant facilities for disposing liquid and solid waste streams. With the deactivation of B Plant, the WESF Decoupling Project will provide replacement systems allowing WESF to continue operations independently from B Plant. Four major systems have been identified to be replaced by the WESF Decoupling Project, including the following: Low Level Liquid Waste System, Solid Waste Handling System, Liquid Effluent Control System, and Deionized Water System.

  6. Declassification of radioactive liquid wastes generated in radio immune assay [corrected] (RIA) laboratories.

    PubMed

    Sancho, M; Arnal, J M; Villaescusa, J I; Campayo, J M; Verdú, G

    2005-01-01

    Radioactive liquid wastes of low-medium activity level are generated in radio immune assay (RIA) laboratories, which are also potentially infectious because of the pathogens from patient blood. The most common way of managing these wastes consists of a temporal storage, for partial radioactivity decay, followed by management by an authorised company. The object of this work is to study the viability of treating radioactive liquid wastes coming from RIA using membrane techniques in order to reduce their volume, which would mean an improvement from the radiological point of view and a decrease in management costs. This paper describes the results of some experiments carried out with RIA real wastes, by means of processes such as ultrafiltration and reverse osmosis. It has been proved that waste volume can be significantly reduced, obtaining a treated liquid that is free of pathogens and organic matter and with an activity level around the environmental background. PMID:16604690

  7. Waste valorization by biotechnological conversion into added value products.

    PubMed

    Liguori, Rossana; Amore, Antonella; Faraco, Vincenza

    2013-07-01

    Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript.

  8. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    SciTech Connect

    Deckers, Jan; Mols, Ludo

    2007-07-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  9. Extended Producer Responsibility and Product Stewardship for Tobacco Product Waste

    PubMed Central

    Curtis, Clifton; Collins, Susan; Cunningham, Shea; Stigler, Paula; Novotny, Thomas E

    2015-01-01

    This paper reviews several environmental principles, including Extended Producer Responsibility (EPR), Product Stewardship (PS), the Polluter Pays Principle (PPP), and the Precautionary Principle, as they may apply to tobacco product waste (TPW). The review addresses specific criteria that apply in deciding whether a particular toxic product should adhere to these principles; presents three case studies of similar approaches to other toxic and/or environmentally harmful products; and describes 10 possible interventions or policy actions that may help prevent, reduce, and mitigate the effects of TPW. EPR promotes total lifecycle environmental improvements, placing economic, physical, and informational responsibilities onto the tobacco industry, while PS complements EPR, but with responsibility shared by all parties involved in the tobacco product lifecycle. Both principles focus on toxic source reduction, post-consumer take-back, and final disposal of consumer products. These principles when applied to TPW have the potential to substantially decrease the environmental and public health harms of cigarette butts and other TPW throughout the world. TPW is the most commonly littered item picked up during environmental, urban, and coastal cleanups globally. PMID:26457262

  10. Evaluation of mercury in liquid waste processing facilities - Phase I report

    SciTech Connect

    Jain, V.; Occhipinti, J. E.; Shah, H.; Wilmarth, W. R.; Edwards, R. E.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  11. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    SciTech Connect

    Jain, V.; Occhipinti, J.; Shah, H.; Wilmarth, B.; Edwards, R.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  12. Mixed incineration of RAIW and liquid scintillator waste after storage for decay

    SciTech Connect

    Naba, K.; Nakazato, K.; Kataoka, K.; Imao, K.

    1993-12-31

    Most medical radioactive waste is combustible after radioactive decay. Moreover mixed incineration of LLW with biomedical radioactive waste will lessen radiation exposure to the public. This paper describes the total system flowsheet for the processing of liquid scintillator wastes and radioimmunoassay tube wastes containing iodine 125 (after a two-year storage for decay). The process was tested with a 60 kg/hr capacity incinerator from 1987 to 1991; this has been upgraded to a 150 kg/hr incinerator which is used for nonradioactive biomedical waste incineration as well.

  13. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    SciTech Connect

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  14. Hazardous combustion products from municipal waste incineration.

    PubMed

    Marty, M A

    1993-01-01

    Metropolitan areas are experiencing waste management problems due to the considerable volume of municipal waste generated and the limited space for landfills. Some communities are including incineration as part of their waste management strategy. Incineration is the destruction of materials by the controlled application of heat and is a chemically complex process that leads to the de novo formation of a large number of compounds, many of which have known toxicologic properties. This article explores some of the de novo toxicants formed during incineration of municipal waste and hazardous waste.

  15. Stabilization of liquid low-level and mixed wastes: a treatability study

    SciTech Connect

    Carson, S.; Cheng, Yu-Cheng; Yellowhorse, L.; Peterson, P.

    1996-02-01

    A treatability study has been conducted on liquid low-level and mixed wastes using the stabilization agents Aquaset, Aquaset II, Aquaset II-H, Petroset, Petroset-H, and Petroset and Petroset II. A total of 40 different waste types with activities ranging from 10{sup {minus}14} to 10{sup {minus}4} curies/ml have been stabilized. Reported data for each waste include its chemical and radiological composition and the optimum composition or range of compositions (weight of agent/volume of waste) for each stabilization agent used. All wastes were successfully stabilized with one or more of the stabilization agents and all final waste forms passed the Paint Filter Liquids Test (EPA Method 9095).

  16. Experimental analysis to utilize the solid wastes in brick production.

    PubMed

    Varadarajan, Rajagopalan; Govindan, Venkatesan

    2013-07-01

    Utilization of industrial, municipal, agricultural and other waste products in the industry has been the focus of research for economical, environmental, and technical reasons. Two solid wastes, i.e. Sugar-cane bagasse--is a fibrous waste-product of the sugar refining industry and granite processing industry generates a large amount of wastes mainly in the form of powder during sawing and polishing processes, which pollute and damage the environment, have been taken to experimental study. The objective of this study is to utilize the bagasse ash and granite waste for the manufacturing of bricks. Mixtures were prepared with 0, 10, 20, 30, 40 and 50% wastes of total weight of clay. The produced bricks are tested for mechanical properties, such as water absorption and compressive strength, according to Indian Standard Code. The result showed that 20% of bagasse ash and granite waste is optimum percentage to be used in the manufacturing of conventional bricks. PMID:25509952

  17. Experimental analysis to utilize the solid wastes in brick production.

    PubMed

    Varadarajan, Rajagopalan; Govindan, Venkatesan

    2013-07-01

    Utilization of industrial, municipal, agricultural and other waste products in the industry has been the focus of research for economical, environmental, and technical reasons. Two solid wastes, i.e. Sugar-cane bagasse--is a fibrous waste-product of the sugar refining industry and granite processing industry generates a large amount of wastes mainly in the form of powder during sawing and polishing processes, which pollute and damage the environment, have been taken to experimental study. The objective of this study is to utilize the bagasse ash and granite waste for the manufacturing of bricks. Mixtures were prepared with 0, 10, 20, 30, 40 and 50% wastes of total weight of clay. The produced bricks are tested for mechanical properties, such as water absorption and compressive strength, according to Indian Standard Code. The result showed that 20% of bagasse ash and granite waste is optimum percentage to be used in the manufacturing of conventional bricks.

  18. Exploitation of Food Industry Waste for High-Value Products.

    PubMed

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules.

  19. Exploitation of Food Industry Waste for High-Value Products.

    PubMed

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. PMID:26645658

  20. Food and agricultural waste: Sources of carbon for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, wastes derived from agriculture products have met with limited success in the production of biofuels. Our objective in this report is to showcase a new and meaningful concept (called “avoidance”), to measure the environmental importance of converting these waste streams into energy. Agr...

  1. EFFECT OF LIQUID TO SOLID RATIO ON LEACHING OF METALS FROM MINERAL PROCESSING WASTE

    EPA Science Inventory

    Various anthropogenic activities generate hazardous solid wastes that are affluent in heavy metals, which can cause significant damage to the environment an human health. A mineral processing waste was used to study the effect of liquid to solid ratio (L/S) on the leaching behav...

  2. ASSESSMENT OF LIQUID EMULSION MEMBRANE FOR CLEAN UP OF AQUEOUS WASTE EFFLUENTS FROM HAZARDOUS ELEMENTS

    SciTech Connect

    El-Reefy, Sohair A.; Selim, Y.T.; Hassan, M.A.; Aly, H.F.

    2003-02-27

    Four liquid emulsion membrane (LEM) systems are given to remove different hazardous elements such as uranium, thorium, cobalt, copper, lead, and cadmium from different aqueous waste effluents. The optimum conditions for use of these systems are deduced. The potentiality of LEM for removal of hazardous pollutants from aqueous waste solutions is given.

  3. A&M. Hot liquid waste treatment building (TAN616). Camera facing southwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing southwest. Oblique view of east and north walls. Note three corrugated pipes at lower left indicating location of underground hot waste storage tanks. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. Woody biomass production in waste recycling systems

    SciTech Connect

    Rockwood, D.L.; Snyder, G.H.; Sprinkle, R.R.

    1994-12-31

    Combining woody biomass production with waste recycling offers many mutual advantages, including increased tree growth and nutrient and water reclamation. Three biomass/recycling studies collectively involving Eucalyptus amplifolia, E. camaldulensis, and E. grandis, rapidly growing species potentially tolerant of high water and nutrient levels, are (1) evaluating general potential for water/nutrient recycling systems to enhance woody biomass production and to recycle water and nutrients, (2) documenting Eucalyptus growth, water use, and nutrient uptake patterns, and (3) identifying Eucalyptus superior for water and nutrient uptake in central and southern Florida. In a 1992-93 study assessing the three Eucalyptus species planted on the outside berms of sewage effluent holding ponds, position on the berms (top to bottom) and genotypes influenced tree size. The potential of the trees to reduce effluent levels in the ponds was assessed. In a stormwater holding pond planted in 1993, these Eucalyptus genotypes varied significantly for tree size but not for survival. E. camaldulensis appears generally superior when flooded with industrial stormwater. Potential sizes of ponds needed for different stormwater applications were estimated. Prolonged flooding of 4- and 5-year-old E. camaldulensis with agricultural irrigation runoff has had no observable effects on tree growth or survival. Younger E. camaldulensis, E. amplifolia, and E. grandis were assessed for water use and nutrient uptake during a Summer 1994 flooding.

  5. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  6. Method of converting organic material into useful products and disposable waste

    SciTech Connect

    Hughes, W.L.; Ramakumar, R.G.

    1987-04-14

    A method is described of converting organic waste material in the form of organic solids consisting of household and industrial trash into useful products and disposable water, comprising: (a) shredding the organic material into pre-selected maximum size particles; (b) mixing water with the shredded particles to obtain a pumpable slurry; (c) increasing the temperature of the slurry to about 300/sup 0/ to about 500/sup 0/C and the pressure to about 8000 to about 12,000 PSIG in a reaction vessel to cause the slurry to hydropyrolyize; (d) conveying the products of hydropyrolysis to a separator wherein gases are extracted from the liquids and solids; (e) separating the liquids and solids; and (f) separating hydrocarbon liquids from the separated liquid (residue; and (g) drying the solids for use as a fuel).

  7. Pyrolysis mechanism for recycle renewable resource from polarizing film of waste liquid crystal display panels.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2014-08-15

    Liquid crystal display (LCD) panels mainly consist of polarizing film, liquid crystal and glass substrates. In this study, a novel pyrolysis model and a pyrolysis mechanism to recover the reusable resource from polarizing film of waste LCD panels was proposed. Polarizing film and its major components, such as cellulose triacetate (TAC) and polyvinyl alcohol (PVA) were pyrolyzed, respectively, to model the pyrolysis process. The pyrolysis process mainly generated a large ratio of oil, a few gases and a little residue. Acetic acid was the main oil product and could be easily recycled. The pyrolysis mechanism could be summarized as follows: (i) TAC, the main component of polarizing film, was heated and generated active TAC with a low polymerization, and then decomposed into triacetyl-d-glucose. (ii) Some triacetyl-d-glucose generated triacetyl-d-mannosan and its isomers through an intramolecular dehydration, while most triacetyl-d-glucose generated the main oil product, namely acetic acid, through a six-member cyclic transition state. (iii) Meanwhile, other products formed through a series of bond cleavage, dehydration, dehydrogenation, interesterification and Diels-Alder cycloaddition. This study could contribute significantly to understanding the polarizing film pyrolysis performance and serve as guidance for the future technological parameters control of the pyrolysis process.

  8. Functional requirements for the Liquid Waste Transfer and Distribution Station at Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Tulay, M.P.

    1991-08-01

    A new facility will be constructed near the Bethel Valley storage tanks to receive process waste liquids generated by Oak Ridge National Laboratory during closure activities at Waste Area Grouping 6. The facility will unload trucks and distribute the liquid waste to other treatment facilities. It will be able to handle eight 5000-gal transfers per 8-h shift. No waste categorized as Resource Conservation and Recovery Act or liquid low-level is expected, but is such waste is encountered, it will cause transfer rate restrictions.

  9. Utilization of Chitinaceous Wastes for the Production of Chitinase.

    PubMed

    Das, S; Roy, D; Sen, R

    2016-01-01

    Marine environment is the most abundant source of chitin. Several marine organisms possess chitin in their structural components. Hence, a huge amount of chitin wastes is deposited in marine environment when such organisms shed their outer skeleton and also after their demise. Waste chitins are potential nutrient source of certain microbes. These microbes produce chitinases that hydrolyze waste chitins. These organisms thus play an important role to remove the chitin wastes from marine environment. In connection with this, chitinases are found to be most important biocatalyst for the utilization of chitin wastes. Therefore, use of chitin for chitinase production is one of the useful tools for different types of bioprocesses. PMID:27452164

  10. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  11. 327 Building liquid waste handling options modification project plan

    SciTech Connect

    Ham, J.E.

    1998-03-28

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation.

  12. Collective dose estimates by the marine food pathway from liquid radioactive wastes dumped in the Sea of Japan.

    PubMed

    Togawa, O; Povinec, P P; Pettersson, H B

    1999-09-30

    IAEA-MEL has been engaged in an assessment programme related to radioactive waste dumping by the former USSR and other countries in the western North Pacific Ocean and its marginal seas. This paper focuses on the Sea of Japan and on estimation of collective doses from liquid radioactive wastes. The results from the Japanese-Korean-Russian joint expeditions are summarized, and collective doses for the Japanese population by the marine food pathway are estimated from liquid radioactive wastes dumped in the Sea of Japan and compared with those from global fallout and natural radionuclides. The collective effective dose equivalents by the annual intake of marine products caught in each year show a maximum a few years after the disposals. The total dose from all radionuclides reaches a maximum of 0.8 man Sv in 1990. Approximately 90% of the dose derives from 137Cs, most of which is due to consumption of fish. The total dose from liquid radioactive wastes is approximately 5% of that from global fallout, the contribution of which is below 0.1% of that of natural 210Po.

  13. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator

    PubMed Central

    2011-01-01

    Polyhydroxyalkanoates (PHAs) are biopolymers, which can replace petrochemical plastics in many applications. However, these bioplastics are currently far more expensive than petrochemical plastics. Many researchers are investigating the use of inexpensive substrates derived from waste streams. Waste frying oil is abundant and can be used in PHA production without filtration. Cupriavidus necator (formerly known as Ralstonia eutropha) is a versatile organism for the production of PHAs. Small-scale batch fermentation studies have been set up, using different concentrations of pure vegetable oil, heated vegetable oil and waste frying oil. These oils are all rapeseed oils. It has been shown that Cupriavidus necator produced the homopolymer polyhydroxybutyrate (PHB) from the rapeseed oils. The achieved PHB concentration from waste frying oil was 1.2 g/l, which is similar to a concentration that can be obtained from glucose. The PHB harvest from pure oil and heated oil was 0.62 g/l and 0.9 g/l respectively. A feed of waste frying oil could thus achieve more biopolymer than pure vegetable oil. While the use of a waste product is beneficial from a life-cycle perspective, PHB is not the only product that can be made from waste oil. The collection of waste frying oil is becoming more widespread, making waste oil a good alternative to purified oil or glucose for PHB production. PMID:21906352

  14. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator.

    PubMed

    Verlinden, Rob Aj; Hill, David J; Kenward, Melvin A; Williams, Craig D; Piotrowska-Seget, Zofia; Radecka, Iza K

    2011-06-10

    Polyhydroxyalkanoates (PHAs) are biopolymers, which can replace petrochemical plastics in many applications. However, these bioplastics are currently far more expensive than petrochemical plastics. Many researchers are investigating the use of inexpensive substrates derived from waste streams. Waste frying oil is abundant and can be used in PHA production without filtration.Cupriavidus necator (formerly known as Ralstonia eutropha) is a versatile organism for the production of PHAs. Small-scale batch fermentation studies have been set up, using different concentrations of pure vegetable oil, heated vegetable oil and waste frying oil. These oils are all rapeseed oils.It has been shown that Cupriavidus necator produced the homopolymer polyhydroxybutyrate (PHB) from the rapeseed oils. The achieved PHB concentration from waste frying oil was 1.2 g/l, which is similar to a concentration that can be obtained from glucose. The PHB harvest from pure oil and heated oil was 0.62 g/l and 0.9 g/l respectively. A feed of waste frying oil could thus achieve more biopolymer than pure vegetable oil. While the use of a waste product is beneficial from a life-cycle perspective, PHB is not the only product that can be made from waste oil. The collection of waste frying oil is becoming more widespread, making waste oil a good alternative to purified oil or glucose for PHB production.

  15. Solid wastes from nuclear power production.

    PubMed Central

    Soule, H F

    1978-01-01

    Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244

  16. 40 CFR 63.1218 - What are the standards for hydrochloric acid production furnaces that burn hazardous waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants. Replacement... hydrochloric acid production furnaces that burn hazardous waste? 63.1218 Section 63.1218 Protection of... Fuel Boilers, Liquid Fuel Boilers, and Hydrochloric Acid Production Furnaces § 63.1218 What are...

  17. 40 CFR 63.1218 - What are the standards for hydrochloric acid production furnaces that burn hazardous waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants. Replacement... hydrochloric acid production furnaces that burn hazardous waste? 63.1218 Section 63.1218 Protection of... Fuel Boilers, Liquid Fuel Boilers, and Hydrochloric Acid Production Furnaces § 63.1218 What are...

  18. 40 CFR 63.1218 - What are the standards for hydrochloric acid production furnaces that burn hazardous waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants. Replacement... hydrochloric acid production furnaces that burn hazardous waste? 63.1218 Section 63.1218 Protection of..., Liquid Fuel Boilers, and Hydrochloric Acid Production Furnaces § 63.1218 What are the standards...

  19. System for removing liquid waste from a tank

    DOEpatents

    Meneely, Timothy K.; Sherbine, Catherine A.

    1994-01-01

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

  20. System for removing liquid waste from a tank

    DOEpatents

    Meneely, T.K.; Sherbine, C.A.

    1994-04-26

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

  1. Catalytic cracking of HDPE wastes to liquid fuel in the presence of siliceous mesoporous molecular sieves

    NASA Astrophysics Data System (ADS)

    Ramli, Anita; Majid, Noor Diana Abdul; Yusup, Suzana

    2014-10-01

    A siliceous gel was synthesized at 80°C and aged for 5 days at 120°C before it was dried at 120°C for 16 hours and calcined at 500 and 700°C. The calcined Na-Si-MMS samples were then undergone ion exchange with ammonia solution to form NH4- Si - MMS . All samples were characterized for their physicochemical properties using nitrogen (N2) adsorption-desorption isotherm for surface area and porosity; and temperature programme desorption of ammonia (TPD-NH3) for determination of acidity. The catalytic activity of all samples was tested in pyrolysis of high density polyethylene (HDPE) waste at catalyst to HDPE ratio of 0.2. The organic liquid product (OLP) collected was analysed using gas chromatography (GC). Results show that presence of Na-Si-MMS calcined at 500°C promotes the formation of gasoline-like product while presence of Na-Si-MMS calcined at 700°C promotes the formation of both diesel-like and kerosene-like products. On the other hand, presence of all NH4-Si-MMS catalysts promotes the formation of gasoline-like product. These show that the activation process of Si-MMS has a significant effect on the production of fuel-like product from pyrolysis of HDPE.

  2. Systems and methods of storing combustion waste products

    DOEpatents

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.

  3. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  4. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    USGS Publications Warehouse

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  5. Heat transfer enhanced microwave process for stabilization of liquid radioactive waste slurry. Final report

    SciTech Connect

    White, T.L.

    1995-03-31

    The objectve of this CRADA is to combine a polymer process for encapsulation of liquid radioactive waste slurry developed by Monolith Technology, Inc. (MTI), with an in-drum microwave process for drying radioactive wastes developed by Oak Ridge National Laboratory (ORNL), for the purpose of achieving a fast, cost-effectve commercial process for solidification of liquid radioactive waste slurry. Tests performed so far show a four-fold increase in process throughput due to the direct microwave heating of the polymer/slurry mixture, compared to conventional edge-heating of the mixer. We measured a steady-state throughput of 33 ml/min for 1.4 kW of absorbed microwave power. The final waste form is a solid monolith with no free liquids and no free particulates.

  6. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal.

    PubMed

    Li, Xiang; Chen, Hong; Hu, Lanfang; Yu, Lei; Chen, Yinguang; Gu, Guowei

    2011-03-01

    The use of sludge fermentative short-chain fatty acids (SCFA) as an additional carbon source of biological nutrient removal (BNR) has drawn much attention recently as it can reuse sludge organics, reduce waste activated sludge production, and improve BNR performance. Our previous laboratory study had shown that the SCFA production was significantly enhanced by controlling sludge fermentation at pH 10 with NaOH. This paper focused on a pilot-scale study of alkaline fermentation of waste activated sludge, separation of the fermentation liquid from the alkaline fermentation system, and application of the fermentation liquid to improve municipal biological nitrogen and phosphorus removal. NaOH and Ca(OH)(2) were used respectively to adjust the alkaline fermentation pH, and their effects on sludge fermentation and fermentation liquid separation were compared. The results showed that the use of Ca(OH)(2) had almost the same effect on SCFA production improvement and sludge volatile suspended solids reduction as that of NaOH, but it exhibited better sludge dewatering, lower chemical costs, and higher fermentation liquid recovery efficiency. When the fermentation liquids, adjusted with Ca(OH)(2) and NaOH respectively, were added continuously to an anaerobic-anoxic-aerobic municipal wastewater BNR system, both the nitrogen and phosphorus removals, compared with the control, were improved to the same levels. This was attributed to the increase of not only influent COD but also denitrifying phosphorus removal capability. It seems that the use of Ca(OH)(2) to control sludge fermentation at pH 10 for efficiently producing a carbon source for BNR is feasible.

  7. [Distribution and activity of microorganisms in the deep repository for liquid radioactive waste at the Siberian Chemical Combine].

    PubMed

    Nazina, T N; Luk'ianova, E A; Zakharova, E V; Ivoĭlov, V S; Poltaraus, A B; Kalmykov, S N; Beliaev, S S; Zubkov, A A

    2006-01-01

    The physicochemical conditions, composition of microbial communities, and the rates of anaerobic processes in the deep sandy horizons used as a repository for liquid radioactive wastes (LRW) at the Siberian Chemical Combine (Seversk, Tomsk oblast), were studied. Formation waters from the observation wells drilled into the production horizons of the radioactive waste disposal site were found to be inhabited by microorganisms of different physiological groups, including aerobic organotrophs, anaerobic fermentative, denitrifying, sulfate-reducing, and methanogenic bacteria. The density of microbial population, as determined by cultural methods, was low and usually did not exceed 10(4) cells/ml. Enrichment cultures of microorganisms producing gases (hydrogen, methane, carbon dioxide, and hydrogen sulfide) and capable of participation in the precipitation of metal sulfides were obtained from the waters of production horizons. The contemporary processes of sulfate reduction and methanogenesis were assayed; the rates of these terminal processes of organic matter destruction were found to be low. The denitrifying bacteria from the underground repository were capable of reducing the nitrates contained in the wastes, provided sources of energy and biogenic elements were available. Biosorption of radionuclides by the biomass of aerobic bacteria isolated from groundwater was demonstrated. The results obtained give us insight into the functional structure of the microbial community inhabiting the waters of repository production horizons. This study indicates that the numbers and activity of microbial cells are low both inside and outside the zone of radioactive waste dispersion, in spite of the long period of waste discharge.

  8. [Distribution and activity of microorganisms in the deep repository for liquid radioactive waste at the Siberian Chemical Combine].

    PubMed

    Nazina, T N; Luk'ianova, E A; Zakharova, E V; Ivoĭlov, V S; Poltaraus, A B; Kalmykov, S N; Beliaev, S S; Zubkov, A A

    2006-01-01

    The physicochemical conditions, composition of microbial communities, and the rates of anaerobic processes in the deep sandy horizons used as a repository for liquid radioactive wastes (LRW) at the Siberian Chemical Combine (Seversk, Tomsk oblast), were studied. Formation waters from the observation wells drilled into the production horizons of the radioactive waste disposal site were found to be inhabited by microorganisms of different physiological groups, including aerobic organotrophs, anaerobic fermentative, denitrifying, sulfate-reducing, and methanogenic bacteria. The density of microbial population, as determined by cultural methods, was low and usually did not exceed 10(4) cells/ml. Enrichment cultures of microorganisms producing gases (hydrogen, methane, carbon dioxide, and hydrogen sulfide) and capable of participation in the precipitation of metal sulfides were obtained from the waters of production horizons. The contemporary processes of sulfate reduction and methanogenesis were assayed; the rates of these terminal processes of organic matter destruction were found to be low. The denitrifying bacteria from the underground repository were capable of reducing the nitrates contained in the wastes, provided sources of energy and biogenic elements were available. Biosorption of radionuclides by the biomass of aerobic bacteria isolated from groundwater was demonstrated. The results obtained give us insight into the functional structure of the microbial community inhabiting the waters of repository production horizons. This study indicates that the numbers and activity of microbial cells are low both inside and outside the zone of radioactive waste dispersion, in spite of the long period of waste discharge. PMID:17205810

  9. Subsurface injection of liquid waste with emphasis on injection practices in Florida

    USGS Publications Warehouse

    Hickey, John J.; Vecchioli, John

    1986-01-01

    Subsurface injection of liquid waste is used as a disposal method in many parts of the country. It is used particularly when other methods for managing liquid waste are either not possible or too costly. Interest in subsurface injection as a waste-disposal method stems partly from recognition that surface disposal of liquid waste may establish a potential for degrading freshwater resources. Where hydrogeologic conditions are suitable and where surface disposal may cause contamination, subsurface injection is considered an attractive alternative for waste disposal. Decisions to use subsurface injection need to be made with care because, where hydrogeologic conditions are not suitable for injection, the risk to water resources, particularly ground water, could be great. Selection of subsurface injection as a waste-disposal method requires thoughtful deliberation and, in some instances, extensive data collection and analyses. Subsurface injection is a geological method of waste disposal. Therefore, many State and local governmental officials and environmentally concerned citizens who make decisions about waste-disposal alternatives may know little about it. This report serves as an elemental/guide to subsurface injection and presents subsurface injection practices in Florida as an example of how one State is managing injection.

  10. Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste.

    PubMed

    Wang, Weiwei; Xu, Ping; Tang, Hongzhi

    2015-01-01

    Treatment of solid and liquid tobacco wastes with high nicotine content remains a longstanding challenge. Here, we explored an environmentally friendly approach to replace tobacco waste disposal with resource recovery by genetically engineering Pseudomonas putida. The biosynthesis of 3-succinoyl-pyridine (SP), a precursor in the production of hypotensive agents, from the tobacco waste was developed using whole cells of the engineered Pseudomonas strain, S16dspm. Under optimal conditions in fed-batch biotransformation, the final concentrations of product SP reached 9.8 g/L and 8.9 g/L from aqueous nicotine solution and crude suspension of the tobacco waste, respectively. In addition, the crystal compound SP produced from aqueous nicotine of the tobacco waste in batch biotransformation was of high purity and its isolation yield on nicotine was 54.2%. This study shows a promising route for processing environmental wastes as raw materials in order to produce valuable compounds.

  11. Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste.

    PubMed

    Wang, Weiwei; Xu, Ping; Tang, Hongzhi

    2015-01-01

    Treatment of solid and liquid tobacco wastes with high nicotine content remains a longstanding challenge. Here, we explored an environmentally friendly approach to replace tobacco waste disposal with resource recovery by genetically engineering Pseudomonas putida. The biosynthesis of 3-succinoyl-pyridine (SP), a precursor in the production of hypotensive agents, from the tobacco waste was developed using whole cells of the engineered Pseudomonas strain, S16dspm. Under optimal conditions in fed-batch biotransformation, the final concentrations of product SP reached 9.8 g/L and 8.9 g/L from aqueous nicotine solution and crude suspension of the tobacco waste, respectively. In addition, the crystal compound SP produced from aqueous nicotine of the tobacco waste in batch biotransformation was of high purity and its isolation yield on nicotine was 54.2%. This study shows a promising route for processing environmental wastes as raw materials in order to produce valuable compounds. PMID:26574178

  12. Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste

    PubMed Central

    Wang, Weiwei; Xu, Ping; Tang, Hongzhi

    2015-01-01

    Treatment of solid and liquid tobacco wastes with high nicotine content remains a longstanding challenge. Here, we explored an environmentally friendly approach to replace tobacco waste disposal with resource recovery by genetically engineering Pseudomonas putida. The biosynthesis of 3-succinoyl-pyridine (SP), a precursor in the production of hypotensive agents, from the tobacco waste was developed using whole cells of the engineered Pseudomonas strain, S16dspm. Under optimal conditions in fed-batch biotransformation, the final concentrations of product SP reached 9.8 g/L and 8.9 g/L from aqueous nicotine solution and crude suspension of the tobacco waste, respectively. In addition, the crystal compound SP produced from aqueous nicotine of the tobacco waste in batch biotransformation was of high purity and its isolation yield on nicotine was 54.2%. This study shows a promising route for processing environmental wastes as raw materials in order to produce valuable compounds. PMID:26574178

  13. Data on subsurface storage of liquid waste near Pensacola, Florida, 1963-1980

    USGS Publications Warehouse

    Hull, R.W.; Martin, J.B.

    1982-01-01

    Since 1963, when industrial waste was first injected into the subsurface in northwest Florida, considerable data have been collected relating to the geochemistry of subsurface waste storage. This report presents hydrogeologic data on two subsurface waste storage. This report presents hydrogeologic data on two subsurface storage systems near Pensacola, Fla., which inject liquid industrial waste through deep wells into a saline aquifer. Injection sites are described giving a history of well construction, injection, and testing; geologic data from cores and grab samples; hydrographs of injection rates, volume, pressure, and water levels; and chemical and physical data from water-quality samples collected from injection and monitor wells. (USGS)

  14. PROBABILITY BASED CORROSION CONTROL FOR LIQUID WASTE TANKS - PART III

    SciTech Connect

    Hoffman, E.; Edwards, T.

    2010-12-09

    The liquid waste chemistry control program is designed to reduce the pitting corrosion occurrence on tank walls. The chemistry control program has been implemented, in part, by applying engineering judgment safety factors to experimental data. However, the simple application of a general safety factor can result in use of excessive corrosion inhibiting agents. The required use of excess corrosion inhibitors can be costly for tank maintenance, waste processing, and in future tank closure. It is proposed that a probability-based approach can be used to quantify the risk associated with the chemistry control program. This approach can lead to the application of tank-specific chemistry control programs reducing overall costs associated with overly conservative use of inhibitor. Furthermore, when using nitrite as an inhibitor, the current chemistry control program is based on a linear model of increased aggressive species requiring increased protective species. This linear model was primarily supported by experimental data obtained from dilute solutions with nitrate concentrations less than 0.6 M, but is used to produce the current chemistry control program up to 1.0 M nitrate. Therefore, in the nitrate space between 0.6 and 1.0 M, the current control limit is based on assumptions that the linear model developed from data in the <0.6 M region is applicable in the 0.6-1.0 M region. Due to this assumption, further investigation of the nitrate region of 0.6 M to 1.0 M has potential for significant inhibitor reduction, while maintaining the same level of corrosion risk associated with the current chemistry control program. Ongoing studies have been conducted in FY07, FY08, FY09 and FY10 to evaluate the corrosion controls at the SRS tank farm and to assess the minimum nitrite concentrations to inhibit pitting in ASTM A537 carbon steel below 1.0 molar nitrate. The experimentation from FY08 suggested a non-linear model known as the mixture/amount model could be used to predict

  15. Liquid fuels production from biomass. Final report

    SciTech Connect

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  16. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    SciTech Connect

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  17. Liquid and Gaseous Waste Operations Project Annual Operating Report CY 1999

    SciTech Connect

    Maddox, J.J.; Scott, C.B.

    2000-03-01

    A total of 5.77 x 10 7 gallons (gal) of liquid waste was decontaminated by the Process Waste Treatment Complex (PWTC) - Building 3544 ion exchange system during calendar year (CY) 1999. This averaged to 110 gpm throughout the year. An additional 3.94 x 10 6 gal of liquid waste (average of 8 gpm throughout the year) was decontaminated using the zeolite treatment system due to periods of high Cesium levels in the influent wastewater. A total of 6.17 x 10 7 gal of liquid waste (average of 118 gpm throughout the year) was decontaminated at Building 3544 during the year. During the year, the regeneration of the ion exchange resins resulted in the generation of 8.00 x 10 3 gal of Liquid Low-Level Waste (LLLW) concentrate and 9.00 x 10 2 gal of LLLW supernate. See Table 1 for a monthly summary of activities at Building 3544. Figure 1 shows a diagram of the Process Waste Collection and Transfer System and Figure 2 shows a diagram of the Building 3544 treatment process. Figures 3, 4 5, and 6 s how a comparison of operations at Building 3544 in 1997 with previous years. Figure 7 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1995.

  18. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    SciTech Connect

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  19. LABORATORY INVESTIGATION OF RESIDUAL LIQUID ORGANICS FROM SPILLS, LEAKS, AND THE DISPOSAL OF HAZARDOUS WASTES IN GROUNDWATER

    EPA Science Inventory

    Organic liquids that are essentially immiscible with water migrate through the subsurface under the influence of capillary, viscous, and buoyancy forces. These liquids originate from the improper disposal of hazardous wastes, and the spills and leaks of petroleum hydrocarbons a...

  20. Process for the production of liquid hydrocarbons

    DOEpatents

    Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus

    2006-06-27

    The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.

  1. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    NASA Astrophysics Data System (ADS)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  2. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    SciTech Connect

    Peeler, D.

    1999-06-22

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  3. Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101

    SciTech Connect

    Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.; Mahoney, Lenna A.

    2003-10-01

    The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus, natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.

  4. Methane production during storage of anaerobically digested municipal organic waste.

    PubMed

    Hansen, Trine Lund; Sommer, Svend G; Gabriel, Søren; Christensen, Thomas H

    2006-01-01

    Anaerobic digestion of source-separated municipal organic waste is considered feasible in Denmark. The limited hydraulic retention in the biogas reactor (typically 15 d) does not allow full degradation of the organic waste. Storage of anaerobically digested municipal organic waste can therefore be a source of methane (CH4) emission that may contribute significantly to the potential global warming impact from the waste treatment system. This study provides a model for quantifying the CH4 production from stored co-digested municipal organic waste and estimates the production under typical Danish climatic conditions, thus quantifying the potential global warming impact from storage of the digested municipal organic waste before its use on agricultural land. Laboratory batch tests on CH4 production as well as temperature measurements in eight full-scale storage tanks provided data for developing a model estimating the CH4 production in storage tanks containing digested municipal organic waste. The temperatures measured in separate storage tanks on farms receiving digested slurry were linearly correlated with air temperature. In storage tanks receiving slurry directly from biogas reactors, significantly higher temperatures were measured due to the high temperatures of the effluent from the reactor. Storage tanks on Danish farms are typically emptied in April and have a constant inflow of digested material. During the warmest months the content of digested material is therefore low, which limits the yearly CH4 production from storage.

  5. Recovery of Metallic Values from Brass Waste Using Brønsted Acidic Ionic Liquid as Leachate

    NASA Astrophysics Data System (ADS)

    Kilicarslan, Ayfer; Saridede, Muhlis Nezihi

    2015-11-01

    The waste formed during industrial brass manufacturing is rich in copper and zinc metals. Therefore, treatment of this waste is a necessity from economic and environmental aspects. This study presents a process for recovery of zinc and copper through Brønsted ionic liquid (1-butyl-3-methyl-imidazolium hydrogen sulfate; [Bmim]HSO4), as leachate. It was found that all zinc content could be dissolved from the waste under two optimum conditions: (1) in ionic liquid (IL) concentration of 70% (v/v) at 60°C in 30 min or (2) in IL concentration of 50% (v/v) at 100°C in 60 min. On the other hand, ionic liquid leaching gave poor copper solubility under the conditions of the study. Zinc dissolution in the range 5-75 min by [Bmim]HSO4 can be explained with the shrinking core model controlled by diffusion through a product layer, and the apparent activation energy was calculated as 4.36 kJ/mol. The leach liquor was treated to obtain metallic zinc by the electrowinning method without a purification step. Scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDX) investigations showed that the layer of metallic zinc was plated successfully on the cathode.

  6. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  7. Separation and Purification and Beta Liquid Scintillation Analysis of Sm-151 in Savannah River Site and Hanford Site DOE High Level Waste

    SciTech Connect

    Dewberry, R.A.

    2001-02-13

    This paper describes development work to obtain a product phase of Sm-151 pure of any other radioactive species so that it can be determined in US Department of Energy high level liquid waste and low level solid waste by liquid scintillation {beta}-spectroscopy. The technique provides separation from {mu}Ci/ml levels of Cs-137, Pu alpha and Pu-241 {beta}-decay activity, and Sr-90/Y-90 activity. The separation technique is also demonstrated to be useful for the determination of Pm-147.

  8. Waste management through life cycle assessment of products

    NASA Astrophysics Data System (ADS)

    Borodin, Yu V.; Aliferova, T. E.; Ncube, A.

    2015-04-01

    The rapid growth of a population in a country can contribute to high production of waste. Municipal waste and industrial waste can bring unhealthy and unpleasant environment or even diseases to human beings if the wastes are not managed properly.With increasing concerns over waste and the need for ‘greener’ products, it is necessary to carry out Life Cycle Assessments of products and this will help manufacturers take the first steps towards greener designs by assessing their product's carbon output. Life Cycle Assessment (LCA) is a process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and to assess the impact of those energy and material used and released to the environment. The aim of the study was to use a life cycle assessment approach to determine which waste disposal options that will substantially reduce the environmental burdens posed by the Polyethylene Terephthalate (PET) bottle. Several important observations can be made. 1) Recycling of the PET bottle waste can significantly reduce the energy required across the life cycle because the high energy inputs needed to process the requisite virgin materials greatly exceeds the energy needs of the recycling process steps. 2) Greenhouse gases can be reduced by opting for recycling instead of landfilling and incineration. 3) Quantity of waste emissions released from different disposal options was identified. 4) Recycling is the environmentally preferable disposal method for the PET bottle. Industry can use the tools and data in this study to evaluate the health, environmental, and energy implications of the PET bottle. LCA intends to aid decision-makers in this respect, provided that the scientific underpinning is available. Strategic incentives for product development and life cycle management can then be developed.

  9. US and Russian innovative technologies to process low-level liquid radioactive wastes: The Murmansk initiative

    SciTech Connect

    Dyer, R.S.; Penzin, R.; Duffey, R.B.; Sorlie, A.

    1996-12-31

    This paper documents the status of the technical design for the upgrade and expansion to the existing Low-level Liquid Radioactive Waste (LLLRW) treatment facility in Murmansk, the Russian Federation. This facility, owned by the Ministry of Transportation and operated by the Russian company RTP Atomflot in Murmansk, Russia, has been used by the Murmansk Shipping Company (MSCo) to process low-level liquid radioactive waste generated by the operation of its civilian icebreaker fleet. The purpose of the new design is to enable Russia to permanently cease the disposal at sea of LLLRW in the Arctic, and to treat liquid waste and high saline solutions from both the Civil and North Navy Fleet operations and decommissioning activities. Innovative treatments are to be used in the plant which are discussed in this paper.

  10. Calculation of chemical quantities for the radioactive liquid waste treatment facility

    SciTech Connect

    Del Signore, John C.; McClenahan, Robert L.

    2007-03-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) receives, stores, and treats both low-level and transuranic radioactive liquid wastes (RLW). Treatment of RLW requires the use of different chemicals. Examples include the use of calcium oxide to precipitate metals and radioactive elements from the radioactive liquid waste, and the use of hydrochloric acid to clean membrane filters that are used in the treatment process. The RL WTF is a Hazard Category 2 nuclear facility, as set forth in the LANL Final Safety Analysis Report of October 1995, and a DOE letter of March 11, 1999. A revised safety basis is being prepared for the RLWTF, and will be submitted to the NNSA in early 2007. This set of calculations establishes maximum chemical quantities that will be used in the 2007 safety basis.

  11. Modern technologies of waste utilization from industrial tire production

    NASA Astrophysics Data System (ADS)

    Azimov, Yusuf; Gilmanshin, Iskander; Gilmanshina, Suriya

    2016-06-01

    The innovative technology of waste tire production recovery from JSC "Nizhnekamskshina", which determines the possibility of obtaining a new type of composite material in the form fiber filled rubber compound (FFRC) as the raw material, production of rubber products with high technical and operational characteristics.

  12. Pilot-scale grout production test with a simulated low-level waste

    SciTech Connect

    Fow, C.L.; Mitchell, D.H.; Treat, R.L.; Hymas, C.R.

    1987-05-01

    Plans are underway at the Hanford Site near Richland, Washington, to convert the low-level fraction of radioactive liquid wastes to a grout form for permanent disposal. Grout is a mixture of liquid waste and grout formers, including portland cement, fly ash, and clays. In the plan, the grout slurry is pumped to subsurface concrete vaults on the Hanford Site, where the grout will solidify into large monoliths, thereby immobilizing the waste. A similar disposal concept is being planned at the Savannah River Laboratory site. The underground disposal of grout was conducted at Oak Ridge National Laboratory between 1966 and 1984. Design and construction of grout processing and disposal facilities are underway. The Transportable Grout Facility (TGF), operated by Rockwell Hanford Operations (Rockwell) for the Department of Energy (DOE), is scheduled to grout Phosphate/Sulfate N Reactor Operations Waste (PSW) in FY 1988. Phosphate/Sulfate Waste is a blend of two low-level waste streams generated at Hanford's N Reactor. Other wastes are scheduled to be grouted in subsequent years. Pacific Northwest Laboratory (PNL) is verifying that Hanford grouts can be safely and efficiently processed. To meet this objective, pilot-scale grout process equipment was installed. On July 29 and 30, 1986, PNL conducted a pilot-scale grout production test for Rockwell. During the test, 16,000 gallons of simulated nonradioactive PSW were mixed with grout formers to produce 22,000 gallons of PSW grout. The grout was pumped at a nominal rate of 15 gpm (about 25% of the nominal production rate planned for the TGF) to a lined and covered trench with a capacity of 30,000 gallons. Emplacement of grout in the trench will permit subsequent evaluation of homogeneity of grout in a large monolith. 12 refs., 34 figs., 5 tabs.

  13. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  14. Characterization and monitoring of 300 Area facility liquid waste streams during 1994 and 1995

    SciTech Connect

    Thompson, C.J.; Ballinger, M.Y.; Damberg, E.G.; Riley, R.G.

    1997-07-01

    Pacific Northwest National Laboratory`s Facility Effluent Management Program characterized and monitored liquid waste streams from 300 Area buildings that are owned by the US Department of Energy and are operated by Pacific Northwest National Laboratory. The purpose of these measurements was to determine whether the waste streams would meet administrative controls that were put in place by the operators of the 300 Area Treated Effluent Disposal Facility. This report summarizes the data obtained between March 1994 and September 1995 on the following waters: liquid waste streams from Buildings 306, 320, 324, 325, 326, 327, 331, and 3,720; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe).

  15. FY 1995 separation studies for liquid low-level waste treatment at Oak Ridge National Laboratory

    SciTech Connect

    Bostick, D.T.; Arnold, W.D.; Burgess, M.W.

    1995-01-01

    During FY 1995, studies were continued to develop improved methods for centralized treatment of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). Focus in this reporting period was on (1) identifying the parameters that affect the selective removal of {sup 90}Sr and {sup 137}Cs, two of the principal radioactive contaminants expected in the waste; (2) validating the effectiveness of the treatment methods by testing an ac Melton Valley Storage Tank (MVST) supernate; (3) evaluating the optimum solid/liquid separation techniques for the waste; (4) identifying potential treatment methods for removal of technetium from LLLW; and (5) identifying potential methods for stabilizing the high-activity secondary solid wastes generated by the treatment.

  16. Economic evaluation of technology for a new generation biofuel production using wastes.

    PubMed

    Koutinas, Athanasios; Kanellaki, Maria; Bekatorou, Argyro; Kandylis, Panagiotis; Pissaridi, Katerina; Dima, Agapi; Boura, Konstantina; Lappa, Katerina; Tsafrakidou, Panagiota; Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Gkini, Olga A; Papamichael, Emmanuel M

    2016-01-01

    An economic evaluation of an integrated technology for industrial scale new generation biofuel production using whey, vinasse, and lignocellulosic biomass as raw materials is reported. Anaerobic packed-bed bioreactors were used for organic acids production using initially synthetic media and then wastes. Butyric, lactic and acetic acid were predominately produced from vinasse, whey, and cellulose, respectively. Mass balance was calculated for a 16,000L daily production capacity. Liquid-liquid extraction was applied for recovery of the organic acids using butanol-1 as an effective extraction solvent which serves also as the alcohol for the subsequent enzyme-catalyzed esterification. The investment needed for the installation of the factory was estimated to about 1.7million€ with depreciation excepted at about 3months. For cellulosics, the installation investment was estimated to be about 7-fold higher with depreciation at about 1.5years. The proposed technology is an alternative trend in biofuel production. PMID:26492169

  17. Economic evaluation of technology for a new generation biofuel production using wastes.

    PubMed

    Koutinas, Athanasios; Kanellaki, Maria; Bekatorou, Argyro; Kandylis, Panagiotis; Pissaridi, Katerina; Dima, Agapi; Boura, Konstantina; Lappa, Katerina; Tsafrakidou, Panagiota; Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Gkini, Olga A; Papamichael, Emmanuel M

    2016-01-01

    An economic evaluation of an integrated technology for industrial scale new generation biofuel production using whey, vinasse, and lignocellulosic biomass as raw materials is reported. Anaerobic packed-bed bioreactors were used for organic acids production using initially synthetic media and then wastes. Butyric, lactic and acetic acid were predominately produced from vinasse, whey, and cellulose, respectively. Mass balance was calculated for a 16,000L daily production capacity. Liquid-liquid extraction was applied for recovery of the organic acids using butanol-1 as an effective extraction solvent which serves also as the alcohol for the subsequent enzyme-catalyzed esterification. The investment needed for the installation of the factory was estimated to about 1.7million€ with depreciation excepted at about 3months. For cellulosics, the installation investment was estimated to be about 7-fold higher with depreciation at about 1.5years. The proposed technology is an alternative trend in biofuel production.

  18. An index for quantifying the aerobic reactivity of municipal solid wastes and derived waste products.

    PubMed

    Scaglia, Barbara; Adani, Fabrizio

    2008-05-01

    The organic matter contained in municipal solid waste (MSW) and in the MSW fractions obtained by mechanical separation has strong environmental impact when the waste is used as landfill. This is partly due to the biological activity that occurs under anaerobic conditions. Negative effects on the environment include unpleasant odors, biogas, leachate and biomass self-heating. Measuring the biological reactivity of waste with the help of indicators is an important tool to prevent waste impact. The aim of this study was to develop an index capable of describing the aerobic reactivity of waste, using both biological and chemical indicators. To develop this index, 71 MSW and MSW-product samples, including biologically treated MSW and mechanically separated MSW fractions, were analyzed. Fifty of the 71 samples analyzed represented MSWs and their derived products collected from a number of Italian waste plants and sites. The remaining 21 were MSW samples collected at different times during 8 different full-scale aerobic biological processes in four treatment plants used to reduce the biological reactivity of wastes. Five of these processes used the entire (unsorted) MSW, while the remaining three used the organic fraction of the MSW obtained by mechanical pre-treatment (waste sieving). Respirometric activity (Dynamic Respiration Index, DRI) and eluates characterization (chemical oxygen demand--COD, and 5 days biological oxygen demand--BOD5) were used as indicators of waste strength, as they had previously been reported to be indirect measures of waste impact on landfill. Summarizing all studied indicators, Principal Component Analysis (PCA) was used to develop the Putrescibility Index (Ip). The results revealed Ip index of 204+/-33 (mean+/-standard deviation) and 159+/-14 for the organic fraction of MSW and MSW untreated waste respectively, and of 106+/-16 and 101+/-22 for the corresponding biologically treated waste. PMID:18280541

  19. Handling of liquid radioactive wastes produced during the decommissioning of nuclear-powered submarines

    SciTech Connect

    Martynov, B.V.

    1995-10-01

    Liquid radioactive wastes are produced during the standard decontamination of the reactor loop and liquidation of the consequences of accidents. In performing the disassembly work on decommissioned nuclear-powered submarines, the equipment must first be decontaminated. All this leads to the formation of a large quantity of liquid wastes with a total salt content of more then 3l-5 g/liter and total {beta}-activity of up to 1 {center_dot}10{sup {minus}4} Ci/liter. One of the most effective methods for reprocessing these wastes - evaporation - has limitations: The operating expenses are high and the apparatus requires expensive alloyed steel. The methods of selective sorption of radionuclides on inorganic sorbents are used for reprocessing liquid wastes form the nuclear-powered fleet. A significant limitation of the method is the large decrease in sorption efficiency with increasing total salt-content of the wastes. In some works, in which electrodialysis is used for purification of the salt wastes, the total salt content can be decreased by a factor of 10-100 and the same quantity of radionuclides can be removed. We have developed an electrodialysis-sorption scheme for purifying salt wastes that makes it possible to remove radionuclides to the radiation safety standard and chemically harmful substances to the health standards. The scheme includes electrodialysis desalinization (by 90% per pass on the EDMS apparatus), followed by additional purification of the diluent on synthetic zeolites and electro-osmotic concentration (to 200-250 g/liter on the EDK apparatus). The secondard wastes---salt concentrates and spent sorbents---are solidified. (This is the entire text of the article.)

  20. [The sanitary and epidemiological problems in production and consumption waste handling in the Russian Federation].

    PubMed

    Onishchenko, G G

    2009-01-01

    At the initiative of the bodies and organizations of the Russian Agency for Consumer Surveillance, the interdepartmental commissions on sanitary purification and on production and consumption waste handling heard more than 2275 items on the subjects of the Russian Federation in 2007. In 2006-2007, in all the subjects of the Russian Federation work was under way with the local authorities to legalize or liquidate unauthorized sites of waste disposal in rural settlements. As compared with 2006, there was a reduction in both the number of unauthorized dumps from 11,062 to 9,069 and the area under them from 33,587.6 to 29,506 ha. According to the administrations of the Russian Agency for Consumer Surveillance, in 2007, the number of enterprises generating waste was 1,092,871, of them 91.2% of the enterprises were under the control of bodies and organizations of the Russian Agency for Consumer Surveillance. The largest number of enterprises (813,233) produces domestic waste and 173,272 enterprises generate factory waste; as for poultry farming and cattle breeding waste, sewage sludge, and agrochemicals, these accounted for less than 10%. As compared with 2006, the number of sludge traps, tailing pits, waste banks, terraces, ash-and-slad burrows, etc. increased and amounted to 2,338. The reduction in the volume of accumulated waste, by involving the latter into the economic turnover, by introducing and improving their processing technologies is urgent. The highest percentage of waste utilization was achieved by building enterprises (91%), followed by agricultural ones (77%). At the same time this index at the enterprising generating the bulk of waste, namely, at the minerals-extracting enterprises, is 39% as that in Russia. In 2007, pesticides and agrochemicals were kept at 5600 storage facilities, of which as many as 2180 have a sanitary-and-epidemiological opinion; 60% of the storage facilities have an organized control area. PMID:19645103

  1. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  2. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2002-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  3. Solvent extraction in the treatment of acidic high-level liquid waste : where do we stand?

    SciTech Connect

    Horwitz, E. P.; Schulz, W. W.

    1998-06-18

    During the last 15 years, a number of solvent extraction/recovery processes have been developed for the removal of the transuranic elements, {sup 90}Sr and {sup 137}Cs from acidic high-level liquid waste. These processes are based on the use of a variety of both acidic and neutral extractants. This chapter will present an overview and analysis of the various extractants and flowsheets developed to treat acidic high-level liquid waste streams. The advantages and disadvantages of each extractant along with comparisons of the individual systems are discussed.

  4. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    SciTech Connect

    Abotsi, G.M.K.; Bostick, D.T.; Beck, D.E.

    1996-05-01

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

  5. Decontamination and decommissioning of TAN radioactive liquid-waste-evaporator system (PM-2A). Final report

    SciTech Connect

    Smith, D.L.

    1983-03-01

    This report describes the decontamination and decommissioning of the Test Area North (TAN) liquid waste evaporator (PM-2A). The PM-2A facility included the aboveground evaporator system, two underground holding tanks and feedlines, an electrical distribution subsystem, and one above ground concrete tank. Much surface soil of the PM-2A area was also radioactively contaminated. Stabilization of the liquid and sludge in the holding tanks, a major task, was achieved by pumping most of the liquid into 55-gal drums and mixing it with cement. The drums were buried in the Radioactive Waste Management Complex (RWMC). The remaining liquid and sludge were dried in place by layers of diatomaceous earth. The most contaminated surface soil was removed, and the area backfilled with clean topsoil and graded, reducing the surface radiation field to background. A 6-ft-high chain link fence now surrounds the area. Most of the area was seeded to crested wheatgrass. 46 figures, 9 tables.

  6. The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: A two-phase process

    NASA Astrophysics Data System (ADS)

    Gómez, X.; Morán, A.; Cuetos, M. J.; Sánchez, M. E.

    A two-phase fermentation process for the treatment of waste, intended for the recovery of hydrogen for energy use, was investigated in its initial fermentation phase. Hydrogen production was obtained from a mixed culture based on an active mesophilic inoculum without any selective treatment being applied. The liquid stream generated by the hydrogen fermentation process was stabilized in the following, methanogenic, phase for the recovery of methane and further breaking down of the waste stream. The whole process was carried out at a temperature in the mesophilic range (34 °C). The substrate used was an unsterilized mixture of the organic fraction of municipal solid wastes (OFMSW) and slaughterhouse waste from a poultry-processing plant. The hydrogen-producing phase was capable of stable performance under the hydraulic retention times (HRTs) evaluated (3 and 5 days). No methane was detected in the first phase at any point during the whole period of the experiment and the hydrogen yield showed no symptoms of declining as time elapsed. The amount of hydrogen obtained from the fermentation process was in the range of 52.5-71.3 N L kg -1 VS rem.

  7. An overview of agriforestry waste production and use in Louisiana

    SciTech Connect

    Kleit, S.; Hoop, C.F. de; Chang, S.J.

    1994-12-31

    Agriculture and forestry are the second largest employers in the state of Louisiana. Natural by-products of these industries are biomass waste in the form of bark, wood chips, sawdust, cotton gin trash, rice hulls and sugar bagasse. Disposing of these wastes poses problems for the air and water. One popular waste management solution is to use them for fuel. To measure the potential for using biomass waste for fuel and other uses, a study was conducted of sugar cane processors, cotton ginners, rice processors and the primary and secondary wood processors in Louisiana. The study revealed that while some firms use waste for their own boilers, or sell it to others for fuel, there is still unused waste. There are many reasons for this including the cost of competing energy sources, lack of marketing innovation and the economies of scale. The study`s mission includes identifying new areas for utilizing waste. To facilitate these innovations, and bridge buyers with sellers of biomass waste, a geographic information system (GIS) was developed to map all sites claiming to produce and/or consume wood waste, as well as processors of cotton gin trash, rice hulls and sugar bagasse. These data are layered with timber supply data from the U.S. Forest Service.

  8. Production of iron from metallurgical waste

    DOEpatents

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  9. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes.

    PubMed

    Berge, Nicole D; Li, Liang; Flora, Joseph R V; Ro, Kyoung S

    2015-09-01

    Although there are numerous studies suggesting hydrothermal carbonization is an environmentally advantageous process for transformation of wastes to value-added products, a systems level evaluation of the environmental impacts associated with hydrothermal carbonization and subsequent hydrochar combustion has not been conducted. The specific objectives of this work are to use a life cycle assessment approach to evaluate the environmental impacts associated with the HTC of food wastes and the subsequent combustion of the generated solid product (hydrochar) for energy production, and to understand how parameters and/or components associated with food waste carbonization and subsequent hydrochar combustion influence system environmental impact. Results from this analysis indicate that HTC process water emissions and hydrochar combustion most significantly influence system environmental impact, with a net negative GWP impact resulting for all evaluated substituted energy-sources except biomass. These results illustrate the importance of electricity production from hydrochar particularly when it is used to offset coal-based energy sources. HTC process water emissions result in a net impact to the environment, indicating a need for developing appropriate management strategies. Results from this analysis also highlight a need for additional exploration of liquid and gas-phase composition, a better understanding of how changes in carbonization conditions (e.g., reaction time and temperature) influence metal and nutrient fate, and the exploration of liquid-phase treatment. PMID:26049203

  10. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes.

    PubMed

    Berge, Nicole D; Li, Liang; Flora, Joseph R V; Ro, Kyoung S

    2015-09-01

    Although there are numerous studies suggesting hydrothermal carbonization is an environmentally advantageous process for transformation of wastes to value-added products, a systems level evaluation of the environmental impacts associated with hydrothermal carbonization and subsequent hydrochar combustion has not been conducted. The specific objectives of this work are to use a life cycle assessment approach to evaluate the environmental impacts associated with the HTC of food wastes and the subsequent combustion of the generated solid product (hydrochar) for energy production, and to understand how parameters and/or components associated with food waste carbonization and subsequent hydrochar combustion influence system environmental impact. Results from this analysis indicate that HTC process water emissions and hydrochar combustion most significantly influence system environmental impact, with a net negative GWP impact resulting for all evaluated substituted energy-sources except biomass. These results illustrate the importance of electricity production from hydrochar particularly when it is used to offset coal-based energy sources. HTC process water emissions result in a net impact to the environment, indicating a need for developing appropriate management strategies. Results from this analysis also highlight a need for additional exploration of liquid and gas-phase composition, a better understanding of how changes in carbonization conditions (e.g., reaction time and temperature) influence metal and nutrient fate, and the exploration of liquid-phase treatment.

  11. Bio-hydrogen production from renewable organic wastes

    SciTech Connect

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  12. Statistical Description of Liquid Low-Level Waste System Transssuranic Wastes at Oak Ridge Nation Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-12-01

    The US DOE has presented plans for processing liquid low-level wastes (LLLW) located at Oak Ridge National Laboratory (ORNL) in the LLLW tank system. These wastes are among the most hazardous on the Oak Ridge reservation and exhibit both RCRA toxic and radiological hazards. The Tennessee Department of Health and Environment has mandated that the processing of these wastes must begin by the year 2002 and the the goal should be permanent disposal at a site off the Oak Ridge Reservation. To meet this schedule, DOE will solicit bids from various private sector companies for the construction of a processing facility on land located near the ORNL Melton Valley Storage Tanks to be operated by the private sector on a contract basis. This report will support the Request for Proposal process and will give potential vendors information about the wastes contained in the ORNL tank farm system. The report consolidates current data about the properties and composition of these wastes and presents methods to calculate the error bounds of the data in the best technically defensible manner possible. The report includes information for only the tank waste that is to be included in the request for proposal.

  13. Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugar cane juice as renewable wastes.

    PubMed

    Seesuriyachan, Phisit; Techapun, Charin; Shinkawa, Hidenori; Sasaki, Ken

    2010-01-01

    Extracellular polysaccharide (EPS) production by Lactobacillus confusus in liquid and solid state fermentation was carried out using coconut water and sugarcane juice as renewable wastes. High concentrations of EPS of 62 (sugarcane juice) and 18 g/l of coconut water were produced in solid state fermentation when nitrogen sources were reduced 5-fold from the original medium.

  14. Thermal reactor. [liquid silicon production from silane gas

    NASA Technical Reports Server (NTRS)

    Levin, H.; Ford, L. B. (Inventor)

    1982-01-01

    A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket.

  15. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    MacDonal, Digby D.; Marx, Brian M.; Ahn, Sejin; Ruiz, Julio de; Soundararajan, Balaji; Smith, Morgan; Coulson, Wendy

    2005-06-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO3, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair.

  16. ASSESSING THE LEACHING BEHAVIOR OF METALS FROM A MINERAL PROCESSING WASTE AS A FUNCTION OF LIQUID TO SOLID RATIO

    EPA Science Inventory

    A mineral processing waste was used to study the effect of liquid to solid ratio (L/S) on the leaching behavior of metals. Leaching tests in the form of column and batch studies were carried out to investigate liquid to solid ratios ranging from 0.7 to 50. Although the waste pa...

  17. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production.

    PubMed

    Brown, Dan; Shi, Jian; Li, Yebo

    2012-11-01

    Lignocellulosic biomass feedstocks (switchgrass, corn stover, wheat straw, yard waste, leaves, waste paper, maple, and pine) were evaluated for methane production under liquid anaerobic digestion (L-AD) and solid-state anaerobic digestion (SS-AD). No significant difference in methane yield between L-AD and SS-AD, except for waste paper and pine, were found. However, the volumetric productivity was 2- to 7-fold greater in the SS-AD system compared with the L-AD system, except for paper. Methane yields from corn stover, wheat straw, and switchgrass were 2-5 times higher than those from yard waste, maple, and pine biomass. Waste paper had a methane yield of only 15 L/kg VS caused by souring during SS-AD due to organic overloading. Pine also had very low biogas yield of 17 L/kg VS, indicating the need for pretreatment prior to SS-AD. The findings of this study can guide future studies to improve the efficiency and stability of SS-AD of lignocellulosic biomass. PMID:22995169

  18. Status of the ORNL liquid low-level waste management upgrades

    SciTech Connect

    Robinson, S.M.; Kent, T.E.; DePaoli, S.M.

    1995-08-01

    The strategy for management of the Oak Ridge National Laboratory`s (ORNL`s) radioactively contaminated liquid waste was reviewed. The latest information on waste characterization, regulations, US Department of Energy (DOE) budget guidance, and research and development programs was evaluated to determine how the strategy should be revised. Few changes are needed to update the strategy to reflect new waste characterization, research, and regulatory information. However, recent budget guidance from DOE indicates that minimum funding will not be sufficient to accomplish original objectives to upgrade the liquid low-level waste (LLLW) system to be in compliance with the Federal Facilities Agreement compliance, provide long-term LLLW treatment capability, and minimize Environmental Safety & Health risks. Options are presented that might allow the ORNL LLLW system to continue operations temporarily but significantly reduce its capabilities to handle emergency situations, provide treatment for new waste streams, and accommodate waste from the Environmental Restoration Program and from decontamination and decommissioning of surplus facilities. These options are also likely to increase worker radiation exposure, risk of environmental insult, and generation of solid waste for on-site and off-site disposal/storage beyond existing facility capacities. The strategy will be fully developed after receiving additional guidance. The proposed budget limitations are too severe to allow ORNL to meet regulatory requirements or continue operations long term.

  19. Prototype demonstration studies of production of methane from municipal solid waste at Pompano Beach, Florida

    SciTech Connect

    Faroog, S.; Daly, E.; Dasgupta, A.; Gerrish, M.P.; Sengupta, S.; Wong, K.F.

    1980-12-01

    A prototype demonstration plant for the production of methane from anaerobic digestion of municipal solid waste in amounts up to 100 tons per day is built at Pompano Beach, Florida. The plant is capable of producing 6000 ft/sup 3/ of gas per ton of municipal waste. Approximately half of the gas is methane, the other half CO/sub 2/ along with some trace gases. In this plant the raw municipal solid waste is shredded, ferrous metals removed magnetically and air classified to obtain an organic-rich light weight fraction, which is periodically mixed with sewage sludge and fed into the anaerobic digester. The processed effluent is filtered in a vacuum filter and the emerging filter cake is disposed on the nearby existing sanitary landfill. The filtrate is recirculated into the digester. Various gas, solid and liquid streams coming out of the digester are analyzed for physical, chemical and biological pollution parameters.

  20. Investigation of the possibility of using hydrogranulation in reprocessing radioactive wastes of radiochemical production facilities

    SciTech Connect

    Revyakin, V.; Borisov, L.M.

    1996-05-01

    Radio-chemical production facilities are constantly accumulating liquid radioactive wastes (still residues as the result of evaporation of extraction and adsorption solutions etc.) which are a complex multicomponent mixtures. The wastes are frequently stored for extended periods of time while awaiting disposition and in some cases, and this is much worse, they are released into the environment. In this report, I would like to draw your attention to some results we have obtained from investigations aimed at simplifying handing of such wastes by the precipitation of hard to dissolve metal hydroxides, the flocculation of the above into granules with the help of surface-active agents (in this case a polyacrylamide - PAA), quickly precipitated and easily filtered. The precipitate may be quickly dried and calcinated, if necessary, and transformed into a dense oxide sinter. In other words it may be transformed into a material convenient for storage or burial.

  1. Continuous biohydrogen production from waste bread by anaerobic sludge.

    PubMed

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge.

  2. Metal decontamination for waste minimization using liquid metal refining technology

    SciTech Connect

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-09-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species.

  3. Microporous membrane liquid-liquid extraction coupled on-line with normal-phase liquid chromatography for the determination of cationic surfactants in river and waste water.

    PubMed

    Norberg, J; Thordarson, E; Mathiasson, L; Jönsson, J A

    2000-02-11

    Membrane-based continuous liquid-liquid extraction combined on-line with normal-phase liquid chromatography is proposed for the determination of cationic surfactants in complex aqueous samples. The technique has the potential for complete automation. Selective enrichment of cationic surfactants from spiked river water and waste-water samples with simultaneous removal of matrix constituents, followed by a quantitative transfer of the extract onto a liquid chromatographic column and separation of the surfactant homologues yielding low detection limits, has been realised. The homologues of alkyldimethylbenzylammonium chloride (Dodigen 226) were chosen as model compounds in the method development. Dodigen homologues were ion-paired with heptanoic acid and extracted into chlorobutane by means of microporous membrane liquid-liquid extraction. It was thereby possible to attain an enrichment of over 250 times for one of the homologues, viz. the concentration in the organic liquid is 250 times higher than in the original sample. Detection limits for the three best-detected homologues of the mixture were in the range 0.7-5 microg/l in spiked river water samples. Ion-pair normal-phase liquid chromatography, again with heptanoic acid as counter-ion, gave the necessary separation of the surfactant homologues.

  4. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products. PMID:26776601

  5. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.

  6. Radioactive liquid wastes discharged to ground in the 200 Areas during 1981

    SciTech Connect

    Sliger, G.J.

    1982-03-01

    This document summarizes radioactive liquids discharged to the ground in the 200 Areas of the Hanford Site and is provided pursuant to DOE Order 5484.1. There are twenty-three liquid effluent discharge streams in the 200 Areas, twenty of which are normally contaminated or potentially contaminated with radioactive material. Of these twenty streams, one discharged radioactive material above Table I concentration guides and two others discharged material above Table II concentration guides, as noted below. The three noncontaminated streams are included to maintain an accurate record of total volume of liquid discharged to each specific waste site.

  7. Potential for composting energetic material production wastes. Final report

    SciTech Connect

    Adrian, N.R.; Stratta, J.M.; Donahue, B.A.

    1995-09-01

    U.S. Army installations that manufacture munitions generate large quantities of energetic material (EM) and solid waste contaminated with energetic material (energetic material-contaminated waste, or EMCW). Disposal of EM and EMCW by open burning or open detonation (OB/OD) has been the practice for many years, but increasingly stringent environmental regulations are curtailing OB/OD operations. Although composting has been used in some instances for explosive-contaminated soils, it has not been examined for use with munitions production wastes. A literature search showed that many explosives are biodegradable and that some explosive-contaminated soils can also be treated by composting. A potential exists to treat munition production wastes by composting or other biological treatment processes. This study concluded that further investigation is needed to determine and test: (1) the energetic compounds that can be biodegraded, and (2) the conditions under which biological treatment processes can occur.

  8. Development of a New Thermal HF Plasma Reactor for the Destruction of Radioactive Organic Halogen Liquid Wastes

    SciTech Connect

    Bournonville, B.; Meillot, E.; Girold, C.

    2006-07-01

    A newly patented process employing thermal plasma for destruction of radioactive organic halogen liquid wastes is proposed. This studied safe system can destroy a great variety of wastes, even mixed together, using plasma torch as high temperature source. At the exit of the process, only non-toxic products are formed as atmospheric gases, liquid water and halogen sodium salt. The process has been built with the help of thermodynamic and kinetic simulations. A good atomic stoichiometry is necessary for avoiding the formation of solid carbon (soot) or toxic COCl{sub 2}. That why liquid water is added to the waste in the plasma flow. Then, an introduction of air cools and dilutes the formed gases and adds oxidant agent achieving oxidation of explosive H{sub 2} and toxic CO. Due to the high concentration of hydrochloric acid, an efficient wet treatment using soda traps it. Subsequently, the exhaust gases are only composed of Ar, O{sub 2}, N{sub 2}, CO{sub 2} and H{sub 2}O. In the first experimental step, pure organic molecules, mixed or not, without halogen have been destroyed. The experimental results show that all the compounds have been completely destroyed and only CO{sub 2} and H{sub 2}O have been formed without formation of any toxic compound or soot. After these encouraging results, chlorinated compounds as dichloromethane or chloroform have been destroyed by the process. In this case, the results are close to the previous one with an important formation of hydrochloric acid, as expected, which was well trapped by the soda to respect the French norm of rejection. A specific parameter study has been done with dichloromethane for optimising the operating condition to experimentally observe the influence of different parameters of the process as the stoichiometry ratio between waste and water, the air addition flow, the waste flow. The final aim of this study is to develop a clean process for treatment of radioactive organic halogen compounds. A small scale reactor

  9. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    PubMed

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. PMID:22093705

  10. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    PubMed

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  11. Regulation for Optimal Liquid Products during Biomass Pyrolysis: A Review

    NASA Astrophysics Data System (ADS)

    Wang, F.; Hu, L. J.; Zheng, Y. W.; Huang, Y. B.; Yang, X. Q.; Liu, C.; Kang, J.; Zheng, Z. F.

    2016-08-01

    The liquid product obtained from biomass pyrolysis is very valuable that it could be used for extraction of chemicals as well as for liquid fuel. The desire goal is to obtain the most bio-oil with desired higher heating value (HHV), high physicochemical stability. The yields and chemical composition of products from biomass pyrolysis are closely related to the feedstock, pyrolysis parameters and catalysts. Current researches mainly concentrated on the co-pyrolysis of different biomass and introduce of novel catalysts as well as the combined effect of catalysts and pyrolysis parameters. This review starts with the chemical composition of biomass and the fundamental parameters and focuses on the influence of catalysts on bio-oil. What is more, the pyrolysis facilities at commercial scales were also involved. The classic researches and the current literature about the yield and composition of products (mainly liquid products) are summarized.

  12. Integrated bioethanol and biomanure production from potato waste.

    PubMed

    Chintagunta, Anjani Devi; Jacob, Samuel; Banerjee, Rintu

    2016-03-01

    Disposal of potato processing waste and the problem of pollution associated with it is a vital issue that is being faced by the potato processing plants. The conventional peeling methods presently followed in the processing plants for removing the potato peel, also result in the loss of some portion of the mash which is rich in starch. Indiscriminate discharge of the waste causes detrimental effects in the environment, so this problem can be resolved by successful utilization of the waste for the generation of value added products. Hence, the present work focuses on integrated production of bioethanol and biomanure to utilize the waste completely leading to zero waste generation. The first part of the work describes a comparative study of ethanol production from potato peel and mash wastes by employing co-culture of Aspergillus niger and Saccharomyces cerevisiae at various incubation time (24-120 h) instead of application of enzymes. The solid state fermentation of potato peel and mash inoculated with co-culture, resulted in bioethanol production of 6.18% (v/v) and 9.30% (v/v) respectively. In the second part of the work, the residue obtained after ethanol production was inoculated with seven different microorganisms (Nostoc muscorum, Fischerella muscicola, Anabaena variabilis, Aulosira fertilissima, Cylindrospermum muscicola, Azospirillium lipoferum, Azotobacter chroococcum) and mixture of all the organisms in equal ratio for nitrogen (N), phosphorous (P) and potassium (K) enrichment. Among them, A. variabilis was found to enrich N, P and K content of the residue by nearly 7.66, 21.66 and 15 fold than that of the initial content, ultimately leading to improved N:P:K ratio of approximately 2:1:1. The application of simultaneous saccharification and fermentation (SSF) for the conversion of potato waste to ethanol and enrichment of residue obtained after ethanol production with microorganisms to be used as manure envisages environmental sustainability. PMID:26316099

  13. Integrated bioethanol and biomanure production from potato waste.

    PubMed

    Chintagunta, Anjani Devi; Jacob, Samuel; Banerjee, Rintu

    2016-03-01

    Disposal of potato processing waste and the problem of pollution associated with it is a vital issue that is being faced by the potato processing plants. The conventional peeling methods presently followed in the processing plants for removing the potato peel, also result in the loss of some portion of the mash which is rich in starch. Indiscriminate discharge of the waste causes detrimental effects in the environment, so this problem can be resolved by successful utilization of the waste for the generation of value added products. Hence, the present work focuses on integrated production of bioethanol and biomanure to utilize the waste completely leading to zero waste generation. The first part of the work describes a comparative study of ethanol production from potato peel and mash wastes by employing co-culture of Aspergillus niger and Saccharomyces cerevisiae at various incubation time (24-120 h) instead of application of enzymes. The solid state fermentation of potato peel and mash inoculated with co-culture, resulted in bioethanol production of 6.18% (v/v) and 9.30% (v/v) respectively. In the second part of the work, the residue obtained after ethanol production was inoculated with seven different microorganisms (Nostoc muscorum, Fischerella muscicola, Anabaena variabilis, Aulosira fertilissima, Cylindrospermum muscicola, Azospirillium lipoferum, Azotobacter chroococcum) and mixture of all the organisms in equal ratio for nitrogen (N), phosphorous (P) and potassium (K) enrichment. Among them, A. variabilis was found to enrich N, P and K content of the residue by nearly 7.66, 21.66 and 15 fold than that of the initial content, ultimately leading to improved N:P:K ratio of approximately 2:1:1. The application of simultaneous saccharification and fermentation (SSF) for the conversion of potato waste to ethanol and enrichment of residue obtained after ethanol production with microorganisms to be used as manure envisages environmental sustainability.

  14. [Ecological and hygienic evaluation of production waste of diagnostic preparations].

    PubMed

    2012-01-01

    For the first time eco-hygienic evaluation of waste materials of production of diagnostic products has been performed. The methodology of risk assessment included consideration of the technology for their delivery, assessment of potential hazards (biological, chemical, and toxicological) based on the study of physico-chemical properties and performance of toxicological, hygienic and ecological research.

  15. Reaction of catalytic oxidation by liquid water and its application to waste water purification

    SciTech Connect

    Ioffe, I.I.; Rubinskaya, E.V.

    1997-06-01

    In this paper the results of experiments and some considerations of theoretical and practical problems devoted to a new type of chemical reaction--oxidation of organic substances by liquid water with the aid of noble metal catalyst--are given. Some problems of application such as reaction to self-purification of industrial waste waters are also considered.

  16. A&M. Hot liquid waste treatment building (TAN616). Camera facing north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing north. Detail of personnel entrance door, stoop, and stairway. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-2-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. A&M. Hot liquid waste treatment building (TAN616). Camera facing northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing northeast. South wall with oblique views of west sides of structure. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. A&M. Hot liquid waste treatment building (TAN616). Camera facing east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing east. Showing west facades of structure. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  19. A&M. Hot liquid waste treatment building (TAN616), south side. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616), south side. Camera facing north. Personnel door at left side of wall. Partial view of outdoor stairway to upper level platform. Note concrete construction. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  20. A&M. Liquid waste treatment plant, TAN616. Plan, elevations, sections, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Liquid waste treatment plant, TAN-616. Plan, elevations, sections, and details. Evaporator pit. Pump room. Room names and numbers. Ralph M. Parsons 902-3-ANP-616-A 297. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index no. 034-0616-00-693-106889 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. Some methods for human liquid and solid waste utilization in bioregenerative life-support systems.

    PubMed

    Ushakova, S A; Zolotukhin, I G; Tikhomirov, A A; Tikhomirova, N A; Kudenko, Yu A; Gribovskaya, I V; Balnokin, Yu; Gros, J B

    2008-12-01

    Bioregenerative life-support systems (BLSS) are studied for developing the technology for a future biological life-support system for long-term manned space missions. Ways to utilize human liquid and solid wastes to increase the closure degree of BLSS were investigated. First, urine and faeces underwent oxidation by Kudenko's physicochemical method. The products were then used for root nutrition of wheat grown by the soil-like substrate culture method. Two means of eliminating sodium chloride, introduced into the irrigation solution together with the products of urine oxidation, were investigated. The first was based on routine electrodialysis of irrigation water at the end of wheat vegetation. Dialysis eliminated about 50% of Na from the solution. This desalinization was performed for nine vegetations. The second method was new: after wheat cultivation, the irrigation solution and the solution obtained by washing the substrate containing mineral elements not absorbed by the plants were used to grow salt-tolerant Salicornia europaea L. plants (saltwort). The above-ground biomass of this plant can be used as a food, and roots can be added to the soil-like substrate. Four consecutive wheat and Salicornia vegetations were cultivated. As a result of this wheat and Salicornia cultivation process, the soil-like substrate salinization by NaCl were considerably decreased.

  2. Some methods for human liquid and solid waste utilization in bioregenerative life-support systems.

    PubMed

    Ushakova, S A; Zolotukhin, I G; Tikhomirov, A A; Tikhomirova, N A; Kudenko, Yu A; Gribovskaya, I V; Balnokin, Yu; Gros, J B

    2008-12-01

    Bioregenerative life-support systems (BLSS) are studied for developing the technology for a future biological life-support system for long-term manned space missions. Ways to utilize human liquid and solid wastes to increase the closure degree of BLSS were investigated. First, urine and faeces underwent oxidation by Kudenko's physicochemical method. The products were then used for root nutrition of wheat grown by the soil-like substrate culture method. Two means of eliminating sodium chloride, introduced into the irrigation solution together with the products of urine oxidation, were investigated. The first was based on routine electrodialysis of irrigation water at the end of wheat vegetation. Dialysis eliminated about 50% of Na from the solution. This desalinization was performed for nine vegetations. The second method was new: after wheat cultivation, the irrigation solution and the solution obtained by washing the substrate containing mineral elements not absorbed by the plants were used to grow salt-tolerant Salicornia europaea L. plants (saltwort). The above-ground biomass of this plant can be used as a food, and roots can be added to the soil-like substrate. Four consecutive wheat and Salicornia vegetations were cultivated. As a result of this wheat and Salicornia cultivation process, the soil-like substrate salinization by NaCl were considerably decreased. PMID:18581263

  3. Production and degradation of polyhydroxyalkanoates in waste environment

    SciTech Connect

    Lee, S.Y.; Choi, J.

    1999-06-01

    Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the following aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.

  4. A supported polymeric liquid membrane process for removal of carboxylic acids from a waste stream

    SciTech Connect

    Ho, S.V.

    1999-12-31

    The removal or elimination of organic residues from aqueous waste streams represents a major need in the chemical industry. The authors have developed a new class of membrane called supported polymeric liquid membranes that are capable of removing and concentrating low molecular weight organic compounds from dilute aqueous solutions, especially those that also contain high concentrations of inorganic salts. Attractive features of this membrane process include the ability to recover the contaminants in concentrated form for either recycle or more economical disposal, low pressure (ambient) operation, simple scale-up using commercial hollow fiber modules, and ease of in-situ regeneration of the polymeric liquid. The process has shown treatment feasibility for several types of aqueous waste streams. This paper describes the laboratory development activities for treating a waste stream containing a dilute mixture of C2-C6 carboxylic acids and nitric acid.

  5. Truck ramp construction from clean coal technology waste products

    SciTech Connect

    Wolfe, W.E.; Beeghly, J.H.

    1993-12-31

    The construction and performance of a truck ramp made from clean coal technology waste products are described. The specific waste product used in this project was generated at the power plant located on the campus of The Ohio State University in Columbus. The ramp is used by University vehicles depositing hard trash at a central disposal facility on the OSU campus. Laboratory tests which had been conducted on samples made from the power plant waste product clearly showed that, when the material is property compacted, strengths could be obtained that were much higher than those of the natural soils the clean coal waste would replace. In addition, the permeability and swelling characteristics of the waste product should make it an attractive alternative to importing select borrow materials. Based on the results of the laboratory tests, a decision was made to use the power plant waste in the truck ramp rather than the soil that was called for in the original design. Prior to the start of construction, the area on which the ramp was to be located was covered with an impermeable geomembrane. Drain lines were installed on top of the geomembrane so that water that might leach through the ramp could be collected. The waste product from the power plant was placed on the geomembrane in 20 to 30 centimeter lifts by University maintenance personnel without special equipment. A drain line was installed across the toe of the ramp to intercept surface runoff, and a wearing surface of 7 to 15 centimeters of crushed limestone was placed over the compacted ash. The finished ramp structure recycled approximately 180 metric tons of the power plant byproduct. After over a year in service there is no indication of erosion or rutting in the ramp surface. Tests performed on the leachate and runoff water have shown the high pH characteristic of these materials, but concentrations of metals fall below the established limits.

  6. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. PMID:26896823

  7. Modeling injection well performance during deep-well injection of liquid wastes

    NASA Astrophysics Data System (ADS)

    Saripalli, K. P.; Sharma, M. M.; Bryant, S. L.

    2000-01-01

    Deep-well injection of municipal and industrial wastes, and liquid hazardous wastes is an important waste disposal practice worldwide. Performance of injection wells during the deep-well injection of liquid wastes and waste waters is critically dependent upon the physico-chemical properties of the waste, the operational parameters such as injection rates and pressures, as well as the hydrogeologic and geochemical character of the host formation. Development of theories and models that can predict the injection well performance as a function of these parameters is a vital research need. This paper presents the development and application of a well injectivity decline (WID) simulator, that can be used to model injection well performance during deep-well injection. Injectivity decline due to particulates in the injection fluid is modeled for various types of well completions. Results from the simulator are presented with an emphasis on the resulting well plugging and injectivity decline. The significant role played by injected wastewater quality, host formation properties, injection rate and pressure, well completion type, initial damage to the well/formation and the presence of gravel packs around the wellbore is discussed. The results quantitatively show that under typical injection conditions a high total suspended solids (TSS) concentration in the waste stream, low injection rate, low injection pressures, formation heterogeneity (layering), low porosity and permeability of the formation all contribute to a rapid decline in injection well performance. The simulator provides a tool for predicting well performance during waste injection as a function of the waste, formation and operational characteristics. Such simulations can be valuable during planning and operating injection wells to achieve and sustain satisfactory well performance.

  8. Getters for Tc and I Removal from Liquid Waste

    NASA Astrophysics Data System (ADS)

    Qafoku, N. P.; Asmussen, M.; Lawter, A.; Neeway, J.; Smith, G.

    2015-12-01

    A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental waste form for the low activity waste (LAW) at the Hanford Site, which contains significant amounts of radioactive 99Tc and 129I, as part of the tank waste cleanup mission. To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to decrease the rate of contaminant release and diffusivity, and improve Cast Stone performance. A series of kinetic batch sorption experiments was performed to determine the effectiveness of the getter materials. Several Tc getters [blast furnace slag, Sn (II) apatite, SnCl2, nanoporous Sn phosphate, KMS-2 (a potassium-metal-sulfide), and Sn(II) hydroxyapatite] and I getters [layered Bi hydroxide, natural argentite mineral, synthetic argentite, Ag-impregnated carbon, and Ag-exchanged zeolite] were tested in different solution media, 18.2 MΩ DI H2O and a caustic LAW waste simulant containing 6.5 M Na or 7.8 M Na. The experiments were conducted at room temperature in the presence or absence of air. Results indicated that most Tc getters (with the exception of KMS-2) performed better in the DI H2O solution than in the 6.5 and 7.8 M Na LAW simulant. In addition, Tc sequestration may be affected by the presence of other redox sensitive elements that were present in the LAW simulant, such as Cr. The Tc getter materials have been examined through various solid-state characterization techniques such as XRD, SEM/EDS, XANES and EXAFS which provided evidence for plausible mechanisms of aqueous Tc removal. The results indicated that the Tc precipitates differ depending on the getter material and that Tc(VII) is reduced to Tc(IV) in most of the getters but to a differing extents. For the I getters, Ag-exchanged zeolite and synthetic argentite were the most effective ones. The other I getters showed limited effectiveness for sorbing I under the high ionic strength and caustic

  9. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes.

    PubMed

    Del Mundo Dacera, Dominica; Babel, Sandhya

    2008-04-01

    The environmental benefits derived from using citric acid in the removal of heavy metals from contaminated sewage sludge have made it promising as an extracting agent in the chemical extraction process. At present, citric acid is produced commercially by fermentation of sucrose using mutant strains of Aspergillus niger (A. niger), and chemical synthesis. In recent years, various carbohydrates and wastes (such as pineapple wastes) have been considered experimentally, to produce citric acid by A. niger. This study investigated the potential of using A. niger fermented raw liquid from pineapple wastes as a source of citric acid, in extracting chromium (Cr), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) from anaerobically digested sewage sludge. Results of the study revealed that metal removal efficiencies varied with pH, forms of metals in sludge and contact time. At pH approaching 4, and contact time of 11 days, A. niger fermented liquid seemed to remove all Cr and Zn while removing 94% of Ni. Moreover, chemical speciation studies revealed that metals which are predominantly in the exchangeable and oxidizable phases seemed to exhibit ease of leachability (e.g., Zn). The by-products of the process such as pineapple pulp and mycelium which are rich in protein, can still be used as animal feed. It can be said therefore that this novel process provides a sustainable way of managing contaminated sewage sludge.

  10. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes.

    PubMed

    Del Mundo Dacera, Dominica; Babel, Sandhya

    2008-04-01

    The environmental benefits derived from using citric acid in the removal of heavy metals from contaminated sewage sludge have made it promising as an extracting agent in the chemical extraction process. At present, citric acid is produced commercially by fermentation of sucrose using mutant strains of Aspergillus niger (A. niger), and chemical synthesis. In recent years, various carbohydrates and wastes (such as pineapple wastes) have been considered experimentally, to produce citric acid by A. niger. This study investigated the potential of using A. niger fermented raw liquid from pineapple wastes as a source of citric acid, in extracting chromium (Cr), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) from anaerobically digested sewage sludge. Results of the study revealed that metal removal efficiencies varied with pH, forms of metals in sludge and contact time. At pH approaching 4, and contact time of 11 days, A. niger fermented liquid seemed to remove all Cr and Zn while removing 94% of Ni. Moreover, chemical speciation studies revealed that metals which are predominantly in the exchangeable and oxidizable phases seemed to exhibit ease of leachability (e.g., Zn). The by-products of the process such as pineapple pulp and mycelium which are rich in protein, can still be used as animal feed. It can be said therefore that this novel process provides a sustainable way of managing contaminated sewage sludge. PMID:17512728

  11. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate.

    PubMed

    Al Yaqout, Anwar F

    2003-01-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14+/-1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85+/-0.19 million t representing 37.22+/-6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.

  12. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate

    SciTech Connect

    Al Yaqout, Anwar F

    2003-07-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14{+-}1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85{+-}0.19 million t representing 37.22{+-}6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.

  13. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.

    1976-01-01

    The anticipated depletion of our resources of natural gas and petroleum in a few decades has caused a search for renewable sources of fuel. Among the possibilities is the chemical conversion of waste and grown organic matter into gaseous or liquid fuels. The overall feasibility of such a system is considered from the technical, economic, and social viewpoints. Although there are a number of difficult problems to overcome, this preliminary study indicates that this option could provide between 4 and 10 percent of the U.S. energy needs. Estimated costs of fuels derived from grown organic material are appreciably higher than today's market price for fossil fuel. The cost of fuel derived from waste organics is competitive with fossil fuel prices. Economic and social reasons will prohibit the allocation of good food producing land to fuel crop production.

  14. Audit of the radioactive liquid waste treatment facility operations at the Los Alamos National Laboratory

    SciTech Connect

    1997-11-19

    Los Alamos National Laboratory (Los Alamos) generates radioactive and liquid wastes that must be treated before being discharged to the environment. Presently, the liquid wastes are treated in the Radioactive Liquid Waste Treatment Facility (Treatment Facility), which is over 30 years old and in need of repair or replacement. However, there are various ways to satisfy the treatment need. The objective of the audit was to determine whether Los Alamos cost effectively managed its Treatment Facility operations. The audit determined that Los Alamos` treatment costs were significantly higher when compared to similar costs incurred by the private sector. This situation occurred because Los Alamos did not perform a complete analysis of privatization or prepare a {open_quotes}make-or-buy{close_quotes} plan for its treatment operations, although a {open_quotes}make-or-buy{close_quotes} plan requirement was incorporated into the contract in 1996. As a result, Los Alamos may be spending $2.15 million more than necessary each year and could needlessly spend $10.75 million over the next five years to treat its radioactive liquid waste. In addition, Los Alamos has proposed to spend $13 million for a new treatment facility that may not be needed if privatization proves to be a cost effective alternative. We recommended that the Manager, Albuquerque Operations Office (Albuquerque), (1) require Los Alamos to prepare a {open_quotes}make-or-buy{close_quotes} plan for its radioactive liquid waste treatment operations, (2) review the plan for approval, and (3) direct Los Alamos to select the most cost effective method of operations while also considering other factors such as mission support, reliability, and long-term program needs. Albuquerque concurred with the recommendations.

  15. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    SciTech Connect

    OSMANLIOGLU, Ahmet Erdal

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  16. Prospects for using membrane distallation for reprocessing liquid radioactive wastes

    SciTech Connect

    Dytnerskii, Y.I.; Karlin, Y.V.; Kropotov, B.N.

    1994-05-01

    Membrane distillation is a promising method for deep desalinization and for removal of impurities of different nature from water. The crux of the method is as follows. The initial (hot) solution, heated up to 30-70{degrees}C, is fed into one side of a hydrophobic microporous membrane. A less heated (cold) distillate moves along the other. Since the membrane is hydrophobic and the pores are small ({approximately}1 {mu}m and less), the liquid phase does not penetrate into the pores in accordance with Kelvin`s law. The vapor evaporating from the surface of the hot solution (the evaporation surface in this case are solution meniscuses forming at the entrance into a pore) penetrates into the pores of the membrane, diffuses through the air layer in the pore, and condenses on the surface of the menisci of cold liquid. In the process rarefaction is produced in the pores, and this accelerates evaporation and therefore increases its efficiency.

  17. Apparatus for recovering energy and useful products from plantain wastes

    SciTech Connect

    Quame, B.A.

    1983-08-16

    Energy and useful products are recovered from plantain wastes in a self-contained waste treatment plant wherein the raw material waste is charged into a boiler where the same is combusted to produce flue gases containing several organic compounds and dry ash containing residue mineral salts. The flue gas heats water in a water reservoir to generate steam which drives a turbine generator to produce electricity, the flue gas then being collected and at least partially condensed to form a pyroligneous acid solution from which alcohols and the like can be recovered. The dry ash containing residue mineral salt is mixed with other minerals or reagents with the resulting mass being supplied into continuously stirred fusion furnace situated within the boiler to which heat is supplied by the flue gas to produce commercially useful products, such as zeolites, dolomite or other related products.

  18. A recyclable enzymatic biodiesel production process in ionic liquids.

    PubMed

    De Diego, Teresa; Manjón, Arturo; Lozano, Pedro; Iborra, José L

    2011-05-01

    Immobilized Candida antarctica lipase B suspended in ionic liquids containing long alkyl-chain cations showed excellent synthetic activity and operational stability for biodiesel production. The interest of this process lies in the possibility of recycling the biocatalyst and the easy separation of the biodiesel from the reaction mixture. The ionic liquids used, 1-hexadecyl-3-methylimidazolium triflimide ([C(16)MIM][NTf(2)]) and 1-octadecyl-3-methylimidazolium triflimide ([C(18)MIM][NTf(2)]), produced homogeneous systems at the start of the reaction and, at the end of the same, formed a three-phase system, allowing the selective extraction of the products using straightforward separation techniques, and the recycling of both the ionic liquid and the enzyme. These are very important advantages which may be found useful in environmentally friendly production conditions.

  19. Mars Propellant Production with Ionic Liquids Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Thompson, Karen; Zeitlin, Nancy; Muscatello, Anthony

    2015-01-01

    This project seeks to develop a single vessel for carbon dioxide (CO2) capture and electrolysis for in situ Mars propellant production by eliminating several steps of CO2 processing, two cryocoolers, a high temperature reactor, a recycle pump, and a water condenser; thus greatly reducing mass, volume, and power.

  20. Sandia National Laboratories/Production Agency Weapon Waste Minimization Plan

    SciTech Connect

    Skinrood, A.C.; Radosevich, L.G.

    1991-07-01

    This Plan describes activities to reduce the usage of hazardous materials and the production of hazardous material waste during the development, production, stockpile, and retirement phases of war reserve nuclear weapons and nuclear weapon test units. Activities related to the development and qualification of more benign materials and processes for weapon production and the treatment and disposal of these materials from weapon retirement are described in separate plans.

  1. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes.

    PubMed

    Oliveira, Luciana A; Porto, Ana L F; Tambourgi, Elias B

    2006-04-01

    Five agricultural wastes were evaluated in submerged fermentation for xylanolytic enzymes production by Penicillium janthinellum. The wastes were hydrolyzed in acid medium and the liquid fraction was used for cultivation. Corn cob (55.3 U/mL) and oat husk (54.8 U/mL) were the best inducers of xylanase. Sugar cane bagasse (23.0 U/mL) and corn husk (23.8 U/mL) were moderately good, while cassava peel was negligible. Protease production was very low in all agro-industrial residues. The maximum biomass yields were 1.30 and 1.17 g/L for cassava peel and corn husk after 180 h, respectively. Xylanolytic activity showed a cell growth associated profile.

  2. Ultrafiltration treatment for liquid laundry wastes from nuclear power stations

    SciTech Connect

    Kichik, V.A.; Maslova, M.N.; Svittsov, A.A.; Kuleshov, N.F.

    1988-03-01

    The authors conduct a comprehensive analysis of the waste constituents--radioactive and organic--of the laundry water resulting from the on-site laundering and decontamination of clothing worn in nuclear power plants. The primary isotope contaminants consist of niobium and zirconium 95, manganese 54, cobalt 60, iron 59, and cesium 134 and 137. A variety of filter and adsorbent materials used in an ultrafiltration process are comparatively tested for their effectiveness in removing not only these isotopes but also the organic contaminants in the process of recycling the water. Those materials consist of copper hexacyanoferrate, polyacrylophosphonic acid, and several metal-polymer complexes.

  3. Nuclear waste glass product consistency test (PCT): Version 7.0. Revision 3

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.

    1994-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Product Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Product Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 7.0 of the PCT procedure is attached. This draft version has been submitted to ASTM for full committee (C26, Nuclear Fuel Cycle) ballot after being balloted successfully through subcommittee C26.13 on Repository Waste Package Materials Testing.

  4. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste. PMID:25188783

  5. Potential utilization of guar gum industrial waste in vermicompost production.

    PubMed

    Suthar, Surendra

    2006-12-01

    Recycling of guar gum industrial waste through vermitechnology was studied under laboratory conditions by using composting earthworm Perionyx excavatus (Perrier). Three different combination of guar gum industrial waste namely guar gum industrial waste:cow dung:saw dust in 40:30:30 ratio (T1), guar gum industrial waste:cow dung:saw dust in 60:20:20 ratio (T2), and guar gum industrial waste:cow dung:saw dust in 75:15:10 ratio (T3) were used for vermicomposting experiments. Chemical changes during vermicomposting were measured and comparatively T2 showed great increase (from its initial level) for total N (25.4%), phosphorus (72.8%) and potassium (20.9%) than the other treatments. T2 also showed higher vermicomposting coefficient (VC), higher mean biomass for P. excavatus (146.68 mg) and higher cocoon production (about 21.9% and 645.5% more than the T1 and T3, respectively). Maximum earthworm mortality during vermicomposting was recorded with T3 treatment while zero mortality was recorded for T2 treatment after 150 days. Overall, T2 treatment appeared to be an ideal combination for enhancing maximum biopotential of earthworms to management guar gum industrial waste as well as for earthworm biomass and cocoon production.

  6. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  7. Assessment of technology for production of liquid fuels from biomass

    SciTech Connect

    Sheppard, A.P.; Spurlock, J.M.; Birchfield, J.L.

    1981-01-01

    Technologies for liquid fuel production from biomass vary widely in states of development and extent of need for government action. Ethanol produced from grain (principally corn), for use in gasohol blends, is the most widely used and accepted biomass-based energy source in the U.S. at present. Several practical factors strongly point to needed government emphasis on research and development to advance ethanol-production technology. Liquid fuels produced from soybeans, sunflowers, Euphorbia and similar crops, or from aquatic plants, remain as longer-term potential requiring further assessment. 6 refs.

  8. Production of aluminium metal matrix composites by liquid processing methods

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Kumar, R.; Tharmaraj, R.; Velu, P. Shenbaga

    2016-05-01

    Owing to high strength to low weight ratio, Aluminium matrix composites are widely used in diverse applications of many industries. This lucrative property is achieved by reinforcing the brittle ceramic particles in the aluminium matrix. Aluminium matrix composites are produced by liquid processing methods and solid processing methods. Nevertheless, liquidprocessing techniques stand out because of its simplicity and its suitability for mass production. In this review article, the production of aluminium matrix composites by different liquid processing technique is discussed and a comparative study is carried out.

  9. Production of gaseous fuel by pyrolysis of municipal solid waste

    NASA Technical Reports Server (NTRS)

    Crane, T. H.; Ringer, H. N.; Bridges, D. W.

    1975-01-01

    Pilot plant tests were conducted on a simulated solid waste which was a mixture of shredded newspaper, wood waste, polyethylene plastics, crushed glass, steel turnings, and water. Tests were conducted at 1400 F in a lead-bath pyrolyser. Cold feed was deaerated by compression and was dropped onto a moving hearth of molten lead before being transported to a sealed storage container. About 80 percent of the feed's organic content was converted to gaseous products which contain over 90 percent of the potential waste energy; 12 percent was converted to water; and 8 percent remained as partially pyrolyzed char and tars. Nearly half of the carbon in the feed is converted to benzene, toluene and medium-quality fuel gas, a potential credit of over $25 per ton of solid waste. The system was shown to require minimal preprocessing and less sorting then other methods.

  10. A modern solid waste management strategy--the generation of new by-products.

    PubMed

    Fudala-Ksiazek, Sylwia; Pierpaoli, Mattia; Kulbat, Eliza; Luczkiewicz, Aneta

    2016-03-01

    To benefit the environment and society, EU legislation has introduced a 'zero waste' strategy, in which waste material should be converted to resources. Such legislation is supported by the solid waste hierarchy concept, which is a set of priorities in waste management. Under this concept, municipal solid waste plants (MSWPs) should be equipped with sorting and recycling facilities, composting/incineration units and landfill prisms for residual bulk disposal. However, each of the aforementioned facilities generates by-products that must be treated. This project focuses on the leachates from landfill prisms, including modern prism (MP) that meet EU requirements and previous prism (PP) that provide for the storage of permitted biodegradable waste as well as technological wastewaters from sorting unit (SU) and composting unit (CU), which are usually overlooked. The physico-chemical parameters of the liquid by-products collected over 38 months were supported by quantitative real-time PCR (qPCR) amplifications of functional genes transcripts and a metagenomic approach that describes the archaeal and bacterial community in the MP. The obtained data show that SU and especially CU generate wastewater that is rich in nutrients, organic matter and heavy metals. Through their on-site pre-treatment and recirculation via landfill prisms, the landfill waste decomposition process may be accelerated because of the introduction of organic matter and greenhouse gas emissions may be increased. These results have been confirmed by the progressive abundance of both archaeal community and the methyl coenzyme M reductase (mcrA) gene. The resulting multivariate data set, supported by a principal component analysis, provides useful information for the design, operation and risk assessment of modern MSWPs. PMID:26851170

  11. A modern solid waste management strategy--the generation of new by-products.

    PubMed

    Fudala-Ksiazek, Sylwia; Pierpaoli, Mattia; Kulbat, Eliza; Luczkiewicz, Aneta

    2016-03-01

    To benefit the environment and society, EU legislation has introduced a 'zero waste' strategy, in which waste material should be converted to resources. Such legislation is supported by the solid waste hierarchy concept, which is a set of priorities in waste management. Under this concept, municipal solid waste plants (MSWPs) should be equipped with sorting and recycling facilities, composting/incineration units and landfill prisms for residual bulk disposal. However, each of the aforementioned facilities generates by-products that must be treated. This project focuses on the leachates from landfill prisms, including modern prism (MP) that meet EU requirements and previous prism (PP) that provide for the storage of permitted biodegradable waste as well as technological wastewaters from sorting unit (SU) and composting unit (CU), which are usually overlooked. The physico-chemical parameters of the liquid by-products collected over 38 months were supported by quantitative real-time PCR (qPCR) amplifications of functional genes transcripts and a metagenomic approach that describes the archaeal and bacterial community in the MP. The obtained data show that SU and especially CU generate wastewater that is rich in nutrients, organic matter and heavy metals. Through their on-site pre-treatment and recirculation via landfill prisms, the landfill waste decomposition process may be accelerated because of the introduction of organic matter and greenhouse gas emissions may be increased. These results have been confirmed by the progressive abundance of both archaeal community and the methyl coenzyme M reductase (mcrA) gene. The resulting multivariate data set, supported by a principal component analysis, provides useful information for the design, operation and risk assessment of modern MSWPs.

  12. Innovative technologies of waste recycling with production of high performance products

    NASA Astrophysics Data System (ADS)

    Gilmanshin, R.; Ferenets, A. V.; Azimov, Yu I.; Galeeva, A. I.; Gilmanshina, S. I.

    2015-06-01

    The innovative ways of recycling wastes as a tool for sustainable development are presented in the article. The technology of the production of a composite material based on the rubber fiber composite waste tire industry is presented. The results of experimental use of the products in the real conditions. The comparative characteristics of the composite material rubber fiber composite are given. The production technology of construction and repairing materials on the basis of foamed glass is presented.

  13. Enhanced NH3 emission from swine liquid waste

    NASA Astrophysics Data System (ADS)

    Lee, S.; Robarge, W. P.; Walker, J. T.

    2010-12-01

    Swine animal feeding operations are sources of emissions for various gases [ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), volatile organic carbons (VOCs)], and fine particulate matter. Gaseous emissions from simple aqueous systems are typically controlled by temperature, pH, wind speed, total dissolved concentration of the chemical species of interest (e.g. NH3+NH4+ = TAN), and the Henry’s law constant. Ammonia emissions from three different sources [ammonium sulfate (AS), swine anaerobic lagoon liquid (SLL), and pit liquid (SPL) from swine housing units] were evaluated using a small flow-through teflon-lined chamber (SFTC; 0.3m × 0.2m × 0.15m) under controlled laboratory conditions. The SFTC was designed for 100% collection efficiency of NH3 gas emitted from the liquids. The internal volume of the chamber, 9 L, was exchanged 1.1 times per minute. All three liquid formulations exhibit the expected response in emissions with changes in temperature and pH. However, NH3 emissions from the SPL and SLL are ~5 times those from pure solutions of AS. Furthermore, the enhancement in NH3 emissions was a function of TAN concentration, decreasing in intensity at higher TAN and approaching rates comparable to the pure solutions of AS. The difference in emissions with solutions of equivalent TAN suggests a synergistic mechanism that is enhancing NH3 emissions in SPL and SLL. Concurrent measurements as part of the National Air Emissions Monitoring Study at the swine operations originally sampled for SPL and SLL document the emissions of CO2, H2S and VOCs (primarily acetic, propionic and butyric acids) at levels that are comparable to observed NH3 emissions. To date, only additions of NaHCO3 to the SPL and SLL have been found to enhance NH3 emissions and exhibit the same response to increasing TAN as exhibited by the original SPL and SLL solutions. Possible reactions that could enhance emissions will be discussed.

  14. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  15. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  16. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    SciTech Connect

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E.

    2012-07-01

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

  17. Treatment of Liquid Radioactive Waste with High Salt Content by Colloidal Adsorbents - 13274

    SciTech Connect

    Lee, Keun-Young; Chung, Dong-Yong; Kim, Kwang-Wook; Lee, Eil-Hee; Moon, Jei-Kwon

    2013-07-01

    Treatment processes have been fully developed for most of the liquid radioactive wastes generated during the operation of nuclear power plants. However, a process for radioactive liquid waste with high salt content, such as waste seawater generated from the unexpected accident at nuclear power station, has not been studied extensively. In this study, the adsorption efficiencies of cesium (Cs) and strontium (Sr) in radioactive liquid waste with high salt content were investigated using several types of zeolite with different particle sizes. Synthesized and commercial zeolites were used for the treatment of simulated seawater containing Cs and Sr, and the reaction kinetics and adsorption capacities of colloidal zeolites were compared with those of bulk zeolites. The experimental results demonstrated that the colloidal adsorbents showed fast adsorption kinetic and high binding capacity for Cs and Sr. Also, the colloidal zeolites could be successfully applied to the static adsorption condition, therefore, an economical benefit might be expected in an actual processes where stirring is not achievable. (authors)

  18. Nano-TiO2 enhanced photofermentative hydrogen produced from the dark fermentation liquid of waste activated sludge.

    PubMed

    Zhao, Yuxiao; Chen, Yinguang

    2011-10-01

    After anaerobic dark fermentation of waste activated sludge (WAS) for hydrogen production, there are a large number of organic compounds including protein, polysaccharide, and volatile fatty acids left in the dark fermentation liquid, which can be further bioconverted to hydrogen by photofermentation techniquea. In this study, the enhancement of photofermentative hydrogen produced from WAS dark fermentation liquid by using nano-TiO2 is reported. First, high concentration of NH(4)(+)-N in the dark fermentation liquid was observed to inhibit the photofermentative hydrogen production, and its removal was essential. Then the effect of nano-TiO2 on photofermentative hydrogen generation was investigated, and the addition of 100 mg/L nano-TiO2 increased hydrogen by 46.1%. Finally, the mechanisms for nano-TiO2 improving hydrogen production were investigated. It was found that nano-TiO2 improved the decomposition of protein and polysaccharide to small-molecule organic compounds and promoted the growth of photosynthetic bacteria and the activity of nitrogenase but decreased the H2-uptake hydrogenase activity.

  19. THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION

    SciTech Connect

    Wilmarth, B; Sheryl Bush, S

    2008-10-31

    transition metal hydroxides that precipitate when the spent acidic process solutions are rendered alkaline with sodium hydroxide. The sludges contain Sr-90 and transuranic elements. The wastes stored at each site have been generated and stored for over fifty years. Although the majority of the wastes were generated to support nuclear weapons production and reprocessing, the wastes differ substantially between the sites. Table 5 shows the volumes and total radioactivity (including decay daughters) of the waste phases stored in tanks at each site. At Hanford, there are 177 tanks that contain 56.5 Mgal of waste. SRS has 51 larger tanks, of which 2 are closed, that contain 36.5 Mgal. Mainly due to recovery operations, the waste stored at Hanford has less total curies than that stored at Savannah River. The total radioactivity of the Hanford wastes contains approximately 190 MCi, and the total radioactivity of the Savannah River wastes contains 400 MCi.

  20. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    PubMed

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen.

  1. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    PubMed

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen. PMID:26639411

  2. Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.

    PubMed

    Kochergin, Vadim; Miller, Keith

    2011-01-01

    Development of liquid biofuels has entered a new phase of large scale pilot demonstration. A number of plants that are in operation or under construction face the task of addressing the engineering challenges of creating a viable plant design, scaling up and optimizing various unit operations. It is well-known that separation technologies account for 50-70% of both capital and operating cost. Additionally, reduction of environmental impact creates technological challenges that increase project cost without adding to the bottom line. Different technologies vary in terms of selection of unit operations; however, solid-liquid separations are likely to be a major contributor to the overall project cost. Despite the differences in pretreatment approaches, similar challenges arise for solid-liquid separation unit operations. A typical process for ethanol production from biomass includes several solid-liquid separation steps, depending on which particular stream is targeted for downstream processing. The nature of biomass-derived materials makes it either difficult or uneconomical to accomplish complete separation in a single step. Therefore, setting realistic efficiency targets for solid-liquid separations is an important task that influences overall process recovery and economics. Experimental data will be presented showing typical characteristics for pretreated cane bagasse at various stages of processing into cellulosic ethanol. Results of generic material balance calculations will be presented to illustrate the influence of separation target efficiencies on overall process recoveries and characteristics of waste streams.

  3. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.

    PubMed

    Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya

    2014-02-01

    Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500°C but the polycyclic aromatic hydrocarbons became the major compounds at 900°C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700°C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500°C) and syngas recovery by steam gasification at higher temperature (900°C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500°C) might be one of viable options. Steam gasification at 900°C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.

  4. Critical analysis of the waste management performance of two uranium production units in Brazil--part II: Caetite production center.

    PubMed

    Fernandes, Horst Monken; Gomiero, Luiz Alberto; Peres, Valeska; Franklin, Mariza Ramalho; Simões Filho, F Fernando Lamego

    2008-09-01

    This paper discusses the environmental waste management of the Heap-Leach Uranium Production Facility of Caetité located in a semi-arid region in Brazil. A comparison is made with the first uranium production site of the country located in Poços de Caldas. It is demonstrated that differences in the operational process along with different environmental conditions can lead to different impacts. In the present case groundwater is the potential most sensitive environmental medium despite the well-established consensus in the literature that radon and aerosol emissions may turn-out to be the most relevant environmental aspects of an installation located at this type of region. Most of the (226)Ra content in the ore remains in the leached ore that is deposited with the waste rock. A lack in appropriate prediction of the hydrological balance has been causing unanticipated emissions of liquid effluents into the environment. Chemical treatment of this effluent may be needed. Contamination of groundwater in the short term by the waste ponds is not to be expected but it can be a relevant issue in the long term. As a consequence, careful closure schemes will need to be put in place. Finally, the overall costs with remediation in the Caetité production center are lower than those observed at the Poços de Caldas mining site.

  5. Liquid household hazardous wastes in the United States: Identification, disposal, and management plan

    NASA Astrophysics Data System (ADS)

    Robertson, David K.; Akagha, Jude; Belasco, Jon; Bullis, Jane; Byrne, Gloria; di Patria, Joan; Fisher, Wayne; Fonzino, James; Hsu, Jeffrey; Merchan, Lucy; Oster, David; Rosenberg, Jon; von Aulock, Sabine; Vroeginday, Barry

    1987-11-01

    Present methods of disposal of today's hazardous household chemicals in the United States are frequently not acceptable because of pathways to groundwater, surface water, and the atmosphere. This report identifies potentially hazardous liquid waste in the household, notes current disposal practices, and recommends an improved management plan that utilizes consumer education, manufacturer cooperation, and governmental intervention. Laws requiring uniform disposal labeling on packaging are critical. Local, county, and state governments must be encouraged to coordinate the necessary infrastructure. Managing hazardous household wastes now will mitigate potential disposal problems.

  6. Supported liquid membranes in radioactive waste treatment processes: Recent experience and perspective

    SciTech Connect

    Nechaev, A.F.; Projaev, V.V.; Kapranchik, V.P.

    1995-12-31

    Recent experience in practical application of Supported Liquid Membranes (SLM or SUPLIM) both in the hydrometallurgy and nuclear technology has been analyzed. The results obtained allow one to consider SUPLIM as a promising technology for radioactive waste treatment. This statement is based on the evaluation of integrated socioeconomic effects, including quantity of additional chemicals, the volume of secondary technological streams and secondary wastes, simplicity and the low costs of equipment used, potential possibility to organize in situ process, and the level of the harmful impact on personnel. 35 refs.

  7. Membrane treatment of liquid wastes from radiological decontamination operations.

    PubMed

    Svittsov, A A; Khubetsov, S B; Volchek, K

    2011-01-01

    The paper focuses on the evaluation of membrane filtration for the treatment of liquid radioactive streams generated in area decontamination operations. In this work, semi-permeable membranes were demonstrated to be effective reducing the volume of wastewater containing cesium and cobalt by two orders of a magnitude. The efficiency of membrane separation was enhanced by employing additives that enlarged the size of target radionuclide species and improved their rejection by the membranes. This was achieved by chelation with synthetic water-soluble polymers and by adsorption on micro particles of adsorbent coupled with micelle formation. The effect of wastewater composition and that of the radionuclide-binding additives on the volume reduction was investigated. Membrane treatment is expected to help simplify further processing and decrease disposal costs.

  8. Forest products decomposition in municipal solid waste landfills.

    PubMed

    Barlaz, Morton A

    2006-01-01

    Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO(2)-neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components. PMID:16406564

  9. Forest products decomposition in municipal solid waste landfills

    SciTech Connect

    Barlaz, Morton A. . E-mail: barlaz@eos.ncsu.edu

    2006-07-01

    Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO{sub 2}-neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components.

  10. Household Hazardous Waste and Automotive Products: A Pennsylvania Survey.

    ERIC Educational Resources Information Center

    Shorten, Charles V.; And Others

    1995-01-01

    A significant fraction of household hazardous waste (HHW) is generated by home mechanics who use such products as motor oil, cleaners and solvents, and batteries. This survey assessed the following aspects: (1) perceptions of their health-related effects; (2) perceptions of their pollution potential; and (3) their use and disposal. (LZ)

  11. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... application of particular disposal and cleanup regulatory requirements regarding PCB- contaminated building... PCB-contaminated building materials. The Toxic Substances Control Act (TSCA) regulations at 40 CFR 761...-contaminated building material depend on whether the material is classified as PCB bulk product waste or...

  12. [Bioenergy production from waste: examples of biomethane and biohydrogen].

    PubMed

    Aceves-Lara, César Arturo; Trably, Eric; Bastidas-Oyenadel, Juan-Rodrigo; Ramirez, Ivan; Latrille, Eric; Steyer, Jean-Philippe

    2008-01-01

    This new century addresses several environmental challenges among which distribution of drinking water, global warming and availability of novel renewable energy sources to substitute for fossil fuels are of utmost importance. The last two concerns are closely related because the major part of carbon dioxide (CO(2)), considered as the main cause of the greenhouse effect, is widely produced from fossil fuel combustion. Renewable energy sources fully balanced in CO(2) are therefore of special interest, especially the issue of biological production from organic wastes. Among the possibilities of bioenergy production from wastes, two approaches are particularly interesting: The first one is relatively old and related to the production of biomethane by anaerobic digestion while the second one, more recent and innovative, relies on biohydrogen production by microbial ecosystems.

  13. Recycling microbial lipid production wastes to cultivate oleaginous yeasts.

    PubMed

    Yang, Xiaobing; Jin, Guojie; Gong, Zhiwei; Shen, Hongwei; Bai, Fengwu; Zhao, Zongbao Kent

    2015-01-01

    To reduce wastes and the costs of microbial lipid production, it is imperative to recycle resources, including spent cell mass, mineral nutrients and water. In the present study, lipid production by the oleaginous yeast Rhodosporidium toruloides was used as a model system to demonstrate resources recycling. It was found that the hydrolysates of spent cell mass were good media to support cell growth of various oleaginous yeasts. When serial repitching experiments were performed using 70g/L glucose and the hydrolysates alone as nutrients, it produced 16.6, 14.6 and 12.9g/L lipids, for three successive cycles, while lipid titre remained almost constant when spent water was also recycled. The cell mass hydrolysates could be used as equivalents to the mixture of yeast extract and peptone to support lipid production from corn stalk hydrolysates. Our results showed efficient recycling of lipid production wastes and should be helpful to advance microbial lipid technology. PMID:25459808

  14. Recycling microbial lipid production wastes to cultivate oleaginous yeasts.

    PubMed

    Yang, Xiaobing; Jin, Guojie; Gong, Zhiwei; Shen, Hongwei; Bai, Fengwu; Zhao, Zongbao Kent

    2015-01-01

    To reduce wastes and the costs of microbial lipid production, it is imperative to recycle resources, including spent cell mass, mineral nutrients and water. In the present study, lipid production by the oleaginous yeast Rhodosporidium toruloides was used as a model system to demonstrate resources recycling. It was found that the hydrolysates of spent cell mass were good media to support cell growth of various oleaginous yeasts. When serial repitching experiments were performed using 70g/L glucose and the hydrolysates alone as nutrients, it produced 16.6, 14.6 and 12.9g/L lipids, for three successive cycles, while lipid titre remained almost constant when spent water was also recycled. The cell mass hydrolysates could be used as equivalents to the mixture of yeast extract and peptone to support lipid production from corn stalk hydrolysates. Our results showed efficient recycling of lipid production wastes and should be helpful to advance microbial lipid technology.

  15. The Effect of Ionic Liquid Pretreatment on the Bioconversion of Tomato Processing Waste to Fermentable Sugars and Biogas.

    PubMed

    Allison, Brittany J; Cádiz, Juan Canales; Karuna, Nardrapee; Jeoh, Tina; Simmons, Christopher W

    2016-08-01

    Tomato pomace is an abundant lignocellulosic waste stream from industrial tomato processing and therefore a potential feedstock for production of renewable biofuels. However, little research has been conducted to determine if pretreatment can enhance release of fermentable sugars from tomato pomace. Ionic liquids (ILs) are an emerging pretreatment technology for lignocellulosic biomass to increase enzymatic digestibility and biofuel yield while utilizing recyclable chemicals with low toxicity. In this study, pretreatment of tomato pomace with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was investigated. Changes in pomace enzymatic digestibility were affected by pretreatment time and temperature. Certain pretreatment conditions significantly improved reducing sugar yield and hydrolysis time compared to untreated pomace. Compositional analyses suggested that pretreatment primarily removed water-soluble compounds and enriched for lignocellulose in pomace, with only subtle changes to the composition of the lignocellulose. While tomato pomace was effectively pretreated with [C2mim][OAc] to improve enzymatic digestibility, as of yet, unknown factors in the pomace caused ionic liquid pretreatment to negatively affect anaerobic digestion of pretreated material. This result, which is unique compared to similar studies on IL pretreatment of grasses and woody biomass, highlights the need for additional research to determine how the unique chemical composition of tomato pomace and other lignocellulosic fruit residues may interact with ionic liquids to generate inhibitors for downstream fermentation to biofuels. PMID:27039400

  16. Method for processing wastes resulting from production of phosphorus namely, slime and off-gases, with utilization of the resultant products

    SciTech Connect

    Alzhanov, T.M.; Bykov, V.I.; Chernogorenko, V.B.; Dmitrenko, V.V.; Ishkhanov, E.S.; Kipchakbaev, A.D.; Koverya, V.M.; Lynchak, K.A.; Markovsky, E.A.; Muchnik, S.V.; Pobortsev, M.E.; Sapian, V.G.; Sergienko, V.Y.; Vopilov, A.N.

    1981-11-24

    The method comprises processing slime and off-gases resulting from the production of phosphorus with an aqueous solution of copper sulphate having a concentration of from 15 to 50% at a temperature within the range of from 20/sup 0/ to 80/sup 0/ C. As a result, two products are obtained, i.e. A liquid product and a solid one. The solid product containing mainly copper phosphide as well as fluorides and chlorides of alkali metals and silicon, and silicates of calcium and aluminium, is used as a modifying and refining agent for hypereutectic silumines and for the manufacture of a copper-phosphorus alloy. The liquid product containing phosphoric acid, sulphuric acid and copper sulphate is used as starting product for the preparation of a copper-containing fertilizer. The method according to the present invention makes it possible to modify the production of phosphorus so as to eliminate the formation of secondary wastes and improve the environmental control.

  17. Enhanced enzymatic hydrolysis of waste paper for ethanol production using separate saccharification and fermentation.

    PubMed

    Guerfali, Mohamed; Saidi, Adel; Gargouri, Ali; Belghith, Hafedh

    2015-01-01

    Ethanol produced from lignocellulosic biomass is a renewable alternative to diminishing petroleum-based liquid fuels. In this study, the feasibility of ethanol production from waste paper using the separate hydrolysis and fermentation (SHF) was investigated. Two types of waste paper materials, newspaper and office paper, were evaluated for their potential to be used as a renewable feedstock for the production of fermentable sugars via enzymatic hydrolysis of their cellulose fractions. Hydrolysis step was conducted with a mixture of cellulolytic enzymes produced locally by Trichoderma reesei Rut-C30 (cellulase-overproducing mutant) and Aspergillus niger F38 cultures. Surfactant pretreatment effect on waste paper enzymatic digestibility was studied and Triton X-100 at 0.5 % (w w(-1)) has improved the digestibility of newspaper about 45 %. The effects of three factors (dry matter quantity, phosphoric acid pretreatment and hydrolysis time) on the extent of saccharification were also assessed and quantified by using a methodical approach based on response surface methodology. Under optimal hydrolysis conditions, maximum degrees of saccharification of newspaper and office paper were 67 and 92 %, respectively. Sugars released from waste paper were subsequently converted into ethanol (0.38 g ethanol g(-1) sugar) with Saccharomyces cerevisiae CTM-30101.

  18. Methane production from food waste leachate in laboratory-scale simulated landfill.

    PubMed

    Behera, Shishir Kumar; Park, Jun Mo; Kim, Kyeong Ho; Park, Hung-Suck

    2010-01-01

    Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum-substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH(4) yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH(4) yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH(4) production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities. PMID:20227867

  19. New Fission-Product Waste Forms: Development and Characterization

    SciTech Connect

    Alexandra Navrotsky

    2010-07-30

    Research performed on the program “New Fission Product Waste Forms: Development and Characterization,” in the last three years has fulfilled the objectives of the proposal which were to 1) establish ceramic waste forms for disposing of Cs, Sr and minor actinides, 2) fully characterize the phase relationships, structures and thermodynamic and kinetic stabilities of promising waste forms, 3) establish a sound technical basis for understanding key waste form properties, such as melting temperatures and aqueous durability, based on an in-depth understanding of waste form structures and thermochemistry, and 4) establish synthesis, testing, scaleup and commercialization routes for wasteform implementation through out in-kind collaborations. In addition, since Cs and Sr form new elements by radioactive decay, the behavior and thermodynamics of waste forms containing different proportions of Cs, Sr and their decay products were discovered using non-radioactive analogues. Collaborations among researchers from three institutions, UC Davis, Sandia National Laboratories, and Shott Inc., were formed to perform the primary work on the program. The unique expertise of each of the members in the areas of waste form development, structure/property relationships, hydrothermal and high temperature synthesis, crystal/glass production, and thermochemistry was critical to program success. In addition, collaborations with the Brigham Young Univeristy, Ben Gurion University, and Los Alamos National Laboratory, were established for standard entropies of ceramic waste forms, sol-gel synthesis, and high temperature synthesis. This work has had a significant impact in a number of areas. First, the studies of the thermodynamic stability of the mineral analogues provided an important technical foundation for assessment the viability of multicomponent oxide phases for Cs and Sr removal. Moreover, the thermodynamic data discovered in this program established information on the reaction

  20. Pulp and paper from blue agave waste from tequila production.

    PubMed

    Idarraga, G; Ramos, J; Zuñiga, V; Sahin, T; Young, R A

    1999-10-01

    Pulping of blue agave waste, from the production of tequila, was evaluated by both chemical and biomechanical pulping processes. Two conventional and two organosolv systems were used to pulp the agave waste under a standard set of conditions. The soda-ethanol process was superior in terms of delignification and pulp properties in comparison to the soda and ethanol organosolv processes for pulping of agave waste; however, the kraft process gave the best strength properties. In general, the strength of the agave waste pulps was rather poor in comparison to wood and other agro-based pulps; however, the tear strength was relatively high. This result is typical of poorly bonded sheets and may be due to the coarseness of the agave fibers and/or loss of hemicelluloses in the steaming process for the tequila production. Fungal treatment of the agave waste with Ceriporiopsis subvermispora reduced the energy consumption for mechanical refining but gave biomechanical pulps with inferior strength properties. The blue agave chemical pulps should be suitable for blending with softwood kraft pulps for publication grade paper.

  1. Characteristics of solidified products containing radioactive molten salt waste.

    PubMed

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  2. Drop Dynamics and Speciation in Isolation of Metals from Liquid Wastes by Reactive Scavenging

    SciTech Connect

    Arne J. Pearlstein; Alexander Scheeline

    2002-08-30

    Computational and experimental studies of the motion and dynamics of liquid drops in gas flows were conducted with relevance to reactive scavenging of metals from atomized liquid waste. Navier-Stoke's computations of deformable drops revealed a range of conditions from which prolate drops are expected, and showed how frajectiones of deformable drops undergoing deceleration can be computed. Experimental work focused on development of emission fluorescence, and scattering diagnostics. The instrument developed was used to image drop shapes, soot, and nonaxisymmetric departures from steady flow in a 22kw combustor

  3. Selective separation of hydroxide from alkaline nuclear tank waste by liquid-liquid extraction with weak hydroxy acids.

    PubMed

    Chambliss, C Kevin; Haverlock, Tamara I; Bonnesen, Peter V; Engle, Nancy L; Moyer, Bruce A

    2002-04-15

    Recovery and recycle of caustic reagents in industrial processes offer potential means of pollution prevention, as investigated herein for particular needs related to the cleanup of alkaline nuclear waste. Specifically, the recovery of hydroxide from alkaline media by liquid-liquid extraction can be effected utilizing weak hydroxy acids, as demonstrated for NaOH utilizing a series of lipophilic fluorinated alcohols and alkylated phenols dissolved in 1-octanol. Extraction efficiency follows the expected order of acidity of the hydroxy acids, the phenols being the most efficient extractants among the compounds tested. After extraction, NaOH is effectively recoverable from the organic phase upon contact with water. The weakest hydroxy acids are the most efficiently stripped, NaOH recovery being nearly quantitative in a single contact. In competitive extraction experiments, good selectivity for hydroxide recovery over other anions such as nitrate and chloride was demonstrated. Since the order of extraction favors larger anions, the exceptional preference for hydroxide implies that the extraction occurs by deprotonation of the hydroxy acids in a cation-exchange process. Stripping therefore occurs by hydrolysis to regenerate the neutral hydroxy acid, liberating NaOH to the aqueous phase. Since hydroxide equivalents rather than actual hydroxide ions are transferred to the solvent, the process is termed "pseudohydroxide extraction." Hydroxide recovery from a simulant of alkaline nuclear tank waste (Hanford DSSF simulant) was also demonstrated in repeated extraction and stripping cycles.

  4. SOLIEX: A Novel Solid-Liquid Method of Radionuclides Extraction from Radioactive Waste Solutions - 13486

    SciTech Connect

    Shilova, E.; Viel, P.; Huc, V.

    2013-07-01

    This paper describes recent developments in new solid-liquid extraction method, called SOLIEX, to remove cesium from alkaline solutions. SOLIEX relies on the use of a reversible complexing system comprising a carbon felt bearing molecular traps (calixarenes). This complexing system exhibits a high selectivity for Cs, and is thus expected to be helpful for the treatment of highly diluted cesium wastes even with a high concentration of competing alkali metal cations. As additional advantage, this complexing system can be adapted by molecular engineering to capture other radionuclides, such as Sr, Eu, Am. Finally, this complexing system can be easily and efficiently regenerated by using a cost effective stripping procedure, which limits further generation of waste to meet 'zero liquid' discharge requirements for nuclear facilities. (authors)

  5. Co-digestion of press liquids of source-sorted municipal organic waste in anaerobic sludge treatment of municipal wastewater treatment plants.

    PubMed

    Effenberger, Johannes; Jahn, Lydia; Kuehn, Volker

    2016-01-01

    This paper describes a semi-continuous laboratory-scale investigation of a potential co-substrate for mesophilic anaerobic sludge digestion in a municipal wastewater treatment plant. A feed liquid produced from source-sorted municipal organic waste by pretreatment with a screw press was subjected to the investigation. Quantities produced in press trials as well as the composition of the feed liquid are presented. Mass balances for N, P and chemical oxygen demand are given in order to verify the methane production of the feed liquid in co-digestion with sewage sludge at mesophilic conditions. Hydraulic retention time of the reactors were 14.7 to 16 d and organic loading rates were 1.5 to 2.7 kg volatile solids (VS) per cubic metre per day. The pretreatment by screw press is compared to the production of feed liquids with pulper-based pretreatment processes. While the addition of the feed liquid increased methane production by about 345 ml CH(4)/g VS(in), total solids of the feed liquid were reduced to about 63%. With respect to co-digestion at municipal wastewater treatment plants, several risks associated with the investigated feed liquid are outlined.

  6. Co-digestion of press liquids of source-sorted municipal organic waste in anaerobic sludge treatment of municipal wastewater treatment plants.

    PubMed

    Effenberger, Johannes; Jahn, Lydia; Kuehn, Volker

    2016-01-01

    This paper describes a semi-continuous laboratory-scale investigation of a potential co-substrate for mesophilic anaerobic sludge digestion in a municipal wastewater treatment plant. A feed liquid produced from source-sorted municipal organic waste by pretreatment with a screw press was subjected to the investigation. Quantities produced in press trials as well as the composition of the feed liquid are presented. Mass balances for N, P and chemical oxygen demand are given in order to verify the methane production of the feed liquid in co-digestion with sewage sludge at mesophilic conditions. Hydraulic retention time of the reactors were 14.7 to 16 d and organic loading rates were 1.5 to 2.7 kg volatile solids (VS) per cubic metre per day. The pretreatment by screw press is compared to the production of feed liquids with pulper-based pretreatment processes. While the addition of the feed liquid increased methane production by about 345 ml CH(4)/g VS(in), total solids of the feed liquid were reduced to about 63%. With respect to co-digestion at municipal wastewater treatment plants, several risks associated with the investigated feed liquid are outlined. PMID:27332856

  7. Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls

    SciTech Connect

    Rinard, P.M.; Menlove, H.O.

    1996-03-01

    In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system.

  8. Waste prevention in liquid detergent distribution: a comparison based on life cycle assessment.

    PubMed

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2014-11-15

    The distribution of liquid detergents through self-dispensing systems has been adopted in some Italian retail stores over the last few years. By enabling the consumer to refill several times the same container, it is proposed as a less waste-generating and more environmentally friendly alternative to the traditional distribution with single-use plastic containers. For this reason, its implementation is encouraged by the national waste prevention programme recently adopted in Italy. In order to assess such claims, a life cycle assessment was carried out to evaluate whether detergent distribution through self-dispensing systems actually allows to achieve the expected reduction in waste generation and environmental impacts. The focus was on the distribution within the large-scale retail trade and on the categories of laundry detergents, fabric softeners and hand dishwashing detergents. For each of them, a set of baseline single-use scenarios were compared with two alternative waste prevention scenarios, where the detergent is distributed through self-dispensing systems. Beyond waste generation, also the Cumulative Energy Demand and thirteen midpoint-level potential impact indicators were calculated for the comparison. Results showed that a reduction in waste generation up to 98% can be achieved, depending on the category of detergent, on the baseline scenario of comparison and on the number of times the refillable container is used. A progressive reduction in the energy demand and in most of the potential impacts was also observed, starting from a minimum number of uses of the refillable container. PMID:25209251

  9. Waste prevention in liquid detergent distribution: a comparison based on life cycle assessment.

    PubMed

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2014-11-15

    The distribution of liquid detergents through self-dispensing systems has been adopted in some Italian retail stores over the last few years. By enabling the consumer to refill several times the same container, it is proposed as a less waste-generating and more environmentally friendly alternative to the traditional distribution with single-use plastic containers. For this reason, its implementation is encouraged by the national waste prevention programme recently adopted in Italy. In order to assess such claims, a life cycle assessment was carried out to evaluate whether detergent distribution through self-dispensing systems actually allows to achieve the expected reduction in waste generation and environmental impacts. The focus was on the distribution within the large-scale retail trade and on the categories of laundry detergents, fabric softeners and hand dishwashing detergents. For each of them, a set of baseline single-use scenarios were compared with two alternative waste prevention scenarios, where the detergent is distributed through self-dispensing systems. Beyond waste generation, also the Cumulative Energy Demand and thirteen midpoint-level potential impact indicators were calculated for the comparison. Results showed that a reduction in waste generation up to 98% can be achieved, depending on the category of detergent, on the baseline scenario of comparison and on the number of times the refillable container is used. A progressive reduction in the energy demand and in most of the potential impacts was also observed, starting from a minimum number of uses of the refillable container.

  10. Investigation and development of liquid-liquid extraction systems for the removal of pertechnetate from aqueous nuclear waste stream simulants

    NASA Astrophysics Data System (ADS)

    Gansle, Kristina Marie Rohal

    1998-11-01

    The solvent extraction behavior of perrhenate (ReO 4-) and pertechnetate (TcO4- ) from aqueous nuclear waste stream simulants was examined using the anion-exchange reagent Aliquat-336 nitrate. The extraction tendencies of ReO 4- followed those of TcO4- from both acidic and basic media, demonstrating that ReO4 - was a suitable nonradioactive surrogate for TcO4 -. For ICP-AES analysis of Re in high salt solutions, a V-groove nebulizer and 1:1 dilution of the sample and standards with 0.1% Triton X-100 surfactant reduced deposition of solids within the sample introduction system, thus minimizing memory effects. A new approach to waste remediation technology, Redox-Recyclable Extraction and Recovery (R2ER), was also studied. The redox-active species 1,1',3,3'-tetrakis(2-methyl-2-hexyl)ferrocene (HEP) was oxidized to its cationic form for extraction of TcO4 - or ReO4- from aqueous waste and reduced to its neutral form for recovery of the anion. The thermodynamics of liquid-liquid interfacial electron transfer for the oxidation/activation of HEP were shown to be controlled by three factors: the reduction potentials of the redox-active species in the aqueous and organic phases and the transfer of an ion across the liquid-liquid interface. The deactivation/reduction rate of HEP+NO3- by iron was affected by organic solvent diluent and improved by treating the iron with hexanes and 1 M HCl. The volume of solid secondary-waste in the R2ER cycle was reduced by a factor of 3000. In complete extraction/recovery cycles, HEP+NO3- in 2-nonanone removed greater than 99% TcO4- from the 101-SY, 103-SY, 1 M HCl and 1 M NaOH/1.5 M NaNO3 Hanford Tank waste simulants. Another redox-active extractant, bis(hydridotris(1-pyrazolyl)borato)iron(III) nitrate (FeTp2+NO3-), was also selective for ReO4- remediation from simulated aqueous waste. Organic solutions of the alkyl substituted ferricenium extractants were not stable in the presence of nucleophilic anions and/or reducing agents. HEP+NO3

  11. CH₄ and N₂O emissions from different varieties of forage rice (Oryza sativa L.) treating liquid cattle waste.

    PubMed

    Riya, Shohei; Zhou, Sheng; Watanabe, Yoichi; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2012-03-01

    To evaluate global warming potential (GWP) on livestock waste treatment and biomass production in rice field, methane (CH(4)) and nitrous oxide (N(2)O) fluxes from forage rice fields planted with 4 different cultivars (Oryza sativa L. cv. Hamasari, Leafstar, Kusahonami and Takanari) were measured. Each of the cultivars were subjected either to basal fertilization alone (control plots) (84 kg N ha(-1)), or to basal fertilization plus topdressing with liquid cattle waste or LCW (treatment plots) (567 kg N ha(-1)). Liquid cattle waste application to the rice field resulted in peak CH(4) fluxes ranging from 22.0 to 32.1 mg m(-1)h(-1) during flooded conditions and large N(2)O fluxes ranging from 526 to 8591 μg m(-1)h(-1) after midsummer drainage and final drainage. The GWP of the control plots was between 1358 and 3872 kg CO(2)eq ha(-1), while the treatment plots ranged between 4503 and 8426 kg CO(2)eq ha(-1) and more than 60% of the GWP was from the N(2)O emission in treatment plots. In both the control and treatment plots, the lowest GWPs per ton of above-ground biomass were found to be from the Leafstar cultivar, which had a higher aboveground biomass than other cultivars; 117 kg CO(2)eq t(-1) from the control and 257 kg CO(2)eq t(-1) from the treatment plots. Thus, both forage production and suitable disposal of the LCW may be able to be achieved concomitantly with lower levels of GWP by cultivation of Leafstar in our field.

  12. The technological Aspects of Liquid Radioactive Waste Treatment

    SciTech Connect

    Krajc, T.; Stubna, M.; Zatkulak, M.; Slezak, M.; Remias, V.

    2008-07-01

    The Final Treatment Center (FTC) at Mochovce Nuclear Power Plant (NPP) have been tested with radioactive media during commissioning phase (02 - 04/2007) and then introduced to trial operation in 10/2007. One-year trial operation of facility is planned. This paper introducing the short description of FTC technological equipments and the description of technological procedures including the basic technological parameters of both used technologies. The paper is dealing with the description and commentary of inactive/model testing phase and the radioactive test phase, too. A commentary to trial operation preparation works is given. The evaluation of experience gained in the phases of Center commissioning and partially trial operation as well is a part of this paper. The identification of key interdependencies within process parameters and treatment product properties is carried out. The fulfillment of the projected output parameters for all technological facilities and the achievement of required qualitative parameters of individual treated RAW products are displayed. (authors)

  13. Tobacco Product Waste: An Environmental Approach to Reduce Tobacco Consumption.

    PubMed

    Novotny, Thomas E; Slaughter, Elli

    2014-01-01

    Cigarette butts and other tobacco product wastes (TPW) are the most common items picked up in urban and beach cleanups worldwide. TPW contains all the toxins, nicotine, and carcinogens found in tobacco products, along with the plastic nonbiodegradable filter attached to almost all cigarettes sold in the United States and in most countries worldwide. Toxicity studies suggest that compounds leached from cigarette butts in salt and fresh water are toxic to aquatic micro-organisms and test fish. Toxic chemicals have also been identified in roadside TPW. With as much as two-thirds of all smoked cigarettes (numbering in the trillions globally) being discarded into the environment each year, it is critical to consider the potential toxicity and remediation of these waste products. This article reviews reports on the toxicity of TPW and recommends several policy approaches to mitigation of this ubiquitous environmental blight.

  14. Disposal of liquid wastes by injection underground--Neither myth nor millennium

    USGS Publications Warehouse

    Piper, Arthur M.

    1969-01-01

    Injecting liquid wastes deep underground is an attractive but not necessarily practical means for disposing of them. For decades, impressive volumes of unwanted oil-field brine have been injected, currently about 10,000 acre-feet yearly. Recently, liquid industrial wastes are being injected in ever-increasing quantity. Dimensions of industrial injection wells range widely but the approximate medians are: depth, 2,660 feet; thickness of injection zone, 185 feet; injection rate, 135 gallons per minute; wellhead injection pressure, 185 pounds per square inch. Effects of deep injection are complex and not all are understood clearly. In a responsible society, injection cannot be allowed to put wastes out of mind. Injection is no more than storage--for all time in the case of the most intractable wastes--in underground space of which little is attainable in some areas and which is exhaustible in most areas. Liquid wastes range widely in character and concentration-some are incompatible one with another or with materials of the prospective injection zone; some which are reactive or chemically unstable would require pretreatment or could not be injected. Standards by which to categorize the wastes are urgently desirable. To the end that injection may be planned effectively and administered in orderly fashion, there is proposed an immediate and comprehensive canvass of all the United States to outline injection provinces and zones according to their capacities to accept waste. Much of the information needed to this end is at hand. Such a canvass would consider (1) natural zone, of groundwater circulation, from rapid to stagnant, (2) regional hydrodynamics, (3) safe injection pressures, and (4) geochemical aspects. In regard to safe pressure, definitive criteria would be sought by which to avoid recurrence of earthquake swarms such as seem to have been triggered by injection at the Rocky Mountain Arsenal well near Denver, Colo. Three of the 50 States--Missouri, .Ohio, and

  15. Characterization of low-level liquid wastes at the Oak Ridge National Laboratory

    SciTech Connect

    Peretz, F.J.; Clark, B.R.; Scott, C.B.; Berry, J.B.

    1986-12-01

    This report compiles and evaluates existing data on samples taken from the Oak Ridge National Laboratory Low-Level Liquid Waste (LLW) system. Although the primary focus is on the contents of the eight 50,000-gal Melton Valley Storage Tanks, data on raw LLW from the source facilities, Evaporator Service Tanks, and past operations involving the Gunite Storage Tanks are also included. A brief overview of the ORNL LLW system is provided. Methods of sample collection and analytical procedures are described. Data from each set of samples are reported and evaluated against criteria for classification of wastes. The quality and self-consistency of the data set are also discussed. Issues ranging from classifying as transuranic or Resource Conservation and Recovery Act hazardous waste to providing input for dose-rate calculations and evaluations of chemical compatibility with potential processing options are discussed. Remaining data voids are identified, and activities for filling those voids are recommended. 13 figs., 41 tabs.

  16. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  17. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  18. Energy Production from Zoo Animal Wastes

    SciTech Connect

    Klasson, KT

    2003-04-07

    Elephant and rhinoceros dung was used to investigate the feasibility of generating methane from the dung. The Knoxville Zoo produces 30 cubic yards (23 m{sup 3}) of herbivore dung per week and cost of disposal of this dung is $105/week. The majority of this dung originates from the Zoo's elephant and rhinoceros population. The estimated weight of the dung is 20 metric tons per week and the methane production potential determined in experiments was 0.033 L biogas/g dung (0.020 L CH{sub 4}/g dung), and the digestion of elephant dung was enhanced by the addition of ammonium nitrogen. Digestion was better overall at 37 C when compared to digestion at 50 C. Based on the amount of dung generated at the Knoxville Zoo, it is estimated that two standard garden grills could be operated 24 h per day using the gas from a digester treating 20 metric ton herbivore dung per week.

  19. Replacement of the cross-site transfer system liquid waste transport alternatives evaluation, Project W-058

    SciTech Connect

    Vo, D.V.; Epperson, E.M.

    1995-05-01

    This document examines high-/low-level radioactive liquid waste transport alternatives. Radioactive liquid waste will be transported from the 200 West Area to the 200 East Area and within the 200 East Areas for safe storage and disposal. The radioactive waste transport alternatives are the Aboveground Transport System (French LR-56 Cask System [3,800 L (1,000 gal)]), 19,000-L (5,000-gal) trailer tanker system, 75,700-L (20,000-gal) rail tanker system and Underground Transport System (buried pipe [unlimited transfer volume capability]). The evaluation focused on the following areas: initial project cost, operational cost, secondary waste generation, radiation exposure, and final decommissioning. The evaluation was based on the near term (1995 to 2005) estimated volume of 49.509 million L (13.063 million gal) and long term (1995 to 2028) estimated volume of 757.1 million L (200 million gal). The conclusion showed that the buried pipe (Underground Transport System) resulted in the lowest overall total cost for near and long term, the trailer container resulted in the highest total cost for near and long term, and the French truck was operationally impractical and cost prohibitive.

  20. Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-01-30

    The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined.

  1. Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-01-30

    The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined. PMID:18524482

  2. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques

    SciTech Connect

    Lu Xiaowei; Jordan, Beth; Berge, Nicole D.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from

  3. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    SciTech Connect

    Stabnikova, O. Liu, X.Y.; Wang, J.Y.

    2008-07-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  4. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    SciTech Connect

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m. The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m in radius. Using this process, ORNL has disposed of over 1.5 x 10/sup 6/ Ci of activity; the principal nuclides are /sup 90/Sr and /sup 137/Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 liters of slurry. Disposal cost per liter is about $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. Recent regulatory constraints may cause permanent cessation of the operation. Federal and state statutes, written for other types of injection facilities, impact the ORNL facility. This disposal process, which may have great applicability for disposal of many wastes, including hazardous wastes, may not be developed for future use.

  5. Production of technical-grade sodium citrate from glycerol-containing biodiesel waste by Yarrowia lipolytica.

    PubMed

    Kamzolova, Svetlana V; Vinokurova, Natalia G; Lunina, Julia N; Zelenkova, Nina F; Morgunov, Igor G

    2015-10-01

    The production of technical-grade sodium citrate from the glycerol-containing biodiesel waste by Yarrowia lipolytica was studied. Batch experiments showed that citrate was actively produced within 144 h, then citrate formation decreased presumably due to inhibition of enzymes involved in this process. In contrast, when the method of repeated batch cultivation was used, the formation of citrate continued for more than 500 h. In this case, the final concentration of citrate in the culture liquid reached 79-82 g/L. Trisodium citrate was isolated from the culture liquid filtrate by the addition of a small amount of NaOH, so that the pH of the filtrate increased to 7-8. This simple and economic isolation procedure gave the yield of crude preparation containing trisodium citrate 5.5-hydrate up to 82-86%.

  6. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.

    PubMed

    Alibardi, Luca; Cossu, Raffaello

    2016-01-01

    Organic waste from municipalities, food waste and agro-industrial residues are ideal feedstocks for use in biological conversion processes in biorefinery chains, representing biodegradable materials containing a series of substances belonging to the three main groups of the organic matter: carbohydrates, proteins and lipids. Biological hydrogen production by dark fermentation may assume a central role in the biorefinery concept, representing an up-front treatment for organic waste capable of hydrolysing complex organics and producing biohydrogen. This research study was aimed at evaluating the effects of carbohydrate, protein and lipid content of organic waste on hydrogen yields, volatile fatty acid production and carbon-fate. Biogas and hydrogen productions were linearly correlated to carbohydrate content of substrates while proteins and lipids failed to produce significant contributions. Chemical composition also produced effects on the final products of dark fermentation. Acetic and butyric acids were the main fermentation products, with their ratio proving to correlate with carbohydrate and protein content. The results obtained in this research study enhance the understanding of data variability on hydrogen yields from organic waste. Detailed information on waste composition and chemical characterisation are essential to clearly identify the potential performances of the dark fermentation process.

  7. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.

    PubMed

    Alibardi, Luca; Cossu, Raffaello

    2016-01-01

    Organic waste from municipalities, food waste and agro-industrial residues are ideal feedstocks for use in biological conversion processes in biorefinery chains, representing biodegradable materials containing a series of substances belonging to the three main groups of the organic matter: carbohydrates, proteins and lipids. Biological hydrogen production by dark fermentation may assume a central role in the biorefinery concept, representing an up-front treatment for organic waste capable of hydrolysing complex organics and producing biohydrogen. This research study was aimed at evaluating the effects of carbohydrate, protein and lipid content of organic waste on hydrogen yields, volatile fatty acid production and carbon-fate. Biogas and hydrogen productions were linearly correlated to carbohydrate content of substrates while proteins and lipids failed to produce significant contributions. Chemical composition also produced effects on the final products of dark fermentation. Acetic and butyric acids were the main fermentation products, with their ratio proving to correlate with carbohydrate and protein content. The results obtained in this research study enhance the understanding of data variability on hydrogen yields from organic waste. Detailed information on waste composition and chemical characterisation are essential to clearly identify the potential performances of the dark fermentation process. PMID:26254676

  8. Radioactive liquid wastes discharged to ground in the 200 areas during 1982

    SciTech Connect

    Sliger, G.J.

    1983-03-02

    This document summarizes radioactive liquids discharged to the ground in the 200 Areas of the Hanford Sites and is provided pursuant to Department of Energy (DOE) Order 5484.1A, Environmental Protection, Safety, and Health Protection Information Reporting Requirements. There are twenty-five liquid effluent discharge streams in the 200 Areas, twenty-one of which are normally contaminated or potentially contaminated with radioactive material. Of these twenty-one streams, two discharged radioactive material above Table I concentration guides, and one other discharged material above Table II concentration guides. The four noncontaminated streams are included to maintain an accurate record of total volume of liquid discharged to each specific waste site. B-Plant process condensate (BCP) exceeded Table I for Sr-90 by a factor of 15 and Cs-137 by a factor of 3.5. Discharge point ws the 216-B-62 Crib. Plans have been developed to provide effluent treatment improvements which will bring this waste stream below Table I concentration guides for all radioisotopes. PUREX process condensate (PDD) exceeded Table II for Cs-137 by a factor of 2.6. Discharge point was the 216-A-10 Crib. UO-3 Plant process condensate (U-12) exceeded Table I for total uranium by a factor of 11. Discharge point was the 216-U-12 Crib. (Note: The uranium limits for liquid have recently been reduced, and the UO-3 Plant has made process changes to meet the new limits in the future.)

  9. Biodiesel production from waste frying oil using waste animal bone and solar heat.

    PubMed

    Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino

    2016-01-01

    A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones.

  10. Feasibility study of the applicability of the activated sludge process to treatment of radioactive organic liquid waste

    SciTech Connect

    Koyama, Akio; Nishimaki, Kenzo

    1997-12-31

    The authors used an activated sludge process to treat radioactive organic liquid waste. Organic liquid waste is difficult to treat by conventional radioactive liquid treatment processes, but in order to reduce long-term irradiation of the public the removal of radionuclides from such waste is preferable to dilution. Activated sludge processes are widely used for the biological treatment of sewage and are considered appropriate means for treating radioactive organic liquid waste. In this process, the fate of radionuclides eluted by treated water or immobilized by activated sludge, is extremely important for public safety and for the treatment of radioactive organic liquid waste. The authors performed uptake and desorption behavior experiments on the three short half-life radionuclides {sup 134}Cs, {sup 57}Co and {sup 85}Sr, and used three nutritive types of artificial sewage as the feed solution. On the basis of the results, they discuss the uptake-desorption behavior of these radionuclides in an activated sludge process. The authors conclude that treatment of radioactive organic liquid waste by an activated sludge process is possible, but improvements must be made in the process if it is to be more effective.

  11. Production of a High-Level Waste Glass from Hanford Waste Samples

    SciTech Connect

    Crawford, C.L.; Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP).

  12. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  13. Fermentative Hydrogen Production From Food Waste Without Inocula

    NASA Astrophysics Data System (ADS)

    Shimizu, S.; Fujisawa, A.; Mizuno, O.; Kameda, T.; Yoshioka, T.

    2008-02-01

    The kind of seed microorganisms and its growth conditions are important factors for the hydrogen fermentation. However, there are many kinds of bacteria in food waste, and it is necessary to know their behavior if it is used as a substrate. Therefore, hydrogen fermentation of food waste was investigated in the absence of inocula with an initial pH varying from 5 to 9 and in a temperature range between 22 to 50 °C. Hydrogen production occurred when the initial pH of the solution containing the food waste was adjusted to 7-9 and the temperature was adjusted to 22 or 35 °C (maximum production was 40 ml-H2/g-TS at an initial pH of 9 and a temperature of 35 °C). However, the hydrogen production stopped when the pH decreased due to the accumulation of organic acids. In the next step, the pH was controlled by the addition of a NaOH solution between 5.0 and 9.0. When the pH was controlled between 5.0-6.0, the hydrogen production increased to a maximum of 90 ml-H2/g-TS at a pH of 5.5 and a temperature of 35 °C; more than 4 times more than for the sample without pH adjustment, due to the acceleration of butyrate fermentation.

  14. Recovery of salt wastes in the production of propylene oxide

    SciTech Connect

    Zyablitseva, M.P.; Tyurin, B.K.; Kudinov, V.I.; Bukbulatov, I.K.; Mazanko, A.F.

    1983-02-01

    In the production of propylene oxide as much as 40 t dilute calcium chloride solution forms per ton of product in the step of saponification of propylene chlorhydrine with milk of lime. To create a zero-waste technology for production of propylene oxide, there is practical interest in saponification of propylene chlorhydrine with electrolysis brines with recovery of the resultant solution of sodium chloride after purification to remove organic impurities. The possibility of using an electrochemical method to purify wastewater from production of propylene oxide in using the purified solution as starting material for production of electrolysis brines was investigated. Experimental testing of processes of purification and recovery of wastewaters in a regime of industrial electrolysis confirmed the possibility of using purified wastewater from production of propylene oxide as brine for electrolysis. Incorporation of the developed method into industry will permit zero-waste production of propylene oxide with a closed salt cycle. The cost of purification of 1 m/sup 3/ wastewater is 1-1.5 rubles.

  15. Study on methane fermentation and production of vitamin B12 from alcohol waste slurry.

    PubMed

    Zhang, Zhenya; Quan, Taisheng; Li, Pomin; Zhang, Yansheng; Sugiura, Norio; Maekawa, Takaaki

    2004-01-01

    We studied biogas fermentation from alcohol waste fluid to evaluate the anaerobic digestion process and the production of vitamin B12 as a byproduct. Anaerobic digestion using acclimated methanogens was performed using the continuously stirred tank reactor (CSTR) and fixed-bed reactor packed with rock wool as carrier material at 55 degrees C. We also studied the effects of metal ions added to the culture broth on methane and vitamin B12 formation. Vitamin B12 production was 2.92 mg/L in the broth of the fixed-bed reactor, twice that of the CSTR. The optimum concentrations of trace metal ions added to the culture liquid for methane and vitamin B12 production were 1.0 and 8 mL/L for the CSTR and fixed-bed reactor, respectively. Furthermore, an effective method for extracting and purifying vitamin B12 from digested fluid was developed.

  16. Photolytic method for destruction of dioxins in liquid laboratory waste and identification of the photoproducts from 2,3,7,8-TCDD

    SciTech Connect

    Konstantinov, A.D.; Johnston, A.M.; Cox, B.J.; Petrulis, J.R.; Orzechowski, M.T.; Bunce, N.J.; Tashiro, C.H.M.; Chittim, B.G.

    2000-01-01

    Analytical and other research laboratories that generate small volumes of dioxin-containing wastes have no convenient method for their disposal. The authors have used ultraviolet photolysis with a low-pressure mercury lamp to destroy dioxin-like compounds, both as individual congeners and in actual waste analytical samples, down to nondetect levels. Photolysis promises to be an efficient, safe, and inexpensive method for on-site treatment of liquid laboratory wastes that are contaminated by dioxin-like compounds, allowing the treated materials to be discarded as regular organic solvent waste. Experiments with 1,6-[{sup 3}H]-2,3,7,8-TCDD revealed that the principal photolytic pathway involves cleavage of C-O bonds rather than C-Cl bonds, giving chlorinated hydroxydiphenyl ethers as the initial products and accounting for the low material balances of reductive dechlorination products previously found upon photolysis of PCDDs. The photolysis products from 2,3,7,8-TCDD do not bind to either the Ah receptor or the estrogen receptor in vitro, making it unlikely that the products from UV treatment of PCDD/PCDF in laboratory waste will show either Ah or estrogen receptor-mediated toxicological effects.

  17. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  18. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    SciTech Connect

    Rosenberger, Kent H.

    2013-07-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling

  19. Production of ultrahigh purity copper using waste copper nitrate solution.

    PubMed

    Choi, J Y; Kim, D S

    2003-04-25

    The production of ultrahigh purity copper (99.9999%) by electrolysis in the presence of a cementation barrier has been attempted employing a waste nitric copper etching solution as the electrolyte. The amount of copper deposited on the cathode increased almost linearly with electrolysis time and the purity of copper was observed to increase as the electrolyte concentration was increased. At some point, however, as the electrolyte concentration increased, the purity of copper decreased slightly. As the total surface area of cementation barrier increased, the purity of product increased. The electrolyte temperature should be maintained below 35 degrees C in the range of investigated electrolysis conditions to obtain the ultrahigh purity copper. Considering that several industrial waste solutions contain valuable metallic components the result of present study may support a claim that electrowinning is a very desirable process for their treatment and recovery. PMID:12719148

  20. Production of bioethanol and biodiesel using instant noodle waste.

    PubMed

    Yang, Xiaoguang; Lee, Ja Hyun; Yoo, Hah Young; Shin, Hyun Yong; Thapa, Laxmi Prasad; Park, Chulhwan; Kim, Seung Wook

    2014-08-01

    Instant noodle manufacturing waste was used as feedstock to convert it into two products, bioethanol and biodiesel. The raw material was pretreated to separate it into two potential feedstocks, starch residues and palm oil, for conversion to bioethanol and biodiesel, respectively. For the production of bioethanol, starch residues were converted into glucose by α-amylase and glucoamylase. To investigate the saccharification process of the pretreated starch residues, the optimal pretreatment conditions were determined. The bioethanol conversion reached 98.5 % of the theoretical maximum by Saccharomyces cerevisiae K35 fermentation after saccharification under optimized pretreatment conditions. Moreover, palm oil, isolated from the instant noodle waste, was converted into valuable biodiesel by use of immobilized lipase (Novozym 435). The effects of four categories of alcohol, oil-to-methanol ratio, reaction time, lipase concentration and water content on the conversion process were investigated. The maximum biodiesel conversion was 95.4 %.

  1. The nitrate to ammonia and ceramic (NAC) process for the denitration and immobilization of low-level radioactive liquid waste (LLW)

    NASA Astrophysics Data System (ADS)

    Muguercia, Ivan

    Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the

  2. LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION

    SciTech Connect

    BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

    2000-03-01

    Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the

  3. Chromium liquid waste inertization in an inorganic alkali activated matrix: leaching and NMR multinuclear approach.

    PubMed

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-04-01

    A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈ 2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process--from the precursor dissolution to the final geopolymer matrix hardening--of different geopolymers containing a waste amount ranging from 3 to 20%wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of TOT bonds (where T is Al or Si) by (29)Si and (27)Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers containing high amounts of waste (10-20%wt). The results show the formation of a stable matrix after only 15 days independently on the waste amount introduced; the longer curing times increase the matrices stabilities and their ability to immobilize chromium cations. The maximum amount of waste that can be inertized is around 10 wt% after a curing time of 28 days.

  4. Detection of Clostridium botulinum in liquid manure and biogas plant wastes.

    PubMed

    Neuhaus, Jürgen; Schrödl, Wieland; Shehata, Awad A; Krüger, Monika

    2015-09-01

    Biogas plants have been considered as a source for possible amplification and distribution of pathogenic bacteria capable of causing severe infections in humans and animals. Manure and biogas wastes could be sources for spore-forming bacteria such as Clostridium botulinum. In the present study, 24 liquid manure and 84 biogas waste samples from dairies where the majority of the cows suffered from chronic botulism were investigated for the presence of botulinum neurotoxins (BoNT) and C. botulinum spores. The prevalence of BoNT/A, B, C, D, and E in biogas wastes was 16.6, 8.3, 10.7, 7.1, and 10.8 %, respectively, while in manure, the prevalence was 0.0, 0.0, 0.0, 8.3, and 4.1 %, respectively. After enrichment of samples in reinforced cultural medium, they were tested for C. botulinum BoNT/A, B, C, D, and E using ELISA (indirect C. botulinum detection). The prevalence of C. botulinum type A, B, C, D, and E samples in biogas wastes was 20.2, 15.5, 19, 10.7, and 34.8 %, respectively, while the prevalence in liquid manure was 0.0, 0.0, 0.0, 8.3, and 12.5 %, respectively. In conclusion, the occurrence of BoNT and C. botulinum spores in biogas waste of diseased animals indicates an increased and underestimated hygienic risk. Application of digestates from biogas fermentations as fertilizers could lead to an accumulation of long lifespan spores in the environment and could be a possible health hazard.

  5. Detection of Clostridium botulinum in liquid manure and biogas plant wastes.

    PubMed

    Neuhaus, Jürgen; Schrödl, Wieland; Shehata, Awad A; Krüger, Monika

    2015-09-01

    Biogas plants have been considered as a source for possible amplification and distribution of pathogenic bacteria capable of causing severe infections in humans and animals. Manure and biogas wastes could be sources for spore-forming bacteria such as Clostridium botulinum. In the present study, 24 liquid manure and 84 biogas waste samples from dairies where the majority of the cows suffered from chronic botulism were investigated for the presence of botulinum neurotoxins (BoNT) and C. botulinum spores. The prevalence of BoNT/A, B, C, D, and E in biogas wastes was 16.6, 8.3, 10.7, 7.1, and 10.8 %, respectively, while in manure, the prevalence was 0.0, 0.0, 0.0, 8.3, and 4.1 %, respectively. After enrichment of samples in reinforced cultural medium, they were tested for C. botulinum BoNT/A, B, C, D, and E using ELISA (indirect C. botulinum detection). The prevalence of C. botulinum type A, B, C, D, and E samples in biogas wastes was 20.2, 15.5, 19, 10.7, and 34.8 %, respectively, while the prevalence in liquid manure was 0.0, 0.0, 0.0, 8.3, and 12.5 %, respectively. In conclusion, the occurrence of BoNT and C. botulinum spores in biogas waste of diseased animals indicates an increased and underestimated hygienic risk. Application of digestates from biogas fermentations as fertilizers could lead to an accumulation of long lifespan spores in the environment and could be a possible health hazard. PMID:25753763

  6. Production of bio-fuel ethanol from distilled grain waste eluted from Chinese spirit making process.

    PubMed

    Tan, Li; Sun, Zhaoyong; Zhang, Wenxue; Tang, Yueqin; Morimura, Shigeru; Kida, Kenji

    2014-10-01

    Distilled grain waste eluted from Chinese spirit making is rich in carbohydrates, and could potentially serve as feedstock for the production of bio-fuel ethanol. Our study evaluated two types of saccharification methods that convert distilled grain waste to monosaccharides: enzymatic saccharification and concentrated H2SO4 saccharification. Results showed that enzymatic saccharification performed unsatisfactorily because of inefficient removal of lignin during pretreatment. Concentrated H2SO4 saccharification led to a total sugar recovery efficiency of 79.0 %, and to considerably higher sugar concentrations than enzymatic saccharification. The process of ethanol production from distilled grain waste based on concentrated H2SO4 saccharification was then studied. The process mainly consisted of concentrated H2SO4 saccharification, solid-liquid separation, decoloration, sugar-acid separation, oligosaccharide hydrolysis, and continuous ethanol fermentation. An improved simulated moving bed system was employed to separate sugars from acid after concentrated H2SO4 saccharification, by which 95.8 % of glucose and 85.8 % of xylose went into the sugar-rich fraction, while 83.3 % of H2SO4 went into the acid-rich fraction. A flocculating yeast strain, Saccharomyces cerevisiae KF-7, was used for continuous ethanol fermentation, which produced an ethanol yield of 91.9-98.9 %, based on glucose concentration.

  7. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  8. Use of several waste substrates for carotenoid-rich yeast biomass production.

    PubMed

    Marova, I; Carnecka, M; Halienova, A; Certik, M; Dvorakova, T; Haronikova, A

    2012-03-01

    Carotenoids are industrially significant pigments produced in many bacteria, fungi, and plants. Carotenoid biosynthesis in yeasts is involved in stress response mechanisms. Thus, controlled physiological and nutrition stress can be used for enhanced pigment production. Huge commercial demand for natural carotenoids has focused attention on developing of suitable biotechnological techniques including use of liquid waste substrates as carbon and/or nitrogen source. In this work several red yeast strains (Sporobolomyces roseus, Rhodotorula glutinis, Rhodotorula mucilaginosa) were enrolled into a comparative screening study. To increase the yield of these pigments at improved biomass production, several types of exogenous as well as nutrition stress were tested. Each strain was cultivated at optimal growth conditions and in medium with modified carbon and nitrogen sources. Synthetic media with addition of complex substrates (e.g. yeast extract) and vitamin mixtures as well as some waste materials (whey, potato extract) were used as nutrient sources. Peroxide and salt stress were applied too. The production of carotene enriched biomass was carried out in flasks as well as in laboratory fermentor. The best production of biomass was obtained in inorganic medium with yeast extract. In optimal conditions tested strains differ only slightly in biomass production. All strains were able to use most of waste substrates. Biomass and pigment production was more different according to substrate type. In laboratory fermentor better producers of enriched biomass were both Rhodotorula strains. The highest yields were obtained in R. glutinis CCY 20-2-26 cells cultivated on whey medium (cca 45 g per liter of biomass enriched by 46 mg/L of beta-carotene) and in R. mucilaginosa CCY 20-7-31 grown on potato medium and 5% salt (cca 30 g per liter of biomass enriched by 56 mg/L of beta-carotene). Such dried carotenoid-enriched red yeast biomass could be directly used in feed industry as

  9. Conversion of hazardous plastic wastes into useful chemical products.

    PubMed

    Siddiqui, Mohammad Nahid

    2009-08-15

    Azoisobutylnitrile (AIBN) initiator was used in the treatment of most widely used domestic plastics in lieu of catalysts. The pyrolysis of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), poly-ethylene terephthalate (PET) and polystyrene (PS) plastics with azoisobutylnitrile was carried out individually under nitrogen atmosphere. A series of single (plastic/AIBN) and binary (mixed plastics/AIBN) reactions were carried out in a 25-cm(3) micro-autoclave reactor. The optimum conditions selected for this study were: 5% AIBN by weight of total plastics, 60 min, 650 psi and 420 degrees C. It was found that HDPE, LDPE, PP underwent to a maximum cracking and produced highest amounts of liquid and gaseous products. Pyrolysis of PET and PS plastics with AIBN afforded comparatively significant amount of insoluble organic materials. In other reactions, fixed ratios of mixed plastics were pyrolyzed with AIBN that afforded excellent yields of liquid hydrocarbons. This result shows a very significant increase in the liquid portions of the products on using AIBN in the pyrolysis of plastics. The use of AIBN in the pyrolysis of plastics is seems to be feasible and an environmental friendly alternative to catalytic process for maximizing the liquid fuels or chemical feed stocks in higher amounts.

  10. Liquid and Gaseous Waste Operations Department annual operating report, CY 1992

    SciTech Connect

    Gillespie, M.A.; Maddox, J.J.; Scott, C.B.

    1993-03-01

    A total of 6.05 x 10{sup 7} gal of liquid waste was decontaminated by the Process Waste Treatment Plant (PWTP) ion exchange system during CY 1992. This averaged to 115 gpm throughout the year. When necessary, a wastewater sidestream of 50--80 gpm was treated through the use of a natural zeolite treatment system. An additional 8.00 x 10{sup 6} gal (average of 15 gpm throughout the year) were treated by the zeolite system. Therefore, the average total flow treated at the PWTP for CY 1992 was 130 gpm. In mid-June, the zeolite system was repiped to allow it the capability to treat the ion exchange system`s discharge due to rising Cs problems in the wastewater. While being used to treat the ion exchange system`s discharge, it cannot treat a sidestream of wastewater. During the year, the regeneration of the cation exchange resins resulted in the generation of 7.83 x 10{sup 3} gal of liquid low-level waste (LLLW) concentrate and 1.15 x 10{sup 4} gal of LLLW evaporator feed. The head-end softening process (precipitation/clarification) generated 604 drums (4.40 x 10{sup 3} ft{sup 3}) of solid low-level waste sludge. The zeolite treatment system generated approximately 8.40 x 10{sup 2} ft{sup 3} of spent zeolite resin, which was turned over to the Solid Waste Operations Department for disposal. See Table 1 for a monthly summary of activities at the PWTP. Figures 1, 2, 3, and 4 show a comparison of operations at the PWTP in 1992 with previous years. Figure 5 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1987. A total of 1.55 x 10{sup 8} gal of liquid waste (average of 294 gpm throughout the year) was treated at the Nonradiological Wastewater Treatment Plant (NRWTP). Of this amount, 1.40 x 10{sup 7} gal were treated by the precipitation/clarification process for removal of heavy metals. Twenty-five boxes (1.60 x 10{sup 3} ft{sup 3}) of solid sludge generated by the precipitation/clarification process were removed from the filter press room.

  11. Liquid and Gaseous Waste Operations Department annual operating report, CY 1992

    SciTech Connect

    Gillespie, M.A.; Maddox, J.J.; Scott, C.B.

    1993-03-01

    A total of 6.05 x 10[sup 7] gal of liquid waste was decontaminated by the Process Waste Treatment Plant (PWTP) ion exchange system during CY 1992. This averaged to 115 gpm throughout the year. When necessary, a wastewater sidestream of 50--80 gpm was treated through the use of a natural zeolite treatment system. An additional 8.00 x 10[sup 6] gal (average of 15 gpm throughout the year) were treated by the zeolite system. Therefore, the average total flow treated at the PWTP for CY 1992 was 130 gpm. In mid-June, the zeolite system was repiped to allow it the capability to treat the ion exchange system's discharge due to rising Cs problems in the wastewater. While being used to treat the ion exchange system's discharge, it cannot treat a sidestream of wastewater. During the year, the regeneration of the cation exchange resins resulted in the generation of 7.83 x 10[sup 3] gal of liquid low-level waste (LLLW) concentrate and 1.15 x 10[sup 4] gal of LLLW evaporator feed. The head-end softening process (precipitation/clarification) generated 604 drums (4.40 x 10[sup 3] ft[sup 3]) of solid low-level waste sludge. The zeolite treatment system generated approximately 8.40 x 10[sup 2] ft[sup 3] of spent zeolite resin, which was turned over to the Solid Waste Operations Department for disposal. See Table 1 for a monthly summary of activities at the PWTP. Figures 1, 2, 3, and 4 show a comparison of operations at the PWTP in 1992 with previous years. Figure 5 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1987. A total of 1.55 x 10[sup 8] gal of liquid waste (average of 294 gpm throughout the year) was treated at the Nonradiological Wastewater Treatment Plant (NRWTP). Of this amount, 1.40 x 10[sup 7] gal were treated by the precipitation/clarification process for removal of heavy metals. Twenty-five boxes (1.60 x 10[sup 3] ft[sup 3]) of solid sludge generated by the precipitation/clarification process were removed from the filter press room.

  12. Radioactive liquid wastes discharged to ground in the 200 areas during 1980

    SciTech Connect

    Aldrich, R.C.; Sliger, G.J.

    1981-03-09

    This document is tabulated quarterly for the purpose of summarizing the radioactive liquid wastes that have been discharged to the ground in the 200 Areas. In addition to data for 1980, cumulative data since plant startup are presented. Also in this document is a listing of decayed activity to the various plant sites. An overall summary is presented giving the radioactive liquid waste discharged to the ground during the current year of 1980 and since startup (for both total and decayed depositions) with the Rockwell Hanford Operations (Rockwell) control zone (200 Area plateau). Overall summaries are also presented for 200 East and for 200 West Area. The data contain an estimate of the radioactivity discharged to individual periods: (1) all four quarters of 1980; and (2) from startup through December 31, 1980. The location and reference drawings of each disposal site, and the usage dates of each disposal site are given. The estimates for the radioactivity discharged to the ponds also include major nonradioactive streams. The waste discharged during 1980 to each active disposal site is detailed on a month-to-month basis along with the monthly maximum concentration and average concentration data.

  13. Treatment requirements for decontamination of ORNL low-level liquid waste

    SciTech Connect

    Lee, D.D.; Campbell, D.O.

    1991-10-01

    Experimental studies have been made to provide data for the development of improved processes for decontaminating low-level liquid wastes (LLLWs) that exist and continue to be generated at Oak Ridge National Laboratory. The concept underlying this work is that there is a net benefit if the major radionuclides ({sup 137}Cs, {sup 134}Cs, {sup 90}Sr, and actinides) can be separated into small volumes, thereby reducing the activity of the bulk of the waste so that it can be disposed of or managed at a lower total cost. Data-base calculations on the LLLW supernate and sludges contained in the active Melton Valley Storage Tanks and evaporator storage and service tanks are essential in order to define and determine the extent of the problem. These calculations indicate to what extent alpha- and beta-gamma-emitting radionuclides must be removed and/or treated before final disposition of the waste can be made. They also show that many of the inorganic constitutents (e.g., regulated metals and nitrate) and minor radionuclides such as {sup 14}C and actinides (in terms of quantity present) must be removed before the LLLW can be disposed of as either liquid to the environment or solidified and disposed of as solid NUS Class L-1 or L-2 LLW. 25 refs., 31 tabs.

  14. Liquid digestate from anaerobic treatment of source-separated household waste as fertilizer to barley.

    PubMed

    Haraldsen, Trond Knapp; Andersen, Uno; Krogstad, Tore; Sørheim, Roald

    2011-12-01

    This study examined the efficiency of different organic waste materials as NPK fertilizer, in addition to the risk for leaching losses related to shower precipitation in the first part of the growing season. The experiment was tested in a pot trial on a sandy soil in a greenhouse. Six organic fertilizers were evaluated: liquid anaerobic digestate (LAD) sourced from separated household waste, nitrified liquid anaerobic digestate (NLAD) of the same origin as LAD, meat and bone meal (MBM), hydrolysed salmon protein (HSP), reactor-composted catering waste (CW) and cattle manure (CM). An unfertilized control, calcium nitrate (CN) and Fullgjødsel® 21-4-10 were used as reference fertilizers. At equal amounts of mineral nitrogen both LAD and Fullgjødsel® gave equal yield of barley in addition to equal uptake of N, P, and K in barley grain. NLAD gave significantly lower barley yield than the original LAD due to leaching of nitrate-N after a simulated surplus of precipitation (28 mm) at Zadoks 14. There was significantly increased leaching of nitrate N from the treatments receiving 160 kg N ha(-1) of CN and NLAD in comparison with all the other organic fertilizers. In this study LAD performed to the same degree as Fullgjødsel® NPK fertilizer and it was concluded that LAD can be recommended as fertilizer for cereals. Nitrification of the ammonium N in the digestate caused significantly increased nitrate leaching, and cannot be recommended.

  15. Ionic liquid-based green processes for energy production.

    PubMed

    Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji

    2014-11-21

    To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production. PMID:24553494

  16. Ionic liquid-based green processes for energy production.

    PubMed

    Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji

    2014-11-21

    To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production.

  17. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    SciTech Connect

    Pool, K.H.; Bean, R.M.

    1994-03-01

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices).

  18. Development of an Immobilisation Technology for Radioactive Waste Solution from Mo-99 Production

    SciTech Connect

    Sizgek, G.D.; Sizgek, E.

    2006-07-01

    Australian Nuclear Science and Technology Organisation (ANSTO) developed a method to immobilize the Intermediate Level Liquid Waste (ILLW) arising from its Mo-99 production process. The immobilisation process involves impregnation of waste solution into ceramic precursor powders, drying, calcining and consolidation (Hot Isostatic Pressing, HIP) to produce final ceramic waste form. Ceramic precursor powder is produced by spray drying of a sol-gel based colloidal dispersion. These free-flowing, microspherical, 20-80 microns, precursors have porosity of 40-50%. An in-house custom designed and manufactured microwave-heated and mechanically fluidized mixer-drier was used for impregnation of the precursor powder with the simulated waste (Depleted Uranyl Nitrate Hexahydrate, DUNH, and inactive Cs, Sr nitrates as fission products) and drying. During impregnation an evaporation rate of 1 l/h water per kW microwave energy in steady state was achieved by matching the feed rate of DUNH to produce equivalent of 35% UO{sub 2} loading. It was demonstrated that the tuned microwave energy can be delivered to the mixer-drier during the entire impregnation process within very low reflection values. The samples of the waste loaded free-flowing powder were subsequently calcined at 750 deg. C under reducing atmosphere for thermal denitration and mineral phase nucleation. Calcined powders were filled into cans. After evacuation and sealing, the cans were isostatically pressed at 1260 deg. C. The consolidated ceramic waste form produced from the DUNH run has been assessed by durability and material characterization tests. Successful confirmation of each processing step at pilot and/or plant scale, has led to the design and construction of the overall process at full scale (equivalent of processing 8 kg U per batch) in a simulated hot-cell mock-up plant. The constructed plant mainly consists of a Microwave-heated Mechanical Fluidized Bed (MWMFB) mixer-drier a fluidized bed calciner, an off

  19. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    SciTech Connect

    1997-01-01

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ``NEPA Compliance Program.`` The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives.

  20. Co-composting of solid and liquid olive mill wastes: management aspects and the horticultural value of the resulting composts.

    PubMed

    Aviani, I; Laor, Y; Medina, Sh; Krassnovsky, A; Raviv, M

    2010-09-01

    Successful co-composting of solid and liquid olive mill wastes (OMW) and obtaining a product of horticultural value may increase the viability of this recycling approach. Two composting cycles were performed, in which olive mill solid wastes (OMSW) were used to form five mixtures, wetted either with fresh water or with olive mill wastewater (OMWW). Up to approximately 0.3m(3) of OMWW could be applied to each m(3) of the raw materials without negatively affecting the chemical, physical and horticultural properties of the resulted composts. A growing media composed of perlite amended with 25-33% OMW-composts showed higher suppressiveness against Fusarium oxysporum f. sp. melonis as compared to equivalent perlite:peat moss mixtures. The yields of tomato plants grown in peat moss amended with 20% (v:v) of OMW-composts were not significantly different than plants grown in unamended peat. The viability of co-composting as a treatment approach for OMWW is discussed in the context of management aspects and the horticultural value of the final product. PMID:20399644

  1. Calculates Neutron Production in Canisters of High-level Waste

    1993-01-15

    ALPHN calculates the (alpha,n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the (alpha,n) neutron production of each actinide in neutrons per second and the total for the canister. The (alpha,n) neutron production rates are source terms only; that is, they are production rates within the glass andmore » do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister.« less

  2. An investigation of biodiesel production from wastes of seafood restaurants.

    PubMed

    El-Gendy, Nour Sh; Hamdy, A; Abu Amr, Salem S

    2014-01-01

    This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp.) in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield) and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst. PMID:25400665

  3. Hydrogen and sulfur production from hydrogen sulfide wastes

    SciTech Connect

    Harkness, J.B.L.; Doctor, R.D.

    1993-03-01

    A new hydrogen sulfide waste-treatment process that uses microwave plasma-chemical technology is currently under development in the Soviet Union and in the United States. Whereas the present waste treatment process only recovers sulfur at best, this novel process recovers both hydrogen and sulfur. The plasma process involves dissociating hydrogen sulfide in a ``nonequilibrium`` plasma in a microwave or radio-frequency reactor. After the dissociation process, sulfur is condensed and sold just as is currently done. The remaining gases are purified and separated into streams containing the product hydrogen, the hydrogen sulfide to be recycled to the plasma reactor, and the process purge containing carbon dioxide and water. This process has particular implications for the petroleum refining industry, in which hydrogen is a widely used reagent and must be produced from increasingly scarce hydrocarbon resources. The modular nature of the new process may also offer economic advantages over small-scale waste treatment technologies widely used in the natural-gas industry. Laboratory-scale experiments with pure hydrogen sulfide indicate that conversions exceeding 90% are possible with appropriate reactor design and that the energy required to dissociate hydrogen sulfide is low enough for the plasma process to be economically competitive. In addition, the experiments show that typical refinery acid-gas streams are compatible with the plasma process and that all by-products can be treated with existing technology.

  4. Hydrogen and sulfur production from hydrogen sulfide wastes

    SciTech Connect

    Harkness, J.B.L.; Doctor, R.D.

    1993-01-01

    A new hydrogen sulfide waste-treatment process that uses microwave plasma-chemical technology is currently under development in the Soviet Union and in the United States. Whereas the present waste treatment process only recovers sulfur at best, this novel process recovers both hydrogen and sulfur. The plasma process involves dissociating hydrogen sulfide in a nonequilibrium'' plasma in a microwave or radio-frequency reactor. After the dissociation process, sulfur is condensed and sold just as is currently done. The remaining gases are purified and separated into streams containing the product hydrogen, the hydrogen sulfide to be recycled to the plasma reactor, and the process purge containing carbon dioxide and water. This process has particular implications for the petroleum refining industry, in which hydrogen is a widely used reagent and must be produced from increasingly scarce hydrocarbon resources. The modular nature of the new process may also offer economic advantages over small-scale waste treatment technologies widely used in the natural-gas industry. Laboratory-scale experiments with pure hydrogen sulfide indicate that conversions exceeding 90% are possible with appropriate reactor design and that the energy required to dissociate hydrogen sulfide is low enough for the plasma process to be economically competitive. In addition, the experiments show that typical refinery acid-gas streams are compatible with the plasma process and that all by-products can be treated with existing technology.

  5. An Investigation of Biodiesel Production from Wastes of Seafood Restaurants

    PubMed Central

    El-Gendy, Nour Sh.; Hamdy, A.; Abu Amr, Salem S.

    2014-01-01

    This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp.) in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield) and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst. PMID:25400665

  6. Additive manufacturing. Continuous liquid interface production of 3D objects.

    PubMed

    Tumbleston, John R; Shirvanyants, David; Ermoshkin, Nikita; Janusziewicz, Rima; Johnson, Ashley R; Kelly, David; Chen, Kai; Pinschmidt, Robert; Rolland, Jason P; Ermoshkin, Alexander; Samulski, Edward T; DeSimone, Joseph M

    2015-03-20

    Additive manufacturing processes such as 3D printing use time-consuming, stepwise layer-by-layer approaches to object fabrication. We demonstrate the continuous generation of monolithic polymeric parts up to tens of centimeters in size with feature resolution below 100 micrometers. Continuous liquid interface production is achieved with an oxygen-permeable window below the ultraviolet image projection plane, which creates a "dead zone" (persistent liquid interface) where photopolymerization is inhibited between the window and the polymerizing part. We delineate critical control parameters and show that complex solid parts can be drawn out of the resin at rates of hundreds of millimeters per hour. These print speeds allow parts to be produced in minutes instead of hours.

  7. Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos

    2016-08-01

    Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified. PMID:27112846

  8. Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos

    2016-08-01

    Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified.

  9. Development of US Navy Shipboard Systems for solid and liquid waste thermal treatment. Report for July 1995-April 1996

    SciTech Connect

    Gullet, B.K.

    1996-07-01

    The paper describes the U.S. Navy`s shipboard environmental challenges and a few of its research programs for meeting its needs for solid and liquid waste treatment. This objective is particularly important in environmentally sensitive areas, such as the Mediterranean Sea, where fleet deployment time is significant. Prohibitions on ocean dumping and anticipated requirements on effluent discharge quality have led the Navy to continue the research, development, and demonstration of shipboard systems to treat their unpreventable wastes. For solid, non-hazardous wastes, post-minimization efforts are geared toward long-term development of systems to thermally pyrolyze and oxidize the wastes into significantly reduced volume and weight.

  10. 16 CFR 1500.231 - Guidance for hazardous liquid chemicals in children's products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... children's products, such as rolling balls, bubble watches, necklaces, pens, paperweights, keychains... liquid-filled children's products, such as rolling balls, bubble watches, necklaces, pens,...

  11. 16 CFR 1500.231 - Guidance for hazardous liquid chemicals in children's products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... children's products, such as rolling balls, bubble watches, necklaces, pens, paperweights, keychains... liquid-filled children's products, such as rolling balls, bubble watches, necklaces, pens,...

  12. 16 CFR 1500.231 - Guidance for hazardous liquid chemicals in children's products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... children's products, such as rolling balls, bubble watches, necklaces, pens, paperweights, keychains... liquid-filled children's products, such as rolling balls, bubble watches, necklaces, pens,...

  13. 16 CFR 1500.231 - Guidance for hazardous liquid chemicals in children's products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... children's products, such as rolling balls, bubble watches, necklaces, pens, paperweights, keychains... liquid-filled children's products, such as rolling balls, bubble watches, necklaces, pens,...

  14. 16 CFR 1500.231 - Guidance for hazardous liquid chemicals in children's products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... children's products, such as rolling balls, bubble watches, necklaces, pens, paperweights, keychains... liquid-filled children's products, such as rolling balls, bubble watches, necklaces, pens,...

  15. Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction.

    PubMed

    He, Yunxia; Ma, En; Xu, Zhenming

    2014-03-15

    This study investigated the recovery of indium from waste liquid crystal display (LCD) panel using vacuum carbon-reduction. First of all, high purity In2O3 was investigated. The results indicated that indium can be reclaimed from In2O3 using vacuum carbon-reduction in thermodynamics and dynamics. The conditions of 1223K, 50wt% carbon addition, 30min, and 1Pa were confirmed as the optimal conditions for pure In2O3 and high purity indium could be selectively recovered on condensing zone. Based on this, the experiment of the recovery of indium from waste LCD power was performed. The best parameters were confirmed as 1223K and 1Pa with 30wt% carbon addition for 30min. The recovery rate of indium from LCD powder could reach to 90wt%. No hazardous materials produced in this process. Therefore, this technique provides the possibility of reutilization of LCD in an environmentally friendly way.

  16. Radioactive liquid wastes discharged to ground in the 200 areas during 1979

    SciTech Connect

    Sliger, G.J.

    1980-03-06

    An overall summary is presented giving the radioactive liquid waste discharged to the ground during the current year of 1979 and since startup (for both total and decayed depositions) with the Rockwell Hanford Operations (Rockwell) control zone (200 Area plateau). Overall summaries are also presented for 200 East and for 200 West Area. The data contains an estimate of the radioactivity discharged to individual ponds, cribs and specific retention sites during the following periods: (1) All four quarters of 1979; and (2) from startup through December 31, 1979. The location and reference drawings of each disposal site, and the usage dates of each disposal site are given. The estimates for the radioactivity discharged to the ponds also include major nonradioactive streams. The waste discharged during 1979 to each active disposal site is detailed on a month-to-month basis, along with the monthly maximum concentration and average concentration data.

  17. [A new evaporation procedure for monitoring of iodine-125 in liquid waste].

    PubMed

    Kawae, M; Wada, M; Mori, K; Sasaki, Y; Kano, E

    1987-06-01

    A simplified monitoring method of 125I in liquid waste was devised. The waste water of 200 cm3 was taken on a Saran (polyvinylidene chloride) film covering a stainless steel vat. A stable iodine (20 mg) and sodium hydroxide (1 mmol) was added. The water was evaporated using an infra-red lamp. After heating to dryness, the Saran film was folded and transferred into a polyethylene tube. The radioactivity of 125I was counted with a well type NaI(Tl) scintillation counter. When a multi-channel analyzer was available for counting, an absolute decay rate of 125I was calculated with single and sum photo-peak counts. The radioactivity of 125I counted by a single-channel counter must be corrected with the counting efficiency of about 55%, with a special emphasis of a self absorption of photons. The recovery of 125I for concentrations below the permissible level was more than 98%. PMID:3671791

  18. Integration of crop production with CELSS waste management

    NASA Astrophysics Data System (ADS)

    Wignarajah, K.; Bubenheim, D. L.

    1997-01-01

    Lettuce plants were grown utilizing water, inorganic elements, and CO_2 inputs recovered from waste streams. The impact of these waste-derived inputs on the growth of lettuce was quantified and compared with results obtained when reagent grade inputs were used. Phytotoxicity was evident in both the untreated wastewater stream and the recovered CO_2 stream. The toxicity of surfactants in wastewater was removed using several treatment systems. Harmful effects of gaseous products resulting from incineration of inedible biomass on crop growth were observed. No phytotoxicity was observed when inorganic elements recovered from incinerated biomass ash were used to prepare the hydroponic solution, but the balance of nutrients had to be modified to achieve near optimal growth. The results were used to evaluate closure potential of water and inorganic elemental loops for integrated plant growth and human requirements.

  19. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    SciTech Connect

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m (1000 ft). The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m (660 ft) in radius. Using this process, ORNL has disposed of over 1.5 x 10/sup 6/ Ci of activity; the principal nuclides are /sup 90/Sr and /sup 137/Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 l (180,000 gal) of slurry. Disposal cost per liter is approximately $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. The site is in the structurally complex Valley and Ridge Province. The stratigraphy consists of lower Paleozoic rocks. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. 26 refs., 7 figs.

  20. Development of a hybrid fermentation-enzymatic bioprocess for the production of ethyl lactate from dairy waste.

    PubMed

    Koutinas, Michalis; Menelaou, Maria; Nicolaou, Evrydiki N

    2014-08-01

    This work explores the potential for the development of a hybrid fermentation-enzymatic process for the production of ethyl lactate from dairy waste. Cheese whey was used in Kluyveromyces marxianus and Lactobacillus bulgaricus batch cultures to produce ethanol and lactic acid respectively. Subsequently, the fermentation products were transferred into an organic phase through liquid-liquid extraction and ethyl lactate was formed in an esterification reaction catalyzed by lipases. The production of ethanol and lactic acid achieved under different conditions was 23gL(-1) and 29gL(-1), respectively. Furthermore, the efficiency of various organic solvents for the esterification reaction was evaluated and toluene was chosen for application in the process. The effect of water content was determined aiming to maximize the product yield and 40mgml(-1) was the optimal enzyme concentration. The bioprocess achieved maximum conversion of 33% constituting a valuable alternative to the application of energy demanding chemically derived methods. PMID:24785788

  1. Environmental sampling program for a solar evaporation pond for liquid radioactive wastes

    SciTech Connect

    Romero, R.; Gunderson, T.C.; Talley, A.D.

    1980-04-01

    Los Alamos Scientific Laboratory (LASL) is evaluating solar evaporation as a method for disposal of liquid radioactive wastes. This report describes a sampling program designed to monitor possible escape of radioactivity to the environment from a solar evaporation pond prototype constructed at LASL. Background radioactivity levels at the pond site were determined from soil and vegetation analyses before construction. When the pond is operative, the sampling program will qualitatively and quantitatively detect the transport of radioactivity to the soil, air, and vegetation in the vicinity. Possible correlation of meteorological data with sampling results is being investigated and measures to control export of radioactivity by biological vectors are being assessed.

  2. A&M. Hot liquid waste treatment building (TAN616). Contextual view, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Contextual view, facing south. Wall of hot shop (TAN-607) with high bay at left of view. Lower-roofed building at left edge of view is TAN- 633, hot cell annex. Complex at center of view is TAN-616. Tall metal building with gable roof is TAN-615. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-2-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. Possibility of Salicornia europaea use for the human liquid wastes inclusion into BLSS intrasystem mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia A.; Ushakova, Sofya A.; Tikhomirov, Alexander A.; Kalacheva, Galina S.; Gros, Jean-Bernard

    One of the ways of solving the problem of the human liquid wastes utilization in bioregenerative life support systems (BLSS) can be the use of halophytic vegetable plant Salicornia europaea capable of accumulating sodium chloride in rather high concentrations. Since the most specific higher plant function in BLSS, which at present cannot be substituted by physicochemical processes, appears to be the biosynthesis of a wide spectrum of nutritive substances necessary for a human, the object of the given work was the investigation of the S. europaea productivity, biochemical and mineral composition when grown under close to optimal BLSS vegetative component conditions. As the use of human urine after its preliminary physicochemical processing is supposed to be the mineral solution basis for the S. europaea cultivation, it is necessary to clear up the effect of reduced nitrogen on plants growth. Ground research was carried out. Biochemical composition of the S. europaea edible part showed that crude protein was contained in the highest degree. At that the content of crude protein (24% per dry weight) and cellulose (4.7% per dry weight) was higher in the plants grown on solutions containing amide nitrogen in comparison with the plants grown on solutions with nitrate nitrogen (15.4%—3.1% correspondingly). The water-soluble sugar contents were not high in the S. europaea edible part and depending on the nitrogen nutrition form they amounted to 1.1% (amide nitrogen) and 1.5% (nitrate nitrogen). The polysaccharide number (except cellulose) was rather higher and varied from 7.7% to 8.2%. Although the lipid content in the S. europaea plants was relatively low (7% per dry weight), it was shown that the plant lipids are characterized by a high nonsaturation degree mainly due to alpha linolenic and linoleic acids. Nitrogen nutrition form did not significantly affect the S. europaea productivity, and dry edible biomass of one plant was 8.6 g. Sodium and its concentrations

  4. Detection of free liquid in drums of radioactive waste. [Patent application

    DOEpatents

    Not Available

    1979-10-16

    A nondestructive thermal imaging method for detecting the presence of a liquid such as water within a sealed container is described. The process includes application of a low amplitude heat pulse to an exterior surface area of the container, terminating the heat input and quickly mapping the resulting surface temperatures. The various mapped temperature values can be compared with those known to be normal for the container material and substances in contact. The mapped temperature values show up in different shades of light or darkness that denote different physical substances. The different substances can be determined by direct observation or by comparison with known standards. The method is particularly applicable to the detection of liquids above solidified radioactive wastes stored in sealed containers.

  5. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    ERIC Educational Resources Information Center

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  6. Nanofiltration in the manufacture of liquid dyes production.

    PubMed

    Mikulásek, P; Cuhorka, J

    2010-01-01

    In the manufacture of liquid dyes, almost complete desalting, which helps to improve the stability of the product, enhances the solubility of the dye. Diafiltration is used to allow a high level of desalting to be achieved. The process of desalination of aqueous dye-salt solutions by polymeric nanofiltration membranes using commercially available modules was studied. The influence of dye and salt concentration on the salt rejection and pressure applied on the flux as well as comparison of individual NF membranes for desalting purposes is presented. The great interest is also devoted to the mathematical modelling of nanofiltration and description of discontinuous diafiltration by periodically adding solvent at constant pressure difference.

  7. Mandarin peel wastes pretreatment with steam explosion for bioethanol production.

    PubMed

    Boluda-Aguilar, María; García-Vidal, Lidia; González-Castañeda, Fayiny Del Pilar; López-Gómez, Antonio

    2010-05-01

    The mandarin (Citrus reticulata L.) citrus peel wastes (MCPW) were studied for bioethanol production, obtaining also as co-products: d-limonene, galacturonic acid, and citrus pulp pellets (CPP). The steam explosion pretreatment was analysed at pilot plant level to decrease the hydrolytic enzymes requirements and to separate and recover the d-limonene. The effect of steam explosion on MCPW lignocellulosic composition was analyzed by means thermogravimetric analysis. The d-limonene contents and their influence on ethanol production have been also studied, while concentration of sugars, galacturonic acid and ethanol have been analysed to measure the saccharification and fermentation (HF and SSF) processes efficiency obtained by MCPW steam explosion pretreatment. Ethanol contents of 50-60L/1000kg raw MCPW can be obtained and CPP yields can be regulated by means the control of enzymes dose and the steam explosion pretreatment which can significantly reduce the enzymes requirements. PMID:20093022

  8. Hydrogen production: two stage processes for waste degradation.

    PubMed

    Gómez, X; Fernández, C; Fierro, J; Sánchez, M E; Escapa, A; Morán, A

    2011-09-01

    The dark fermentation process generates hydrogen by biological means. It presents two main advantages: fulfilling requirements for mild operational conditions and gaining benefit from the residual biomass. The process itself may be seen as a pre-treatment step in a complete stabilisation chain, with the aim of attaining the valorisation of residual biomass. However, increasing the yield of H2 production is an imperative task. In this manuscript, a review of recent work in the field of fermentative hydrogen production is presented. As dark fermentation has a maximum yield of 33% (on sugars), a description is also presented of possible second stage processes for the degradation of dark fermentation effluents. Alternatives considered were photofermentation and bioelectrochemical systems (BES) as processes capable of converting fermentation sub-products into H2. Anaerobic digestion as a final stabilisation stage was also considered owing to the wide application of this technology in the treatment of bio-wastes.

  9. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding.

    PubMed

    Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde

    2011-06-01

    Liquid-liquid extraction of actinides and lanthanides by use of ionic liquids is reviewed, considering, first, phenomenological aspects, then looking more deeply at the various mechanisms. Future trends in this developing field are presented.

  10. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    SciTech Connect

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  11. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    DOE PAGES

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less

  12. Compatibilized blends and value added products from leather industry waste

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Di Landro, Luca

    2014-05-01

    Blends based on poly(ethylene-co-vinyl acetate) (EVA) and hydrolyzed proteins (IP), derived from waste products of the leather industry, have been obtained by reactive blending and their chemical physical properties as well as mechanical and rheological behavior were evaluated. The effect of vinyl acetate content and of transesterification agent addition to increase interaction between polymer and bio-based components were considered. These blends represent a new type of biodegradable material and resulted promising for industrial application in several fields such as packaging and agriculture as transplanting or mulching films with additional fertilizing action of IP.

  13. International mobility of hazardous products, industries, and wastes.

    PubMed

    Castleman, B I; Navarro, V

    1987-01-01

    The export of hazards to developing countries, frequently associated with the transfer of technology, is an increasing public health problem. It may arise from the export of hazardous products and wastes, or from the transfer of hazardous industries in the absence of appropriate safeguards. Multinational corporations bear a major responsibility for having lower standards of health protection in manufacturing and marketing in the developing countries than in home-country operations. These firms are coming under growing international pressure from concerned citizens, unions, environmental groups, national governments and international organizations, religious groups, the media, and public health professionals.

  14. Incinerator for the high speed combustion of waste products

    SciTech Connect

    Chang, S.F.

    1986-12-30

    A high speed combustion incinerator is described comprising: a burner which includes a fuel tank, a mixer, and a controller for controlling the amount of the fuel and the air flow; a burner furnace; an incinerator means which includes mainly an outer pipe, an intermediate pipe, and an inner pipe which are all of transverse cylindrical shape. A neck portion on the right side of the inner pipe is of a truncated conical shape and is connected to the burning furnace; a preheating chamber located on the outer pipe of the incinerator means; and a conveyor located in the preheating chamber for conveying waste product to be burned into the incinerator means.

  15. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    PubMed

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  16. Potentials for food waste minimization and effects on potential biogas production through anaerobic digestion.

    PubMed

    Schott, Anna Bernstad Saraiva; Vukicevic, Sanita; Bohn, Irene; Andersson, Tova

    2013-08-01

    Several treatment alternatives for food waste can result in both energy and nutrient recovery, and thereby potential environmental benefits. However, according to the European Union waste management hierarchy, waste prevention should be the prioritized strategy to decrease the environmental burdens from all solid waste management. The aim of the present study was therefore to investigate the potential for food waste minimization among Swedish households through an investigation of the amount of avoidable food waste currently disposed of. A further aim was to investigate the effect on the national biogas production potential through anaerobic digestion of food waste, considering minimization potentials. A method for waste composition analyses of household food waste, where a differentiation between avoidable and unavoidable food waste is made, was used in a total of 24 waste composition analyses of household waste from Swedish residential areas. The total household food waste generation reached 3.4 kg (household and week)(-1), on average, of which 34% is avoidable. The theoretical methane (CH4) potential in unavoidable food waste reached 442 Ndm(3) (kg VS)(-1) or 128 Nm(3) tonne(-1) wet waste, while the measured (mesophilic CH4 batch tests) CH4 production reached 399 Ndm(3) (kg VS)(-1), which is lower than several previous assessments of CH4 production from household food waste. According to this study the combination of a decrease in food waste generation-in case of successful minimization-and decreased CH4 production from unavoidable food waste will thus result in lower total potential energy recovery from household food waste through anaerobic digestion CH4 potential than previously stated.

  17. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  18. Uncoupling of liquid and solid retention times in anaerobic digestion of catering wastes.

    PubMed

    Climenhaga, M A; Banks, C J

    2008-01-01

    Source-separated food wastes collected from a university campus catering facility were processed in bench-scale anaerobic digesters. The feedstock contained a varied mix of fruits, vegetables, meats and fried foods. Two modes of digestion were compared. The first was hydraulic flush (HF) mode, in which liquids were flushed through the reactor on a retention time of 25 days while solids were maintained on an extended retention time of over 150 days. The converse was a solids wastage (SW) mode, in which liquid retention time was over 150 days, and solids were wasted to maintain a retention time of 25 days. SW reactors exhibited methanogenic failure after approximately 45 days. HF reactors, in contrast, maintained stable digestion for a period of 100 days, and were robust enough to recover from a thermal shock applied over a three-day period in which the temperature was increased from 35 degrees C to 50 degrees C between days 105-108 of the experiment. Stable operation was regained by day 139 and continued until the end of the run on day 150.

  19. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC.

    PubMed

    Sun, Yonghui; Liu, Pengtao; Liu, Zhong

    2016-05-20

    The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively.

  20. Double liquid membrane system for the removal of actinides and lanthanides from acidic nuclear wastes

    SciTech Connect

    Chiarizia, R.; Danesi, P.R.

    1985-01-01

    Supported liquid membranes (SLM), consisting of an organic solution of n-octyl-(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and tributyl-phosphate (TBP) in decalin are able to perform selective separation and concentration of actinide and lanthanide ions from aqueous nitrate feed solutions and synthetic nuclear wastes. In the membrane process a possible strip solution is a mixture of formic acid and hydroxylammonium formate (HAF). The effectiveness of this strip solution is reduced and eventually nullified by the simultaneous transfer through the SLM of nitric acid which accumulates in the strip solution. A possible way to overcome this drawback is to make use of a second SLM consisting of a primary amine which is able to extract only HNO/sub 3/ from the strip solution. In this work the results obtained by experimentally studying the membrane system: synthetic nuclear waste/CMPO-TBP membrane/HCOOH-HAF strip solution/primary amine membrane/NaOH solution, are reported. They show that the use of a second liquid membrane is effective in controlling the HNO/sub 3/ concentration in the strip solution, thus allowing the actinide and lanthanide ions removal from the feed solution to proceed to completion. 15 refs., 10 figs., 1 tab.