Science.gov

Sample records for liquid waste quantification

  1. The Sonophysics and Sonochemistry of Liquid Waste Quantification and Remediation

    SciTech Connect

    Matula, Thomas J.

    1998-06-01

    This research is being conducted to (a) perform an in-depth and comprehensive study of the fundamentals of acoustic cavitation and nonlinear bubble dynamics, (b) elucidate the fundamental physics of sonochemical reactions, (c) examine the potential of sonoluminescence to quantify and monitor the presence of alkali metals and other elements in waste liquids, (d) design and evaluate more effective sonochemical reactors for waste remediation, and (e) determine the optimal acoustical parameters in the use of sonochemistry for liquid-waste-contaminant remediation. So far cells have been designed for multibubble sonoluminescence (MBSL) and single-bubble sonoluminescence (SBSL) spectroscopy experiments. Positive results have been obtained in both systems using a Raman system which covers the wavelength range from 790 to 1,070 nm. Further progress from year-1 involved the use of the newly discovered technique of changing the pressure head above the cavitation field to increase the light emission from MBSL. A second method for changing the pressure head involves pressure-jumping, whereby the pressure in the head space above the solution is quickly increased to a new steady value.

  2. DWPF Safely Dispositioning Liquid Waste

    SciTech Connect

    2016-01-05

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  3. DWPF Safely Dispositioning Liquid Waste

    ScienceCinema

    None

    2016-07-12

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  4. Method for treating liquid wastes

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

    1995-12-26

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

  5. Method for treating liquid wastes

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Singh, Prahlad; Ketring, Alan R.

    1995-01-01

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

  6. Liquid waste treatment system. Final report

    SciTech Connect

    Baker, M.N.; Houston, H.M.

    1999-06-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS).

  7. Orthopedic Implant Waste: Analysis and Quantification.

    PubMed

    Payne, Ashley; Slover, James; Inneh, Ifeoma; Hutzler, Lorraine; Iorio, Richard; Bosco, Joseph A

    2015-12-01

    The steadily increasing demand for orthopedic surgeries and declining rates of reimbursement by Medicare and other insurance providers have led many hospitals to look for ways to control the cost of these surgeries. We reviewed administrative records for a 1-year period and recorded total number of surgical cases, number of cases in which an implant was wasted, and cost of each wasted implant. We determined cost incurred because of implant waste, percentage of cases that involved waste, percentage of total implant cost wasted, and average cost of waste per case. We then analyzed the data to determine if case volume or years in surgical practice affected amount of implant waste. Results showed implant waste represents a significant cost for orthopedic procedures within all subspecialties and is an important factor to consider when developing cost-reduction strategies.

  8. Electrochemical treatment of liquid wastes

    SciTech Connect

    Hobbs, D.T.

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  9. Hanford Site liquid waste acceptance criteria

    SciTech Connect

    LUECK, K.J.

    1999-09-11

    This document provides the waste acceptance criteria for liquid waste managed by Waste Management Federal Services of Hanford, Inc. (WMH). These waste acceptance criteria address the various requirements to operate a facility in compliance with applicable environmental, safety, and operational requirements. This document also addresses the sitewide miscellaneous streams program.

  10. Electrochemical treatment of liquid wastes

    SciTech Connect

    Hobbs, D.

    1996-10-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories.

  11. A Spanish model for quantification and management of construction waste.

    PubMed

    Solís-Guzmán, Jaime; Marrero, Madelyn; Montes-Delgado, Maria Victoria; Ramírez-de-Arellano, Antonio

    2009-09-01

    Currently, construction and demolition waste (C&D waste) is a worldwide issue that concerns not only governments but also the building actors involved in construction activity. In Spain, a new national decree has been regulating the production and management of C&D waste since February 2008. The present work describes the waste management model that has inspired this decree: the Alcores model implemented with good results in Los Alcores Community (Seville, Spain). A detailed model is also provided to estimate the volume of waste that is expected to be generated on the building site. The quantification of C&D waste volume, from the project stage, is essential for the building actors to properly plan and control its disposal. This quantification model has been developed by studying 100 dwelling projects, especially their bill of quantities, and defining three coefficients to estimate the demolished volume (CT), the wreckage volume (CR) and the packaging volume (CE). Finally, two case studies are included to illustrate the usefulness of the model to estimate C&D waste volume in both new construction and demolition projects.

  12. Liquid secondary waste. Waste form formulation and qualification

    SciTech Connect

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.; King, W. D.; Nichols, R. L.

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  13. Reduction of INTEC Analytical Radioactive Liquid Waste

    SciTech Connect

    Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  14. Reduction of INTEC Analytical Radioactive Liquid Wastes

    SciTech Connect

    V. J. Johnson; J. S. Hu; A. G. Chambers

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  15. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  16. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  17. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  18. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  19. 20 CFR 654.406 - Excreta and liquid waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Excreta and liquid waste disposal. 654.406... Excreta and liquid waste disposal. (a) Facilities shall be provided and maintained for effective disposal of excreta and liquid waste. Raw or treated liquid waste shall not be discharged or allowed...

  20. Method for solidifying liquid radioactive wastes

    DOEpatents

    Berreth, Julius R.

    1976-01-01

    The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.

  1. Application of dispersive liquid-liquid microextraction for estrogens' quantification by enzyme-linked immunosorbent assay.

    PubMed

    Lima, Diana L D; Silva, Carla Patrícia; Schneider, Rudolf J; Otero, Marta; Esteves, Valdemar I

    2014-07-01

    Estrogens, such as 17β-estradiol (E2) and 17α-ethinylestradiol (EE2), are the major responsible for endocrine-disrupting effects observed in aquatic environments due to their high estrogenic potency, even at concentrations ranging from pgL(-1) to ng L(-1). Thus, it is essential to develop analytical methodologies suitable for monitoring their presence in water samples. Dispersive liquid-liquid microextraction (DLLME) was used as a pre-concentration step prior to the quantification of E2 and EE2 by enzyme-linked immunosorbent assay (ELISA). First, an evaluation of the effect of DDLME on the E2 and EE2 ELISA calibration curves was performed. Since the extraction procedure itself had an influence on the ELISA optical density (OD), it became necessary to subject, not only the samples, but also all the standards to the DLLME process. Working ranges were determined, being between 1.2 and 8000 ng L(-1), for E2, and between 0.22 and 1500 ng L(-1), for EE2. The influence of organic matter, both in the extraction and quantification, was evaluated and it was observed that its presence in the solution did not affect considerably the calibration curve. Recovery rates were also determined, ranging from 77% to 106% for ultrapure water and from 104% to 115% for waste water samples, the most complex ones in what concerns matrix effects. Results obtained when applying the proposed method to real water samples can be considered quite satisfying. Moreover, the obtained working ranges encompass values generally reported in literature, confirming the practical use of the method for environmental samples.

  2. Solid and Liquid Waste Drying Bag

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  3. Investigations of Some Liquid Matrixes for Analyte Quantification by MALDI

    NASA Astrophysics Data System (ADS)

    Moon, Jeong Hee; Park, Kyung Man; Ahn, Sung Hee; Lee, Seong Hoon; Kim, Myung Soo

    2015-06-01

    Sample inhomogeneity is one of the obstacles preventing the generation of reproducible mass spectra by MALDI and to their use for the purpose of analyte quantification. As a potential solution to this problem, we investigated MALDI with some liquid matrixes prepared by nonstoichiometric mixing of acids and bases. Out of 27 combinations of acids and bases, liquid matrixes could be produced from seven. When the overall spectral features were considered, two liquid matrixes using α-cyano-4-hydroxycinnamic acid as the acid and 3-aminoquinoline and N,N-diethylaniline as bases were the best choices. In our previous study of MALDI with solid matrixes, we found that three requirements had to be met for the generation of reproducible spectra and for analyte quantification: (1) controlling the temperature by fixing the total ion count, (2) plotting the analyte-to-matrix ion ratio versus the analyte concentration as the calibration curve, and (3) keeping the matrix suppression below a critical value. We found that the same requirements had to be met in MALDI with liquid matrixes as well. In particular, although the liquid matrixes tested here were homogeneous, they failed to display spot-to-spot spectral reproducibility unless the first requirement above was met. We also found that analyte-derived ions could not be produced efficiently by MALDI with the above liquid matrixes unless the analyte was sufficiently basic. In this sense, MALDI processes with solid and liquid matrixes should be regarded as complementary techniques rather than as competing ones.

  4. Process equipment waste and process waste liquid collection systems

    SciTech Connect

    Not Available

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab.

  5. Bioprocessing of a stored mixed liquid waste

    SciTech Connect

    Wolfram, J.H.; Rogers, R.D.; Finney, R.

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actual mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.

  6. Liquid low level waste management expert system

    SciTech Connect

    Ferrada, J.J.; Abraham, T.J. ); Jackson, J.R. )

    1991-01-01

    An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs.

  7. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  8. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  9. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  10. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling liquid PCB remediation waste... with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single phase... liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid...

  11. 324 Bldg Liquid Waste Handling System Functional Design Criteria

    SciTech Connect

    HAM, J.E.

    1999-12-16

    The 324 Building in the 300 Area of the Hanford Site, is preparing to design, construct, and operate the Liquid Waste Handling System (LWHS). The system will include transfer, collection, treatment, and disposal of radiological and mixed liquid waste.

  12. Liquid Secondary Waste Grout Formulation and Waste Form Qualification

    SciTech Connect

    Um, Wooyong; Williams, B. D.; Snyder, Michelle M. V.; Wang, Guohui

    2016-05-23

    This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form 2.conducting the U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW) 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW) 4.estimating the 99Tc desorption Kd (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA) 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.

  13. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  14. Liquid centrifugation for nuclear waste partitioning

    SciTech Connect

    Bowman, C.D.

    1992-03-11

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF{sub 2} salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the {sup 137}Cs and {sup 135}Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10{sup 7} and the fraction of {sup 137}CS in {sup 133}Cs being as low as a few parts in 10{sup 5}. A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components.

  15. Development of characterization protocol for mixed liquid radioactive waste classification

    SciTech Connect

    Zakaria, Norasalwa; Wafa, Syed Asraf; Wo, Yii Mei; Mahat, Sarimah

    2015-04-29

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as ‘problematic’ waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  16. Development of characterization protocol for mixed liquid radioactive waste classification

    NASA Astrophysics Data System (ADS)

    Zakaria, Norasalwa; Wafa, Syed Asraf; Wo, Yii Mei; Mahat, Sarimah

    2015-04-01

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as `problematic' waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  17. Membrane technologies for liquid radioactive waste treatment

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1999-01-01

    The paper deals with some problems concerning reduction of radioactivity of liquid low-level nuclear waste streams (LLLW). The membrane processes as ultrafiltration (UF), seeded ultrafiltration (SUF), reverse osmosis (RO) and membrane distillation (MD) were examined. Ultrafiltration enables the removal of particles with molecular weight above cut-off of UF membranes and can be only used as a pre-treatment stage. The improvement of removal is achieved by SUF, employing macromolecular ligands binding radioactive ions. The reduction of radioactivity in LLLW to very low level were achieved with RO membranes. The results of experiments led the authors to the design and construction of UF+2RO pilot plant. The development of membrane distillation improve the selectivity of membrane process in some cases. The possibility of utilisation of waste heat from cooling system of nuclear reactors as a preferable energy source can significantly reduce the cost of operation.

  18. Future radioactive liquid waste streams study

    SciTech Connect

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  19. Existing data on the 216-Z liquid waste sites

    SciTech Connect

    Owens, K.W.

    1981-05-01

    During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing data together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.

  20. [Utilization of organic resources in paper pulp waste liquid].

    PubMed

    Lin, Qiaojia; Liu, Jinghong; Yang, Guidi; Huang, Biao

    2005-04-01

    In this paper, one hundred percent of condensed sulfate paper pulp waste liquid was used as the raw material of adhesive, and the activation of its lignin as well as the improving effects of phenol formaldehyde resin and polyfunctional aqueous polymer isocyanate (PAPI) were studied. The results showed that adding formaldehyde to the waste liquid could increase the reactivity of contained lignin, and adding 30% phenol formaldehyde resin or 20% PAPI could make the waste liquid in place of pure phenol formaldehyde resin for producing class I plywood. Furthermore, the cost could be reduced by 55.5% and 49.0%, respectively, in comparing with pure phenol formaldehyde resin. This approach fully used the organic resources in paper pulp waste liquid, reduced environment pollution at the same time, and had unexceptionable economic, social and ecological benefits. The feasibility of preparing adhesives from paper pulp waste liquid was also analyzed by infrared spectrum.

  1. Cement encapsulation of low-level waste liquids. Final report

    SciTech Connect

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of liquid high-level radioactive waste at the West Valley Demonstration Project (WVDP) was essential to ensuring the success of high-level waste (HLW) vitrification. By chemically separating the HLW from liquid waste, it was possible to achieve a significant reduction in the volume of HLW to be vitrified. In addition, pretreatment made it possible to remove sulfates, which posed several processing problems, from the HLW before vitrification took place.

  2. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    SciTech Connect

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  3. Natural diatomite process for removal of radioactivity from liquid waste.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  4. Validated electrochemical and chromatographic quantifications of some antibiotic residues in pharmaceutical industrial waste water.

    PubMed

    Ibrahim, Heba K; Abdel-Moety, Mona M; Abdel-Gawad, Sherif A; Al-Ghobashy, Medhat A; Kawy, Mohamed Abdel

    2017-01-14

    Realistic implementation of ion selective electrodes (ISEs) into environmental monitoring programs has always been a challenging task. This could be largely attributed to difficulties in validation of ISE assay results. In this study, the electrochemical response of amoxicillin trihydrate (AMX), ciprofloxacin hydrochloride (CPLX), trimethoprim (TMP), and norfloxacin (NFLX) was studied by the fabrication of sensitive membrane electrodes belonging to two types of ISEs, which are polyvinyl chloride (PVC) membrane electrodes and glassy carbon (GC) electrodes. Linear response for the membrane electrodes was in the concentration range of 10(-5)-10(-2) mol/L. For the PVC membrane electrodes, Nernstian slopes of 55.1, 56.5, 56.5, and 54.0 mV/decade were achieved over a pH 4-8 for AMX, CPLX, and NFLX, respectively, and pH 3-6 for TMP. On the other hand, for GC electrodes, Nernstian slopes of 59.1, 58.2, 57.0, and 58.2 mV/decade were achieved over pH 4-8 for AMX, CPLX, and NFLX, respectively, and pH 3-6 for TMP. In addition to assay validation to international industry standards, the fabricated electrodes were also cross-validated relative to conventional separation techniques; high performance liquid chromatography (HPLC), and thin layer chromatography (TLC)-densitometry. The HPLC assay was applied in concentration range of 0.5-10.0 μg/mL, for all target analytes. The TLC-densitometry was adopted over a concentration range of 0.3-1.0 μg/band, for AMX, and 0.1-0.9 μg/band, for CPLX, NFLX, and TMP. The proposed techniques were successfully applied for quantification of the selected drugs either in pure form or waste water samples obtained from pharmaceutical plants. The actual waste water samples were subjected to solid phase extraction (SPE) for pretreatment prior to the application of chromatographic techniques (HPLC and TLC-densitometry). On the other hand, the fabricated electrodes were successfully applied for quantification of the antibiotic residues in actual

  5. Quantification of food waste in public catering services - A case study from a Swedish municipality.

    PubMed

    Eriksson, Mattias; Persson Osowski, Christine; Malefors, Christopher; Björkman, Jesper; Eriksson, Emelie

    2017-03-01

    Food waste is a major problem that must be reduced in order to achieve a sustainable food supply chain. Since food waste valorisation measures, like energy recovery, have limited possibilities to fully recover the resources invested in food production, there is a need to prevent food waste. Prevention is most important at the end of the value chain, where the largest number of sub-processes have already taken place and occur in vain if the food is not used for its intended purpose, i.e. consumption. Catering facilities and households are at the very end of the food supply chain, and in Sweden the public catering sector serves a large number of meals through municipal organisations, including schools, preschools and elderly care homes. Since the first step in waste reduction is to establish a baseline measurement in order to identify problems, this study sought to quantify food waste in schools, preschools and elderly care homes in one municipality in Sweden. The quantification was conducted during three months, spread out over three semesters, and was performed in all 30 public kitchen units in the municipality of Sala. The kitchen staff used kitchen scales to quantify the mass of wasted and served food divided into serving waste (with sub-categories), plate waste and other food waste. The food waste level was quantified as 75g of food waste per portion served, or 23% of the mass of food served. However, there was great variation between kitchens, with the waste level ranging from 33g waste per portion served (13%) to 131g waste per portion served (34%). Wasted food consisted of 64% serving waste, 33% plate waste and 3% other food waste. Preschools had a lower waste level than schools, possibly due to preschool carers eating together with the children. Kitchens that received warm food prepared in another kitchen (satellite kitchens) had a 42% higher waste level than kitchens preparing all food themselves (production units), possibly due to the latter having higher

  6. Liquid level measurement in high level nuclear waste slurries

    SciTech Connect

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs.

  7. Concepts for detritiation of waste liquids

    SciTech Connect

    King, C.M. ); Van Brunt, V.; Garber, A.R. ); King, R.B. . Dept. of Chemistry)

    1991-01-01

    Tritium is formed in thermal nuclear reactors both by neutron activation of elements such as deuterium and lithium and by ternary fission in the fuel. It is a weak beta-emitter with a short half-life, 12.3 years, and its radiological significance in reactor discharges is very low. In heavy-water-cooled and -moderated reactors, such as the SRS reactors, the tritium concentration in the moderator is sufficiently high to cause a potential hazard to operators, so research and development programs have been carried out on processes to remove the tritium. Detritiation of light water has also been the subject of major R D efforts world-wide, because reprocessing operations can generate significant quantities of tritium in liquid waste, and high concentrations of tritium may arise in some aqueous streams in future fusion reactors. This paper presents a review of some of the methods that have been proposed, studied, and developed for removal of tritium from light and heavy water, along with some new concepts for aqueous detritiation directly from liquid oxide (HTO) bearing feed streams.

  8. Concepts for detritiation of waste liquids

    SciTech Connect

    King, C.M.; Van Brunt, V.; Garber, A.R.; King, R.B.

    1991-12-31

    Tritium is formed in thermal nuclear reactors both by neutron activation of elements such as deuterium and lithium and by ternary fission in the fuel. It is a weak beta-emitter with a short half-life, 12.3 years, and its radiological significance in reactor discharges is very low. In heavy-water-cooled and -moderated reactors, such as the SRS reactors, the tritium concentration in the moderator is sufficiently high to cause a potential hazard to operators, so research and development programs have been carried out on processes to remove the tritium. Detritiation of light water has also been the subject of major R&D efforts world-wide, because reprocessing operations can generate significant quantities of tritium in liquid waste, and high concentrations of tritium may arise in some aqueous streams in future fusion reactors. This paper presents a review of some of the methods that have been proposed, studied, and developed for removal of tritium from light and heavy water, along with some new concepts for aqueous detritiation directly from liquid oxide (HTO) bearing feed streams.

  9. Quantification of methane and nitrous oxide emissions from various waste treatment facilities by tracer dilution method

    NASA Astrophysics Data System (ADS)

    Mønster, Jacob; Rella, Chris; Jacobson, Gloria; Kjeldsen, Peter; Scheutz, Charlotte

    2013-04-01

    Urban activities generate solid and liquid waste, and the handling and aftercare of the waste results in the emission of various compounds into the surrounding environment. Some of these compounds are emitted as gasses into the atmosphere, including methane and nitrous oxide. Methane and nitrous oxide are strong greenhouse gases and are considered to have 25 and 298 times the greenhouse gas potential of carbon dioxide on a hundred years term (Solomon et al. 2007). Global observations of both gasses have shown increasing concentrations that significantly contribute to the greenhouse gas effect. Methane and nitrous oxide are emitted from both natural and anthropogenic sources and inventories of source specific fugitive emissions from the anthropogenic sources of methane and nitrous oxide of are often estimated on the basis of modeling and mass balance. Though these methods are well-developed, actual measurements for quantification of the emissions is a very useful tool for verifying the modeling and mass balance as well as for validation initiatives done for lowering the emissions of methane and nitrous oxide. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001, Scheutz et al. 2011), where the exact location of the source is located and a tracer gas is released at this source location at a known flow. The ratio of downwind concentrations of the tracer gas and the methane and nitrous oxide gives the emissions rates of the greenhouse gases. This tracer dilution method can be performed using both stationary and mobile measurements and in both cases, real-time measurements of both tracer and quantified gas are required, placing high demands on the analytical detection method. To perform the methane and nitrous oxide measurements, two robust instruments capable of real-time measurements were used, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. One instrument measured the methane and

  10. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  11. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  12. Waste generated in high-rise buildings construction: a quantification model based on statistical multiple regression.

    PubMed

    Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana

    2015-05-01

    Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable.

  13. Greenhouse gas emissions from waste management--assessment of quantification methods.

    PubMed

    Mohareb, Eugene A; MacLean, Heather L; Kennedy, Christopher A

    2011-05-01

    Of the many sources of urban greenhouse gas (GHG) emissions, solid waste is the only one for which management decisions are undertaken primarily by municipal governments themselves and is hence often the largest component of cities' corporate inventories. It is essential that decision-makers select an appropriate quantification methodology and have an appreciation of methodological strengths and shortcomings. This work compares four different waste emissions quantification methods, including Intergovernmental Panel on Climate Change (IPCC) 1996 guidelines, IPCC 2006 guidelines, U.S. Environmental Protection Agency (EPA) Waste Reduction Model (WARM), and the Federation of Canadian Municipalities-Partners for Climate Protection (FCM-PCP) quantification tool. Waste disposal data for the greater Toronto area (GTA) in 2005 are used for all methodologies; treatment options (including landfill, incineration, compost, and anaerobic digestion) are examined where available in methodologies. Landfill was shown to be the greatest source of GHG emissions, contributing more than three-quarters of total emissions associated with waste management. Results from the different landfill gas (LFG) quantification approaches ranged from an emissions source of 557 kt carbon dioxide equivalents (CO2e) (FCM-PCP) to a carbon sink of -53 kt CO2e (EPA WARM). Similar values were obtained between IPCC approaches. The IPCC 2006 method was found to be more appropriate for inventorying applications because it uses a waste-in-place (WIP) approach, rather than a methane commitment (MC) approach, despite perceived onerous data requirements for WIP. MC approaches were found to be useful from a planning standpoint; however, uncertainty associated with their projections of future parameter values limits their applicability for GHG inventorying. MC and WIP methods provided similar results in this case study; however, this is case specific because of similarity in assumptions of present and future landfill

  14. OBSERVATIONS ON WASTE DESTRUCTION IN LIQUID INJECTION INCINERATORS

    EPA Science Inventory

    Various factors affecting the performance of a subscale liquid injection incinerator simulator are discussed. The mechanisms by which waste escapes incineration within the spray flame are investigated for variations in atomization quality, flame stoichiometry. and the initial was...

  15. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  16. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect

    Varvas, M.; Putnik, H.; Johnsson, B.

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  17. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling liquid PCB remediation waste... SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in...

  18. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    SciTech Connect

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  19. In-Situ Chemical Precipitation of Radioactive Liquid Waste - 12492

    SciTech Connect

    Osmanlioglu, Ahmet Erdal

    2012-07-01

    This paper presented in-situ chemical precipitation for radioactive liquid waste by using chemical agents. Results are reported on large-scale implementation on the removal of {sup 137}Cs, {sup 134}Cs and {sup 60}Co from liquid radioactive waste generating from Nuclear Research and Training Centre. Total amount of liquid radioactive waste was 35 m{sup 3} and main radionuclides were Cs-137, Cs- 134 and Co-60. Initial radioactivity concentration of the liquid waste was 2264, 17 and 9 Bq/liter for Cs-137, Cs-134 and Co-60 respectively. Potassium ferro cyanide was selected as chemical agent at high pH levels 8-10 according to laboratory tests. After the process, radioactive sludge precipitated at the bottom of the tank and decontaminated clean liquid was evaluated depending on discharge limits. By this precipitation method decontamination factors were determined as 60, 9 and 17 for Cs-137, Cs-134 and Co-60 respectively. At the bottom of the tank radioactive sludge amount was 0.98 m{sup 3}. It was transferred by sludge pumps to cementation unit for solidification. By in situ chemical processing 97% of volume reduction was achieved. Using the optimal concentration of 0.75 M potassium ferro cyanide about 98% of the {sup 137}Cs can be removed at pH 8. The Potassium ferro cyanide precipitation method could be used successfully in large scale applications with nickel and ferrum agents for removal of Cs-137, Cs-134 and Co- 60. Although DF values of laboratory test were much higher than in-situ implementation, liquid radioactive waste was decontaminated successfully by using potassium ferro cyanide. Majority of liquid waste were discharged as clean liquid. %97.2 volumetric amount of liquid waste was cleaned and discharged at the original site. Reduced amount of sludge transportation in drums is more economical and safer method than liquid transportation. Although DF values could be different for each of applications related to main specifications of original liquid waste, this

  20. Corrosion experience in calcination of liquid nuclear waste

    SciTech Connect

    Zimmerman, C A

    1980-01-01

    The Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory became operational in 1963. Since that time, approximately 13,337,137 litres (3,523,375 gallons) of liquid nuclear wastes, generated during the reprocessing of spent nuclear fuel materials, have been reduced to dry granular solids. The volume reduction is about seven or eight gallons of liquid waste to one gallon of dry granular solids. This paper covers some of the corrosion experiences encountered in over fifteen years of operating that calcination facility. 7 figures, 7 tables.

  1. Methodology for quantification of waste generated in Spanish railway construction works.

    PubMed

    de Guzmán Báez, Ana; Villoria Sáez, Paola; del Río Merino, Mercedes; García Navarro, Justo

    2012-05-01

    In the last years, the European Union (EU) has been focused on the reduction of construction and demolition (C&D) waste. Specifically, in 2006, Spain generated roughly 47million tons of C&D waste, of which only 13.6% was recycled. This situation has lead to the drawing up of many regulations on C&D waste during the past years forcing EU countries to include new measures for waste prevention and recycling. Among these measures, the mandatory obligation to quantify the C&D waste expected to be originated during a construction project is mandated. However, limited data is available on civil engineering projects. Therefore, the aim of this research study is to improve C&D waste management in railway projects, by developing a model for C&D waste quantification. For this purpose, we develop two equations which estimate in advance the amount, both in weight and volume, of the C&D waste likely to be generated in railway construction projects, including the category of C&D waste generated for the entire project.

  2. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    EPA Science Inventory

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  3. Methodology for quantification of waste generated in Spanish railway construction works

    SciTech Connect

    Guzman Baez, Ana de; Garcia Navarro, Justo

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Two equations for C and D waste estimation in railway construction works are developed. Black-Right-Pointing-Pointer Mixed C and D waste is the most generated category during railway construction works. Black-Right-Pointing-Pointer Tunnel construction is essential to quantify the waste generated during the works. Black-Right-Pointing-Pointer There is a relationship between C and D waste generated and railway functional units. Black-Right-Pointing-Pointer The methodology proposed can be used to obtain new constants for other areas. - Abstract: In the last years, the European Union (EU) has been focused on the reduction of construction and demolition (C and D) waste. Specifically, in 2006, Spain generated roughly 47 million tons of C and D waste, of which only 13.6% was recycled. This situation has lead to the drawing up of many regulations on C and D waste during the past years forcing EU countries to include new measures for waste prevention and recycling. Among these measures, the mandatory obligation to quantify the C and D waste expected to be originated during a construction project is mandated. However, limited data is available on civil engineering projects. Therefore, the aim of this research study is to improve C and D waste management in railway projects, by developing a model for C and D waste quantification. For this purpose, we develop two equations which estimate in advance the amount, both in weight and volume, of the C and D waste likely to be generated in railway construction projects, including the category of C and D waste generated for the entire project.

  4. Ternary liquid-liquid equilibria for the phenolic compounds extraction from artificial textile industrial waste

    NASA Astrophysics Data System (ADS)

    Fardhyanti, Dewi Selvia; Prasetiawan, Haniif; Hermawan, Sari, Lelita Sakina

    2017-03-01

    Liquid waste in textile industry contains large amounts of dyes and chemicals which are capable of harming the environment and human health. It is due to liquid waste characteristics which have high BOD, COD, temperature, dissolved and suspended solid. One of chemical compound which might be harmful for environment when disposed in high concentration is phenol. Currently, Phenol compound in textile industrial waste has reached 10 ppm meanwhile maximum allowable phenol concentration is not more than 0.2 ppm. Otherwise, Phenol also has economic value as feedstock of plastic, pharmaceutical and cosmetic industry. Furthermore, suitable method to separate phenol from waste water is needed. In this research, liquid - liquid extraction method was used with extraction time for 70 minutes. Waste water sample was then separated into two layers which are extract and raffinate. Thereafter, extract and raffinate were then tested by using UV-Vis Spectrophotometer to obtained liquid - liquid equilibrium data. Aim of this research is to study the effect of temperature, stirring speed and type of solvent to obtain distribution coefficient (Kd), phenol yield and correlation of Three-Suffix Margules model for the liquid - liquid extraction data equilibrium. The highest extraction yield at 80.43 % was found by using 70% methanol as solvent at extraction temperature 50 °C with stirring speed 300 rpm, coefficient distribution was found 216.334. From this research it can be concluded that Three-Suffix Margules Model is suitable to predict liquid - liquid equilibrium data for phenol system.

  5. ICPP radioactive liquid and calcine waste technologies evaluation. Interim report

    SciTech Connect

    Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

    1994-06-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

  6. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

  7. Quantification of regional leachate variance from municipal solid waste landfills in China.

    PubMed

    Yang, Na; Damgaard, Anders; Kjeldsen, Peter; Shao, Li-Ming; He, Pin-Jing

    2015-12-01

    The quantity of leachate is crucial when assessing pollution emanating from municipal landfills. In most cases, existing leachate quantification measures only take into account one source - precipitation, which resulted in serious underestimation in China due to its waste properties: high moisture contents. To overcome this problem, a new estimation method was established considering two sources: (1) precipitation infiltrated throughout waste layers, which was simulated with the HELP model, (2) water squeezed out of the waste itself, which was theoretically calculated using actual data of Chinese waste. The two sources depended on climate conditions and waste characteristics, respectively, which both varied in different regions. In this study, 31 Chinese cities were investigated and classified into three geographic regions according to landfill leachate generation performance: northwestern China (China-NW) with semi-arid and temperate climate and waste moisture content of about 46.0%, northern China (China-N) with semi-humid and temperate climate and waste moisture content of about 58.2%, and southern China (China-S) with humid and sub-tropical/tropical climate and waste moisture content of about 58.2%. In China-NW, accumulated leachate amounts were very low and mainly the result of waste degradation, implying on-site spraying/irrigation or recirculation may be an economic approach to treatment. In China-N, water squeezed out of waste by compaction totaled 22-45% of overall leachate amounts in the first 40 years, so decreasing the initial moisture content of waste arriving at landfills could reduce leachate generation. In China-S, the leachate generated by infiltrated precipitation after HDPE geomembranes in top cover started failing, contributed more than 60% of the overall amounts over 100 years of landfilling. Therefore, the quality and placing of HDPE geomembranes in the top cover should be controlled strictly for the purpose of mitigation leachate generation.

  8. Assessment and quantification of plastics waste generation in major 60 cities of India.

    PubMed

    Nalini, R; Srinivasulu, B; Shit, Subhas C; Nigam, Suneel Kumar; Akolkar, A B; Dwivedfi, R K

    2013-04-01

    Polymers or plastics materials registered rapid growth in 1970s, 1980s and 1990s at the rate of 2-2.5 times the GDP growth in India. The demand for plastic raw material got more than doubled from 3.3 Million Metric Ton to 6.8 Million Metric Tons in 2010 attributed mainly to rapid urbanization, spread of retail chains, plastics based packaging from grocery to food and vegetable products to cosmetics and consumer items. Plastics packages have its merits over many of conventional materials in the related sector but unless they are collected back effectively after their use to go into recycling process, they become an eyesore in the stream of Municipal Solid Waste (MSW) due to high visibility. As the synthetic and conventional plastics are non-biodegradable in nature, these remain in the dump yards/ landfills for several years, if not collected properly. Due to non- biodegradability, plastics waste remains in the environment for several years, if not collected and disposing plastics wastes at landfills are unsafe since toxic chemicals leach out into the soil and as they contaminate soil and underground water quality. The municipal solid waste also increasing day-by-day due to the inefficient source collection, segregation and transmission of plastics waste for recycling and reusing. In order to find out the realistic plastics waste generation, a study on assessment and quantification of plastics waste has been carried out by CPCB in collaboration with CIPET on selected 60 major cities of India.

  9. LANL Waste acceptance criteria, Chapter 3, radioactive liquid waste treatment facility

    SciTech Connect

    McClenahan, Robert L.

    2006-08-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) receives and treats aqueous radioactive wastewater generated at Los Alamos National Laboratory (LANL) to meet he discharge criteria specified in a National Pollution Discharge Elimination System (NPDES) permit. The majority of this wastewater is received at the RLWTF through a network of buried pipelines, known as the Radioactive Liquid Waste Collection System (RLWCS). Other wastewater is transported to the RLWTF by truck. The Waste Acceptance Criteria (WAC) outlined in this Chapter are applicable to all radioactive wastewaters which are conveyed to the Technical Area 50(T A-50), RL WTF by the RLWCS or by truck.

  10. Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana.

    PubMed

    Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia; Fei-Baffoe, Bernard; Mensah, Moses Y

    2015-12-01

    Reliable national data on waste generation and composition that will inform effective planning on waste management in Ghana is absent. To help obtain this data on a regional basis, selected households in each region were recruited to obtain data on rate of waste generation, physical composition of waste, sorting and separation efficiency and per capita of waste. Results show that rate of waste generation in Ghana was 0.47 kg/person/day, which translates into about 12,710 tons of waste per day per the current population of 27,043,093. Nationally, biodegradable waste (organics and papers) was 0.318 kg/person/day and non-biodegradable or recyclables (metals, glass, textiles, leather and rubbers) was 0.096 kg/person/day. Inert and miscellaneous waste was 0.055 kg/person/day. The average household waste generation rate among the metropolitan cities, except Tamale, was high, 0.72 kg/person/day. Metropolises generated higher waste (average 0.63 kg/person/day) than the municipalities (0.40 kg/person/day) and the least in the districts (0.28 kg/person/day) which are less developed. The waste generation rate also varied across geographical locations, the coastal and forest zones generated higher waste than the northern savanna zone. Waste composition was 61% organics, 14% plastics, 6% inert, 5% miscellaneous, 5% paper, 3% metals, 3% glass, 1% leather and rubber, and 1% textiles. However, organics and plastics, the two major fractions of the household waste varied considerably across the geographical areas. In the coastal zone, the organic waste fraction was highest but decreased through the forest zone towards the northern savanna. However, through the same zones towards the north, plastic waste rather increased in percentage fraction. Households did separate their waste effectively averaging 80%. However, in terms of separating into the bin marked biodegradables, 84% effectiveness was obtained whiles 76% effectiveness for sorting into the bin labeled other waste was

  11. Liquid and Gaseous Waste Operations Department Annual Operating Report, CY 1993

    SciTech Connect

    Maddox, J.J.; Scott, C.B.

    1994-02-01

    This report summarizes the activities of the waste management operations section of the liquid and gaseous waste operations department at ORNL for 1993. The process waste, liquid low-level waste, gaseous waste systems activities are reported, as well as the low-level waste solidification project. Upgrade activities is the various waste processing and treatment systems are summarized. A maintenance activity overview is provided, and program management, training, and other miscellaneous activities are covered.

  12. [The investigation of the composition of liquid radioactive waste].

    PubMed

    Suslov, A V; Suslova, I N; Bagiian, A; Leonov, V V; Kapustin, V K

    2008-01-01

    In investigation the process of composition sediment of liquid unorganic radioactive waste, that are forming in cistern-selectors at PNPI RAS, it was discovered apart from great quantity of ions of different metals and radionuclides considerable maintenance of organic material (to 30% and more from volume of sediment) unknown origin. A supposition was made about its microbiological origin. Investigation shows, that the main microorganisms, setting this sediment, are the bacterious of Pseudomonas kind, capable of effectively bind in process of grow the radionuclide 90Sr, that confirms the potential posibility of using this microorganisms for bioremediation of liquid low radioactive wastes (LRW).

  13. DETERMINATION AND QUANTIFICATION OF NON-AQUEOUS PHASE LIQUID MIXTURES IN ENVIRONMENTAL MEDIA

    SciTech Connect

    Rucker, G

    2006-09-22

    It is important to recognize the presence of Non-Aqueous Phase Liquids (NAPLs) in soils at a waste site in order to design and construct a successful remediation system. NAPLs often manifest as a complex, multi-component mixture of organic compounds that can occur in environmental media, such as vadose zone soil, where the mixture will partition and equilibrate with soil particles, pore vapor, and pore water. Complex organic mixtures can greatly complicate the determination and quantification of NAPL in soil due to inter-media transfer. NAPL thresholds can also change because of mixture physical properties and can disguise the presence of NAPL. A unique analytical method and copyrighted software have been developed at the Department of Energy's Savannah River Site that facilitates solution of this problem. The analytical method uses a classic chemistry approach and applies the principals of solubility limit theory, Raoult's Law, and equilibrium chemistry to derive an accurate estimation of NAPL presence and quantity. The method is unique because it calculates an exact result that is mass balanced for each physical state, chemical mixture component, and mixture characteristics. The method is also unique because the solution can be calculated on both a wet weight and dry weight basis--a factor which is often overlooked. The software includes physical parameters for 300 chemicals in a database that self-loads into the model to save time. The method accommodates up to 20 different chemicals in a multi-component mixture analysis. A robust data display is generated including important parameters of the components and mixture including: NAPL thresholds for individual chemical components within the mixture, mass distribution in soil for each physical state, molar fractions, density, vapor pressure, solubility, mass balance, media concentrations, residual saturation, and modest graphing capabilities. This method and software are power tools to simplify otherwise tedious

  14. Quantification of Tea Flavonoids by High Performance Liquid Chromatography

    ERIC Educational Resources Information Center

    Freeman, Jessica D.; Niemeyer, Emily D.

    2008-01-01

    We have developed a laboratory experiment that uses high performance liquid chromatography (HPLC) to quantify flavonoid levels in a variety of commercial teas. Specifically, this experiment analyzes a group of flavonoids known as catechins, plant-derived polyphenolic compounds commonly found in many foods and beverages, including green and black…

  15. Process for immobilizing radioactive boric acid liquid wastes

    SciTech Connect

    Greenhalgh, Wilbur O.

    1986-01-01

    A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  16. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    SciTech Connect

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  17. Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Freer, J.; Freer, E.; Bond, A.

    1996-07-01

    The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

  18. Removal of iodide ion from simulated radioactive liquid waste

    NASA Astrophysics Data System (ADS)

    Kodama, H.

    1999-01-01

    The previous study reported that BiPbO2(NO3) is one of the most promising candidate materials for removing and immobilizing radioactive iodide. In that case, the solution contained only dissolved NaI and did not contain competing anions. This paper reports the reactivity of BiPbO2(NO3) with iodide ions in simulated radioactive liquid waste. This liquid contains many components, especially highly concentrated NaNO2, Na2CO3 and NaNO3. The obtained results show that BiPbO2(NO3) is useful for removing iodide ion from the simulated radioactive liquid waste but that there is a problem which should be resolved in the future. The problem is that a competing anion, HCO3 -, interferes with the exchange reaction, and only the surfaces of the BiPbO2(NO3) crystals are used for the reaction.

  19. Supported liquid inorganic membranes for nuclear waste separation

    DOEpatents

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  20. WEEE and portable batteries in residual household waste: Quantification and characterisation of misplaced waste

    SciTech Connect

    Bigum, Marianne; Petersen, Claus; Scheutz, Charlotte

    2013-11-15

    Highlights: • We analyse 26.1 Mg of residual waste from 3129 Danish households. • We quantify and characterise misplaced WEEE and portable batteries. • We compare misplaced WEEE and batteries to collection through dedicated schemes. • Characterisation showed that primarily small WEEE and light sources are misplaced. • Significant amounts of misplaced batteries were discarded as built-in WEEE. - Abstract: A total of 26.1 Mg of residual waste from 3129 households in 12 Danish municipalities was analysed and revealed that 89.6 kg of Waste Electrical and Electronic Equipment (WEEE), 11 kg of batteries, 2.2 kg of toners and 16 kg of cables had been wrongfully discarded. This corresponds to a Danish household discarding 29 g of WEEE (7 items per year), 4 g of batteries (9 batteries per year), 1 g of toners and 7 g of unidentifiable cables on average per week, constituting 0.34% (w/w), 0.04% (w/w), 0.01% (w/w) and 0.09% (w/w), respectively, of residual waste. The study also found that misplaced WEEE and batteries in the residual waste constituted 16% and 39%, respectively, of what is being collected properly through the dedicated special waste collection schemes. This shows that a large amount of batteries are being discarded with the residual waste, whereas WEEE seems to be collected relatively successfully through the dedicated special waste collection schemes. Characterisation of the misplaced batteries showed that 20% (w/w) of the discarded batteries were discarded as part of WEEE (built-in). Primarily alkaline batteries, carbon zinc batteries and alkaline button cell batteries were found to be discarded with the residual household waste. Characterisation of WEEE showed that primarily small WEEE (WEEE directive categories 2, 5a, 6, 7 and 9) and light sources (WEEE directive category 5b) were misplaced. Electric tooth brushes, watches, clocks, headphones, flashlights, bicycle lights, and cables were items most frequently found. It is recommended that these

  1. WEEE and portable batteries in residual household waste: quantification and characterisation of misplaced waste.

    PubMed

    Bigum, Marianne; Petersen, Claus; Christensen, Thomas H; Scheutz, Charlotte

    2013-11-01

    A total of 26.1Mg of residual waste from 3129 households in 12 Danish municipalities was analysed and revealed that 89.6kg of Waste Electrical and Electronic Equipment (WEEE), 11kg of batteries, 2.2kg of toners and 16kg of cables had been wrongfully discarded. This corresponds to a Danish household discarding 29g of WEEE (7 items per year), 4g of batteries (9 batteries per year), 1g of toners and 7g of unidentifiable cables on average per week, constituting 0.34% (w/w), 0.04% (w/w), 0.01% (w/w) and 0.09% (w/w), respectively, of residual waste. The study also found that misplaced WEEE and batteries in the residual waste constituted 16% and 39%, respectively, of what is being collected properly through the dedicated special waste collection schemes. This shows that a large amount of batteries are being discarded with the residual waste, whereas WEEE seems to be collected relatively successfully through the dedicated special waste collection schemes. Characterisation of the misplaced batteries showed that 20% (w/w) of the discarded batteries were discarded as part of WEEE (built-in). Primarily alkaline batteries, carbon zinc batteries and alkaline button cell batteries were found to be discarded with the residual household waste. Characterisation of WEEE showed that primarily small WEEE (WEEE directive categories 2, 5a, 6, 7 and 9) and light sources (WEEE directive category 5b) were misplaced. Electric tooth brushes, watches, clocks, headphones, flashlights, bicycle lights, and cables were items most frequently found. It is recommended that these findings are taken into account when designing new or improving existing special waste collection schemes. Improving the collection of WEEE is also recommended as one way to also improve the collection of batteries due to the large fraction of batteries found as built-in. The findings in this study were comparable to other western European studies, suggesting that the recommendations made in this study could apply to other

  2. Methane Production Quantification and Energy Estimation for Bangalore Municipal Solid Waste

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Dand, R.; Lakshmikanthan, P.; Babu, G. L. Sivakumar

    2014-01-01

    Landfills are considered as cornerstone of solid waste management. Landfill gas (LFG) and leachate are principal outputs from landfills. Methane, occupying significant volume of landfill gas, has considerable potential as a source of energy replacing enormous amounts of fossil fuels currently in use. Gas extraction and utilization systems need to be designed and implemented in order to exploit this resource. Assessment of economic viability of these systems necessitates estimation of gas released and its energy potential. Gas quantification and energy estimation for municipal solid waste (MSW) of Bangalore city was carried out using five independent methodologies. A small scale experiment was conducted to monitor the gas generation and the results were compared and analysed. Results show that significant energy can be harnessed from the MSW if requisite LFG management systems are installed. The use of methane as an energy source maximizes the extraction of useful resources from landfills, minimizes the global warming and offsets significant amount of fossil fuels.

  3. Quantification of feather structure, wettability and resistance to liquid penetration

    PubMed Central

    Srinivasan, Siddarth; Chhatre, Shreerang S.; Guardado, Jesus O.; Park, Kyoo-Chul; Parker, Andrew R.; Rubner, Michael F.; McKinley, Gareth H.; Cohen, Robert E.

    2014-01-01

    Birds in the cormorant (Phalacrocoracidae) family dive tens of metres into water to prey on fish while entraining a thin layer of air (a plastron film) within the microstructures of their feathers. In addition, many species within the family spread their wings for long periods of time upon emerging from water. To investigate whether wetting and wing-spreading are related to feather structure, microscopy and photographic studies have previously been used to extract structural parameters for barbs and barbules. In this work, we describe a systematic methodology to characterize the quasi-hierarchical topography of bird feathers that is based on contact angle measurements using a set of polar and non-polar probing liquids. Contact angle measurements on dip-coated feathers of six aquatic bird species (including three from the Phalacrocoracidae family) are used to extract two distinguishing structural parameters, a dimensionless spacing ratio of the barbule (D*) and a characteristic length scale corresponding to the spacing of defect sites. The dimensionless spacing parameter can be used in conjunction with a model for the surface topography to enable us to predict a priori the apparent contact angles of water droplets on feathers as well as the water breakthrough pressure required for the disruption of the plastron on the feather barbules. The predicted values of breakthrough depths in water (1–4 m) are towards the lower end of typical diving depths for the aquatic bird species examined here, and therefore a representative feather is expected to be fully wetted in a typical deep dive. However, thermodynamic surface energy analysis based on a simple one-dimensional cylindrical model of the feathers using parameters extracted from the goniometric analysis reveals that for water droplets on feathers of all six species under consideration, the non-wetting ‘Cassie–Baxter’ composite state represents the global energy minimum of the system. By contrast, for other

  4. Quantification of feather structure, wettability and resistance to liquid penetration.

    PubMed

    Srinivasan, Siddarth; Chhatre, Shreerang S; Guardado, Jesus O; Park, Kyoo-Chul; Parker, Andrew R; Rubner, Michael F; McKinley, Gareth H; Cohen, Robert E

    2014-07-06

    Birds in the cormorant (Phalacrocoracidae) family dive tens of metres into water to prey on fish while entraining a thin layer of air (a plastron film) within the microstructures of their feathers. In addition, many species within the family spread their wings for long periods of time upon emerging from water. To investigate whether wetting and wing-spreading are related to feather structure, microscopy and photographic studies have previously been used to extract structural parameters for barbs and barbules. In this work, we describe a systematic methodology to characterize the quasi-hierarchical topography of bird feathers that is based on contact angle measurements using a set of polar and non-polar probing liquids. Contact angle measurements on dip-coated feathers of six aquatic bird species (including three from the Phalacrocoracidae family) are used to extract two distinguishing structural parameters, a dimensionless spacing ratio of the barbule (D*) and a characteristic length scale corresponding to the spacing of defect sites. The dimensionless spacing parameter can be used in conjunction with a model for the surface topography to enable us to predict a priori the apparent contact angles of water droplets on feathers as well as the water breakthrough pressure required for the disruption of the plastron on the feather barbules. The predicted values of breakthrough depths in water (1-4 m) are towards the lower end of typical diving depths for the aquatic bird species examined here, and therefore a representative feather is expected to be fully wetted in a typical deep dive. However, thermodynamic surface energy analysis based on a simple one-dimensional cylindrical model of the feathers using parameters extracted from the goniometric analysis reveals that for water droplets on feathers of all six species under consideration, the non-wetting 'Cassie-Baxter' composite state represents the global energy minimum of the system. By contrast, for other wetting

  5. Quantification of C in Si by photoluminescence at liquid N temperature after electron irradiation

    NASA Astrophysics Data System (ADS)

    Tajima, Michio; Kiuchi, Hirotatsu; Higuchi, Fumito; Ogura, Atsushi

    2017-04-01

    We demonstrate practical great advantages of the photoluminescence (PL) measurement at liquid N temperature after electron irradiation for quantifying low-level C in Si compared with the measurement at liquid He temperature. The broadening of the C-related C- and G-lines enabled us to detect the lines rapidly with high sensitivity by using the optimized low-dispersion spectroscopic apparatus. Positive correlations were found between their intensity ratios to the band-edge emission and the C concentration estimated by PL measurement at 4.2 K. The disappearance of dopant-impurity-related lines simplifies the recombination process, suggesting the improvement of quantification accuracy.

  6. Chemiluminescence quantification of NO and its derivatives in liquid samples.

    PubMed

    Laver, Jay R; Stevanin, Tânia M; Read, Robert C

    2008-01-01

    Nitric oxide (NO) is a ubiquitous gas with potent biological effects, including vasodilation, neuronal signaling, and antimicrobial activity. NO is a free radical and can readily react with other molecules, in particular, iron centers and oxygen. At physiological concentrations in aqueous solutions, even in the presence of oxygen, NO is reasonably stable. Under these conditions, NO is oxidized almost exclusively to nitrite (NO2-). In cell lysates and tissue extracts with iron-containing proteins, however, NO is postulated to have a very short half-life, with the major oxidation product being nitrate (NO3-). In mammalian cells, NO is generated via the action of the NO synthases (NOS), of which there are three known isotypes. NO can also be generated from the chemical decomposition of S-nitrosothiols, and there is some indication that naturally occurring S-nitrosothiols, such as S-nitrosoalbumin, may be natural reservoirs of NO in vivo. Here we describe a methodology to measure variations in NO in liquid samples using chemiluminescence. The protocols described allow us to distinguish between various products of NO chemistry, thus providing a sensitive method of measurement of NO concentration within a sample. They also allow us to distinguish between the various products that may be generated when NO reacts with molecules in complex biological samples such as cell lysates and supernatants.

  7. RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES

    SciTech Connect

    Robin M. Stewart

    1999-09-29

    Mercury was widely used in U.S. Department of Energy (DOE) weapons facilities, resulting in a broad range of mercury-contaminated wastes and wastewaters. Some of the mercury contamination has escaped to the local environment, particularly at the Y-12 Plant in Oak Ridge, Tennessee, where approximately 330 metric tons of mercury were discharged to the environment between 1953 and 1963 (TN & Associates, 1998). Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury in the environment is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, an effective sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. ADA Technologies, Inc. has developed four new sorbents to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have been successfully demonstrated very high removal efficiencies for soluble mercury species, reducing mercury concentrations at the outlet of a pilot-scale system to less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant targeted colloidal mercury not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a

  8. Treatment of mixed radioactive liquid wastes at Argonne National Laboratory

    SciTech Connect

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C.

    1994-03-01

    Aqueous mixed waste at Argonne National Laboratory (ANL) is traditionally generated in small volumes with a wide variety of compositions. A cooperative effort at ANL between Waste Management (WM) and the Chemical Technology Division (CMT) was established, to develop, install, and implement a robust treatment operation to handle the majority of such wastes. For this treatment, toxic metals in mixed-waste solutions are precipitated in a semiautomated system using Ca(OH){sub 2} and, for some metals, Na{sub 2}S additions. This step is followed by filtration to remove the precipitated solids. A filtration skid was built that contains several filter types which can be used, as appropriate, for a variety of suspended solids. When supernatant liquid is separated from the toxic-metal solids by decantation and filtration, it will be a low-level waste (LLW) rather than a mixed waste. After passing a Toxicity Characteristic Leaching Procedure (TCLP) test, the solids may also be treated as LLW.

  9. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  10. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  11. Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes.

    PubMed

    Li, Liang; Hale, McKenzie; Olsen, Petra; Berge, Nicole D

    2014-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250°C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources.

  12. Determination of ethylenediaminetetraacetic acid in nuclear waste by high-performance liquid chromatography coupled with electrospray mass spectrometry.

    PubMed

    du Bois de Maquillé, Laurence; Renaudin, Laetitia; Goutelard, Florence; Jardy, Alain; Vial, Jérôme; Thiébaut, Didier

    2013-02-08

    EDTA is a chelating agent that has been used in decontamination processes. Its quantification is required for nuclear waste management because it affects the mobility of radionuclides and metals in environment and, thus, can harm the safety of the storage. Ion-pair chromatography coupled with electrospray mass spectrometry detection is a convenient method for quantitative analysis of EDTA but EDTA should be present as a single anionic chelate form. However, radioactive liquid wastes contain high concentrations of heavy metals and salts and consequently, EDTA is present as several chelates. Speciation studies were carried out to choose a metal cation to be added in excess to the solution to obtain a major chelate form. Fe is the predominant cation and Fe(III)-EDTA is thermodynamically favored but these speciation studies showed that ferric hydroxide precipitated above pH 2. Consequently, it was not possible to quantify EDTA as Fe(III)-EDTA complex. Therefore, Ni(2+) was chosen but its use implied pretreatment with a base of the solution to eliminate Fe. Deuterated EDTA was used as tracer in order to validate the whole procedure, from the treatment with a base to the final analysis by HPLC-ESI-MS. This analytical method was successfully applied for EDTA quantification in two real effluents resulting from a nuclear liquid waste process. A recovery rate between 60 and 80% was obtained. The limit of detection of this method was determined at 34×10(-9)mol L(-1).

  13. Liquid and Gaseous Waste Operations Department annual operating report CY 1994

    SciTech Connect

    Maddox, J.J.; Scott, C.B.

    1995-03-01

    This report presents details about the operation of the liquid and gaseous waste department of Oak Ridge National Laboratory for the calendar year 1994. Topics discussed include; process waste system, upgrade activities, low-level liquid radioactive waste solidification project, maintenance activities, and other activities such as training, audits, and tours.

  14. A study of waste liquid crystal display generation in mainland China.

    PubMed

    Liu, Zhifeng; Xu, Zeying; Huang, Haihong; Li, Bingbing

    2016-01-01

    The generation of liquid crystal display waste is becoming a serious social problem. Predicting liquid crystal display waste status is the foundation for establishing a recycling network; however, the difficulty in predicting liquid crystal display waste quantity lies in data mining. In order to determine the quantity and the distribution of liquid crystal display waste in China, the four top-selling liquid crystal display products (liquid crystal display TVs, desktop PCs, notebook PCs, and mobile phones) were selected as study objects. Then, the extended logistic model and market supply A method was used to predict the quantity of liquid crystal display waste products. Moreover, the distribution of liquid crystal display waste products in different regions was evaluated by examining the consumption levels of household equipment. The results revealed that the quantity of waste liquid crystal displays would increase rapidly in the next decade. In particular, the predicted quantity of waste liquid crystal displays would rise to approximately 4.262 × 10(9) pieces in 2020, and the total display area (i.e. the surface area of liquid crystal display panels) of waste liquid crystal displays would reach 5.539 × 10(7) m(2). The prediction on the display area of waste liquid crystal display TVs showed that it would account for 71.5% of the total display area by 2020. Meanwhile, the quantity of waste mobile phones would significantly grow, increasing 5.8 times from 2012 to 2020. In terms of distribution, Guangdong is the top waste liquid crystal display-generating province in China, followed by Jiangsu, Shandong, Henan, Zhejiang, and Sichuan. Considering its regional characteristics, Guangdong has been proposed to be the most important location of the recycling network.

  15. Feasibility study of fissile mass quantification by photofission delayed gamma rays in radioactive waste packages using MCNPX

    NASA Astrophysics Data System (ADS)

    Simon, Eric; Jallu, Fanny; Pérot, Bertrand; Plumeri, Stéphane

    2016-12-01

    The feasibility of fissile mass quantification in large, long-lived medium activity radioactive waste packages using photofission delayed gamma rays has been assessed with MCNPX. The detection limit achievable is lower than the expected uranium mass in these waste packages, but the important sensibility to the waste matrix density and sample localization imposes to get an accurate measurement of these parameters. An isotope discrimination method based on gamma-ray ratios has been evaluated showing that photofission delayed gamma rays can be used to measure the fissile mass as well as the total uranium mass.

  16. Liquid and Gaseous Waste Operations Department annual operating report, CY 1991

    SciTech Connect

    Maddox, J.J.; Scott, C.B.

    1992-03-01

    This report discusses work at the Liquid and Gaseous Waste Operations Department of ORNL. An operating summary, upgrade activities and maintenance activities are presented for the Process Waste Treatment Plant, Nonradiological Wastewater Treatment Plant, and Runoff Treatment Facility.

  17. Processing liquid organic wastes at the NNL Preston laboratory

    SciTech Connect

    Coppersthwaite, Duncan; Greenwood, Howard; Docrat, Tahera; Allinson, Sarah; Sultan, Ruqayyah; May, Sarah

    2013-07-01

    Organic compounds of various kinds have been used in the nuclear industry for numerous duties in uranium chemical, metal and ceramic processing plants. In the course of the various operations undertaken, these organic compounds have become contaminated with uranic material, either accidentally or as an inevitable part of the process. Typically, the chemical/physical form and/or concentration of the uranic content of the organics has prevented disposal. In order to address the issue of contaminated liquid organic wastes, the National Nuclear Laboratory (NNL) has developed a suite of treatments designed to recover uranium and to render the waste suitable for disposal. The developed processes are operated at industrial scale via the NNL Preston Laboratory Residue Processing Plant. The Oil Waste Leaching (OWL) Process is a fully industrialised process used for the treatment of contaminated oils with approximately 200 tonnes of uranium contaminated oil being treated to date. The process was originally developed for the treatment of contaminated tributyl phosphate and odourless kerosene which had been adsorbed onto sawdust. However, over the years, the OWL process has been refined for a range of oils including 'water emulsifiable' cutting oils, lubricating oils, hydraulic oils/fluids and 'Fomblin' (fully fluorinated) oils. Chemically, the OWL process has proved capable of treating solvents as well as oils but the highly volatile/flammable nature of many solvents has required additional precautions compared with those required for oil treatment. These additional precautions led to the development of the Solvent Treatment Advanced Rig (STAR), an installation operated under an inert atmosphere. STAR is a small 'module' (100 dm{sup 3} volume) which allows the treatment of both water miscible and immiscible solvents. This paper discusses the challenges associated with the treatment of liquid organic wastes and the process developments which have allowed a wide range of

  18. Quantification of zolmitriptan in plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Zhang, Zunjian; Xu, Fengguo; Tian, Yuan; Li, Wei; Mao, Guoguang

    2004-12-25

    A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of zolmitriptan in human plasma. After the addition of the internal standard (IS) and 1.0 M sodium hydroxide solution, plasma samples were extracted with methylene chloride:ethyl acetate mixture (20:80, v/v). The organic layer was evaporated under a stream of nitrogen at 40 degrees C. The residue was reconstituted with 100 microl mobile phase. The compounds were separated on a prepacked Lichrospher CN (5 microm, 150 mm x 2.0 mm) column using a mixture of methanol:water (10 mM NH(4)AC, pH 4.0) = 78:22 as mobile phase. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 0.30-16.0 ng/ml with a coefficient of determination (r) of 0.9998 and good back-calculated accuracy and precision. The intra- and inter-day precision (R.S.D.%) were lower than 15% and accuracy ranged from 85 to 115%. The lower limit of quantification was identifiable and reproducible at 0.30 ng/ml. The proposed method enables the unambiguous identification and quantification of zolmitriptan for pharmacokinetic, bioavailability or bioequivalence studies.

  19. Quantification of tipranavir in human plasma by high-performance liquid chromatography with UV detection.

    PubMed

    Giraud, Emmanuelle; Rey, Elisabeth; Tréluyer, Jean-Marc; Pons, Gérard; Jullien, Vincent

    2006-01-02

    A simple method for the quantification of tipranavir, a new non-peptidic protease-inhibitor, was developed. An internal standard, prazepam, was added to 100 microl of plasma before a liquid-liquid extraction by 3 ml of tert-butyl methyl ether. The extracts were evaporated to dryness and reconstituted with 100 microl of mobile phase before being injected in the chromatographic system. The separation was made on a C8 column using sodium acetate buffer (pH 5):methanol:acetonitrile (35:30:35, v/v/v) as mobile phase. The detection was performed at a wavelength of 260 nm. The method was linear and has been validated over a concentration range of 2-80 mg/l. The mean precision and accuracy of the method were respectively, 10.5 and -9.1%. The mean recovery was 70.8%.

  20. Disposal of liquid radioactive wastes through wells or shafts

    SciTech Connect

    Perkins, B.L.

    1982-01-01

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  1. Quantification of breast density using dual-energy mammography with liquid phantom calibration.

    PubMed

    Lam, Alfonso R; Ding, Huanjun; Molloi, Sabee

    2014-07-21

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (∼1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material.

  2. Quantification of breast density using dual-energy mammography with liquid phantom calibration

    NASA Astrophysics Data System (ADS)

    Lam, Alfonso R.; Ding, Huanjun; Molloi, Sabee

    2014-07-01

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (˜1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material.

  3. Selective classification and quantification model of C&D waste from material resources consumed in residential building construction.

    PubMed

    Mercader-Moyano, Pilar; Ramírez-de-Arellano-Agudo, Antonio

    2013-05-01

    The unfortunate economic situation involving Spain and the European Union is, among other factors, the result of intensive construction activity over recent years. The excessive consumption of natural resources, together with the impact caused by the uncontrolled dumping of untreated C&D waste in illegal landfills have caused environmental pollution and a deterioration of the landscape. The objective of this research was to generate a selective classification and quantification model of C&D waste based on the material resources consumed in the construction of residential buildings, either new or renovated, namely the Conventional Constructive Model (CCM). A practical example carried out on ten residential buildings in Seville, Spain, enabled the identification and quantification of the C&D waste generated in their construction and the origin of the waste, in terms of the building material from which it originated and its impact for every m(2) constructed. This model enables other researchers to establish comparisons between the various improvements proposed for the minimization of the environmental impact produced by building a CCM, new corrective measures to be proposed in future policies that regulate the production and management of C&D waste generated in construction from the design stage to the completion of the construction process, and the establishment of sustainable management for C&D waste and for the selection of materials for the construction on projected or renovated buildings.

  4. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    SciTech Connect

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  5. Real-time quantification of viable bacteria in liquid medium using infrared thermography

    NASA Astrophysics Data System (ADS)

    Salaimeh, Ahmad A.; Campion, Jeffrey J.; Gharaibeh, Belal Y.; Evans, Martin E.; Saito, Kozo

    2011-11-01

    Quantifying viable bacteria in liquids is important in environmental, food processing, manufacturing, and medical applications. Since vegetative bacteria generate heat as a result of biochemical reactions associated with cellular functions, thermal sensing techniques, including infrared thermography (IRT), have been used to detect viable cells in biologic samples. We developed a novel method that extends the dynamic range and improves the sensitivity of bacterial quantification by IRT. The approach uses IRT video, thermodynamics laws, and heat transfer mechanisms to directly measure, in real-time, the amount of energy lost as heat from the surface of a liquid sample containing bacteria when the specimen cools to a lower temperature over 2 min. We show that the Energy Content ( EC) of liquid media containing as few as 120 colony-forming units (CFU) of Escherichia coli per ml was significantly higher than that of sterile media ( P < 0.0001), and that EC and viable counts were strongly positively correlated ( r = 0.986) over a range of 120 to approximately 5 × 10 8 CFU/ml. Our IRT approach is a unique non-contact method that provides real-time bacterial enumeration over a wide dynamic range without the need for sample concentration, modification, or destruction. The approach could be adapted to quantify other living cells in a liquid milieu and has the potential for automation and high throughput.

  6. Incineration of radioactive organic liquid wastes by underwater thermal plasma

    NASA Astrophysics Data System (ADS)

    Mabrouk, M.; Lemont, F.; Baronnet, J. M.

    2012-12-01

    This work deals with incineration of radioactive organic liquid wastes using an oxygen thermal plasma jet, submerged under water. The results presented here are focused on incineration of three different wastes: a mixture of tributylphosphate (TBP) and dodecane, a perfluoropolyether oil (PFPE) and trichloroethylene (TCE). To evaluate the plutonium behavior in used TBP/dodecane incineration, zirconium is used as a surrogate of plutonium; the method to enrich TBP/dodecane mixture in zirconium is detailed. Experimental set-up is described. During a trial run, CO2 and CO contents in the exhaust gas are continuously measured; samples, periodically taken from the solution, are analyzed by appropriate chemical methods: contents in total organic carbon (COT), phosphorus, fluoride and nitrates are measured. Condensed residues are characterized by RX diffraction and SEM with EDS. Process efficiency, during tests with a few L/h of separated or mixed wastes, is given by mineralization rate which is better than 99.9 % for feed rate up to 4 L/h. Trapping rate is also better than 99 % for phosphorous as for fluorine and chlorine. Those trials, with long duration, have shown that there is no corrosion problems, also the hydrogen chloride and fluoride have been neutralized by an aqueous solution of potassium carbonate.

  7. Radiation methods for decontamination of liquid wastes and ecological problems

    SciTech Connect

    Shubin, V.N.; Brusentseva, S.A.; Vysotskaya, N.A.

    1986-01-01

    The authors discuss several possible approaches to the use of radiation for the purposes of rational use of water resources and protecting them from pollution and depletion. The authors note that radiation decontamination makes it possible to solve a number of important problems in protecting fundamental elements of the biosphere by: reducing the uptake of fresh water from natural sources for industrial and household needs and sharply cutting the release of unpurified waste water by creating circulating water systems based on rapid methods of thorough purification; employing a combination of different physical and chemical methods with a final stage that uses radiation-prolonged adsorption to give the water a high degree of purity; preventing bacterial contamination of soils when liquid and semiliquid wastes from cities and livestock farms are used as fertilizers; utilizing the excess active sludges that accumulate in biological treatment factilities as feed additives and fertilizer; and eliminating the release to the atmosphere of effluents from the incineration of highly polluted waste water which often contains carcinogenic and poisonous substances.

  8. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    SciTech Connect

    Penzin, R.A.; Sarychev, G.A.

    2012-07-01

    the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical composition, including those

  9. Automated analytical standard production with supercritical fluid chromatography for the quantification of bioactive C17-polyacetylenes: a case study on food processing waste.

    PubMed

    Bijttebier, Sebastiaan; D'Hondt, Els; Noten, Bart; Hermans, Nina; Apers, Sandra; Exarchou, Vassiliki; Voorspoels, Stefan

    2014-12-15

    Food processing enterprises produce enormous amounts of organic waste that contains valuable phytochemicals (e.g. C17-polyacetylenes). Knowledge on the phytochemicals content is a first step towards valorisation. Quantification of C17-polyacetylenes is however often hampered by the lack of commercially available standards or by tedious multistep in-house standard production procedures. In the current study, a new and straightforward supercritical fluid chromatography purification procedure is described for the simultaneous production of 2 analytical C17-polyacetylene standards. Respectively, 5 and 6 mg of falcarinol and falcarindiol were purified in 17 h on analytical scale. After confirming the identity and quality (97% purity) by Nuclear Magnetic Resonance, accurate mass-Mass Spectrometry (am-MS) and Photo Diode Array (PDA) detection the C17-polyacetylene standards were used for the analysis of industrial vegetable waste with Liquid Chromatography coupled to PDA and am-MS detection. Measurements showed varying concentrations of C17-polyacetylenes in the organic waste depending on its nature and origin.

  10. A&M. Hot liquid waste holding tanks. Camera faces southeast. Located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste holding tanks. Camera faces southeast. Located in vicinity of TAN-616, hot liquid waste treatment plant. Date: November 13, 1953. INEEL negative no. 9159 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. MECHANISMS GOVERNING TRANSIENTS FROM THE BATCH INCINERATION OF LIQUID WASTES IN ROTARY KILNS

    EPA Science Inventory

    When "containerized" liquid wastes, bound on sorbents. are introduced into a rotary kiln in a batch mode, transient phenomena in-volving heat transfer into, and waste mass transfer out of, the sorbent can oromote the raoid release of waste vaoor into the kiln environment. This ra...

  12. Methane-oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification.

    PubMed

    Wang, Zhe; Guo, Min; Baker, Gary A; Stetter, Joseph R; Lin, Lu; Mason, Andrew J; Zeng, Xiangqun

    2014-10-21

    Current sensor devices for the detection of methane or natural gas emission are either expensive and have high power requirements or fail to provide a rapid response. This report describes an electrochemical methane sensor utilizing a non-volatile and conductive pyrrolidinium-based ionic liquid (IL) electrolyte and an innovative internal standard method for methane and oxygen dual-gas detection with high sensitivity, selectivity, and stability. At a platinum electrode in bis(trifluoromethylsulfonyl)imide (NTf2)-based ILs, methane is electro-oxidized to produce CO2 and water when an oxygen reduction process is included. The in situ generated CO2 arising from methane oxidation was shown to provide an excellent internal standard for quantification of the electrochemical oxygen sensor signal. The simultaneous quantification of both methane and oxygen in real time strengthens the reliability of the measurements by cross-validation of two ambient gases occurring within a single sample matrix and allows for the elimination of several types of random and systematic errors in the detection. We have also validated this IL-based methane sensor employing both conventional solid macroelectrodes and flexible microfabricated electrodes using single- and double-potential step chronoamperometry.

  13. Recent progress in polar metabolite quantification in plants using liquid chromatography–mass spectrometry.

    PubMed

    Liu, Zhiqian; Rochfort, Simone

    2014-09-01

    Metabolite analysis or metabolomics is an important component of systems biology in the post-genomic era. Although separate liquid chromatography (LC) methods for quantification of the major classes of polar metabolites of plants have been available for decades, a single method that enables simultaneous determination of hundreds of polar metabolites is possible only with gas chromatography–mass spectrometry (GC–MS) techniques. The rapid expansion of new LC stationary phases in the market and the ready access of mass spectrometry in many laboratories provides an excellent opportunity for developing LC–MS based methods for multi-target quantification of polar metabolites. Although various LC–MS methods have been developed over the last 10 years with the aim to quantify one or more classes of polar compounds in different matrices, currently there is no consensus LC–MS method that is widely used in plant metabolomics studies. The most promising methods applicable to plant metabolite analysis will be reviewed in this paper and the major problems encountered highlighted. The aim of this review is to provide plant scientists, with limited to moderate experience in analytical chemistry, with up-to-date and simplified information regarding the current status of polar metabolite analysis using LC–MS techniques.

  14. Quantification of ACE inhibiting peptides in human plasma using high performance liquid chromatography-mass spectrometry.

    PubMed

    van Platerink, Chris J; Janssen, Hans-Gerd M; Horsten, Roos; Haverkamp, Johan

    2006-01-02

    An HPLC-MRM-MS method was developed for the quantification of 17 small ACE inhibiting (ACEI) peptides in plasma samples collected from human volunteers after the consumption of a peptide-enriched drink. The assay shows the high selectivity and sensitivity necessary to monitor small changes in the levels of the ACEI peptides after consumption of drinks developed to effect lowering of the blood pressure. Four different sample preparation methods were tested and evaluated. The final sample preparation method selected is simple and effective and consists mainly of the removal of proteins by acidification and heating, followed by a large volume injection. Additional sample preparation steps such as solid phase extraction and liquid/liquid partitioning were studied. Although they resulted in cleaner extracts, losses of specific peptides such as SAP were frequently seen. The isotope labeled form of one of the peptides to be quantified, [U(13)C]IPP, was used as an internal standard. The limit of detection of the assay is below 0.01 ng ml(-1). The limit of quantification is between 0.05 and 0.2 ng ml(-1), which is approximately 10% of the expected peptide concentration in plasma based on a normal diet. The intra- and inter-day relative standard deviations for all peptides have shown to be below 25% and the method has an accuracy of better than 75%. The long-term stability is good. At least 200 samples could be analysed before the system had to be cleaned. The assay has been successfully applied to blood samples collected from volunteers during a human trial.

  15. Boron removal in radioactive liquid waste by forward osmosis membrane

    SciTech Connect

    Doo Seong Hwang; Hei Min Choi; Kune Woo Lee; Jei Kwon Moon

    2013-07-01

    This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron. No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)

  16. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    SciTech Connect

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

  17. The factors that have correlation with student behavior to dispose liquid waste

    NASA Astrophysics Data System (ADS)

    Kusmawaningtyas, Rieneke; Darmajanti, Linda; Soesilo, Tri Edhi Budhi

    2017-03-01

    Students majoring in chemistry could produce toxic liquid waste in their laboratory practices. They are not allowed to dispose of hazardous laboratory liquid into the environment. The formulation of problem in this study is that not all students have good behavior to dispose liquid waste properly according to their type and chemical properties while it is expected that all students have good behavior to dispose liquid waste with the type and chemical properties in container vessel, even though all students are expected to have behavior to dispose waste in the container vessel with the support of the predisposing factors, enabling factors, and driving factors. The aim of this study is to analyze the type and chemical properties of liquid waste and the relationship between three factors forming behavior with student behavior. The relationship between three factors forming behavior with student behavior was analyzed by correlative analysis. Type and chemical properties known through observation and qualitative analysis. The results of this research is found that enabling factors and driving behavior have a weak relation with student behavior. Nevertheless, predisposing factors has no relation with student behavior. The result of analysis of waste laboratory are known that laboratory liquid waste contains Cu, Fe, and methylene blue which potentially pollute the environment. The findings show that although generally the laboratory use chemicals in small quantities, but the total quantity of laboratory liquid waste produced from all laboratories in some regions must be considered. Moreover, the impact of the big quantity of liquid waste to environment must be taken into account. Thus, it is recommended that students should raise awareness of the risks associated with laboratory liquid waste and, we should provide proper management for a laboratory and policy makers.

  18. Value added liquid products from waste biomass pyrolysis using pretreatments.

    PubMed

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition.

  19. Recovery of valuable materials from waste liquid crystal display panel.

    PubMed

    Li, Jinhui; Gao, Song; Duan, Huabo; Liu, Lili

    2009-07-01

    Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 degrees C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO(3):H(2)O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 degrees C.

  20. High-performance liquid chromatography using UV detection for the simultaneous quantification of ropivacaine and bupivacaine in human plasma.

    PubMed

    Gaudreault, François; Drolet, Pierre; Varin, France

    2009-12-01

    A specific high-performance liquid chromatography assay coupled with UV detection has been developed and validated for the simultaneous determination of ropivacaine and bupivacaine in human plasma. A liquid-liquid back extraction procedure was used to increase specificity, and very good and consistent recoveries were obtained: 93%-95% for ropivacaine and 90%-96% for bupivacaine. The lowest limit of quantification was 4 and 8 ng/mL for ropivacaine and bupivacaine, respectively. The method was sensitive, reproducible (coefficient of variation

  1. Sensitive quantification of omeprazole and its metabolites in human plasma by liquid chromatography-mass spectrometry.

    PubMed

    Hofmann, Ute; Schwab, Matthias; Treiber, Gerd; Klotz, Ulrich

    2006-02-02

    A sensitive method was developed for the simultaneous determination of omeprazole and its major metabolites 5-hydroxyomeprazole and omeprazole sulfone in human plasma by HPLC-electrospray mass spectrometry. Following liquid-liquid extraction HPLC separation was achieved on a ProntoSil AQ, C18 column using a gradient with 10 mM ammonium acetate in water (pH 7.25) and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective MH(+) ions, m/z 346 for omeprazole, m/z 362 for 5-hydroxy-omeprazole and omeprazol-sulfone and m/z 300 for the internal standard (2-{[(3,5-dimethylpyridine-2-yl)methyl]thio}-1H-benzimidazole-5-yl)methanol. The limit of quantification (LOQ) achieved with this method was 5 ng/ml for 5-hydroxyomeprazole and 10 ng/ml for omeprazole and omeprazole-sulfone using 0.25 ml of plasma. Intra- and inter-assay variability was below 11% over the whole concentration range from 5 to 250 ng/ml for 5-hydroxyomeprazol and from 10 to 750 ng/ml for omeprazole and omeprazole-sulfone. The method was successfully applied to the determination of pharmacokinetic parameters of esomeprazole and the two major metabolites after a single dose and under steady state conditions.

  2. ICPP radioactive liquid and calcine waste technologies evaluation final report and recommendation

    SciTech Connect

    1995-04-01

    Using a formalized Systems Engineering approach, the Latched Idaho Technologies Company developed and evaluated numerous alternatives for treating, immobilizing, and disposing of radioactive liquid and calcine wastes at the Idaho Chemical Processing Plant. Based on technical analysis data as of March, 1995, it is recommended that the Department of Energy consider a phased processing approach -- utilizing Radionuclide Partitioning for radioactive liquid and calcine waste treatment, FUETAP Grout for low-activity waste immobilization, and Glass (Vitrification) for high-activity waste immobilization -- as the preferred treatment and immobilization alternative.

  3. A Regulatory Analysis and Reassessment of U.S. Environmental Protection Agency Listed Hazardous Waste Numbers for Applicability to the INTEC Liquid Waste System

    SciTech Connect

    Gilbert, K.L.; Venneman, T.E.

    1998-12-01

    This report concludes that there are four listed hazardous waste numbers (F001, F002, F005, and U134) applicable to the waste in the Process Equipment Waste Evaporator (PEWE) liquid waste system at the Idaho National Engineering and Environmental Laboratory. The chemical constituents associated with these listed hazardous waste numbers, including those listed only for ignitability are identified. The RCRA Part A permit application hazardous waste numbers identify chemical constituents that may be treated or stored by the PEWE liquid waste system either as a result of a particular characteristic (40 CFR, Subpart C) or as a result of a specific process (40 CFR 261, Subpart D). The RCRA Part A permit application for the PEWE liquid waste system identifies the universe of Environmental Protection Agency (EPA) hazardous waste numbers [23 characteristic (hazardous waste codes) numbers and 105 listed numbers (four F-listed hazardous waste numbers, 20 P-listed hazardous waste numbers, and 81 U-listed hazardous waste numbers)] deemed acceptable for storage and treatment. This evaluation, however, identifies only listed wastes (and their chemical constituents) that have actually entered the PEWE liquid waste system and would, therefore, be assigned to the PEWE liquids and treatment residuals.

  4. Quantification of six cannabinoids and metabolites in oral fluid by liquid chromatography-tandem mass spectrometry.

    PubMed

    Desrosiers, Nathalie A; Scheidweiler, Karl B; Huestis, Marilyn A

    2015-08-01

    Δ(9) -Tetrahydrocannabinol (THC) is the most commonly analyzed cannabinoid in oral fluid (OF); however, its metabolite 11-nor-9-carboxy-THC (THCCOOH) offers the advantage of documenting active consumption, as it is not detected in cannabis smoke. Analytical challenges such as low (ng/L) THCCOOH OF concentrations hampered routine OF THCCOOH monitoring. Presence of minor cannabinoids like cannabidiol and cannabinol offer the advantage of identifying recent cannabis intake. Published OF cannabinoids methods have limitations, including few analytes and lengthy derivatization. We developed and validated a sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for THC, its metabolites, 11-hydroxy-THC and THCCOOH quantification, and other natural cannabinoids including tetrahydrocannabivarin (THCV), cannabidiol (CBD), and cannabigerol (CBG) in 1 mL OF collected with the Quantisal device. After solid-phase extraction, chromatography was performed on a Selectra PFPP column with a 0.15% formic acid in water and acetonitrile gradient with a 0.5 mL/min flow rate. All analytes were monitored in positive mode atmospheric pressure chemical ionization (APCI) with multiple reaction monitoring. Limits of quantification were 15 ng/L THCCOOH and 0.2 µg/L for all other analytes. Linear ranges extended to 3750 ng/L THCCOOH, 100 µg/L THC, and 50 µg/L for all other analytes. Inter-day analytical recoveries (bias) and imprecision at low, mid, and high quality control (QC) concentrations were 88.7-107.3% and 2.3-6.7%, respectively (n = 20). Mean extraction efficiencies and matrix effects evaluated at low and high QC were 75.9-86.1% and 8.4-99.4%, respectively. This method will be highly useful for workplace, criminal justice, drug treatment and driving under the influence of cannabis OF testing.

  5. Simultaneous quantification of Pacific ciguatoxins in fish blood using liquid chromatography-tandem mass spectrometry.

    PubMed

    Mak, Yim Ling; Wu, Jia Jun; Chan, Wing Hei; Murphy, Margaret B; Lam, James C W; Chan, Leo L; Lam, Paul K S

    2013-04-01

    Ciguatera fish poisoning (CFP) is a food intoxication caused by exposure to ciguatoxins (CTXs) in coral reef fish. Rapid analytical methods have been developed recently to quantify Pacific-CTX-1 (P-CTX-1) in fish muscle, but it is destructive and can cause harm to valuable live coral reef fish. Also fish muscle extract was complex making CTX quantification challenging. Not only P-CTX-1, but also P-CTX-2 and P-CTX-3 could be present in fish, contributing to ciguatoxicity. Therefore, an analytical method for simultaneous quantification of P-CTX-1, P-CTX-2, and P-CTX-3 in whole blood of marketed coral reef fish using sonication, solid-phase extraction (SPE), and liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed. The optimized method gave acceptable recoveries of P-CTXs (74-103 %) in fish blood. Matrix effects (6-26 %) in blood extracts were found to be significantly reduced compared with those in muscle extracts (suppressed by 34-75 % as reported in other studies), thereby minimizing potential for false negative results. The target P-CTXs were detectable in whole blood from four coral reef fish species collected in a CFP-endemic region. Similar trends in total P-CTX levels and patterns of P-CTX composition profiles in blood and muscle of these fish were observed, suggesting a relationship between blood and muscle levels of P-CTXs. This optimized method provides an essential tool for studies of P-CTX pharmacokinetics and pharmacodynamics in fish, which are needed for establishing the use of fish blood as a reliable sample for the assessment and control of CFP.

  6. Solid Waste Composition and Quantification at Taman Melewar, Parit Raja, Batu Pahat

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Abidin, S. S. S. Z.

    2016-07-01

    The poor management of solid waste is noticeable through the increasing of the solid waste each year and the difficulties in disposing the waste in the current available landfill. This study was undertaken to analyze the quantity and composition of waste generation in Taman melewar. Taman Melewar is a student residential area and this study is focusing on student's daily waste composition. The objective of this study was to identify the amount of solid waste generation, analyze and classify the composition of solid waste in Taman Melewar. The waste collection was conducted for 50 houses on a daily basis for two weeks. The average household waste generation rate was 0.082 kg/person/day. Organic waste was the major constituent of waste production. The average of organic waste represents about 72.4% followed by paper (9%), plastics film (5.5%), plastics rigid (4.7%), napkins (3.8%), tetrapek (1.3%), glass (1.1%), household hazardous waste (0.85%), textiles (0.52%), metal (0.51%) and rubber (0.34%). The moisture content was ranging from 27.67% to 28.68%. An evaluation was made based on student's behavior towards waste production and recycling. In conclusion, the results revealed that organic waste is the highest waste generated and recycling habits is also poor in Taman Melewar.

  7. Environmental data package for ORNL Solid Waste Storage Area Four, the adjacent intermediate-level liquid waste transfer line, and the liquid waste pilot pit area

    SciTech Connect

    Davis, E.C.; Shoun, R.R.

    1986-09-01

    The Oak Ridge National Laboratory Remedial Action Program has determined through its review of past environmental studies that Solid Waste Storage Area Four (SWSA-4) continually releases radioactivity to White Oak Creek and therefore requires application of the site stabilization and remedial actions outlined under the 3004u provisions of the Resource Conservation and Recovery Act. Under these provisions, a Remedial Investigation/Feasibility Study (RI/FS) forms the basis for determining the extent of actions. This report assembles available historical and environmental data relative to the SWSA-4 waste area grouping (WAG), which includes the 9.3-ha SWSA-4 site, the adjacent abandoned intermediate-level liquid waste transfer line, and the experimental pilot pit area. The rationale for grouping these three waste management units into the SWSA-4 WAG is the fact that they each lie in the same hydrologic unit and share a common tributary to White Oak Creek. The results of this compilation demonstrate that although a considerable number of studies have been carried out in SWSA-4, needs such as installation of water quality wells and continued monitoring and reporting of hydrologic data still exist. These needs will become even more critical as the RI/FS process proceeds and remedial measures for the site are considered. Fewer studies have been carried out to characterize the extent of contamination at the waste transfer line and the pilot pit area. Alternatives for characterizing and stabilizing these two minor components of the SWSA-4 WAG are presented; however, extensive remedial actions do not appear to be warranted.

  8. Reduction of Sodium Nitrate Liquid Waste in Nuclear Reprocessing Plants

    SciTech Connect

    Numata, M.; Mihara, S.; Kojima, S.; Ito, H.; Kato, T.

    2006-07-01

    Sodium nitrate solution has been generated from nuclear reprocessing plant as a result of neutralization of nitric acid. The sodium nitrate has been immobilized by bitumen, cement or other material in the site and waste packages have been produced. In order to reduce an environmental impact of the waste packages from the reprocessing plant, it is preferable to decompose nitrate ion to harmless gases such as nitrogen. A combination of formic acid and catalyst has been proposed for this purpose. But, the method is inadequate for a full decomposition of the nitrate ion. In addition, a mixture of NO and NO{sub 2} is produced during the reaction. Formaldehyde and hydrazine were selected as reductants and a combined use of Pd-Cu catalyst was tried to decompose the nitrate ion. As a result, the nitrate ion can almost entirely be decomposed without any generation of NO and NO{sub 2}. The test was conducted by 1 L flask. In case of formaldehyde, nitrate ion concentration can be reduced from 0.017 mol/l to 3.9x10{sup -4} mol/l. In case of hydrazine, nitrate concentration can be decreased from 2.8 mol/l to 9.5 x 10{sup -3} mol/l and ammonium ion is detected. The ammonium ion concentration in the final solution is 0.12 mol/l when 2.8 mol/l nitrate is reduced by hydrazine. Chemical reactions for formaldehyde on the Pd-Cu catalyst are estimated as combination of: NO{sub 3-} + HCHO = NO{sub 2-} + HCOOH; 2NO{sub 2-} + 3HCOOH = N{sub 2} + 3CO{sub 2} + 2H{sub 2}O + 2OH-; 4NO{sub 2-} + 3HCHO = 2N{sub 2} + 3CO{sub 2} + H{sub 2}O + 4OH-. the other hand, for hydrazine with the Pd-Cu catalyst: 3N{sub 2}H{sub 4} = 2NH{sub 3} + 2N{sub 2} + 3H{sub 2}; NO{sub 3-} + H{sub 2} = NO{sub 2-} + H{sub 2}O; NO{sub 2-} + NH{sub 3} = N{sub 2} + H{sub 2}O + OH-. The fundamental research shows that the combination usage of the Pd-Cu catalyst and formaldehyde or hydrazine is applicable for the reduction of nitrate liquid waste in the nuclear reprocessing plant. (authors)

  9. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    SciTech Connect

    Deckers, Jan; Mols, Ludo

    2007-07-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  10. Declassification of radioactive liquid wastes generated in radio immune assay [corrected] (RIA) laboratories.

    PubMed

    Sancho, M; Arnal, J M; Villaescusa, J I; Campayo, J M; Verdú, G

    2005-01-01

    Radioactive liquid wastes of low-medium activity level are generated in radio immune assay (RIA) laboratories, which are also potentially infectious because of the pathogens from patient blood. The most common way of managing these wastes consists of a temporal storage, for partial radioactivity decay, followed by management by an authorised company. The object of this work is to study the viability of treating radioactive liquid wastes coming from RIA using membrane techniques in order to reduce their volume, which would mean an improvement from the radiological point of view and a decrease in management costs. This paper describes the results of some experiments carried out with RIA real wastes, by means of processes such as ultrafiltration and reverse osmosis. It has been proved that waste volume can be significantly reduced, obtaining a treated liquid that is free of pathogens and organic matter and with an activity level around the environmental background.

  11. Functions and requirements document, WESF decoupling project, low-level liquid waste system

    SciTech Connect

    Rasmussen, J.H., Fluor Daniel Hanford

    1997-02-27

    The Waste Encapsulation and Storage Facility (WESF) was constructed in 1974 to encapsulate and store cesium and strontium which were isolated at B Plant from underground storage tank waste. The WESF, Building 225-B, is attached physically to the west end of B Plant, Building 221-B, 200 East area. The WESF currently utilizes B Plant facilities for disposing liquid and solid waste streams. With the deactivation of B Plant, the WESF Decoupling Project will provide replacement systems allowing WESF to continue operations independently from B Plant. Four major systems have been identified to be replaced by the WESF Decoupling Project, including the following: Low Level Liquid Waste System, Solid Waste Handling System, Liquid Effluent Control System, and Deionized Water System.

  12. Quantification of maltol in Korean ginseng (Panax ginseng) products by high-performance liquid chromatography-diode array detector

    PubMed Central

    Jeong, Hyun Cheol; Hong, Hee-Do; Kim, Young-Chan; Rhee, Young Kyoung; Choi, Sang Yoon; Kim, Kyung-Tack; Kim, Sung Soo; Lee, Young-Chul; Cho, Chang-Won

    2015-01-01

    Background: Maltol, as a type of phenolic compounds, is produced by the browning reaction during the high-temperature treatment of ginseng. Thus, maltol can be used as a marker for the quality control of various ginseng products manufactured by high-temperature treatment including red ginseng. For the quantification of maltol in Korean ginseng products, an effective high-performance liquid chromatography-diode array detector (HPLC-DAD) method was developed. Materials and Methods: The HPLC-DAD method for maltol quantification coupled with a liquid-liquid extraction (LLE) method was developed and validated in terms of linearity, precision, and accuracy. An HPLC separation was performed on a C18 column. Results: The LLE methods and HPLC running conditions for maltol quantification were optimized. The calibration curve of the maltol exhibited good linearity (R2 = 1.00). The limit of detection value of maltol was 0.26 μg/mL, and the limit of quantification value was 0.79 μg/mL. The relative standard deviations (RSDs) of the data of the intra- and inter-day experiments were <1.27% and 0.61%, respectively. The results of the recovery test were 101.35–101.75% with an RSD value of 0.21–1.65%. The developed method was applied successfully to quantify the maltol in three ginseng products manufactured by different methods. Conclusion: The results of validation demonstrated that the proposed HPLC-DAD method was useful for the quantification of maltol in various ginseng products. PMID:26246746

  13. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    SciTech Connect

    Del Signore, John C.

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  14. Modified microspheres for cleaning liquid wastes from radioactive nuclides

    SciTech Connect

    Danilin, Lev; Drozhzhin, Valery

    2007-07-01

    An effective solution of nuclear industry problems related to deactivation of technological and natural waters polluted with toxic and radioactive elements is the development of inorganic sorbents capable of not only withdrawing radioactive nuclides, but also of providing their subsequent conservation under conditions of long-term storage. A successful technical approach to creation of sorbents can be the use of hollow aluminosilicate microspheres. Such microspheres are formed from mineral additives during coal burning in furnaces of boiler units of electric power stations. Despite some reduction in exchange capacity per a mass unit of sorbents the latter have high kinetic characteristics that makes it possible to carry out the sorption process both in static and dynamic modes. Taking into account large industrial resources of microspheres as by-products of electric power stations, a comparative simplicity of the modification process, as well as good kinetic and capacitor characteristics, this class of sorbents can be considered promising enough for solving the problems of cleaning liquid radioactive wastes of various pollution levels. (authors)

  15. In situ radiological characterization to support a test excavation at a liquid waste disposal site

    SciTech Connect

    Keele, B.D.; Bauer, R.G.; Blewett, G.R.; Troyer, G.L.

    1994-05-01

    An in situ radiological detection system was developed to support a small test excavation at a liquid waste disposal site at the Hanford Site in Richland, Washington. Instrumentation, calibration and comparisons to samples are discussed.

  16. A&M. Hot liquid waste building (TAN616). Interior of evaporator control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste building (TAN-616). Interior of evaporator control room. Date: 1962. INEEL negative no. 62-6824 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. Disposal of Liquid Wastes from Parlors and Milkhouses. Special Circular 154.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This circular provides information to assist in assessing the pollution potential of liquid wastes from parlors and milkhouses. Approaches to resolving problems through stabilization lagoons, irrigation, and tank collection as mandated in statutory authority are discussed. (CS)

  18. Hazardous Waste Management - Liquids in Landfills - Federal Register Notice, November 18, 1992

    EPA Pesticide Factsheets

    Under authority of the Resource Conservation and Recovery Act (RCRA) as amended by the Hazardous and Solid Waste Amendments of 1984 (HSWA), EPA is promulgating this final rule regarding the landfill disposal of containerized liquids mixed with sorbents.

  19. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    PubMed

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2016-09-13

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  20. A&M. Hot liquid waste building (TAN616) under construction. Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste building (TAN-616) under construction. Camera facing northeast. Date: November 25, 1953. INEEL negative no. 9232 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. Filtration of Oak Ridge National Laboratory simulated liquid low-level waste

    SciTech Connect

    Fowler, V.L.; Hewitt, J.D.

    1989-08-01

    A method for disposal of Oak Ridge National Laboratory's (ORNL's) liquid low-level radioactive waste (LLLW) is being developed in which the material will be solidified in cement and stored in an aboveground engineered storage facility. The acceptability of the final waste form rests in part on the presence or absence of transuranic isotopes. Filtration methods to remove transuranic isotopes from the bulk liquid stored in the Melton Valley Storage Tanks (MVST) were investigated in this study. Initial batch studies using waste from MVST indicate that {gt}99.9{percent} of the transuranic isotopes can be removed from the bulk liquid by simple filtration. Bench-scale studies with a nonradioactive surrogate waste indicate that {gt}99.5{percent} of the suspended solids can be removed from the bulk liquid via inertial crossflow filtration. 4 refs., 3 figs., 11 tabs.

  2. Stabilization of liquid low-level and mixed wastes: a treatability study

    SciTech Connect

    Carson, S.; Cheng, Yu-Cheng; Yellowhorse, L.; Peterson, P.

    1996-02-01

    A treatability study has been conducted on liquid low-level and mixed wastes using the stabilization agents Aquaset, Aquaset II, Aquaset II-H, Petroset, Petroset-H, and Petroset and Petroset II. A total of 40 different waste types with activities ranging from 10{sup {minus}14} to 10{sup {minus}4} curies/ml have been stabilized. Reported data for each waste include its chemical and radiological composition and the optimum composition or range of compositions (weight of agent/volume of waste) for each stabilization agent used. All wastes were successfully stabilized with one or more of the stabilization agents and all final waste forms passed the Paint Filter Liquids Test (EPA Method 9095).

  3. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    SciTech Connect

    Jain, V.; Occhipinti, J.; Shah, H.; Wilmarth, B.; Edwards, R.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  4. Evaluation of mercury in liquid waste processing facilities - Phase I report

    SciTech Connect

    Jain, V.; Occhipinti, J. E.; Shah, H.; Wilmarth, W. R.; Edwards, R. E.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  5. Partial enzymatic elimination and quantification of sarcosine from alanine using liquid chromatography-tandem mass spectrometry.

    PubMed

    Burton, Casey; Gamagedara, Sanjeewa; Ma, Yinfa

    2013-04-01

    Since sarcosine and D,L-alanine co-elute on reversed-phase high-performance liquid chromatography (HPLC) columns and the tandem mass spectrometer cannot differentiate them due to equivalent parent and fragment ions, derivatization is often required for analysis of sarcosine in LC/MS systems. This study offers an alternative to derivatization by employing partial elimination of sarcosine by enzymatic oxidation. The decrease in apparent concentration from the traditionally merged sarcosine-alanine peak associated with the enzymatic elimination has been shown to be proportional to the total sarcosine present (R(2) = 0.9999), allowing for determinations of urinary sarcosine. Sarcosine oxidase was shown to eliminate only sarcosine in the presence of D,L-alanine, and was consequently used as the selective enzyme. This newly developed technique has a method detection limit of 1 μg/L (parts per billion) with a linear range of 3 ppb-1 mg/L (parts per million) in urine matrices. The method was further validated through spiked recoveries of real urine samples, as well as the analysis of 35 real urine samples. The average recoveries for low, middle, and high sarcosine concentration spikes were 111.7, 90.8, and 90.1 %, respectively. In conclusion, this simple enzymatic approach coupled with HPLC/MS/MS is able to resolve sarcosine from D,L-alanine leading to underivatized quantification of sarcosine.

  6. Quantification of folate metabolites in serum using ultraperformance liquid chromatography tandem mass spectrometry.

    PubMed

    Wang, Xiuwei; Zhang, Ting; Zhao, Xin; Guan, Zhen; Wang, Zhen; Zhu, Zhiqiang; Xie, Qiu; Wang, Jianhua; Niu, Bo

    2014-07-01

    Folate deficiency is considered a risk factor for many diseases such as cancer, congenital heart disease and neural tube defects (NTDs). There is a pressing need for more methods of detecting folate and its main metabolites in the human body. Here, we developed a simple, fast and sensitive ultraperformance liquid chromatography tandem mass spectrometry (UPLC/MS/MS) method for the simultaneous quantifications of folate metabolites including folic acid, 5-methyltetrahydrofolate (5-MeTHF), 5-formyltetrahydrofolate (5-FoTHF), homocysteine (Hcy), S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH). The method was validated by determining the linearity (r(2)>0.998), sensitivity (limit of detection ranged from 0.05 to 0.200ng/mL), intra- and inter-day precision (both CV<6%) and recovery (each analyte was >90%). The total analysis time was 7min. Serum samples of NTD-affected pregnancies and controls from a NTD high-risk area in China were analyzed by this method, the NTD serum samples showed lower concentrations of 5-MeTHF (P<0.05) and 5-FoTHF (P<0.05), and higher concentrations of Hcy (P<0.05) and SAH (P<0.05) compared with serum samples from controls, consistent with a previous study. These results showed that the method is sensitive and reliable for simultaneous determination of six metabolites, which might indicate potential risk factors for NTDs, aid early diagnosis and provide more insights into the pathogenesis of NTDs.

  7. Quantification of plasma homocitrulline using hydrophilic interaction liquid chromatography (HILIC) coupled to tandem mass spectrometry.

    PubMed

    Jaisson, Stéphane; Gorisse, Laëtitia; Pietrement, Christine; Gillery, Philippe

    2012-02-01

    Homocitrulline (HCit), an amino acid formed by the carbamylation of ε-amino groups of lysine residues, is considered a promising biomarker for monitoring diseases such as chronic renal failure and atherosclerosis. This paper describes a tandem mass spectrometric method for total, protein-bound and free HCit measurement in plasma samples. HCit was separated from other plasma components by hydrophilic interaction liquid chromatography. Detection was achieved by monitoring transitions of 190.1 > 127.1 and 190.1 > 173.1 for HCit, and 183.1 > 120.2 for d(7)-citrulline used as internal standard. This method allowed HCit quantification within 5.2 min and was precise (inter-assay CV < 5.85%), accurate (mean recoveries ranging from 97% to 106%), and exhibited a good linearity from 10 nmol/L to 1.6 μmol/L. Plasma samples from control and uremic mice (n = 10) were analyzed. In control mice, mean total plasma HCit concentration was 0.78 ± 0.12 μmol/mol amino acids, whereas it was increased 2.7-fold in uremic mice plasma, reaching 2.10 ± 0.50 μmol/mol amino acids (p < 0.001). In conclusion, this method exhibits good analytical performances and meets the criteria of sensitivity suitable for HCit concentration assessment in plasma samples.

  8. Statistical description of liquid low-level waste system supernatant liquids at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    DeVore, J.R.; Bayne, C.K.; Walker, A.B.

    1997-10-01

    The Department of Energy has presented plans for processing transuranic low level liquid wastes located at ORNL. The Tennessee Department of Health and Environment has mandated the beginning of processing of these wastes by the year 2002, looking towards permanent disposal at a site located off the reservation. In order to meet this schedule, the DOE will solicit bids from various private sector companies to construct a processing facility to be operated by the private sector on a contract basis. In support of the Request for Proposal (RFP) process to accomplish the private sector involvement, this report is being written to give potential vendors information about the wastes contained in the ORNL tank farm system. This addendum report consolidates all data that presently exist on the properties and composition of the waste supernatant liquids, and presents methods to calculate the error bounds of the data in the best technically defensible manner possible.

  9. ASSESSMENT OF LIQUID EMULSION MEMBRANE FOR CLEAN UP OF AQUEOUS WASTE EFFLUENTS FROM HAZARDOUS ELEMENTS

    SciTech Connect

    El-Reefy, Sohair A.; Selim, Y.T.; Hassan, M.A.; Aly, H.F.

    2003-02-27

    Four liquid emulsion membrane (LEM) systems are given to remove different hazardous elements such as uranium, thorium, cobalt, copper, lead, and cadmium from different aqueous waste effluents. The optimum conditions for use of these systems are deduced. The potentiality of LEM for removal of hazardous pollutants from aqueous waste solutions is given.

  10. A&M. Hot liquid waste treatment building (TAN616). Camera facing southwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing southwest. Oblique view of east and north walls. Note three corrugated pipes at lower left indicating location of underground hot waste storage tanks. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. Quantification of Food Waste Disposal in the United States: A Meta-Analysis.

    PubMed

    Thyberg, Krista L; Tonjes, David J; Gurevitch, Jessica

    2015-12-15

    Food waste has major consequences for social, nutritional, economic, and environmental issues, and yet the amount of food waste disposed in the U.S. has not been accurately quantified. We introduce the transparent and repeatable methods of meta-analysis and systematic reviewing to determine how much food is discarded in the U.S., and to determine if specific factors drive increased disposal. The aggregate proportion of food waste in U.S. municipal solid waste from 1995 to 2013 was found to be 0.147 (95% CI 0.137-0.157) of total disposed waste, which is lower than that estimated by U.S. Environmental Protection Agency for the same period (0.176). The proportion of food waste increased significantly with time, with the western U.S. region having consistently and significantly higher proportions of food waste than other regions. There were no significant differences in food waste between rural and urban samples, or between commercial/institutional and residential samples. The aggregate disposal rate for food waste was 0.615 pounds (0.279 kg) (95% CI 0.565-0.664) of food waste disposed per person per day, which equates to over 35.5 million tons (32.2 million tonnes) of food waste disposed annually in the U.S.

  12. High performance liquid chromatography-charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants.

    PubMed

    Behrens, Beate; Baune, Matthias; Jungkeit, Janek; Tiso, Till; Blank, Lars M; Hayen, Heiko

    2016-07-15

    A method using high performance liquid chromatography coupled to charged-aerosol detection (HPLC-CAD) was developed for the quantification of rhamnolipid biosurfactants. Qualitative sample composition was determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The relative quantification of different derivatives of rhamnolipids including di-rhamnolipids, mono-rhamnolipids, and their precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) differed for two compared LC-MS instruments and revealed instrument dependent responses. Our here reported HPLC-CAD method provides uniform response. An inverse gradient was applied for the absolute quantification of rhamnolipid congeners to account for the detector's dependency on the solvent composition. The CAD produces a uniform response not only for the analytes but also for structurally different (nonvolatile) compounds. It was demonstrated that n-dodecyl-β-d-maltoside or deoxycholic acid can be used as alternative standards. The method of HPLC-ultra violet (UV) detection after a derivatization of rhamnolipids and HAAs to their corresponding phenacyl esters confirmed the obtained results but required additional, laborious sample preparation steps. Sensitivity determined as limit of detection and limit of quantification for four mono-rhamnolipids was in the range of 0.3-1.0 and 1.2-2.0μg/mL, respectively, for HPLC-CAD and 0.4 and 1.5μg/mL, respectively, for HPLC-UV. Linearity for HPLC-CAD was at least 0.996 (R(2)) in the calibrated range of about 1-200μg/mL. Hence, the here presented HPLC-CAD method allows absolute quantification of rhamnolipids and derivatives.

  13. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste.

    PubMed

    Chen, Xiang; Yan, Wei; Sheng, Kuichuan; Sanati, Mehri

    2014-02-01

    Co-digestion of food waste and green waste was conducted with six feedstock mixing ratios to evaluate biogas production. Increasing the food waste percentage in the feedstock resulted in an increased methane yield, while shorter retention time was achieved by increasing the green waste percentage. Food waste/green waste ratio of 40:60 was determined as preferred ratio for optimal biogas production. About 90% of methane yield was obtained after 24.5 days of digestion, with total methane yield of 272.1 mL/g VS. Based the preferred ratio, effect of total solids (TS) content on co-digestion of food waste and green waste was evaluated over a TS range of 5-25%. Results showed that methane yields from high-solids anaerobic digestion (15-20% TS) were higher than the output of liquid anaerobic digestion (5-10% TS), while methanogenesis was inhibited by further increasing the TS content to 25%. The inhibition may be caused by organic overloading and excess ammonia.

  14. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  15. Physical and Liquid Chemical Simulant Formulations for Transuranic Waste in Hanford Single-Shell Tanks

    SciTech Connect

    Rassat, Scot D.; Bagaasen, Larry M.; Mahoney, Lenna A.; Russell, Renee L.; Caldwell, Dustin D.; Mendoza, Donaldo P.

    2003-07-30

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is in the process of identifying and developing supplemental process technologies to accelerate the tank waste cleanup mission. A range of technologies is being evaluated to allow disposal of Hanford waste types, including transuranic (TRU) process wastes. Ten Hanford single-shell tanks (SSTs) have been identified whose contents may meet the criteria for designation as TRU waste: the B-200 series (241-B-201, -B-202, -B 203, and B 204), the T-200 series (241-T-201, T 202, -T-203, and -T-204), and Tanks 241-T-110 and -T-111. CH2M HILL has requested vendor proposals to develop a system to transfer and package the contact-handled TRU (CH-TRU) waste retrieved from the SSTs for subsequent disposal at the Waste Isolation Pilot Plant (WIPP). Current plans call for a modified ''dry'' retrieval process in which a liquid stream is used to help mobilize the waste for retrieval and transfer through lines and vessels. This retrieval approach requires that a significant portion of the liquid be removed from the mobilized waste sludge in a ''dewatering'' process such as centrifugation prior to transferring to waste packages in a form suitable for acceptance at WIPP. In support of CH2M HILL's effort to procure a TRU waste handling and packaging process, Pacific Northwest National Laboratory (PNNL) developed waste simulant formulations to be used in evaluating the vendor's system. For the SST CH-TRU wastes, the suite of simulants includes (1) nonradioactive chemical simulants of the liquid fraction of the waste, (2) physical simulants that reproduce the important dewatering properties of the waste, and (3) physical simulants that can be used to mimic important rheological properties of the waste at different points in the TRU waste handling and packaging process. To validate the simulant formulations, their measured properties were compared with the limited data for actual TRU waste samples. PNNL developed the final simulant formulations

  16. Quantification and confirmation of flunixin in equine plasma by liquid chromatography-quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Luo, Yi; Rudy, Jeffrey A; Uboh, Cornelius E; Soma, Lawrence R; Guan, Fuyu; Enright, James M; Tsang, Deborah S

    2004-03-05

    The method describes quantification and confirmation of flunixin in equine plasma by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC/Q-TOF/MS/MS). Samples were screened by enzyme-linked immunosorbent assay (ELISA) and only those samples presumptively declared positive were subjected to quantification and confirmation for the presence of flunixin by this method. The method is also readily adaptable to instrumental screening for the analyte. Flunixin was recovered from plasma by liquid-liquid extraction (LLE). The sample was diluted with 2 ml saturated phosphate buffer (pH 3.10) prior to LLE. The dried extract was reconstituted in acetonitrile:water:formic acid (50:50:0.1, v/v/v) and subsequently analyzed on a Q-TOF tandem mass spectrometer (Micromass) operated under electrospray ionization positive ion mode. The concentration of flunixin was determined by the internal standard (IS) calibration method using the peak area ratio with clonixin as the IS. The limits of detection (LOD) and quantification (LOQ) for flunixin in equine plasma were 0.1 and 1 ng/ml, respectively, whereas the limit of confirmation (LOC) was 2.5 ng/ml. The qualifying ions for the identification of flunixin were m/z 297 [M+H](+), 279 (BP), 264, 259, 239 and those for clonixin (IS) were m/z 263 [M+H](+), 245 (BP) and 210. The measurement uncertainty about the result was 8.7%. The method is simple, sensitive, robust and reliably fast in the quantification and confirmation of flunixin in equine plasma. Application of this method will assist racing authorities in the enforcement of tolerance plasma concentration of flunixin in the racehorse on race day.

  17. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  18. Data on subsurface storage of liquid waste near Pensacola, Florida, 1963-1980

    USGS Publications Warehouse

    Hull, R.W.; Martin, J.B.

    1982-01-01

    Since 1963, when industrial waste was first injected into the subsurface in northwest Florida, considerable data have been collected relating to the geochemistry of subsurface waste storage. This report presents hydrogeologic data on two subsurface waste storage. This report presents hydrogeologic data on two subsurface storage systems near Pensacola, Fla., which inject liquid industrial waste through deep wells into a saline aquifer. Injection sites are described giving a history of well construction, injection, and testing; geologic data from cores and grab samples; hydrographs of injection rates, volume, pressure, and water levels; and chemical and physical data from water-quality samples collected from injection and monitor wells. (USGS)

  19. Gelatin quantification by oxygen-18 labeling and liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Sha, Xiao-Mei; Tu, Zong-Cai; Wang, Hui; Huang, Tao; Duan, Deng-Le; He, Na; Li, De-Jun; Xiao, Hui

    2014-12-10

    Combined with high-performance liquid chromatography (HPLC) and linear-ion trap/Orbitrap high-resolution mass spectrometry, trypsin-catalyzed (16)O-to-(18)O exchange was used to establish an accurate quantitative method for bovine or porcine gelatin. The sophisticated modifications for these two mammalian gelatins were unambiguously identified by accurate mass and tandem mass spectrometry. Eighteen marker peptides were successfully identified for the bovine and porcine gelatin, respectively. The gelatins were subjected to (18)O or (16)O labeling in the presence of trypsin and mixed together in various ratios for quantification. All of the (18)O-labeled peptides were also confirmed by accurate mass and tandem mass spectrometry. The 10 marker peptides with the strongest signals were chosen to calculate the average ratios of (18)O-labeled and (16)O-labeled gelatin. The measured ratios of (18)O-labeled and (16)O-labeled peptides were very close to the mixing ratios of 20:1, 5:1, 1:1, and 1:5 with low standard deviation values. The samples with a mixing ratio of 1:1 (18)O-labeled and (16)O-labeled peptides were determined to 1.00 and 0.99 with standard deviations of 0.02 and 0.04 for bovine and porcine gelatins, respectively, indicating the high accuracy of this method. Trypsin-catalyzed (18)O labeling was proved to be an excellent internal calibrant for gelatins. When combined with HPLC and high-resolution mass spectrometry, it is an accurate and sensitive quantitative method for gelatin in the food industry.

  20. Determination and quantification of cations in ionic liquids by capillary electrophoresis-mass spectrometry.

    PubMed

    Pyschik, Marcelina; Winter, Martin; Nowak, Sascha

    2017-02-17

    In this study, a capillary electrophoresis (CE) method hyphenated to a high-resolution mass spectrometer is presented to detect the cations in ionic liquids (ILs) and their decomposition products. The investigated ILs were 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR13TFSI), 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM TFSI). With this method, it was possible to achieve baseline separation of the decomposition products from the main cations in short migration times. Because of the successful baseline separation, it was also possible to quantify the main cations in ILs, which were aged at room temperature and at 60°C. Additionally, the relative standard deviations (RSDs) for the concentrations of the main cations investigated by CE and ion chromatography (IC) were given to compare the both methods with each other. The concentrations were determined for the main cations aged at different temperatures. Finally, the limits of detection (LOD) and quantification (LOQ) were calculated for this method and compared to the IC results. The LODs and LOQs for CE method was in the range of 0.3-2.1mg/kg and for the IC method 34.9-455.2mg/kg. Therefore, more decomposition products of EMIM(+) were determined by the CE method than by the IC method. In each investigated IL, more decomposition products of the cations were detected at 60°C compared to room temperature. The PYR14(+) concentration decreased by 4 % at 60°C, while PYR13(+) and EMIM(+) decreased more than 10 % aged at 60°C in contrast to the sample which was aged at room temperature.

  1. Quantification of free formaldehyde in carrageenan and processed Eucheuma seaweed using high-performance liquid chromatography.

    PubMed

    Hornshøj, Bettina Høj; Kobbelgaard, Sara; Blakemore, William R; Stapelfeldt, Henrik; Bixler, Harris J; Klinger, Markus

    2015-01-01

    In 2010 the European Commission placed a limit on the amount of free formaldehyde in carrageenan and processed Eucheuma seaweed (PES) of 5 mg kg(-1). Formaldehyde is not used in carrageenan and PES processing and accordingly one would not expect free formaldehyde to be present in carrageenan and PES. However, surprisingly high levels up to 10 mg kg(-1) have been found using the generally accepted AOAC and Hach tests. These findings are, per proposed reaction pathways, likely due to the formation of formaldehyde when sulphated galactose, the backbone of carrageenan, is hydrolysed with the strong acid used in these conventional tests. In order to minimise the risk of false-positives, which may lead to regulatory non-compliance, a new high-performance liquid chromatography (HPLC) method has been developed. Initially, carrageenan or PES is extracted with 2-propanol and subsequently reacted with 2,4-dinitrophenylhydrazine (DNPH) to form the chromophore formaldehyde-DNPH, which is finally quantified by reversed-phase HPLC with ultraviolet light detection at 355 nm. This method has been found to have a limit of detection of 0.05 mg kg(-1) and a limit of quantification of 0.2 mg kg(-1). Recoveries from samples spiked with known quantities of formaldehyde were 95-107%. Using this more specific technique, 20 samples of carrageenan and PES were tested for formaldehyde. Only one sample had a detectable content of formaldehyde (0.40 mg kg(-1)), thus demonstrating that the formaldehyde content of commercial carrageenan and PES products are well below the European Commission maximum limit of 5 mg kg(-1).

  2. Detection and quantification of cocoa butter equivalents in cocoa butter and plain chocolate by gas liquid chromatography of triacylglycerols.

    PubMed

    Buchgraber, Manuela; Senaldi, Chiara; Ulberth, Franz; Anklam, Elke

    2004-01-01

    The development and in-house testing of a method for the detection and quantification of cocoa butter equivalents in cocoa butter and plain chocolate is described. A database consisting of the triacylglycerol profile of 74 genuine cocoa butter and 75 cocoa butter equivalent samples obtained by high-resolution capillary gas liquid chromatography was created, using a certified cocoa butter reference material (IRMM-801) for calibration purposes. Based on these data, a large number of cocoa butter/cocoa butter equivalent mixtures were arithmetically simulated. By subjecting the data set to various statistical tools, reliable models for both detection (univariate regression model) and quantification (multivariate model) were elaborated. Validation data sets consisting of a large number of samples (n = 4050 for detection, n = 1050 for quantification) were used to test the models. Excluding pure illipé fat samples from the data set, the detection limit was determined between 1 and 3% foreign fat in cocoa butter. Recalculated for a chocolate with a fat content of 30%, these figures are equal to 0.3-0.9% cocoa butter equivalent. For quantification, the average error for prediction was estimated to be 1.1% cocoa butter equivalent in cocoa butter, without prior knowledge of the materials used in the blend corresponding to 0.3% in chocolate (fat content 30%). The advantage of the approach is that by using IRMM-801 for calibration, the established mathematical decision rules can be transferred to every testing laboratory.

  3. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  4. System for removing liquid waste from a tank

    DOEpatents

    Meneely, T.K.; Sherbine, C.A.

    1994-04-26

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

  5. System for removing liquid waste from a tank

    DOEpatents

    Meneely, Timothy K.; Sherbine, Catherine A.

    1994-01-01

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

  6. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    SciTech Connect

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  7. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    SciTech Connect

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-12-31

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States` first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  8. Quantification of polycyclic aromatic hydrocarbons in tea and coffee samples of Mumbai City (India) by high performance liquid chromatography.

    PubMed

    Bishnoi, Narsi R; Mehta, Urvashi; Sain, Umashanker; Pandit, G G

    2005-08-01

    This paper describes a method for quantification of sixteen polycyclic aromatic hydrocarbons (PAHs) in tea and coffee samples of Mumbai City with the help of reversed phase high performance liquid chromatography with UV-VIS detector. This method is based on liquid-liquid extraction followed by clean up with C-18 cartridge. Concentration of total PAHs in different brands of tea and coffee samples varied from 18.79 to 31.37 microg/L and from 16.47 to 18.24 microg/L, respectively. Mean concentration of total PAHs was 27.56 microg/L in tea and 17.20 microg/L in coffee. Recoveries at different concentration levels were higher than 68% in samples of tea and coffee. Detection limit was found to be low (0.0006 ng) for anthracene and highest (0.174 ng) for naphthalene with relative standard deviation between 0.4%-7%.

  9. Quantification of Dehydroepiandrosterone, 11-Deoxycortisol, 17-Hydroxyprogesterone, and Testosterone by Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS).

    PubMed

    Munar, Ada; Frazee, Clint; Garg, Uttam

    2016-01-01

    Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders due to enzymatic defects in the biosynthetic pathway of cortisol and/or aldosterone. The analysis of cortisol, 17-hydroxyprogesterone (OHPG), dehydroepiandrosterone (DHEA), 11-deoxycortisol, and testosterone is generally performed in the diagnosis and/or follow-up of CAH. Cortisol is generally analyzed by immunoassays whereas other hormones are preferably assayed by liquid chromatography-tandem mass spectrometry (LC/MS/MS). A multiple reaction monitoring, positive mode atmospheric pressure chemical ionization, LC/MS/MS method is described for the simultaneous quantification of 17-hydroxyprogesterone, DHEA, 11-deoxycortisol, and testosterone. Stable-isotope labeled internal standards are added to serum samples and steroids are extracted by liquid-liquid extraction using methyl tert-butyl ether. The extract is evaporated under stream of nitrogen and the residue is reconstituted in methanol and analyzed by LC/MS/MS.

  10. PROBABILITY BASED CORROSION CONTROL FOR LIQUID WASTE TANKS - PART III

    SciTech Connect

    Hoffman, E.; Edwards, T.

    2010-12-09

    The liquid waste chemistry control program is designed to reduce the pitting corrosion occurrence on tank walls. The chemistry control program has been implemented, in part, by applying engineering judgment safety factors to experimental data. However, the simple application of a general safety factor can result in use of excessive corrosion inhibiting agents. The required use of excess corrosion inhibitors can be costly for tank maintenance, waste processing, and in future tank closure. It is proposed that a probability-based approach can be used to quantify the risk associated with the chemistry control program. This approach can lead to the application of tank-specific chemistry control programs reducing overall costs associated with overly conservative use of inhibitor. Furthermore, when using nitrite as an inhibitor, the current chemistry control program is based on a linear model of increased aggressive species requiring increased protective species. This linear model was primarily supported by experimental data obtained from dilute solutions with nitrate concentrations less than 0.6 M, but is used to produce the current chemistry control program up to 1.0 M nitrate. Therefore, in the nitrate space between 0.6 and 1.0 M, the current control limit is based on assumptions that the linear model developed from data in the <0.6 M region is applicable in the 0.6-1.0 M region. Due to this assumption, further investigation of the nitrate region of 0.6 M to 1.0 M has potential for significant inhibitor reduction, while maintaining the same level of corrosion risk associated with the current chemistry control program. Ongoing studies have been conducted in FY07, FY08, FY09 and FY10 to evaluate the corrosion controls at the SRS tank farm and to assess the minimum nitrite concentrations to inhibit pitting in ASTM A537 carbon steel below 1.0 molar nitrate. The experimentation from FY08 suggested a non-linear model known as the mixture/amount model could be used to predict

  11. Quantification and classification of ship scraping waste at Alang-Sosiya, India.

    PubMed

    Srinivasa Reddy, M; Basha, Shaik; Sravan Kumar, V G; Joshi, H V; Ghosh, P K

    2003-12-01

    Alang-Sosiya located on the Western Coast of Gulf of Cambay, is the largest ship recycling yard in the world. Every year on average 365 ships having a mean weight (2.10x10(6)+/-7.82x10(5) LDT) are scrapped. This industry generates a huge quantity of solid waste in the form of broken wood, rubber, insulation materials, paper, metals, glass and ceramics, plastics, leather, textiles, food waste, chemicals, paints, thermocol, sponge, ash, oil mixed sponges, miscellaneous combustible and non-combustible. The quantity and composition of solid waste was collected for a period of three months and the average values are presented in this work. Sosiya had the most waste 15.63 kg/m(2) compared to Alang 10.19 kg/m(2). The combustible solid waste quantity was around 83.0% of the total solid waste available at the yard, which represents an average weight of 9.807 kg/m(2); whereas, non-combustible waste is 1.933 kg/m(2). There is not much difference between the average of total solid waste calculated from the sampling data (96.71 MT/day) and the data provided by the port authorities (96.8 MT/day).

  12. Quantification of construction waste prevented by BIM-based design validation: Case studies in South Korea.

    PubMed

    Won, Jongsung; Cheng, Jack C P; Lee, Ghang

    2016-03-01

    Waste generated in construction and demolition processes comprised around 50% of the solid waste in South Korea in 2013. Many cases show that design validation based on building information modeling (BIM) is an effective means to reduce the amount of construction waste since construction waste is mainly generated due to improper design and unexpected changes in the design and construction phases. However, the amount of construction waste that could be avoided by adopting BIM-based design validation has been unknown. This paper aims to estimate the amount of construction waste prevented by a BIM-based design validation process based on the amount of construction waste that might be generated due to design errors. Two project cases in South Korea were studied in this paper, with 381 and 136 design errors detected, respectively during the BIM-based design validation. Each design error was categorized according to its cause and the likelihood of detection before construction. The case studies show that BIM-based design validation could prevent 4.3-15.2% of construction waste that might have been generated without using BIM.

  13. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    SciTech Connect

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  14. Liquid and Gaseous Waste Operations Project Annual Operating Report CY 1999

    SciTech Connect

    Maddox, J.J.; Scott, C.B.

    2000-03-01

    A total of 5.77 x 10 7 gallons (gal) of liquid waste was decontaminated by the Process Waste Treatment Complex (PWTC) - Building 3544 ion exchange system during calendar year (CY) 1999. This averaged to 110 gpm throughout the year. An additional 3.94 x 10 6 gal of liquid waste (average of 8 gpm throughout the year) was decontaminated using the zeolite treatment system due to periods of high Cesium levels in the influent wastewater. A total of 6.17 x 10 7 gal of liquid waste (average of 118 gpm throughout the year) was decontaminated at Building 3544 during the year. During the year, the regeneration of the ion exchange resins resulted in the generation of 8.00 x 10 3 gal of Liquid Low-Level Waste (LLLW) concentrate and 9.00 x 10 2 gal of LLLW supernate. See Table 1 for a monthly summary of activities at Building 3544. Figure 1 shows a diagram of the Process Waste Collection and Transfer System and Figure 2 shows a diagram of the Building 3544 treatment process. Figures 3, 4 5, and 6 s how a comparison of operations at Building 3544 in 1997 with previous years. Figure 7 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1995.

  15. LABORATORY INVESTIGATION OF RESIDUAL LIQUID ORGANICS FROM SPILLS, LEAKS, AND THE DISPOSAL OF HAZARDOUS WASTES IN GROUNDWATER

    EPA Science Inventory

    Organic liquids that are essentially immiscible with water migrate through the subsurface under the influence of capillary, viscous, and buoyancy forces. These liquids originate from the improper disposal of hazardous wastes, and the spills and leaks of petroleum hydrocarbons a...

  16. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    SciTech Connect

    Abotsi, G.M.K.; Bostick, D.T.; Beck, D.E.

    1996-05-01

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

  17. Hydrophilic interaction liquid chromatography for the separation, purification, and quantification of raffinose family oligosaccharides from Lycopus lucidus Turcz.

    PubMed

    Liang, Tu; Fu, Qing; Li, Fangbing; Zhou, Wei; Xin, Huaxia; Wang, Hui; Jin, Yu; Liang, Xinmiao

    2015-08-01

    A systematic strategy based on hydrophilic interaction liquid chromatography was developed for the separation, purification and quantification of raffinose family oligosaccharides from Lycopus lucidus Turcz. Methods with enough hydrophilicity and selectivity were utilized to resolve the problems encountered in the separation of oligosaccharides such as low retention, low resolution and poor solubility. The raffinose family oligosaccharides in L. lucidus Turcz. were isolated using solid-phase extraction followed by hydrophilic interaction liquid chromatography at semi-preparative scale to obtain standards of stachyose, verbascose and ajugose. Utilizing the obtained oligosaccharides as standards, a quantitative determination method was developed, validated and applied for the content determination of raffinose family oligosaccharides both in the aerial and root parts of L. lucidus Turcz. There were no oligosaccharides in the aerial parts, while in the root parts, the total content was 686.5 mg/g with the average distribution: raffinose 66.5 mg/g, stachyose 289.0 mg/g, verbascose 212.4 mg/g, and ajugose 118.6 mg/g. The result provided the potential of roots of L. lucidus Turcz. as new raffinose family oligosaccharides sources for functional food. Moreover, since the present systematic strategy is efficient, sensitive and robust, separation, purification and quantification of oligosaccharides by hydrophilic interaction liquid chromatography seems to be possible.

  18. [Hospital solid waste: quantification. Bacteriological analyses--case of hospital Ibn Sina].

    PubMed

    Bahri, Meriem; Belkhadir, Rachid; Benzakour, Mohammed; Idrissi, Larbi; Khadri, Abdelhamid

    2006-01-01

    Hospital waste represent, by their nature and their constitution, a big threat to health in the intra and extra hospital area. and a source of pollution for the environment. A 12-day campaign of weighing of the waste produced by the hospital Ibn Sina of Rabat-Morocco should an average of 1.75 kg/bed/day. In order to identify the hospital pathogenic germs as well as their sensitivities to antibiotics, some bacteriological analyses have been done on the percolat waste of this hospital. The results of these analyses put in evidence the presence of Pseudomonas aeruginosa and Staphylococcus aureus and their resistance to some antibiotics.

  19. New technique for quantification of elemental Hg in mine wastes and its implications for mercury evasion into the atmosphere.

    PubMed

    Jew, Adam D; Kim, Christopher S; Rytuba, James J; Gustin, Mae S; Brown, Gordon E

    2011-01-15

    Mercury in the environment is of prime concern to both ecosystem and human health. Determination of the molecular-level speciation of Hg in soils and mine wastes is important for understanding its sequestration, mobility, and availability for methylation. Extended X-ray absorption fine structure (EXAFS) spectroscopy carried out under ambient P-T conditions has been used in a number of past studies to determine Hg speciation in complex mine wastes and associated soils. However, this approach cannot detect elemental (liquid) mercury in Hg-polluted soils and sediments due to the significant structural disorder of liquid Hg at ambient-temperature. A new sample preparation protocol involving slow cooling through the crystallization temperature of Hg(0) (234 K) results in its transformation to crystalline α-Hg(0). The presence and proportion of Hg(0), relative to other crystalline Hg-bearing phases, in samples prepared in this way can be quantified by low-temperature (77 K) EXAFS spectroscopy. Using this approach, we have determined the relative concentrations of liquid Hg(0) in Hg mine wastes from several sites in the California Coast Range and have found that they correlate well with measured fluxes of gaseous Hg released during light and dark exposure of the same samples, with higher evasion ratios from samples containing higher concentrations of liquid Hg(0). Two different linear relationships are observed in plots of the ratio of Hg emission under light and dark conditions vs % Hg(0), corresponding to silica-carbonate- and hot springs-type Hg deposits, with the hot springs-type samples exhibiting higher evasion fluxes than silica-carbonate type samples at similar Hg(0) concentrations. Our findings help explain significant differences in Hg evasion data for different mine sites in the California Coast Range.

  20. New technique for quantification of elemental hg in mine wastes and its implications for mercury evasion into the atmosphere

    USGS Publications Warehouse

    Jew, A.D.; Kim, C.S.; Rytuba, J.J.; Gustin, M.S.; Brown, Gordon E.

    2011-01-01

    Mercury in the environment is of prime concern to both ecosystem and human health. Determination of the molecular-level speciation of Hg in soils and mine wastes is important for understanding its sequestration, mobility, and availability for methylation. Extended X-ray absorption fine structure (EXAFS) spectroscopy carried out under ambient P-T conditions has been used in a number of past studies to determine Hg speciation in complex mine wastes and associated soils. However, this approach cannot detect elemental (liquid) mercury in Hg-polluted soils and sediments due to the significant structural disorder of liquid Hg at ambient-temperature. A new sample preparation protocol involving slow cooling through the crystallization temperature of Hg(0) (234 K) results in its transformation to crystalline ??-Hg(0). The presence and proportion of Hg(0), relative to other crystalline Hg-bearing phases, in samples prepared in this way can be quantified by low-temperature (77 K) EXAFS spectroscopy. Using this approach, we have determined the relative concentrations of liquid Hg(0) in Hg mine wastes from several sites in the California Coast Range and have found that they correlate well with measured fluxes of gaseous Hg released during light and dark exposure of the same samples, with higher evasion ratios from samples containing higher concentrations of liquid Hg(0). Two different linear relationships are observed in plots of the ratio of Hg emission under light and dark conditions vs % Hg(0), corresponding to silica-carbonate- and hot springs-type Hg deposits, with the hot springs-type samples exhibiting higher evasion fluxes than silica-carbonate type samples at similar Hg(0) concentrations. Our findings help explain significant differences in Hg evasion data for different mine sites in the California Coast Range. ?? 2011 American Chemical Society.

  1. Statistical Description of Liquid Low-Level Waste System Transssuranic Wastes at Oak Ridge Nation Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-12-01

    The US DOE has presented plans for processing liquid low-level wastes (LLLW) located at Oak Ridge National Laboratory (ORNL) in the LLLW tank system. These wastes are among the most hazardous on the Oak Ridge reservation and exhibit both RCRA toxic and radiological hazards. The Tennessee Department of Health and Environment has mandated that the processing of these wastes must begin by the year 2002 and the the goal should be permanent disposal at a site off the Oak Ridge Reservation. To meet this schedule, DOE will solicit bids from various private sector companies for the construction of a processing facility on land located near the ORNL Melton Valley Storage Tanks to be operated by the private sector on a contract basis. This report will support the Request for Proposal process and will give potential vendors information about the wastes contained in the ORNL tank farm system. The report consolidates current data about the properties and composition of these wastes and presents methods to calculate the error bounds of the data in the best technically defensible manner possible. The report includes information for only the tank waste that is to be included in the request for proposal.

  2. FY 1995 separation studies for liquid low-level waste treatment at Oak Ridge National Laboratory

    SciTech Connect

    Bostick, D.T.; Arnold, W.D.; Burgess, M.W.

    1995-01-01

    During FY 1995, studies were continued to develop improved methods for centralized treatment of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). Focus in this reporting period was on (1) identifying the parameters that affect the selective removal of {sup 90}Sr and {sup 137}Cs, two of the principal radioactive contaminants expected in the waste; (2) validating the effectiveness of the treatment methods by testing an ac Melton Valley Storage Tank (MVST) supernate; (3) evaluating the optimum solid/liquid separation techniques for the waste; (4) identifying potential treatment methods for removal of technetium from LLLW; and (5) identifying potential methods for stabilizing the high-activity secondary solid wastes generated by the treatment.

  3. Characterization and monitoring of 300 Area facility liquid waste streams during 1994 and 1995

    SciTech Connect

    Thompson, C.J.; Ballinger, M.Y.; Damberg, E.G.; Riley, R.G.

    1997-07-01

    Pacific Northwest National Laboratory`s Facility Effluent Management Program characterized and monitored liquid waste streams from 300 Area buildings that are owned by the US Department of Energy and are operated by Pacific Northwest National Laboratory. The purpose of these measurements was to determine whether the waste streams would meet administrative controls that were put in place by the operators of the 300 Area Treated Effluent Disposal Facility. This report summarizes the data obtained between March 1994 and September 1995 on the following waters: liquid waste streams from Buildings 306, 320, 324, 325, 326, 327, 331, and 3,720; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe).

  4. Quantification of Galactose-1-Phosphate Uridyltransferase Enzyme Activity by Liquid Chromatography–Tandem Mass Spectrometry

    PubMed Central

    Li, Yijun; Ptolemy, Adam S.; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T.

    2013-01-01

    Background The diagnosis of galactosemia usually involves the measurement of galactose-1-phosphate uridyltransferase (GALT) activity. Traditional radioactive and fluorescent GALT assays are nonspecific, laborious, and/or lack sufficient analytical sensitivity. We developed a liquid chromatography–tandem mass spectrometry (LC-MS/MS)–based assay for GALT enzyme activity measurement. Method Our assay used stable isotope-labeled α-galactose-1-phosphate ([13C6]-Gal-1-P) as an enzyme substrate. Sample cleanup and separation were achieved by reversed-phase ion-pair chromatography, and the enzymatic product, isotope-labeled uridine diphosphate galactose ([13C6]-UDPGal), was detected by MS/MS at mass transition (571 > 323) and quantified by use of [13C6]-Glu-1-P (265 > 79) as an internal standard. Results The method yielded a mean (SD) GALT enzyme activity of 23.8 (3.8) µmol · (gHgb)−1 · h−1 in erythrocyte extracts from 71 controls. The limit of quantification was 0.04 µmol · (g Hgb)−1 · h−1 (0.2% of normal control value). Intraassay imprecision was determined at 4 different levels (100%, 25%, 5%, and 0.2% of the normal control values), and the CVs were calculated to be 2.1%, 2.5%, 4.6%, and 9.7%, respectively (n = 3). Interassay imprecision CVs were 4.5%, 6.7%, 8.2%, and 13.2% (n = 5), respectively. The assay recoveries at the 4 levels were higher than 90%. The apparent Km of the 2 substrates, Gal-1-P and UDPGlc, were determined to be 0.38 mmol/L and 0.071 mmol/L, respectively. The assay in erythrocytes of 33 patients with classical galactosemia revealed no detectable activity. Conclusions This LC-MS/MS–based assay for GALT enzyme activity will be useful for the diagnosis and study of biochemically heterogeneous patients with galactosemia, especially those with uncommon genotypes and detectable but low residual activities. PMID:20348403

  5. US and Russian innovative technologies to process low-level liquid radioactive wastes: The Murmansk initiative

    SciTech Connect

    Dyer, R.S.; Penzin, R.; Duffey, R.B.; Sorlie, A.

    1996-12-31

    This paper documents the status of the technical design for the upgrade and expansion to the existing Low-level Liquid Radioactive Waste (LLLRW) treatment facility in Murmansk, the Russian Federation. This facility, owned by the Ministry of Transportation and operated by the Russian company RTP Atomflot in Murmansk, Russia, has been used by the Murmansk Shipping Company (MSCo) to process low-level liquid radioactive waste generated by the operation of its civilian icebreaker fleet. The purpose of the new design is to enable Russia to permanently cease the disposal at sea of LLLRW in the Arctic, and to treat liquid waste and high saline solutions from both the Civil and North Navy Fleet operations and decommissioning activities. Innovative treatments are to be used in the plant which are discussed in this paper.

  6. Calculation of chemical quantities for the radioactive liquid waste treatment facility

    SciTech Connect

    Del Signore, John C.; McClenahan, Robert L.

    2007-03-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) receives, stores, and treats both low-level and transuranic radioactive liquid wastes (RLW). Treatment of RLW requires the use of different chemicals. Examples include the use of calcium oxide to precipitate metals and radioactive elements from the radioactive liquid waste, and the use of hydrochloric acid to clean membrane filters that are used in the treatment process. The RL WTF is a Hazard Category 2 nuclear facility, as set forth in the LANL Final Safety Analysis Report of October 1995, and a DOE letter of March 11, 1999. A revised safety basis is being prepared for the RLWTF, and will be submitted to the NNSA in early 2007. This set of calculations establishes maximum chemical quantities that will be used in the 2007 safety basis.

  7. Quantification of nicotine, cotinine, trans-3'-hydroxycotinine, nornicotine and norcotinine in human meconium by liquid chromatography/tandem mass spectrometry.

    PubMed

    Gray, Teresa R; Shakleya, Diaa M; Huestis, Marilyn A

    2008-02-15

    There are no analytical methods that simultaneously quantify nicotine, cotinine, trans-3'-hydroxycotinine, nornicotine and norcotinine in human meconium. Such a method could improve identification of in utero tobacco exposure, determine if maternal dose-meconium concentration relationships exist, and whether nicotine meconium concentrations predict neonatal outcomes. The first liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry method for simultaneous quantification of these analytes in meconium was developed and validated. Specimen preparation included homogenization, enzyme hydrolysis and solid phase extraction. The linear range was 1.25 or 5-500ng/g. Method applicability was evaluated with meconium collected from an in utero tobacco exposed infant.

  8. Food waste within food supply chains: quantification and potential for change to 2050

    PubMed Central

    Parfitt, Julian; Barthel, Mark; Macnaughton, Sarah

    2010-01-01

    Food waste in the global food supply chain is reviewed in relation to the prospects for feeding a population of nine billion by 2050. Different definitions of food waste with respect to the complexities of food supply chains (FSCs)are discussed. An international literature review found a dearth of data on food waste and estimates varied widely; those for post-harvest losses of grain in developing countries might be overestimated. As much of the post-harvest loss data for developing countries was collected over 30 years ago, current global losses cannot be quantified. A significant gap exists in the understanding of the food waste implications of the rapid development of ‘BRIC’ economies. The limited data suggest that losses are much higher at the immediate post-harvest stages in developing countries and higher for perishable foods across industrialized and developing economies alike. For affluent economies, post-consumer food waste accounts for the greatest overall losses. To supplement the fragmentary picture and to gain a forward view, interviews were conducted with international FSC experts. The analyses highlighted the scale of the problem, the scope for improved system efficiencies and the challenges of affecting behavioural change to reduce post-consumer waste in affluent populations. PMID:20713403

  9. Food waste within food supply chains: quantification and potential for change to 2050.

    PubMed

    Parfitt, Julian; Barthel, Mark; Macnaughton, Sarah

    2010-09-27

    Food waste in the global food supply chain is reviewed in relation to the prospects for feeding a population of nine billion by 2050. Different definitions of food waste with respect to the complexities of food supply chains (FSCs)are discussed. An international literature review found a dearth of data on food waste and estimates varied widely; those for post-harvest losses of grain in developing countries might be overestimated. As much of the post-harvest loss data for developing countries was collected over 30 years ago, current global losses cannot be quantified. A significant gap exists in the understanding of the food waste implications of the rapid development of 'BRIC' economies. The limited data suggest that losses are much higher at the immediate post-harvest stages in developing countries and higher for perishable foods across industrialized and developing economies alike. For affluent economies, post-consumer food waste accounts for the greatest overall losses. To supplement the fragmentary picture and to gain a forward view, interviews were conducted with international FSC experts. The analyses highlighted the scale of the problem, the scope for improved system efficiencies and the challenges of affecting behavioural change to reduce post-consumer waste in affluent populations.

  10. Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report

    SciTech Connect

    Castiglioni, Andrew J.; Gelis, Artem V.

    2016-01-01

    This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.

  11. Handling of liquid radioactive wastes produced during the decommissioning of nuclear-powered submarines

    SciTech Connect

    Martynov, B.V.

    1995-10-01

    Liquid radioactive wastes are produced during the standard decontamination of the reactor loop and liquidation of the consequences of accidents. In performing the disassembly work on decommissioned nuclear-powered submarines, the equipment must first be decontaminated. All this leads to the formation of a large quantity of liquid wastes with a total salt content of more then 3l-5 g/liter and total {beta}-activity of up to 1 {center_dot}10{sup {minus}4} Ci/liter. One of the most effective methods for reprocessing these wastes - evaporation - has limitations: The operating expenses are high and the apparatus requires expensive alloyed steel. The methods of selective sorption of radionuclides on inorganic sorbents are used for reprocessing liquid wastes form the nuclear-powered fleet. A significant limitation of the method is the large decrease in sorption efficiency with increasing total salt-content of the wastes. In some works, in which electrodialysis is used for purification of the salt wastes, the total salt content can be decreased by a factor of 10-100 and the same quantity of radionuclides can be removed. We have developed an electrodialysis-sorption scheme for purifying salt wastes that makes it possible to remove radionuclides to the radiation safety standard and chemically harmful substances to the health standards. The scheme includes electrodialysis desalinization (by 90% per pass on the EDMS apparatus), followed by additional purification of the diluent on synthetic zeolites and electro-osmotic concentration (to 200-250 g/liter on the EDK apparatus). The secondard wastes---salt concentrates and spent sorbents---are solidified. (This is the entire text of the article.)

  12. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  13. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2002-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  14. Solvent extraction in the treatment of acidic high-level liquid waste : where do we stand?

    SciTech Connect

    Horwitz, E. P.; Schulz, W. W.

    1998-06-18

    During the last 15 years, a number of solvent extraction/recovery processes have been developed for the removal of the transuranic elements, {sup 90}Sr and {sup 137}Cs from acidic high-level liquid waste. These processes are based on the use of a variety of both acidic and neutral extractants. This chapter will present an overview and analysis of the various extractants and flowsheets developed to treat acidic high-level liquid waste streams. The advantages and disadvantages of each extractant along with comparisons of the individual systems are discussed.

  15. Novel Solvent for the Simultaneous recovery of Radioactive Nuclides from Liquid Radioactive Wastes

    SciTech Connect

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Lgor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    1999-10-07

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  16. Validation of a liquid chromatography method for the simultaneous quantification of ochratoxin A and its analogues in red wines.

    PubMed

    Remiro, Rebeca; Ibáñez-Vea, María; González-Peñas, Elena; Lizarraga, Elena

    2010-12-24

    A validated high-performance liquid chromatography (HPLC) method with fluorescence detection for the simultaneous quantification of ochratoxin A (OTA) and its analogues (ochratoxin B (OTB), ochratoxin C (OTC) and methyl ochratoxin A (MeOTA)) in red wine at trace levels is described. Before their analysis by HPLC-FLD, ochratoxins were extracted and purified with immunoaffinity columns from 50 mL of red wine at pH 7.2. Validation of the analytical method was based on the following parameters: selectivity, linearity, robustness, limits of detection and quantification, precision (within-day and between-day variability), recovery and stability. The limits of detection (LOD) in red wine were established at 0.16, 0.32, 0.27 and 0.17 ng L(-1) for OTA, OTB, MeOTA and OTC, respectively. The limit of quantification (LOQ) was established as 0.50 ng L(-1) for all of the ochratoxins. The LOD and LOQ obtained are the lowest found for OTA in the reference literature up to now. Recovery values were 93.5, 81.7, 76.0 and 73.4% for OTA, OTB, MeOTA and OTC, respectively. For the first time, this validated method permits the investigation of the co-occurrence of ochratoxins A, B, C and methyl ochratoxin A in 20 red wine samples from Spain.

  17. Quantification of steroidal alkaloids in Buxus papillosa using electrospray ionization liquid chromatography-triple quadrupole mass spectrometry.

    PubMed

    Musharraf, Syed Ghulam; Goher, Madiha; Zareena, Bibi

    2015-08-01

    Buxus papillosa is one of the most extensively studied species of the genus Buxus known to possess steroidal alkaloids which can be used for assessing the various pharmacological activities of this plant. This paper describes the liquid chromatography-electrospray ionization triple quadrupole mass spectrometry (LC-ESI-QQQ-MS) method for the quantification of six steroidal alkaloids as chemical markers in the extracts of leaves, roots and stems of B. papillosa. Quantitative MS/MS analysis was carried out by optimization of the most sensitive transition for each analyte. This has yielded detection and quantification limits of 0.486-8.08 ng/mL and 1.473-24.268 ng/mL, respectively for all analytes. Linearity of response was also achieved and the regression coefficient found to be >0.99 for all analyzed compounds. The newly developed MRM (Multiple Reaction Monitoring) method showed excellent sensitivity for the quantification of steroidal alkaloids within 15 min run time. This paper describes the application of LC-QQQ-MS technique for steroidal alkaloids analysis in plant samples.

  18. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    MacDonal, Digby D.; Marx, Brian M.; Ahn, Sejin; Ruiz, Julio de; Soundararajan, Balaji; Smith, Morgan; Coulson, Wendy

    2005-06-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO3, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair.

  19. Quantification of chemical contaminants in the paper and board fractions of municipal solid waste.

    PubMed

    Pivnenko, K; Olsson, M E; Götze, R; Eriksson, E; Astrup, T F

    2016-05-01

    Chemicals are used in materials as additives in order to improve the performance of the material or the production process itself. The presence of these chemicals in recyclable waste materials may potentially affect the recyclability of the materials. The addition of chemicals may vary depending on the production technology or the potential end-use of the material. Paper has been previously shown to potentially contain a large variety of chemicals. Quantitative data on the presence of chemicals in paper are necessary for appropriate waste paper management, including the recycling and re-processing of paper. However, a lack of quantitative data on the presence of chemicals in paper is evident in the literature. The aim of the present work is to quantify the presence of selected chemicals in waste paper derived from households. Samples of paper and board were collected from Danish households, including both residual and source-segregated materials, which were disposed of (e.g., through incineration) and recycled, respectively. The concentration of selected chemicals was quantified for all of the samples. The quantified chemicals included mineral oil hydrocarbons, phthalates, phenols, polychlorinated biphenyls, and selected toxic metals (Cd, Co, Cr, Cu, Ni, and Pb). The results suggest large variations in the concentration of chemicals depending on the waste paper fraction analysed. Research on the fate of chemicals in waste recycling and potential problem mitigation measures should be focused on in further studies.

  20. Application of reutilization technology to waste from liquid crystal display (LCD) industry.

    PubMed

    Liu, Wei T; Li, Kung C

    2010-01-01

    This investigation studies the recycling utility of two major waste products from the liquid crystal display (LCD) industry, panel glass and calcium fluoride sludge, which remain after the treatment of waste water. Waste panel glass was mixed with calcium fluoride sludge in various ratios and then subject to conditioning and melting treatment in order to yield glass-ceramics. Heavy metal leaching tests indicated that reductive conditions lowered the heavy metal concentrations in the leachate to an order of magnitude below that in the waste glass and sludge. A 5:5 (wt%) mixture of glass and sludge melted at 1200 degrees C for 60 min achieves a specific gravity, water absorption, unit mass, porosity ratio, and soundness that meet the American Society for Testing and Materials (ASTM) standard for fine aggregates. Therefore, waste panel glass can indeed be efficiently recycled into a useful construction material.

  1. Subsurface injection of liquid waste in Florida, United States of America

    USGS Publications Warehouse

    Vecchioli, John

    1981-01-01

    In 1979, liquid waste was injected into the subsurface of Florida by 10 injection systems at an aggregate average rate of 165,000 m3/d. All the systems inject into carbonate rocks that contain salty water. Extensive precautions are taken in the construction of the injection wells and in the monitoring of their operation to provide assurance that overlying and laterally contiguous freshwater resources do not become contaminated with either the injected waste or the saltwater displaced by the waste. Several concerns relating to the effectiveness of the confining bed above the injection zone for containing the injected wastes have arisen over the years. These concerns accentuate the value of a well-planned and implemented monitoring program from which one can evaluate the potential impact of waste injection on the subsurface environment.

  2. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  3. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... boilers that burn hazardous waste? 63.1217 Section 63.1217 Protection of Environment ENVIRONMENTAL... Hazardous Waste Combustors Emissions Standards and Operating Limits for Solid Fuel Boilers, Liquid Fuel Boilers, and Hydrochloric Acid Production Furnaces § 63.1217 What are the standards for liquid...

  4. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boilers that burn hazardous waste? 63.1217 Section 63.1217 Protection of Environment ENVIRONMENTAL... Waste Combustors Emissions Standards and Operating Limits for Solid Fuel Boilers, Liquid Fuel Boilers, and Hydrochloric Acid Production Furnaces § 63.1217 What are the standards for liquid fuel...

  5. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... boilers that burn hazardous waste? 63.1217 Section 63.1217 Protection of Environment ENVIRONMENTAL... Waste Combustors Emissions Standards and Operating Limits for Solid Fuel Boilers, Liquid Fuel Boilers, and Hydrochloric Acid Production Furnaces § 63.1217 What are the standards for liquid fuel...

  6. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... boilers that burn hazardous waste? 63.1217 Section 63.1217 Protection of Environment ENVIRONMENTAL... Waste Combustors Emissions Standards and Operating Limits for Solid Fuel Boilers, Liquid Fuel Boilers, and Hydrochloric Acid Production Furnaces § 63.1217 What are the standards for liquid fuel...

  7. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR... quantity, and composition of solid and liquid wastes (such as spent drilling fluids, drill cuttings, trash... location(s). (b) Projected ocean discharges. If any of your solid and liquid wastes will be...

  8. Direct liquid chromatography method for the simultaneous quantification of hydroxytyrosol and tyrosol in red wines.

    PubMed

    Piñeiro, Zulema; Cantos-Villar, Emma; Palma, Miguel; Puertas, Belen

    2011-11-09

    A validated HPLC method with fluorescence detection for the simultaneous quantification of hydroxytyrosol and tyrosol in red wines is described. Detection conditions for both compounds were optimized (excitation at 279 and 278 and emission at 631 and 598 nm for hydroxytyrosol and tyrosol, respectively). The validation of the analytical method was based on selectivity, linearity, robustness, detection and quantification limits, repeatability, and recovery. The detection and quantification limits in red wines were set at 0.023 and 0.076 mg L(-1) for hydroxytyrosol and at 0.007 and 0.024 mg L(-1) for tyrosol determination, respectively. Precision values, both within-day and between-day (n = 5), remained below 3% for both compounds. In addition, a fractional factorial experimental design was developed to analyze the influence of six different conditions on analysis. The final optimized HPLC-fluorescence method allowed the analysis of 30 nonpretreated Spanish red wines to evaluate their hydroxytyrosol and tyrosol contents.

  9. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  10. Biochemical process of low level radioactive liquid simulation waste containing detergent

    SciTech Connect

    Kundari, Noor Anis Putra, Sugili; Mukaromah, Umi

    2015-12-29

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0

  11. Removal of Radioactive Nuclides from Mo-99 Acidic Liquid Waste - 13027

    SciTech Connect

    Hsiao, Hsien-Ming; Pen, Ben-Li

    2013-07-01

    About 200 liters highly radioactive acidic liquid waste originating from Mo-99 production was stored at INER (Institute of Nuclear Energy Research). A study regarding the treatment of the radioactive acidic liquid waste was conducted to solve storage-related issues and allow discharge of the waste while avoiding environmental pollution. Before discharging the liquid waste, the acidity, NO{sub 3}{sup -} and Hg ions in high concentrations, and radionuclides must comply with environmental regulations. Therefore, the treatment plan was to neutralize the acidic liquid waste, remove key radionuclides to reduce the dose rate, and then remove the nitrate and mercury ions. Bench tests revealed that NaOH is the preferred solution to neutralize the high acidic waste solution and the pH of solution must be adjusted to 9∼11 prior to the removal of nuclides. Significant precipitation was produced when the pH of solution reached 9. NaNO{sub 3} was the major content in the precipitate and part of NaNO{sub 3} was too fine to be completely collected by filter paper with a pore size of approximately 3 μm. The residual fine particles remaining in solution therefore blocked the adsorption column during operation. Two kinds of adsorbents were employed for Cs-137 and a third for Sr-90 removal to minimize cost. For personnel radiation protection, significant lead shielding was required at a number of points in the process. The final process design and treatment facilities successfully treated the waste solutions and allowed for environmentally compliant discharge. (authors)

  12. Quantification of malachite green in fish feed utilising liquid chromatography-tandem mass spectrometry with a monolithic column.

    PubMed

    Abro, Kamran; Mahesar, Sarfaraz Ahmed; Iqbal, Seema; Perveen, Shahnaz

    2014-01-01

    The purpose of this study was to develop a rapid and sensitive method for the quantification of malachite green (MG) in fish feed using LC-ESI-MS/MS with a monolithic column as stationary phase. Fish feed was cleaned using ultrasonic assisted liquid-liquid extraction. The separation was achieved on a Chromolith® Performance RP-18e column (100 × 4.6 mm) using gradient mobile phase composition of methanol and 0.1% formic acid at the flow rate of 1.0 ml min⁻¹. The analyte was ionised using electrospray ionisation in positive mode. Mass spectral transitions were recorded in selected reaction monitoring (SRM) mode at m/z 329.78 → m/z 314.75 with a collision energy (CE) of 52% for MG. The system suitability responses were calculated for reproducibility tests of the retention time, number of theoretical plates and capacity factor. System validation was evaluated for precision, specificity and linearity of MG. The linearity and calibration graph was plotted in the range of 15.0-250 ng ml⁻¹ with the regression coefficient of >0.997. The lower limits of detection and quantification for MG were 0.55 and 1.44 ng ml⁻¹, respectively, allowing easy determination in fish feed with accuracy evaluated as a percentage recovery of 92.1% and precision determined as % CV of < 5. The method was also extended to the determination of MG in an actual fish feed. The sensitivity and selectivity of LC-ESI-MS/MS using monolithic column offers a valuable alternative to the methodologies currently employed for the quantification of MG in fish feeds.

  13. Metal decontamination for waste minimization using liquid metal refining technology

    SciTech Connect

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-09-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species.

  14. Microbial consortium role in processing liquid waste of vegetables in Keputran Market Surabaya as organic liquid fertilizer ferti-plus

    NASA Astrophysics Data System (ADS)

    Rizqi, Fauziah; Supriyanto, Agus; Lestari, Intan; Lita Indri D., L.; Elmi Irmayanti, A.; Rahmaniyah, Fadilatur

    2016-03-01

    Many activities in this market is directly proportional to increase production of vegetables waste, especially surabaya. Therefore, in this study aims to utilize liquid waste of vegetables into liquid organic fertilizer by mixing microbial consorsium. The microbial consorsium consist of Azotobacter chrococcum, Azospirillum brasilense, Rhizobium leguminosarum, Bacillus subtilis, Bacillus megaterium, Pseudomonas putida, and Pseudomonas fluorescens. Ttreatment of microbial concentrations (5%, 10%, 15%) and the length of the incubation period (7 days, 14 days, 21 days) used in this research. The parameters used are: C/N ratio, levels of CNP, and BOD value. This study uses a standard organic fertilizer value according SNI19-7030-2004, The results show the value of C/N ratio comply with the ISO standards. C levels showed an increase during the incubation period but not compare with standards. N levels that compare with standards are microbial treatment in all group concentration except control group with an incubation period of 21 days is > 7. P levels compare with the existing standards in the group of microbe concentration of 10% and 15% during the incubation period. The value of the initial BOD liquid waste of vegetable is 790.25 mg / L, this value indicates that the waste should not go into the water body. Accordingly, the results of this study can not be used as a liquid organic fertilizer, but potentially if it is used as a natural career or build natural soil. The Building natural soil is defined as the natural ingredients that can be used to improve soil properties.

  15. Quantification of Greenhouse Gas Emissions from the Predisposal Stage of Municipal Solid Waste Management.

    PubMed

    Zhou, Chuanbin; Jiang, Daqian; Zhao, Zhilan

    2017-01-03

    Municipal solid waste (MSW) disposal represents one of the largest sources of anthropogenic greenhouse gas (GHG) emissions. However, the biogenic GHG emissions in the predisposal stage of MSW management (i.e., the time from waste being dropped off in community or household garbage bins to being transported to disposal sites) are excluded from the IPCC inventory methodology and rarely discussed in academic literature. Herein, we quantify the effluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from garbage bins in five communities along the urban-rural gradient in Beijing in four seasons. We find that the annual average CO2, CH4, and N2O effluxes in the predisposal stage were (1.6 ± 0.9)10(3), 0.049 ± 0.016, and 0.94 ± 0.54 mg kg(-1)h(-1) (dry matter basis) and had significant seasonal differences (24- to 159-fold) that were strongly correlated with temperature. According to our estimate, the N2O emission in the MSW predisposal stage amounts to 20% of that in the disposal stage in Beijing, making the predisposal stage a nontrivial source of waste-induced N2O emissions. Furthermore, the CO2 and CH4 emissions in the MSW predisposal account for 5% (maximum 10% in summer) of the total carbon contents in a Beijing's household food waste stream, which has significance in the assessment of MSW-related renewable energy potential and urban carbon cycles.

  16. Characterization, quantification and management of China's municipal solid waste in spatiotemporal distributions: A review.

    PubMed

    Gu, Binxian; Jiang, Suqin; Wang, Haikun; Wang, Zibo; Jia, Renfu; Yang, Jie; He, Sheng; Cheng, Rong

    2017-03-01

    Municipal Solid Waste (MSW) is a heterogeneous waste stream, which is harmful for human health and the ecological environment if it is not well managed. Based on results from different authors by analyzing the generation, physical components and management of MSW from different cities, this paper presents an overview of the temporal trends and spatial variation characterization of MSW generation and its physical components in China. Total MSW generation has increased from 31,320 thousand tons in 1980 to 178,602 thousand tons in 2014, and MSW generation per capita has also increased from 448.3g to 653.2g. The distribution of MSW generation is mostly concentrated in the coastal southeastern region, as well as large point sources of more than 200 thousand tons per year are mostly distributed in Jiangsu, Zhejiang, Shandong, Hebei and Guangdong provinces. The review shows that the largest proportion of food waste, plastics and paper is 61.2% (54.2-65.9%, 95% CI), 9.8% (7.2-14.0%, 95% CI), 9.6% (6.7-12.3%, 95% CI), respectively, in 2014; the best estimates of other waste were as follows: 3.1% textile, 2.1% glass, 1.1% metal, 1.8% wood and grass, 1.3% rubber and leather, 1.8% ceramic, 2.5% ash, 1.2% hazardous waste, and 4.5% miscellaneous. To better manage China's MSW, several possible and appropriate solutions (e.g., concentrating on key regions, intensifying source separation, promoting green lifestyle, and establishing specialized regulations and policies) should be adopted, which might facilitate the application of China's 13th Five, and identify gaps in our knowledge of MSW management subject.

  17. Quantification of circulating 25-hydroxyvitamin D by liquid chromatography-tandem mass spectrometry.

    PubMed

    Vogeser, Michael

    2010-08-01

    Hypovitaminosis D is a highly prevalent condition and quantification of serum 25-hydroxyvitamin D3 is accepted to be the most useful marker for the assessment of the individual vitamin D status. Due to the increasing awareness of the prevalence and potential health consequences of hypovitaminosis D, the request numbers for 25-hydroxyvitamin D quantification are growing rapidly in many countries. Automated protein binding assays (based on the use of vitamin D-binding protein or antibodies) for the quantification of 25-hydroxyvitamin D3 are available which enable convenient high-throughput analyses in a routine setting; there is, however, substantial concern about accuracy and analytical reliability of these assays. Several LC-MS/MS methods for the quantification of 25-hydroxyvitamin D3 in serum have been described and in a growing number of clinical laboratories this technology is used routinely for vitamin D monitoring. It is justified to assume that LC-MS/MS enables more reliable analyses of 25-hydroxyvitamin D concentrations compared to protein binding assays. In particular the ability to co-quantify the naturally occurring 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 which is derived primarily from food fortification is a relevant advantage of LC-MS/MS over protein binding assays. This review describes the background of 25-hydroxyvitamin D measurement, compares published LC-MS/MS methods, discusses problems, strengths and limitations of these assays and compares the application characteristics of LC-MS/MS with those of protein binding assays and HPLC-UV.

  18. Identification and absolute quantification of enzymes in laundry detergents by liquid chromatography tandem mass spectrometry.

    PubMed

    Gaubert, Alexandra; Jeudy, Jérémy; Rougemont, Blandine; Bordes, Claire; Lemoine, Jérôme; Casabianca, Hervé; Salvador, Arnaud

    2016-07-01

    In a stricter legislative context, greener detergent formulations are developed. In this way, synthetic surfactants are frequently replaced by bio-sourced surfactants and/or used at lower concentrations in combination with enzymes. In this paper, a LC-MS/MS method was developed for the identification and quantification of enzymes in laundry detergents. Prior to the LC-MS/MS analyses, a specific sample preparation protocol was developed due to matrix complexity (high surfactant percentages). Then for each enzyme family mainly used in detergent formulations (protease, amylase, cellulase, and lipase), specific peptides were identified on a high resolution platform. A LC-MS/MS method was then developed in selected reaction monitoring (SRM) MS mode for the light and corresponding heavy peptides. The method was linear on the peptide concentration ranges 25-1000 ng/mL for protease, lipase, and cellulase; 50-1000 ng/mL for amylase; and 5-1000 ng/mL for cellulase in both water and laundry detergent matrices. The application of the developed analytical strategy to real commercial laundry detergents enabled enzyme identification and absolute quantification. For the first time, identification and absolute quantification of enzymes in laundry detergent was realized by LC-MS/MS in a single run. Graphical Abstract Identification and quantification of enzymes by LC-MS/MS.

  19. A validated liquid chromatography tandem mass spectrometry method for quantification of erlotinib, OSI-420 and didesmethyl erlotinib and semi-quantification of erlotinib metabolites in human plasma.

    PubMed

    Svedberg, Anna; Gréen, Henrik; Vikström, Anders; Lundeberg, Joakim; Vikingsson, Svante

    2015-03-25

    A liquid chromatography tandem mass spectrometry method was developed and validated for quantification of erlotinib and its metabolites in human plasma. The method is suitable for therapeutic drug monitoring and pharmacokinetic studies. The substances were extracted using protein precipitation, separated on a BEH XBridge C18 column (100 ×2.1 mm, 1.7 μm) by gradient elution at 0.7 mL/min of acetonitrile and 5 mM ammonium acetate. The concentration was determined using a Waters Xevo triple quadrupole mass spectrometer in a multi reaction monitoring mode. The total run time was 7 min. Deuterated erlotinib and OSI-597 were used as internal standard for erlotinib and its metabolites, respectively. Erlotinib, OSI-420 and didesmethyl erlotinib were quantified in the concentration range 25-5000 ng/mL, 0.5-500 ng/mL and 0.15-10 ng/mL, respectively. Precision and accuracy was <14% except for OSI-420 at LLOQ (17%). Extraction recovery was above 89%, 99% and 89% for erlotinib, OSI-420 and didesmethyl erlotinib, respectively. The human liver microsomes generated 14 metabolites, three of them not previously reported. Twelve metabolites were measured semi-quantitatively and validated with respect to selectivity, precision and stability.

  20. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength.

  1. The utilization of thin film transistor liquid crystal display waste glass as a pozzolanic material.

    PubMed

    Lin, K L; Huang, Wu-Jang; Shie, J L; Lee, T C; Wang, K S; Lee, C H

    2009-04-30

    This investigation elucidates the pozzolanic behavior of waste glass blended cement (WGBC) paste used in thin film transistor liquid crystal displays (TFT-LCD). X-ray diffraction (XRD) results demonstrate that the TFT-LCD waste glass was entirely non-crystalline. The leaching concentrations of the clay and TFT-LCD waste glass all met the current regulatory thresholds of the Taiwan EPA. The pozzolanic strength activity indices of TFT-LCD waste glass at 28 days and 56 days were 89% and 92%, respectively. Accordingly, this material can be regarded as a good pozzolanic material. The amount of TFT-LCD waste glass that is mixed into WGBC pastes affects the strength of the pastes. The strength of the paste clearly declined as the amount of TFT-LCD waste glass increased. XRD patterns indicated that the major difference was the presence of hydrates of calcium silicate (CSH, 2 theta=32.1 degrees), aluminate and aluminosilicate, which was present in WGBC pastes. Portland cement may have increased the alkalinity of the solution and induced the decomposition of the glass phase network. WGBC pastes that contained 40% TFT-LCD waste glass have markedly lower gel/space ratios and exhibit less degree of hydration than ordinary Portland cement (OPC) pastes. The most satisfactory characteristics of the strength were observed when the mixing ratio of the TFT-LCD waste glass was 10%.

  2. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    SciTech Connect

    Wolfram, J.H.; Radtke, M.; Wey, J.E.; Rogers, R.D.; Rau, E.H.

    1997-10-01

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed.

  3. A&M. Liquid waste treatment plant, TAN616. Plan, elevations, sections, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Liquid waste treatment plant, TAN-616. Plan, elevations, sections, and details. Evaporator pit. Pump room. Room names and numbers. Ralph M. Parsons 902-3-ANP-616-A 297. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index no. 034-0616-00-693-106889 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. A&M. Hot liquid waste treatment building (TAN616). Camera facing northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing northeast. South wall with oblique views of west sides of structure. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  5. A&M. Hot liquid waste treatment building (TAN616). Camera facing east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing east. Showing west facades of structure. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. A&M. Hot liquid waste treatment building (TAN616). Camera facing north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Camera facing north. Detail of personnel entrance door, stoop, and stairway. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-2-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. A&M. Hot liquid waste treatment building (TAN616), south side. Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616), south side. Camera facing north. Personnel door at left side of wall. Partial view of outdoor stairway to upper level platform. Note concrete construction. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-1-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. Groundwater impact assessment report for the 1325-N Liquid Waste Disposal Facility

    SciTech Connect

    Alexander, D.J.; Johnson, V.G.

    1993-09-01

    In 1943 the Hanford Site was chosen as a location for the Manhattan Project to produce plutonium for use in nuclear weapons. The 100-N Area at Hanford was used from 1963 to 1987 for a dual-purpose, plutonium production and steam generation reactor and related operational support facilities (Diediker and Hall 1987). In November 1989, the reactor was put into dry layup status. During operations, chemical and radioactive wastes were released into the area soil, air, and groundwater. The 1325-N LWDF was constructed in 1983 to replace the 1301-N Liquid Waste Disposal Facility (1301-N LWDF). The two facilities operated simultaneously from 1983 to 1985. The 1301-N LWDF was retired from use in 1985 and the 1325-N LWDF continued operation until April 1991, when active discharges to the facility ceased. Effluent discharge to the piping system has been controlled by administrative means. This report discusses ground water contamination resulting from the 1325-N Liquid Waste Disposal facility.

  9. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    SciTech Connect

    OSMANLIOGLU, Ahmet Erdal

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  10. A sensitive high performance liquid chromatography assay for the quantification of doxorubicin associated with DNA in tumor and tissues.

    PubMed

    Lucas, Andrew T; O'Neal, Sara K; Santos, Charlene M; White, Taylor F; Zamboni, William C

    2016-02-05

    Doxorubicin, a widely used anticancer agent, exhibits antitumor activity against a wide variety of malignancies. The drug exerts its cytotoxic effects by binding to and intercalating within the DNA of tumor and tissue cells. However, current assays are unable to accurately determine the concentration of the intracellular active form of doxorubicin. Thus, the development of a sample processing method and a high-performance liquid chromatography (HPLC) methodology was performed in order to quantify doxorubicin that is associated with DNA in tumors and tissues, which provided an intracellular cytotoxic measure of doxorubicin exposure after administration of small molecule and nanoparticle formulations of doxorubicin. The assay uses daunorubicin as an internal standard; liquid-liquid phase extraction to isolate drug associated with DNA; a Shimadzu HPLC with fluorescence detection equipped with a Phenomenex Luna C18 (2μm, 2.0×100mm) analytical column and a gradient mobile phase of 0.1% formic acid in water or acetonitrile for separation and quantification. The assay has a lower limit of detection (LLOQ) of 10ng/mL and is shown to be linear up to 3000ng/mL. The intra- and inter-day precision of the assay expressed as a coefficient of variation (CV%) ranged from 4.01 to 8.81%. Furthermore, the suitability of this assay for measuring doxorubicin associated with DNA in vivo was demonstrated by using it to quantify the doxorubicin concentration within tumor samples from SKOV3 and HEC1A mice obtained 72h after administration of PEGylated liposomal doxorubicin (Doxil(®); PLD) at 6mg/kg IV x 1. This HPLC assay allows for sensitive intracellular quantification of doxorubicin and will be an important tool for future studies evaluating intracellular pharmacokinetics of doxorubicin and various nanoparticle formulations of doxorubicin.

  11. Quantification of clenbuterol at trace level in human urine by ultra-high pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Nicoli, Raul; Petrou, Michael; Badoud, Flavia; Dvorak, Jiri; Saugy, Martial; Baume, Norbert

    2013-05-31

    Clenbuterol is a β2 agonist agent with anabolic properties given by the increase in the muscular mass in parallel to the decrease of the body fat. For this reason, the use of clenbuterol is forbidden by the World Anti-Doping Agency (WADA) in the practice of sport. This compound is of particular interest for anti-doping authorities and WADA-accredited laboratories due to the recent reporting of risk of unintentional doping following the eating of meat contaminated with traces of clenbuterol in some countries. In this work, the development and the validation of an ultra-high pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the quantification of clenbuterol in human urine is described. The analyte was extracted from urine samples by liquid-liquid extraction (LLE) in basic conditions using tert butyl-methyl ether (TBME) and analyzed by UHPLC-MS/MS with a linear gradient of acetonitrile in 9min only. The simple and rapid method presented here was validated in compliance with authority guidelines and showed a limit of quantification at 5pg/mL and a linearity range from 5pg/mL to 300pg/mL. Good trueness (85.8-105%), repeatability (5.7-10.6% RSD) and intermediate precision (5.9-14.9% RSD) results were obtained. The method was then applied to real samples from eighteen volunteers collecting urines after single oral doses administration (1, 5 and 10μg) of clenbuterol-enriched yogurts.

  12. Quantification of greenhouse gas emissions from windrow composting of garden waste.

    PubMed

    Andersen, Jacob K; Boldrin, Alessio; Samuelsson, Jerker; Christensen, Thomas H; Scheutz, Charlotte

    2010-01-01

    Microbial degradation of organic wastes entails the production of various gases such as carbon dioxide (CO(2)), methane (CH(4)), nitrous oxide (N(2)O), and carbon monoxide (CO). Some of these gases are classified as greenhouse gases (GHGs), thus contributing to climate change. A study was performed to evaluate three methods for quantifying GHG emissions from central composting of garden waste. Two small-scale methods were used at a windrow composting facility: a static flux chamber method and a funnel method. Mass balance calculations based on measurements of the C content in the in- and out-going material showed that 91 to 94% of the C could not be accounted for using the small-scale methods, thereby indicating that these methods significantly underestimate GHG emissions. A dynamic plume method (total emission method) employing Fourier Transform Infra Red (FTIR) absorption spectroscopy was found to give a more accurate estimate of the GHG emissions, with CO(2) emissions measured to be 127 +/- 15% of the degraded C. Additionally, with this method, 2.7 +/- 0.6% and 0.34 +/- 0.16% of the degraded C was determined to be emitted as CH(4) and CO. In this study, the dynamic plume method was a more effective tool for accounting for C losses and, therefore, we believe that the method is suitable for measuring GHG emissions from composting facilities. The total emissions were found to be 2.4 +/- 0.5 kg CH(4)-C Mg(-1) wet waste (ww) and 0.06 +/- 0.03 kg N(2)O-N Mg(-1) ww from a facility treating 15,540 Mg of garden waste yr(-1), or 111 +/- 30 kg CO(2)-equivalents Mg(-1) ww.

  13. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.

    PubMed

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil; Holtze, Maria Sommer; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2014-09-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting initiatives for these elements.

  14. Getters for Tc and I Removal from Liquid Waste

    NASA Astrophysics Data System (ADS)

    Qafoku, N. P.; Asmussen, M.; Lawter, A.; Neeway, J.; Smith, G.

    2015-12-01

    A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental waste form for the low activity waste (LAW) at the Hanford Site, which contains significant amounts of radioactive 99Tc and 129I, as part of the tank waste cleanup mission. To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to decrease the rate of contaminant release and diffusivity, and improve Cast Stone performance. A series of kinetic batch sorption experiments was performed to determine the effectiveness of the getter materials. Several Tc getters [blast furnace slag, Sn (II) apatite, SnCl2, nanoporous Sn phosphate, KMS-2 (a potassium-metal-sulfide), and Sn(II) hydroxyapatite] and I getters [layered Bi hydroxide, natural argentite mineral, synthetic argentite, Ag-impregnated carbon, and Ag-exchanged zeolite] were tested in different solution media, 18.2 MΩ DI H2O and a caustic LAW waste simulant containing 6.5 M Na or 7.8 M Na. The experiments were conducted at room temperature in the presence or absence of air. Results indicated that most Tc getters (with the exception of KMS-2) performed better in the DI H2O solution than in the 6.5 and 7.8 M Na LAW simulant. In addition, Tc sequestration may be affected by the presence of other redox sensitive elements that were present in the LAW simulant, such as Cr. The Tc getter materials have been examined through various solid-state characterization techniques such as XRD, SEM/EDS, XANES and EXAFS which provided evidence for plausible mechanisms of aqueous Tc removal. The results indicated that the Tc precipitates differ depending on the getter material and that Tc(VII) is reduced to Tc(IV) in most of the getters but to a differing extents. For the I getters, Ag-exchanged zeolite and synthetic argentite were the most effective ones. The other I getters showed limited effectiveness for sorbing I under the high ionic strength and caustic

  15. Audit of the radioactive liquid waste treatment facility operations at the Los Alamos National Laboratory

    SciTech Connect

    1997-11-19

    Los Alamos National Laboratory (Los Alamos) generates radioactive and liquid wastes that must be treated before being discharged to the environment. Presently, the liquid wastes are treated in the Radioactive Liquid Waste Treatment Facility (Treatment Facility), which is over 30 years old and in need of repair or replacement. However, there are various ways to satisfy the treatment need. The objective of the audit was to determine whether Los Alamos cost effectively managed its Treatment Facility operations. The audit determined that Los Alamos` treatment costs were significantly higher when compared to similar costs incurred by the private sector. This situation occurred because Los Alamos did not perform a complete analysis of privatization or prepare a {open_quotes}make-or-buy{close_quotes} plan for its treatment operations, although a {open_quotes}make-or-buy{close_quotes} plan requirement was incorporated into the contract in 1996. As a result, Los Alamos may be spending $2.15 million more than necessary each year and could needlessly spend $10.75 million over the next five years to treat its radioactive liquid waste. In addition, Los Alamos has proposed to spend $13 million for a new treatment facility that may not be needed if privatization proves to be a cost effective alternative. We recommended that the Manager, Albuquerque Operations Office (Albuquerque), (1) require Los Alamos to prepare a {open_quotes}make-or-buy{close_quotes} plan for its radioactive liquid waste treatment operations, (2) review the plan for approval, and (3) direct Los Alamos to select the most cost effective method of operations while also considering other factors such as mission support, reliability, and long-term program needs. Albuquerque concurred with the recommendations.

  16. Amphiphilic antioxidants from "cashew nut shell liquid" (CNSL) waste.

    PubMed

    Amorati, Riccardo; Attanasi, Orazio A; Favi, Gianfranco; Menichetti, Stefano; Pedulli, Gian Franco; Viglianisi, Caterina

    2011-03-07

    Hydrogenated cardanol and cardols, contained in industrial grade cardanol oil and obtained by distillation of the raw "cashew nut shell liquid" (CNSL), are easily transformed into efficient 4-thiaflavane antioxidants bearing a long alkyl chain on A ring and a catechol group on B ring.

  17. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    SciTech Connect

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  18. Enzymatic hydrolysis of pretreated waste paper--source of raw material for production of liquid biofuels.

    PubMed

    Brummer, Vladimir; Jurena, Tomas; Hlavacek, Viliam; Omelkova, Jirina; Bebar, Ladislav; Gabriel, Petr; Stehlik, Petr

    2014-01-01

    Enzymatic hydrolysis of waste paper is becoming a perspective way to obtain raw material for production of liquid biofuels. Reducing sugars solutions that arise from the process of saccharification are a precursors for following or simultaneous fermentation to ethanol. Different types of waste paper were evaluated, in terms of composition and usability, in order to select the appropriate type of the waste paper for the enzymatic hydrolysis process. Novozymes® enzymes NS50013 and NS50010 were used in a laboratory scale trials. Technological conditions, which seem to be the most suitable for hydrolysis after testing on cellulose pulp and filter paper, were applied to hydrolysis of widely available waste papers - offset paper, cardboard, recycled paper in two qualities, matte MYsol offset paper and for comparison again on model materials. The highest yields were achieved for the cardboard, which was further tested using various pretreatment combinations in purpose of increasing the hydrolysis yields.

  19. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.

    PubMed

    Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger

    2016-09-01

    Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs.

  20. Ultrafiltration treatment for liquid laundry wastes from nuclear power stations

    SciTech Connect

    Kichik, V.A.; Maslova, M.N.; Svittsov, A.A.; Kuleshov, N.F.

    1988-03-01

    The authors conduct a comprehensive analysis of the waste constituents--radioactive and organic--of the laundry water resulting from the on-site laundering and decontamination of clothing worn in nuclear power plants. The primary isotope contaminants consist of niobium and zirconium 95, manganese 54, cobalt 60, iron 59, and cesium 134 and 137. A variety of filter and adsorbent materials used in an ultrafiltration process are comparatively tested for their effectiveness in removing not only these isotopes but also the organic contaminants in the process of recycling the water. Those materials consist of copper hexacyanoferrate, polyacrylophosphonic acid, and several metal-polymer complexes.

  1. Efficiency of inductively torch plasma operating at atmospheric pressure on destruction of chlorinated liquid wastes- A path to the treatment of radioactive organic halogen liquid wastes

    NASA Astrophysics Data System (ADS)

    Kamgang-Youbi, G.; Poizot, K.; Lemont, F.

    2012-12-01

    The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ~4 kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl3 feed rates up to 400 g·h-1 with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g·kWh-1. The conversion end products were identified and assayed by online FTIR spectroscopy (CO2, HCl and H2O) and redox titration (Cl2). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released (< 1 g·h-1) even with high waste feed rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO2 and H2O have been found in the final off-gases composition.

  2. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  3. A column-switching method for quantification of the enantiomers of omeprazole in native matrices of waste and estuarine water samples.

    PubMed

    Barreiro, Juliana Cristina; Vanzolini, Kenia Lourenço; Madureira, Tânia Vieira; Tiritan, Maria Elizabeth; Cass, Quezia Bezerra

    2010-06-30

    This work reports the use of a two-dimensional liquid chromatography (2D-LC) system for quantification of the enantiomers of omeprazole in distinct native aqueous matrices. An octyl restricted-access media bovine serum albumin column (RAM-BSA C(8)) was used in the first dimension, while a polysaccharide-based chiral column was used in the second dimension with either ultraviolet (UV-vis) or ion-trap tandem mass spectrometry (IT-MS/MS) detection. An in-line configuration was employed to assess the exclusion capacity of the RAM-BSA columns to humic substances. The excluded macromolecules had a molecular mass in the order of 18 kDa. Good selectivity, extraction efficiency, accuracy, and precision were achieved employing a very small amount (500 microL or 1.00 mL) of native water sample per injection, with detection limits of 5.00 microg L(-1), using UV-vis, and 0.0250 microg L(-1), using IT-MS/MS. The total analysis time was only 35 min, with no time spent on sample preparation. The methods were successfully applied to analyze a series of waste and estuarine water samples. The enantiomers were detected in an estuarine water sample collected from the Douro River estuary (Portugal) and in an influent sample from the wastewater treatment plant (WWTP) of São Carlos (Brazil). As far as we are concerned, this is the first report of the occurrence of (+)-omeprazole and (-)-omeprazole in native aqueous matrices.

  4. Prospects for using membrane distallation for reprocessing liquid radioactive wastes

    SciTech Connect

    Dytnerskii, Y.I.; Karlin, Y.V.; Kropotov, B.N.

    1994-05-01

    Membrane distillation is a promising method for deep desalinization and for removal of impurities of different nature from water. The crux of the method is as follows. The initial (hot) solution, heated up to 30-70{degrees}C, is fed into one side of a hydrophobic microporous membrane. A less heated (cold) distillate moves along the other. Since the membrane is hydrophobic and the pores are small ({approximately}1 {mu}m and less), the liquid phase does not penetrate into the pores in accordance with Kelvin`s law. The vapor evaporating from the surface of the hot solution (the evaporation surface in this case are solution meniscuses forming at the entrance into a pore) penetrates into the pores of the membrane, diffuses through the air layer in the pore, and condenses on the surface of the menisci of cold liquid. In the process rarefaction is produced in the pores, and this accelerates evaporation and therefore increases its efficiency.

  5. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    SciTech Connect

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil; Holtze, Maria Sommer; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2014-09-15

    Highlights: • Ferrous and non-ferrous metals were quantified in MSWI bottom ashes. • Metal recovery system efficiencies for bottom ashes were estimated. • Total content of critical elements was determined in bottom ash samples. • Post-incineration recovery is not viable for most critical elements. - Abstract: Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results

  6. Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312

    SciTech Connect

    Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H.; Grandjean, A.; Prevost, T.; Valery, J.F.; Shilova, E.; Viel, P.

    2012-07-01

    Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in

  7. Quantification of citalopram or escitalopram and their demethylated metabolites in neonatal hair samples by liquid chromatography-tandem mass spectrometry.

    PubMed

    Frison, Giampietro; Favretto, Donata; Vogliardi, Susanna; Terranova, Claudio; Ferrara, Santo Davide

    2008-08-01

    Citalopram and escitalopram are highly selective serotonin reuptake inhibitors widely used in the treatment of depression. They exhibit adverse drug reactions and side effects, however, and the development of specific methods for their determination is of great interest in clinical and forensic toxicology. A liquid chromatography-tandem mass spectrometry method has been developed and validated for the assay of citalopram, escitalopram, and their demethylated metabolites in 10-mg hair samples. The analytes were extracted by incubation in methanol and liquid/liquid extraction with diethyl ether/dichloromethane. Gradient elution on a narrow bore C18 column was realized using clomipramine-d3 as an internal standard. Positive ion electrospray ionization and tandem mass spectrometry determination by collision-induced dissociation were performed in an ion trap mass spectrometer. The method exhibited a linear range of 25 to 2000 pg/mg, a quantification limit of 25 pg/mg for all analytes, relative standard deviations in the range of 12.10 to 9.80 (intraassay), and 13.80 to 11.78 (interassay), and accuracies (as percent recovery of the spiked standards) in the range of 90% to 110%; it was applied to the determination of citalopram and escitalopram and their metabolites in hair samples of two newborns to document their in utero exposure to the drugs. The method proved suitable for neonatal hair analysis of citalopram or escitalopram and was applied to two real cases of gestational exposure.

  8. Identification, characterization, and high-performance liquid chromatography quantification of process-related impurities in vonoprazan fumarate.

    PubMed

    Liu, Lei; Cao, Na; Ma, Xingling; Xiong, Kaihe; Sun, Lili; Zou, Qiaogen

    2016-04-01

    High-performance liquid chromatography analysis of vonoprazan fumarate, a novel proton pump inhibitor drug revealed six impurities. These were identified by liquid chromatography with mass spectrometry. Further, the structures of the impurities were confirmed by synthesis followed by characterization by mass spectrometry, NMR spectroscopy, and infrared spectroscopy. On the basis of these data and knowledge of the synthetic scheme of vonoprazan fumarate, the previously unknown impurity was identified as 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methyldimethylamine, which is a new compound. The possible mechanisms by which these impurities were formed were also discussed. A high-performance liquid chromatography method was optimized in order to separate, selectively detect, and quantify all process-related impurities of vonoprazan fumarate. The presented method has been validated in terms of linearity, limits of detection, and quantification, and response factors and, therefore, is highly suitable for routine analysis of vonoprazan fumarate related substances as well as stability studies.

  9. Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation

    PubMed Central

    De, Amit Kumar; Chowdhury, Partha Pratim; Chattapadhyay, Shyamaprasad

    2016-01-01

    The current study presents the simultaneous quantification of dexpanthenol and resorcinol from marketed hair care formulation. Dexpanthenol is often present as an active ingredient in personal care products for its beautifying and invigorating properties and restorative and smoothing properties. On the other hand resorcinol is mainly prescribed for the treatment of seborrheic dermatitis of scalp. The toxic side effects of resorcinol limit its use in dermatological preparations. Therefore an accurate quantification technique for the simultaneous estimation of these two components can be helpful for the formulation industries for the accurate analysis of their product quality. In the current study a high performance liquid chromatographic technique has been developed using a C18 column and a mobile phase consisting of phosphate buffer of pH = 2.8 following a gradient elution. The mobile phase flow rate was 0.6 mL per minute and the detection wavelength was 210 nm for dexpanthenol and 280 nm for resorcinol. The linearity study was carried out using five solutions having concentrations ranging between 10.34 μg·mL−1 and 82.69 μg·mL−1 (r2 = 0.999) for resorcinol and 10.44 μg·mL−1 and 83.50 μg·mL−1 (r2 = 0.998) for dexpanthenol. The method has been validated as per ICH Q2(R1) guidelines. The ease of single step sample preparation, accuracy, and precision (intraday and interday) study presents the method suitable for the simultaneous quantification of dexpanthenol and resorcinol from any personal care product and dermatological preparations containing these two ingredients. PMID:27042377

  10. Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation.

    PubMed

    De, Amit Kumar; Chowdhury, Partha Pratim; Chattapadhyay, Shyamaprasad

    2016-01-01

    The current study presents the simultaneous quantification of dexpanthenol and resorcinol from marketed hair care formulation. Dexpanthenol is often present as an active ingredient in personal care products for its beautifying and invigorating properties and restorative and smoothing properties. On the other hand resorcinol is mainly prescribed for the treatment of seborrheic dermatitis of scalp. The toxic side effects of resorcinol limit its use in dermatological preparations. Therefore an accurate quantification technique for the simultaneous estimation of these two components can be helpful for the formulation industries for the accurate analysis of their product quality. In the current study a high performance liquid chromatographic technique has been developed using a C18 column and a mobile phase consisting of phosphate buffer of pH = 2.8 following a gradient elution. The mobile phase flow rate was 0.6 mL per minute and the detection wavelength was 210 nm for dexpanthenol and 280 nm for resorcinol. The linearity study was carried out using five solutions having concentrations ranging between 10.34 μg·mL(-1) and 82.69 μg·mL(-1) (r (2) = 0.999) for resorcinol and 10.44 μg·mL(-1) and 83.50 μg·mL(-1) (r (2) = 0.998) for dexpanthenol. The method has been validated as per ICH Q2(R1) guidelines. The ease of single step sample preparation, accuracy, and precision (intraday and interday) study presents the method suitable for the simultaneous quantification of dexpanthenol and resorcinol from any personal care product and dermatological preparations containing these two ingredients.

  11. Analysis and quantification of parabens in cosmetic products by utilizing hollow fibre-supported liquid membrane and high performance liquid chromatography with ultraviolet detection.

    PubMed

    Msagati, T A M; Barri, T; Larsson, N; Jönsson, J A

    2008-08-01

    A simple and direct method based on hollow fibre-supported liquid membrane (HFSLM) extraction and liquid chromatography equipped with a UV detector was developed for analysis and quantification of parabens in cosmetic products. The parabens analysed included methyl, ethyl, propyl, isobutyl and butyl paraben. The HFSLM extraction was carried out by employing di-n-hexyl ether as organic liquid that was immobilized in the hollow fibre membrane. The HFSLM extraction is simple, cheap, minimizes the use of solvents and uses disposable material. In an investigation of 11 paraben-containing cosmetic products, the levels of parabens (sum of all parabens in a product) ranged from 0.43% to 0.79% (w/w) for skin care products, 0.07-0.44% for hair fixing gels and 0.30-0.52% for soap solutions. The levels of individual parabens in individual cosmetic products ranged between 0.03% and 0.42% w/w for skin care products, 0.07% and 0.26% w/w for hair fixing gels and between 0.11% and 0.34% w/w for soap solutions. Parabens were found in the highest concentrations in skin care products followed by soap solutions and the least amounts were found in hair fixing gels. Of the paraben-containing products tested, all of them contained methyl paraben and about 90% contained propyl paraben in addition to methyl paraben. One product contained all the parabens analysed.

  12. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    SciTech Connect

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E.

    2012-07-01

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

  13. A liquid biopsy-based method for the detection and quantification of circulating tumor cells in surgical osteosarcoma patients

    PubMed Central

    Zhang, Haoqiang; Gao, Peng; Xiao, Xin; Heger, Michal; Geng, Lei; Fan, Bo; Yuan, Yulin; Huang, Chen; Chen, Guojing; Liu, Yao; Hu, Yongchen; Yu, Xiuchun; Wu, Sujia; Wang, Ling; Wang, Zhen

    2017-01-01

    A method for the enumeration and quantification of osteosarcoma (OS) circulating tumor cells (CTCs) is currently not available. A correlation between the number of CTCs and progression-free survival (PFS) has been established for other cancers, but not for OS CTCs. A method was therefore developed for CTC quantification in OS and validated in a prospective cohort of surgical patients with primary and recurrent/metastatic OS (N=23). Human OS cells, acting as CTCs, were enumerated from spiked human peripheral blood (PB) following erythrocyte and leukocyte depletion. The OS cells were quantified microscopically based on aneuploidy and a CK18−/CD45− phenotype. Aneuploidy was assayed by fluorescence in situ hybridization (FISH) using fluorescence-labeled alpha-satellite probes for the centromeres of chromosome (CEP 8). CK18 and CD45 phenotyping was performed with immunocytochemistry. HOS cells in spiked PB could be effectively retrieved with the FISH-based enumeration method, which was subsequently employed in an OS patient cohort. PB of recurrent/metastatic OS patients contained more CTCs than the PB of primary OS patients. OS patients with ≥2 CTCs per 7.5 ml of PB had worse PFS than patients whose PB contained <2 CTCs. In 2 cases, CTCs were present in PB of OS patients with negative X-ray and chest CT scans. In conclusion, our method was able to quantitate CTCs in liquid biopsies of OS patients. The number of CTCs has diagnostic and prognostic value. PMID:28350107

  14. A liquid biopsy-based method for the detection and quantification of circulating tumor cells in surgical osteosarcoma patients.

    PubMed

    Zhang, Haoqiang; Gao, Peng; Xiao, Xin; Heger, Michal; Geng, Lei; Fan, Bo; Yuan, Yulin; Huang, Chen; Chen, Guojing; Liu, Yao; Hu, Yongchen; Yu, Xiuchun; Wu, Sujia; Wang, Ling; Wang, Zhen

    2017-03-08

    A method for the enumeration and quantification of osteosarcoma (OS) circulating tumor cells (CTCs) is currently not available. A correlation between the number of CTCs and progression-free survival (PFS) has been established for other cancers, but not for OS CTCs. A method was therefore developed for CTC quantification in OS and validated in a prospective cohort of surgical patients with primary and recurrent/metastatic OS (N=23). Human OS cells, acting as CTCs, were enumerated from spiked human peripheral blood (PB) following erythrocyte and leukocyte depletion. The OS cells were quantified microscopically based on aneuploidy and a CK18-/CD45- phenotype. Aneuploidy was assayed by fluorescence in situ hybridization (FISH) using fluorescence-labeled alpha-satellite probes for the centromeres of chromosome (CEP 8). CK18 and CD45 phenotyping was performed with immunocytochemistry. HOS cells in spiked PB could be effectively retrieved with the FISH-based enumeration method, which was subsequently employed in an OS patient cohort. PB of recurrent/metastatic OS patients contained more CTCs than the PB of primary OS patients. OS patients with ≥2 CTCs per 7.5 ml of PB had worse PFS than patients whose PB contained <2 CTCs. In 2 cases, CTCs were present in PB of OS patients with negative X-ray and chest CT scans. In conclusion, our method was able to quantitate CTCs in liquid biopsies of OS patients. The number of CTCs has diagnostic and prognostic value.

  15. Quantification of phylloquinone and menaquinones in feces, serum, and food by high-performance liquid chromatography-mass spectrometry.

    PubMed

    Karl, J Philip; Fu, Xueyan; Dolnikowski, Gregory G; Saltzman, Edward; Booth, Sarah L

    2014-07-15

    Vitamin K, comprising phylloquinone (PK) and menaquinones (MKn), is a family of vitamers found in multiple biological and environmental matrices. Advancing emerging evidence for novel and distinct physiologic roles of these vitamers in human health and disease necessitates sensitive and selective methods for quantifying PK and MKn in these matrices. We developed a novel method employing high-performance liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (LC-APCI-MS) for simultaneous quantification of 11 vitamin K vitamers that can be applied in feces, serum and food. Minimal detectable concentrations of vitamin K vitamers ranged from 1 pmol/g to 30 pmol/g. Limits of quantification ranged from 5 pmol/g to 90 pmol/g. Inter-assay and intra-assay variations were <17% and <8%, respectively, in food, and <12% and <8%, respectively, in feces. Recovery exceeded 80% for all vitamers in both food and feces. The method successfully quantified PK and MKn concentrations in rat chow, feces and serum. In summary, this LC-APCI-MS method provides a sensitive and selective tool for quantifying vitamin K vitamers in feces, serum and food. This method can be applied in human and animal studies examining the role of vitamin K vitamers derived from the diet and gut bacteria synthesis in health and disease.

  16. Development and validation of a liquid chromatography-tandem mass spectrometry method for the quantification of opiorphin in human saliva.

    PubMed

    Brkljačić, Lidija; Sabalić, Maja; Salarić, Ivan; Jerić, Ivanka; Alajbeg, Ivan; Nemet, Ina

    2011-12-15

    Opiorphin, QRFSR-peptide, is a mature product of the PROL1 (proline rich, lacrimal 1) protein that showed beneficial effects in pain management, antidepressant-like actions as well as involvement in colonic motility and erectile physiology. Using opiorphin as a potential biomarker of different pathological states requires the development of robust and sensitive methods. We report a highly sensitive and specific liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) analytical method for the analysis of opiorphin in human saliva. Quantification was based on multiple reaction monitoring using characteristic transitions (m/z 347/120 - as quantifying ion; 347/175 and 347/268 as qualifying ions). The assay was linear in the range of 0-110 ng/ml and the lower limit of quantification reached was 1.0 ng/ml. The intra-day precision and accuracy were between 2.7-5.6% and -2.3 to 3.2%, respectively. The inter-day precision and accuracy were between 10.8-13.7% and -11.0 to 52%, respectively. Mean recovery was 106% and mean matrix effect was 0.97. Opiorphin in TFA treated saliva samples was stable for at least 12h at room temperature and up to 30 days at -20°C. Opiorphin levels in human saliva samples collected from young healthy individuals ranged from 2.8 to 25.9 ng/ml.

  17. Simultaneous quantification of amphetamine, opiates, ketamine and relative metabolites in urine for confirmatory analysis by liquid chromatography tandem mass spectrometry.

    PubMed

    Lin, Huei-Ru; Choi, Ka-Ian; Lin, Tzu-Chieh; Hu, Anren

    2013-06-15

    The rise in amphetamine, ketamine and opiates abuse in Taiwan has created a need for a reliable confirmatory assay. A method that combines superficially porous liquid chromatography tandem mass spectrometry (LC-MS/MS) with solid-phase extraction (SPE) was developed for the simultaneous quantification of amphetamine, 3,4-methylenedioxymethamphetamine (MDMA), ketamine, opiates, and their corresponding metabolites in urine. The total run time of the method was 6.7min including equilibration time. The method was validated in accordance with the European Commission (EC) Decision 2002/642/EC. The within- and between-day precision was below 13.6% and the accuracy ranged from -17.1% to +9.9% for all analytes. Ion suppression was observed but compensated by using deuterated internal standards. No carryover was detected and the analytes were stable at room temperature for 16h, and for 72h at 4°C, and three-thaw cycles. The method was further validated by comparison with a reference gas chromatography-mass spectrometry (GC-MS) method, using 52 authentic urine samples. The results indicated that for the target analytes studied, the LC-MS/MS analysis was as precise, accurate, and specific as the GC-MS method. In conclusion, the present LC-MS/MS method is robust and reliable, and suitable for use as a confirmation assay in the simultaneous urine drug testing and quantification of amphetamines, ketamines, and opiates.

  18. Quantification of cyclizine and norcyclizine in human plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    PubMed

    Jensen, Berit Packert; Vella-Brincat, Jane Winifred Ann; Begg, Evan James

    2011-03-15

    A rapid and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed and validated for quantification of cyclizine and its main metabolite norcyclizine in human plasma. Samples were prepared by protein precipitation with acetonitrile and cinnarizine was used as internal standard (recovery >87%). The analytes were eluted from a C8 50 mm×2.0 mm analytical column using a linear gradient of methanol and 0.05% formic acid with a total analysis time of 4 min. Analytes were detected by MS/MS using electrospray ionisation in the positive mode with multiple reactions monitoring (MRM) of the precursor ion/product ion transitions 267.2/167.2 for cyclizine and 253.2/167.2 for norcyclizine. Matrix effects were negligible. Standard curves for cyclizine and norcyclizine were linear (r(2)≥0.996) over the range 2-200 ng/mL, with 2 ng/mL representing the lower limit of quantification. Relative standard deviations were <14% for intra- and inter-day precision and the accuracy was within ±8%. The assay was successfully applied to a clinical study.

  19. Bioanalytical method development, validation and quantification of flupirtine maleate in rat plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Kandasamy, Karthikeyan; Gowdra, Vasantharaju Surenahalli; Nammalvar, Hariprabhu; Govindarajan, Arul Kumaran Kottur S

    2011-01-01

    A simple, highly sensitive, precise and accurate high-performance liquid chromatographic (LCMSMS) method with mass detection was developed and validated for the rapid quantification of flupirtine (CAS 75507-68-5) in rat plasma samples. The chromatographic separation was achieved with a reverse phase column (4.6 x 50 mm, 5 microm) and the mobile phase consisted of cyanomethane and 5 mM ammonium formate buffer pH 4.5 (70:30 v/v) as eluent, at a flow rate of 0.6 mL/min. Labetalol (CAS 36894-69-6) was used as an internal standard. The effluence was ionized by positive electrospray ionization and measured by mass spectrometry. The retention times of flupirtine and labetalol were found to be 2.16 and 1.66 min respectively. The calibration curve was linear (r2 > or = 0.99) ranging from 0.98 to 1000 ng/ml and the lower limit of quantification was 0.98 ng/ mL. Inter-day and Intra-day precision were lower than 5% (CV) and accuracy ranged from 90 to 110% in terms of percent accuracy. Mean extraction recovery was found to be above 86.5%. The method was successfully applied for evaluation of the pharmacokinetic profile of flupirtine in male Sprague-Dawley rats and validated for excellent selectivity, accuracy, precision, recovery and stability.

  20. Quantification of total and free carnitine in human plasma by hydrophilic interaction liquid chromatography tandem mass spectrometry.

    PubMed

    Sowell, John; Fuqua, Megan; Wood, Tim

    2011-01-01

    Carnitine is an endogenous quaternary amine whose primary function is to shuttle long chain fatty acids to the mitochondrial matrix, where they subsequently undergo beta oxidation. Accurate quantification of total and free carnitine is essential for the accurate diagnosis of a number of inborn errors of metabolism, including disorders of fatty acid oxidation as well as various organic acidurias. Early methods for carnitine measurement were enzyme based. Recently, liquid chromatography tandem mass spectrometry has become the method of choice for carnitine measurement. Typically, carnitine is derivitized to from a butyl ester, thus improving its ionization and retention characteristics. A potential problem with this approach is that the acidic conditions used to carry out the reaction may hydrolyze other acyl esters, resulting in ex-vivo artifacts. Consequently, we developed a hydrophobic interaction chromatography (HILIC) tandem mass spectrometry method for the quantification of carnitine. The use of HILIC allows for the derivitization step to be circumvented, while still allowing for favorable chromatographic performance. The method was shown to be accurate, precise, and robust.

  1. Identification and quantification of active alkaloids in Catharanthus roseus by liquid chromatography-ion trap mass spectrometry.

    PubMed

    Chen, Qinhua; Zhang, Wenpeng; Zhang, Yulin; Chen, Jing; Chen, Zilin

    2013-08-15

    Catharanthus roseus is an important dicotyledonous medicinal plant that produces anticancer compounds. The active alkaloids vinblastine, vindoline, ajmalicine, catharanthine, and vinleurosine were identified by direct-injection ion trap-mass spectrometry (IT-MS) for collecting MS(1-2) spectra. The determinations of five alkaloids were accomplished by liquid chromatography (LC) with UV and MS detections. The analytes provided good signals corresponding to the protonated molecular ions [M+H](+) and product ions. The precursor ions and product ions for quantification of vinblastine, vindoline, ajmalicine, catharanthine, and vinleurosine were m/z 825→807, 457→397, 353→144, 337→144 and 809→748 by LC-IT-MS, respectively. Two methods were used to evaluate a number of validation characteristics (repeatability, LOD, calibration range, and recovery). MS provided a high selectivity and sensitivity for determination of five alkaloids in positive mode. After optimisation of the methods, separation, identification and quantification of the five components in C. roseus were comprehensively accomplished by HPLC with UV and MS detection.

  2. Fast quantification of endogenous carbohydrates in plasma using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Zhu, Bangjie; Liu, Feng; Li, Xituo; Wang, Yan; Gu, Xue; Dai, Jieyu; Wang, Guiming; Cheng, Yu; Yan, Chao

    2015-01-01

    Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at -20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research.

  3. Fast and direct quantification of underivatized muscone by ultra performance liquid chromatography coupled with evaporative light scattering detection.

    PubMed

    Jin, Cheng; Yan, Chunxia; Luo, Yun; Li, Baocai; He, Jing; Xiao, Xiaohe

    2013-06-01

    A new reversed phase ultra performance liquid chromatography coupled with evaporative light scattering detection is developed for the fast and direct quantification of underivatized muscone in precious herbal medicine musk. Separation of muscone was achieved on a Waters Acquity BEH C18 (50 × 2.1 mm id, 1.7 μm) column. The runtime was as short as 5 min. The mode of evaporative light scattering detection was set at Impact On. The influence of evaporative light scattering detection condition on sensitivity was investigated. The optimized condition was: drift tube temperature at 30°C, gas flow rate 4.2 L/min. The method was validated with respect to the precision, sensitivity, accuracy, linearity, stability, and robustness were measured in this paper. The calibration curves showed good linear regression (r = 0.9914) within the test range. The recovery rate was 98.6%. The limit of detection for muscone was 2.0 ng. The validated method was rapid, simple, reproducible, and convenient for the quantification of muscone in musk and the related products.

  4. Quantification of isocyanates and amines in polyurethane foams and coated products by liquid chromatography–tandem mass spectrometry

    PubMed Central

    Mutsuga, Motoh; Yamaguchi, Miku; Kawamura, Yoko

    2014-01-01

    An analytical method for the identification and quantification of 10 different isocyanates and 11 different amines in polyurethane (PUR) foam and PUR-coated products was developed and optimized. Isocyanates were extracted and derivatized with di-n-butylamine, while amines were extracted with methanol. Quantification was subsequently performed by liquid chromatography–tandem mass spectrometry. Using this methodology, residual levels of isocyanates and amines in commercial PUR products were quantified. Although the recoveries of certain isocyanates and amines were low, the main compounds used as monomers in the production of PUR products, and their decomposition species, were clearly identified at quantifiable levels. 2,4-and 2,6-toluenediisocyanate were detected in most PUR foam samples and a pastry bag in the range of 0.02–0.92 mg/kg, with their decomposition compounds, 2,4-and 2,6-toluenediamine, detected in all PUR foam samples in the range of 9.5–59 mg/kg. PUR-coated gloves are manufactured using 4,4′-methylenebisphenyl diisocyanate as the main raw material, and a large amount of this compound, in addition to 4,4′-methylenedianiline and dicyclohexylmethane-4,4′-diamine were found in these samples. PMID:24804074

  5. Quantification of polyacetylenes in apiaceous plants by high-performance liquid chromatography coupled with diode array detection.

    PubMed

    Kramer, Maike; Mühleis, Andrea; Conrad, Jürgen; Leitenberger, Martin; Beifuss, Uwe; Carle, Reinhold; Kammerer, Dietmar R

    2011-01-01

    Polyacetylenes are known for their biofunctional properties in a wide range of organisms. In the present study, the most frequently occurring polyacetylenes, i.e. falcarinol, falcarindiol, and falcarindiol-3-acetate, were determined in six genera of the Apiaceae family. For this purpose, a straightforward and reliable method for the screening and quantification of the polyacetylenes using high-performance liquid chromatography coupled with diode array and mass spectrometric detection without tedious sample clean-up has been developed. Peak assignment was based on retention times, UV spectra, and mass spectral data. Quantification was carried out using calibration curves of authentic standards isolated from turnip-rooted parsley and Ligusticum mutellina, respectively. The references were unambiguously identified by Fourier transform-IR (FT-IR) spectroscopy, GC-MS, HPLC-MSn in the positive ionization mode, and 1H NMR and 13C NMR spectroscopy. To the best of our knowledge, the occurrence of falcarindiol-3-acetate in Anthriscus sylvestris and Pastinaca sativa has been reported for the first time. The data revealed great differences in the polyacetylene contents and varying proportions of individual compounds in the storage roots of Apiaceous plants. The results of the present study may be used as a suitable tool for authenticity control and applied to identify novel sources devoid or particularly rich in polyacetylenes, thus facilitating breeding programs for the selective enrichment and depletion of these plant secondary metabolites, respectively.

  6. Quantification of triacylglycerol molecular species in cocoa butter using high-performance liquid chromatography equipped with nano quantity analyte detector.

    PubMed

    Beppu, Fumiaki; Nagai, Toshiharu; Yoshinaga, Kazuaki; Mizobe, Hoyo; Kojima, Koichi; Gotoh, Naohiro

    2013-01-01

    Triacylglycerol (TAG) molecular species were quantified through high-performance liquid chromatography (HPLC) equipped with a nano quantity analyte detector (NQAD). TAG standard compounds, i.e., 1,3-dipalmitoyl-2-oleoylglycerol (β-POP), 1-palmitoyl-2-oleoyl-3-stearoyl-rac-glycerol (β-POS), and 1,3-distearoyl-2-oleoylglycerol (β-SOS), and natural cocoa butter were used for analyses. NQAD gave the first order equation passing through the origin for all TAG standard compounds. TAG molecular species in cocoa butter were quantified using the calibration curves and the obtained values were almost the same as the reported ones of conventional cocoa butter. Furthermore, a recovery test was also carried out and the values were almost 100. Therefore, HPLC-NQAD can be successfully used for the quantification of TAG molecular species in natural fats and oils.

  7. Detection and Quantification of Pu(III, IV, V, and VI) Using a1.0-meter Liquid Core Waveguide

    SciTech Connect

    Wilson, Richard E.; Hu, Yung-Jin; Nitsche, Heino

    2005-02-15

    Detection and quantification of the aquo ions of Pu in 1 MHClO4 was carried out using a 1-meter liquid core waveguide (LCW) coupledto a fiber optic UV-Vis spectrometer. Detection limits of 7 x 10-7 M forPu(VI), 1.6 x 10-5 M for Pu(V), 5 x 10-6 M for Pu(IV) and 8 x 10-6 M forPu(III) were achieved. The limits of detection represent increases of 18to 33 times those achievable using a conventional 1-cm path length.Because of the much lower detection limits of the LCW, routineidentification of the oxidation states in dilute Pu solutions can bemade.

  8. Electrophoresis Gel Quantification with a Flatbed Scanner and Versatile Lighting from a Screen Scavenged from a Liquid Crystal Display (LCD) Monitor

    ERIC Educational Resources Information Center

    Yeung, Brendan; Ng, Tuck Wah; Tan, Han Yen; Liew, Oi Wah

    2012-01-01

    The use of different types of stains in the quantification of proteins separated on gels using electrophoresis offers the capability of deriving good outcomes in terms of linear dynamic range, sensitivity, and compatibility with specific proteins. An inexpensive, simple, and versatile lighting system based on liquid crystal display backlighting is…

  9. Low-level detection and quantification of Plutonium(III, IV, V,and VI) using a liquid core waveguide

    SciTech Connect

    Wilson, Richard E.; Hu, Yung-Jin; Nitsche, Heino

    2003-06-28

    Understanding the aqueous chemistry of plutonium, in particular in environmental conditions, is often complicated by plutonium's complex redox chemistry. Because plutonium possesses four oxidation states, all of which can coexist in solution, a reliable method for the identification of these oxidation states is needed. The identification of plutonium oxidation states at low levels in aqueous solution is often accomplished through an indirect determination using series of liquid-liquid extraction procedures using oxidation state specific reagents such as HDEHP and TTA. While these methods, coupled with radioactive counting techniques provide superior limits of detection they may influence the plutonium redox equilibrium, are time consuming, waste intensive and costly. Other analytical methods such as mass spectrometry and radioactive counting as stand alone methods provide excellent detection limits but lack the ability to discriminate between the oxidation states of the plutonium ions in solution.

  10. Enhanced NH3 emission from swine liquid waste

    NASA Astrophysics Data System (ADS)

    Lee, S.; Robarge, W. P.; Walker, J. T.

    2010-12-01

    Swine animal feeding operations are sources of emissions for various gases [ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), volatile organic carbons (VOCs)], and fine particulate matter. Gaseous emissions from simple aqueous systems are typically controlled by temperature, pH, wind speed, total dissolved concentration of the chemical species of interest (e.g. NH3+NH4+ = TAN), and the Henry’s law constant. Ammonia emissions from three different sources [ammonium sulfate (AS), swine anaerobic lagoon liquid (SLL), and pit liquid (SPL) from swine housing units] were evaluated using a small flow-through teflon-lined chamber (SFTC; 0.3m × 0.2m × 0.15m) under controlled laboratory conditions. The SFTC was designed for 100% collection efficiency of NH3 gas emitted from the liquids. The internal volume of the chamber, 9 L, was exchanged 1.1 times per minute. All three liquid formulations exhibit the expected response in emissions with changes in temperature and pH. However, NH3 emissions from the SPL and SLL are ~5 times those from pure solutions of AS. Furthermore, the enhancement in NH3 emissions was a function of TAN concentration, decreasing in intensity at higher TAN and approaching rates comparable to the pure solutions of AS. The difference in emissions with solutions of equivalent TAN suggests a synergistic mechanism that is enhancing NH3 emissions in SPL and SLL. Concurrent measurements as part of the National Air Emissions Monitoring Study at the swine operations originally sampled for SPL and SLL document the emissions of CO2, H2S and VOCs (primarily acetic, propionic and butyric acids) at levels that are comparable to observed NH3 emissions. To date, only additions of NaHCO3 to the SPL and SLL have been found to enhance NH3 emissions and exhibit the same response to increasing TAN as exhibited by the original SPL and SLL solutions. Possible reactions that could enhance emissions will be discussed.

  11. Waste analysis plan for the 200 area effluent treatment facility and liquid effluent retention facility

    SciTech Connect

    Ballantyne, N.A.

    1995-10-02

    This waste analysis plan (WAP) has been prepared for startup of the 200 Area Effluent Treatment Facility (ETF) and operation of the Liquid Effluent Retention Facility (LERF), which are located on the Hanford Facility, Richland, Washington. This WAP documents the methods used to obtain and analyze representative samples of dangerous waste managed in these units, and of the nondangerous treated effluent that is discharged to the State-Approved Land Disposal System (SALDS). Groundwater Monitoring at the SALDS will be addressed in a separate plan

  12. Quantification aspects of constant pressure (ultra) high pressure liquid chromatography using mass-sensitive detectors with a nebulizing interface.

    PubMed

    Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G

    2013-01-25

    The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode.

  13. Dried blood spot assay for the quantification of phenytoin using Liquid Chromatography-Mass Spectrometry.

    PubMed

    Villanelli, Fabio; Giocaliere, Elisa; Malvagia, Sabrina; Rosati, Anna; Forni, Giulia; Funghini, Silvia; Shokry, Engy; Ombrone, Daniela; Della Bona, Maria Luisa; Guerrini, Renzo; la Marca, Giancarlo

    2015-02-02

    Phenytoin (PHT) is one of the most commonly used anticonvulsant drugs for the treatment of epilepsy and bipolar disorders. The large amount of plasma required by conventional methods for drug quantification makes mass spectrometry combined with dried blood spot (DBS) sampling crucial for pediatric patients where therapeutic drug monitoring or pharmacokinetic studies may be difficult to realize. DBS represents a new convenient sampling support requiring minimally invasive blood drawing and providing long-term stability of samples and less expensive shipment and storage. The aim of this study was to develop a LC-MS/MS method for the quantification of PHT on DBS. This analytical method was validated and gave good linearity (r(2)=0.999) in the range of 0-100mg/l. LOQ and LOD were 1.0mg/l and 0.3mg/l, respectively. The drug extraction from paper was performed in a few minutes using a mixture composed of organic solvent for 80%. The recovery ranged from 85 to 90%; PHT in DBS showed to be stable at different storage temperatures for one month. A good correlation was also obtained between PHT plasma and DBS concentrations. This method is both precise and accurate and appears to be particularly suitable to monitor treatment with a simple and convenient sample collection procedure.

  14. Waste prevention in liquid detergent distribution: a comparison based on life cycle assessment.

    PubMed

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2014-11-15

    The distribution of liquid detergents through self-dispensing systems has been adopted in some Italian retail stores over the last few years. By enabling the consumer to refill several times the same container, it is proposed as a less waste-generating and more environmentally friendly alternative to the traditional distribution with single-use plastic containers. For this reason, its implementation is encouraged by the national waste prevention programme recently adopted in Italy. In order to assess such claims, a life cycle assessment was carried out to evaluate whether detergent distribution through self-dispensing systems actually allows to achieve the expected reduction in waste generation and environmental impacts. The focus was on the distribution within the large-scale retail trade and on the categories of laundry detergents, fabric softeners and hand dishwashing detergents. For each of them, a set of baseline single-use scenarios were compared with two alternative waste prevention scenarios, where the detergent is distributed through self-dispensing systems. Beyond waste generation, also the Cumulative Energy Demand and thirteen midpoint-level potential impact indicators were calculated for the comparison. Results showed that a reduction in waste generation up to 98% can be achieved, depending on the category of detergent, on the baseline scenario of comparison and on the number of times the refillable container is used. A progressive reduction in the energy demand and in most of the potential impacts was also observed, starting from a minimum number of uses of the refillable container.

  15. Membrane treatment of liquid wastes from radiological decontamination operations.

    PubMed

    Svittsov, A A; Khubetsov, S B; Volchek, K

    2011-01-01

    The paper focuses on the evaluation of membrane filtration for the treatment of liquid radioactive streams generated in area decontamination operations. In this work, semi-permeable membranes were demonstrated to be effective reducing the volume of wastewater containing cesium and cobalt by two orders of a magnitude. The efficiency of membrane separation was enhanced by employing additives that enlarged the size of target radionuclide species and improved their rejection by the membranes. This was achieved by chelation with synthetic water-soluble polymers and by adsorption on micro particles of adsorbent coupled with micelle formation. The effect of wastewater composition and that of the radionuclide-binding additives on the volume reduction was investigated. Membrane treatment is expected to help simplify further processing and decrease disposal costs.

  16. Drop Dynamics and Speciation in Isolation of Metals from Liquid Wastes by Reactive Scavenging

    SciTech Connect

    Arne J. Pearlstein; Alexander Scheeline

    2002-08-30

    Computational and experimental studies of the motion and dynamics of liquid drops in gas flows were conducted with relevance to reactive scavenging of metals from atomized liquid waste. Navier-Stoke's computations of deformable drops revealed a range of conditions from which prolate drops are expected, and showed how frajectiones of deformable drops undergoing deceleration can be computed. Experimental work focused on development of emission fluorescence, and scattering diagnostics. The instrument developed was used to image drop shapes, soot, and nonaxisymmetric departures from steady flow in a 22kw combustor

  17. Mercury removal from liquid and solid mixed waste

    SciTech Connect

    Gates, D.D.; Klasson, K.T.; Corder, S.L.; Cameron, P.A.; Perona, J.J.; Chao, K.K.

    1995-04-01

    Based on bench-scale laboratory experiments, the following conclusions were reached: Sulfur-impregnated, activated, carbon pellets (Mersorb) can be used to remove mercury (Hg{sup 2+}) to below EPA`s toxic characteristic level (0.2 mg/L). Mersorb works under acid conditions (pH 2) but its capacity is reduced by approximately 50% compared with neutral conditions. Competing ions present in the target waste stream reduced the Mersorb capacity by 50%. Mersorb appears to be economical compared with leading ion exchange resin. KI/I{sub 2} leaching solution can be used to remove up to 99% of Hg in contaminated soil and glass. KI/I{sub 2} leaching solution worked well with several mercury species, including Hg{sup 0}, HgO, HgS, and HgCl{sub 2}. KI/I{sub 2} leaching solution worked well with a wide variety of initial mercury concentrations. Radionuclide surrogate studies suggested that uranium will not partition into KI/I{sub 2} leaching solutions. Cesium may partition into the KI/I{sub 2} leaching solution because of the high solubility of cesium salts.

  18. Quantification of photoinduced order increase in liquid crystals with naphthopyran guests

    NASA Astrophysics Data System (ADS)

    Rumi, Mariacristina; Cazzell, Seth A.; Kosa, Tamas; Sukhomlinova, Ludmila; Taheri, Bahman; White, Timothy J.; Bunning, Timothy J.

    2016-03-01

    Photoinduced order-increasing phase transitions can occur in dye-liquid crystal mixtures when the photoproduct of the excitation of the dye molecules is more compatible with the liquid crystalline medium than the initial dye species. A detailed investigation of the photoinduced changes of the phase behavior and optical properties of mixtures of liquid crystals with naphthopyran guests upon exposure to light at 365 nm is presented here. In these guest-host systems, the nematic-to-isotropic phase transition temperature is increased upon irradiation. We show that the nematic range can be extended up to 2.9 °C by illumination in 5CB (4 -n -pentyl-4'-cyanobiphenyl) liquid crystal mixtures. The order parameter is significantly increased by illumination at all temperatures within the nematic range and the changes are larger at higher concentrations of the guests. In particular, the illuminated guest-host mixtures exhibit order parameters close to those of the neat liquid crystal host at the same temperature relative to the clearing point. An improved understanding of the photophysical processes taking place at the molecular level in these material systems can inform the design of photoresponsive materials and enhance their potential utility in optical or photonic devices.

  19. SOLIEX: A Novel Solid-Liquid Method of Radionuclides Extraction from Radioactive Waste Solutions - 13486

    SciTech Connect

    Shilova, E.; Viel, P.; Huc, V.

    2013-07-01

    This paper describes recent developments in new solid-liquid extraction method, called SOLIEX, to remove cesium from alkaline solutions. SOLIEX relies on the use of a reversible complexing system comprising a carbon felt bearing molecular traps (calixarenes). This complexing system exhibits a high selectivity for Cs, and is thus expected to be helpful for the treatment of highly diluted cesium wastes even with a high concentration of competing alkali metal cations. As additional advantage, this complexing system can be adapted by molecular engineering to capture other radionuclides, such as Sr, Eu, Am. Finally, this complexing system can be easily and efficiently regenerated by using a cost effective stripping procedure, which limits further generation of waste to meet 'zero liquid' discharge requirements for nuclear facilities. (authors)

  20. Characterization of low-level liquid wastes at the Oak Ridge National Laboratory

    SciTech Connect

    Peretz, F.J.; Clark, B.R.; Scott, C.B.; Berry, J.B.

    1986-12-01

    This report compiles and evaluates existing data on samples taken from the Oak Ridge National Laboratory Low-Level Liquid Waste (LLW) system. Although the primary focus is on the contents of the eight 50,000-gal Melton Valley Storage Tanks, data on raw LLW from the source facilities, Evaporator Service Tanks, and past operations involving the Gunite Storage Tanks are also included. A brief overview of the ORNL LLW system is provided. Methods of sample collection and analytical procedures are described. Data from each set of samples are reported and evaluated against criteria for classification of wastes. The quality and self-consistency of the data set are also discussed. Issues ranging from classifying as transuranic or Resource Conservation and Recovery Act hazardous waste to providing input for dose-rate calculations and evaluations of chemical compatibility with potential processing options are discussed. Remaining data voids are identified, and activities for filling those voids are recommended. 13 figs., 41 tabs.

  1. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system.

    PubMed

    Stabnikova, O; Liu, X Y; Wang, J Y

    2008-01-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24h at -20 degrees C and then thawed for 12h at 25 degrees C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 degrees C for 1h. However, estimation of energy required either to heat the suspended food waste to 150 degrees C or to freeze the same quantity of food waste to -20 degrees C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  2. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    SciTech Connect

    Stabnikova, O. Liu, X.Y.; Wang, J.Y.

    2008-07-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  3. Disposal of liquid wastes by injection underground--Neither myth nor millennium

    USGS Publications Warehouse

    Piper, Arthur M.

    1969-01-01

    Injecting liquid wastes deep underground is an attractive but not necessarily practical means for disposing of them. For decades, impressive volumes of unwanted oil-field brine have been injected, currently about 10,000 acre-feet yearly. Recently, liquid industrial wastes are being injected in ever-increasing quantity. Dimensions of industrial injection wells range widely but the approximate medians are: depth, 2,660 feet; thickness of injection zone, 185 feet; injection rate, 135 gallons per minute; wellhead injection pressure, 185 pounds per square inch. Effects of deep injection are complex and not all are understood clearly. In a responsible society, injection cannot be allowed to put wastes out of mind. Injection is no more than storage--for all time in the case of the most intractable wastes--in underground space of which little is attainable in some areas and which is exhaustible in most areas. Liquid wastes range widely in character and concentration-some are incompatible one with another or with materials of the prospective injection zone; some which are reactive or chemically unstable would require pretreatment or could not be injected. Standards by which to categorize the wastes are urgently desirable. To the end that injection may be planned effectively and administered in orderly fashion, there is proposed an immediate and comprehensive canvass of all the United States to outline injection provinces and zones according to their capacities to accept waste. Much of the information needed to this end is at hand. Such a canvass would consider (1) natural zone, of groundwater circulation, from rapid to stagnant, (2) regional hydrodynamics, (3) safe injection pressures, and (4) geochemical aspects. In regard to safe pressure, definitive criteria would be sought by which to avoid recurrence of earthquake swarms such as seem to have been triggered by injection at the Rocky Mountain Arsenal well near Denver, Colo. Three of the 50 States--Missouri, .Ohio, and

  4. Simultaneous quantification of cardiovascular disease related metabolic risk factors using liquid chromatography tandem mass spectrometry in human serum.

    PubMed

    Wang, Mo; Yang, Ruiyue; Dong, Jun; Zhang, Tianjiao; Wang, Siming; Zhou, Weiyan; Li, Hongxia; Zhao, Haijian; Zhang, Lijiao; Wang, Shu; Zhang, Chuanbao; Chen, Wenxiang

    2016-01-15

    Recent observations from metabonomic studies have consistently found that branched-chain amino acids (BCAAs), aromatic amino acids (AAAs), glutamine (Gln), glutamic acid (Glu), Gln/Glu ratio, carnitine, and several species of acylcarnitines and lysophosphatidylcholines (LPCs) are possible risk factors for metabolic diseases such as diabetes mellitus (DM) and cardiovascular diseases (CVD). We described here a simple and reliable method for simultaneous quantification of these metabolic risk factors by liquid chromatography tandem mass spectrometry (LC-MS/MS). Serum samples were extracted with isopropanol, and the extracted metabolites were separated by hydrophilic interaction liquid chromatography (HILIC) and detected with electrospary ionization (ESI) inpositive ion mode with multiple reaction monitor (MRM) mode. All the metabolites were effectively separated within 5.5min. Analytical recoveries were in the range of 92.8-106.9%, with an average of 100.6%. The intra- run and total imprecisions for the measurement of these metabolites were 1.2-3.8% and 1.5-7.4%, respectively. Serum concentrations of the metabolites were analyzed in 123 apparently healthy volunteers. Significant associations between the metabolites and traditional CVD risk factors were observed. The newly developed LC-MS/MS method was simple, precise, and accurate and can be used as an efficient tool in CVD research and studies.

  5. Identification of unknown pesticides in fruits using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Imazalil as a case study of quantification.

    PubMed

    Picó, Yolanda; la Farré, Marinel; Soler, Carla; Barceló, Damià

    2007-12-28

    Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QqTOF-MS) is an emerging technique offering more rapid and efficient separation, as well as the possibility to obtain accurate mass measurement and tandem mass spectrometry (MS/MS). This paper deals with the use of UPLC-QqTOF-MS to identify the pesticide residues present in complex pear extracts. Carbendazim, imazalil, and ethoxyquin were successfully identified because of the accurate mass determination of their protonated molecule and their major fragments in the product ion mass spectra. A few plastic and latex additives were also found, most of them probably coming from the packaging transfer to the fruits. The potential of the UPLC-QqTOF-MS and UPLC-QqTOF-MS/MS techniques as a quantification tool is also discussed taking imazalil as example. For quantification, calibration curves were linear over a dynamic range of 2 orders of magnitude, whereas higher calibration ranges are better adjusted to polynomial curves of second and third order. Quantification using different mass windows was also assessed. Accurate quantification required mass windows as wide as 20 mDa, narrower mass windows of 5 mDa provided erroneous quantification, probably because the low ion abundance. The mean recoveries and percentage relative standard deviation (RSD) of 35 determinations for imazalil were 76% (13% RSD) by MS and 77% (14% RSD) by MS/MS. The theoretical limit of detection was 0.4 microg kg(-1), with a validated limit of quantification of 2 microg kg(-1). The quantitative data obtained using UPLC-QqTOF-MS were compared with those obtained using conventional liquid chromatography (LC)-MS/MS with a triple quadrupole (QqQ). It was concluded that UPLC-QqTOF-MS might become a powerful analytical tool for both, unknown's identification and quantification of target pesticides.

  6. Rapid quantification of four major bioactive alkaloids in Corydalis decumbens (Thunb.) Pers. by pressurised liquid extraction combined with liquid chromatography-triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Shen, Yan; Han, Chao; Jiang, Yongxiang; Zhou, Xiujin; Zhu, Zhenou; Lei, Xinxiang

    2011-05-30

    A new method based on pressurised liquid extraction (PLE) followed by liquid chromatography-triple quadrupole linear ion trap mass spectrometry (LC-QTrap-MS) analysis has been developed for the identification and quantification of four major alkaloids in extracts of Corydalis decumbens (Thunb.) Pers. PLE extractions were performed using 90% ethanol; temperature was set at 100°C and pressure at 1500 psi. HPLC analysis was performed on a Waters XBridge™ C(18) column (150 mm × 2.1mm i.d., 3.5 μm) eluted by a mobile phase of acetonitrile and 0.2% acetic acid. Data acquisition was carried out in multiple reaction monitoring transitions (MRMs) mode, monitoring two MRM transitions to ensure an accurate identification of target compounds in the samples. Additional identification and confirmation of target compounds were performed using the enhanced product ion modus (EPI) of the linear ion trap. The novel LC-QTrap-MS platform offers the best sensitivity and specificity for characterization and quantitative determination of the four alkaloids in C. decumbens (Thunb.) Pers. and fulfils the quality criteria for routine laboratory application.

  7. Simultaneous quantification of major flavonoids in "Bawanghua", the edible flower of Hylocereus undatus using pressurised liquid extraction and high performance liquid chromatography.

    PubMed

    Yi, Yan; Zhang, Qing-Wen; Li, Song-Lin; Wang, Ying; Ye, Wen-Cai; Zhao, Jing; Wang, Yi-Tao

    2012-11-15

    A pressurised liquid extraction (PLE) and high performance liquid chromatography (HPLC) method was developed for simultaneous quantification of six major flavonoids in edible flower of Hylocereus undatus. In order to achieve the baseline separation of two pairs of isomers, the HPLC conditions were optimised with different kind of reversed phase columns and mobile phase gradient programs. In addition, the solvent concentration, extraction temperature, extraction time and flush cycle for PLE were also optimised. Zorbax SB-C8 (100×2.1 mm, 1.8 μm) column was chosen with acetonitrile and water containing 0.1% trifluoroacetic acid as mobile phase, the six analytes were eluted with baseline separation. The calibration curves showed good linearity (r(2)>0.9994) with LODs and LOQs less than 0.90 and 3.60 ng respectively. The RSDs for intra- and inter-day repeatability was not more than 1.09% and 1.79% respectively. The overall recovery of the assay was 96.9-105.2%. The sample was stable for at least 12 h. The newly established method was successfully applied to quantify six flavonoids in different parts of "Bawanghua", and the commercial samples from different locations.

  8. Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-01-30

    The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined.

  9. The emergency avoidance solidification campaign of liquid low-level waste at Oak Ridge National Laboratory

    SciTech Connect

    Myrick, T.E.; Helms, R.E.; Scanlan, T.F.; Schultz, R.M.; Scott, C.B.; Williams, L.C.; Homan, F.J.; Keigan, M.V.; Monk, T.H.; Morrow, R.W.; Van Hoesen, S.D. ); du Mont, S.P. )

    1992-01-01

    Since the beginning of nuclear research and development activities at the Oak Ridge National Laboratory (ORNL) in 1943, the generation, collection, treatment, storage, and disposal of the liquid low-level waste (LLLW) stream has been an integral part of ORNL's waste management operations. This waste stream, consisting principally of a high nitrate (4.5 molar), high pH (pH 13--14) mixture of reactor, hot cell, and research laboratory liquid radioactive wastes (<5 Ci/gal), has been treated and disposed of in a variety of ways over the years. Most recently, the hydrofracture technology had been used for deep-well disposal of a grout mix of LLLW, cement, fly ash, and other additives. In 1984, this disposal technique was discontinued due to regulatory permitting issues and the need for extensive facility modifications for future operations. With loss of this disposal capability and the continued generation of LLLW by ORNL research activities, the limited tank storage capacity was rapidly being depleted.

  10. Heavy metals removal from contaminated sewage sludge by naturally fermented raw liquid from pineapple wastes.

    PubMed

    Dacera, Dominica Del Mundo; Babel, Sandhya

    2007-01-01

    The large amount of unutilised pineapple wastes produced every year in tropical countries, particularly in Thailand, adds to the existing environmental pollution problems of the country. This study investigated the utilisation of pineapple wastes to treat another form of waste (sludge) from wastewater treatment facilities in Thailand. Laboratory scale studies were carried out to determine the potential of using naturally fermented raw liquid from pineapple wastes as a source of citric acid in the extraction of Cr, Cu, Pb, Ni and Zn from anaerobically digested sewage sludge. Results of the leaching study revealed its effectiveness in extracting Zn (at 92%) at pH 3.67 and a short leaching time of only 2 h, and Ni at almost 60% removal at the same leaching time. Chromium removal was also high at almost 75% at a longer leaching time of 11 days. Variation in metal removal efficiencies may also be attributed to the forms of metals in sludge, with metals predominantly in the exchangeable and oxidisable phases showing ease of leachability (such as Zn). Compared to citric acid, at pH approaching 4.0, naturally fermented raw liquid seemed to be more effective in the removal of Zn and Cu at the same leaching time of 2 h, and Cr at a longer leaching time of 11 days. The pineapple pulp, which is a by-product of the process, can still be used as animal feed because of its high protein content.

  11. Cetirizine Quantification by High-Performance Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS).

    PubMed

    Munar, Ada; Frazee, Clint; Jones, Bridgette; Garg, Uttam

    2016-01-01

    A multiple reaction monitoring (MRM), positive ion electrospray ionization, LC/MS/MS method is described for the quantification of cetirizine. The compound was isolated from human plasma by protein precipitation using acetonitrile. Cetirizine d4 was used as an internal standard. Chromatographic conditions were achieved using a C18 column and a combination of ammonium acetate, water, and methanol as the mobile phase. MRMs were: cetirizine, 389.26 → 165.16, 201.09; cetirizine d4, 393.09 → 165.15, 201.10. Calibration curves were constructed by plotting the peak area ratios of the calibrators' target MRM transition area to labeled internal standard target MRM transition area versus concentration.

  12. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    SciTech Connect

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m. The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m in radius. Using this process, ORNL has disposed of over 1.5 x 10/sup 6/ Ci of activity; the principal nuclides are /sup 90/Sr and /sup 137/Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 liters of slurry. Disposal cost per liter is about $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. Recent regulatory constraints may cause permanent cessation of the operation. Federal and state statutes, written for other types of injection facilities, impact the ORNL facility. This disposal process, which may have great applicability for disposal of many wastes, including hazardous wastes, may not be developed for future use.

  13. Pressurized liquid extraction and quantification of anthocyanins in purple-fleshed sweetpotato genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of anthocyanins responsible for the purple flesh color is important for breeding programs and development of value-added products. This study aimed to optimize the conditions for anthocyanin extraction from purple-fleshed sweet potatoes (PFSP) using pressurized-liquid extraction (PLE) metho...

  14. Simultaneous quantification of 20 synthetic cannabinoids and 21 metabolites, and semi-quantification of 12 alkyl hydroxy metabolites in human urine by liquid chromatography-tandem mass spectrometry.

    PubMed

    Scheidweiler, Karl B; Huestis, Marilyn A

    2014-01-31

    Clandestine laboratories constantly produce new synthetic cannabinoids to circumvent legislative efforts, complicating toxicological analysis. No extensive synthetic cannabinoid quantitative urinary methods are reported in the literature. We developed and validated a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for simultaneously quantifying JWH-018, JWH-019, JWH-073, JWH-081, JWH-122, JWH-200, JWH-210, JWH-250, JWH-398, RCS-4, AM-2201, MAM-2201, UR-144, CP 47,497-C7, CP 47,497-C8 and their metabolites, and JWH-203, AM-694, RCS-8, XLR-11 and HU-210 parent compounds in urine. Non-chromatographically resolved alkyl hydroxy metabolite isomers were considered semi-quantitative. β-Glucuronidase hydrolyzed urine was extracted with 1ml Biotage SLE+ columns. Specimens were reconstituted in 150μL mobile phase consisting of 50% A (0.01% formic acid in water) and 50% B (0.01% formic acid in 50:50 methanol:acetonitrile). 4 and 25μL injections were performed to acquire data in positive and negative ionization modes, respectively. The LC-MS/MS instrument consisted of a Shimadzu UFLCxr system and an ABSciex 5500 Qtrap mass spectrometer with an electrospray source. Gradient chromatographic separation was achieved utilizing a Restek Ultra Biphenyl column with a 0.5ml/min flow rate and an overall run time of 19.5 and 11.4min for positive and negative mode methods, respectively. Quantification was by multiple reaction monitoring with CP 47,497 compounds and HU-210 ionized via negative polarity; all other analytes were acquired in positive mode. Lower and upper limits of linearity were 0.1-1.0 and 50-100μg/l (r(2)>0.994). Validation parameters were evaluated at three concentrations spanning linear dynamic ranges. Inter-day analytical recovery (bias) and imprecision (N=20) were 88.3-112.2% and 4.3-13.5% coefficient of variation, respectively. Extraction efficiencies and matrix effect (N=10) were 44-110 and -73 to 52%, respectively. We present a novel LC

  15. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... description, projected quantity, and composition of solid and liquid wastes (such as spent drilling fluids, drill cuttings, trash, sanitary and domestic wastes, produced waters, and chemical product...

  16. 30 CFR 550.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR..., projected quantity, and composition of solid and liquid wastes (such as spent drilling fluids, drill... (2) Your plans for treating, storing, and downhole disposal of these wastes at your drilling...

  17. 30 CFR 550.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR..., projected quantity, and composition of solid and liquid wastes (such as spent drilling fluids, drill... (2) Your plans for treating, storing, and downhole disposal of these wastes at your drilling...

  18. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... description, projected quantity, and composition of solid and liquid wastes (such as spent drilling fluids, drill cuttings, trash, sanitary and domestic wastes, produced waters, and chemical product...

  19. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... description, projected quantity, and composition of solid and liquid wastes (such as spent drilling fluids, drill cuttings, trash, sanitary and domestic wastes, produced waters, and chemical product...

  20. 30 CFR 550.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR..., projected quantity, and composition of solid and liquid wastes (such as spent drilling fluids, drill... (2) Your plans for treating, storing, and downhole disposal of these wastes at your drilling...

  1. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR..., projected quantity, and composition of solid and liquid wastes (such as spent drilling fluids, drill... (2) Your plans for treating, storing, and downhole disposal of these wastes at your drilling...

  2. Feasibility study of the applicability of the activated sludge process to treatment of radioactive organic liquid waste

    SciTech Connect

    Koyama, Akio; Nishimaki, Kenzo

    1997-12-31

    The authors used an activated sludge process to treat radioactive organic liquid waste. Organic liquid waste is difficult to treat by conventional radioactive liquid treatment processes, but in order to reduce long-term irradiation of the public the removal of radionuclides from such waste is preferable to dilution. Activated sludge processes are widely used for the biological treatment of sewage and are considered appropriate means for treating radioactive organic liquid waste. In this process, the fate of radionuclides eluted by treated water or immobilized by activated sludge, is extremely important for public safety and for the treatment of radioactive organic liquid waste. The authors performed uptake and desorption behavior experiments on the three short half-life radionuclides {sup 134}Cs, {sup 57}Co and {sup 85}Sr, and used three nutritive types of artificial sewage as the feed solution. On the basis of the results, they discuss the uptake-desorption behavior of these radionuclides in an activated sludge process. The authors conclude that treatment of radioactive organic liquid waste by an activated sludge process is possible, but improvements must be made in the process if it is to be more effective.

  3. Analytical assessment about the simultaneous quantification of releasable pharmaceutical relevant inorganic nanoparticles in tap water and domestic waste water.

    PubMed

    Krystek, Petra; Bäuerlein, Patrick S; Kooij, Pascal J F

    2015-03-15

    For pharmaceutical applications, the use of inorganic engineered nanoparticles is of growing interest while silver (Ag) and gold (Au) are the most relevant elements. A few methods were developed recently but the validation and the application testing were quite limited. Therefore, a routinely suitable multi element method for the identification of nanoparticles of different sizes below 100 nm and elemental composition by applying asymmetric flow field flow fraction (AF4) - inductively coupled plasma mass spectrometry (ICPMS) is developed. A complete validation model of the quantification of releasable pharmaceutical relevant inorganic nanoparticles based on Ag and Au is presented for the most relevant aqueous matrices of tap water and domestic waste water. The samples are originated from locations in the Netherlands and it is of great interest to study the unwanted presence of Ag and Au as nanoparticle residues due to possible health and environmental risks. During method development, instability effects are observed for 60 nm and 70 nm Ag ENPs with different capping agents. These effects are studied more closely in relation to matrix effects. Besides the methodological aspects, the obtained analytical results and relevant performance characteristics (e.g. measuring range, limit of detection, repeatability, reproducibility, trueness, and expanded uncertainty of measurement) are determined and discussed. For the chosen aqueous matrices, the results of the performance characteristics are significantly better for Au ENPs in comparison to Ag ENPs; e.g. repeatability and reproducibility are below 10% for all Au ENPs respectively maximal 27% repeatability for larger Ag ENPs. The method is a promising tool for the simultaneous determination of releasable pharmaceutical relevant inorganic nanoparticles.

  4. Quantification of Influenza Neuraminidase Activity by Ultra-High Performance Liquid Chromatography and Isotope Dilution Mass Spectrometry.

    PubMed

    Solano, Maria I; Woolfitt, Adrian R; Williams, Tracie L; Pierce, Carrie L; Gubareva, Larisa V; Mishin, Vasiliy; Barr, John R

    2017-03-07

    Mounting evidence suggests that neuraminidase's functionality extends beyond its classical role in influenza virus infection and that antineuraminidase antibodies offer protective immunity. Therefore, a renewed interest in the development of neuraminidase (NA)-specific methods to characterize the glycoprotein and evaluate potential advantages for NA standardization in influenza vaccines has emerged. NA displays sialidase activity by cleaving off the terminal N-acetylneuraminic acid on α-2,3 or α-2,6 sialic acid containing receptors of host cells. The type and distribution of these sialic acid containing receptors is considered to be an important factor in transmission efficiency of influenza viruses between and among host species. Changes in hemagglutinin (HA) binding and NA specificity in reassortant viruses may be related to the emergence of new and potentially dangerous strains of influenza. Current methods to investigate neuraminidase activity use small derivatized sugars that are poor models for natural glycoprotein receptors and do not provide information on the linkage specificity. Here, a novel approach for rapid and accurate quantification of influenza neuraminidase activity is achieved utilizing ultra-high performance liquid chromatography (UPLC) and isotope dilution mass spectrometry (IDMS). Direct LC-MS/MS quantification of NA-released sialic acid provides precise measurement of influenza neuraminidase activity over a range of substrates. The method provides exceptional sensitivity and specificity with a limit of detection of 0.38 μM for sialic acid and the capacity to obtain accurate measurements of specific enzyme activity preference toward α-2,3-sialyllactose linkages, α-2,6-sialyllactose linkages, or whole glycosylated proteins such as fetuin.

  5. Liquid chromatography, chemical oxidation, and online carbon isotope dilution mass spectrometry as a universal quantification system for nonvolatile organic compounds.

    PubMed

    Díaz, Sergio Cueto; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo; Alonso, J Ignacio García

    2013-02-05

    A procedure for the universal detection and quantification of polar organic compounds separated by liquid chromatography (LC) based on postcolumn carbon isotope dilution mass spectrometry (IDMS) was developed. The eluent from the LC column is mixed online with a continuous flow of (13)C-enriched sodium bicarbonate, and the sodium persulfate oxidation reaction in acidic media is employed to achieve isotope equilibration. All carbon-containing compounds eluting from the column are oxidized to (12)CO(2) and (13)CO(2), respectively, and the carbon dioxide is separated from the aqueous phase using a gas-permeable membrane. The gaseous carbon dioxide is then carried to the mass spectrometer for isotope ratio measurements. Different water-soluble organic compounds were evaluated using a flow injection configuration to assess the efficiency of the oxidation process. Most water-soluble organic compounds tested showed quantitative oxidation. However, chemical structures involving conjugated C═N double bounds and guanidinium-like structures were found to be resistant to the oxidation and were further studied. For this purpose, (13)C(1)-labeled creatine (with the isotopic label in the guanidinium group) was employed as model compound. Specific conditions for the quantitative oxidation of these compounds required lower flow rates and the addition of metallic catalysts. This novel approach was tested as a universal detection and quantification system for LC. A simple standard mixture of four amino acids was separated under 100% aqueous conditions and quantified without the need for specific standards with good accuracy and precision using potassium hydrogen phthalate as internal standard. The main field of application of the developed method is for the purity assessment of organic standards with direct traceability to the International System of Units (SI).

  6. Quantification of rifapentine, a potent antituberculosis drug, from dried blood spot samples using liquid chromatographic-tandem mass spectrometric analysis.

    PubMed

    Parsons, Teresa L; Marzinke, Mark A; Hoang, Thuy; Bliven-Sizemore, Erin; Weiner, Marc; Mac Kenzie, William R; Dorman, Susan E; Dooley, Kelly E

    2014-11-01

    The quantification of antituberculosis drug concentrations in multinational trials currently requires the collection of modest blood volumes, centrifugation, aliquoting of plasma, freezing, and keeping samples frozen during shipping. We prospectively enrolled healthy individuals into the Tuberculosis Trials Consortium Study 29B, a phase I dose escalation study of rifapentine, a rifamycin under evaluation in tuberculosis treatment trials. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying rifapentine in whole blood on dried blood spots (DBS) to facilitate pharmacokinetic/pharmacodynamic analyses in clinical trials. Paired plasma and whole-blood samples were collected by venipuncture, and whole blood was spotted on Whatman protein saver 903 cards. The methods were optimized for plasma and then validated for DBS. The analytical measuring range for quantification of rifapentine and its metabolite was 50 to 80,000 ng/ml in whole-blood DBS. The analyte was stable on the cards for 11 weeks with a desiccant at room temperature and protected from light. The method concordance for paired plasma and whole-blood DBS samples was determined after correcting for participant hematocrit or population-based estimates of bias from Bland-Altman plots. The application of either correction factor resulted in acceptable correlation between plasma and whole-blood DBS (Passing-Bablok regression corrected for hematocrit; y = 0.98x + 356). Concentrations of rifapentine may be determined from whole-blood DBS collected via venipuncture after normalization in order to account for the dilutional effects of red blood cells. Additional studies are focused on the application of this methodology to capillary blood collected by finger stick. The simplicity of processing, storage, shipping, and low blood volume makes whole-blood DBS attractive for rifapentine pharmacokinetic evaluations, especially in international and pediatric trials.

  7. Quantification of Rifapentine, a Potent Antituberculosis Drug, from Dried Blood Spot Samples Using Liquid Chromatographic-Tandem Mass Spectrometric Analysis

    PubMed Central

    Parsons, Teresa L.; Marzinke, Mark A.; Hoang, Thuy; Bliven-Sizemore, Erin; Weiner, Marc; Mac Kenzie, William R.; Dorman, Susan E.

    2014-01-01

    The quantification of antituberculosis drug concentrations in multinational trials currently requires the collection of modest blood volumes, centrifugation, aliquoting of plasma, freezing, and keeping samples frozen during shipping. We prospectively enrolled healthy individuals into the Tuberculosis Trials Consortium Study 29B, a phase I dose escalation study of rifapentine, a rifamycin under evaluation in tuberculosis treatment trials. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying rifapentine in whole blood on dried blood spots (DBS) to facilitate pharmacokinetic/pharmacodynamic analyses in clinical trials. Paired plasma and whole-blood samples were collected by venipuncture, and whole blood was spotted on Whatman protein saver 903 cards. The methods were optimized for plasma and then validated for DBS. The analytical measuring range for quantification of rifapentine and its metabolite was 50 to 80,000 ng/ml in whole-blood DBS. The analyte was stable on the cards for 11 weeks with a desiccant at room temperature and protected from light. The method concordance for paired plasma and whole-blood DBS samples was determined after correcting for participant hematocrit or population-based estimates of bias from Bland-Altman plots. The application of either correction factor resulted in acceptable correlation between plasma and whole-blood DBS (Passing-Bablok regression corrected for hematocrit; y = 0.98x + 356). Concentrations of rifapentine may be determined from whole-blood DBS collected via venipuncture after normalization in order to account for the dilutional effects of red blood cells. Additional studies are focused on the application of this methodology to capillary blood collected by finger stick. The simplicity of processing, storage, shipping, and low blood volume makes whole-blood DBS attractive for rifapentine pharmacokinetic evaluations, especially in international and pediatric trials. PMID:25182637

  8. Localisation and quantification of benzalkonium chloride in eye tissue by TOF-SIMS imaging and liquid chromatography mass spectrometry.

    PubMed

    Desbenoit, Nicolas; Schmitz-Afonso, Isabelle; Baudouin, Christophe; Laprévote, Olivier; Touboul, David; Brignole-Baudouin, Françoise; Brunelle, Alain

    2013-05-01

    Benzalkonium (BAK) chloride is the most commonly used preservative in eye drops. It is generally composed of benzyldimethyldodecylammonium C12 and benzyldimethyltetradecylammonium C14 and is supposed to increase penetration of active compounds. However, numerous studies have reported its toxic effect to ocular surface especially in long-term treatments like against glaucoma, a sight-threatening disease. Albino rabbits were treated with a hyperosmolar solution and a high concentration of BAK solution for 1 month. Enucleated eyes were cryo-sectioned and analysed by mass spectrometry. Mass spectrometry imaging using time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used to characterize the spatial distribution and to determine the relative quantity of BAK at the surface of rabbit eye sections. Liquid chromatography coupled with mass spectrometry (LC-MS) using a hybrid linear ion trap-Orbitrap® mass spectrometer was used to obtain relative quantification of BAK at the sample surface. TOF-SIMS images of BAK ions indicated a distribution at the ocular surface and in deeper structures. Didecyldimethylammonium (DDMAC), which is used in hospitals as a substitute for BAK, was also detected and showed an accumulation around the eyes. After extraction with acetonitrile and chromatographic separation using a Gemini C18 column and an original elution gradient, the relative quantities of BAK and DDMAC present in the whole eye section surface were determined. This LC-MS method was validated in terms of limits of quantification, linearity, repeatability and reproducibility and its feasibility was evaluated in surgically obtained human samples. Specimens of iris, lens capsule or trabecular meshwork were found with significant levels of BAK and DDMAC, thus confirming the penetration of BAK in deep ocular structures, with potential deleterious effects induced by this cytotoxic compound. The analytical method developed here could therefore be of primary interest in

  9. Quantification of antidepressants and antipsychotics in human serum by precipitation and ultra high pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Hasselstrøm, Jørgen

    2011-01-01

    The present article describes the quantification of mirtazapine, O-desmethylvenlafaxine, quetiapine, venlafaxine, and ziprasidone (group 1), and amitriptyline, citalopram, clomipramine, clozapine, desmethylclomipramine, desipramine, imipramine, and nortriptyline (group 2) in human serum for therapeutic drug monitoring. The method was developed to replace old techniques which applied solid phase extraction and ultra-violet detection. The old methods had reached their limit of capacity regarding the number of samples and co-medicated drugs interfering with the detection. Serum samples were precipitated with zinc sulphate and methanol containing a stable isotope labelled analog for each analyte. Quantitative analysis was performed by ultra high pressure liquid chromatography combined with a tandem mass spectrometer using a Zorbax SB-C8 column (2.0 × 50 mm; 1.8 μm) with a mobile phase consisting of 0.1% formic acid in water and methanol, respectively. The total run time of the chromatography was 4 min. Precision and trueness varied from 2.6% to 14.9% and 87.6% to 103.5%, respectively. At the lower limit of quantification, precision was up to 17.9% and trueness varied from 89.5% to 111.5%. A five point standard curve covering the clinically relevant ranges with a power function fit was applied for calibration. Ion suppression from matrix effects and internal standards were thoroughly investigated and are discussed. Process efficiency rates varied from 42% to 99%. The method has shortened the response time, reduced interference from other drugs, avoided acetonitrile usage, and reduced the amount of serum needed for analysis 50-fold.

  10. Identification and Quantification of Preterm Birth Biomarkers in Human Cervicovaginal Fluid by Liquid Chromatography/Tandem Mass Spectrometry

    PubMed Central

    Shah, Sumit J.; Yu, Kenneth H.; Sangar, Vineet; Parry, Samuel I.; Blair, Ian A.

    2009-01-01

    Spontaneous preterm birth (PTB) before 37 completed weeks of gestation resulting from preterm labor (PTL) is a leading contributor of perinatal morbidity and mortality. Early identification of at-risk women by reliable screening tests could alleviate this health issue; however, conventional methods such as obstetric history and clinical risk factors, uterine activity monitoring, biochemical markers, and cervical sonography for screening women at risk for PTB have proven unsuccessful in lowering the rate of PTB. Cervicovaginal fluid (CVF) might prove to be a useful, readily available biological fluid for identifying diagnostic PTB biomarkers. Human columnar epithelial endocervical-1 (End1) and vaginal (Vk2) cell secretomes were employed to generate a stable isotope labeled proteome (SILAP) standard to facilitate characterization and relative quantification of proteins present in CVF. The SILAP standard was prepared using stable isotope labeling by amino acids in cell culture (SILAC) of End1 and Vk2 through seven passages. The labeled secreted proteins from both cell lines were combined and characterized by liquid-chromatography-tandem mass spectrometry (LC-MS/MS). 1211 proteins were identified in the End1-Vk2 SILAP standard, with 236 proteins being consistently identified in each of the replicates analyzed. Individual proteins were found to contain < 0.5 % of the endogenous unlabeled forms. Identified proteins were screened to provide a set of fifteen candidates that have either previously been identified as potential PTB biomarkers or could be linked mechanistically to PTB. Stable isotope dilution LC-multiple reaction monitoring (MRM/MS) assays were then developed for conducting relative quantification of the fifteen candidate biomarkers in human CVF samples from term and PTB cases. Three proteins were significantly elevated in PTB cases (desmoplakin isoform 1, stratifin, and thrombospondin 1 precursor), providing a foundation for further validation in larger

  11. Identification and quantification of ricin in biomedical samples by magnetic immunocapture enrichment and liquid chromatography electrospray ionization tandem mass spectrometry.

    PubMed

    Ma, Xiaoxi; Tang, Jijun; Li, Chunzheng; Liu, Qin; Chen, Jia; Li, Hua; Guo, Lei; Xie, Jianwei

    2014-08-01

    Ricin is a toxic protein derived from castor beans and composed of a cytotoxic A chain and a galactose-binding B chain linked by a disulfide bond, which can inhibit protein synthesis and cause cell death. Owing to its high toxicity, ease of preparation, and lack of medical countermeasures, ricin has been listed as both chemical and biological warfare agents. For homeland security or public safety, the unambiguous, sensitive, and rapid methods for identification and quantification of ricin in complicated matrices are of urgent need. Mass spectrometric analysis, which provides specific and sensitive characterization of protein, can be applied to confirm and quantify ricin. Here, we report a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method in which ricin was extracted and enriched from serum by immunocapture using anti-ricin monoclonal antibody 3D74 linked to magnetic beads, then digested by trypsin, and analyzed by LC-ESI-MS/MS. Among 19 distinct peptides observed in LC-quadrupole/time of flight-MS (LC-QTOF-MS), two specific and sensitive peptides, T7A ((49)VGLPINQR(56)) and T14B ((188)DNCLTSDSNIR(198)), were chosen, and a highly sensitive determination of ricin was established in LC-triple quadrupole-MS (LC-QqQ-MS) operating in multiple reaction monitoring mode. These specific peptides can definitely distinguish ricin from the homologous protein Ricinus communis agglutinin (RCA120), even though the amino acid sequence homology of the A-chain of ricin and RCA120 is up to ca. 93% and that of B-chain is ca. 85%. Furthermore, peptide T7A was preferred in the quantification of ricin because its sensitivity was at least one order of magnitude higher than that of the peptide T14B. Combined with immunocapture enrichment, this method provided a limit of detection of ca. 2.5 ng/mL and the limit of quantification was ca. 5 ng/mL of ricin in serum, respectively. Both precision and accuracy of this method were determined and the RSD

  12. Quantification of ordering at a solid-liquid interface using plasmon electron energy loss spectroscopy

    SciTech Connect

    Gandman, Maria; Kauffmann, Yaron; Kaplan, Wayne D.

    2015-02-02

    We present an in situ electron energy loss spectroscopy (EELS) study of ordering of liquid Al at various Al-Al{sub 2}O{sub 3} interfaces. This technique utilizes precise measurements of the shifts in bulk plasmon resonance and their sensitivity to the valence electron density. Plasmon EELS combined with high resolution transmission electron microscopy provides information regarding the chemical composition in liquid Al at Al-Al{sub 2}O{sub 3} interfaces. Preferential oxygen segregation to the (0006) Al{sub 2}O{sub 3} plane was verified, and the (101{sup ¯}2) Al{sub 2}O{sub 3} plane was found to contain the lowest amount of segregated species.

  13. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    SciTech Connect

    Rosenberger, Kent H.

    2013-07-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling

  14. Direct utilization of human liquid wastes by plants in a closed ecosystem

    NASA Astrophysics Data System (ADS)

    Lisovsky, G. M.; Gitelson, J. I.; Shilenko, M. P.; Gribovskaya, I. V.; Trubachev, I. N.

    1997-01-01

    Model experiments in phytotrons have shown that urea is able to cover 70% of the demand in nitrogen of the conveyer cultivated wheat. At the same time wheat plants can directly utilize human liquid wastes. In this article by human liquid wastes the authors mean human urine only. In a long-term experiment on ``man-higher plants'' system with two crewmen, plants covered 63 m^2, with wheat planted to - 39.6 m^2. For 103 days, complete human urine (total amount - 210.7 l) was supplied into the nutrient solution for wheat. In a month and a half NaCl supply into the nutrient solution stabilized at 0.9-1.65 g/l. This salination had no marked effect on wheat production. The experiment revealed the realistic feasibility to directly involve liquid wastes into the biological turnover of the life support system. The closure of the system, in terms of water, increased by 15.7% and the supply of nutrients for wheat plants into the system was decreased. Closedness of biological turnover of matter in a man-made ``man - higher plants'' ecological system might involve, among other processes, direct utilization of human liquid wastes by plants. The amount of urine comprises 15-20% of the total amount of water cycling within the system including water as part of food, household, hygiene and potable water necessary for man. What is more, it they contains most nitrogen-bearing compounds emitted by man, almost all of the NaCl and some other substances involved in the biological turnover. Human liquid wastes can be utilized either by preliminary physical-chemical treatment (evaporating or freezing out the water, finally oxidizing the organic matter, isolating the mineral components required for plants, etc.) and further involvement of the obtained products or by direct application into the nutrient solution for plants. The challenge of direct utilization is that plants have no need of Na^+ and Cl^-, and also the organic forms of nitrogen emitted by man cannot fully meet the demand of

  15. Development of Concentration and Calcination Technology For High Level Liquid Waste

    SciTech Connect

    Pande, D.P.

    2006-07-01

    The concentrated medium and high-level liquid radio chemicals effluents contain nitric acid, water along with the dissolved chemicals including the nitrates of the radio nuclides. High level liquid waste contain mainly nitrates of cesium, strontium, cerium, zirconium, chromium, barium, calcium, cobalt, copper, pickle, iron etc. and other fission products. This concentrated solution requires further evaporation, dehydration, drying and decomposition in temperature range of 150 to 700 deg. C. The addition of the calcined solids in vitrification pot, instead of liquid feed, helps to avoid low temperature zone because the vaporization of the liquid and decomposition of nitrates do not take place inside the melter. In our work Differential and thermo gravimetric studies has been carried out in the various stages of thermal treatment including drying, dehydration and conversion to oxide forms. Experimental studies were done to characterize the chemicals present in high-level radioactive waste. A Rotary Ball Kiln Calciner was used for development of the process because this is amenable for continuous operation and moderately good heat transfer can be achieved inside the kiln. This also has minimum secondary waste and off gases generation. The Rotary Ball Kiln Calciner Demonstration facility system was designed and installed for the demonstration of calcination process. The Rotary Ball Kiln Calciner is a slowly rotating slightly inclined horizontal tube that is externally heated by means of electric resistance heating. The liquid feed is sprayed onto the moving bed of metal balls in a slowly rotating calciner by a peristaltic type-metering pump. The vaporization of the liquid occurs in the pre-calcination zone due to counter current flow of hot gases. The dehydration and denitration of the solids occurs in the calcination zone, which is externally heated by electrical furnace. The calcined powder is cooled in the post calcination portion. It has been demonstrated that the

  16. LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION

    SciTech Connect

    BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

    2000-03-01

    Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the

  17. Chromium liquid waste inertization in an inorganic alkali activated matrix: leaching and NMR multinuclear approach.

    PubMed

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-04-09

    A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈ 2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process--from the precursor dissolution to the final geopolymer matrix hardening--of different geopolymers containing a waste amount ranging from 3 to 20%wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of TOT bonds (where T is Al or Si) by (29)Si and (27)Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers containing high amounts of waste (10-20%wt). The results show the formation of a stable matrix after only 15 days independently on the waste amount introduced; the longer curing times increase the matrices stabilities and their ability to immobilize chromium cations. The maximum amount of waste that can be inertized is around 10 wt% after a curing time of 28 days.

  18. Quantification of milk fat in chocolate fats by triacylglycerol analysis using gas-liquid chromatography.

    PubMed

    Buchgraber, Manuela; Androni, Simona; Anklam, Elke

    2007-05-02

    The development and in-house testing of a method for the quantification of milk fat in chocolate fats is described. A database consisting of the triacylglycerol profiles of 310 genuine milk fat samples from 21 European countries and 947 mixtures thereof with chocolate fats was created under a strict quality control scheme using 26 triacylglycerol reference standards for calibration purposes. Out of the individual triacylglycerol fractions obtained, 1-palmitoyl-2-stearoyl-3-butyroyl-glycerol (PSB) was selected as suitable marker compound for the determination of the proportion of milk fat in chocolate fats. By using PSB values from the standardized database, a calibration function using simple linear regression analysis was calculated to be used for future estimations of the milk fat content. A comparison with the widely used butyric acid method, which is currently used to determine the milk fat content in nonmilk fat mixtures, showed that both methods were equivalent in terms of accuracy. The advantage of the presented approach is that for further applications, i.e., determination of foreign fats in chocolate fats, just a single analysis is necessary, whereas for the same purpose, the C4 method requires two different analytical methods.

  19. Quantification of five plasticizers used in PVC tubing through high performance liquid chromatographic-UV detection.

    PubMed

    Radaniel, Tsanta; Genay, Stéphanie; Simon, Nicolas; Feutry, Frédéric; Quagliozzi, Francesca; Barthélémy, Christine; Lecoeur, Marie; Sautou, Valérie; Décaudin, Bertrand; Odou, Pascal

    2014-08-15

    Searching for alternatives to di-(2-ethylhexyl)-phthalate, a plasticizer that has been widely used in the manufacturing of PVC medical devices, has become a major challenge since a European regulation underlined some clinical risks. The aim of this study is to develop an HPLC-UV method to quantify the currently used alternative plasticizers to DEHP. Five plasticizers, acetyl tributyl citrate, di-(2-ethylhexyl)-phthalate, di-(ethylhexyl)-terephthalate, di-isononyl-1,2-cyclohexane-dicarboxylate, and trioctyl trimellitate, were separated on a C8 stationary phase (2.6 μm, 100 mm × 4.6mm) under gradient elution in 13 min. They were detected at 221 nm leading to a quantification threshold from 0.3 to 750 μg/mL as a function of the plasticizer. Within-day and between-day precisions were inferior to 0.9% and 18%, respectively. The assays were validated according to the accuracy profile method. Plasticizers were extracted from PVC-tubing by dissolving PVC in THF then precipitating it in methanol with a yield of over 90% for each plasticizer. This assay could feasibly be used to quantify plasticizers in PVC medical devices.

  20. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    PubMed Central

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  1. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification.

    PubMed

    Dias, M Graça; Oliveira, Luísa; Camões, M Filomena G F C; Nunes, Baltazar; Versloot, Pieter; Hulshof, Paul J M

    2010-05-21

    Three sets of extraction/saponification/HPLC conditions for food carotenoid quantification were technically and economically compared. Samples were analysed for carotenoids alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, lycopene, and zeaxanthin. All methods demonstrated good performance in the analysis of a composite food standard reference material for the analytes they are applicable to. Methods using two serial connected C(18) columns and a mobile phase based on acetonitrile, achieved a better carotenoid separation than the method using a mobile phase based on methanol and one C(18)-column. Carotenoids from leafy green vegetable matrices appeared to be better extracted with a mixture of methanol and tetrahydrofuran than with tetrahydrofuran alone. Costs of carotenoid determination in foods were lower for the method with mobile phase based on methanol. However for some food matrices and in the case of E-Z isomer separations, this was not technically satisfactory. Food extraction with methanol and tetrahydrofuran with direct evaporation of these solvents, and saponification (when needed) using pyrogallol as antioxidant, combined with a HPLC system using a slight gradient mobile phase based on acetonitrile and a stationary phase composed by two serial connected C(18) columns was the most technically and economically favourable method.

  2. Development and validation of high-throughput liquid chromatography-tandem mass spectrometric method for simultaneous quantification of loratadine and desloratadine in human plasma.

    PubMed

    Srinubabu, G; Patel, Rajaram S; Shedbalkar, Vinay P; Rao, Allam Appa; Rao, M Narasimha; Bandaru, Veera Venkata Ratnam

    2007-12-15

    As a continuation of effort to improve our high flow on-line bioanalytical approach for high-throughput quantification of drugs and metabolites in plasma by high-throughput liquid chromatography tandem mass spectrometry (HTLC-MS/MS), we have developed a simple, sensitive and reliable method for simultaneous quantification of loratadine and desloratadine in human plasma. We have performed on-line coupling of extraction with Cyclone P 50 mm x 0.5 mm 50 microm HTLC column and chromatographic separation is performed with Zorbax XDB C18 50 mm x 2.1 mm 5 microm, followed by quantification with mass detector. The method is validated and showed good performances in terms of linearity, sensitivity, precision, accuracy and stability. A marked improvement in sample throughput efficiency is realized with this method and the proposed method will be useful for pharmacokinetic and/or bioequivalence studies.

  3. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    SciTech Connect

    Pool, K.H.; Bean, R.M.

    1994-03-01

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices).

  4. Detection of Clostridium botulinum in liquid manure and biogas plant wastes.

    PubMed

    Neuhaus, Jürgen; Schrödl, Wieland; Shehata, Awad A; Krüger, Monika

    2015-09-01

    Biogas plants have been considered as a source for possible amplification and distribution of pathogenic bacteria capable of causing severe infections in humans and animals. Manure and biogas wastes could be sources for spore-forming bacteria such as Clostridium botulinum. In the present study, 24 liquid manure and 84 biogas waste samples from dairies where the majority of the cows suffered from chronic botulism were investigated for the presence of botulinum neurotoxins (BoNT) and C. botulinum spores. The prevalence of BoNT/A, B, C, D, and E in biogas wastes was 16.6, 8.3, 10.7, 7.1, and 10.8 %, respectively, while in manure, the prevalence was 0.0, 0.0, 0.0, 8.3, and 4.1 %, respectively. After enrichment of samples in reinforced cultural medium, they were tested for C. botulinum BoNT/A, B, C, D, and E using ELISA (indirect C. botulinum detection). The prevalence of C. botulinum type A, B, C, D, and E samples in biogas wastes was 20.2, 15.5, 19, 10.7, and 34.8 %, respectively, while the prevalence in liquid manure was 0.0, 0.0, 0.0, 8.3, and 12.5 %, respectively. In conclusion, the occurrence of BoNT and C. botulinum spores in biogas waste of diseased animals indicates an increased and underestimated hygienic risk. Application of digestates from biogas fermentations as fertilizers could lead to an accumulation of long lifespan spores in the environment and could be a possible health hazard.

  5. Accurate and reliable quantification of 25-hydroxy-vitamin D species by liquid chromatography high-resolution tandem mass spectrometry[S

    PubMed Central

    Liebisch, Gerhard; Matysik, Silke

    2015-01-01

    In general, mass spectrometric quantification of small molecules in routine laboratory testing utilizes liquid chromatography coupled to low mass resolution triple-quadrupole mass spectrometers (QQQs). Here we introduce high-resolution tandem mass spectrometry (quadrupole-Orbitrap) for the quantification of 25-hydroxy-vitamin D [25(OH)D], a marker of the vitamin D status, because the specificity of 25(OH)D immunoassays is still questionable and mass spectrometric quantification is becoming increasingly important. Liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/HR-MS) was used to quantify 25-hydroxy-cholecalciferol [25(OH)D3], 25-hydroxy-ergocalciferol [25(OH)D2], and their C3-epimers 3-epi-25(OH)D3 and 3-epi-25(OH)D2. The method has a run time of 5 min and was validated according to the US Food and Drug Administration and the European Medicines Agency guidelines. High mass resolution was advantageously applied to separate a quasi-isobaric interference of the internal standard D6-25(OH)D2 with 3-epi-25(OH)D3. All analytes showed an imprecision of below 10% coefficient of variation (CV), trueness between 90% and 110%, and limits of quantification below 10 nM. Concentrations measured by LC-MS/HR-MS are in good agreement with those of the National Institute of Standards and Technology reference methods using LC-MS/MS (QQQ). In conclusion, quantification of 25(OH)D by LC-MS/HR-MS is applicable for routine testing and also holds promise for highly specific quantification of other small molecules. PMID:25833687

  6. Decontamination and treatment of high level liquid mixed waste to meet regulatory compliance issues outlined in Federal Facilities Agreements

    SciTech Connect

    Gaughan, T.P.; Taylor, G.A.

    1994-03-01

    High-Level Radioactive Liquid waste is stored in underground storage tanks at the US Department of Energy`s Savannah River Site (SRS) located south of Aiken, SC. Treatment and disposal of this liquid Hazardous and Radioactive (Mixed) Waste required the negotiation and approval of a Federal Facility Agreement (FFA) between the DOE, EPA and the South Carolina state regulatory agency. This agreement which also addresses many other waste sites at SRS was approved in January 1993. Included in this FFA were schedule information, operating parameters and secondary containment requirements that the DOE committed to as part of an ongoing Environmental Restoration mission at the site. Obtaining compliance with this FFA and other environmental regulations at such a unique facility provided a challenging obstacle for treatment of this liquid waste.

  7. Liquid and Gaseous Waste Operations Department annual operating report, CY 1992

    SciTech Connect

    Gillespie, M.A.; Maddox, J.J.; Scott, C.B.

    1993-03-01

    A total of 6.05 x 10[sup 7] gal of liquid waste was decontaminated by the Process Waste Treatment Plant (PWTP) ion exchange system during CY 1992. This averaged to 115 gpm throughout the year. When necessary, a wastewater sidestream of 50--80 gpm was treated through the use of a natural zeolite treatment system. An additional 8.00 x 10[sup 6] gal (average of 15 gpm throughout the year) were treated by the zeolite system. Therefore, the average total flow treated at the PWTP for CY 1992 was 130 gpm. In mid-June, the zeolite system was repiped to allow it the capability to treat the ion exchange system's discharge due to rising Cs problems in the wastewater. While being used to treat the ion exchange system's discharge, it cannot treat a sidestream of wastewater. During the year, the regeneration of the cation exchange resins resulted in the generation of 7.83 x 10[sup 3] gal of liquid low-level waste (LLLW) concentrate and 1.15 x 10[sup 4] gal of LLLW evaporator feed. The head-end softening process (precipitation/clarification) generated 604 drums (4.40 x 10[sup 3] ft[sup 3]) of solid low-level waste sludge. The zeolite treatment system generated approximately 8.40 x 10[sup 2] ft[sup 3] of spent zeolite resin, which was turned over to the Solid Waste Operations Department for disposal. See Table 1 for a monthly summary of activities at the PWTP. Figures 1, 2, 3, and 4 show a comparison of operations at the PWTP in 1992 with previous years. Figure 5 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1987. A total of 1.55 x 10[sup 8] gal of liquid waste (average of 294 gpm throughout the year) was treated at the Nonradiological Wastewater Treatment Plant (NRWTP). Of this amount, 1.40 x 10[sup 7] gal were treated by the precipitation/clarification process for removal of heavy metals. Twenty-five boxes (1.60 x 10[sup 3] ft[sup 3]) of solid sludge generated by the precipitation/clarification process were removed from the filter press room.

  8. Liquid and Gaseous Waste Operations Department annual operating report, CY 1992

    SciTech Connect

    Gillespie, M.A.; Maddox, J.J.; Scott, C.B.

    1993-03-01

    A total of 6.05 x 10{sup 7} gal of liquid waste was decontaminated by the Process Waste Treatment Plant (PWTP) ion exchange system during CY 1992. This averaged to 115 gpm throughout the year. When necessary, a wastewater sidestream of 50--80 gpm was treated through the use of a natural zeolite treatment system. An additional 8.00 x 10{sup 6} gal (average of 15 gpm throughout the year) were treated by the zeolite system. Therefore, the average total flow treated at the PWTP for CY 1992 was 130 gpm. In mid-June, the zeolite system was repiped to allow it the capability to treat the ion exchange system`s discharge due to rising Cs problems in the wastewater. While being used to treat the ion exchange system`s discharge, it cannot treat a sidestream of wastewater. During the year, the regeneration of the cation exchange resins resulted in the generation of 7.83 x 10{sup 3} gal of liquid low-level waste (LLLW) concentrate and 1.15 x 10{sup 4} gal of LLLW evaporator feed. The head-end softening process (precipitation/clarification) generated 604 drums (4.40 x 10{sup 3} ft{sup 3}) of solid low-level waste sludge. The zeolite treatment system generated approximately 8.40 x 10{sup 2} ft{sup 3} of spent zeolite resin, which was turned over to the Solid Waste Operations Department for disposal. See Table 1 for a monthly summary of activities at the PWTP. Figures 1, 2, 3, and 4 show a comparison of operations at the PWTP in 1992 with previous years. Figure 5 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1987. A total of 1.55 x 10{sup 8} gal of liquid waste (average of 294 gpm throughout the year) was treated at the Nonradiological Wastewater Treatment Plant (NRWTP). Of this amount, 1.40 x 10{sup 7} gal were treated by the precipitation/clarification process for removal of heavy metals. Twenty-five boxes (1.60 x 10{sup 3} ft{sup 3}) of solid sludge generated by the precipitation/clarification process were removed from the filter press room.

  9. Quantification of cortisol in human eccrine sweat by liquid chromatography - tandem mass spectrometry.

    PubMed

    Jia, Min; Chew, Wade M; Feinstein, Yelena; Skeath, Perry; Sternberg, Esther M

    2016-03-21

    Cortisol has long been recognized as the "stress biomarker" in evaluating stress related disorders. Plasma, urine or saliva are the current source for cortisol analysis. The sampling of these biofluids is either invasive or has reliability problems that could lead to inaccurate results. Sweat has drawn increasing attention as a promising source for non-invasive stress analysis. A sensitive HPLC-MS/MS method was developed for the quantitation of cortisol ((11β)-11,17,21-trihydroxypregn-4-ene-3,20-dione) in human eccrine sweat. At least one unknown isomer that has previously not been reported and could potentially interfere with quantification was separated from cortisol with mixed mode RP HPLC. Detection of cortisol was carried out using atmospheric pressure chemical ionization (APCI) and selected reaction monitoring (SRM) in positive ion mode, using cortisol-9,11,12,12-D4 as internal standard. LOD and LOQ were estimated to be 0.04 ng ml(-1) and 0.1 ng ml(-1), respectively. Linear range of 0.10-25.00 ng ml(-1) was obtained. Intraday precision (2.5%-9.7%) and accuracy (0.5%-2.1%), interday precision (12.3%-18.7%) and accuracy (7.1%-15.1%) were achieved. This method has been successfully applied to the cortisol analysis of human eccrine sweat samples. This is the first demonstration that HPLC-MS/MS can be used for the sensitive and highly specific determination of cortisol in human eccrine sweat in the presence of at least one isomer that has similar hydrophobicity as cortisol. This study demonstrated that human eccrine sweat could be used as a promising source for non-invasive assessment of stress biomarkers such as cortisol and other steroid hormones.

  10. Quantification of melamine in drinking water and wastewater by micellar liquid chromatography.

    PubMed

    Beltrán-Martinavarro, Beatriz; Peris-Vicente, Juan; Rambla-Alegre, Maria; Marco-Peiró, Sergio; Esteve-Romero, Josep; Carda-Broch, Samuel

    2013-01-01

    Because of the large potential health impact caused by deliberate contamination with the synthetic chemical melamine of different products for human and animal consumption, the World Health Organization and the Food and Agriculture Organization of the United Nations provided a range of recommendations in order to facilitate obtaining needed data, among which was the determination of the background levels of melamine in drinking water and wastewater (December 4, 2008). A chromatographic procedure using a C18 column, a micellar mobile phase consisting of sodium dodecyl sulfate (0.1 M), and 1-propanol (7.5%) buffered at pH 3, and detection by absorbance at 210 nm is reported in this paper for the quantification of melamine in drinking water and wastewater. Samples were filtered and directly injected into the chromatographic system, thus avoiding an extraction procedure. The optimal mobile phase composition was obtained by a chemometrics approach that considered the retention factor, efficiency, and peak shape. Melamine was eluted in about 6.2 min without interferences. Validation was performed following U.S. Food and Drug Administration guidelines. The analytical parameters studied were linearity (0.03-5 microg/mL, R2 = 0.998), LOD (13 nglmL), intraday and interday accuracy (between 4.1 and 12.2%), intraday and interday precision (less than 14.8%), and robustness (RSD < 5.1% for retention time and <9.0% for area). The proposed methodology was successfully applied for analysis of local wastewater and drinking water, in which no melamine was found.

  11. Evaporation studies on Oak Ridge National Laboratory liquid low-level waste

    SciTech Connect

    Fowler, V.L.; Perona, J.J.

    1993-03-01

    Evaporation studies were performed with Melton Valley storage tank liquid low-level radioactive waste concentrate and with surrogates (nonradioactive) to determine the feasibility of a proposed out-of-tank-evaporation project. Bench-scale tests indicated that volume reductions ranging from 30 to 55% could be attained. Vendor-site tests were conducted (with surrogate waste forms) using a bench-scale single-stage, low-pressure (subatmospheric), low-temperature (120 to 173{degree}F) evaporator similar to units in operation at several nuclear facilities. Vendor tests were successful; a 30% volume reduction was attained with no crystallization of solids and no foaming, as would be expected from a high pH solution. No fouling of the heat exchanger surfaces occurred during these tests. It is projected that 52,000 to 120,000 gal of water could be evaporated from the supernate stored in the Melton and Bethel Valley liquid low-level radioactive waste (LLLW) storage tanks with this type of evaporator.

  12. Liquid digestate from anaerobic treatment of source-separated household waste as fertilizer to barley.

    PubMed

    Haraldsen, Trond Knapp; Andersen, Uno; Krogstad, Tore; Sørheim, Roald

    2011-12-01

    This study examined the efficiency of different organic waste materials as NPK fertilizer, in addition to the risk for leaching losses related to shower precipitation in the first part of the growing season. The experiment was tested in a pot trial on a sandy soil in a greenhouse. Six organic fertilizers were evaluated: liquid anaerobic digestate (LAD) sourced from separated household waste, nitrified liquid anaerobic digestate (NLAD) of the same origin as LAD, meat and bone meal (MBM), hydrolysed salmon protein (HSP), reactor-composted catering waste (CW) and cattle manure (CM). An unfertilized control, calcium nitrate (CN) and Fullgjødsel® 21-4-10 were used as reference fertilizers. At equal amounts of mineral nitrogen both LAD and Fullgjødsel® gave equal yield of barley in addition to equal uptake of N, P, and K in barley grain. NLAD gave significantly lower barley yield than the original LAD due to leaching of nitrate-N after a simulated surplus of precipitation (28 mm) at Zadoks 14. There was significantly increased leaching of nitrate N from the treatments receiving 160 kg N ha(-1) of CN and NLAD in comparison with all the other organic fertilizers. In this study LAD performed to the same degree as Fullgjødsel® NPK fertilizer and it was concluded that LAD can be recommended as fertilizer for cereals. Nitrification of the ammonium N in the digestate caused significantly increased nitrate leaching, and cannot be recommended.

  13. Quantification of zolpidem in human plasma by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Nirogi, Ramakrishna V S; Kandikere, Vishwottam N; Shrivasthava, Wishu; Mudigonda, Koteshwara

    2006-10-01

    A simple, reliable HPLC method with fluorescence detection (excitation 320 and emission 388 nm) was developed and validated for quantitation of zolpidem in human plasma. Following a single-step liquid-liquid extraction, the analyte and internal standard (quinine) were separated using an isocratic mobile phase on a reversed-phase C(18) column. The lower limit of quantitation was 1.8 ng/mL, with a relative standard deviation of less than 5%. A linear dynamic range of 1.8-288 ng/mL was established. This HPLC method was validated with between-batch and within-batch precision of 1.7-4.8 and 1.2-2.3%, respectively. The between-batch and within-batch accuracy was 95.3-100.4 and 95.5-102.7%, respectively. Frequently coadministered drugs did not interfere with the described methodology. Stability of zolpidem in plasma was excellent, with no evidence of degradation during sample processing (autosampler) and 30 days storage in a freezer. This validated method is simple and repeatable enough to be used in pharmacokinetic studies.

  14. Sugar nucleotide quantification by liquid chromatography tandem mass spectrometry reveals a distinct profile in Plasmodium falciparum sexual stage parasites

    PubMed Central

    López-Gutiérrez, Borja; Dinglasan, Rhoel R.

    2017-01-01

    The obligate intracellular lifestyle of Plasmodium falciparum and the difficulties in obtaining sufficient amounts of biological material have hampered the study of specific metabolic pathways in the malaria parasite. Thus, for example, the pools of sugar nucleotides required to fuel glycosylation reactions have never been studied in-depth in well-synchronized asexual parasites or in other stages of its life cycle. These metabolites are of critical importance, especially considering the renewed interest in the presence of N-, O-, and other glycans in key parasite proteins. In this work, we adapted a liquid chromatography tandem mass spectrometry (LC-MS/MS) method based on the use of porous graphitic carbon (PGC) columns and MS-friendly solvents to quantify sugar nucleotides in the malaria parasite. We report the thorough quantification of the pools of these metabolites throughout the intraerythrocytic cycle of P. falciparum. The sensitivity of the method enabled, for the first time, the targeted analysis of these glycosylation precursors in gametocytes, the parasite sexual stages that are transmissible to the mosquito vector. PMID:28104756

  15. High performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry for V and Ni quantification as tetrapyrroles

    NASA Astrophysics Data System (ADS)

    Duyck, Christiane Béatrice; Saint'Pierre, Tatiana Dillenburg; Miekeley, Norbert; da Fonseca, Teresa Cristina Oliveira; Szatmari, Peter

    2011-05-01

    A method was developed for the determination of V and Ni as tetrapyrroles by High Performance Liquid Chromatography hyphenated to Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS) using reversed phase and elution gradient. Chlorinated solvents and tetrahydrofuran were investigated as regard to separation time and ICP-MS detection efficiencies. The final elution gradient program started from pure methanol to a mixture of 20:80 (v/v) chloroform:methanol. External quantification of V and Ni with inorganic standards by flow injection ICP-MS, used online with HPLC, resulted in 95% of recoveries. The Limits of Detection for V during methanol elution and for Ni during the 20% chloroform gradient elution were evaluated by their minimum detectable concentrations, which were, respectively, 5 μg L - 1 and 8 μg L - 1 . The methodology was applied to polar and resin fractions separated from a Brazilian crude oil and a sediment extract from an oil-polluted area in the Guanabara Bay, Rio de Janeiro, Brazil. Vanadium as tetrapyrroles represented the totality of V content in the polar fraction, whereas Ni was in different polar forms in the resin and sediment extract.

  16. Sugar nucleotide quantification by liquid chromatography tandem mass spectrometry reveals a distinct profile in Plasmodium falciparum sexual stage parasites.

    PubMed

    López-Gutiérrez, Borja; Dinglasan, Rhoel R; Izquierdo, Luis

    2017-03-07

    The obligate intracellular lifestyle of Plasmodium falciparum and the difficulties in obtaining sufficient amounts of biological material have hampered the study of specific metabolic pathways in the malaria parasite. Thus, for example, the pools of sugar nucleotides required to fuel glycosylation reactions have never been studied in-depth in well-synchronized asexual parasites or in other stages of its life cycle. These metabolites are of critical importance, especially considering the renewed interest in the presence of N-, O-, and other glycans in key parasite proteins. In this work, we adapted a liquid chromatography tandem mass spectrometry (LC-MS/MS) method based on the use of porous graphitic carbon (PGC) columns and MS-friendly solvents to quantify sugar nucleotides in the malaria parasite. We report the thorough quantification of the pools of these metabolites throughout the intraerythrocytic cycle of P. falciparum The sensitivity of the method enabled, for the first time, the targeted analysis of these glycosylation precursors in gametocytes, the parasite sexual stages that are transmissible to the mosquito vector.

  17. Interferon-alpha 2b quantification in inclusion bodies using reversed phase-ultra performance liquid chromatography (RP-UPLC).

    PubMed

    Cueto-Rojas, H F; Pérez, N O; Pérez-Sánchez, G; Ocampo-Juárez, I; Medina-Rivero, E

    2010-04-15

    Interferon-alpha 2b (IFN-alpha 2b) is a recombinant therapeutic cytokine produced as inclusion bodies using a strain of Escherichia coli as expression system. After fermentation and recovery, it is necessary to know the amount of recombinant IFN-alpha 2b, in order to determine the yield and the load for solubilization, and chromatographic protein purification steps. The present work details the validation of a new short run-time and fast sample-preparation method to quantify IFN-alpha 2b in inclusion bodies using Reversed Phase-Ultra Performance Liquid Chromatography (RP-UPLC). The developed method demonstrated an accuracy of 100.28%; the relative standard deviations for method precision, repeatability and inter-day precision tests were found to be 0.57%, 1.54% and 1.83%, respectively. Linearity of the method was assessed in the range of concentrations from 0.05 mg/mL to 0.5 mg/mL, the curve obtained had a determination coefficient (r(2)) of 0.9989. Detection and quantification limits were found to be 0.008 mg/mL and 0.025 mg/mL, respectively. The method also demonstrated robustness for changes in column temperature, and specificity against host proteins and other recombinant protein expressed in the same E. coli strain.

  18. Quantification of Hydroxychloroquine in Blood Using Turbulent Flow Liquid Chromatography-Tandem Mass Spectrometry (TFLC-MS/MS).

    PubMed

    Chambliss, Allison B; Füzéry, Anna K; Clarke, William A

    2016-01-01

    Hydroxychloroquine (HQ) is used routinely in the treatment of autoimmune disorders such as rheumatoid arthritis and lupus erythematosus. Issues such as marked pharmacokinetic variability and patient non-compliance make therapeutic drug monitoring of HQ a useful tool for management of patients taking this drug. Quantitative measurements of HQ may aid in identifying poor efficacy as well as provide reliable information to distinguish patient non-compliance from refractory disease. We describe a rapid 7-min assay for the accurate and precise measurement of HQ concentrations in 100 μL samples of human blood using turbulent flow liquid chromatography coupled to tandem mass spectrometry. HQ is isolated from EDTA whole blood after a simple extraction with its deuterated analog, hydroxychloroquine-d4, in 0.33 M perchloric acid. Samples are then centrifuged and injected onto the TFLC-MS/MS system. Quantification is performed using a nine-point calibration curve that is linear over a wide range (15.7-4000 ng/mL) with precisions of <5 %.

  19. Development and validation of a high-performance liquid chromatographic method for the simultaneous quantification of marker constituents in Cheonwangbosimdan.

    PubMed

    Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2014-12-01

    A high-performance liquid chromatography-photodiode array detector method was established for the simultaneous determination of 7 components in Cheonwangbosimdan extract. The components were 5-hydroxymethyl-2-furaldehyde (1), coptisine (2), berberine (3), nodakenin (4), harpagoside (5), cinnamic acid (6), and β-asarone (7). All analytes were separated by gradient elution using two mobile phases on a Gemini C18 column and maintained at 40°C. The flow rate was 1.0 mL/min and the injection volume was 10 μL. Calibration curves of the 7 compounds showed good linearity with correlation coefficients (r2) ≥ 0.9996. The limits of detection and quantification of the 7 analytes were 0.01-0.04 and 0.03-0.12 μg/mL, respectively. The recoveries of the 7 marker constituents were 97.6-104.2% with relative standard deviations (RSD) of less than 2.2%. The RSD values of intra- and interday precision were 0.11-1.78 and 0.19-1.92%, respectively. Among the 7 biomarker compounds, the major compounds of Cheonwangbosimdan were berberine and coptisine, which originated from Coptisjaponica. The results indicate that the developed analytical method is suitable for quality control use.

  20. A reversed-phase high performance liquid chromatography method for quantification of methotrexate in cancer patients serum.

    PubMed

    Li, Yuan-dong; Li, Yan; Liang, Ning-sheng; Yang, Fan; Kuang, Zhi-peng

    2015-10-01

    A simple, rapid and sensitive reversed-phase high performance liquid chromatography (HPLC) method has been developed for the determination of methotrexate in human serum. After deproteinization of the serum with 40% silver nitrate solution, methotrexate and internal standard (IS) were separated on a reversed-phase column with a mobile phase consisting of 10mM sodium phosphate buffer (pH6.40)-methanol (78:22%, v/v) and ultraviolet detection at 310nm. The linearity is evaluated by a calibration curve in the concentration range of 0.05-10.0μg/mL and presented a correlation coefficient of 0.9995. The absolute recoveries were 97.52±3.9% and 96.87±3.7% for methotrexate and ferulic acid (internal standard), respectively. The intra- and inter-day precision were less 6.19 and 5.89%, respectively (n=6). The limit of quantitation was 0.02μg/mL and the limit of detection was 0.006μg/mL. The complete analysis was achieved less than 10min with no interference from endogenous components or 22 examined drugs. This method was validated by using serum samples from high-dose methotrexate treated patients with osteosarcoma, breast cancer, acute leukemia and lymphoma. The method was demonstrated to be a simple, rapid and reliable approach in quantification of methotrexate in serum samples from patients with high-dose methotrexate therapy.

  1. Direct detection and quantification of 19-norandrosterone sulfate in human urine by liquid chromatography-linear ion trap mass spectrometry.

    PubMed

    Strahm, Emmanuel; Saudan, Christophe; Sottas, Pierre-Edouard; Mangin, Patrice; Saugy, Martial

    2007-06-01

    19-Norandrosterone sulfate (19-NAS) is the sulfoconjugated form of 19-norandrosterone (19-NA), the major metabolite of the steroid nandrolone. A sensitive and accurate liquid chromatography/tandem mass spectrometry (LC-MS/MS) assay was developed for the direct measurement of 19-NAS in human urine samples. The method involved a quaternary amine SPE protocol and subsequently injection of the extract onto an analytical column (Uptisphere ODB, 150 mm x 3.0 mm, 5 microm) for chromatographic separation and mass spectrometry detection in negative electrospray ionisation mode. The sulfoconjugate of 19-NA was identified in urine by comparison of mass spectra and retention time with a reference substance. The limit of detection (LOD) and lowest limit of quantification (LLOQ) of 19-NAS were of 40 pg/mL and 200 pg/mL, respectively. For a nominal concentration of 2 ng/mL, recovery (94%), intra-day precision (2.7%), intra-assay precision (6.6%) and inter-assay precision (14.3%) were determined. Finally, this analytical method was applied for quantifying the concentration of 19-NAS in doping samples, using calibration curves (0.2-20 ng/mL) and the standard-addition method. The results show the feasibility of applying this LC-MS/MS assay as a complementary tool to detect misuse of nandrolone or nandrolone precursors.

  2. Isolation and quantification by high-performance liquid chromatography-ion-trap mass spectrometry of androgen sulfoconjugates in human urine.

    PubMed

    Strahm, Emmanuel; Kohler, Isabelle; Rudaz, Serge; Martel, Sophie; Carrupt, Pierre-Alain; Veuthey, Jean-Luc; Saugy, Martial; Saudan, Christophe

    2008-07-04

    Together with steroid glucuronides, sulfoconjugates may be used as markers of steroid administration as well as endogenous steroid production. A fast and sensitive analytical procedure has been developed for the simultaneous separation, determination and quantification of sulfate and glucuronide derivatives of testosterone (T), epitestosterone (E), androsterone (A), etiocholanolone (Etio) and dehydroepiandrosterone (DHEA) in human urine. First, a weak anion-exchange solid-phase extraction support (SPE Oasis WAX) was used for complete and rapid separation of sulfates and glucuronides in two extracts after loading of urine sample (2 mL). Then sulfates were analyzed directly by high-performance liquid chromatography-ion-trap mass spectrometry (LC-MS/MS) with electrospray ionization in negative mode. Chromatographic separation of the targeted sulfoconjugates was achieved using a Waters XBridge C18 column (150 mm x 4.6 mm I.D., 5 microm) with gradient elution. Assay validation demonstrated good performance for instance for T sulfate (TS) and E sulfate (ES) in terms of trueness (89-107%), repeatability (3.4-22%) and intermediate precision (5.8-22%) over the range of 2-200 ng/mL (corresponding to 1.5-147 ng/mL as free steroids). Results obtained on biological samples demonstrated the suitability of this analytical strategy for direct measurement of androgen sulfoconjugates and glucuroconjugates in human urine.

  3. Simultaneous quantification of adrenergic amines and flavonoids in C. aurantium, various Citrus species, and dietary supplements by liquid chromatography.

    PubMed

    Avula, Bharathi; Upparapalli, Sampath Kumar; Navarrete, Andres; Khan, Ikhlas A

    2005-01-01

    An analytical method was developed for the simultaneous quantitative analysis of 6 amines and 20 flavonoids in fruits and extracts of 30 Citrus species, including C. aurantium, near-Citrus relatives, and dietary supplements by liquid chromatography with photodiode array detection. The separation was achieved with a Phenomenex Synergi Hydro reversed-phase column using gradient mobile phase of sodium acetate buffer (pH 5.5) and acetonitrile. Elution was run at a flow rate of 1.0 mL/min and UV at 254, 280, and 330 nm. Among the amines analyzed, synephrine, the main component, was present in the levels from 0.11 to 2.0 mg/g dry weight in 21 Citrus species and 0.07 to 18.62% in dietary supplements claiming to contain C. aurantium. The flavanones and flavones were analyzed in the same Citrus samples and were species-specific. The levels of flavones were very low compared with those of flavanones. The method facilitated the simultaneous quantification of 6 amines and 20 flavonoids in various Citrus species, the distinction between the different Citrus species, and the analysis of dietary supplements containing C. aurantium.

  4. Optimized ultra performance liquid chromatography tandem high resolution mass spectrometry method for the quantification of paraquat in plasma and urine.

    PubMed

    Lu, Haihua; Yu, Jing; Wu, Linlin; Xing, Jingjing; Wang, Jun; Huang, Peipei; Zhang, Jinsong; Xiao, Hang; Gao, Rong

    2016-08-01

    A simple, sensitive and specific ultra performance liquid chromatography coupled to electrospray tandem high resolution mass spectrometry (UPLC-ESI-HRMS/MS) method has been developed and validated for quantification of paraquat in plasma and urine. The sample preparation was carried out by one-step protein precipitation with acetonitrile. The paraquat was separated with a HILIC column in 10min. Detection was performed using Q Exactive Orbitrap mass spectrometer by Targeted-MS/MS scan mode. Methodological parameters, such as ammonium formate concentration, formic acid concentration, spray voltage, capillary temperature, heater temperature and normalized collision energy were optimized to achieve the highest sensitivity. The calibration curve was linear over the concentration range of LOQ-1000ng/mL. LOD was 0.1 and 0.3ng/mL, LOQ was 0.3 and 0.8ng/mL for urine and plasma, respectively. The intra- and inter-day precisions were <7.97% and 4.78% for plasma and urine. The accuracies were within the range 93.51-100.90%. The plasma and urine matrices had negligible relative matrix effect in this study. This method was successfully applied to determine paraquat concentration in plasma samples with hemoperfusion from 5 suspected paraquat poisoning patients.

  5. Simultaneous quantification of L-tetrahydropalmatine and its urine metabolites by ultra high performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Xiao, Weibin; Zhuang, Xiaomei; Shen, Guolin; Zhong, Yuhuan; Yuan, Mei; Li, Hua

    2014-03-01

    l-tetrahydropalmatine (l-THP) is a tetrahydroprotoberberine isoquinoline alkaloid that has been used as an analgesic agent in China for more than 40 years. Recent studies indicated its potential application in the treatment of drug addiction. In this study, a sensitive and rapid method using ultra high performance liquid chromatography with MS/MS was developed and validated for simultaneous quantitation of l-THP and its desmethyl metabolites. Enzymatic hydrolysis was integrated into sample preparation to enable the quantitative determination of both free and conjugated metabolites. Chromatographic separation was achieved on an Agilent Poroshell 120 EC-C18 column. Detection was performed by MS in the positive ion ESI mode. The calibration curves of the analytes were linear (r(2) > 0.9936) over the concentration range of 1-1000 ng/mL with the lower limit of quantification at 1 ng/mL. The precision for both intra- and interday determinations was <8.97%, and the accuracy ranged from -8.74 to 8.65%. The recovery for all the analytes was >70% without significant matrix effect. The method has been successfully applied to the urinary excretion study of l-THP in rats. The conjugates were found to be the major urine metabolites of the drug.

  6. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins.

    PubMed

    Tang, Yanan; Li, Liang

    2013-08-20

    The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC-MS) with the use of isotope analog standards.

  7. Improved quantification for non-transferrin-bound iron measurement using high-performance liquid chromatography by reducing iron contamination.

    PubMed

    Sasaki, Katsunori; Ikuta, Katsuya; Tanaka, Hiroki; Ohtake, Takaaki; Torimoto, Yoshihiro; Fujiya, Mikihiro; Kohgo, Yutaka

    2011-01-01

    Non-transferrin-bound iron (NTBI) refers to all forms of iron in the plasma that bind to ligands other than transferrin, and is considered to be a marker of iron toxicity. A variety of analytical approaches for measuring NTBI have been reported; however, a clinically relevant level of sensitivity has yet to be achieved. In addition, insufficient values of NTBI in some patients and healthy subjects have led to the assumption that there may be contamination of reagents with background iron. The present study re-evaluated the analytical procedures of the assay with regard to the potential points of iron contamination in each step. NTA and tris carbonatocobaltate (III) solutions were prepared with removal of iron contamination, and then quantification of NTBI was performed. As a result, the sensitivity of the high-performance liquid chromatography (HPLC)-based NTBI method was improved by the successful reduction of background iron contamination. Application of our modified method proved that NTBI was detected even in healthy volunteers, although the concentrations were extremely low; the average NTBI levels were 0.206±0.091 µM (males, n=20) and 0.212±0.095 µM (females, n=16). Thus, our modification of the NTBI assay may be clinically meaningful, and may contribute to the understanding of the clinical significance of relatively low, but elevated concentrations of NTBI in diseases other than typical iron overload.

  8. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    SciTech Connect

    1997-01-01

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ``NEPA Compliance Program.`` The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives.

  9. Waste Characterization Data Manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Not Available

    1993-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge National Laboratory (ORNL) Federal Facility Agreement (FFA), Section IX.G.1. Section IX.G.1 of the FFA requires waste characterizations be conducted and provided to EPA and TDEC for all LLLW tanks that are removed from service. These waste characterizations shall include the results of sampling and analysis of the tank contents, including wastes, liquids, and sludges. This manual was first issued as ORNL/ER-80 in June 1992. The waste characterization data were extracted from ORNL reports that described tank sampling and analysis conducted in 1988 for 32 out-of-service tanks. This revision of the manual contains waste characterization data for 54 tanks, including the 32 tanks from the 1988 sampling campaign (Sects. 2.1 through 2.32) and the 22 additional tanks from a subsequent sampling campaign in 1992 and 1993 (Sects. 2.33 through 2.54). Data are presented from analyses of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls (PCBs), pesticides, radiochemical compounds, and inorganic compounds. As additional data resulting from analyses of out-of-service tank samples become available, they will be added to this manual.

  10. Microbiology of formation waters from the deep repository of liquid radioactive wastes Severnyi.

    PubMed

    Nazina, Tamara N; Kosareva, Inessa M; Petrunyaka, Vladimir V; Savushkina, Margarita K; Kudriavtsev, Evgeniy G; Lebedev, Valeriy A; Ahunov, Viktor D; Revenko, Yuriy A; Khafizov, Robert R; Osipov, George A; Belyaev, Sergey S; Ivanov, Mikhail V

    2004-07-01

    The presence, diversity, and geochemical activity of microorganisms in the Severnyi repository of liquid radioactive wastes were studied. Cultivable anaerobic denitrifiers, fermenters, sulfate-reducers, and methanogens were found in water samples from a depth of 162-405 m below sea level. Subsurface microorganisms produced methane from [2-(14)C]acetate and [(14)C]CO(2), formed hydrogen sulfide from Na(2) (35)SO(4), and reduced nitrate to dinitrogen in medium with acetate. The cell numbers of all studied groups of microorganisms and rates of anaerobic processes were higher in the zone of dispersion of radioactive wastes. Microbial communities present in the repository were able to utilise a wide range of organic and inorganic compounds and components of waste (acetate, nitrate, and sulfate) both aerobically and anaerobically. Bacterial production of gases may result in a local increase of the pressure in the repository and consequent discharge of wastes onto the surface. Microorganisms can indirectly decrease the mobility of radionuclides due to consumption of oxygen and production of sulfide, which favours deposition of metals. These results show the necessity of long-term microbiological and radiochemical monitoring of the repository.

  11. In situ inactivation of animal viruses and a coliphage in nonaerated liquid and semiliquid animal wastes.

    PubMed

    Pesaro, F; Sorg, I; Metzler, A

    1995-01-01

    The persistence of five animal viruses, representing picorna-, rota-, parvo-, adeno-, and herpesviruses, and the coliphage f2 was determined in the field by exposing the viruses to different animal wastes and by adopting an established filter sandwich technique. This technique allows us to copy the natural state of viruses in the environment, where adsorption onto or incorporation into suspended solids may prolong virus survival. Using filter sandwiches either equipped with porous (15 nm in diameter) or poreless polycarbonate (PC) membranes, it was possible to differentiate between overall virus inactivation and the effect of virucidal agents that act through poreless PC membranes. Depending on ambient temperature, pH, and type of animal waste, values for time, in days, required for a 90% reduction of virus titer varied widely, ranging from less than 1 week for herpesvirus to more than 6 months for rotavirus. Virus inactivation progressed substantially faster in liquid cattle manure, a mixture of urine and water (pH > 8.0), than in semiliquid wastes that consisted of mixtures of feces, urine, water, and bedding materials (pH < 8.0). Hitherto unidentified virucidal agents that permeate poreless PC membranes contributed substantially to the overall inactivation. On the other hand, substances that protect rotavirus and possibly other viruses from inactivation may be present in animal wastes. Together, the study showed that viruses contained in manure may persist for prolonged periods of time if stored under nonaerated conditions. At times of land application, this may lead to environmental contamination with pathogens.

  12. Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction.

    PubMed

    He, Yunxia; Ma, En; Xu, Zhenming

    2014-03-15

    This study investigated the recovery of indium from waste liquid crystal display (LCD) panel using vacuum carbon-reduction. First of all, high purity In2O3 was investigated. The results indicated that indium can be reclaimed from In2O3 using vacuum carbon-reduction in thermodynamics and dynamics. The conditions of 1223K, 50wt% carbon addition, 30min, and 1Pa were confirmed as the optimal conditions for pure In2O3 and high purity indium could be selectively recovered on condensing zone. Based on this, the experiment of the recovery of indium from waste LCD power was performed. The best parameters were confirmed as 1223K and 1Pa with 30wt% carbon addition for 30min. The recovery rate of indium from LCD powder could reach to 90wt%. No hazardous materials produced in this process. Therefore, this technique provides the possibility of reutilization of LCD in an environmentally friendly way.

  13. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    SciTech Connect

    William Linak

    2004-12-16

    Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, non-radioactive aqueous cesium acetate or strontium acetate was atomized down the center of a natural gas flame supported on a variable-swirl burner in a refractory-lined laboratory-scale combustion facility. Kaolinite powder was injected at a post-flame location in the combustor. Cesium readily vaporizes in the high temperature regions of the combustor, but was reactively scavenged onto dispersed kaolinite. Global sorption mechanisms of cesium vapor on kaolinite were quantified, and are related to those available in the literature for sodium and lead. Both metal adsorption and substrate deactivation steps are important, and so there is an optimum temperature, between 1400 and 1500 K, at which maximum sorption occurs. The presence of chlorine inhibits cesium sorption. In contrast to cesium, and in the absence of chlorine, strontium was only partially vaporized and was, therefore, only partially scavengeable. The strontium data did not allow quantification of global kinetic mechanisms of interaction, although equilibrium arguments provided insight into the effects of chlorine on strontium sorption. These results have implications for the use of sorbents to control cesium and strontium emissions during high temperature waste processing including incineration and vitrification.

  14. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    SciTech Connect

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m (1000 ft). The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m (660 ft) in radius. Using this process, ORNL has disposed of over 1.5 x 10/sup 6/ Ci of activity; the principal nuclides are /sup 90/Sr and /sup 137/Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 l (180,000 gal) of slurry. Disposal cost per liter is approximately $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. The site is in the structurally complex Valley and Ridge Province. The stratigraphy consists of lower Paleozoic rocks. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. 26 refs., 7 figs.

  15. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  16. Melton Valley liquid low-level radioactive waste storage tanks evaluation

    SciTech Connect

    1995-06-01

    The Melton Valley Liquid Low-Level Radioactive Waste Storage Tanks (MVSTs) store the evaporator concentrates from the Liquid Low-Level Radioactive Waste (LLLW) System at the Oak Ridge National Laboratory (ORNL). The eight stainless steel tanks contain approximately 375,000 gallons of liquid and sludge waste. These are some of the newer, better-designed tanks in the LLLW System. They have been evaluated and found by the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation to comply with all Federal Facility Agreement requirements for double containment. The operations and maintenance aspects of the tanks were also reviewed by the Defense Nuclear Facilities Safety Board (DNFSB) in September 1994. This document also contains an assessment of the risk to the public and ORNL workers from a leak in one of the MVSTs. Two primary scenarios were investigated: (1) exposure of the public to radiation from drinking Clinch River water contaminated by leaked LLLW, and (2) exposure of on-site workers to radiation by inhaling air contaminated by leaked LLLW. The estimated frequency of a leak from one of the MVSTs is about 8 {times} 10{sup {minus}4} events per year, or about once in 1200 years (with a 95% confidence level). If a leak were to occur, the dose to a worker from inhalation would be about 2.3 {times} 10{sup {minus}1} mrem (with a 95% confidence level). The dose to a member of the public through the drinking water pathway is estimated to be about 7 {times} 10{sup {minus}1} mrem (with a 95% confidence level). By comparison with EPA Safe Drinking Water regulations, the allowable lifetime radiation dose is about 300 mrem. Thus, a postulated LLLW leak from the MVSTs would not add appreciably to an individual`s lifetime radiation dose.

  17. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOEpatents

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  18. A&M. Hot liquid waste treatment building (TAN616). Contextual view, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Contextual view, facing south. Wall of hot shop (TAN-607) with high bay at left of view. Lower-roofed building at left edge of view is TAN- 633, hot cell annex. Complex at center of view is TAN-616. Tall metal building with gable roof is TAN-615. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-2-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  19. A micellar liquid chromatography method for the quantification of abacavir, lamivudine and raltegravir in plasma.

    PubMed

    Peris-Vicente, Juan; Villareal-Traver, Mónica; Casas-Breva, Inmaculada; Carda-Broch, Samuel; Esteve-Romero, Josep

    2014-09-01

    An analytical methodology based on micellar liquid chromatography has been developed to quantify abacavir, lamivudine and raltegravir in plasma. These three antiretroviral drugs are prescribed as a set in highly active antiretroviral therapy to acquired immunodeficiency syndrome patients. The experimental procedure consists in the dilution of the sample in micellar media, followed by filtration and, without cleanup step. The analytes were resolved in less than 30min using a mobile phase of 0.05M sodium dodecyl sulphate at pH 7, running at 1mLmin(-1) under isocratic mode at room temperature through a C18 column (125×4.6mm, 5μm particle size). The UV detection wavelength was set at 260nm. The method was successfully validated following the requirements of ICH guidelines in terms of: linear range (0.25-2.5μgmL(-1)), linearity (r(2)>0.990), intra- and interday precision (<6.8%) and accuracy (92.3-104.2%) and robustness (<7.1%). To the extent of our knowledge, this is the first published method to quantify these three drugs in plasma. Several blood samples from AIDS patients taking this HAART set provided by a local hospital were analyzed with satisfactory results.

  20. Isolation and quantification of tuliposides and tulipalins in tulips (Tulipa) by high-performance liquid chromatography.

    PubMed

    Christensen, L P; Kristiansen, K

    1999-06-01

    The content of tuliposides and tulipalins were determined in Tulipa species and cultivars by reversed-phase high-performance liquid chromatography (RP-HPLC), using a water:methanol gradient as mobile phase. The compounds were detected by a diode array detector employed at 208 nm. The investigation revealed, in addition to 1- and 6-tuliposide A, tuliposide D and the lactonized aglycones tulipalin A and (-)-tulipalin B, the new tuliposide F and 6-tuliposide B, the latter being a new acyl derivative of the known 1-tuliposide B. All compounds were isolated by preparative RP-HPLC and identified by NMR and mass spectroscopy. The predominant compounds were 6-tuliposide A and B present in amounts up to 1.5% and 1.3% of fresh weight, respectively. 6-Tuliposide A and tulipalin A seem to be the major allergens in tulips, although tuliposide D and F may also contribute to the allergenic properties. Tulipalin A and (-)-tulipalin B occur in intact tulips and are not only produced in response to fungal attack or after excision of the plants. A few species were found to have very low allergen content and a relatively high level of tuliposide B, indicating it should be possible to breed non-allergenic and disease-resistant tulips.

  1. Detection of free liquid in drums of radioactive waste. [Patent application

    DOEpatents

    Not Available

    1979-10-16

    A nondestructive thermal imaging method for detecting the presence of a liquid such as water within a sealed container is described. The process includes application of a low amplitude heat pulse to an exterior surface area of the container, terminating the heat input and quickly mapping the resulting surface temperatures. The various mapped temperature values can be compared with those known to be normal for the container material and substances in contact. The mapped temperature values show up in different shades of light or darkness that denote different physical substances. The different substances can be determined by direct observation or by comparison with known standards. The method is particularly applicable to the detection of liquids above solidified radioactive wastes stored in sealed containers.

  2. The Mochovce final treatment center for liquid radioactive waste introduced to active trial operation

    SciTech Connect

    Krajc, T.; Stubna, M.; Kravarik, K.; Zatkulak, M.; Slezak, M.; Remias, V.

    2007-07-01

    The Final Treatment Centre (FTC) for Mochovce Nuclear Power Plant (NPP) have been designed for treatment and final conditioning of radioactive liquid and wet waste produced by named NPP equipped with Russian VVER-440 type of reactors. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. During the realisation of project the future operator of Centre required the contractor to solve the treatment of wastes produced in the process of NPP A-1 decommissioning. On the basis of this requirement the project was modified in order to enable manipulations with waste products from A-1 NPP transported to Centre in steel drums. The initial project was prepared in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC civil works started in August 2004. Initial nonradioactive testing of the system parts were carried out from April to September 2006, then the tests of systems started with model concentrates and non-radioactive resins. After the processes evaluation the radioactive test performed from February 2007. A one-year trial operation of facility is planned for completion during 2007 and 2008. The company JAVYS, Inc. is responsible for radioactive waste and spent fuel treatment in the Slovak republic and will operate the FTC during trial operation and after its completion. This Company has also significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 820 m{sup 3}/year of concentrates and 40 m{sup 3}/year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization on Thin Film Evaporator with rotating wiping blades. Spent resin and sludge are decanted, dried and mixed with bitumen in blade

  3. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    SciTech Connect

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  4. Simultaneous Quantification of Multiple Urinary Naphthalene Metabolites by Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Ayala, Daniel C.; Morin, Dexter; Buckpitt, Alan R.

    2015-01-01

    Naphthalene is an environmental toxicant to which humans are exposed. Naphthalene causes dose-dependent cytotoxicity to murine airway epithelial cells but a link between exposure and human pulmonary disease has not been established. Naphthalene toxicity in rodents depends on P450 metabolism. Subsequent biotransformation results in urinary elimination of several conjugated metabolites. Glucuronide and sulfate conjugates of naphthols have been used as markers of naphthalene exposure but, as the current studies demonstrate, these assays provide a limited view of the range of metabolites generated from the parent hydrocarbon. Here, we present a liquid chromatography tandem mass spectrometry method for measurement of the glucuronide and sulfate conjugates of 1-naphthol as well as the mercapturic acids and N-acetyl glutathione conjugates from naphthalene epoxide. Standard curves were linear over 2 log orders. On column detection limits varied from 0.91 to 3.4 ng; limits of quantitation from 1.8 to 6.4 ng. The accuracy of measurement of spiked urine standards was -13.1 to + 5.2% of target and intra-day and inter-day variability averaged 7.2 (± 4.5) and 6.8 (± 5.0) %, respectively. Application of the method to urine collected from mice exposed to naphthalene at 15 ppm (4 hrs) showed that glutathione-derived metabolites accounted for 60-70% of the total measured metabolites and sulfate and glucuronide conjugates were eliminated in equal amounts. The method is robust and directly measures several major naphthalene metabolites including those derived from glutathione conjugation of naphthalene epoxide. The assays do not require enzymatic deconjugation, extraction or derivatization thus simplifying sample work up. PMID:25853821

  5. Liquid Nebulization-Ion Mobility Spectrometry Based Quantification of Nanoparticle-Protein Conjugate Formation.

    PubMed

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-08-02

    Despite the importance of examining the formation of nanoparticle-protein conjugates, there is a dearth of routine techniques for nanoparticle-protein conjugate characterization. The most prominent change to a nanoparticle population upon conjugate formation is a shift in the nanoparticle size distribution function. However, commonly employed dynamic light scattering based approaches for size distribution characterization are ineffective for nonmonodisperse samples, and further they are relatively insensitive to size shifts of only several nanometers, which are common during conjugate formation. Conversely, gas phase ion mobility spectrometry (IMS) techniques can be used to reliably examine polydisperse samples, and are sensitive to ∼1 nm size distribution function shifts; the challenge with IMS is to convert nanoparticle-protein conjugates to aerosol particles without bringing about nonspecific aggregation or conjugate formation. Except in limited circumstances, electrospray based aerosolization has proven difficult to apply for this purpose. Here we show that via liquid nebulization (LN) with online, high-flow-rate dilution (with dilution factors up to 10 000) it is possible to aerosolize nanoparticle-protein conjugates, enabling IMS measurements of their conjugate size distribution functions. We specifically employ the LN-IMS system to examine bovine serum albumin binding to gold nanoparticles. Inferred maximum protein surface coverages (∼0.025 nm(-2)) from measurements are shown to be in excellent agreement with reported values for gold from quartz crystal microbalance measurements. It is also shown that LN-IMS measurements can be used to detect size distribution function shifts on the order of 1 nm, even in circumstances where the size distribution function itself has a standard deviation of ∼5 nm. In total, the reported measurements suggest that LN-IMS is a potentially simple and robust technique for nanoparticle-protein conjugate characterization.

  6. Identification and Quantification of Glucosinolates in Kimchi by Liquid Chromatography-Electrospray Tandem Mass Spectrometry

    PubMed Central

    Lee, Mi Jin; Jeong, Min Hee

    2017-01-01

    A novel and simple method for detecting five glucosinolates (glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin, and 4-methoxyglucobrassicin) in kimchi was developed using liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). The chromatographic peaks of the five glucosinolates were successfully identified by comparing their retention times, mass spectra. The mobile phase was composed of A (acetonitrile) and B (water). As for glucosinolate, the relative quantities were found through sinigrin, and five different compounds that have not been previously discovered in kimchi were observed. Monitoring was carried out on the glucosinolate in 20 kimchis distributed in markets, and this study examined the various quality and quantity compositions of the five components. The glucoalyssin content ranged from 0.00 to 7.07 μmol/g of day weight (DW), with an average content of 0.86 μmol/g of DW, whereas the gluconapin content ranged from 0.00 to 5.85 μmol/g of DW, with an average of 1.17 μmol/g of DW. The content of glucobrassicanapin varied between 0.00 and 11.87 μmol/g of DW (average = 3.03 μmol/g of DW), whereas that of glucobrassicin varied between 0.00 and 0.42 μmol/g of DW (average = 0.06 μmol/g of DW). The 4-methoxyglucobrassicin content ranged from 0.12 to 9.36 μmol/g of DW (average = 3.52 μmol/g of DW). A comparison of the contents revealed that, in most cases, the content of 4-methoxyglucobrassicin was the highest. PMID:28298926

  7. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    PubMed

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-01-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.

  8. Conversion of waste polypropylene to liquid fuel using acid-activated kaolin.

    PubMed

    Panda, Achyut K; Singh, R K

    2014-10-01

    Waste polypropylene was subjected to thermal degradation in the presence of kaolin and acid-treated kaolin, with different catalyst-to-plastics ratios, in a semi-batch reactor at a temperature range of 400-550°C to obtain optimized process conditions for the production of liquid fuels. The effects of process temperature, catalyst and feed composition on yield and quality of the oil were determined. For a thermal decomposition reaction at up to 450°C, the major product is volatile oil; and the major products at a higher temperature (475-550°C) are either viscous liquid or wax. The highest yield of condensed fraction in the thermal reaction is 82.85% by weight at 500°C. Use of kaolin and acid-treated kaolin as a catalyst decreased the reaction time and increased the yield of liquid fraction. The major product of catalysed degradation at all temperatures is highly volatile liquid oil. The maximum oil yield using kaolin and acid-treated kaolin is 87.5% and 92%, respectively, at 500°C. The oil obtained was characterized using GC-MS for its composition and different fuel properties by IS methods.

  9. Sampling and analysis plan for sampling of liquid waste streams generated by 222-S Laboratory Complex operations

    SciTech Connect

    Benally, A.B.

    1997-08-14

    This Sampling and Analysis Plan (SAP) establishes the requirements and guidelines to be used by the Waste Management Federal Services of Hanford, Inc. personnel in characterizing liquid waste generated at the 222-S Laboratory Complex. The characterization process to verify the accuracy of process knowledge used for designation and subsequent management of wastes consists of three steps: to prepare the technical rationale and the appendix in accordance with the steps outlined in this SAP; to implement the SAP by sampling and analyzing the requested waste streams; and to compile the report and evaluate the findings to the objectives of this SAP. This SAP applies to portions of the 222-S Laboratory Complex defined as Generator under the Resource Conservation and Recovery Act (RCRA). Any portion of the 222-S Laboratory Complex that is defined or permitted under RCRA as a treatment, storage, or disposal (TSD) facility is excluded from this document. This SAP applies to the liquid waste generated in the 222-S Laboratory Complex. Because the analytical data obtained will be used to manage waste properly, including waste compatibility and waste designation, this SAP will provide directions for obtaining and maintaining the information as required by WAC173-303.

  10. Hollow fiber-based liquid-liquid-liquid micro-extraction with osmosis: II. Application to quantification of endogenous gibberellins in rice plant.

    PubMed

    Wu, Qian; Wu, Dapeng; Duan, Chunfeng; Shen, Zheng; Guan, Yafeng

    2012-11-23

    The phenomenon and benefits of osmosis in hollow fiber-based liquid-liquid-liquid micro-extraction (HF-LLLME) were theoretically discussed in part I of this study. In this work, HF-LLLME with osmosis was coupled with high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-triple quadrupole MS/MS) to analyze eight gibberellins (gibberellin A(1), gibberellin A(3), gibberellin A(4), gibberellin A(7), gibberellin A(8), gibberellin A(9), gibberellin A(19) and gibberellin A(20)) in rice plant samples. According to the theory of HF-LLLME with osmosis, single factor experiments, orthogonal design experiments and mass transfer simulation of extraction process were carried out to select the optimal conditions. Cyclohexanol - n-octanol (1:3, v/v) was selected as organic membrane. Donor phase of 12 mL was adjusted to pH 2 and 20% NaCl (w/v) was added. Acceptor phase with an initial volume of 20 μL was the solution of 0.12 mol L(-1) Na(2)CO(3)-NaHCO(3) buffer (pH 9). Temperature was chosen to be 30 °C and extraction time was selected to be 90 min. Under optimized conditions, this method provided good linearity (r, 0.99552-0.99991) and low limits of detection (0.0016-0.061 ng mL(-1)). Finally, this method was applied to the analysis of endogenous gibberellins from plant extract which was obtained with traditional solvent extraction of rice plant tissues, and the relative recoveries were from 62% to 166%.

  11. Quantification of candidate prostate cancer metabolite biomarkers in urine using dispersive derivatization liquid-liquid microextraction followed by gas and liquid chromatography-mass spectrometry.

    PubMed

    Shamsipur, Mojtaba; Naseri, Mohammad Taghi; Babri, Mehran

    2013-01-01

    A simple, rapid and sensitive method based on dispersive derivatization liquid-liquid microextraction (DDLLME) combined with gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) was developed and validated for the determination of prostate cancer metabolite biomarkers, including sarcosine, alanine, leucine and proline, in human urine samples. Dispersive derivatization using isobutyl chloroformate has been successfully employed to identify the amino acids of interest in ng mL(-1) concentrations. Under the optimum experimental conditions, the detection limits of the amino acids were in the range of 0.05-0.1 ng mL(-1). The enrichment factor and relative recovery for the target amino acids were in the range of 140-155 and 93.8-106%, respectively. The proposed method showed good linearity (correlation coefficients >0.997), and good intra-day (below 7%) and inter-day precision (below 10%). This protocol provides a rapid, simple, selective and sensitive tool to quantify sarcosine and endogenous urinary metabolite for prostate cancer diagnosis and for a screening test.

  12. Final Treatment Center Project for Liquid and Wet Radioactive Waste in Slovakia

    SciTech Connect

    Kravarik, K.; Stubna, M.; Pekar, A.; Krajc, T.; Zatkulak, M.; Holicka, Z.; Slezak, M.

    2006-07-01

    The Final Treatment Center (FTC) for Mochovce nuclear power plant (NPP) is designed for treatment and final conditioning of radioactive liquid and wet waste produced from plant operation. Mochovce NNP uses a Russian VVER-440 type reactor. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. This paper describes the capacity, flow chart, overall waste flow and parameters of the main components in the FTC. The initial project was submitted for approval to the Slovak Electric plc. in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC construction work started early in 2004. Initial non-radioactive testing of the system is planned for summer 2006 and then radioactive tests are to be followed. A one-year trial operation of facility is planned for completion in 2007. SE - VYZ will be operates the FTC during trial operation and after its completion. SE - VYZ is subsidiary company of Slovak Electric plc. and it is responsible for treatment with radioactive waste and spent fuel in the Slovak republic. SE - VYZ has, besides of other significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 870 m{sup 3}/year of concentrates and 40 m{sup 3}/year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization. Concentrate and bitumen are metered into a thin film evaporator with rotating wiping blades. Surplus water is evaporated and concentrate salts are embedded in bitumen. Bitumen product is discharged into 200 l steel drums. Spent resin and sludge are decanted, dried and mixed with bitumen. These mixtures are also discharged into 200 l steel drums. Drums are moved along bituminization line on a

  13. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2016-01-25

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box-Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min(-1) and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  14. Impact of liquid waste disposal on potable groundwater resources near Perth, Western Australia

    NASA Astrophysics Data System (ADS)

    Appleyard, S. J.

    1996-09-01

    Drilling of 15 boreholes at a disused liquid waste disposal site near Perth, Western Australia, has indicated that a contamination plume extends about 1000 m in a southerly direction from the site in the direction of groundwater flow. The plume is up to 600 m wide and 5-40 m thick. Chemical and microbiological analyses have indicated that contaminated groundwater contains high concentrations of ammonia, iron, and bacteria at levels that commonly exceed national drinking water guidelines. It is likely that a proposed water supply production well in the path of the contamination plume will have to be abandoned, and additional wells may have to be abandoned if the plume continues to extend in the direction of groundwater flow. There is currently insufficient information to indicate whether the plume is continuing to expand, but studies on similar plumes in the Perth metropolitan area have indicated that contaminated groundwater can move at rates up to 100 m yr-1. Several other liquid waste disposal sites are now located in residential areas of Perth where wells are used for garden irrigation. Further work is required to ensure that there is no potential impact of groundwater contamination on public health in these areas.

  15. Quantification of miltefosine in peripheral blood mononuclear cells by high-performance liquid chromatography-tandem mass spectrometry

    PubMed Central

    Kip, A.E.; Rosing, H.; Hillebrand, M.J.X.; Castro, M.M.; Gomez, M.A.; Schellens, J.H.M.; Beijnen, J.H.; Dorlo, T.P.C.

    2015-01-01

    Phagocytes, the physiological compartment in which Leishmania parasites reside, are the main site of action of the drug miltefosine, but the intracellular pharmacokinetics of miltefosine remain unexplored. We developed a bioanalytical method to quantify miltefosine in human peripheral blood mononuclear cells (PBMCs), expanding from an existing high performance liquid chromatography-tandem mass spectrometry method for the quantification of miltefosine in plasma. The method introduced deuterated miltefosine as an internal standard. Miltefosine was extracted from PBMC pellets by addition of 62.5% methanol. Supernatant was collected, evaporated and reconstituted in plasma. Chromatographic separation was performed on a reversed phase C18 column and detection with a triple-quadrupole mass spectrometer. Miltefosine was quantified using plasma calibration standards ranging from 4 to 1000 ng/mL. This method was validated with respect to its PBMC matrix effect, selectivity, recovery and stability. No matrix effect could be observed from the PBMC content (ranging from 0.17 to 26.3 × 106 PBMCs) reconstituted in plasma, as quality control samples were within 3.0% of the nominal concentration (precision less than 7.7%). At the lower limit of quantitation of 4 ng/mL plasma, corresponding to 0.12 ng/106 PBMCs in a typical clinical sample, measured concentrations were within 8.6% of the nominal value. Recovery showed to be reproducible as adding additional pre-treatment steps did not increase the recovery with more than 9%. This method was successfully applied to measure intracellular miltefosine concentrations in PBMC samples from six cutaneous leishmaniasis patients up to one month post-treatment. PMID:26160472

  16. 11-Nor-9-carboxy-∆9-tetrahydrocannabinol quantification in human oral fluid by liquid chromatography-tandem mass spectrometry.

    PubMed

    Scheidweiler, Karl B; Himes, Sarah K; Chen, Xiaohong; Liu, Hua-Fen; Huestis, Marilyn A

    2013-07-01

    Currently, ∆9-tetrahydrocannabinol (THC) is the analyte quantified for oral fluid cannabinoid monitoring. The potential for false-positive oral fluid cannabinoid results from passive exposure to THC-laden cannabis smoke raises concerns for this promising new monitoring technology. Oral fluid 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THCCOOH) is proposed as a marker of cannabis intake since it is not present in cannabis smoke and was not measureable in oral fluid collected from subjects passively exposed to cannabis. THCCOOH concentrations are in the picogram per milliliter range in oral fluid and pose considerable analytical challenges. A liquid chromatography-tandem mass spectrometry (LCMSMS) method was developed and validated for quantifying THCCOOH in 1 mL Quantisal-collected oral fluid. After solid phase extraction, chromatography was performed on a Kinetex C18 column with a gradient of 0.01% acetic acid in water and 0.01% acetic acid in methanol with a 0.5-mL/min flow rate. THCCOOH was monitored in negative mode electrospray ionization and multiple reaction monitoring mass spectrometry. The THCCOOH linear range was 12-1,020 pg/mL (R(2) > 0.995). Mean extraction efficiencies and matrix effects evaluated at low and high quality control (QC) concentrations were 40.8-65.1 and -2.4-11.5%, respectively (n = 10). Analytical recoveries (bias) and total imprecision at low, mid, and high QCs were 85.0-113.3 and 6.6-8.4% coefficient of variation, respectively (n = 20). This is the first oral fluid THCCOOH LCMSMS triple quadrupole method not requiring derivatization to achieve a <15 pg/mL limit of quantification. The assay is applicable for the workplace, driving under the influence of drugs, drug treatment, and pain management testing.

  17. Method development and validation for rapid quantification of hydroxychloroquine in human blood using liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Ling-Zhi; Ong, Rina Yue-Ling; Chin, Tan-Min; Thuya, Win-Lwin; Wan, Seow-Ching; Wong, Andrea Li-Ann; Chan, Sui-Yung; Ho, Paul C; Goh, Boon-Cher

    2012-03-05

    A novel and specific liquid chromatography-tandem mass spectrometric method (LC-MS/MS) was developed and validated for the quantification of hydroxychloroquine in human blood using its stable labeled isotope, hydroxychloroquine-d4 as the internal standard. Chromatographic separation of analytes was achieved using an Agilent ZORBAX Eclipse XDB - C8 analytical HPLC column (50 mm × 2.1 mm, 5 μm). The mobile phase comprising water containing 0.1% formic acid-acetonitrile (94:6, v/v) was delivered isocratically at a flow rate of 0.5 mL/min. The column effluent was detected by API 4000 triple quadrupole mass spectrometer using electrospray ionization (ESI) and monitored by multiple reaction monitoring with positive mode. The precursor to product ion transitions of m/z 336 → 247 and m/z 340 → 251 were used to measure the analyte and IS, respectively. The assay demonstrated a good linear dynamic range of 5-2000 ng/mL for hydroxychloroquine in human blood, with coefficient of determination (r(2)) of =0.9999. The values for intra-day and inter-day precisions of hydroxychloroquine were ≤ 7.86% with the accuracies ranged from 93.8% to 107.6%. The chromatographic run time was 3 min, making it possible to achieve a high throughput analysis. This method was used as a bio-analytical tool in a phase I clinical trial to quantify blood hydroxychloroquine concentrations in patients with non-small cell lung cancer receiving both hydroxychloroquine and gefitinib in their treatment.

  18. 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol quantification in human oral fluid by liquid chromatography–tandem mass spectrometry

    PubMed Central

    Scheidweiler, Karl B.; Himes, Sarah K.; Chen, Xiaohong; Liu, Hua-Fen

    2013-01-01

    Currently, Δ9-tetrahydrocannabinol (THC) is the analyte quantified for oral fluid cannabinoid monitoring. The potential for false-positive oral fluid cannabinoid results from passive exposure to THC-laden cannabis smoke raises concerns for this promising new monitoring technology. Oral fluid 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) is proposed as a marker of cannabis intake since it is not present in cannabis smoke and was not measureable in oral fluid collected from subjects passively exposed to cannabis. THCCOOH concentrations are in the picogram per milliliter range in oral fluid and pose considerable analytical challenges. A liquid chromatography–tandem mass spectrometry (LCMSMS) method was developed and validated for quantifying THCCOOH in 1 mL Quantisal-collected oral fluid. After solid phase extraction, chromatography was performed on a Kinetex C18 column with a gradient of 0.01 % acetic acid in water and 0.01 % acetic acid in methanol with a 0.5-mL/min flow rate. THCCOOH was monitored in negative mode electrospray ionization and multiple reaction monitoring mass spectrometry. The THCCOOH linear range was 12–1,020 pg/mL (R2>0.995). Mean extraction efficiencies and matrix effects evaluated at low and high quality control (QC) concentrations were 40.8–65.1 and −2.4–11.5 %, respectively (n=10). Analytical recoveries (bias) and total imprecision at low, mid, and high QCs were 85.0–113.3 and 6.6–8.4 % coefficient of variation, respectively (n=20). This is the first oral fluid THCCOOH LCMSMS triple quadrupole method not requiring derivatization to achieve a <15 pg/mL limit of quantification. The assay is applicable for the workplace, driving under the influence of drugs, drug treatment, and pain management testing. PMID:23681203

  19. A high performance liquid chromatography system for quantification of hydroxyl radical formation by determination of dihydroxy benzoic acids.

    PubMed

    Owen, R W; Wimonwatwatee, T; Spiegelhalder, B; Bartsch, H

    1996-08-01

    The hypoxanthine/xanthine oxidase enzyme system is known to produce the superoxide ion and hydrogen peroxide during the hydroxylation of hypoxanthine via xanthine to uric acid. When chelated iron is included in this system, superoxide reduces iron (III) to iron(II) and the iron(II)-chelate further reacts with hydrogen peroxide to form the highly reactive hydroxyl radical. Because of the limitations of colourimetric and spectrophotometric techniques by which, to date, the mechanisms of hydroxyl radical formation in the hypoxanthine/xanthine oxidase system have been monitored, a high performance liquid chromatography method utilizing the ion-pair reagent tetrabutylammonium hydroxide and salicylic acid as an aromatic probe for quantification of hydroxyl radical formation was set up. In the hypoxanthine/xanthine oxidase system the major products of hydroxyl radical attack on salicylic acid were 2,5-dihydroxy benzoic acid and 2,3-dihydroxy benzoic acid in the approximate ratio of 5:1. That the hydroxyl radical is involved in the hydroxylation of salicylic acid in this system was demonstrated by the potency especially of dimethyl sulphoxide, butanol and ethanol as scavengers. Phytic acid, which is considered to be an important protective dietary constituent against colorectal cancer, inhibited hydroxylation of salicylic acid at a concentration one order of magnitude lower than the classical scavengers, but was only effective in the absence of EDTA. The method has been applied to the study of free radical generation in faeces, and preliminary results indicate that the faecal flora are able to produce reactive oxygen species in abundance.

  20. Quantification of Warfarin in Dried Rat Plasma Spots by High-Performance Liquid Chromatography with Tandem Mass Spectrometry

    PubMed Central

    2016-01-01

    This paper presents the development and validation of a novel method for quantification of the oral anticoagulant drug warfarin in dried plasma spots (DPS) by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Blood plasma was chosen as a biological fluid to preclude the influence of the hematocrit on the results of the analysis. A 30 μL sample of rat plasma was placed onto Whatman 903 Protein Saver Card and was allowed to dry. A single DPS is sufficient for preparing eight 3.2 mm discs, each containing approximately 1.5–1.6 μL of plasma. Warfarin extraction from one 3.2 mm disc was carried out by adding 200 μL of the acetonitrile : water mixture (1 : 1, v/v) containing 10 mM NH4COOH (pH 4.0), with incubation on a shaker at 1000 rpm for 1 h at 25°C. After chromatographic separation, warfarin and coumachlor (an internal standard) were measured using negative-ion multiple-reaction monitoring with ion transitions m/z 307 → 161 for warfarin and m/z 341 → 161 for the internal standard. The working range of this method is 10–10,000 ng/mL. Within this range, intra- and interday variability of precision and accuracy was <13% and recovery was 82–99%. The results indicate that the new method requires only small plasma samples and may be useful for pharmacokinetic research on warfarin. PMID:28058133

  1. Effects of solid-liquid separation and storage on monensin attenuation in dairy waste management systems.

    PubMed

    Hafner, Sarah C; Watanabe, Naoko; Harter, Thomas; Bergamaschi, Brian A; Parikh, Sanjai J

    2017-04-01

    Environmental release of veterinary pharmaceuticals has been of regulatory concern for more than a decade. Monensin is a feed additive antibiotic that is prevalent throughout the dairy industry and is excreted in dairy waste. This study investigates the potential of dairy waste management practices to alter the amount of monensin available for release into the environment. Analysis of wastewater and groundwater from two dairy farms in California consistently concluded that monensin is most present in lagoon water and groundwater downgradient of lagoons. Since the lagoons represent a direct source of monensin to groundwater, the effect of waste management, by mechanical screen separation and lagoon aeration, on aqueous monensin concentration was investigated through construction of lagoon microcosms. The results indicate that monensin attenuation is not improved by increased solid-liquid separation prior to storage in lagoons, as monensin is rapidly desorbed after dilution with water. Monensin is also shown to be easily degraded in lagoon microcosms receiving aeration, but is relatively stable and available for leaching under typical anaerobic lagoon conditions.

  2. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    SciTech Connect

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  3. Waste polypropylene plastic conversion into liquid hydrocarbon fuel for producing electricity and energies.

    PubMed

    Sarker, Moinuddin; Rashid, Mohammad Mamunor; Molla, Mohammad

    2012-12-01

    Thermal degradation of polypropylene (PP) waste plastic is batched process studied for the purpose of converting waste PP into liquid hydrocarbon fuel and useful chemicals. The stainless steel reactor is used for conversion to fuel; this reactor chamber has a diameter of 6 inches, height of 18 inches and a temperature input capacity of 500 degrees C. The temperature of 150-370 degrees C was used for PP conversion into fuel. We have also used 1 kg PP waste plastic for conversion into fuel and HZSM-5 catalyst of 5% by preference was used by total weight of sample. Yield percentages obtained from PP to fuel are 92%, 2% light gas and 6% residue. Experimental finish time was 5.25 hours. By gas chromatograph/mass spectrometry instrumental analysis, the PP to fuel carbon range is found to be C3-C25,and the low sulfur level is detected by the American Society for Testing and Materials (ASTM) test method to be <1.0 ppm.

  4. Characterization and monitoring of 300 Area Facility liquid waste streams: Status report

    SciTech Connect

    Manke, K.L.; Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Ikenberry, A.S.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.

    1994-09-01

    This report summarizes the results of characterizing and monitoring the following sources during a portion of this year: liquid waste streams from Buildings 331, 320, and 3720; treated and untreated Columbia River water; and water at the confluence of the waste streams (that is, end-of-pipe). Characterization and monitoring data were evaluated for samples collected between March 22 and June 21, 1994, and subsequently analyzed for hazardous chemicals, radioactivity, and general parameters. Except for bis(2-ethylhexyl)phthalate, concentrations of chemicals detected and parameters measured at end-of-pipe were below the US Environmental Protection Agency existing and proposed drinking water standards. The source of the chemicals, except bis(2-ethylhexyl)phthalate, is not currently known. The bis(2-ethylhexyl)phthalate is probably an artifact of the plastic tubing used in the early stages of the sampling program. This practice was stopped. Concentrations and clearance times for contaminants at end-of-pipe depended strongly on source concentration at the facility release point, waste stream flow rates, dispersion, and the mechanical action of sumps. When present, the action of sumps had the greatest impact on contaminant clearance times. In the absence of sump activity, dispersion and flow rate were the controlling factors.

  5. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.

    PubMed

    Asaadi, Shirin; Hummel, Michael; Hellsten, Sanna; Härkäsalmi, Tiina; Ma, Yibo; Michud, Anne; Sixta, Herbert

    2016-11-23

    A new chemical recycling method for waste cotton is presented that allows the production of virgin textile fibers of substantially higher quality than that from the mechanical recycling methods that are used currently. Cotton postconsumer textile wastes were solubilized fully in the cellulose-dissolving ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) to be processed into continuous filaments. As a result of the heterogeneous raw material that had a different molar mass distribution and degree of polymerization, pretreatment to adjust the cellulose degree of polymerization by acid hydrolysis, enzyme hydrolysis, or blending the waste cotton with birch prehydrolyzed kraft pulp was necessary to ensure spinnability. The physical properties of the spun fibers and the effect of the processing parameters on the ultrastructural changes of the fibers were measured. Fibers with a tenacity (tensile strength) of up to 58 cN tex(-1) (870 MPa) were prepared, which exceeds that of native cotton and commercial man-made cellulosic fibers.

  6. A NEW, SMALL DRYING FACILITY FOR WET RADIOACTIVE WASTE AND LIQUIDS

    SciTech Connect

    Oldiges, Olaf; Blenski, Hans-Juergen

    2003-02-27

    Due to the reason, that in Germany every Waste, that is foreseen to be stored in a final disposal facility or in a long time interim storage facility, it is necessary to treat a lot of waste using different drying technologies. In Germany two different drying facilities are in operation. The GNS Company prefers a vacuum-drying-technology and has built and designed PETRA-Drying-Facilities. In a lot of smaller locations, it is not possible to install such a facility because inside the working areas of that location, the available space to install the PETRA-Drying-Facility is too small. For that reason, GNS decided to design a new, small Drying-Facility using industrial standard components, applying the vacuum-drying-technology. The new, small Drying-Facility for wet radioactive waste and liquids is presented in this paper. The results of some tests with a prototype facility are shown in chapter 4. The main components of that new facility are described in chapter 3.

  7. Effects of solid-liquid separation and storage on monensin attenuation in dairy waste management systems

    USGS Publications Warehouse

    Hafner, Sarah C.; Watanabe, Naoko; Harter, Thomas; Bergamaschi, Brian; Parikh, Sanjai J.

    2017-01-01

    Environmental release of veterinary pharmaceuticals has been of regulatory concern for more than a decade. Monensin is a feed additive antibiotic that is prevalent throughout the dairy industry and is excreted in dairy waste. This study investigates the potential of dairy waste management practices to alter the amount of monensin available for release into the environment. Analysis of wastewater and groundwater from two dairy farms in California consistently concluded that monensin is most present in lagoon water and groundwater downgradient of lagoons. Since the lagoons represent a direct source of monensin to groundwater, the effect of waste management, by mechanical screen separation and lagoon aeration, on aqueous monensin concentration was investigated through construction of lagoon microcosms. The results indicate that monensin attenuation is not improved by increased solid-liquid separation prior to storage in lagoons, as monensin is rapidly desorbed after dilution with water. Monensin is also shown to be easily degraded in lagoon microcosms receiving aeration, but is relatively stable and available for leaching under typical anaerobic lagoon conditions.

  8. Direct Comparison of Xpert MTB/RIF Assay with Liquid and Solid Mycobacterial Culture for Quantification of Early Bactericidal Activity

    PubMed Central

    Kayigire, Xavier A.; Friedrich, Sven O.; Venter, Amour; Dawson, Rodney; Gillespie, Stephen H.; Boeree, Martin J.; Heinrich, Norbert; Hoelscher, Michael

    2013-01-01

    The early bactericidal activity of antituberculosis agents is usually determined by measuring the reduction of the sputum mycobacterial load over time on solid agar medium or in liquid culture. This study investigated the value of a quantitative PCR assay for early bactericidal activity determination. Groups of 15 patients were treated with 6 different antituberculosis agents or regimens. Patients collected sputum for 16 h overnight at baseline and at days 7 and 14 after treatment initiation. We determined the sputum bacterial load by CFU counting (log CFU/ml sputum, reported as mean ± standard deviation [SD]), time to culture positivity (TTP, in hours [mean ± SD]) in liquid culture, and Xpert MTB/RIF cycle thresholds (CT, n [mean ± SD]). The ability to discriminate treatment effects between groups was analyzed with one-way analysis of variance (ANOVA). All measurements showed a decrease in bacterial load from mean baseline (log CFU, 5.72 ± 1.00; TTP, 116.0 ± 47.6; CT, 19.3 ± 3.88) to day 7 (log CFU, −0.26 ± 1.23, P = 0.2112; TTP, 35.5 ± 59.3, P = 0.0002; CT, 0.55 ± 3.07, P = 0.6030) and day 14 (log CFU, −0.55 ± 1.24, P = 0.0006; TTP, 54.8 ± 86.8, P < 0.0001; CT, 2.06 ± 4.37, P = 0.0020). The best discrimination between group effects was found with TTP at day 7 and day 14 (F = 9.012, P < 0.0001, and F = 11.580, P < 0.0001), followed by log CFU (F = 4.135, P = 0.0024, and F = 7.277, P < 0.0001). CT was not significantly discriminative (F = 1.995, P = 0.091, and F = 1.203, P = 0.316, respectively). Culture-based methods are superior to PCR for the quantification of early antituberculosis treatment effects in sputum. PMID:23596237

  9. Direct comparison of Xpert MTB/RIF assay with liquid and solid mycobacterial culture for quantification of early bactericidal activity.

    PubMed

    Kayigire, Xavier A; Friedrich, Sven O; Venter, Amour; Dawson, Rodney; Gillespie, Stephen H; Boeree, Martin J; Heinrich, Norbert; Hoelscher, Michael; Diacon, Andreas H

    2013-06-01

    The early bactericidal activity of antituberculosis agents is usually determined by measuring the reduction of the sputum mycobacterial load over time on solid agar medium or in liquid culture. This study investigated the value of a quantitative PCR assay for early bactericidal activity determination. Groups of 15 patients were treated with 6 different antituberculosis agents or regimens. Patients collected sputum for 16 h overnight at baseline and at days 7 and 14 after treatment initiation. We determined the sputum bacterial load by CFU counting (log CFU/ml sputum, reported as mean ± standard deviation [SD]), time to culture positivity (TTP, in hours [mean ± SD]) in liquid culture, and Xpert MTB/RIF cycle thresholds (C(T), n [mean ± SD]). The ability to discriminate treatment effects between groups was analyzed with one-way analysis of variance (ANOVA). All measurements showed a decrease in bacterial load from mean baseline (log CFU, 5.72 ± 1.00; TTP, 116.0 ± 47.6; C(T), 19.3 ± 3.88) to day 7 (log CFU, -0.26 ± 1.23, P = 0.2112; TTP, 35.5 ± 59.3, P = 0.0002; C(T), 0.55 ± 3.07, P = 0.6030) and day 14 (log CFU, -0.55 ± 1.24, P = 0.0006; TTP, 54.8 ± 86.8, P < 0.0001; C(T), 2.06 ± 4.37, P = 0.0020). The best discrimination between group effects was found with TTP at day 7 and day 14 (F = 9.012, P < 0.0001, and F = 11.580, P < 0.0001), followed by log CFU (F = 4.135, P = 0.0024, and F = 7.277, P < 0.0001). C(T) was not significantly discriminative (F = 1.995, P = 0.091, and F = 1.203, P = 0.316, respectively). Culture-based methods are superior to PCR for the quantification of early antituberculosis treatment effects in sputum.

  10. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    SciTech Connect

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  11. Design and Testing of a Solid-Liquid Interface Monitor for High-Level Waste Tanks

    SciTech Connect

    McDaniel, D.; Awwad, A.; Roelant, D.; Srivastava, R.

    2008-07-01

    A high-level waste (HLW) monitor has been designed, fabricated and tested at full-scale for deployment inside a Hanford tank. The Solid-Liquid Interface Monitor (SLIM) integrates a commercial sonar system with a mechanical deployment system for deploying into an underground waste tank. The system has undergone several design modifications based upon changing requirements at Hanford. We will present the various designs of the monitor from first to last and will present performance data from the various prototype systems. We will also present modeling of stresses in the enclosure under 85 mph wind loading. The system must be able to function at winds up to 15 mph and must withstand a maximum loading of 85 mph. There will be several examples presented of engineering tradeoffs made as FIU analyzed new requirements and modified the design to accommodate. We will present our current plans for installing into the Cold Test Facility at Hanford and into a double-shelled tank at Hanford. Finally, we will present our vision for how this technology can be used at Hanford and Savannah River Site to improve the filling and emptying of high-level waste tanks. In conclusion: 1. The manually operated first-generation SLIM is a viable option on tanks where personnel are allowed to work on top of the tank. 2. The remote controlled second-generation SLIM can be utilized on tanks where personnel access is limited. 3. The totally enclosed fourth-generation SLIM, when the design is finalized, can be used when the possibility exists for wind dispersion of any HLW that maybe on the system. 4. The profiling sonar can be used effectively for real-time monitoring of the solid-liquid interface over a large area. (authors)

  12. Data requirements for simulation of hydrogeologic effects of liquid waste injection, Harrison and Jackson Counties, Mississippi

    USGS Publications Warehouse

    Rebich, Richard A.

    1994-01-01

    Available literature and data were reviewed to quantify data requirements for computer simulation of hydrogeologic effects of liquid waste injection in southeastern Mississippi. Emphasis of each review was placed on quantifying physical properties of current Class I injection zones in Harrison and Jackson Counties. Class I injection zones are zones that are used for injection of hazardous or non-hazardous liquid waste below a formation containing the lowermost underground source of drinking water located within one-quarter of a mile of the injection well. Several mathematical models have been developed to simulate injection effects. The Basic Plume Method was selected because it is commonly used in permit applications, and the Intercomp model was selected because it is generally accepted and used in injection-related research. The input data requirements of the two models were combined into a single data requirement list inclusive of physical properties of injection zones only; injected waste and well properties are not included because such information is site-specific by industry, which is beyond the scope of this report. Results of the reviews of available literature and data indicated that Class I permit applications and standard-reference chemistry and physics texts were the primary sources of information to quantify physical properties of injection zones in Harrison and Jackson Counties. With the exception of a few reports and supplementary data for one injection zone in Jackson County, very little additional information pertaining to physical properties of the injection zones was available in sources other than permit applications and standard-reference texts.

  13. Simultaneous quantification of amphetamine and methamphetamine in meconium using ISOLUTE HM-N-supported liquid extraction columns and GC-MS.

    PubMed

    Gunn, Joshua A; Sweeney, Brenda; Dahn, Timothy; Bell, Suzanne; Newhouse, Rebecca; Terrell, Andrea R

    2008-09-01

    A procedure is described for the rapid extraction and quantification of amphetamine and methamphetamine from meconium using ISOLUTE HM-N-supported liquid extraction columns and gas chromatography-mass spectrometry (GC-MS). Because of the matrix complexity of meconium samples, extraction and sample preparation prior to instrumental analysis can prove difficult and time-consuming. The present study introduces a novel sample preparation technique for the simultaneous quantification of amphetamine and methamphetamine in meconium using GC-MS. Extraction of both analytes was achieved using ISOLUTE HM-N-supported liquid extraction columns containing a modified form of diatomaceous earth. Limits of detection for both analytes were 30 ng/g and the lower limit of quantitation was 75 ng/g. Linearity was achieved over the range 75-3000 ng/g. The methodology showed excellent intrarun precision with %CV values ranging from 2 to 8% for both analytes. Interrun precision experiments produced %CV values between 7 and 10% for both analytes. The reported methodology proved suitable for the accurate quantification of amphetamine and methamphetamine in meconium samples and greatly reduced the sample preparation time normally required for traditional solid-phase extraction. The development and validation of such analytical methodologies will prove beneficial for the identification of prenatal substance abuse, which is an ongoing concern across socioeconomic lines.

  14. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    SciTech Connect

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of these tests are presented in the paper.

  15. Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL

    SciTech Connect

    Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

    1990-09-01

    The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

  16. Development of the SREX process for the treatment of ICPP liquid wastes

    SciTech Connect

    Wood, D.J.; Law, J.D.; Garn, T.G.; Tillotson, R.D.; Tullock, P.A.; Todd, T.A.

    1997-12-01

    The removal of {sup 90}Sr from actual and simulated wastes at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering and Environmental Laboratory (INEEL) has been demonstrated with the SREX process. This solvent extraction process employs the extractant 4{prime},4{prime}(5{prime}) di-(t-butylcyclohexano)-18-crown-6 in 1-octanol or a mixture of tributyl phosphate and a hydrocarbon diluent called Isopar L{reg_sign}. Process flowsheets have been designed for testing in countercurrent experiments with centrifugal contractors. The flowsheets have been designed using batch contract solvent extraction methods. The extraction of Sr as well as other interfering ions has been studied. The effect of various parameters including nitric acid dependence, extractant concentration dependence, hydronium ion concentration, and interferent concentrations upon the extraction efficiency of the process has been evaluated. The radiolysis of the SREX solvent has also been investigated as a function of absorbed gamma radiation. The extraction efficiency of the solvent has been shown to be only slightly dependent upon absorbed dose in the range 0--1,000 kGy. The decontamination of actual sodium-bearing waste and dissolved calcine solutions has been accomplished in batch contact flowsheets. Decontamination factors as high as 10E3 have been obtained with sequential batch contacts. Flowsheets have been developed to accomplish decontamination of the liquid wastes with respect to {sup 90}Sr as well as the removal of Pb and Hg. Pb may be partitioned from the Sr fraction in a separate stripping procedure using ammonium citrate. This work has led to the formulation of countercurrent flowsheets which have been tested in centrifugal contractors with actual waste and reported in the document INEEL/EXT-97-00832.

  17. Development of the SREX Process for the Treatment of ICPP Liquid Wastes

    SciTech Connect

    D. J. Wood; Garn, T. G.; J. D. Law; P. A. Tullock; R. D. Tillotson; T. A. Todd

    1997-10-01

    The removal of Sr-90 from actual and simulated wastes at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering and Environmental Laboratory (INEEL) has been demonstrated with the SREX process. This solvent extraction process employs the extractant 4',4' (5') de-(t-butylcyclohexano)-18-crown-6 in 1-octanol or a mixture of tributyl phosphate and a hydrocarbon diluent called Isopar L. This development work is based upon earlier work performed by Horwitz, et al. at Argonne National Laboratory. Process flowsheets have been designed for testing in countercurrent experiments with centrifugal contactors. The flowsheets have been designed using batch contact solvent extraction methods. The extraction of Sr as well as other interfering ions has been studied. The effect of various parameters including nitric acid dependence, extractant concentration dependence, Hydronium ion concentration, and interferent concentrations upon the extraction efficiency of the process has been evaluated. The radiolysis of the SREX solvent has also been investigated as a function of absorbed gamma radiation. The extraction efficiency of the solvent has been shown to be only slightly dependent upon absorbed dose in the range 0-1000 kGy. The decontamination of actual sodium-bearing waste and dissolved calcine solutions has been accomplished in batch contact flowsheets. Decontamination factors as high as 10E3 have been obtained with sequential batch contacts. Flowsheets have been developed to accomplish decontamination of the liquid wastes with respect to Sr-90, as well as the removal of Pb and Hg. Pb may be partitioned from the Sr fraction in a separate stripping procedure using ammonium citrate. This work has led to the formulation of countercurrent flowsheets which have been tested in centrifugal contactors with actual waste and reported in the document INEEL/EXT-97-00832.

  18. (Preparation of a document on the subsurface disposal of liquid hazardous waste): Foreign trip report, April 22--29, 1989

    SciTech Connect

    Stow, S.H.

    1989-05-09

    This report describes progress made by the International Commission on the Hydrology of Hazardous Waste in preparing a report on the subsurface disposal of liquid hazardous waste and on the development of new initiatives for the commission. Also contained in the trip report are summaries of discussions held with RIVM staff regarding environmental issues in The Netherlands, which is experiencing a series of environmental pressures due to its high population, large numbers of animals, and low elevation. Details of discussions related to waste management (hazardous and radioactive), groundwater pollution and monitoring, air quality, and global change are included.

  19. Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.

    PubMed

    Govindan, Siva Shangari; Agamuthu, P

    2014-10-01

    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills.

  20. Screening for multiple phosphodiesterase type 5 inhibitor drugs in dietary supplement materials by flow injection mass spectrometry and their quantification by liquid chromatography tandem mass spectrometry.

    PubMed

    Song, Fenhong; El-Demerdash, Aref; Lee, Shwn-Ji Susie H

    2012-11-01

    A flow injection tandem mass spectrometry method (FI-MS/MS) has been developed to detect enzyme phosphodiesterase type 5 inhibitors, including tadalafil, sildenafil, and vardenafil. Multiple reaction monitoring (MRM) was used to detect the drugs and product ion ratios were used for identification. FI-MS/MS was used for semi-quantification and liquid chromatography tandem mass spectrometry (LC-MS/MS) was used for further confirmation and quantification. One of 13 samples has been found to be adulterated with prescription levels of tadalafil and also low level of sildenafil. The method can be used for screening large numbers of herbal products for adulteration since it takes less than 1 min without chromatographic separation on a column.

  1. Simultaneous enantioselective quantification of fluoxetine and norfluoxetine in human milk by direct sample injection using 2-dimensional liquid chromatography-tandem mass spectrometry.

    PubMed

    Alvim-Jr, Joel; Lopes, Bianca Rebelo; Cass, Quezia Bezerra

    2016-06-17

    A two-dimensional liquid chromatography system coupled to triple quadrupole tandem mass spectrometer (2D LC-MS/MS) was employed for the simultaneously quantification of fluoxetine (FLX) and norfluoxetine (NFLX) enantiomers in human milk by direct injection of samples. A restricted access media of bovine serum albumin octadecyl column (RAM-BSAC18) was used in the first dimension for the milk proteins depletion, while an antibiotic-based chiral column was used in the second dimension. The results herein described show good selectivity, extraction efficiency, accuracy, and precision with limits of quantification in the order of 7.5ngmL(-1)for the FLX enantiomers and 10.0ngmL(-1) for NFLX enantiomers. Furthermore, it represents a practical tool in terms of sustainability for the sample preparation of such a difficult matrix.

  2. A rapid HPLC post-column reaction analysis for the quantification of ergothioneine in edible mushrooms and in animals fed a diet supplemented with extracts from the processing waste of cultivated mushrooms.

    PubMed

    Nguyen, The Han; Giri, Anupam; Ohshima, Toshiaki

    2012-07-15

    For establishing an efficient and sensitive method for the quantitative determination of 2-thiol-l-histidine-betaine (ergothioneine, ERG) in edible mushrooms and the blood and muscles of animals, a technique using reversed-phase separation and post-column reaction between 2'-dipyridyl disulphide and ERG was developed. A corresponding derivative 2-thiopyridone, detected at 343 nm, was used for estimating ERG concentration. The flow rate, temperature, pH, and composition of the solution were optimised. A low limit of quantification (1.41 ppm) and a simpler sample preparation made this technique more rapid compared to other methods using liquid chromatography-mass spectrometry. The coefficient of variation (CV) values for the reproducibility and recovery of ERG were within the acceptable values of 6% and 97.5-100.0%, respectively. The efficiency of this methodology was compared with that of spectrophotometric and mass-spectrometric quantitative methods, and was assessed in the light of previous studies. The ERG contents in different mushrooms were 12.69-234.85 mg/kg wet weight basis. Dietary supplementation with extracts from mushroom processing waste significantly improved ERG bioavailability in the blood of yellowtail fish and muscle tissue of cattle.

  3. Simultaneous quantification of three alkaloids of Coptidis Rhizoma in rat urine by high-performance liquid chromatography: application to pharmacokinetic study.

    PubMed

    Tan, Bo; Ma, Yueming; Shi, Rong; Wang, Tianming

    2007-12-01

    A high-performance liquid chromatographic method with ultraviolet detection was established and validated for quantification of three alkaloids (coptisine, palmatine and berberine) in rat urine. Following a single-step liquid-liquid extraction, the analytes were separated on a reversed-phase C(18) column with water-formic acid-triethylamine-methanol as the mobile phase at a flow rate of 1 ml/min. The linear ranges of the calibration curves were 1.6-160 ng/ml for all three alkaloids. The lower limit of quantification was 1.6 ng/ml for all three alkaloids. The within-batch accuracy was 90.4-108.3% for coptisine, 88.6-107.8% for berberine and 88.4-110.1% for palmatine. The between-batch accuracy was 99.3-100.3% for coptisine, 94.3-100.6% for berberine and 93.7-100.0% for palmatine. The within-batch and between-batch precisions were

  4. Laboratory development of methods for centralized treatment of liquid low-level waste at Oak Ridge National Laboratory

    SciTech Connect

    Arnold, W.D.; Bostick, D.T.; Burgess, M.W.; Taylor, P.A.; Perona, J.J.; Kent, T.E.

    1994-10-01

    Improved centralized treatment methods are needed in the management of liquid low-level waste (LLLW) at Oak Ridge National Laboratory (ORNL). LLLW, which usually contains radioactive contaminants at concentrations up to millicurie-per-liter levels, has accumulated in underground storage tanks for over 10 years and has reached a volume of over 350,000 gal. These wastes have been collected since 1984 and are a complex mixture of wastes from past nuclear energy research activities. The waste is a highly alkaline 4-5 M NaNO{sub 3} solution with smaller amounts of other salts. This type of waste will continue to be generated as a consequence of future ORNL research programs. Future LLLW (referred to as newly generated LLLW or NGLLLW) is expected to a highly alkaline solution of sodium carbonate and sodium hydroxide with a smaller concentration of sodium nitrate. New treatment facilities are needed to improve the manner in which these wastes are managed. These facilities must be capable of separating and reducing the volume of radioactive contaminants to small stable waste forms. Treated liquids must meet criteria for either discharge to the environment or solidification for onsite disposal. Laboratory testing was performed using simulated waste solutions prepared using the available characterization information as a basis. Testing was conducted to evaluate various methods for selective removal of the major contaminants. The major contaminants requiring removal from Melton Valley Storage Tank liquids are {sup 90}Sr and {sup 137}Cs. Principal contaminants in NGLLLW are {sup 9O}Sr, {sup 137}Cs, and {sup 106}Ru. Strontium removal testing began with literature studies and scoping tests with several ion-exchange materials and sorbents.

  5. Sampling and analysis plan for ORNL filter press cake waste from the Liquid and Gaseous Waste Operations Department

    SciTech Connect

    Bartling, M.H.; Bayne, C.K.; Cunningham, G.R.

    1994-09-01

    This document defines the sampling and analytical procedures needed for the initial characterization of the filter press cake waste from the Process Waste Treatment Plant (PWTP) at the Oak Ridge National Laboratory (ORNL). It is anticipated that revisions to this document will occur as operating experience and sample results suggest appropriate changes be made. Application of this document will be controlled through the ORNL Waste Management and Remedial Action Division. The sampling strategy is designed to ensure that the samples collected present an accurate representation of the waste process stream. Using process knowledge and preliminary radiological activity screens, the filter press cake waste is known to contain radionuclides. Chemical characterization under the premise of this sampling and analysis plan will provide information regarding possible treatments and ultimately, disposal of filter press cake waste at an offsite location. The sampling strategy and analyses requested are based on the K-25 waste acceptance criteria and the Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements [2, NVO-325, Rev. 1]. The sampling strategy will demonstrate that for the filter press cake waste there is (1) an absence of RCRA and PCBs wastes, (2) an absence of transuranic (TRU) wastes, and (3) a quantifiable amount of radionuclide activity.

  6. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.

    PubMed

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2016-09-01

    The energy conversion potential of municipal solid waste (MSW) disposed of in landfills remains largely untapped because of the slow and variable rate of biogas generation, delayed and inefficient biogas collection, leakage of biogas, and landfill practices and infrastructure that are not geared toward energy recovery. A database consisting of methane (CH4) generation data, the major constituent of biogas, from 49 laboratory experiments and field monitoring data from 57 landfills was developed. Three CH4 generation parameters, i.e., waste decay rate (k), CH4 generation potential (L0), and time until maximum CH4 generation rate (tmax), were calculated for each dataset using U.S. EPA's Landfill Gas Emission Model (LandGEM). Factors influencing the derived parameters in laboratory experiments and landfills were investigated using multi-linear regression analysis. Total weight of waste (W) was correlated with biodegradation conditions through a ranked classification scheme. k increased with increasing percentage of readily biodegradable waste (Br0 (%)) and waste temperature, and reduced with increasing W, an indicator of less favorable biodegradation conditions. The values of k obtained in the laboratory were commonly significantly higher than those in landfills and those recommended by LandGEM. The mean value of L0 was 98 and 88L CH4/kg waste for laboratory and field studies, respectively, but was significantly affected by waste composition with ranges from 10 to 300L CH4/kg. tmax increased with increasing percentage of biodegradable waste (B0) and W. The values of tmax in landfills were higher than those in laboratory experiments or those based on LandGEM's recommended parameters. Enhancing biodegradation conditions in landfill cells has a greater impact on improving k and tmax than increasing B0. Optimizing the B0 and Br0 values of landfilled waste increases L0 and reduces tmax.

  7. Method for the quantification of diamorphine and its metabolites in pediatric plasma samples by liquid chromatography-tandem mass spectrometry.

    PubMed

    Al-Asmari, Ahmed; Anderson, Robert A; Kidd, Susan; Thomson, Alison H

    2010-05-01

    In recent years, intranasal diamorphine (DIM) has been recommended as an alternative to intravenous administration for the treatment of acute-to-severe pain in children. This provides a rapid and less painful route of administration without decreasing the effectiveness of the analgesic properties. A sensitive technique for the detection and quantitation of DIM and its metabolites is essential because of the low concentrations of DIM and metabolites in children's plasma, which are a result of the low dose of DIM given and the limited sample volume obtained from children (0.25 mL or less). DIM can be easily hydrolyzed to 6-monoacetylmorphine (6-MAM) during sample preparation and extraction, so this must be considered when developing a solid-phase extraction (SPE) method to prevent the hydrolysis of DIM. This work was aimed at validating and developing a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method with electrospray ionization for the identification and quantification of DIM and its metabolites, namely 6-MAM, MOR, M3G, M6G, and NMOR in plasma samples obtained from children who are under treatment for acute-to-severe pain. Following the addition of deuterated internal standards, analytes were extracted by SPE with Bond Elut C(18) cartridges followed by LC-MS-MS analysis. Intraday and interday precision for all analytes were determined at five concentration (1, 5, 25, 50, and 200 ng/mL), and these were found to be 2.5-13.4% and 1.8-15%, respectively. Recoveries of analytes of interest were between 81 and 109%. Calibration curves were linear for all analytes over the concentration range 0.1-50 ng/mL, and correlation coefficients were better than 0.999. Limits of detection and quantitation were 0.08-0.37 ng/mL and 0.28-1.22 ng/mL, respectively. DIM and metabolites were detected in all case samples with the exception of NMOR, which tested negative in all cases. The pharmacokinetics of DIM and its metabolites following INDIM and IVDIM administration in

  8. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture

  9. Implementation of environmental compliance for operating radioactive liquid waste systems at the Oak Ridge National Laboratory

    SciTech Connect

    Hooyman, J.H.; Robinson, S.M.

    1992-10-19

    This paper addresses methods being implemented at the Oak Ridge National Laboratory (ORNL) to continue operating while achieving compliance with new standards for liquid low level waste (LLLW) underground storage tank systems. The Superfund Amendment and Reauthorization Act (SARA) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) required that the Department of Energy (DOE) execute a Federal Facility Agreement (FFA) with the Environmental Protection Agency (EPA) within 6 months of listing of the ORNL on the National Priorities List. An FFA for ORNL became effective January 1, 1992 among the EPA, DOE, and the Tennessee Department of Environment and Conservation (TDEC). The agreement ensures that environmental impacts resulting from operations at the Oak Ridge Reservation are investigated and remediated to protect the public health, welfare, and environment.

  10. Preliminary analysis of the ORNL Liquid Low-Level Waste system

    SciTech Connect

    Abraham, T.J.; DePaoli, S.M.; Robinson, S.M.; Walker, A.B.

    1994-08-01

    The objective of this report is to summarize the status of the Liquid Low-Level Waste (LLLW) Systems Analysis project. The focus of this project has been to collect and tabulate data concerning the LLLW system, analyze the current LLLW system operation, and develop the information necessary for the development of long-term treatment options for the LLLW generated at ORNL. The data used in this report were collected through a survey of Oak Ridge National Laboratory (ORNL) literature, various letter reports, and a survey of all current LLLW generators. These data are also being compiled in a user friendly database for ORNL-wide distribution. The database will allow the quick retrieval of all information collected on the ORNL LLLW system and will greatly benefit any LLLW analysis effort. This report summarizes the results for the analyses performed to date on the LLLW system.

  11. Decommissioning strategy for liquid low-level radioactive waste surface storage water reservoir.

    PubMed

    Utkin, S S; Linge, I I

    2016-11-22

    The Techa Cascade of water reservoirs (TCR) is one of the most environmentally challenging facilities resulted from FSUE "PA "Mayak" operations. Its reservoirs hold over 360 mln m(3) of liquid radioactive waste with a total activity of some 5 × 10(15) Bq. A set of actions implemented under a special State program involving the development of a strategic plan aimed at complete elimination of TCR challenges (Strategic Master-Plan for the Techa Cascade of water reservoirs) resulted in considerable reduction of potential hazards associated with this facility. The paper summarizes the key elements of this master-plan: defining TCR final state, feasibility study of the main strategies aimed at its attainment, evaluation of relevant long-term decommissioning strategy, development of computational tools enabling the long-term forecast of TCR behavior depending on various engineering solutions and different weather conditions.

  12. Quantitative analysis of ammonium salts in coking industrial liquid waste treatment process based on Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cao, Ya-Nan; Wang, Gui-Shi; Tan, Tu; Cai, Ting-Dong; Liu, Kun; Wang, Lei; Zhu, Gong-Dong; Mei, Jiao-Xu

    2016-10-01

    Quantitative analysis of ammonium salts in the process of coking industrial liquid waste treatment is successfully performed based on a compact Raman spectrometer combined with partial least square (PLS) method. Two main components (NH4SCN and (NH4)2S2O3) of the industrial mixture are investigated. During the data preprocessing, wavelet denoising and an internal standard normalization method are employed to improve the predicting ability of PLS models. Moreover, the PLS models with different characteristic bands for each component are studied to choose a best resolution. The internal and external calibration results of the validated model show a mass percentage error below 1% for both components. Finally, the repeatabilities and reproducibilities of Raman and reference titration measurements are also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 41405022 and 61475068).

  13. Efficiency of a blast furnace slag cement for immobilizing simulated borate radioactive liquid waste.

    PubMed

    Guerrero, A; Goñi, S

    2002-01-01

    The efficiency of a blast furnace slag cement (Spanish CEM III/B) for immobilizing simulated radioactive borate liquid waste [containing H3BO3, NaCl, Na2SO4 and Na(OH)] has been evaluated by means of a leaching attack in de-mineralized water at the temperature of 40 degrees C over 180 days. The leaching was carried out according to the ANSI/ANS-16.1-1986 test. Moreover, changes of the matrix microstructure were characterized through porosity and pore-size distribution analysis carried out by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) and thermal analysis (TG). The results were compared with those obtained from a calcium aluminate cement matrix, previously published.

  14. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    Macdonald, Digby; Liu, Jun; Liu, Sue; Al-Rifaie, Mohammed; Sikora; Elzbieta

    2000-06-01

    The principal goals of this project are to develop advanced electrochemical emission spectroscopic (EES) methods for monitoring the corrosion of carbon steel in simulated DOE liquid waste and to develop a better understanding of the mechanisms of the corrosion of metals (e.g. iron, nickel, and chromium) and alloys (carbon steel, low alloy steels, stainless steels) in thes e environments. During the first two years of this project, significant advances have been made in developing a better understanding of the corrosion of iron in aqueous solutions as a function of pH, on developing a better understanding of the growth of passive films on metal surfaces, and on developing EES techniques for corrosion monitoring. This report summarizes work on beginning the third year of the 3-year project.

  15. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer

    NASA Astrophysics Data System (ADS)

    Cantarel, V.; Nouaille, F.; Rooses, A.; Lambertin, D.; Poulesquen, A.; Frizon, F.

    2015-09-01

    The solidification/stabilisation of liquid oil waste in metakaolin based geopolymer was studied in the present work. The process consists of obtaining a stabilised emulsion of oil in a water-glass solution and then adding metakaolin to engage the setting of a geopolymer block with an oil emulsion stabilised in the material. Geopolymer/oil composites have been made with various oil fraction (7, 14 and 20 vol.%). The rigidity and the good mechanical properties have been demonstrated with compressive strength tests. Leaching tests evidenced the release of oil from the composite material is very limited whereas the constitutive components of the geopolymer (Na, Si and OH-) are involved into diffusion process.

  16. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-10-15

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value.

  17. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system.

    PubMed

    Zhang, Cunsheng; Su, Haijia; Tan, Tianwei

    2013-10-01

    To avoid the inhibition from both of waste oil and high concentrations of cationic elements, anaerobic digestion of food waste in a dual solid-liquid (ADSL) system was examined in this present paper. Results from batch test indicated that a higher methane yield could be obtained in the ADSL system. The methane yield of food solid waste (FSW), food liquid waste (FLW) and raw food waste (RFW) were 643, 659 and 581 mL/g-VS, respectively. In semi-continuous anaerobic digestion, the optimum organic loading rates (OLR) for FSW, FLW and RFW were 9, 4 and 7 g-VS/L/d, respectively. The total methane production of RFW and ADSL systems, based on 1 kg-VS(RFW), were 405 and 460 L, respectively, indicating that the methane production increased by 13.6% in the ADSL system. The optimum C/N ratio, redistribution of metal element and lower content of waste oil in FSW explain the higher methane production.

  18. Hydrocarbonoclastic biofilms based on sewage microorganisms and their application in hydrocarbon removal in liquid wastes.

    PubMed

    Al-Mailem, D M; Kansour, M K; Radwan, S S

    2014-07-01

    Attempts to establish hydrocarbonoclastic biofilms that could be applied in waste-hydrocarbon removal are still very rare. In this work, biofilms containing hydrocarbonoclastic bacteria were successfully established on glass slides by submerging them in oil-free and oil-containing sewage effluent for 1 month. Culture-dependent analysis of hydrocarbonoclastic bacterial communities in the biofilms revealed the occurrence of the genera Pseudomonas, Microvirga, Stenotrophomonas, Mycobacterium, Bosea, and Ancylobacter. Biofilms established in oil-containing effluent contained more hydrocarbonoclastic bacteria than those established in oil-free effluent, and both biofilms had dramatically different bacterial composition. Culture-independent analysis of the bacterial flora revealed a bacterial community structure totally different from that determined by the culture-dependent method. In microcosm experiments, these biofilms, when used as inocula, removed between 20% and 65% crude oil, n-hexadecane, and phenanthrene from the surrounding effluent in 2 weeks, depending on the biofilm type, the hydrocarbon identity, and the culture conditions. More of the hydrocarbons were removed by biofilms established in oil-containing effluent than by those established in oil-free effluent, and by cultures incubated in the light than by those incubated in the dark. Meanwhile, the bacterial numbers and diversities were enhanced in the biofilms that had been previously used in hydrocarbon bioremediation. These novel findings pave a new way for biofilm-based hydrocarbon bioremediation, both in sewage effluent and in other liquid wastes.

  19. Conditioning of Boron-Containing Low and Intermediate Level Liquid Radioactive Waste - 12041

    SciTech Connect

    Gorbunova, Olga A.; Kamaeva, Tatiana S.

    2012-07-01

    Improved cementation of low and intermediate level radioactive waste (ILW and LLW) aided by vortex electromagnetic treatment as well as silica addition was investigated. Positive effects including accelerated curing of boron-containing cement waste forms, improve end product quality, decreased product volume and reduced secondary LRW volume from equipment decontamination were established. These results established the possibility of boron-containing LRW cementation without the use of neutralizing alkaline additives that greatly increase the volume of the final product intended for long-term storage (burial). Physical (electromagnetic) treatment in a vortex mixer can change the state of LRW versus chemical treatment. By treating the liquid phase of cement solution only, instead of the whole solution, and using fine powder and nano-particles of ferric oxides instead of separable ferromagnetic cores for the activating agents the positive effect are obtained. VET for 1 to 3 minutes yields boron-containing LRW cemented products of satisfactory quality. Silica addition at 10 % by weight will accelerate curing and solidification and to decrease radionuclide leaching rates from boron-containing cement products. (authors)

  20. Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste.

    PubMed

    El Afifi, E M; Attallah, M F; Borai, E H

    2016-01-01

    Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III).

  1. Characterization and monitoring of 300 Area facility liquid waste streams: 1994 Annual report

    SciTech Connect

    Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Julya, J.L.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.; Vogel, H.R.

    1995-04-01

    This report summarizes the results of characterizing and monitoring the following sources during calendar year 1994: liquid waste streams from Buildings 306, 320, 324, 326, 331, and 3720 in the 300 Area of Hanford Site and managed by the Pacific Northwest Laboratory; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe). Data were collected from March to December before the sampling system installation was completed. Data from this initial part of the program are considered tentative. Samples collected were analyzed for chemicals, radioactivity, and general parameters. In general, the concentrations of chemical and radiological constituents and parameters in building wastewaters which were sampled and analyzed during CY 1994 were similar to historical data. Exceptions were the occasional observances of high concentrations of chloride, nitrate, and sodium that are believed to be associated with excursions that were occurring when the samples were collected. Occasional observances of high concentrations of a few solvents also appeared to be associated with infrequent building r eases. During calendar year 1994, nitrate, aluminum, copper, lead, zinc, bis(2-ethylhexyl) phthalate, and gross beta exceeded US Environmental Protection Agency maximum contaminant levels.

  2. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.

    PubMed

    Hong, Feng; Guo, Xiang; Zhang, Shuo; Han, Shi-fen; Yang, Guang; Jönsson, Leif J

    2012-01-01

    Cotton-based waste textiles were explored as alternative feedstock for production of bacterial cellulose (BC) by Gluconacetobacter xylinus. The cellulosic fabrics were treated with the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl). [AMIM]Cl caused 25% inactivation of cellulase activity at a concentration as low as of 0.02 g/mL and decreased BC production during fermentation when present in concentrations higher than 0.0005 g/mL. Therefore, removal of residual IL by washing with hot water was highly beneficial to enzymatic saccharification as well as BC production. IL-treated fabrics exhibited a 5-7-fold higher enzymatic hydrolysis rate and gave a seven times larger yield of fermentable sugars than untreated fabrics. BC from cotton cloth hydrolysate was obtained at an yield of 10.8 g/L which was 83% higher than that from the culture grown on glucose-based medium. The BC from G. xylinus grown on IL-treated fabric hydrolysate had a 79% higher tensile strength than BC from glucose-based culture medium which suggests that waste cotton pretreated with [AMIM]Cl has potential to serve as a high-quality carbon source for BC production.

  3. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation.

    PubMed

    Sun, Xunwen; Lu, Canhui; Zhang, Wei; Tian, Dong; Zhang, Xinxing

    2013-10-15

    Isolation of cellulose from waste polyester/cotton blended fabrics (WBFs) is a bottleneck for recycling and exploiting waste textiles. The objective of this study was to provide a new environmental-friendly and efficient approach for extracting cellulose derivatives and polyester from WBFs. A Bronsted acidic ionic liquid (IL) N-methyl-imidazolium bisulfate, [Hmim]HSO4, was used as a novel catalyst for acetylation of cellulose rather than a solvent with the aim to overcome low isolation efficiency associated with the very high viscosity and relatively high costs of ILs. The extraction yield of acetone-soluble cellulose acetate (CA) was 49.3%, which corresponded to a conversion of 84.5% of the cellulose in the original WBFs; meanwhile, 96.2% of the original poly(ethylene terephthalate) (PET) was recovered. The extracted CA was characterized by (1)H NMR, FTIR, XRD and TGA analysis, and the results indicated that high purity acetone-soluble CA and carbohydrate-free PET could be isolated in this manner from WBFs.

  4. Possible overestimation of surface disinfection efficiency by assessment methods based on liquid sampling procedures as demonstrated by in situ quantification of spore viability.

    PubMed

    Grand, I; Bellon-Fontaine, M-N; Herry, J-M; Hilaire, D; Moriconi, F-X; Naïtali, M

    2011-09-01

    The standard test methods used to assess the efficiency of a disinfectant applied to surfaces are often based on counting the microbial survivors sampled in a liquid, but total cell removal from surfaces is seldom achieved. One might therefore wonder whether evaluations of microbial survivors in liquid-sampled cells are representative of the levels of survivors in whole populations. The present study was thus designed to determine the "damaged/undamaged" status induced by a peracetic acid disinfection for Bacillus atrophaeus spores deposited on glass coupons directly on this substrate and to compare it to the status of spores collected in liquid by a sampling procedure. The method utilized to assess the viability of both surface-associated and liquid-sampled spores included fluorescence labeling with a combination of Syto 61 and Chemchrome V6 dyes and quantifications by analyzing the images acquired by confocal laser scanning microscopy. The principal result of the study was that the viability of spores sampled in the liquid was found to be poorer than that of surface-associated spores. For example, after 2 min of peracetic acid disinfection, less than 17% ± 5% of viable cells were detected among liquid-sampled cells compared to 79% ± 5% or 47% ± 4%, respectively, when the viability was evaluated on the surface after or without the sampling procedure. Moreover, assessments of the survivors collected in the liquid phase, evaluated using the microscopic method and standard plate counts, were well correlated. Evaluations based on the determination of survivors among the liquid-sampled cells can thus overestimate the efficiency of surface disinfection procedures.

  5. Function and requirement for a waste disloging and conveyance system for the Idaho National Engineering Laboratory high level liquid waste tanks

    SciTech Connect

    Mullen, O.D.

    1996-09-10

    In 1990 the U.S. Department of Energy (DOE) Office of Technology Development initiated the Light Duty Utility Arm (LDUA) program to support the Consent Order between the State of Idaho, U.S. Department of Energy, and the Environmental Protection Agency that requires ceasing use of the 11 high-level liquid waste (HLLW) storage tanks at the Idaho Chemical Processing Plant (ICPP).

  6. Effects of hydraulic retention time (HRT) on denitrification using waste activated sludge thermal hydrolysis liquid and acidogenic liquid as carbon sources.

    PubMed

    Guo, Yiding; Guo, Liang; Sun, Mei; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2017-01-01

    Waste activated sludge (WAS) internal carbon source can efficiently and economically enhance denitrification, and hydraulic retention time (HRT) is one of the most important operational parameters for denitrification. The effects of HRT on denitrification were investigated with WAS thermal hydrolysis liquid and acidogenic liquid as carbon sources in this study. The optimal HRT was 12h for thermal hydrolysis liquid and 8h for acidogenic liquid, with NO3(-)-N removal efficiency of 91.0% and 97.6%, respectively. In order to investigate the utilization of sludge carbon source by denitrifier, the changes of SCOD (Soluble chemical oxygen demand), proteins, carbohydrates, and VFAs (Volatile fatty acids) during denitrification process were analyzed and three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with fluorescence regional integration (FRI) analysis was introduced. The kinetics parameters of denitrification rate (VDN), denitrification potential (PDN) and heterotroph anoxic yield (YH) were also investigated using sludge carbon source at different HRT.

  7. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.

    PubMed

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-06-15

    The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system.

  8. Liquid chromatography-tandem mass spectrometry method for identification and quantification of two biologically active polyisoprenylated benzophenones, isoxanthochymol and camboginol, in Garcinia species.

    PubMed

    Chattopadhyay, Sunil K; Kumar, Satyanshu

    2007-11-01

    A sensitive liquid chromatography/electrospray ionization tandem mass spectrometrical (LC/ESI-MS/MS) method was developed for simultaneous identification and quantification of two polyisoprenylated benzophenones, isoxanthochymol and camboginol, in the extracts of the fruit rinds, stem bark, seed and leaves of Garcinia indica and in the fruit rinds of Garcinia cambogia. The separation of isoxanthochymol and camboginol was achieved on an RP-8 column using the solvent system consisting of a mixture of acetonitrile-water (80:20) and methanol-acetic acid (99.0:1.0) as a mobile phase in a gradient elution mode. A multiple reaction monitoring (MRM) method was developed for quantification of isoxanthochymol and camboginol in the above extracts of Garcinia species. Based on a signal-to-noise ratio of 3, the limits of detection in MRM mode for isoxanthochymol and camboginol were 2.0 and 5.0 ng/mL respectively. The method was validated in terms of linearity, accuracy and precision for 6 days. The method developed was found to be useful for identification and quantification of isoxanthochymol and camboginol in the extracts of the fruit rinds, stem bark, seed and leaves of Garcinia indica and in the fruit rinds of Garcinia cambogia.

  9. A highly specific and sensitive quantification analysis of the sterols in silkworm larvae by high performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Igarashi, Fumihiko; Hikiba, Juri; Ogihara, Mari H; Nakaoka, Takayoshi; Suzuki, Minoru; Kataoka, Hiroshi

    2011-12-15

    The biochemical quantification of sterols in insects has been difficult because only small amounts of tissues can be obtained from insect bodies and because sterol metabolites are structurally related. We have developed a highly specific and sensitive quantitative method for determining of the concentrations of seven sterols-7-dehydrocholesterol, desmosterol, cholesterol, ergosterol, campesterol, stigmasterol, and β-sitosterol-using a high performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (HPLC/APCI-MS/MS). The sterols were extracted from silkworm larval tissues using the Bligh and Dyer method and were analyzed using HPLC/APCI-MS/MS with selected reaction monitoring, using cholesterol-3,4-(13)C(2) as an internal standard. The detection limits of the method were between 12.1 and 259 fmol. The major sterol in most silkworm larval tissues was cholesterol, whereas only small quantities of the dietary sterols were detected. Thus, a simple, sensitive, and specific method was successfully developed for the quantification of the sterol concentrations in each tissue of an individual silkworm larva. This method will be a useful tool for investigating to molecular basis of sterol physiology in insects, facilitating the quantification of femtomole quantities of sterols in biological samples.

  10. Quantification of gadodiamide as Gd in serum, peritoneal dialysate and faeces by inductively coupled plasma atomic emission spectroscopy and comparative analysis by high-performance liquid chromatography.

    PubMed

    Normann PT-; Joffe, P; Martinsen, I; Thomsen, H S

    2000-07-01

    An inductively coupled plasma atomic emission spectroscopy (ICP-AES) method for determination of gadodiamide as Gd in serum, peritoneal dialysate and faeces was developed. The within-day and between-day precision for determination of Gd in serum and peritoneal dialysate were 0.60-2.9 and 1.8-4.4%, respectively, and the accuracy was 98.0-99.3%. The quantification limits in serum and peritoneal dialysate were 6.5 and 1.6 microM Gd, respectively. The within-day and between-day precision determination of gadolinium in faeces were 1.0-5.3 and 2.2-7.9%, respectively, and the accuracy was 104-116%. The quantification limit was 11 nmol Gd/g dry weight. For the high-performance liquid chromatography (HPLC) method, the within-day precision in determination of gadodiamide in peritoneal dialysate was 1.2% and the accuracy was 103%. The quantification limit was 0.9 microM Gd. Comparative analysis of gadodiamide in serum and peritoneal dialysate from severely impaired renal patients by ICP-AES and HPLC revealed no metabolism of chelator or transmetallation of gadolinium, even in samples obtained as long as 7 days after dosing. Furthermore, the ICP-AES determination of Gd in faeces allows for the determination of faeces content of Gd corresponding to less than 0.1% of a clinical dosage of a Gd-based contrast medium.

  11. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.

    PubMed

    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J

    2013-10-18

    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids.

  12. Validated Method for the Quantification of Baclofen in Human Plasma Using Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Nahar, Limon Khatun; Cordero, Rosa Elena; Nutt, David; Lingford-Hughes, Anne; Turton, Samuel; Durant, Claire; Wilson, Sue; Paterson, Sue

    2016-03-01

    A highly sensitive and fully validated method was developed for the quantification of baclofen in human plasma. After adjusting the pH of the plasma samples using a phosphate buffer solution (pH 4), baclofen was purified using mixed mode (C8/cation exchange) solid-phase extraction (SPE) cartridges. Endogenous water-soluble compounds and lipids were removed from the cartridges before the samples were eluted and concentrated. The samples were analyzed using triple-quadrupole liquid chromatography-tandem mass spectrometry (LC-MS-MS) with triggered dynamic multiple reaction monitoring mode for simultaneous quantification and confirmation. The assay was linear from 25 to 1,000 ng/mL (r(2) > 0.999; n = 6). Intraday (n = 6) and interday (n = 15) imprecisions (% relative standard deviation) were <5%, and the average recovery was 30%. The limit of detection of the method was 5 ng/mL, and the limit of quantification was 25 ng/mL. Plasma samples from healthy male volunteers (n = 9, median age: 22) given two single oral doses of baclofen (10 and 60 mg) on nonconsecutive days were analyzed to demonstrate method applicability.

  13. Microbial communities in liquid and fiber fractions of food waste digestates are differentially resistant to inhibition by ammonia.

    PubMed

    Peng, Wei; Lü, Fan; Shao, Liming; He, Pinjing

    2015-04-01

    The effect of different concentrations of ammonia (1.0-7.0 g/L) during mesophilic anaerobic digestion with fiber or liquid digestate as inoculum was examined. Evolution of microbial community within fiber and liquid digestates was quantitatively assessed by the intact lipid analysis methods and qualitatively by DNA fingerprint methods in order to determine their resistance to ammonia inhibition. The results showed that an increased level of total ammonia nitrogen prolonged the lag phase of fiber digestates while reduced the metabolic rate of liquid digestates. Fiber digestates had 19.6-50.9-fold higher concentrations of phospholipid fatty acids (PLFA) compared to liquid digestates, whereas concentrations of phospholipid ether lipids (PLEL) in the fiber digestates were only 2.91-17.6-fold higher compared to liquid digestates. Although the cell concentration in liquid fraction was far lower than that in the fiber one, the ammonia-resistant ability and the methanization efficiency of the liquid digestate was superior to the fiber digestate. The bacterial profiles were affected more by the type of digestate inoculum compared to the concentration of ammonia. Principal component analysis indicated that the lipids technique was superior to the DNA technique for bacterial quantification but detected less archaeal diversity.

  14. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    SciTech Connect

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The

  15. Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes.

    PubMed

    Del Mundo Dacera, Dominica; Babel, Sandhya; Parkpian, Preeda

    2009-08-15

    The suitability for land application of anaerobically digested sewage sludge treated with naturally fermented and Aspergillus niger (A. niger) fermented raw liquid from pineapple wastes, in terms of changes in the forms and amount of heavy metals and nutrient and pathogen content, were investigated in this study. Leaching studies for fermented liquid at optimum conditions (pH and contact time with best metal removal efficiencies) were carried out for the removal of Cd, Cr, Cu, Pb, Ni and Zn from sewage sludge, with citric acid as a reference. Using the same sludge before and after leaching, sequential fractionation studies were done to observe the effect of treatment on the forms of metals in sludge and their mobility and bioavailability. Results of laboratory scale studies revealed that leaching with all extractants at selected optimum conditions resulted in a decrease in heavy metals and pathogen content of the treated sludge, presence of sufficient amount of nutrients (nitrogen and phosphorous) and dominance of residual fractions in most metals, with sludge treated with A. niger, having the best quality. The results, therefore, indicate the high potential of the treated sludge for land application, with no harm from heavy metals released and no toxicity to the soil and groundwater.

  16. Current status and performance assessment for the Techa cascade of reservoirs - liquid radioactive waste storage facility

    SciTech Connect

    Linge, Igor I.; Utkin, Sergey S.; Mokrov, Yury G.; Drozhko, Evgeny G.

    2013-07-01

    The Techa cascade of water reservoirs is the world's largest open storage facility for liquid low-level radioactive waste. Its capacity is about 360 mln. m{sup 3}, it occupies an area of more than 65 km{sup 2}, the total activity accumulated in the water and sediments is about 6.10{sup 15} Bq. The major challenge facing the Techa cascade is virtually uncontrollable water level changes. The water level rise can cause significant pollution of the environment. From the late 1990's onwards, the issue of the Techa cascade safety assurance is considered to be one of the major challenges pertaining to nuclear legacy for 'Mayak' and Russia as a whole. Unlike other industrial water reservoirs the Techa cascade liquidation is estimated as highly unrealistic. The main objectives of the paper are: - brief results summary of the practical works on safety improvement at the Techa cascade carried out over the past decade; - introduction the works on the Techa cascade performance assessment; - determination of the existing risks and strategic areas for solving the problem. (authors)

  17. Pyrolysis mechanism for recycle renewable resource from polarizing film of waste liquid crystal display panels.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2014-08-15

    Liquid crystal display (LCD) panels mainly consist of polarizing film, liquid crystal and glass substrates. In this study, a novel pyrolysis model and a pyrolysis mechanism to recover the reusable resource from polarizing film of waste LCD panels was proposed. Polarizing film and its major components, such as cellulose triacetate (TAC) and polyvinyl alcohol (PVA) were pyrolyzed, respectively, to model the pyrolysis process. The pyrolysis process mainly generated a large ratio of oil, a few gases and a little residue. Acetic acid was the main oil product and could be easily recycled. The pyrolysis mechanism could be summarized as follows: (i) TAC, the main component of polarizing film, was heated and generated active TAC with a low polymerization, and then decomposed into triacetyl-d-glucose. (ii) Some triacetyl-d-glucose generated triacetyl-d-mannosan and its isomers through an intramolecular dehydration, while most triacetyl-d-glucose generated the main oil product, namely acetic acid, through a six-member cyclic transition state. (iii) Meanwhile, other products formed through a series of bond cleavage, dehydration, dehydrogenation, interesterification and Diels-Alder cycloaddition. This study could contribute significantly to understanding the polarizing film pyrolysis performance and serve as guidance for the future technological parameters control of the pyrolysis process.

  18. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids.

    PubMed

    Chen, Mengjun; Huang, Jinxiu; Ogunseitan, Oladele A; Zhu, Nengming; Wang, Yan-min

    2015-07-01

    Waste printed circuit boards (WPCBs) are attracting increasing concerns because the recovery of its content of valuable metallic resources is hampered by the presence of hazardous substances. In this study, we used ionic liquids (IL) to leach copper from WPCBs. [BSO3HPy]OTf, [BSO3HMIm]OTf, [BSO4HPy]HSO4, [BSO4HMim]HSO4 and [MIm]HSO4 were selected. Factors that affect copper leaching rate were investigated in detail and their leaching kinetics were also examined with the comparison of [Bmim]HSO4. The results showed that all six IL acids could successfully leach copper out, with near 100% recovery. WPCB particle size and leaching time had similar influences on copper leaching performance, while IL acid concentration, hydrogen peroxide addition, solid to liquid ratio, temperature, showed different influences. Moreover, IL acid with HSO4(-) was more efficient than IL acid with CF3SO3(-). These six IL acids indicate a similar behavior with common inorganic acids, except temperature since copper leaching rate of some IL acids decreases with its increase. The results of leaching kinetics studies showed that diffusion plays a more important role than surface reaction, whereas copper leaching by inorganic acids is usually controlled by surface reaction. This innovation provides a new option for recovering valuable materials such as copper from WPCBs.

  19. Rapid and accurate liquid chromatography and tandem mass spectrometry method for the simultaneous quantification of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes.

    PubMed

    Shi, Rong; Ma, Bingliang; Wu, Jiasheng; Wang, Tianming; Ma, Yueming

    2015-10-01

    The hepatic cytochrome P450 enzymes play a central role in the biotransformation of endogenous and exogenous substances. A sensitive high-throughput liquid chromatography with tandem mass spectrometry assay was developed and validated for the simultaneous quantification of the products of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes. After the substrates were incubated separately, the samples were pooled and analyzed by liquid chromatography with tandem mass spectrometry using an electrospray ionization source in the positive and negative ion modes. The method exhibited linearity over a broad concentration range, insensitivity to matrix effects, and high accuracy, precision, and stability. The novel method was successfully applied to study the kinetics of phenacetin-O deethylation, coumarin-7 hydroxylation, bupropion hydroxylation, taxol-6 hydroxylation, omeprazole-5 hydroxylation, dextromethorphan-O demethylation, tolbutamide-4 hydroxylation, chlorzoxazone-6 hydroxylation, testosterone-6β hydroxylation, and midazolam-1 hydroxylation in rat liver microsomes.

  20. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples

  1. Circulation convection during subsurface injection of liquid waste, St. Petersburg, Florida

    USGS Publications Warehouse

    Hickey, J.J.

    1989-01-01

    Injection of liquid waste into a highly transmissive, saltwater-bearing, fractured dolomite underlying the city of St. Petersburg, Florida, provided an opportunity to study density-dependent flow associated with two miscible and density-different liquids. The injection zone was 98 m thick with a radial hydraulic conductivity of 762 m/d and a vertical hydraulic conductivity of 152 m/d. Mean chloride concentrations of the injectant during two tests of 91 and 366 days duration were 180 and 170 mg/L, respectively, whereas chloride concentration of native salt water ranged from 19,000 to 20,000 mg/L. During the 366-day test, chloride concentration in water from a well open to the upper part of the injection zone 223 m from the injection well approximately stabilized at about 4000 mg/L. Relatively constant chloride concentrations in water from this observation well at a level significantly greater than the injectant concentration suggested the hypothesis that circular convection with saltwater flow added chloride ions to the injection zone flow sampled at the observation well. In order to assess the acceptability of the circular convection hypothesis, information was required about the velocity field during injection. Mass transport model simulations were used to provide this information, after determining that the fractured injection zone could be treated as an equivalent porous medium with a single porosity. The mass transport model was calibrated using the 91-day test data from two observation wells 223 m from the injection well. The model was then run without parameter changes to simulate the 366-day test. Mass fractions of injectant computed for four observation wells during the 366-day test compared favorably with observed mass fractions. Observed mass fractions were calculated as a function of chloride concentration and density. Comparisons between model-computed mass fraction and velocity fields in a radial section showed circular convection, with salt water

  2. Hydrophilic interaction liquid chromatography/positive ion electrospray ionization mass spectrometry method for the quantification of alprazolam and α-hydroxy-alprazolam in human plasma.

    PubMed

    Kalogria, Eleni; Pistos, Constantinos; Panderi, Irene

    2013-12-30

    A hydrophilic interaction liquid chromatography/positive ion electrospray-mass spectrometry (HILIC-ESI/MS) has been developed and fully validated for the quantification of alprazolam and its main metabolite, α-hydroxy-alprazolam, in human plasma. The assay is based on 50μL plasma samples, following liquid-liquid extraction. All analytes and the internal standard (tiamulin) were separated by hydrophilic interaction liquid chromatography using an X-Bridge-HILIC analytical column (150.0mm×2.1mm i.d., particle size 3.5μm) under isoscratic elution. The mobile phase was composed of a 7% 10mM ammonium formate water solution in acetonitrile and pumped at a flow rate of 0.20mLmin(-1). Running in positive electrospray ionization and selected ion monitoring (SIM) the mass spectrometer was set to analyze the protonated molecules [M+H](+) at m/z 309, 325 and 494 for alprazolam, α-hydroxy-alprazolam and tiamulin (ISTD) respectively. The assay was linear over the concentration range of 2.5-250ngmL(-1) for alprazolam and 2.5-50ngmL(-1) for α-hydroxy alprazolam. Intermediate precision was less than 4.1% over the tested concentration ranges. The method is the first reported application of HILIC in the analysis benzodiazepines in human plasma. With a small sample size (50μL human plasma) and a run time less than 10.0min for each sample the method can be used to support a wide range of clinical studies concerning alprazolam quantification.

  3. Buprenorphine and norbuprenorphine quantification in human plasma by simple protein precipitation and ultra-high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Lüthi, Guillaume; Blangy, Valeria; Eap, Chin B; Ansermot, Nicolas

    2013-04-15

    A highly sensitive ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for the quantification of buprenorphine and its major metabolite norbuprenorphine in human plasma. In order to speed up the process and decrease costs, sample preparation was performed by simple protein precipitation with acetonitrile. To the best of our knowledge, this is the first application of this extraction technique for the quantification of buprenorphine in plasma. Matrix effects were strongly reduced and selectivity increased by using an efficient chromatographic separation on a sub-2 μm column (Acquity UPLC BEH C18 1.7 μm, 2.1×50 mm) in 5 min with a gradient of ammonium formate 20 mM pH 3.05 and acetonitrile as mobile phase at a flow rate of 0.4 ml/min. Detection was made using a tandem quadrupole mass spectrometer operating in positive electrospray ionization mode, using multiple reaction monitoring. The procedure was fully validated according to the latest Food and Drug Administration guidelines and the Société Française des Sciences et Techniques Pharmaceutiques. Very good results were obtained by using a stable isotope-labeled internal standard for each analyte, to compensate for the variability due to the extraction and ionization steps. The method was very sensitive with lower limits of quantification of 0.1 ng/ml for buprenorphine and 0.25 ng/ml for norbuprenorphine. The upper limit of quantification was 250 ng/ml for both drugs. Trueness (98.4-113.7%), repeatability (1.9-7.7%), intermediate precision (2.6-7.9%) and internal standard-normalized matrix effects (94-101%) were in accordance with international recommendations. The procedure was successfully used to quantify plasma samples from patients included in a clinical pharmacogenetic study and can be transferred for routine therapeutic drug monitoring in clinical laboratories without further development.

  4. Simultaneous quantification of the major bile acids in artificial Calculus bovis by high-performance liquid chromatography with precolumn derivatization and its application in quality control.

    PubMed

    Shi, Yan; Xiong, Jing; Sun, Dongmei; Liu, Wei; Wei, Feng; Ma, Shuangcheng; Lin, Ruichao

    2015-08-01

    An accurate and sensitive high-performance liquid chromatography method coupled with ultralviolet detection and precolumn derivatization was developed for the simultaneous quantification of the major bile acids in Artificial Calculus bovis, including cholic acid, hyodeoxycholic acid, chenodeoxycholic acid, and deoxycholic acid. The extraction, derivatization, chromatographic separation, and detection parameters were fully optimized. The samples were extracted with methanol by ultrasonic extraction. Then, 2-bromine-4'-nitroacetophenone and 18-crown ether-6 were used for derivatization. The chromatographic separation was performed on an Agilent SB-C18 column (250 × 4.6 mm id, 5 μm) at a column temperature of 30°C and liquid flow rate of 1.0 mL/min using water and methanol as the mobile phase with a gradient elution. The detection wavelength was 263 nm. The method was extensively validated by evaluating the linearity (r(2) ≥ 0.9980), recovery (94.24-98.91%), limits of detection (0.25-0.31 ng) and limits of quantification (0.83-1.02 ng). Seventeen samples were analyzed using the developed and validated method. Then, the amounts of bile acids were analyzed by hierarchical agglomerative clustering analysis and principal component analysis. The results of the chemometric analysis showed that the contents of these compounds reflect the intrinsic quality of artificial Calculus bovis, and two compounds (hyodeoxycholic acid and chenodeoxycholic acid) were the most important markers for quality evaluating.

  5. A three phase hollow fiber liquid-phase microextraction for quantification of lamotrigine in plasma of epileptic patients by capillary electrophoresis.

    PubMed

    Barros, Luiza Saldanha Ribeiro; Carrão, Daniel Blascke; Queiroz, Regina Helena Costa; de Oliveira, Anderson Rodrigo Moraes; de Gaitani, Cristiane Masetto

    2016-10-01

    A three phase hollow fiber liquid-phase microextraction technique combined with capillary electrophoresis was developed to quantify lamotrigine (LTG) in plasma samples. The analyte was extracted from 4.0 mL of a basic donor phase (composed of 0.5 mL of plasma and 3.5 mL of sodium phosphate solution pH 9.0) through a supported liquid membrane composed of 1-octanol immobilized in the pores of the hollow fiber, and to an acidic acceptor phase (hydrochloric acid solution pH 4.0) placed in the lumen of the fiber. The extraction was carried out for 30 min at 500 rpm. The eletrophoretic analysis was carried out in 130 mmol/L MES buffer, pH 5.0 with a constant voltage of +15 kV and 20°C. Sample injections were performed for 10 s, at a pressure of 0.5 psi. The detection was performed at 214 nm for both LTG and the internal standard lidocaine. Under the optimized conditions, the method showed a limit of quantification of 1.0 μg/mL and was linear over the plasmatic concentration range of 1.0-20.0 μg/mL. Finally, the validated method was applied for the quantification of LTG in plasma samples of epileptic patients.

  6. Ultrapressure liquid chromatography-tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for quantification of 4-methoxydiphenylmethane in pharmacokinetic evaluation.

    PubMed

    Farhan, Nashid; Fitzpatrick, Sean; Shim, Yun M; Paige, Mikell; Chow, Diana Shu-Lian

    2016-09-05

    4-Methoxydiphenylmethane (4-MDM), a selective augmenter of Leukotriene A4 Hydrolase (LTA4H), is a new anti-inflammatory compound for potential treatment of chronic obstructive pulmonary disease (COPD). Currently, there is no liquid chromatography tandem mass spectrometric (LC-MS/MS) method for the quantification of 4-MDM. A major barrier for developing the LC-MS/MS method is the inability of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) to ionize 4-MDM due to its hydrophobicity and lack of any functional group for ionization. With the advent of atmospheric pressure photoionization (APPI) technique, many hydrophobic compounds have been demonstrated to ionize by charge transfer reactions. In this study, a highly sensitive ultrapressure liquid chromatography tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for the quantifications of 4-MDM in rat plasma has been developed and validated. 4-MDM was extracted from the plasma by solid phase extraction (SPE) and separated chromatographically using a reverse phase C8 column. The photoionization (PI) was achieved by introducing anisole as a dopant to promote the reaction of charge transfer. The assay with a linear range of 5 (LLOQ)-400ngmL(-1) met the regulatory requirements for accuracy, precision and stability. The validated assay was employed to quantify the plasma concentrations of 4-MDM after an oral dosing in Sprague Dawley (SD) rats.

  7. Parallel ultra high pressure liquid chromatography-mass spectrometry for the quantification of HIV protease inhibitors using dried spot sample collection format.

    PubMed

    Watanabe, Kyoko; Varesio, Emmanuel; Hopfgartner, Gérard

    2014-08-15

    An assay was developed and validated for the quantification of eight protease inhibitors (indinavir (IDV), ritonavir (RTV), lopinavir (LPV), saquinavir (SQV), amprenavir (APV), nelfinavir (NFV), atazanavir (AZV) and darunavir (DRV)) in dried plasma spots using parallel ultra-high performance liquid chromatography and mass spectrometry detection in the multiple reaction monitoring mode. For each analyte an isotopically labeled internal standard was used and the assay based on liquid-solid extraction the area response ratio (analyte/IS) was found to be linear; from 0.025 μg/ml to 20 μg/ml for IDV, SQV, DRV, AZV, LPV, from 0.025 μg/ml to 10 μg/ml for NFV, APV and from 0.025 μg/ml to 5 μg/ml for RTV using 15 μl of plasma spotted on filter paper placed in a sample tube. The total analysis time was of 4 min and inter-assay accuracies and precisions were in the range of 87.7-109% and 2.5-11.8%, respectively. On dried plasma spots all analytes were found to be stable for at least 7 days. Practicability of the assay to blood was also demonstrated. The sample drying process could be reduced to 5 min using a commercial microwave system without any analyte degradation. Together with quantification, confirmatory analysis was performed on representative clinical samples.

  8. Identification and quantification of the antipsychotics risperidone, aripiprazole, pipamperone and their major metabolites in plasma using ultra-high performance liquid chromatography-mass spectrometry.

    PubMed

    Wijma, Rixt A; van der Nagel, Bart C H; Dierckx, Bram; Dieleman, Gwen C; Touw, Daan J; van Gelder, Teun; Koch, Birgit C P

    2016-06-01

    The antipsychotics risperidone, aripiprazole and pipamperone are frequently prescribed for the treatment in children with autism. The aim of this study was to validate an ultra-high performance liquid chromatography-mass spectrometry method for the quantification of these antipsychotics in plasma. An ultra-high performance liquid chromatography-mass spectrometry assay was developed for the determination of the drugs and metabolites. Gradient elution was performed on a reversed-phase column with a mobile phase consisting of ammonium acetate, formic acid in methanol or in Milli-Q ultrapure water at a flow rate of 0.5 mL/min. The method was validated according to the US Food and Drug Administration guidelines. The analytes were found to be stable enough after reconstitution and injection of only 5 μL improved the accuracy and precision in combination with the internal standard. Calibration curves of all five analytes were linear. All analytes were stable for at least 72 h in the autosampler and the high quality control of 9-OH-risperidone was stable for 48 h. The method allows quantification of all analytes. The advantage of this method is the combination of a minimal injection volume, a short run-time, an easy sample preparation method and the ability to quantify all analytes in one run. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa

    SciTech Connect

    Friedrich, Elena; Trois, Cristina

    2011-07-15

    The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

  10. Quantification of greenhouse gas emissions from waste management processes for municipalities--a comparative review focusing on Africa.

    PubMed

    Friedrich, Elena; Trois, Cristina

    2011-07-01

    The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

  11. A hybrid liquid-phase precipitation (LPP) process in conjunction with membrane distillation (MD) for the treatment of the INEEL sodium-bearing liquid waste.

    PubMed

    Bader, M S H

    2005-05-20

    A novel hybrid system combining liquid-phase precipitation (LPP) and membrane distillation (MD) is integrated for the treatment of the INEEL sodium-bearing liquid waste. The integrated system provides a "full separation" approach that consists of three main processing stages. The first stage is focused on the separation and recovery of nitric acid from the bulk of the waste stream using vacuum membrane distillation (VMD). In the second stage, polyvalent cations (mainly TRU elements and their fission products except cesium along with aluminum and other toxic metals) are separated from the bulk of monovalent anions and cations (dominantly sodium nitrate) by a front-end LPP. In the third stage, MD is used first to concentrate sodium nitrate to near saturation followed by a rear-end LPP to precipitate and separate sodium nitrate along with the remaining minor species from the bulk of the aqueous phase. The LPP-MD hybrid system uses a small amount of an additive and energy to carry out the treatment, addresses multiple critical species, extracts an economic value from some of waste species, generates minimal waste with suitable disposal paths, and offers rapid deployment. As such, the LPP-MD could be a valuable tool for multiple needs across the DOE complex where no effective or economic alternatives are available.

  12. Collective dose estimates by the marine food pathway from liquid radioactive wastes dumped in the Sea of Japan.

    PubMed

    Togawa, O; Povinec, P P; Pettersson, H B

    1999-09-30

    IAEA-MEL has been engaged in an assessment programme related to radioactive waste dumping by the former USSR and other countries in the western North Pacific Ocean and its marginal seas. This paper focuses on the Sea of Japan and on estimation of collective doses from liquid radioactive wastes. The results from the Japanese-Korean-Russian joint expeditions are summarized, and collective doses for the Japanese population by the marine food pathway are estimated from liquid radioactive wastes dumped in the Sea of Japan and compared with those from global fallout and natural radionuclides. The collective effective dose equivalents by the annual intake of marine products caught in each year show a maximum a few years after the disposals. The total dose from all radionuclides reaches a maximum of 0.8 man Sv in 1990. Approximately 90% of the dose derives from 137Cs, most of which is due to consumption of fish. The total dose from liquid radioactive wastes is approximately 5% of that from global fallout, the contribution of which is below 0.1% of that of natural 210Po.

  13. Chemical changes in an industrial waste liquid during post-injection movement in a limestone aquifer, Pensacola, Florida

    USGS Publications Warehouse

    Ehrlich, G.G.; Godsy, E.M.; Pascale, C.A.; Vecchioli, John

    1979-01-01

    An industrial waste liquid containing organonitrile compounds and nitrate ion has been injected into the lower limestone of the Floridan aquifer near Pensacola, Florida since June 1975. Chemical analyses of water from monitor wells and backflow from the injection well indicate that organic carbon compounds are converted to CO2 and nitrate is converted to N2. These transformations are caused by bacteria immediately after injection, and are virtually completed within 100 m of the injection well. The zone near the injection well behaves like an anaerobic filter with nitrate respiring bacteria dominating the microbial flora in this zone.Sodium thiocyanate contained in the waste is unaltered during passage through the injection zone and is used to detect the degree of mixing of injected waste liquid with native water at a monitor well 312 m (712 ft) from the injection well. The dispersivity of the injection zone was calculated to be 10 m (33 ft). Analyses of samples from the monitor well indicate 80 percent reduction in chemical oxygen demand and virtually complete loss of organonitriles and nitrate from the waste liquid during passage from the injection well to the monitor well. Bacterial densities were much lower at the monitor well than in backflow from the injection well.

  14. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    PubMed

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  15. Identification and characterization of microorganisms from earthworm viscera for the conversion of fish wastes into liquid fertilizer.

    PubMed

    Kim, Joong Kyun; Dao, Van Thingoc; Kong, In Soo; Lee, Hyung Ho

    2010-07-01

    Five bacteria isolated from earthworm viscera and identified as Brevibacillus agri, Bacillus cereus, Bacillus licheniformis, and Brevibacillus parabrevis by 16S rRNA sequencing were employed in the conversion of fish wastes generated from a restaurant specializing in sliced raw fish into fertilizer. Within 120h after inoculation of autoclaved fish waste with 5.15 x 10(5) CFU ml(-1) mixed isolates, the amount of dry sludge decreased from 29.4 to 0.2g, the pH changed from 7.05 to 5.70, and the cell number reached 6.45 x 10(5) CFU ml(-1). Analyses of an 84-h culture of inoculated fish waste indicated low phytotoxicity in a seed germination test, an amino acid content of 5.71 g 100 g(-1), a low concentration of heavy metals (Pb, As, Cd, Hg, Cr, Cu, Ni and Zn), and a N/P/K level of 2.33%. Therefore the converted fish waste has the potential for use as liquid fertilizer, although the low NPK level is a concern. This is the first demonstration of the reutilization of fish wastes as a liquid fertilizer.

  16. Development and validation of a fast ionic liquid-based dispersive liquid-liquid microextraction procedure combined with LC-MS/MS analysis for the quantification of benzodiazepines and benzodiazepine-like hypnotics in whole blood.

    PubMed

    De Boeck, Marieke; Missotten, Sophie; Dehaen, Wim; Tytgat, Jan; Cuypers, Eva

    2017-05-01

    To date, thorough clean-up of complex biological samples remains an essential part of the analytical process. The solid phase extraction (SPE) technique is the well-known standard, however, its main weaknesses are the labor-intensive and time-consuming protocols. In this respect, dispersive liquid-liquid microextractions (DLLME) seem to offer less complex and more efficient extraction procedures. Furthermore, ionic liquids (ILs) - liquid salts - are emerging as new promising extraction solvents, thanks to their non-flammable nature, negligible vapor pressure and easily adaptable physiochemical properties. In this study, we investigated whether ILs can be used as an extraction solvent in a DLLME procedure for the extraction of a broad range of benzodiazepines and benzodiazepine-like hypnotics in whole blood samples. 1.0mL whole blood was extracted using an optimized 30-min IL-based DLLME procedure, followed by LC-ESI(+)-MS/MS analysis in scheduled MRM scan mode. The optimized analytical method was successfully validated for 7-aminoflunitrazepam, alprazolam, bromazepam, clobazam, clonazepam, clotiazepam, diazepam, estazolam, ethyl loflazepate, etizolam, flurazepam, lormetazepam, midazolam, oxazepam, prazepam, temazepam, triazolam, zolpidem and zopiclone. The method showed good selectivity for endogenous interferences based on 12 sources of blank whole blood. No benzodiazepine interferences were observed, except for clorazepate and nordiazepam, which were excluded from the quantitative method. Matrix-matched calibration curves were constructed covering the whole therapeutic range, including low toxic plasma concentrations. Accuracy and precision results met the proposed acceptance criteria for the vast majority of compounds, except for brotizolam, chlordiazepoxide, cloxazolam, flunitrazepam, loprazolam, lorazepam and nitrazepam, which can only be determined in a semi-quantitative way. Recoveries were within the range of 24.7%-127.2% and matrix effects were within 20

  17. In situ quantification and tracking of volatile organic compounds with a portable mass spectrometer in tropical waste and urban sites.

    PubMed

    Plocoste, Thomas; Jacoby-Koaly, Sandra; Petit, Rose-Helen; Molinié, Jack; Roussas, André

    2016-11-24

    This study outlines an experimental method for landfill volatile organic compounds (VOCs) characterization by means of a portable time-of-flight mass spectrometer in an insular tropical environment. The concentrations of six VOCs, three aromatic and three chlorinated compounds, frequently identified in landfill gas plume were determined in the main municipal solid waste of Guadeloupe archipelago and its surrounding areas (in the Leeward Islands). Measurements were carried out for various stages of waste degradation. Without mechanical forcing on the waste piles, the results for aromatic and chlorinated compounds showed much higher concentrations at covered waste. Benzene, toluene and ethylbenzene were easily detected by the portable mass spectrometer in the air matrix with concentrations significantly greater than the equipment limit of detection (LOD) estimates. Trichloroethylene is not often measured by the mass spectrometer and very few calculated concentrations reach the instrument LOD. For sites near the landfill, using the sum trichloroethylene + tetrachlororethylene as tracer, it was observed that the most affected locations are under the wind of the landfill plume. Moreover, under certain atmospheric conditions, most of the surrounding area, downwind and upwind, can undergo an increase of the tracer concentration levels, as shown in the paper during a dust outbreak.

  18. Functional design criteria radioactive liquid waste line replacement, Project W-087. Revision 3

    SciTech Connect

    McVey, C.B.

    1994-10-13

    This document provides the functional design criteria for the 222-S Laboratory radioactive waste drain piping and transfer pipeline replacement. The project will replace the radioactive waste drain piping from the hot cells in 222-S to the 219-S Waste Handling Facility and provide a new waste transfer route from 219-S to the 244-S Catch Station in Tank Farms.

  19. Identification and Quantification of the Major Constituents in Egyptian Carob Extract by Liquid Chromatography–Electrospray Ionization-Tandem Mass Spectrometry

    PubMed Central

    Owis, Asmaa Ibrahim; El-Naggar, El-Motaz Bellah

    2016-01-01

    Background: Carob - Ceratonia siliqua L., commonly known as St John's-bread or locust bean, family Fabaceae - is one of the most useful native Mediterranean trees. There is no data about the chromatography methods performed by high performance liquid chromatography (HPLC) for determining polyphenols in Egyptian carob pods. Objective: To establish a sensitive and specific liquid chromatography–electrospray ionization (ESI)-tandem mass spectrometry (MSn) methodology for the identification of the major constituents in Egyptian carob extract. Materials and Methods: HPLC with diode array detector and ESI-mass spectrometry (MS) was developed for the identification and quantification of phenolic acids, flavonoid glycosides, and aglycones in the methanolic extract of Egyptian C. siliqua. The MS and MSn data together with HPLC retention time of phenolic components allowed structural characterization of these compounds. Peak integration of ions in the MS scans had been used in the quantification technique. Results: A total of 36 compounds were tentatively identified. Twenty-six compounds were identified in the negative mode corresponding to 85.4% of plant dry weight, while ten compounds were identified in the positive mode representing 16.1% of plant dry weight, with the prevalence of flavonoids (75.4% of plant dry weight) predominantly represented by two methylapigenin-O-pentoside isomers (20.9 and 13.7% of plant dry weight). Conclusion: The identification of various compounds present in carob pods opens a new door to an increased understanding of the different health benefits brought about by the consumption of carob and its products. SUMMARY This research proposed a good example for the rapid identification of major constituents in complex systems such as herbs using sensitive, accurate and specific method coupling HPLC with DAD and MS, which facilitate the clarification of phytochemical composition of herbal medicine for better understanding of their nature and

  20. New Standards in Liquid Waste Treatment at Fukushima Dai-ichi - 13134

    SciTech Connect

    Sylvester, Paul; Milner, Tim; Ruffing, Jennifer; Poole, Scott; Townson, Paul; Jensen, Jesse

    2013-07-01

    The earthquake and tsunami on March 11, 2011 severely damaged the Fukushima Dai-ichi nuclear plant leading to the most severe nuclear incident since Chernobyl. Ongoing operations to cool the damaged reactors at the site have led to the generation of highly radioactive coolant water. This is currently mainly treated to remove Cs-137 and Cs-134 and passed through a reverse osmosis (RO) unit to reduce the salinity before being cycled back to the reactors. Because only the Cs isotopes are removed, the RO reject water still contains many radioactive isotopes and this has led to the accumulation of over 200,000 cubic meters (52 million gallons) of extremely contaminated water which is currently stored on site in tanks. EnergySolutions, in partnership with Toshiba, were contracted to develop a system to reduce 62 isotopes in this waste down to allowable levels. This was a significant technical challenge given the high background salt content of the wastewater, the variation in aqueous chemistry of the radioactive isotopes and the presence of non-active competing ions (e.g. Ca and Mg) which inhibit the removal of isotopes such as Sr-89 and Sr-90. Extensive testing was performed to design a suitable system that could meet the required decontamination goals. These tests were performed over a 6 month period at facilities available in the nearby Fukushima Dai-ni laboratory using actual waste samples. This data was then utilized to design a Multi Radioactive Nuclides Removal System (MRRS) for Fukushima which is a modified version of EnergySolutions' proprietary Advanced Liquid Processing System (ALPS)'. The stored tank waste is fed into a preliminary precipitation system where iron flocculation is performed to remove a number of isotopes, including Sb-125, Ru-106, Mn-54 and Co-60. The supernatant is then fed into a second precipitation tank where the pH is adjusted and the bulk of the Mg, Ca and Sr precipitated out as carbonates and hydroxides. After passing through a cross

  1. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  2. Scaled-up bioconversion of fish waste to liquid fertilizer using a 5 L ribbon-type reactor.

    PubMed

    Dao, Van Thingoc; Kim, Joong Kyun

    2011-10-01

    A scaled-up conversion process of fish waste to liquid fertilizer was performed in a 5 L ribbon-type reactor. Biodegradation was performed by inoculation of autoclaved fish waste with 5.84 × 10(5) CFU mL(-1) of mixed microorganisms for 96 h. As a result, the pH changed from 6.92 to 5.72, the cell number reached 7.28 × 10(5) CFU mL(-1), and approximately 430 g (28.3%) of fish waste was degraded. Analyses indicated that the 96 h culture of inoculated fish waste possessed comparable fertilizing ability to commercial fertilizers in hydroponic culture with amino acid contents of 6.91 g 100 g(-1). Therefore, the scaled-up production achieved a more satisfactory fish waste degradation rate (3.61 g h(-1)) than the flask-scale production (0.24 g h(-1)). The biodegraded broth of fish waste at room temperature did not undergo putrefaction for 6 months due to the addition of 1% lactate.

  3. Characterization and quantification of corticosteroid-binding globulin in a southern toad, Bufo terrestris, exposed to coal-combustion-waste

    SciTech Connect

    Ward, C.K.; Fontes, C.; Breuner, C.W.; Mendonca, M.T.

    2007-05-15

    Corticosteroid-binding globulin (CBG) is a plasma protein that binds corticosterone and may regulate access of hormone to tissues. The role of CBG during a stress response is not clear. In this study, southern toads, Bufo terrestris, were exposed to a chronic pollutant (coal-combustion-waste), to determine changes in CBG and free corticosterone levels. Since toads exposed to chronic pollutants in previous studies did not exhibit the predicted changes in metabolic rate and mass, but did experience a significant elevation in total corticosterone, we hypothesized that CBG would likewise increase and thus, mitigate the effects of a chronic (i.e. 2 months) pollutant stressor. To conduct this study, we first characterized the properties of CBG in southern toads. After characterization, we monitored the changes in CBG, total corticosterone, and free corticosterone in male toads that were exposed to either coal-combustion-waste or control conditions. CBG increased in all groups throughout the experiment. Total corticosterone, on the other hand, was only significantly elevated at four weeks of exposure to coal-combustion-waste. The increase in CBG did not parallel the increase in total corticosterone; as a result, free corticosterone levels were not buffered by CBG, but showed a peak at four weeks similar to total corticosterone. This finding indicates that, in this species, CBG may not provide a protective mechanism during long-term pollution exposure.

  4. A validated ultra high pressure liquid chromatographic method for qualification and quantification of folic acid in pharmaceutical preparations.

    PubMed

    Deconinck, E; Crevits, S; Baten, P; Courselle, P; De Beer, J

    2011-04-05

    A fully validated UHPLC method for the identification and quantification of folic acid in pharmaceutical preparations was developed. The starting conditions for the development were calculated starting from the HPLC conditions of a validated method. These start conditions were tested on four different UHPLC columns: Grace Vision HT™ C18-P, C18, C18-HL and C18-B (2 mm × 100 mm, 1.5 μm). After selection of the stationary phase, the method was further optimised by testing two aqueous and two organic phases and by adapting to a gradient method. The obtained method was fully validated based on its measurement uncertainty (accuracy profile) and robustness tests. A UHPLC method was obtained for the identification and quantification of folic acid in pharmaceutical preparations, which will cut analysis times and solvent consumption.

  5. Quantification of selected furocoumarins by high-performance liquid chromatography and UV-detection: capabilities and limits.

    PubMed

    Macmaster, Angus P; Owen, Neil; Brussaux, Sylvain; Brevard, Hugues; Hiserodt, Richard; Leijs, Hans; Bast, Nikola; Weber, Berthold; Loesing, Gerd; Sherlock, Alan; Schippa, Christine; Vey, Matthias; Frérot, Eric; Tissot, Emeline; Chaintreau, Alain

    2012-09-28

    The performance of HPLC-UV as a means of quantifying selected furocoumarins in essential oils has been evaluated, based on a ring test validation approach. Accuracy profiles were generated, to determine bias and statistical confidence associated with determination at different concentrations, along with lower limits of quantification (LOQ). From these findings, it can be concluded that the method described may only be used in simple cases (essential oils), to measure individual furocoumarin compounds at concentrations greater than 10mg/l; the non compound-specific nature of detection by absorption in the UV range is unable to overcome the effect of interferences arising from chromatographic coelutions, such as those encountered in the analysis of complex commercial fragrance mixtures. The use of an algorithmically calculated 'spectral similarity' function, with reference to authentic standards, may be used to improve reliability in assignment and quantification.

  6. Ultra-high performance liquid chromatography tandem mass-spectrometry for simple and simultaneous quantification of cannabinoids.

    PubMed

    Jamwal, Rohitash; Topletz, Ariel R; Ramratnam, Bharat; Akhlaghi, Fatemeh

    2017-03-24

    Cannabis is used widely in the United States, both recreationally and for medical purposes. Current methods for analysis of cannabinoids in human biological specimens rely on complex extraction process and lengthy analysis time. We established a rapid and simple assay for quantification of Δ(9)-tetrahydrocannabinol (THC), cannabidiol (CBD), 11-hydroxy Δ(9)-tetrahydrocannabinol (11-OH THC) and 11-nor-9-carboxy-Δ(9)-tetrahydrocannbinol (THCCOOH) in human plasma by U-HPLC-MS/MS usingΔ9-tetrahydrocannabinol-D3 (THC-D3) as the internal standard. Chromatographic separation was achieved on an Acquity BEH C18 column using a gradient comprising of water (0.1% formic acid) and methanol (0.1% formic acid) over a 6 min run-time. Analytes from 200μL plasma were extracted using acetonitrile (containing 1% formic acid and THC-D3). Mass spectrometry was performed in positive ionization mode, and total ion chromatogram was used for quantification of analytes. The assay was validated according to guidelines set forth by Food and Drug Administration of the United States. An eight-point calibration curve was fitted with quadratic regression (r(2)>0.99) from 1.56 to 100ngmL(-1) and a lower limit of quantification (LLOQ) of 1.56ngmL(-1) was achieved. Accuracy and precision calculated from six calibration curves was between 85-115% while the mean extraction recovery was >90% for all the analytes. Several plasma phospholipids eluted after the analytes thus did not interfere with the assay. Bench-top, freeze-thaw, auto-sampler and short-term stability ranged from 92.7 to 106.8% of nominal values. Application of the method was evaluated by quantification of analytes in human plasma from six subjects.

  7. Long-term management of liquid high-level radioactive wastes stored at the Western New York Nuclear Service Center, West Valley

    NASA Astrophysics Data System (ADS)

    1981-07-01

    Environmental implications of possible alternatives for long-term management of the liquid high-level radioactive wastes stored in underground tanks in West Valley, New York were assessed and compared. Four basic alternatives, as well as options within these alternatives, considered in the EIS: (1) onsite processing to a terminal waste form for shipment and disposal in a federa repository; (2) onsite conversion to a solid interim form for shipment to a federal waste facility for later processing to a terminal form and shipment and subsequent disposal in a federal repository; (3) mixing the liquid wastes with cement and other additives, pouring it back into the existing tanks, and leaving onsite; and (4) no action (continued storage of the wastes in liquid form in the underground tanks at West Valley). Mitigative measures for environmental impacts were be required.

  8. Implementation of environmental compliance for operating radioactive liquid waste systems at the Oak Ridge National Laboratory

    SciTech Connect

    Hooyman, J.H.

    1993-12-31

    This paper addresses methods being implemented at the Oak Ridge National Laboratory (ORNL) to continue operating while achieving compliance with new standards for liquid low level waste (LLLW) underground storage tank systems. The Superfund Amendment and Reauthorization Act (SARA) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) required that the Department of Energy (DOE) execute a Federal Facility Agreement (FFA) with the Environmental Protection Agency (EPA) within 6 months of listing of the ORNL on the National Priorities List. An FFA for ORNL became effective January 1, 1992 among the EPA, DOE, and the Tennessee Department of Environment and Conservation (TDEC). The objective of the FFA as it relates to these tank systems is to ensure that structural integrity, containment, leak detection capability, and LLLW source control are maintained until final remedial action. The FFA requires that leaking LLLW tank systems be immediately removed from service, and that active tank systems be doubly contained, cathodically protected, and have leak detection capability. LLLW tank systems that do not meet requirements are to be either upgraded or replaced, but can remain in service if they do not leak in the interim.

  9. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    SciTech Connect

    Sun, Ning; Xu, Feng; Sathitsuksanoh, Noppadon; Thompson, Vicki S.; Cafferty, Kara; Li, Chenlin; Tanjore, Deepti; Narani, Akash; Pray, Todd R.; Simmons, Blake A.; Singh, Seema

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  10. Materials recovery from waste liquid crystal displays: A focus on indium.

    PubMed

    Fontana, Danilo; Forte, Federica; De Carolis, Roberta; Grosso, Mario

    2015-11-01

    In the present work the recovery of indium and of the polarizing film from waste liquid crystal displays was experimentally investigated in the laboratory. First of all, the polarizing film was removed by employing a number of different techniques, including thermal and chemical treatments. Leaching of indium was then performed with HCl 6N, which allowed solubilisation of approximately 90% In (i.e. 260 mg In per kg of glass) at room temperature, without shredding. Indium recovery from the aqueous phase was then investigated through solvent extraction with polyethylene glycol (PEG)-based aqueous biphasic systems. Indium extraction tests through the PEG-ammonium sulphate-water system were conducted as a function of PEG concentration, salt concentration and molecular weight of PEG, using 1,10 phenanthroline as a ligand. The experimental results demonstrated that indium partitioning between the bottom (salt-rich) and the top (PEG-rich) phase is quite independent on the composition of the system, since 80-95% indium is extracted in the bottom phase and 5-20% in the top phase; it was also found that when PEG concentration is increased, the ratio between the bottom and the upper phase volumes decreases, resulting in an increase of indium concentration in the bottom phase (at [PEG]=25% w/w, indium concentration in the bottom phase is ∼30% higher than the initial concentration before the extraction).

  11. A new approach to assessment and management of the impact from medical liquid radioactive waste.

    PubMed

    Sundell-Bergman, S; de la Cruz, I; Avila, R; Hasselblad, S

    2008-10-01

    The Swedish regulations concerning disposal of clinical radioactive waste are currently under revision and a graded approach is proposed for risk limitation purposes. To assist the revision procedures, a screening study was performed to estimate public exposures from liquid releases from hospitals to public sewers. The results showed that doses to sewage workers were above the dose constraint of 100 microSv a(-1) especially for 131I and (99m)Tc. Hence, a dynamic model, LUCIA, was developed for realistic assessments in which radionuclide transportation in sewers was modelled. Probabilistic simulations were performed to obtain probability distributions of radionuclide concentrations in sludge. Concurrently, estimates of the effective doses to sewage workers decreased significantly and were below 10 microSv a(-1) except for 111In and 131I. However, the Kd-coefficients representing the partition of radioactivity between water and sludge in sewers are highly uncertain for 111In. As shown by sensitivity studies, these values are the major determinant of the exposures in sewers.

  12. Treatment of waste printed circuit board by green solvent using ionic liquid.

    PubMed

    Zhu, P; Chen, Y; Wang, L Y; Zhou, M

    2012-10-01

    Recycling of waste printed circuit boards (WPCBs) is an important subject not only for the protection of environment but also for the recovery of valuable materials. A feasibility study was conducted to dissolve bromine epoxy resins of WPCBs using ionic liquid (IL) of 1-ethyl-3-methylimizadolium tetrafluoroborate [EMIM(+)][BF(4)(-)] (nonaqueous green solvent) for recovering copper foils and glass fibers. Experimental results indicated that the initial delamination had seen from the cross-section of the WPCBs by mean of metallographic microscope and digital camera when WPCBs were heated in [EMIM(+)][BF(4)(-)] at 240°C for a duration of 30 min. When temperature was increased to 260°C for a duration of 10 min, the bromine epoxy resins of WPCBs were throughout dissolved into [EMIM(+)][BF(4)(-)] and the separations of copper foils and glass fibers from WPCBs were completed. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent the environmental pollution of WPCBs effectively.

  13. Nutrient Recovery of Starch Processing Waste to Cordyceps militaris: Solid State Cultivation and Submerged Liquid Cultivation.

    PubMed

    Lee, Joonyeob; Cho, Kyungjin; Shin, Seung Gu; Bae, Hyokwan; Koo, Taewoan; Han, Gyuseong; Hwang, Seokhwan

    2016-09-01

    This study demonstrated the potential for managing starch processing waste (SPW) by bioconversion to Cordyceps militaris mycelia using solid state cultivation (SSC) and submerged liquid cultivation (SLC). The growth characteristics of C. militaris mycelium were accessed and compared for SSC and SLC systems on SPW under various conditions of initial SPW concentration, pH, and operating temperature. To quantify the mycelial biomass in SLC, original primer sets targeting the 18S rRNA gene of C. militaris were developed. In SSC, a maximum mycelial growth rate (543.1 mm(2)/day) was predicted to occur at 25.6 g SPW/L, pH 5.5, and 23.8 °C. In SLC, a maximum mycelial growth rate (1918.6 mg/L/day) was predicted to occur at 35.5 g SPW/L, pH 5.5, and 22.0 °C. Temperature was suggested as the most significant factor in both systems. The higher optimum substrate concentration observed for SLC than for SSC was likely due to difference in mycelial morphology and mixing effect.

  14. Some methods for human liquid and solid waste utilization in bioregenerative life-support systems.

    PubMed

    Ushakova, S A; Zolotukhin, I G; Tikhomirov, A A; Tikhomirova, N A; Kudenko, Yu A; Gribovskaya, I V; Balnokin, Yu; Gros, J B

    2008-12-01

    Bioregenerative life-support systems (BLSS) are studied for developing the technology for a future biological life-support system for long-term manned space missions. Ways to utilize human liquid and solid wastes to increase the closure degree of BLSS were investigated. First, urine and faeces underwent oxidation by Kudenko's physicochemical method. The products were then used for root nutrition of wheat grown by the soil-like substrate culture method. Two means of eliminating sodium chloride, introduced into the irrigation solution together with the products of urine oxidation, were investigated. The first was based on routine electrodialysis of irrigation water at the end of wheat vegetation. Dialysis eliminated about 50% of Na from the solution. This desalinization was performed for nine vegetations. The second method was new: after wheat cultivation, the irrigation solution and the solution obtained by washing the substrate containing mineral elements not absorbed by the plants were used to grow salt-tolerant Salicornia europaea L. plants (saltwort). The above-ground biomass of this plant can be used as a food, and roots can be added to the soil-like substrate. Four consecutive wheat and Salicornia vegetations were cultivated. As a result of this wheat and Salicornia cultivation process, the soil-like substrate salinization by NaCl were considerably decreased.

  15. A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.

    PubMed

    Zeng, Xianlai; Li, Jinhui; Xie, Henghua; Liu, Lili

    2013-10-01

    Recycling processes for waste printed circuit boards (WPCBs) have been well established in terms of scientific research and field pilots. However, current dismantling procedures for WPCBs have restricted the recycling process, due to their low efficiency and negative impacts on environmental and human health. This work aimed to seek an environmental-friendly dismantling process through heating with water-soluble ionic liquid to separate electronic components and tin solder from two main types of WPCBs-cathode ray tubes and computer mainframes. The work systematically investigates the influence factors, heating mechanism, and optimal parameters for opening solder connections on WPCBs during the dismantling process, and addresses its environmental performance and economic assessment. The results obtained demonstrate that the optimal temperature, retention time, and turbulence resulting from impeller rotation during the dismantling process, were 250 °C, 12 min, and 45 rpm, respectively. Nearly 90% of the electronic components were separated from the WPCBs under the optimal experimental conditions. This novel process offers the possibility of large industrial-scale operations for separating electronic components and recovering tin solder, and for a more efficient and environmentally sound process for WPCBs recycling.

  16. Chemical profiling and quantification of Gua-Lou-Gui-Zhi decoction by high performance liquid chromatography/quadrupole-time-of-flight mass spectrometry and ultra-performance liquid chromatography/triple quadrupole mass spectrometry.

    PubMed

    Xu, Wen; Huang, Mingqing; Li, Huang; Chen, Xianwen; Zhang, Yuqin; Liu, Jie; Xu, Wei; Chu, Kedan; Chen, Lidian

    2015-04-01

    Gua-Lou-Gui-Zhi decoction (GLGZD) is a classical formula of traditional Chinese medicine, which has been commonly used to treat dysfunction after stroke, epilepsy and spinal cord injury. In this study, a systematic method was established for chemical profiling and quantification analysis of the major constituents in GLGZD. For qualitative analysis, a method of high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (Q-TOF MS) was developed. 106 compounds, including monoterpene glycosides, galloyl glucoses, phenolic acids, flavonoids, gingerols and triterpene saponins were identified or tentatively presumed by comparison with reference standards or literature data. According to the qualitative results, a new quantitative analysis method of ultra-performance liquid chromatography/triple quadrupole mass spectrometry (QqQ-MS) was established. 24 representative compounds were simultaneously detected in 10 batches of GLGZD samples in 7.5 min. The calibration curves for all analytes showed good linearity (r>0.9959) within the test ranges. The LODs and the LOQs were less than 30.6 and 70.9 ng/mL, respectively. The RSDs of intra- and inter-day precision, repeatability and stability were below 3.64%, 4.85%, 4.84% and 3.87%, respectively. The overall recoveries ranged from 94.94% to 103.66%, with the RSDs within 5.12%. This study established a high sensitive and efficient method for the integrating quality control, including identification and quantification of Chinese medicinal preparation.

  17. Results of sampling the contents of the liquid low-level waste evaporator feed tank W-22 at ORNL

    SciTech Connect

    Sears, M.B.

    1996-09-01

    This report summarizes the results of the fall 1994 sampling of the contents of the liquid low- level waste (LLLW) tank W-22 at the Oak Ridge National Laboratory (ORNL). Tank W-22 is the central collection and holding tank for LLLW at ORNL before the waste is transferred to the evaporators. Samples of the tank liquid and sludge were analyzed to determine (1) the major chemical constituents, (2) the principal radionuclides, (3) the metals listed on the U.S. Environmental Protection Agency (EPA) Contract Laboratory Program Inorganic Target Analyte List, (4) organic compounds, and (5) some physical properties. The organic chemical characterization consisted of the determinations of the EPA Contract Laboratory Program Target Compound List semivolatile compounds, pesticides, and polychlorinated biphenyls (PCBs). Water-soluble volatile organic compounds were also determined. Information provided in this report forms part of the technical basis in support of (1) waste management for the active LLLW system and (2) planning for the treatment and disposal of the waste.

  18. Reduction of (68)Ge activity containing liquid waste from (68)Ga PET chemistry in nuclear medicine and radiopharmacy by solidification.

    PubMed

    de Blois, Erik; Chan, Ho Sze; Roy, Kamalika; Krenning, Eric P; Breeman, Wouter A P

    PET with (68)Ga from the TiO2- or SnO2- based (68)Ge/(68)Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity ((68)Ge vs. (68)Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts of (68)Ge activity is produced by eluting the (68)Ge/(68)Ga generators and residues from PET chemistry. Since clearance level of (68)Ge activity in waste may not exceed 10 Bq/g, as stated by European Directive 96/29/EURATOM, our purpose was to reduce (68)Ge activity in solution from >10 kBq/g to <10 Bq/g; which implies the solution can be discarded as regular waste. Most efficient method to reduce the (68)Ge activity is by sorption of TiO2 or Fe2O3 and subsequent centrifugation. The required 10 Bq per mL level of (68)Ge activity in waste was reached by Fe2O3 logarithmically, whereas with TiO2 asymptotically. The procedure with Fe2O3 eliminates ≥90% of the (68)Ge activity per treatment. Eventually, to simplify the processing a recirculation system was used to investigate (68)Ge activity sorption on TiO2, Fe2O3 or Zeolite. Zeolite was introduced for its high sorption at low pH, therefore (68)Ge activity containing waste could directly be used without further interventions. (68)Ge activity containing liquid waste at different HCl concentrations (0.05-1.0 M HCl), was recirculated at 1 mL/min. With Zeolite in the recirculation system, (68)Ge activity showed highest sorption.

  19. Recovery of Metallic Values from Brass Waste Using Brønsted Acidic Ionic Liquid as Leachate

    NASA Astrophysics Data System (ADS)

    Kilicarslan, Ayfer; Saridede, Muhlis Nezihi

    2015-11-01

    The waste formed during industrial brass manufacturing is rich in copper and zinc metals. Therefore, treatment of this waste is a necessity from economic and environmental aspects. This study presents a process for recovery of zinc and copper through Brønsted ionic liquid (1-butyl-3-methyl-imidazolium hydrogen sulfate; [Bmim]HSO4), as leachate. It was found that all zinc content could be dissolved from the waste under two optimum conditions: (1) in ionic liquid (IL) concentration of 70% (v/v) at 60°C in 30 min or (2) in IL concentration of 50% (v/v) at 100°C in 60 min. On the other hand, ionic liquid leaching gave poor copper solubility under the conditions of the study. Zinc dissolution in the range 5-75 min by [Bmim]HSO4 can be explained with the shrinking core model controlled by diffusion through a product layer, and the apparent activation energy was calculated as 4.36 kJ/mol. The leach liquor was treated to obtain metallic zinc by the electrowinning method without a purification step. Scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDX) investigations showed that the layer of metallic zinc was plated successfully on the cathode.

  20. Durability of class C fly ash belite cement in simulated sodium chloride radioactive liquid waste: influence of temperature.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-03-15

    This work is a continuation of a previous durability study of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) that is very rich in sulphate salts. The same experimental methodology was applied in the present case, but with a SRLW rich in sodium chloride. The study was carried out by testing the flexural strength of mortars immersed in simulated radioactive liquid waste that was rich in chloride (0.5M), and demineralised water as a reference, at 20 and 40 degrees C over a period of 180 days. The reaction mechanism of chloride ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated chloride radioactive liquid waste (SCRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive Friedel's salt inside the pores; accordingly, the microstructure was refined.

  1. Simultaneous quantification of three pyranocoumarins of Peucedanum praeruptorum in rat plasma by liquid chromatography-tandem mass spectrometry: application to pharmacokinetic study.

    PubMed

    Zhou, Guangyu; Chen, Guozhen; Liu, Hongbo

    2015-04-01

    A simple, rapid and robust liquid chromatography-tandem mass spectrometry was established and validated for simultaneous quantifications of three pyranocoumarins (praeruptorin A-C) in rat plasma. Following a single-step liquid-liquid extraction, the analytes were separated on a reversed-phase C18 column with a mobile phase consisting of methanol and 10 mM ammonium acetate solution (70 : 30, v/v) at a constant flow rate of 0.3 mL/min. The linear calibration curves were obtained over the concentration ranges 2.93-1470 ng/mL for praeruptorin A, 1.47-734 ng/mL for praeruptorin B and 2.00-1000 ng/mL for praeruptorin C. The within-batch accuracy was -8.6 to 7.5% for praeruptorin A, -9.5 to 12.0% for praeruptorin B and -10.5 to 12.5% for praeruptorin C, respectively. The between-batch accuracy was -3.5 to 1.4% for praeruptorin A, -8.7 to 3.4% for praeruptorin B and -6.0 to 4.3% for praeruptorin C, respectively. The within-batch and between-batch precisions were ≤13.1 and ≤8.2%, respectively. This method is suitable to simultaneously determine the three pyranocoumarins in plasma and thus to investigate the pharmacokinetics of the pyranocoumarins of Peucedanum praeruptorum in rats.

  2. Quantification of aristolochic acids I and II in herbal dietary supplements by ultra-high-performance liquid chromatography-multistage fragmentation mass spectrometry.

    PubMed

    Vaclavik, Lukas; Krynitsky, Alexander J; Rader, Jeanne I

    2014-01-01

    A rapid, selective and sensitive ultra-high-performance liquid chromatography-multistage fragmentation mass spectrometry (UHPLC-MS³) method was developed and evaluated for the determination of aristolochic acids I and II (AA I and II) in herbal dietary supplements. A hybrid triple quadrupole/linear ion-trap mass spectrometry was used to monitor MS³ ion transitions m/z 359.2 > 298.1 > 268.0 and m/z 329.2 > 268.2 > 238.0 to detect AA I and II, respectively. The extraction and clean-up of target analytes from dry powdered samples was performed using the quick, easy, cheap, effective, rugged and safe (QuEChERS) procedure. Herbal liquid extracts were analysed directly. Average recoveries ranged from 89% to 112%, with relative standard deviations (RSDs) ranging from 3% to 16%. Limits of quantification (LOQs) estimated for three selected matrices were as follows (AA I/II): 5/10 ng g⁻¹ (tablets); 25/50 ng g⁻¹ (capsules); and 2.5/5.0 ng ml⁻¹ (liquid herbal extract). The method was applied in a limited survey of 30 herbal products marketed in the United States via the Internet. AA I and II were detected in 20% and 7%, respectively, of tested samples.

  3. Quantification of organophosphorus nerve agent metabolites using a reduced-volume, high-throughput sample processing format and liquid chromatography-tandem mass spectrometry.

    PubMed

    Swaim, Leigh L; Johnson, Rudolph C; Zhou, Yingtao; Sandlin, Chris; Barr, John R

    2008-01-01

    A reduced-volume, high-throughput analytical method has been developed for the quantification of organophosphorus (OP) nerve agent metabolites in human urine. Metabolites of soman, sarin, cyclohexyl-sarin, VX, and Russian-VX were quantified down to a lowest reportable limit of 1 ng/mL in human urine. One hundred microliter urine samples were preconcentrated using normal-phase 96-well solid-phase extraction silica sorbent beds. Dual-column hydrophilic interaction liquid chromatography was applied in a 2.5-min isocratic separation followed by negative electrospray isotope-dilution multiple-reaction-monitoring mass spectrometry. Method validation included the characterization of two synthetic urine pools, relative recovery experiments, and calculation of the method limit of detection. All liquid handling steps were processed in a high-density 96-well format, including sample aliquoting, extraction, dry-down, and reconstitution. This allows up to 3840 unknown samples, plus calibrators and quality control materials, to be prepared on a single liquid handler in a 24-h period. In a public health emergency involving OP-nerve agents, this method provides the sample preparation and analytical capacity to respond rapidly to a large number of patient samples.

  4. Simultaneous quantification of two canthinone alkaloids of Picrasma quassioides in rat plasma by liquid chromatography-tandem mass spectrometry and its application to a rat pharmacokinetic study.

    PubMed

    Shi, Yuanyuan; Hong, Chunyan; Xu, Jian; Yang, Xiaoling; Xie, Ning; Feng, Feng; Liu, Wenyuan

    2015-04-01

    Picrasma quassioides (D. Don) Benn. is used in traditional Chinese medicine for the treatment of inflammation. Characteristic components of the medicinal extract are canthinone alkaloids. In this study, a sensitive and rapid liquid chromatography with tandem mass spectrometry method has been developed for simultaneous quantification of two major canthinone alkaloids, 5-hydroxy-4-methoxycanthin-6-one and 4,5-dimethoxycanthin-6-one, in rat plasma after oral administration of P. quassioides extract (200 mg/kg). The chromatographic separation was performed on a C18 column using acetonitrile-aqueous 0.1% formic acid (90:10, v/v) as the mobile phase. Plasma samples were prepared for analysis using a simple liquid-liquid extraction with ethyl acetate. Analytes were detected using tandem mass spectrometry in positive multiple reaction monitoring mode. Method validation revealed excellent linearity over the range 1.25-900 ng/mL for 5-hydroxy-4-methoxycanthin-6-one and 0.5-800 ng/mL for 4,5-dimethoxycanthin-6-one with satisfactory intra- and inter-day precision, accuracy and recovery. Samples were stable under the conditions tested. The pharmacokinetic profiles of the analytes in rats showed that both canthinones were rapidly absorbed and that 4,5-dimethoxycanthin-6-one was eliminated faster than 5-hydroxy-4-methoxycanthin-6-one.

  5. Ultra-high performance liquid chromatography-tandem mass spectrometry in high-throughput confirmation and quantification of 34 anabolic steroids in bovine muscle.

    PubMed

    Vanhaecke, Lynn; Vanden Bussche, Julie; Wille, Klaas; Bekaert, Karen; De Brabander, Hubert F

    2011-08-26

    An ultra-high performance liquid chromatography tandem mass spectrometry multi-residue method for the determination of 34 anabolic steroids (10 estrogens including stilbenes, 14 androgens and 10 gestagens) in meat of bovine origin is reported. The extraction and clean-up procedure involved homogenization with methanol, defatting with hexane, liquid/liquid extraction with diethylether and finally SPE clean-up with coupled Si and NH(2) cartridges. The analytes were separated on a 1.9 μm Hypersil Gold column (100×2.1 mm) and quantified on a triple quadrupole mass spectrometer (TSQ Vantage) operating simultaneously in both positive and negative atmospheric pressure chemical ionisation (APCI) modes. This analytical procedure was subsequently validated according to EU criteria (CD 2002/657/EC), resulting in decision limits and detection capabilities ranging between 0.04 and 0.88 μg kg(-1) and 0.12 and 1.9 μg kg(-1), respectively. The method obtained for all, natural and synthetic steroids, adequate precisions and intra-laboratory reproducibilities (relative standard deviation below 20%), and the linearity ranged between 0.991 and 0.999. The performance characteristics fulfill the recommended concentrations fixed by the Community Reference Laboratories. The developed analysis is sensitive, and robust and therefore useful for confirmation and quantification of anabolic steroids for research purposes and residue control programs.

  6. Identification and Quantification of Fumonisin A1, A2, and A3 in Corn by High-Resolution Liquid Chromatography-Orbitrap Mass Spectrometry

    PubMed Central

    Tamura, Masayoshi; Mochizuki, Naoki; Nagatomi, Yasushi; Harayama, Koichi; Toriba, Akira; Hayakawa, Kazuichi

    2015-01-01

    Three compounds, hypothesized as fumonisin A1 (FA1), fumonisin A2 (FA2), and fumonisin A3 (FA3), were detected in a corn sample contaminated with mycotoxins by high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS). One of them has been identified as FA1 synthesized by the acetylation of fumonisin B1 (FB1), and established a method for its quantification. Herein, we identified the two remaining compounds as FA2 and FA3, which were acetylated fumonisin B2 (FB2) and fumonisin B3 (FB3), respectively. Moreover, we examined a method for the simultaneou