Science.gov

Sample records for liquid-argon time projection

  1. First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber

    SciTech Connect

    Acciarri, R.; et al.

    2016-10-13

    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino ($\

  2. MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment

    SciTech Connect

    Katori, Teppei

    2011-07-01

    Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R&D efforts on this detection method and related neutrino interaction measurements are discussed.

  3. Cryogenic digital data links for the liquid argon time projection chamber

    NASA Astrophysics Data System (ADS)

    Liu, T.; Gong, D.; Hou, S.; Liu, C.; Su, D.-S.; Teng, P.-K.; Xiang, A. C.; Ye, J.

    2012-01-01

    In this paper we present the cryogenic functionality of the components of data links for the Liquid Argon Time Projection Chamber (LArTPC), a potential far site detector technology of the Long-Baseline Neutrino Experiment (LBNE). We have confirmed that an LVDS driver can drive a 20-meter CAT5E twisted pair up to 1 gigabit per second at the liquid nitrogen temperature (77 K). We have verified that a commercial-off-the-shelf (COTS) serializer, a laser diode driver, laser diodes, optical fibers and connectors, and field-programming gate arrays (FPGA`s) continue to function at 77 K. A variety of COTS resistors and capacitors have been tested at 77 K. All tests we have conducted show that the cryogenic digital data links for the liquid argon time projection chamber are promising.

  4. Liquid-Argon Time Projection Chambers in the U.S

    SciTech Connect

    Soderberg, M.

    2009-10-01

    Liquid Argon Time Projection Chamber (LAr TPC) detectors are ideally suited for studying neutrino interactions and probing the parameters that characterize neutrino oscillations. The ability to drift ionization particles over long distances in purified argon and to trigger on abundant scintillation light allows for excellent particle identification and triggering capability. Recent U.S. based work in the development of LAr TPC technology for massive kiloton size detectors will be discussed in this talk, including details of the ArgoNeuT (Argon Neutrino Test) test-beam project, which is a 175 liter LAr TPC exposed to Fermilab's NuMI neutrino beamline.

  5. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-03-01

    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.

  6. Monitoring Liquid Argon Time Projection Chambers With A Raspberry Pi Camera

    NASA Astrophysics Data System (ADS)

    Patteson, Crystal

    2016-03-01

    The MicroBooNE detector is the first of three liquid argon (LAr) time projection chambers (TPCs) that are central to the short-baseline neutrino program at Fermilab. These chambers consist of thousands of stainless steel or beryllium-copper sense wires that detect ionization electrons produced when neutrinos interact with liquid argon nuclei inside the detector. The wires are several hundred microns in diameter to several meters in length. The construction of such LAr TPCs often takes place in an assembly hall, which is different from the detector hall where the experiment will operate, as was the case with MicroBooNE. Since in situ access to the chamber and its wires in the beamline enclosure can be limited, we investigate the possibility of using a Raspberry Pi single-board computer connected to a low-cost camera installed inside the cryostat as a cost-efficient way to verify the integrity of the wires after transport. We also highlight other benefits of this monitoring device implemented in MicroBooNE, including detector hall surveillance and verification of the status of LED indicators on detector electronics. The author would like to thank Dr. Matthew Toups for his encouragement and guidance on this research project.

  7. Data Reduction Processes Using FPGA for MicroBooNE Liquid Argon Time Projection Chamber

    SciTech Connect

    Wu, Jinyuan

    2010-05-26

    MicroBooNE is a liquid Argon time projection chamber to be built at Fermilab for an accelerator-based neutrino physics experiment and as part of the R&D strategy for a large liquid argon detector at DUSEL. The waveforms of the {approx}9000 sense wires in the chamber are continuously digitized at 2 M samples/s - which results in a large volume of data coming off the TPC. We have developed a lossless data reduction scheme based on Huffman Coding and have tested the scheme on cosmic ray data taken from a small liquid Argon time projection chamber, the BO detector. For sense wire waveforms produced by cosmic ray tracks, the Huffman Coding scheme compresses the data by a factor of approximately 10. The compressed data can be fully recovered back to the original data since the compression is lossless. In addition to accelerator neutrino data, which comes with small duty cycle in sync with the accelerator beam spill, continuous digitized waveforms are to be temporarily stored in the MicroBooNE data-acquisition system for about an hour, long enough for an external alert from possible supernova events. Another scheme, Dynamic Decimation, has been developed to compress further the potential supernova data so that the storage can be implemented within a reasonable budget. In the Dynamic Decimation scheme, data are sampled at the full sampling rate in the regions-of-interest (ROI) containing waveforms of track-hits and are decimated down to lower sampling rate outside the ROI. Note that unlike in typical zerosuppression schemes, in Dynamic Decimation, the data in the pedestal region are not thrown away but kept at a lower sampling rate. An additional factor of 10 compression ratio is achieved using the Dynamic Decimation scheme on the BO detector data, making a total compression rate of approximate 100 when the Dynamic Decimation and the Huffman Coding functional blocks are cascaded. Both of the blocks are compiled in low-cost FPGA and their silicon resource usages are low.

  8. The Cryogenic Performances of Specific Optical and Electrical Components for a Liquid Argon Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Gong, Datao; Hou, Suen; Liu, Chonghan; Liu, Tiankuan; Su, Da-shung; Teng, Ping-kun; Xiang, Annie C.; Ye, Jingbo; LBNE Collaboration

    In this paper we present a cryogenic performance study of specific optical and electrical components for the Liquid Argon Time Projection Chamber (LArTPC), a potential far site detector technology of the long baseline neutrino experiment (LBNE). We have confirmed that an LVDS driver can drive a 20-meter CAT5E twisted pair up to 1 gigabit per second at liquid nitrogen temperature (77 K). We have verified that a 16:1 serializer Application Specific Integrated Circuit (ASIC), three types of laser diodes, optical fibers and connectors, and field-programming gate arrays (FPGAs) continue to function at 77 K. A variety of commercial resistors and capacitors have been tested at 77 K. All tests we have conducted show that the cold front-end electronics is promising.

  9. Study of Track Ambiguities and Wire Plane Orientation in Single Phase Liquid Argon Time Projection Chambers

    NASA Astrophysics Data System (ADS)

    Bullard, Brendon; Zhang, Chao; Deep Underground Neutrino Experiment Collaboration

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) is currently in development and will utilize a ten-kiloton scale liquid argon time projection chamber (LArTPC) to observe neutrinos from a beam produced using protons from the Main Injector at Fermilab. It is difficult to accurately reconstruct tracks traveling nearly parallel to the LArTPC wire planes due to the finite time resolution of the detector and the limitations of using projective wire geometries. Such reconstructed tracks exhibit degeneracy to varying degrees and could have a large enough effect on primary signals and backgrounds to warrant a design change in the DUNE TPCs. We simulated charged current signal and neutral pion decay background events in order to understand the impact on signal efficiency and background rejection in a LArTPC using wire readout planes situated parallel or perpendicular to the neutrino beam. We found that using a perpendicular wire plane significantly reduces the degeneracy problem for both lepton and hadrons. Other aspects of perpendicular TPC design including signal processing are still under study. Department of Energy.

  10. Performance study of the effective gain of the double phase liquid Argon LEM Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Cantini, C.; Epprecht, L.; Gendotti, A.; Horikawa, S.; Periale, L.; Murphy, S.; Natterer, G.; Regenfus, C.; Resnati, F.; Sergiampietri, F.; Rubbia, A.; Viant, T.; Wu, S.

    2015-03-01

    The Large Electron Multipliers (LEMs) are key components of double phase liquid argon TPCs. The drifting charges after being extracted from the liquid are amplified in the LEM positioned half a centimeter above the liquid in pure argon vapor at 87 K. The LEM is characterised by the size of its dielectric rim around the holes, the thickness of the LEM insulator, the diameter of the holes as well as their geometrical layout. The impact of those design parameters on the amplification were checked by testing seven different LEMs with an active area of 10×10 cm2 in a double phase liquid argon TPC of 21 cm drift. We studied their response in terms of maximal reachable gain and impact on the collected charge uniformity as well as the long-term stability of the gain. We show that we could reach maximal gains of around 150 which corresponds to a signal-to-noise ratio (S/N) of about 800 for a minimal ionising particle (MIP) signal on 3 mm readout strips. We could also conclude that the dielectric surfaces in the vicinity of the LEM holes charge up with different time constants that depend on their design parameters. Our results demonstrate that the LAr LEM TPC is a robust concept that is well-understood and well-suited for operation in ultra-pure cryogenic environments and that can match the goals of future large-scale liquid argon detectors.

  11. A novel method for event reconstruction in Liquid Argon Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Diwan, M.; Potekhin, M.; Viren, B.; Qian, X.; Zhang, C.

    2016-10-01

    Future experiments such as the Deep Underground Neutrino Experiment (DUNE) will use very large Liquid Argon Projection Chambers (LArTPC) containing tens of kilotons of cryogenic medium. To be able to utilize sensitive volume of that size, current design employs arrays of wire electrodes grouped in readout planes, arranged with a stereo angle. This leads to certain challenges for object reconstruction due to ambiguities inherent in such a scheme. We present a novel reconstruction method (named "Wirecell") inspired by principles used in tomography, which brings the LArTPC technology closer to its full potential.

  12. Study of SiPM custom arrays for scintillation light detection in a Liquid Argon Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Cervi, T.; Babicz, M. E.; Bonesini, M.; Falcone, A.; Kose, U.; Nessi, M.; Menegolli, A.; Pietropaolo, F.; Raselli, G. L.; Rossella, M.; Torti, M.; Zani, A.

    2017-03-01

    Liquid Argon Time Projection Chamber (LAr-TPC) technique has been established as one of the most promising for the next generation of experiments dedicated to neutrino and rare-event physics. LAr-TPCs have the fundamental feature to be able to both collect the charge and the scintillation light produced after the passage of a ionizing particle inside the Argon volume. Scintillation light is traditionally detected by large surface Photo-Multiplier Tubes (PMTs) working at cryogenic temperature. Silicon Photo-Multipliers (SiPMs) are semiconductor-based devices with performances comparable to the PMT ones, but with very small active areas. For this reason we built a prototype array composed by SiPMs connected in different electrical configurations. We present results on preliminary tests made with four SiPMs, connected both in parallel and in series configurations, deployed into a 50 liters LAr-TPC exposed to cosmic rays at CERN.

  13. Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States

    SciTech Connect

    Acciarri, R.; et al.

    2015-04-21

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.

  14. Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States

    DOE PAGES

    Acciarri, R.; Adamowski, M.; Artrip, D.; ...

    2015-07-28

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the currentmore » efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.« less

  15. Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States

    SciTech Connect

    Acciarri, R.; Adamowski, M.; Artrip, D.; Baller, B.; Bromberg, C.; Cavanna, F.; B. Carls; Chen, H.; Deptuch, G.; Epprecht, L.; Dharmapalan, R.; Foreman, W.; Hahn, A.; Johnson, M.; Jones, B. J.P.; Junk, T.; Lang, K.; Lockwitz, S.; Marchionni, A.; Mauger, C.; Montanari, C.; Mufson, S.; Nessi, M.; Back, H. Olling; Petrillo, G.; Pordes, S.; Raaf, J.; Rebel, B.; Sinins, G.; Soderberg, M.; Spooner, N.; Stancari, M.; Strauss, T.; Terao, K.; Thorn, C.; Tope, T.; Toups, M.; Urheim, J.; Water, R. Van de; Wang, H.; Wasserman, R.; Weber, M.; Whittington, D.; Yang, T.

    2015-07-28

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.

  16. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    SciTech Connect

    Spitz, Joshua B.

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  17. Commissioning of the ArDM experiment at the Canfranc underground laboratory: first steps towards a tonne-scale liquid argon time projection chamber for Dark Matter searches

    NASA Astrophysics Data System (ADS)

    Calvo, J.; Cantini, C.; Crivelli, P.; Daniel, M.; Di Luise, S.; Gendotti, A.; Horikawa, S.; Montes, B.; Mu, W.; Murphy, S.; Natterer, G.; Nguyen, K.; Periale, L.; Quan, Y.; Radics, B.; Regenfus, C.; Romero, L.; Rubbia, A.; Santorelli, R.; Sergiampietri, F.; Viant, T.; Wu, S.

    2017-03-01

    The Argon Dark Matter (ArDM) experiment consists of a liquid argon (LAr) time projection chamber (TPC) sensitive to nuclear recoils, resulting from scattering of hypothetical Weakly Interacting Massive Particles (WIMPs) on argon targets. With an active target mass of 850 kg ArDM represents an important milestone towards developments for large LAr Dark Matter detectors. Here we present the experimental apparatus currently installed underground at the Laboratorio Subterráneo de Canfranc (LSC), Spain. We show data on gaseous or liquid argon targets recorded in 2015 during the commissioning of ArDM in single phase at zero E-field (ArDM Run I). The data confirms the overall good and stable performance of the ArDM tonne-scale LAr detector.

  18. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    SciTech Connect

    Cao, Huajie

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  19. A large liquid argon time projection chamber for long-baseline, off-axis neutrino oscillation physics with the NuMI beam

    SciTech Connect

    Finley, D.; Jensen, D.; Jostlein, H.; Marchionni, A.; Pordes, S.; Rapidis, P.A.; Bromberg, C.; Lu, C.; McDonald, T.; Gallagher, H.; Mann, A.; Schneps, J.; Cline, D.; Sergiampietri, F.; Wang, H.; Curioni, A.; Fleming, B.T.; Menary, S.; /York U., Canada

    2005-09-01

    Results from neutrino oscillation experiments in the last ten years have revolutionized the field of neutrino physics. While the overall oscillation picture for three neutrinos is now well established and precision measurements of the oscillation parameters are underway, crucial issues remain. In particular, the hierarchy of the neutrino masses, the structure of the neutrino mixing matrix, and, above all, CP violation in the neutrino sector are the primary experimental challenges in upcoming years. A program that utilizes the newly commissioned NuMI neutrino beamline, and its planned upgrades, together with a high-performance, large-mass detector will be in an excellent position to provide decisive answers to these key neutrino physics questions. A Liquid Argon time projection chamber (LArTPC) [2], which combines fine-grained tracking, total absorption calorimetry, and scalability, is well matched for this physics program. The few-millimeter-scale spatial granularity of a LArTPC combined with dE/dx measurements make it a powerful detector for neutrino oscillation physics. Scans of simulated event samples, both directed and blind, have shown that electron identification in {nu}{sub e} charged current interactions can be maintained at an efficiency of 80%. Backgrounds for {nu}{sub e} appearance searches from neutral current events with a {pi}{sup 0} are reduced well below the {approx} 0.5-1.0% {nu}{sub e} contamination of the {nu}{sub {mu}} beam [3]. While the ICARUS collaboration has pioneered this technology and shown its feasibility with successful operation of the T600 (600-ton) LArTPC [4], a detector for off-axis, long-baseline neutrino physics must be many times more massive to compensate for the low event rates. We have a baseline concept [5] based on the ICARUS wire plane structure and commercial methods of argon purification and housed in an industrial liquefied-natural-gas tank. Fifteen to fifty kton liquid argon capacity tanks have been considered. A very

  20. The ArDM project: A liquid argon TPC for dark matter detection

    NASA Astrophysics Data System (ADS)

    Boccone, V.; Ar DM Collaboration

    2009-04-01

    ArDM is a new-generation WIMP detector which will measure simultaneously light and charge from scintillation and ionization of liquid argon. Our goal is to construct, characterize and operate a 1 ton liquid argon underground detector. The project relies on the possibility to extract the electrons produced by ionization from the liquid into the gas phase of the detector, to amplify and read out with Large Electron Multipliers detectors. Argon VUV scintillation light has to be converted with wavelength shifters such as TetraPhenyl Butadiene in order to be detected by photomultipliers with bialkali photocathodes. We describe the status of the LEM based charge readout and light readout system R&D and the first light readout tests with warm and cold argon gas in the full size detector.

  1. Proton Scattering on Liquid Argon

    NASA Astrophysics Data System (ADS)

    Bouabid, Ryan; LArIAT Collaboration

    2017-01-01

    LArIAT (Liquid Argon In A Test-beam) is a liquid argon time projection chamber (LArTPC) positioned in a charged particle beamline whose primary purpose is to study the response of LArTPC's to charged particle interactions. This previously unmeasured experimental data will allow for improvement of Monte Carlo simulations and development of identification techniques, important for future planned LArTPC neutrino experiments. LArIAT's beamline is instrumented to allow for the identification of specific particles as well as measurement of those particles' incoming momenta. Among the particles present in the beamline, the analysis presented here focuses on proton-Argon interactions. This study uses particle trajectories and calorimetric information to identify proton-Argon interaction candidates. We present preliminary data results on the measurement of the proton-Argon cross-section. Liquid Argon In A Test Beam. The work is my analysis made possible through the efforts of LArIAT detector, data, and software.

  2. Cryogenic CMOS cameras for high voltage monitoring in liquid argon

    NASA Astrophysics Data System (ADS)

    McConkey, N.; Spooner, N.; Thiesse, M.; Wallbank, M.; Warburton, T. K.

    2017-03-01

    The prevalent use of large volume liquid argon detectors strongly motivates the development of novel readout and monitoring technology which functions at cryogenic temperatures. This paper presents the development of a cryogenic CMOS camera system suitable for use inside a large volume liquid argon detector for online monitoring purposes. The characterisation of the system is described in detail. The reliability of such a camera system has been demonstrated over several months, and recent data from operation within the liquid argon region of the DUNE 35 t cryostat is presented. The cameras were used to monitor for high voltage breakdown inside the cryostat, with capability to observe breakdown of a liquid argon time projection chamber in situ. They were also used for detector monitoring, especially of components during cooldown.

  3. Developing Detectors for Scintillation Light in Liquid Argon for DUNE

    SciTech Connect

    Howard, Bruce

    2016-12-22

    The Deep Underground Neutrino experiment will conduct a broad program of physics research by studying a beam of neutrinos from Fermilab, atmospheric neutrinos, neutrinos from potential supernovae, and potential nucleon decay events. In pursuit of these studies, the experiment will deploy four 10kt fiducial mass liquid argon time projection chambers underground in Lead, South Dakota. Liquid argon time projection chambers allow high-resolution tracking and energy measurements. A precise timing signal is needed to provide the necessary time stamp to localize events in the drift direction. As liquid argon is a natural scintillator, a photon detection system will be deployed to provide such a signal, especially for non-beam events. In the baseline design for the single-phase time projection chamber, the detectors are contained within the anode plane assemblies. The design of two prototypes utilizing wavelength shifters and light guides are presented, and aspects of the research and development program are discussed.

  4. Current and future liquid argon neutrino experiments

    SciTech Connect

    Karagiorgi, Georgia S.

    2015-05-15

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments.

  5. On the electric breakdown in liquid argon at centimeter scale

    NASA Astrophysics Data System (ADS)

    Auger, M.; Blatter, A.; Ereditato, A.; Goeldi, D.; Janos, S.; Kreslo, I.; Luethi, M.; von Rohr, C. Rudolf; Strauss, T.; Weber, M. S.

    2016-03-01

    We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  6. Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin

    2017-01-01

    Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.

  7. Overview of the R&D program on Liquid Argon TPCs under development at the University of Bern

    NASA Astrophysics Data System (ADS)

    Badhrees, I.; Ereditato, A.; Janos, S.; Kreslo, I.; Messina, M.; Haug, S.; von Rohr, C.; Rossi, B.; Strauss, T.; Weber, M.; Zeller, M.

    2012-08-01

    The Liquid Argon Time Projection Chamber (TPC) technique is a promising technology for future neutrino detectors. At LHEP of the University of Bern (Switzerland), R&D projects towards large detectors are on-going. The main goal is to prove long drift paths of the order of 10 m. Therefore, a liquid Argon TPC with 5m of drift distance is being constructed. Many other aspects of the liquid Argon TPC technology are also under investigation, such as a new device to generate high voltage in liquid Argon (Greinacher circuit), a recirculation filtering system and the multi photon ionization of liquid Argon with a UV laser. Two detectors are being built: a medium size prototype for specific detector technology studies, and ARGONTUBE, a 5 m long device.

  8. Liquid Argon Calorimetry for ATLAS

    NASA Astrophysics Data System (ADS)

    Robinson, Alan

    2008-05-01

    This summer, the largest collaborative physics project since the Manhattan project will go online. One of four experiments for the Large Hadron Collider at CERN in Geneva, ATLAS, employs over 2000 people. Canadians have helped design, construct, and calibrate the liquid argon calorimeters for ATLAS to capture the products of the high energy collisions produced by the LHC. From an undergraduate's perspective, explore how these calorimeters are made to handle their harsh requirement. From nearly a billion proton-proton collisions a second, physicists hope to discover the Higgs boson and other new fundamental particles.

  9. Pion Charge Exchange Cross Section on Liquid Argon

    NASA Astrophysics Data System (ADS)

    Nelson, Kevin; LArIAT (FNAL T-1034) Collaboration

    2017-01-01

    The observation of neutrino oscillations allows charge parity violation to be probed in the neutrino sector. Detectors with high calorimetric energy resolution and high spatial resolution will provide precise measurements of neutrino oscillations. By measuring small π+/- cross sections for individual interaction channels, specifically charge exchange, we will make a measurement in the first of its kind on liquid Argon and demonstrate the physics capabilities of a relatively new detector technology: the Liquid Argon Time Projection Chamber (LAr TPC). This analysis will report on the thin slab cross section measurement technique and the Monte Carlo cross section measurements in the energy range of 0.2 - 1.0 GeV. This analysis is the first iteration in classifying charge exchange events from a sample of incident pions, and it aims to identify events in which a π0 was produced without any charged pions leaving the interaction vertex. We will also report on the methodology and efficiency of this algorithm in identifying particles and their interactions in liquid argon. This analysis will inform a future measurement of the π+/- charge exchange cross section on liquid argon. This work was supported in part by the National Science Foundation under Grant No. PHY-1359364.

  10. Commissioning of the ATLAS Liquid Argon Calorimeters

    SciTech Connect

    Cooke, Mark S.

    2009-12-17

    A selection of ATLAS liquid argon (LAr) calorimeter commissioning studies is presented. It includes a coherent noise study, a measurement of the quality of the ionization pulse shape prediction, and energy and time reconstruction analyses with cosmic and single beam signals.

  11. A study of dielectric breakdown along insulators surrounding conductors in liquid argon

    SciTech Connect

    Lockwitz, Sarah; Jostlein, Hans

    2016-03-22

    High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of high voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.

  12. A study of dielectric breakdown along insulators surrounding conductors in liquid argon

    DOE PAGES

    Lockwitz, Sarah; Jostlein, Hans

    2016-03-22

    High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of highmore » voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.« less

  13. Effect of low electric fields on alpha scintillation light yield in liquid argon

    SciTech Connect

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; Cecco, S. De; Deo, M. De; Vincenzi, M. De; Derbin, A.; Devoto, A.; Eusanio, F. Di; Pietro, G. Di; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Agasson, A. Navrer; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-01-01

    Measurements were made of scintillation light yield of alpha particles from the $^{222}$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.

  14. Effect of low electric fields on alpha scintillation light yield in liquid argon

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-01-01

    Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a ~2% increase in light yield compared to alphas in no field.

  15. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Regenfus, C.; Allkofer, Y.; Amsler, C.; Creus, W.; Ferella, A.; Rochet, J.; Walter, M.

    2012-07-01

    In the framework of developments for liquid argon dark matter detectors we assembled a laboratory setup to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (Ekin = 2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from alpha particles at working points relevant for dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the population strength of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  16. Liquid argon dielectric breakdown studies with the MicroBooNE purification system

    SciTech Connect

    Acciarri, R.; Carls, B.; James, C.; Johnson, B.; Jostlein, H.; Lockwitz, S.; Lundberg, B.; Raaf, J. L.; Rameika, R.; Rebel, B.; Zeller, G. P.; Zuckerbrot, M.

    2014-11-01

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  17. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    NASA Astrophysics Data System (ADS)

    Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boudjemline, K.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Cranshaw, D.; Dering, K.; Duncan, F.; Fatemighomi, N.; Ford, R.; Gagnon, R.; Giampa, P.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Grace, E.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Hearns, C.; Hofgartner, J.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; La Zia, F.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D. N.; Mehdiyev, R.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, A. J.; O'Dwyer, E.; Olsen, K.; Ouellet, C.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Ronquest, M.; Seeburn, N.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.

    2016-12-01

    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. In the surface dataset using a triple-coincidence tag we found the fraction of β events that are misidentified as nuclear recoils to be < 1.4 ×10-7 (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement to be done with only a double-coincidence tag. The combined data set contains 1.23 × 108 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the level of electronic recoil contamination is < 2.7 ×10-8 (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe pulse-shape-discrimination parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approximately 10-10 for an electron-equivalent energy threshold of 15 keVee for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10-46 cm2, assuming negligible contribution from nuclear recoil backgrounds.

  18. Stable operation with gain of a double phase Liquid Argon LEM-TPC with a 1 mm thick segmented LEM

    NASA Astrophysics Data System (ADS)

    Resnati, F.; Badertscher, A.; Curioni, A.; Horikawa, S.; Knecht, L.; Lussi, D.; Marchionni, A.; Natterer, G.; Rubbia, A.; Viant, T.

    2011-07-01

    In this paper we present results from a test of a small Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). This detector concept provides a 3D-tracking and calorimetric device capable of charge amplification, suited for next-generation neutrino detectors and possibly direct Dark Matter searches. During a test of a 3 lt chamber equipped with a 10×10 cm2 readout, cosmic muon data was recorded during three weeks of data taking. A maximum gain of 6.5 was achieved and the liquid argon was kept pure enough to ensure 20 cm drift (O(ppb) O2 equivalent).

  19. Status Report of Ardm Project:. a New Direct Detection Experiment, Based on Liquid Argon, for the Search of Dark Matter

    NASA Astrophysics Data System (ADS)

    Messina, M.; Rubbia, A.

    2006-04-01

    The goal of the ArDM project is to develop and operate a detector to search for direct evidence of Weakly Interacting Massive Particle (WIMP) as Dark Matter in the Universe. The experimental approach aims at detecting recoils of Argon nuclei induced by the collisions of WIMPs. Our immediate plan is to fully design and build a 1 ton prototype. This will involve a HV system, charge amplification + readout and light readout, as described in this paper. Our first milestone is a proof of principle on gamma-rays and beta electron vs nuclear recoils discrimination.

  20. Prospects for photosensitive dopants in liquid argon

    SciTech Connect

    Anderson, D.F.

    1990-12-01

    Evidence is presented that the addition of a few ppM of a photosensitive dopant to a U/liquid argon or Pb/liquid argon calorimeter will make a substantial reduction in the e/{pi} ratio. Previous results indicating high voltage problems and no change in the e/{pi} ratio in tests of photosensitive dopants with the Fermilab D0 experiment's U/liquid argon tests calorimeter are also explained. 13 refs., 3 figs.

  1. The DarkSide-50 liquid argon dark matter search

    NASA Astrophysics Data System (ADS)

    Johnson, Tessa; DarkSide-50 Collaboration

    2017-01-01

    The DarkSide-50 experiment uses three nested detectors to directly search for WIMP dark matter, with the innermost detector a time projection chamber filled with a target of liquid argon (LAr). The unique difference in pulse shape between electron recoils and nuclear recoils in LAr allows for exceptional discrimination of beta and gamma backgrounds. Event discrimination due to pulse shape coupled with the neutron discrimination power of the outer detectors is used to create a background-free environment for the DarkSide-50 WIMP search. Atmospheric argon, including the radioactive 39Ar isotope, was first used to search for WIMPs in a 50-day campaign, and later a search with 70.9 days of livetime was performed with argon extracted from underground wells, reducing the 39Ar isotope by a factor of 1 . 4 ×103 . The status of the experiment will be discussed.

  2. ATLAS liquid argon calorimeter front end electronics

    NASA Astrophysics Data System (ADS)

    Buchanan, N. J.; Chen, L.; Gingrich, D. M.; Liu, S.; Chen, H.; Damazio, D.; Densing, F.; Duffin, S.; Farrell, J.; Kandasamy, S.; Kierstead, J.; Lanni, F.; Lissauer, D.; Ma, H.; Makowiecki, D.; Muller, T.; Radeka, V.; Rescia, S.; Ruggiero, R.; Takai, H.; Wolniewicz, K.; Ghazlane, H.; Hoummada, A.; Hervas, L.; Hott, T.; Wilkens, H. G.; Ban, J.; Boettcher, S.; Brooijmans, G.; Chi, C.-Y.; Caughron, S.; Cooke, M.; Copic, K.; Dannheim, D.; Gara, A.; Haas, A.; Katsanos, I.; Parsons, J. A.; Simion, S.; Sippach, W.; Zhang, L.; Zhou, N.; Eckstein, P.; Kobel, M.; Ladygin, E.; Auge, E.; Bernier, R.; Bouchel, M.; Bozzone, A.; Breton, D.; de la Taille, C.; Falleau, I.; Fournier, D.; Imbert, P.; Martin-Chassard, G.; Perus, A.; Richer, J. P.; Seguin Moreau, N.; Serin, L.; Tocut, V.; Veillet, J.-J.; Zerwas, D.; Colas, J.; Dumont-Dayot, N.; Massol, N.; Perrodo, P.; Perrot, G.; Wingerter-Seez, I.; Escalier, M.; Hubaut, F.; Laforge, B.; LeDortz, O.; Schwemling, Ph; Collot, J.; Dzahini, D.; Gallin-Martel, M.-L.; Martin, P.; Cwienk, W. D.; Fent, J.; Kurchaninov, L.; Citterio, M.; Mazzanti, M.; Tartarelli, F.; Bansal, V.; Boulahouache, C.; Cleland, W.; Liu, B.; McDonald, J.; Paolone, V.; Rabel, J.; Savinov, V.; Zuk, G.; Benslama, K.; Borgeaud, P.; de la Broïse, X.; Delagnes, E.; LeCoguie, A.; Mansoulié, B.; Pascual, J.; Teiger, J.; Dinkespiler, B.; Liu, T.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.; Grahn, K.-J.; Hansson, P.; Lund-Jensen, B.; Chu, M. L.; Lee, S.-C.; Su, D. S.; Teng, P. K.; Braun, H. M.

    2008-09-01

    The ATLAS detector has been designed for operation at CERN's Large Hadron Collider. ATLAS includes a complex system of liquid argon calorimeters. This paper describes the architecture and implementation of the system of custom front end electronics developed for the readout of the ATLAS liquid argon calorimeters.

  3. New photosensitive dopants for liquid argon

    NASA Astrophysics Data System (ADS)

    Anderson, D. F.

    1986-05-01

    Thirteen photosensitive dopants for liquid argon are presented, and the criteria for selecting prospective new dopants are discussed. A substantial improvement in energy resolution for 5.5 MeV alpha particles is measured in liquid argon when a photosensitive dopant is added.

  4. The Liquid Argon Purity Demonstrator

    SciTech Connect

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  5. A system to test the effects of materials on the electron drift lifetime in liquid argon and observations on the effect of water

    SciTech Connect

    Andrews, R.; Jaskierny, W.; Jostlein, H.; Kendziora, C.; Pordes, S.; Tope, T.; /Fermilab

    2009-07-01

    A materials test system (MTS) has been developed at FNAL to assess the suitability of materials for use in a large liquid argon time projection chamber. During development of the MTS, it was noted that controlling the cryostat pressure with a 'raining' condenser reduced the electron drift lifetime in the liquid argon. The effect of condensing has been investigated using a series of passive materials to filter the condensate. We report the results of these studies and of tests on different candidate materials for detector construction. The inferred reduction of electron drift lifetime by water concentrations in the parts per trillion is of particular interest.

  6. A Large Liquid Argon TPC for Off-axis NuMI Neutrino Physics

    SciTech Connect

    Menary, Scott

    2006-07-11

    The ICARUS collaboration has shown the power of the liquid argon time projection chamber (LArTPC) technique to image events with bubble-chamber-like quality. I will describe a proposed long-baseline {nu}e appearance experiment utilizing a large ({>=} 15 kton1) LArTPC placed off-axis of Fermilab's NuMI {nu}{mu} beam. The total LArTPC program as it presently stands, which includes a number of smaller R and D projects designed to examine the key design issues, will be outlined.

  7. WA105: a large-scale demonstrator of the Liquid Argon double phase TPC

    NASA Astrophysics Data System (ADS)

    Tonazzo, A.; WA105 Collaboration

    2016-05-01

    The physics case for a large underground detector devoted to neutrino oscillation measurements, nucleon decay and astrophysics is compelling. A time projection chamber based on the dual-phase liquid Argon technique is an extremely attractive option, allowing for long drift distances, low energy threshold and high readout granularity. It has been extensively studied in the LAGUNA-LBNO Design Study and is one of the two designs foreseen for the modules of the DUNE detector in the US. The WA105 experiment envisages the construction of a large scale prototype at CERN, to validate technical solutions and perform physics studies with charged particle beams.

  8. Electron avalanches in liquid argon mixtures

    SciTech Connect

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  9. The CAPTAIN Liquid Argon Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Liu, Qiuguang

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors - a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5-5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  10. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  11. The CAPTAIN liquid argon neutrino experiment

    DOE PAGES

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  12. Luminosity limits for liquid argon calorimetry

    NASA Astrophysics Data System (ADS)

    J, Rutherfoord; B, Walker R.

    2012-12-01

    We have irradiated liquid argon ionization chambers with betas using high-activity Strontium-90 sources. The radiation environment is comparable to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider. We measure the ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. We can operate these chambers either in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. From the transition point we indirectly extract the positive argon ion mobility.

  13. Liquid argon scintillation light studies in LArIAT

    SciTech Connect

    Kryczynski, Pawel

    2016-10-12

    The LArIAT experiment is using its Liquid Argon Time Projection Chamber (LArTPC) in the second run of data-taking at the Fermilab Test Beam Facility. The goal of the experiment is to study the response of LArTPCs to charged particles of energies relevant for planned neutrino experiments. In addition, it will help to develop and evaluate the performance of the simulation, analysis, and reconstruction software used in other LAr neutrino experiments. Particles from a tertiary beam detected by LArIAT (mainly protons, pions and muons) are identified using a set of beamline detectors, including Wire Chambers, Time of Flight counters and Cherenkov counters, as well as a simplified sampling detector used to detect muons. In its effort towards augmenting LArTPC technology for other neutrino experiments, LArIAT also takes advantage of the scintillating capabilities of LAr and is testing the possibility of using the light signal to help reconstruct calorimetric information and particle ID. In this report, we present results from these studies of the scintillation light signal to evaluate detector performance and calorimetry.

  14. SLD liquid argon calorimeter prototype test results

    SciTech Connect

    Dubois, R.; Eigen, G.; Au, Y.; Sleeman, J.; Breidenbach, M.; Brau, J.; Ludgate, G.A.; Oram, C.J.; Cook, V.; Johnson, J.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses.

  15. Energy Resolution of a Large-Scale Liquid Argon Detector

    NASA Astrophysics Data System (ADS)

    Wood, Kevin; Mishra, Sanjib; LBNE Collaboration

    2015-04-01

    The high granularity and feasibility of large-scale construction makes the Liquid Argon Time Projection Chamber (LArTPC) a suitable technology for the Long Baseline Neutrino Experiment (LBNE) far detector. Particle identification relies largely on the topology and calorimetric information from the signature left in the detector. The measurements LBNE intends to make depend on accurately distinguishing charged current electron neutrino events from neutral current background events. A neutrino event featuring an electron produced by νe interaction will tag it as signal; although, gammas from π0 decays in neutral current events induce electromagnetic showers that resemble those of an electron. The granularity and high energy resolution of LArTPCs enable dE/dx to be extracted from the beginning of these showers which helps separate gammas from electrons and, ultimately, charged current electron neutrino events from neutral current events. Presented here is an estimation of the technology's energy resolution and a demonstration of its capabilities for separating electrons and gammas using dE/dx. Sanjib works closely with Kevin on the presented material.

  16. Work at FNAL to achieve long electron drift lifetime in liquid argon

    SciTech Connect

    Finley, D.; Jaskierny, W.; Kendziora, C.; Krider, J.; Pordes, S.; Rapidis, P.A.; Tope, T.; /Fermilab

    2006-10-01

    This note records some of the work done between July 2005 and July 2006 to achieve long (many milliseconds) electron drift lifetimes in liquid argon at Fermilab. The work is part of a process to develop some experience at Fermilab with the technology required to construct a large liquid argon TPC. This technology has been largely developed by the ICARUS collaboration in Europe and this process can be seen as technology transfer. The capability to produce liquid argon in which electrons have drift lifetimes of several milliseconds is crucial to a successful device. Liquid argon calorimeters have been successfully operated at Fermilab; their electro-negative contaminants are at the level of 10{sup -7} while the TPC we are considering requires a contamination level at the level of 10{sup -11}, tens of parts per trillion (ppt). As well as demonstrating the ability to produce liquid argon at this level of purity, the work is part of a program to test the effect on the electron drift time of candidate materials for the construction of a TPC in liquid argon.

  17. GLADE Global Liquid Argon Detector Experiment: a letter of intent to FNAL

    SciTech Connect

    Thomas, Jennifer

    2012-05-13

    The recent measurements of the {theta}{sub 13} mixing angle, which controls the observable size of any CP violation effects, open a window of opportunity to take advantage of the world's most powerful existing neutrino beam together with recent successes in development of the ultimate detector technology for the detection of electron neutrinos : a liquid argon (LAr) time projection chamber. During this proposed project a 5kt LAr detector (GLADE) will be developed by European groups to be put in a cryostat in the NuMI neutrino beam at Fermi National Accelerator Laboratory in the US and will start taking data in 3-5 years time to address the neutrino mass ordering. The successful fruition of this project, along with nominal exposure at NO{nu}A and T2K, together with information from double beta decay experiments could ascertain that neutrinos are Dirac particles in the next decade.

  18. Designs of Large Liquid Argon TPCs - from MicroBooNE to LBNE LAr40

    NASA Astrophysics Data System (ADS)

    Yu, B.; Makowiecki, D. S.; Mahler, G. J.; Radeka, V.; Thorn, C.; Baller, B.; Jostlein, H.; Fleming, B. T.

    Liquid argon time projection chamber (LArTPC) is a unique technology well suited for large scale detectors of neutrinos and other rare processes. Its combination of millimeter scale 3D precision particle tracking and calorimetry with good dE/dx resolution provide excellent efficiency of particle identification and background rejection. MicroBooNE is a LArTPC about to enter its final design phase and is scheduled for construction in 2012. Its active volume contains 86 ton of LAr. It has a 2.6m drift distance, 8256 sense wires connected to cold CMOS analog front-end electronics. Most of the TPC design features improve upon existing tried and true techniques. The LAr40 is one of the two far detector options under consideration for the Long Baseline Neutrino Experiment (LBNE). Its conceptual design has 40 kton active liquid argon mass, to be installed underground at a moderate depth. Due to its large scale, and underground siting, great emphasis was placed on the detector cost and reliability. A modular TPC design is the key to achieve these goals. The LAr40 consists of two 20 kton detectors in one underground cavern. Each detector is in turn constructed from an array of TPC modules. Innovative concepts enable the modules to be tiled with minimal dead space. An overview of both detectors is presented. The designs of key elements in these two TPCs are described in detail.

  19. Near-infrared scintillation of liquid argon

    SciTech Connect

    Alexander, T.; Escobar, C. O.; Lippincott, W. H.; Rubinov, P.

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  20. A Novel Cosmic Ray Tagger System for Liquid Argon TPC Neutrino Detectors

    SciTech Connect

    Auger, M.; Del Tutto, M.; Ereditato, A.; Fleming, B.; Goeldi, D.; Gramellini, E.; Guenette, R.; Ketchum, W.; Kreslo, I.; Laube, A.; Lorca, D.; Luethi, M.; Rudolf von Rohr, C.; Sinclair, J. R.; Soleti, S. R.; Weber, M.

    2016-12-14

    The Fermilab Short Baseline Neutrino (SBN) program aims to observe and reconstruct thousands of neutrino-argon interactions with its three detectors (SBND, MicroBooNE and ICARUS-T600), using their hundred of tonnes Liquid Argon Time Projection Chambers to perform a rich physics analysis program, in particular focused in the search for sterile neutrinos. Given the relatively shallow depth of the detectors, the continuos flux of cosmic ray particles which crossing their volumes introduces a constant background which can be falsely identified as part of the event of interest. Here we present the Cosmic Ray Tagger (CRT) system, a novel technique to tag and identify these crossing particles using scintillation modules which measure their time and coordinates relative to events internal to the neutrino detector, mitigating therefore their effect in the event tracking reconstruction.

  1. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGES

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  2. Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon

    NASA Astrophysics Data System (ADS)

    Cao, H.; Alexander, T.; Aprahamian, A.; Avetisyan, R.; Back, H. O.; Cocco, A. G.; Dejongh, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Guardincerri, Y.; Kendziora, C.; Lippincott, W. H.; Love, C.; Lyons, S.; Manenti, L.; Martoff, C. J.; Meng, Y.; Montanari, D.; Mosteiro, P.; Olvitt, D.; Pordes, S.; Qian, H.; Rossi, B.; Saldanha, R.; Sangiorgio, S.; Siegl, K.; Strauss, S. Y.; Tan, W.; Tatarowicz, J.; Walker, S.; Wang, H.; Watson, A. W.; Westerdale, S.; Yoo, J.; Scene Collaboration

    2015-05-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V /cm . For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V /cm . We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from Krm83 internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni ) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  3. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    SciTech Connect

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  4. The readout driver (ROD) for the ATLAS liquid argon calorimeters

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Ilias

    2001-04-01

    The Readout Driver (ROD) for the Liquid Argon calorimeter of the ATLAS detector is described. Each ROD module receives triggered data from 256 calorimeter cells via two fiber-optics 1.28 Gbit/s links with a 100 kHz event rate (25 kbit/event). Its principal function is to determine the precise energy and timing of the signal from discrete samples of the waveform, taken each period of the LHC clock (25 ns). In addition, it checks, histograms, and formats the digital data stream. A demonstrator system, consisting of a motherboard and several daughter-board processing units (PUs) was constructed and is currently used for tests in the lab. The design of this prototype board is presented here. The board offers maximum modularity and allows the development and testing of different PU designs based on today's leading integer and floating point DSPs.

  5. Grand canonical Monte Carlo simulation of liquid argon

    NASA Astrophysics Data System (ADS)

    Ruff, Imre; Baranyai, András; Pálinkás, Gábor; Heinzinger, Karl

    1986-08-01

    A grand canonical Monte Carlo procedure with fixed values of the chemical potential μ, volume V, and temperature T, is described which is suitable to simulate simple fluids with only a minor increase in computer time in comparison with canonical (N,V,T) simulations and considerably faster than (N,p,T) ones. The method is rapidly convergent for rather dense systems with a reduced density of about ρσ3=0.88. The rapid convergence is attained by decreasing the vain attempts in the regime when new particles are added. The chance to find a place for an additional particle is increased by locating the cavities suitable to house a particle with the aid of the Dirichlet-Voronoi polyhedra. As an example, liquid argon is simulated with Lennard-Jones potentials at T=86.3 K and μ=-73.4 J/mol. The simulated density has been found to be 1.468 g/cm3 which is to be compared with the experimental value of 1.425 g/cm3. The same density was obtained by starting the procedure with both 216 and 250 particles in the simulation box of length 2.1895 nm. The pair correlation function is also in very good agreement with both earlier (N,V,T) simulations and diffraction experiments. The configurations obtained are analyzed by the second- and third-order invariants of the even-l spherical harmonics as order parameters characterizing the nearest neighbors of argon atoms. These results as well as some other statistics on the geometry of the coordination sphere indicate that the prevailing cluster geometry in liquid argon is a distorted hexagonal close packed arrangement which is nevertheless distinguishable from face centered cubic or icosahedral clusters distorted to the same degree or more. The surroundings of vacancies, however, are completely random with no characteristic symmetry properties.

  6. Electron scattering and transport in liquid argon

    SciTech Connect

    Boyle, G. J.; Cocks, D. G.; White, R. D.; McEachran, R. P.

    2015-04-21

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies.

  7. First test of a high voltage feedthrough for liquid Argon TPCs connected to a 300 kV power supply

    NASA Astrophysics Data System (ADS)

    Cantini, C.; Gendotti, A.; Molina Bueno, L.; Murphy, S.; Radics, B.; Regenfus, C.; Rigaut, Y.-A.; Rubbia, A.; Sergiampietri, F.; Viant, T.; Wu, S.

    2017-03-01

    Voltages above a hundred kilo-volt will be required to generate the drift field of future very large liquid Argon Time Projection Chambers. One of the most delicate component is the feedthrough whose role is to safely deliver the very high voltage to the cathode through the thick insulating walls of the cryostat without compromising the purity of the argon inside. This requires a feedthrough that is typically meters long and carefully designed to be vacuum tight and have small heat input. Furthermore, all materials should be carefully chosen to allow operation in cryogenic conditions. In addition, electric fields in liquid argon should be kept below a threshold to reduce risks of discharges. The combination of all above requirements represents significant challenges from the design and manufacturing perspective. In this paper, we report on the successful operation of a feedthrough satisfying all the above requirements. The details of the feedthrough design and its manufacturing steps are provided. Very high voltages up to unprecedented voltages of ‑300 kV could be applied during long periods repeatedly. A source of instability was observed, which was specific to the setup configuration which was used for the test and not due to the feedthrough itself.

  8. Development of a Liquefied Noble Gas Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lesser, Ezra; White, Aaron; Aidala, Christine

    2015-10-01

    Liquefied noble gas detectors have been used for various applications in recent years for detecting neutrinos, neutrons, photons, and potentially dark matter. The University of Michigan is developing a detector with liquid argon to produce scintillation light and ionization electrons. Our data collection method will allow high-resolution energy measurement and spatial reconstruction of detected particles by using multi-pixel silicon photomultipliers (SiPM) and a cylindrical time projection chamber (TPC) with a multi-wire endplate. We have already designed a liquid argon condenser and purification unit surrounded by an insulating vacuum, constructed circuitry for temperature and pressure sensors, and created software to obtain high-accuracy sensor readouts. The status of detector development will be presented. Funded through the Michigan Memorial Phoenix Project.

  9. Development and test in liquid argon of the light readout system for the ArDM experiment

    NASA Astrophysics Data System (ADS)

    Boccone, V.

    2009-12-01

    ArDM is a new-generation WIMP detector which will measure simultaneously light and charge from scintillation and ionization of liquid argon. Our goal is to construct, characterize and operate a 1 ton liquid argon (LAr) underground detector. The project relies on the read out of the VUV scintillation light and on the extraction of the electrons produced by ionization from the liquid into the gas phase of the detector. The light has to be converted with wavelength shifters such as TetraPhenyl Butadiene in order to be detected by photomultipliers with bialkali photocathodes. I describe the light readout system and the tests of the prototype with liquid argon in the full size detector.

  10. A measurement of E/{pi} for a fast lead liquid argon calorimeter

    SciTech Connect

    Makowiecki, D.; Gordon, H.A.; Ma, H.; Murtagh, M.; Radeka, V.; Rahm, D.; Rescia, S.; Abrams, G.S.; Groom, D.E.; Kirsten, F.; Levi, M.; Siegrist, J.; Amako, K.; Inaba, O.; Kondo, T.; Baden, A.R.; Fong, D.; Hadley, N.; Kunori, S.; Skuja, A.; Bowen, T.; Forden, G.; Jenkins, E.; Johns, K.; Rutherfoord, J.; Shupe, M.; Burnett, T.; Cook, V.; Davisson, R.; Mockett, P.; Rothberg, J.; Williams, R.W.; Cremaldi, L.; Reidy, J.; Summers, D.; DiGiacomo, N.; Draper, P.; Ferbel, T.; Lobkowicz, F.; Faust, J.; Hauptman, J.; Pang, M.; Gabriel, T.A.; Hagopian, V.; Womersley, J.; Handler, T.; Hitlin, D.; Mulholland, G.T.; Watanabe, Y.; Weerts, H.

    1990-12-31

    The NA34 (HELIOS) calorimeter has measured e/{pi} {congruent} 1.1 in a uranium/liquid argon calorimeter with a shaping time of 135 nsec. Lead may be a viable alternative, but e/{pi} must first be measured at fast shaping times in lead. We re preparing to measure e/{pi} at momenta ranging from 0.5 to 20 GeV/c and with shaping times of 50, 100 and 150 nsec.

  11. A measurement of E/. pi. for a fast lead liquid argon calorimeter

    SciTech Connect

    Makowiecki, D.; Gordon, H.A.; Ma, H.; Murtagh, M.; Radeka, V.; Rahm, D.; Rescia, S. ); Abrams, G.S.; Groom, D.E.; Kirsten, F.; Levi, M.; Siegrist, J. ); Amako, K.; Inaba, O.; Kondo, T. ); Baden, A.R.; Fong, D.; Hadley, N.; Kunori, S.; Skuja, A. (Maryland U

    1990-01-01

    The NA34 (HELIOS) calorimeter has measured e/{pi} {congruent} 1.1 in a uranium/liquid argon calorimeter with a shaping time of 135 nsec. Lead may be a viable alternative, but e/{pi} must first be measured at fast shaping times in lead. We re preparing to measure e/{pi} at momenta ranging from 0.5 to 20 GeV/c and with shaping times of 50, 100 and 150 nsec.

  12. Anode-coupled readout for light collection in Liquid Argon TPCs

    NASA Astrophysics Data System (ADS)

    Moss, Z.; Toups, M.; Bugel, L.; Collin, G. H.; Conrad, J. M.

    2016-03-01

    This paper will discuss a new method of signal read-out from photon detectors in ultra-large, underground liquid argon time projection chambers. In this design, the signal from the light collection system is coupled via capacitive plates to the TPC wire-planes. This signal is then read out using the same cabling and electronics as the charge information. This greatly benefits light collection: it eliminates the need for an independent readout, substantially reducing cost; it reduces the number of cables in the vapor region of the TPC that can produce impurities; and it cuts down on the number of feed-throughs in the cryostat wall that can cause heat-leaks and potential points of failure. We present experimental results that demonstrate the sensitivity of a LArTPC wire plane to photon detector signals. We also simulate the effect of a 1 μs shaping time and a 2 MHz sampling rate on these signals in the presence of noise, and find that a single photoelectron timing resolution of ~30 ns can be achieved.

  13. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  14. The Liquid Argon Software Toolkit (LArSoft): Goals, Status and Plan

    SciTech Connect

    Pordes, Rush; Snider, Erica

    2016-08-17

    LArSoft is a toolkit that provides a software infrastructure and algorithms for the simulation, reconstruction and analysis of events in Liquid Argon Time Projection Chambers (LArTPCs). It is used by the ArgoNeuT, LArIAT, MicroBooNE, DUNE (including 35ton prototype and ProtoDUNE) and SBND experiments. The LArSoft collaboration provides an environment for the development, use, and sharing of code across experiments. The ultimate goal is to develop fully automatic processes for reconstruction and analysis of LArTPC events. The toolkit is based on the art framework and has a well-defined architecture to interface to other packages, including to GEANT4 and GENIE simulation software and the Pandora software development kit for pattern recognition. It is designed to facilitate and support the evolution of algorithms including their transition to new computing platforms. The development of the toolkit is driven by the scientific stakeholders involved. The core infrastructure includes standard definitions of types and constants, means to input experiment geometries as well as meta and event- data in several formats, and relevant general utilities. Examples of algorithms experiments have contributed to date are: photon-propagation; particle identification; hit finding, track finding and fitting; electromagnetic shower identification and reconstruction. We report on the status of the toolkit and plans for future work.

  15. Scintillation light from cosmic-ray muons in liquid argon

    SciTech Connect

    Whittington, Denver Wade; Mufson, S.; Howard, B.

    2016-05-01

    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a physically-motivated model. Both models find tT = 1:52 ms for the decay time constant of the Ar 2 triplet state. These models also show that the identification of the “early” light fraction in the phenomenological model, FE 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is FS 36%, where the increase over FE is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter Fprompt, the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value 0.3 found by dark matter and double b-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.

  16. The ArDM, a ton-scale liquid argon experiment for direct dark matter detection

    NASA Astrophysics Data System (ADS)

    Otyugova, P.; Ar DM Collaboration

    2008-07-01

    The ArDM project aims at developing and operating large noble liquid detectors to search for direct evidence of Weakly Interacting Massive Particles (WIMP) as Dark Matter in the Universe. The initial goal is to design, assemble and operate an approximately 1 ton liquid argon prototype based on the double-phase detection principle to demonstrate the feasibility of a ton-scale experiment with the required performance to efficiently detect and sufficiently discriminate backgrounds for a successful WIMP detection. The detector will independently measure the primary scintillation light and the ionization charge. This paper will mainly describe the concept, R&D results and status of the charge read out system.

  17. Breakdown voltage of metal-oxide resistors in liquid argon

    SciTech Connect

    Bagby, L. F.; Gollapinni, S.; James, C. C.; Jones, B. J.P.; Jostlein, H.; Lockwitz, S.; Naples, D.; Raaf, J. L.; Rameika, R.; Schukraft, A.; Strauss, T.; Weber, M. S.; Wolbers, S. A.

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  18. MicroBooNE and the Road to Large Liquid Argon Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Karagiorgi, G.

    Liquid Argon Time Projection Chambers (LArTPC's) provide a promising technology for multi-kiloton scale detectors aiming to address-among other pressing particle physics questions-the possibility of short and long baseline electron neutrino and antineutrino appearance. MicroBooNE, a 170 ton LArTPC under construction, is the next necessary step in a phased R&D effort toward construction and stable operation of larger-scale LArTPC's. This development effort also leans heavily on the ArgoNeuT and LAr1 LArTPC R&D experiments at Fermilab. In addition to advancing the LArTPC technology, these projects also provide unique physics opportunities. For example, Micro-BooNE will be located in the Booster Neutrino Beamline at Fermilab, at ∼470 m from neutrino production. Thus, in addition to measuring a suite of low energy neutrino cross sections on argon, MicroBooNE will investigate the anomalous low energy excess seen by the MiniBooNE experiment. Furthermore, the neutrino beam energy and relatively short baseline provide MicroBooNE with sensitivity to high-∼m2 neutrino oscillations. These proceedings summarize the role of the MicroBooNE detector in the US LArTPC R&D program, present its physics reach, and briefly discuss the physics potential of a dedicated near-future neutrino oscillation program at the Booster Neutrino Beamline, as a way to maximize the physics output of the Fermilab LArTPC R&D projects.

  19. Demonstration and comparison of photomultiplier tubes at liquid Argon temperature

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Antonello, M.; Boffelli, F.; Cambiaghi, M.; Canci, N.; Cavanna, F.; Cocco, A. G.; Deniskina, N.; Di Pompeo, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Kryczynski, P.; Meng, G.; Montanari, C.; Palamara, O.; Pandola, L.; Perfetto, F.; Piano Mortari, G. B.; Pietropaolo, F.; Raselli, G. L.; Rubbia, C.; Segreto, E.; Szelc, A. M.; Triossi, A.; Ventura, S.; Vignoli, C.; Zani, A.

    2012-01-01

    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photomultiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics K.K. Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these tests the Hamamatsu PMTs showed excellent performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments.

  20. Development of ATLAS Liquid Argon Calorimeter front-end electronics for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Liu, T.

    2017-01-01

    The high-luminosity phase of the Large Hadron Collider will provide 5–7 times greater luminosities than assumed in the original detector design. An improved trigger system requires an upgrade of the readout electronics of the ATLAS Liquid Argon Calorimeter. Concepts for the future readout of the 182,500 calorimeter cells at 40–80 MHz and 16-bit dynamic range and the developments of radiation-tolerant, low-noise, low-power, and high-bandwidth front-end electronic components, including preamplifiers and shapers, 14-bit ADCs, and 10-Gb/s laser diode array drivers, are presented in this paper.

  1. Linear low power preamplifier for the atlas liquid argon em calorimeter

    SciTech Connect

    Chase, R.L.; Rescia, S.

    1996-11-01

    In a previous paper, it was shown that, for shaping times of the order of the transmission line delay, a remote, external preamplifier could perform as well as one connected directly to a liquid argon calorimeter. Here we describe an improved circuit configuration where, by attributing the functions of low noise and high dynamic range to two different transistors, the linearity can be improved and the noise can be decreased while reducing the power dissipation by a factor of three (to about 40 mW). The gain (i.e., the transresistance) and the input impedance can be chosen independently without changing the power supply voltages and power dissipation.

  2. Further studies of electron avalanche gain in liquid argon

    SciTech Connect

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Jackson, K.H.; Peskov, V.; Wenzel, W.A.; Joo, K.S.

    2003-03-07

    Previously we showed how small admixtures of xenon (Xe) stabilize electron avalanches in liquid Argon (LAr). In the present work, we have measured the positive charge carrier mobility in LAr with small admixtures of Xe to be 6.4 x 10{sup -3} cm{sup 2}/Vsec, in approximate agreement with the mobility measured in pure LAr, and consistent with holes as charge carriers. We have measured the concentration of Xe actually dissolved in the liquid and compared the results with expectations based on the amount of Xe gas added to the LAr. We also have tested LAr doped with krypton to investigate the mechanism of avalanche stabilization.

  3. Cryogenic Tests of the ATLAS Liquid Argon Calorimeter

    NASA Astrophysics Data System (ADS)

    Bremer, J.; Chalifour, M.; Fabre, C.; Gonidec, A.; Passardi, G.

    2006-04-01

    The ATLAS liquid argon calorimeter consists of the barrel and two end-cap detectors housed in three independent cryostats filled with a total volume of 78 m3 of liquid argon. During cool-down the temperature differences in the composite structure of the detectors must be kept within strict limits to avoid excessive mechanical stresses and relative displacements. During normal operation the formation of gas bubbles, which are detrimental to the functioning of the detector, must be prevented and temperature gradients of less than 0.7 K across the argon bath are mandatory due to the temperature dependence of the energy measurements. Between April 2004 and May 2005 the barrel (120 t) and one end-cap (219 t) underwent qualification tests at the operating temperature of 87.3 K using a dedicated test facility at ground level. These tests provided a validation of the cooling methods to be adopted in the final underground configuration. In total 6.9 GJ and 15.7 GJ were extracted from the calorimeters and a temperature uniformity of the argon bath of less than 0.4 K was achieved.

  4. On calibration of the response of liquid argon detectors to nuclear recoils using inelastic neutron scattering on 40Ar

    NASA Astrophysics Data System (ADS)

    Polosatkin, S.; Grishnyaev, E.; Dolgov, A.

    2014-10-01

    A method for measuring of ionization and scintillation yields in liquid argon from recoils with particular energy—8.2 keV—is proposed. The method utilizes a process of inelastic scattering of monoenergetic neutrons produced by fusion DD neutron generator. Features of kinematics of inelastic scattering result in a sufficient (fifteen times) increase in count rate of useful events relative to a traditional scheme using elastic scattering with the same recoil energy and comparable energy resolution.

  5. PERFORMANCE OF THE LEAD/LIQUID ARGON SHOWER COUNTER SYSTEM OF THE MARK II DETECTOR AT SPEAR

    SciTech Connect

    Abrams, G S; Blocker, C A; Briggs, D D; Carithers, W C; Dieterle, W E; Eaton, M W; Lankford, A J; Pang, C Y; Vella, E N; Breidenbach, M; Dorfan, J M; Hanson, G; Hitlin, D G; Jenni, P; Luth, V

    1980-05-01

    The shower counter system of the SLAC-LBL Mark II detector is a large lead/liquid argon system of the type pioneered by Willis and Radekal; however, it differs in most details and is much larger than other such detectors currently in operation, It contains, for example, 8000 liters of liquid argon and 3000 channels of low noise electronics, which is about eight times the size of the system of Willis et al. in the CERN ISR. This paper reports, with little reference to design, on the operation and performance of the Mark II system during approximately a year and a half of operation at the Stanford Linear Accelerator Center's e{sup +}-e{sup -} facility, SPEAR. The design and construction of the system have previously been described and a detailed discussion of all aspects -- design, construction, operation, and performance -- is in preparation.

  6. Measurement of longitudinal electron diffusion in liquid argon

    DOE PAGES

    Li, Yichen; Tsang, Thomas; Thorn, Craig; ...

    2016-02-07

    In this paper, we report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev-Timoshkin. The quantum efficiency of the gold photocathode, the drift velocitymore » and longitudinal diffusion coefficients in gas argon are also presented.« less

  7. Measurement of longitudinal electron diffusion in liquid argon

    SciTech Connect

    Li, Yichen; Tsang, Thomas; Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, James; Tang, Wei; Viren, Brett

    2016-02-07

    In this paper, we report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev-Timoshkin. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  8. Addition of photosensitive dopants to the D0 liquid argon calorimeter

    SciTech Connect

    Amos, N.A.; Anderson, D.F.

    1992-10-01

    The addition of photosensitive dopants to liquid argon greatly enhances the signal from heavily ionizing particles. Since binding energy losses we correlated with the heavily ionizing component in hadronic showers, the addition of photosensitive dopants has been suggested as a mechanism to tune the e/[pi] ratio in liquid argon calorimeters. A measurement was performed at the FNAL test beam, adding 4 ppM tetramethylgermanium to the D[phi] uranium-liquid argon calorimeter. An increase in response for electromagnetic and hadronic showers was observed, with no net change in the e/[pi] ratio.

  9. Addition of photosensitive dopants to the D0 liquid argon calorimeter

    SciTech Connect

    Amos, N.A.; Anderson, D.F.; The D0 Collaboration

    1992-10-01

    The addition of photosensitive dopants to liquid argon greatly enhances the signal from heavily ionizing particles. Since binding energy losses we correlated with the heavily ionizing component in hadronic showers, the addition of photosensitive dopants has been suggested as a mechanism to tune the e/{pi} ratio in liquid argon calorimeters. A measurement was performed at the FNAL test beam, adding 4 ppM tetramethylgermanium to the D{phi} uranium-liquid argon calorimeter. An increase in response for electromagnetic and hadronic showers was observed, with no net change in the e/{pi} ratio.

  10. ATLAS Liquid Argon Endcap Calorimeter R&D for sLHC

    NASA Astrophysics Data System (ADS)

    Schacht, P.

    2010-04-01

    The performance of the ATLAS liquid argon endcap has been studied for luminosities as expected for the operation at sLHC. The increase of integrated luminosity by a factor of ten has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the forward liquid argon calorimeters. The response has been studied with small modules of the type as built for ATLAS in a very high intensity beam at IHEP/Protvino. The highest intensity obtained was well above the level of energy impact expected for ATLAS at sLHC. The signal processing of the ATLAS Hadronic Endcap Calorimeter employs the concept of 'active pads' which keep the detector capacities at the input of the amplifiers small and thereby achieves a fast rise time of the signal. This concept is realized using highly integrated amplifier and summing chips in GaAs technology. With an increase of luminosity by a factor of ten the safety factor for the radiation hardness is essentially eliminated. Therefore new, more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 × 1016n/cm2. All technologies exceed the limit required for the radiation hardness for the operation at sLHC of 2 × 1015n/cm2. The temperature dependence of the gain has been studied as well. Here the bipolar technologies - in contrast to CMOS - need an adjustment of the operation point when going from room temperature to liquid nitrogen temperature.

  11. Atomistic modelling of evaporation and explosive boiling of thin film liquid argon over internally recessed nanostructured surface

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in

  12. Electronics development for the ATLAS liquid argon calorimeter trigger and readout for future LHC running

    NASA Astrophysics Data System (ADS)

    Hopkins, Walter

    2017-02-01

    The upgrade of the LHC will provide 7 times greater instantaneous and 10 times greater total luminosities than assumed in the original design of the ATLAS Liquid Argon (LAr) Calorimeters. Radiation tolerance criteria and an improved trigger system with higher acceptance rate and longer latency require an upgrade of the LAr readout electronics. In the first upgrade phase in 2019-2020, a trigger readout with up to 10 times higher granularity will be implemented. This allows an improved reconstruction of electromagnetic and hadronic showers and will reduce the background for electron, photon and energy-flow signals at the first trigger level. The analog and digital signal processing components are currently in their final design stages and a fully functional demonstrator system is operated and tested on the LAr Calorimeters. In a second upgrade stage in 2024-2026, the readout of all 183,000 LAr Calorimeter cells will be performed without trigger selection at 40 MHz sampling rate and 16 bit dynamic range. Calibrated energies of all cells will be available at the second trigger level operating at 1 MHz, in order to allow further mitigation of pile-up effects in energy reconstruction. Radiation tolerant, low-power front-end electronics optimized for high pile-up conditions are currently being developed, including pre-amplifier, ADC and serializer components in 65-180 nm technology. This contribution will give an overview of the future LAr readout electronics and present research results from the two upgrade programs.

  13. First measurement of the ionization yield of nuclear recoils in liquid argon

    SciTech Connect

    Joshi, T.; Sangiorgio, Samuele; Bernstein, A.; Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Kazkaz, K.; Mozin, Vladimir V.; Norman, E. B.; Pereverzev, S. V.; Rebassoo, Finn O.; Sorensen, Peter F.

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  14. A new ozone standard - The vapor pressure of ozone at liquid argon temperatures

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.; Hanson, D.; Morton, J.

    1985-01-01

    The vapor pressure of ozone has been measured at liquid argon temperatures. At the normal boiling point of argon (-185.9 C) an ozone pressure of 0.0405 torr was obtained with an accuracy of + or - 1.5 percent. Increases and decreases in liquid argon temperatures raised and lowered the ozone vapor pressure, respectively. During the vapor pressure measurements the purity of ozone was monitored with a mass spectrometer. The proposed ozone standard will considerably improve the calibration of experiments for atmospheric research, the determination of absorption cross sections and other laboratory ozone studies.

  15. Scintillation efficiency of liquid argon in low energy neutron-argon scattering

    NASA Astrophysics Data System (ADS)

    Creus, W.; Allkofer, Y.; Amsler, C.; Ferella, A. D.; Rochet, J.; Scotto-Lavina, L.; Walter, M.

    2015-08-01

    Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field.

  16. First results on light readout from the 1-ton ArDM liquid argon detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    ArDM Collaboration; Amsler, C.; Badertscher, A.; Boccone, V.; Bueno, A.; Carmona-Benitez, M. C.; Creus, W.; Curioni, A.; Daniel, M.; Dawe, E. J.; Degunda, U.; Gendotti, A.; Epprecht, L.; Horikawa, S.; Kaufmann, L.; Knecht, L.; Laffranchi, M.; Lazzaro, C.; Lightfoot, P. K.; Lussi, D.; Lozano, J.; Marchionni, A.; Mavrokoridis, K.; Melgarejo, A.; Mijakowski, P.; Natterer, G.; Navas-Concha, S.; Otyugova, P.; de Prado, M.; Przewlocki, P.; Regenfus, C.; Resnati, F.; Robinson, M.; Rochet, J.; Romero, L.; Rondio, E.; Rubbia, A.; Scotto-Lavina, L.; Spooner, N. J. C.; Strauss, T.; Ulbricht, J.; Viant, T.

    2010-11-01

    ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation light and the ionization charge from nuclear recoils in a 1-ton liquid argon target. The goal is to reach a minimum recoil energy of 30 keVr to detect recoiling nuclei. In this paper we describe the experimental concept and present results on the light detection system, tested for the first time in ArDM on the surface at CERN. With a preliminary and incomplete set of PMTs, the light yield at zero electric field is found to be between 0.3-0.5 phe/keVee depending on the position within the detector volume, confirming our expectations based on smaller detector setups.

  17. Characterization of large area photomultiplier ETL 9357FLB for liquid argon detector

    NASA Astrophysics Data System (ADS)

    Du, Ying-Shuai; Yue, Qian; Liu, Yi-Bao; Chen, Qing-Hao; Li, Jin; Cheng, Jian-Ping; Kang, Ke-Jun; Li, Yuan-Jing; Li, Yu-Lan; Ma, Hao; Xing, Hao-Yang; Yu, Xun-Zhen; Zeng, Zhi

    2014-07-01

    The China Dark Matter Experiment (CDEX) Collaboration will carry out a direct search for weakly interacting massive particles with germanium detectors. Liquid argon will be utilized as an anti-Compton and cooling material for the germanium detectors. A low-background and large-area photomultiplier tube (PMT) immersed in liquid argon will be used to read out the light signal from the argon. In this paper we have carried out a careful evaluation on the performance of the PMT operating at both room and cryogenic temperatures. Based on the single photoelectron response model, the absolute gain and resolution of the PMT were measured. This has laid a foundation for PMT selection, calibration and signal analysis in the forthcoming CDEX experiments.

  18. Comparisons of Electron and Muon Signals in the Atlas Liquid Argon Calorimeters with GEANT4 Simulations

    NASA Astrophysics Data System (ADS)

    Benchekroun, D.; Karpetian, G.; Mazini, R.; Kiryunin, A.; Salihagic, D.; Strizenec, P.; Kish, J.; Kordas, K.; Parrour, G.; Leltchouk, M.; Negroni, S.; Seligman, W.; Loch, P.; Soukharev, A.

    2002-01-01

    Signals from electrons and muons taken at testbeams with different modules of the ATLAS Liquid Argon Calorimeter have been compared to corresponding simulations using the GEANT4 toolkit. These simulations have also been compared in some detail with GEANT3 based predictions. Results for signal linearity, energy resolution, and shower shapes all generally indicate a good agreement between experiment and the two simulation packages, typically at the level of a few percent.

  19. Performance and Application of VUV-sensitive MPPCs for Liquid Argon Scintillation Light

    NASA Astrophysics Data System (ADS)

    Washimi, Tatsuki; Tanaka, Masashi; Yorita, Kohei

    A new type of the Multi-Pixel Photon Counter (MPPC), sensitive to liquid argon (LAr) scintillation light (wavelength = 128 nm), is recently developed and produced by Hamamatsu Photonics K.K. In this talk, we report the basic properties of the new MPPCs and the absolute photon detection efficiency (PDE) for LAr scintillation light. Comparisons of different MPPC types (with or without cross-talk supression and pixel sizes of 50 and 100 µm) are also presented.

  20. Measurement of photoelectron yield of the CDEX-10 liquid argon detector prototype

    NASA Astrophysics Data System (ADS)

    Chen, Qing-Hao; Yue, Qian; Cheng, Jian-Ping; Kang, Ke-Jun; Li, Yuan-Jing; Lin, Shin-Ted; Tang, Chang-Jian; Xing, Hao-Yang; Yu, Xun-Zhen; Zeng, Ming; Zhu, Jing-Jun

    2016-11-01

    The China Dark Matter Experiment (CDEX) is a low background experiment at China Jinping Underground Laboratory (CJPL) designed to directly detect dark matter with a high-purity germanium (HPGe) detector. In the second phase, CDEX-10, which has a 10 kg germanium array detector system, a liquid argon (LAr) anti-Compton active shielding and cooling system is proposed. To study the properties of the LAr detector, a prototype with an active volume of 7 liters of liquid argon was built and operated. The photoelectron yields, as a critically important parameter for the prototype detector, have been measured to be 0.051-0.079 p.e./keV for 662 keV γ rays at different positions. The good agreement between the experimental and simulation results has provided a reasonable understanding and determination of the important parameters such as the surviving fraction of the excimers, the absorption length for 128 nm photons in liquid argon, the reflectivity of Teflon and so on.

  1. A 20-liter test stand with gas purification for liquid argon research

    NASA Astrophysics Data System (ADS)

    Li, Y.; Thorn, C.; Tang, W.; Joshi, J.; Qian, X.; Diwan, M.; Kettell, S.; Morse, W.; Rao, T.; Stewart, J.; Tsang, T.; Zhang, L.

    2016-06-01

    We describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). This system utilizes a simple, cost-effective gas argon (GAr) purification to achieve high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. A gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.

  2. The trigger readout electronics for the Phase-I upgrade of the ATLAS Liquid Argon calorimeters

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    2017-03-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS Liquid Argon (LAr) Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, grouped into 34000 so-called Super Cells, with 12-bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which computes the Super Cell transverse energies. In this paper, development and test results of the new readout system are presented.

  3. Test beam results from the D0 liquid argon end calorimeter electromagnetic module

    SciTech Connect

    Spadafora, A.L.

    1991-08-01

    Results are presented from a test beam study of the D0 liquid argon end calorimeter electromagnetic module prior to its installation at the Fermilab Tevatron Collider. Using electron beams with energies ranging from 10--150 GeV we have obtained an energy resolution of 15.7%/{radical}E(GeV) with a small constant term of 0.3% and a linearity of better than {plus minus}0.5%. The position resolution of the calorimeter is found to approximately 1 mm for 100 GeV electrons. 7 refs., 8 figs., 3 tabs.

  4. A 20-liter test stand with gas purification for liquid argon research

    SciTech Connect

    Li, Y.; Thorn, C.; Tang, W.; Joshi, J.; Qian, X.; Diwan, M.; Kettell, S.; Morse, W.; Rao, T.; Stewart, J.; Tsang, T.; Zhang, L.

    2016-06-06

    Here, we describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). Moreover, this system utilizes a simple, cost-effective gas argon (GAr) purification to achieve high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. Finally, a gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.

  5. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    SciTech Connect

    Joshi, Tenzing Henry Yatish

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  6. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

    PubMed

    Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie

    2015-01-01

    Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

  7. First Tests of a New Fast Waveform Digitizer for PMT Signal Read-out from Liquid Argon Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Szelc, A. M.; Canci, N.; Cavanna, F.; Cortopassi, A.; D'Incecco, M.; Mini, G.; Pietropaolo, F.; Romboli, A.; Segreto, E.; Acciarri, R.

    A new generation Waveform Digitizer board as been recently made available on the market by CAEN. The new board CAEN V1751 with 8 Channels per board, 10 bit, 1 GS/s Flash ADC Waveform Digitizer (or 4 channel, 10 bit, 2 GS/s Flash ADC Waveform Digitizer -Dual Edge Sampling mode) with threshold and Auto-Trigger capabilities provides an ideal (relatively low-cost) solution for reading signals from liquid Argon detectors for Dark Matter search equipped with an array of PMTs for the detection of scintillation light. The board was extensively used in real experimental conditions to test its usefulness for possible future uses and to compare it with a state of the art digital oscilloscope. As results, PMT Signal sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the signal scintillation in Argon (characteristic time of about 4 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.

  8. New Measurement of ^39Ar in Underground Argon with a Low Background Liquid Argon Detector

    NASA Astrophysics Data System (ADS)

    Xu, Jingke

    2012-03-01

    A low background liquid argon detector has been developed for sensitive measurements of the beta radioactive ^39Ar in argon from underground sources. The measurement is motivated by the need to improve on earlier studies that showed no sign of ^39Ar in certain sources of underground argon, but with a limited sensitivity of ˜ 5% relative to ^39Ar in atmospheric argon[1]. We will report preliminary measurements taken with the low background detector that was commissioned and operated at the Kimballton Underground Research Facility (KURF) in Virginia. A combination of passive and active background reduction techniques resulted in a very low background and a null result with sensitivity to ^39Ar less than 1% of atmospheric. The results confirm that underground argon is well suited for direct detection of dark matter WIMPs. [4pt] [1] D. Acosta-Kane et al., Nucl. Instr. Meth. A 587:46 (2008)

  9. Performance of VUV-sensitive MPPC for liquid argon scintillation light

    NASA Astrophysics Data System (ADS)

    Igarashi, T.; Tanaka, M.; Washimi, T.; Yorita, K.

    2016-10-01

    A new multi-pixel photon counter (MPPC) sensitive to vacuum ultra-violet (VUV) light (wavelength λ < 150 nm) has recently been developed and produced by Hamamatsu Photonics K.K. In this study, the basic properties of the new MPPC are measured at the cryogenic facility of the Waseda University using liquid nitrogen. The temperature dependence of the breakdown voltage, capacitance, and dark count rate of the MPPCs are also evaluated. Using an 241Am α-ray source, the absolute photon detection efficiency (PDE) of the liquid argon (LAr) scintillation light (λ=128 nm) for the latest MPPC model is estimated to be 13%. Based on these basic measurements a possible application of the new MPPC to LAr detectors in dark matter search is suggested.

  10. Electron recombination in low-energy nuclear recoils tracks in liquid argon

    NASA Astrophysics Data System (ADS)

    Wojcik, M.

    2016-02-01

    This paper presents an analysis of electron-ion recombination processes in ionization tracks of recoiled atoms in liquid argon (LAr) detectors. The analysis is based on the results of computer simulations which use realistic models of electron transport and reactions. The calculations reproduce the recent experimental results of the ionization yield from 6.7 keV nuclear recoils in LAr. The statistical distribution of the number of electrons that escape recombination is found to deviate from the binomial distribution, and estimates of recombination fluctuations for nuclear recoils tracks are obtained. A study of the recombination kinetics shows that a significant part of electrons undergo very fast static recombination, an effect that may be responsible for the weak drift-field dependence of the ionization yield from nuclear recoils in some noble liquids. The obtained results can be useful in the search for hypothetical dark matter particles and in other studies that involve detection of recoiled nuclei.

  11. Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics.

    PubMed

    Maroo, Shalabh C; Chung, J N

    2008-12-01

    A novel 'fluid-wall thermal equilibrium model' for the wall-fluid heat transfer boundary condition has been developed in this paper to capture the nano-scale physics of transient phase transition of a thin liquid argon film on a heated platinum surface and the eventual colloidal adsorption phenomenon as the evaporation is diminishing using molecular dynamics. The objective of this work is to provide microscopic characterizations of the dynamic thermal energy transport mechanisms during the liquid film evaporation and also the resulting non-evaporable colloidal adsorbed liquid layer at the end of the evaporation process. A nanochannel is constructed of platinum (Pt) wall atoms with argon as the working fluid. The proposed model is validated by heating liquid argon between two Pt walls and comparing the thermal conductivity and change in internal energy to thermodynamic properties of argon. Later on, phase change process is studied by simulating evaporation of a thin liquid argon film on a Pt wall using the proposed model. Gradual evaporation of the liquid film occurs although the film does not vaporize completely. An ultra-thin layer of liquid argon is noticed to have "adsorbed" on the platinum surface. An analysis similar to the theoretical study by Hamaker (1937) is performed for the non-evaporating film and the value of the Hamaker-type constant falls in the typical range. This analysis is done to quantify the non-evaporating film with an attempt to use molecular dynamics simulation results in continuum mechanics.

  12. Muon-induced background to proton decay in the p →K+ ν decay channel with large underground liquid argon TPC detectors

    NASA Astrophysics Data System (ADS)

    Klinger, J.; Kudryavtsev, V. A.; Richardson, M.; Spooner, N. J. C.

    2015-06-01

    Large liquid argon TPC detector programs such as LBNE and LAGUNA-LBNO will be able to make measurements of the proton lifetime which will outperform Cherenkov detectors in the proton decay channel p →K+ ν. At the large depths which are proposed for such experiments, a non-negligible source of isolated charged kaons may be produced in the showers of cosmogenic muons. We present an estimate of the cosmogenic muon background to proton decay in the p →K+ ν channel. The simulation of muon transport to a depth of 4 km w.e. is performed in the MUSIC framework and the subsequent propagation of muons and secondary particles in the vicinity of a cylindrical 20 kt LAr target is performed using GEANT4. An exposure time of 100 years is considered, with a rate of <0.0012 events/kt/year at 90% CL predicted from our simulations.

  13. Radiation Tolerant Electronics and Digital Processing for the Phase-1 Read-out Upgrade of the ATLAS Liquid Argon Calorimeters

    SciTech Connect

    Milic, A.

    2015-07-01

    The ATLAS Liquid Argon calorimeters are designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, an upgrade of the read-out electronics is being launched to cope with luminosities of up to 3x10{sup 34} cm{sup -2}s{sup -1}, which are beyond the original design by a factor of 3. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the upgrade Phase-1 in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The read-out of the trigger signals will process 34000 so-called Super Cells at every LHC bunch-crossing at a frequency of 40 MHz. The new LTDB on-detector electronics is designed to be radiation tolerant in order to be operated for the remaining live-time of the ATLAS detector up to a total luminosity of 3000 fb{sup -1}. For the analog-to-digital conversion (12-bit ADC at 40 MSPS), the data serialization and the fast optical link (5.44 Gb/s) custom components have been developed. They have been qualified for the expected radiation environment of a total ionization dose of 1.3 kGy and a hadron fluence of 6 x 10{sup 13} h/cm{sup 2} with energies above

  14. Assembly and Commissioning of a Liquid Argon Detector and Development of a Slow Control System for the COHERENT Experiment

    NASA Astrophysics Data System (ADS)

    Kaemingk, Michael; Cooper, Robert; Coherent Collaboration

    2016-09-01

    COHERENT is a collaboration whose goal is to measure coherent elastic neutrino-nucleus scattering (CEvNS). COHERENT plans to deploy a suite of detectors to measure the expected number-of-neutrons squared dependence of CEvNS at the Spallation Neutron Source at Oak Ridge National Laboratory. One of these detectors is a liquid argon detector which can measure these low energy nuclear recoil interactions. Ensuring optimal functionality requires the development of a slow control system to monitor and control various aspects, such as the temperature and pressure, of these detectors. Electronics manufactured by Beckhoff, Digilent, and Arduino among others are being used to create these slow control systems. This poster will generally discuss the assembly and commissioning of this CENNS-10 liquid argon detector at Indiana University and will feature work on the slow control systems.

  15. Upgrade of the Trigger Readout System of the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Marino, C. P.

    2014-06-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η| <3.2, and for hadronic calorimetry in the region from |η| =1.5 to |η| =4.9. The ATLAS LAr calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sums analog signals to provide coarsely grained energy sums to the Level-1 trigger system, which is optimized for nominal LHC luminosities. In 2018, an instantaneous luminosity of 2-3 ×1034cm-2s-1 is expected, far beyond the nominal one for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primitives is proposed to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For these purposes, a new LAr Trigger Digitizer Board (LTDB) is being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the Level-1 trigger system to extract improved trigger signatures.

  16. Neutrinos from failed supernovae at future water and liquid argon detectors

    NASA Astrophysics Data System (ADS)

    Keehn, James G.; Lunardini, Cecilia

    2012-02-01

    We discuss the diffuse flux of electron neutrinos and antineutrinos from cosmological failed supernovae, stars that collapse directly into a black hole with no explosion. This flux has a hotter energy spectrum compared to the flux from regular, neutron star-forming collapses and therefore it dominates the total diffuse flux from core collapses above 20-45 MeV of neutrino energy. Reflecting the features of the originally emitted neutrinos, the flux of νe and ν¯e at Earth is larger when the survival probability of these species is larger, and also when the equations of state of nuclear matter are stiffer. In the 19-29 MeV energy window, the flux from failed supernovae is substantial, ranging from ˜7% to a dominant fraction of the total flux from all core collapses. It can be as large as ϕe¯BH=0.38s-1cm-2 for ν¯e and as large as ϕeBH=0.28s-1cm-2 for νe, normalized to a local rate of core collapses of Rcc(0)=10-4yr-1Mpc-3. In 5 years, a 0.45 Mt water Cherenkov detector should see ˜5-65 events from failed supernovae, while up to ˜160 events are expected for the same mass with Gadolinium added. A 0.1 Mt liquid argon experiment should record ˜1-11 events. Signatures of neutrinos from failed supernovae are the enhancement of the total rates of events from core collapses (up to a factor of ˜2) and the appearance of high energy tails in the event spectra.

  17. Neutrinos from failed supernovae at future water and liquid argon detectors

    SciTech Connect

    Keehn, James G.; Lunardini, Cecilia

    2012-02-01

    We discuss the diffuse flux of electron neutrinos and antineutrinos from cosmological failed supernovae, stars that collapse directly into a black hole with no explosion. This flux has a hotter energy spectrum compared to the flux from regular, neutron star-forming collapses and therefore it dominates the total diffuse flux from core collapses above 20–45 MeV of neutrino energy. Reflecting the features of the originally emitted neutrinos, the flux of νe and $\\bar{v}$e at Earth is larger when the survival probability of these species is larger, and also when the equations of state of nuclear matter are stiffer. In the 19–29 MeV energy window, the flux from failed supernovae is substantial, ranging from ~7% to a dominant fraction of the total flux from all core collapses. It can be as large as Φ$\\bar{e}$BH=0.38 s-1 cm-2 for $\\bar{v}$e and as large as Φ$\\bar{e}$BH=0.28 s-1 cm-2 for νe, normalized to a local rate of core collapses of Rcc(0)=10-4 yr-1 Mpc-3. In 5 years, a 0.45 Mt water Cherenkov detector should see ~5–65 events from failed supernovae, while up to ~160 events are expected for the same mass with Gadolinium added. A 0.1 Mt liquid argon experiment should record ~1–11 events. Signatures of neutrinos from failed supernovae are the enhancement of the total rates of events from core collapses (up to a factor of ~2) and the appearance of high energy tails in the event spectra.

  18. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    SciTech Connect

    Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Bernstein, A.; Joshi, T.; Kazkaz, K.; Mozin, Vladimir V.; Pereverzev, S. V.; Sangiorgio, Samuele; Sorensen, Peter F.

    2015-09-01

    Coherent neutrino-nucleus scattering (CNNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. CNNS is a flavor-blind interaction, which offers potential benefits for its use in nonproliferation (nuclear reactor monitoring) and astrophysics (supernova and solar neutrinos) applications. One challenge with detecting CNNS is the low energy deposition associated with a typical CNNS nuclear recoil. In addition, nuclear recoils are predicted to result in lower ionization yields than those produced by electron recoils of the same energy. This ratio of nuclear- and electron-induced ionization, known as the nuclear quenching factor, is unknown at energies typical for CNNS interactions in liquid xenon (LXe) and liquid argon (LAr), detector media being considered for CNNS detection. While there have been recent measurements [1] of the ionization yield from nuclear recoils in LAr, there is no universal model for nuclear quenching and ionization yield. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The local ionization yield of a recoiling atom in the medium is calculated first. The ejected electrons are subsequently tracked in the electric field resulting from both the local electric charges and the externally applied drift field. The dependence of the ionization yield on the drift electric field is obtained by combining the calculated ionization yield for the initial collision cascade with the electron escape probability. An updated estimate of the CNNS signal expected in a LAr detector operated near a nuclear power reactor is presented.

  19. A low-latency, low-overhead encoder for data transmission in the ATLAS Liquid Argon Calorimeter trigger upgrade

    NASA Astrophysics Data System (ADS)

    Xiao, Le; Li, Xiaoting; Gong, Datao; Chen, Jinghong; Deng, Binwei; Fan, Qingjun; Feng, Yulang; Guo, Di; He, Huiqin; Hou, Suen; Huang, Guangming; Liu, Chonghan; Liu, Tiankuan; Sun, Xiangming; Tang, Yuxuan; Teng, Ping-Kun; Vosooghi, Bozorgmehr; Xiang, Annie C.; Ye, Jingbo; You, Yang; Zuo, Zhiheng

    2016-09-01

    In this paper, we present the design and test results of an encoder integrated circuit for the ATLAS Liquid Argon Calorimeter trigger upgrade. The encoder implements a low-latency and low-overhead line code called LOCic. The encoder operates at 320 MHz with a latency of no greater than 21 ns. The overhead of the encoder is 14.3%. The encoder is an important block of the transmitter ASIC LOCx2, which is prototyped with a commercial 0.25 μm Silicon-on-Sapphire CMOS technology and packaged in a 100-pin QFN package.

  20. Analysis of the 222Rn concentration in argon and a purification technique for gaseous and liquid argon.

    PubMed

    Simgen, H; Zuzel, G

    2009-05-01

    We present an investigation of the (222)Rn concentration in argon with ultra-low background proportional counters. Argon purification tests by means of cryo-adsorption of radon on activated carbon were performed. For gaseous argon the purification process was found to be very efficient. Also in liquid phase the (222)Rn concentration could be reduced significantly, however, the efficiency is lower than in the gas phase. We also have analyzed the initial (222)Rn concentrations in commercial liquid argon. It was found to be significantly higher than in liquid nitrogen.

  1. PREFACE: 1st International Workshop towards the Giant Liquid Argon Charge Imaging Experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsuto; Nishikawa, Koichiro

    2011-07-01

    "Neutrino physics is largely an art of learning a great deal by observing nothing" (Haim Harari, 1988) was our general understanding of the field for the ~25 years previous. A new neutrino era was abruptly brought from outer space by a burst of SN1987A neutrinos. The detection of neutrinos from SN1987A gave a new impetus to neutrino research. As we know, new discoveries of neutrinos have since been made. Neutrinos were no longer mysterious, but attained particle citizenship. Giant liquid argon charge imaging experiments have the prospect of opening the door to the second new era in neutrino physics. The coming era would provoke not evolution, but revolution in particle physics. However, paving the way for the new era requires not evolutionary, but revolutionary detector developments. I hope this workshop will be conducive to reaping a rich harvest from its activities. In 1993, Professor Carlo Rubbia presented "The Renaissance of Experimental Neutrino Physics" in which he discussed various possibilities of shooting neutrino beams from CERN towards Gran Sasso, Super-Kamiokande at Kamioka and DUMAND in Hawaii. Now KEK hopes to shoot neutrino beams from J-PARC to Kamioka, Okinoshima, Korea and Gran Sasso. Signature Atsuto SuzukiDirector General, KEK J-PARC has moved into a new phase of operation. The commissioning of the accelerator complex and experiment facilities has begun, and it is urgent to attain initial design performance as soon as possible. For the immediate future, KEK has a 5 year plan. The plan includes the upgrade of the J-PARC accelerator to a multi-Mega-Watt facility, and detector R&Ds to form the basis for a next step in the neutrino experiment. One of the main issues of the future neutrino experiment will be the search for CP violation in neutrino oscillation, which demands much more precision than studying neutrino oscillation or non-zero theta13. This naturally requires a very massive detector with higher precision than presently available

  2. Radiation Tolerant Electronics and Digital Processing for the Phase-I Trigger Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    SciTech Connect

    Milic, A.

    2015-07-01

    The high luminosities of L > 10{sup 34} cm{sup -2}s{sup -1} at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The front end (FE) electronic readout of the ATLAS LAr calorimeter located on the detector itself consists of a combined analog and digital processing system. In order to exploit the higher luminosity while keeping the same trigger bandwidth of 100 kHz, higher transverse granularity, higher resolution and longitudinal shower shape information will be provided from the LAr calorimeter to the Level-l trigger processors. New trigger readout electronics have been designed for this purpose, which will withstand the radiation dose levels expected for an integrated luminosity of 3000 fb{sup -1} during the high luminosity LHC (HL-LHC), which is well above the original LHC design qualifications. (authors)

  3. Phase-I trigger readout electronics upgrade of the ATLAS liquid-argon calorimeters

    NASA Astrophysics Data System (ADS)

    Mori, Tatsuya

    2016-09-01

    This article gives an overview of the Phase-I Upgrade of the ATLAS LAr Calorimeter Trigger Readout. The design of custom developed hardware for fast real-time data processing and transfer are presented. Performance results from the prototype boards operated in the demonstrator system, first measurements of noise behavior and responses on the test pulses to the demonstrator system are shown.

  4. Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.

    2014-02-01

    This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.

  5. Long-term operation of a double phase LAr LEM Time Projection Chamber with a simplified anode and extraction-grid design

    NASA Astrophysics Data System (ADS)

    Cantini, C.; Epprecht, L.; Gendotti, A.; Horikawa, S.; Murphy, S.; Natterer, G.; Periale, L.; Resnati, F.; Rubbia, A.; Sergiampietri, F.; Viant, T.; Wu, S.

    2014-03-01

    We report on the successful operation of a double phase Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC) equipped with two dimensional projective anodes with dimensions 10 × 10 cm2, and with a maximum drift length of 21 cm. The anodes were manufactured for the first time from a single multilayer printed circuit board (PCB). Various layouts of the readout views have been tested and optimised. In addition, the ionisation charge was efficiently extracted from the liquid to the gas phase with a single grid instead of two previously. We studied the response and the gain of the detector to cosmic muon tracks. To study long-term stability over several weeks, we continuously operated the chamber at fixed electric field settings. We reproducibly observe that after an initial decrease with a characteristic time of τ ≈ 1.6 days, the observed gain is stable. In 46 days of operation, a total of 14.6 million triggers have been collected at a stable effective gain of G∞ ~ 15 corresponding to a signal-to-noise ratio (S/N)gtrsim60 for minimum ionising tracks. During the full period, eight discharges across the LEM were observed. A maximum effective gain of 90 was also observed, corresponding to a signal-to-noise ratio (S/N)gtrsim400 for minimum ionising tracks, or S/N ≈ 10 for an energy deposition of 15 keV on a single readout channel.

  6. The DELPHI time projection chamber

    SciTech Connect

    Brand, C.; Cairanti, G.; Charpentier, P.; Clara, M.P.; Delikaris, D.; Foeth, H.; Heck, B.W.; Hilke, H.J.; Sulkowski, K.; Aubret, C.

    1989-02-01

    The central tracking device of the DELPHI Experiment at LEP is a Time Projection Chamber (TPC) with an active volume of 2 x 1.34m in length and 2.22m in diameter. Since spring 1988 the TPC has undergone extensive tests in a cosmic ray set-up. It will be installed in the LEP tunnel by early 1989. This report covers the construction, the read-out electronics and the contribution of the TPC to the DELPHI trigger. Emphasis is given to novelties which are not used in similar detectors.

  7. The SAMURAI Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Dye, Steven

    2011-10-01

    The SAMURAI Time Projection Chamber (TPC) will be used to study particle collisions by colliding a beam of particles with a stationary gas which will be contained in a field cage inside the TPC. When the beam collides with the gas, charged particles are accelerated into the pad plane by an electric field. The paths of these particles will be curved by a magnetic field created by the SAMURAI magnet at the RIKEN facility in Japan. The charged particles will then collide with the pad plane which will be located on the bottom of the TPC. The pad plane will take these collisions and create electrical signals and send them to supporting electronics where the data can be interpreted. The TPC will be used to help determine the Equation of State for asymmetric nuclear matter. Measurements of neutron, proton, 3H and 3He flow will be taken with the NEBULA array which consists of nebula scintillators. The poster will contain information on the laser calibration system and the electronics that will be used for the TPC. The electronics used are the same electronics used in the STAR TPC experiment.

  8. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    SciTech Connect

    Acciarri, R.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  9. Extension of the invariant environment refinement technique + reverse Monte Carlo method of structural modelling for interpreting experimental structure factors: The cases of amorphous silicon, phosphorus, and liquid argon

    NASA Astrophysics Data System (ADS)

    Gereben, Orsolya; Pusztai, László

    2011-08-01

    The invariant environment refinement technique, as applied to reverse Monte Carlo modelling [invariant environment refinement technique + reverse Monte Carlo (INVERT + RMC); M. J. Cliffe, M. T. Dove, D. A. Drabold, and A. L. Goodwin, Phys. Rev. Lett. 104, 125501 (2010), 10.1103/PhysRevLett.104.125501], is extended so that it is now applicable for interpreting the structure factor (instead of the pair distribution function). The new algorithm, called the local invariance calculation, is presented by the examples of amorphous silicon, phosphorus, and liquid argon. As a measure of the effectiveness of the new algorithm, the ratio of exactly fourfold coordinated Si atoms was larger than obtained previously by the INVERT-RMC scheme.

  10. Lower and upper bounds for the absolute free energy by the hypothetical scanning Monte Carlo method: application to liquid argon and water.

    PubMed

    White, Ronald P; Meirovitch, Hagai

    2004-12-08

    The hypothetical scanning (HS) method is a general approach for calculating the absolute entropy S and free energy F by analyzing Boltzmann samples obtained by Monte Carlo or molecular dynamics techniques. With HS applied to a fluid, each configuration i of the sample is reconstructed by gradually placing the molecules in their positions at i using transition probabilities (TPs). At each step of the process the system is divided into two parts, the already treated molecules (the "past"), which are fixed, and the as yet unspecified (mobile) "future" molecules. Obtaining the TP exactly requires calculating partition functions over all positions of the future molecules in the presence of the frozen past, thus it is customary to invoke various approximations to best represent these quantities. In a recent publication [Proc. Natl. Acad. Sci. USA 101, 9235 (2004)] we developed a version of HS called complete HSMC, where each TP is calculated from an MC simulation involving all of the future molecules (the complete future); the method was applied very successfully to Lennard-Jones systems (liquid argon) and a box of TIP3P water molecules. In its basic implementation the method provides lower and upper bounds for F, where the latter can be evaluated only for relatively small systems. Here we introduce a new expression for an upper bound, which can be evaluated for larger systems. We also propose a new exact expression for F and verify its effectiveness. These free energy functionals lead to significantly improved accuracy (as applied to the liquid systems above) which is comparable to our thermodynamic integration results. We formalize and discuss theoretical aspects of HSMC that have not been addressed in previous studies. Additionally, several functionals are developed and shown to provide the free energy through the analysis of a single configuration.

  11. Crosstalk Studies of a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Ryer, Jonathan

    2008-10-01

    The crosstalk between various pads of a Time Projection Chamber (TPC) developed for the experiment MuSun was studied. Crosstalk between TPC pads must be studied and understood in order for proper muon path reconstruction to be obtained. A printed circuit board was developed to use capacitive coupling to transmit a signal pulse onto the TPC, where the crosstalk of the transmitted signal was studied.

  12. Physics Impact of Improvements to the Beam Timing Resolution at MicroBooNE

    NASA Astrophysics Data System (ADS)

    Miceli, Tia; MicroBooNE Collaboration

    2017-01-01

    The MicroBooNE detector is a liquid argon time-projection chamber (89 tons active mass) at Fermilab designed to measure interactions of neutrinos from the Booster Neutrino Beamline (BNB) and the Neutrinos at the Main Injector (NuMI) beamline. During the first year of data-taking, the arrival time of the neutrinos was only understood with an accuracy of 100 ns for the BNB, and was unverified for NuMI. A set of upgrades has been implemented that will reduce the uncertainty in beam delivery time by two orders of magnitude, significantly improving our ability to observe neutral-current elastic interactions in the BNB, and kaon decays at rest using NuMI. This talk explains the improvements in neutrino arrival timing, their impact on these two analyses, and the overall benefit to all other MicroBooNE measurements. DOE Office of Science.

  13. Container Refurbishment Cycle Time Reduction (CTR) Project

    SciTech Connect

    Aloi, t.; anthony, p; blair, t; forester, c; hall, k; hawk, t; gordon, b; johnsen, s; keck, g; clifford, m; reichert, d; rogers, p; richards, w; smallen, p; tilley, e

    2000-05-15

    In mid-1999, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the overall efficiency of the Container Refurbishment process. A cross-functional team was formed by the Industrial Engineering Services group within Product Certification Organization to evaluate the current process and to propose necessary changes for improvement. The CTR team efforts have resulted in increased productivity equaling approximately $450K per year. The effort also significantly reduced the wait time required necessary to start assembly work on the shop floor. Increasing daily production time and identifying delays were key team goals. Following is a brief summary of accomplishments: (A) Productivity Improvements: (1) Reduced Radcon survey time for empty containers: (i) 50% at 9720-3 (ii) 67% at 9204-2 and (iii) 100% at 9212; (2) Eliminated container inspections at 9720-3; (3) Reduced charged time (includes hands-on labor and support functions) per empty container by 25%; (4) Reduced cycle time to refurbish a container by 25%. (Dramatic wait time reduction -Assembly); (5) Reduced the time for 9212 to receive empty, refurbished containers by 67-80%; (6) Reduced the time for 9204-2E to receive empty, refurbished containers from 1 day to immediate; (7) Implemented software to track time charged per container for continuous improvement; (8) Initiated continuous improvement efforts between Workstream experts and Refurbishment personnel, reworded complex Workstream prompts to allow worker data corrections, and reduces time of support groups, Workstream personnel, and Refurbishment personnel; (9) Consolidated refurbished, container warehousing areas, eliminated long travel times to areas outside the protected area portals to an area in the vicinity of the refurbishment area and a process area, benefits are improved container flow and better housekeeping; and (10) improved overall communication of team by flowcharting entire process. B. Annual Cost Savings: $453K

  14. Real-Time Ada Demonstration Project

    DTIC Science & Technology

    1989-05-31

    CENER OR OFTAREENGINEERING ADVANCED SOFTWARE TECHNOLOGY Subject: Final Report - Real-Time Ada Demonstration Proj e-t- --.-. SEP 0 1989 D SEA)~ CIN...C02 0921I 6))00 I 31 MAY 1989 *:i ’C O~ 0"ed ~ 842 190 ?’ 45 DEMONSTRATION PROJECT FINAL REPORT PREPARED FOR: U.S. Army HQ CECOM Center for Software ...Engineering Advanced Software Technology Fort Monmouth, NJ 07703-5000 Accession For NTIS G1A&I DTIC TAB PREPARED BY: unannou:1r2d E LabTek Corporation

  15. Performance of the TOPAZ time projection chamber

    SciTech Connect

    Shirahashi, A.; Aihara, H.; Itoh, R.; Kamae, T.; Kusuki, N.; Tanaka, M.; Fujii, H.; Fujii, K.; Ikeda, H.; Iwasaki, H.

    1988-02-01

    The TOPAZ detector has began taking data at the TRISTAN e/sup +/e/sup -/ colliding beam ring in May 1987. The major detector elements including the time projection chamber (TPC) have been working quite satisfactorily. The authors report here the performance of TPC based on real e/sup +/e/sup -/ events and cosmic ray events. They measure spatial resolution of sigma/sub xy/ = 185..mu..m and sigma/sub z/ = 335..mu..m, momentum resolution of sigma/sub PT//P/sub T/ = ..sqrt..(1.5P/sub T/)/sup 2/ + (1.6)/sup 2%/ and dE/dx resolution of 4.6%.

  16. Project Management in Real Time: A Service-Learning Project

    ERIC Educational Resources Information Center

    Larson, Erik; Drexler, John A., Jr.

    2010-01-01

    This article describes a service-learning assignment for a project management course. It is designed to facilitate hands-on student learning of both the technical and the interpersonal aspects of project management, and it involves student engagement with real customers and real stakeholders in the creation of real events with real outcomes. As…

  17. Time frames for geothermal project development

    SciTech Connect

    McClain, David W.

    2001-04-17

    Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

  18. The Sol project: the sun in time

    NASA Astrophysics Data System (ADS)

    Pinho, L. G. F.; Porto de Mello, G. F.; de Medeiros, J. R.; Do Nascimento, J. D., Jr.; da Silva, L.

    2003-08-01

    The solar place in the set of stellar properties of the neighborhood, such as chemical composition, magnetic activity, lithium depletion, and others, suggests that the Sun may not exactly be a representative star. A few of the solar putative peculiarities seem to involve details of its evolutionary history, and that some light might be shed onto this question by a new approach based on the analysis of a time line in the HR diagram, searching for stars that might represent past, present and future solar evolutionary loci. The SOL Project (Solar Origin and Life) aims towards the identification, among the nearby stars, of those that share in detail the solar evolutionary track, in order to put the Sun as a star in proper perspective. We aim at obtaining, spectroscopically, atmospheric parameters, Fe and Li abundances, space velocities, state of evolution, degree of chromospheric activity and rotational velocities of a stellar sample, selected from precise astrometry and photometry of the Hipparcos catalogue, as to represent the Sun in various evolutionary stages along the solar mass, solar metallicity theoretical track: the early Sun, the present Sun, the subgiant Sun and the giant Sun. Here we present a progress report of the survey: the sample selection, OPD spectroscopic observations and preliminary results of the atmospheric parameters and evolutionary status analysis. As a by-product, we also present a new effective temperature calibration, based on published Infrared Flux Method data, and calibrated explicitly for precise spectroscopic stellar metallicities, for the (B-V), (BT-VT), (R-I), (V-I), (V-R) and (V-K) color indices, and valid for cool, normal and moderately metal-poor giant stars.

  19. Extensive writing projects: tips for completing them on time.

    PubMed

    Oermann, M

    1999-01-01

    Have you considered writing a book, preparing a grant, editing a "topic" issue for a journal, or completing a thesis or dissertation? Some nurse authors are interested in large projects like these, but hesitate because of the project size. This experienced author, who has just finished her eighth book, gives you tips for completing extensive writing projects on time.

  20. Effective Time Management in the Project Office. Executive Summary.

    DTIC Science & Technology

    1976-11-05

    manager. It can be concluded from the study that project managers have difficulty in managing their time and that although neglected, time management should...be taught to project managers so as to preclude spending an inordinate amount of time to accomplish their job. An understanding and use of the time ... management principles delineated in the study should allow the manager to make much more effective use of his available time. (Author)

  1. 36 CFR 72.33 - Timing and duration of projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Rehabilitation and Innovation § 72.33 Timing and duration of projects. (a) Construction components of projects... completing construction components of either Rehabilitation or Innovation proposals will be limited to three... Program, and of benefit to the federal government. Any component of an Innovation proposal which is...

  2. Mask cycle time reduction for foundry projects

    NASA Astrophysics Data System (ADS)

    Balasinski, A.

    2011-11-01

    One of key deliverables of foundry based manufacturing is low cycletime. Building new and enhancing existing products by mask changes involves significant logistical effort, which could be reduced by standardizing data management and communication procedures among design house, mask shop, and foundry (fab) [1]. As an example, a typical process of taping out can take up to two weeks in addition to technical effort, for database handling, mask form completion, management approval, PO signoff and JDV review, translating into loss of revenue. In order to reduce this delay, we are proposing to develop a unified online system which should assist with the following functions: database edits, final verifications, document approvals, mask order entries, and JDV review with engineering signoff as required. This would help a growing number of semiconductor products to be flexibly manufactured at different manufacturing sites. We discuss how the data architecture based on a non-relational database management system (NRDMBS) extracted into a relational one (RDMBS) should provide quality information [2], to reduce cycle time significantly beyond 70% for an example 2 week tapeout schedule.

  3. Railway network design with multiple project stages and time sequencing

    NASA Astrophysics Data System (ADS)

    Kuby, Michael; Xu, Zhongyi; Xie, Xiaodong

    This paper presents a spatial decision support system for network design problems in which different kinds of projects can be built in stages over time. It was developed by the World Bank and China's Ministry of Railways to plan investment strategies for China's overburdened railway system. We first present a mixed-integer program for the single-period network design problem with project choices such as single or multiple tracks and/or electrification with economies of scale. Then, because such projects can be built all at once or in stages, we developed a heuristic backwards time sequencing procedure with a cost adjustment factor to solve the ``project staging'' problem. Other innovations include a preloading routine; coordinated modeling of arcs, paths, and corridors; and a custom-built GIS.

  4. 36 CFR 72.33 - Timing and duration of projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Timing and duration of projects. 72.33 Section 72.33 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR URBAN PARK AND RECREATION RECOVERY ACT OF 1978 Grants for Recovery Action Program...

  5. 36 CFR 72.33 - Timing and duration of projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Timing and duration of projects. 72.33 Section 72.33 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR URBAN PARK AND RECREATION RECOVERY ACT OF 1978 Grants for Recovery Action Program...

  6. 36 CFR 72.33 - Timing and duration of projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Timing and duration of projects. 72.33 Section 72.33 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR URBAN PARK AND RECREATION RECOVERY ACT OF 1978 Grants for Recovery Action Program...

  7. 36 CFR 72.33 - Timing and duration of projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Timing and duration of projects. 72.33 Section 72.33 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR URBAN PARK AND RECREATION RECOVERY ACT OF 1978 Grants for Recovery Action Program...

  8. SUNLAB - The Project of a Polish Underground Laboratory

    SciTech Connect

    Kisiel, J.; Dorda, J.; Konefall, A.; Mania, S.; Szeglowski, T.; Budzanowski, M.; Haranczyk, M.; Kozak, K.; Mazur, J.; Mietelski, J. W.; Puchalska, M.; Szarska, M.; Tomankiewicz, E.; Zalewska, A.; Chorowski, M.; Polinski, J.; Cygan, S.; Hanzel, S.; Markiewicz, A.; Mertuszka, P.

    2010-11-24

    The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedz S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector - GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

  9. SUNLAB-The Project of a Polish Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Kisiel, J.; Budzanowski, M.; Chorowski, M.; Cygan, S.; Dorda, J.; Hanzel, S.; Harańczyk, M.; Horoszczak, L.; Januszewska, K.; Jaroń, L.; Konefalł, A.; Kozak, K.; Lankof, L.; Mania, S.; Markiewicz, A.; Markowski, P.; Mazur, J.; Mertuszka, P.; Mietelski, J. W.; Poliński, J.; Puchalska, M.; Pytel, W.; Raczyński, M.; Sadecki, Z.; Sadowski, A.; Ślizowski, J.; Sulej, R.; Szarska, M.; Szeglowski, T.; Tomankiewicz, E.; Urbańczyk, K.; Zalewska, A.

    2010-11-01

    The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedź S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector-GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

  10. Assessment of Smolt Condition for Travel Time Analysis Project, 1987-1997 Project Review.

    SciTech Connect

    Schrock, Robin M.; Hans, Karen M.; Beeman, John W.

    1997-12-01

    The assessment of Smolt Condition for Travel Time Analysis Project (Bonneville Power Administration Project 87-401) monitored attributes of salmonid smolt physiology in the Columbia and Snake River basins from 1987 to 1997, under the Northwest Power Planning Council Fish and Wildlife Program, in cooperation with the Smolt Monitoring Program of the Fish Passage Center. The primary goal of the project was to investigate the physiological development of juvenile salmonids related to migration rates. The assumption was made that the level of smolt development, interacting with environmental factos such as flow, would be reflected in travel times. The Fish Passage Center applied the physiological measurements of smolt condition to Water Budget management, to regulate flows so as to decrease travel time and increase survival.

  11. Flexible conceptual projection of time onto spatial frames of reference.

    PubMed

    Torralbo, Ana; Santiago, Julio; Lupiáñez, Juan

    2006-07-08

    Flexibility in conceptual projection constitutes one of the most challenging issues in the embodiment and conceptual metaphor literatures. We sketch a theoretical proposal that places the burden of the explanation on attentional dynamics in interaction with mental models in working memory that are constrained to be maximally coherent. A test of this theory is provided in the context of the conceptual projection of time onto the domain of space. Participants categorized words presented at different spatial locations (back-front, left-right) as referring to the past or to the future. Responses were faster when the irrelevant word location was congruent with the back-past, front-future metaphoric mapping. Moreover, when a new highly task-relevant spatial frame of reference was introduced, it changed the projection of past and future onto space in a way that was congruent with the new frame (past was now projected to left space and future to right space), as predicted by the theory. This study shows that there is substantial flexibility in conceptual projection and opens a venue to study metaphoric variation across tasks, individuals, and cultures as the result of attentional dynamics.

  12. New Fission Cross Section Measurements using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Sadler, Michael

    2008-03-01

    A group of six universities (ACU, California Polytechnic, Colorado School of Mines, Georgia Institute of Technology, Ohio, and Oregon State) and three national laboratories (Los Alamos, Lawrence Livermore, and Idaho) have undertaken the task of building a Time Projection Chamber (TPC) to measure the fission cross sections needed for the next generation of nuclear reactors. The fission TPC concept will be presented, and why we think we can improve on 50 years of fission study.

  13. Projection displays and MEMS: timely convergence for a bright future

    NASA Astrophysics Data System (ADS)

    Hornbeck, Larry J.

    1995-09-01

    Projection displays and microelectromechanical systems (MEMS) have evolved independently, occasionally crossing paths as early as the 1950s. But the commercially viable use of MEMS for projection displays has been illusive until the recent invention of Texas Instruments Digital Light Processing TM (DLP) technology. DLP technology is based on the Digital Micromirror DeviceTM (DMD) microchip, a MEMS technology that is a semiconductor digital light switch that precisely controls a light source for projection display and hardcopy applications. DLP technology provides a unique business opportunity because of the timely convergence of market needs and technology advances. The world is rapidly moving to an all- digital communications and entertainment infrastructure. In the near future, most of the technologies necessary for this infrastrucutre will be available at the right performance and price levels. This will make commercially viable an all-digital chain (capture, compression, transmission, reception decompression, hearing, and viewing). Unfortunately, the digital images received today must be translated into analog signals for viewing on today's televisions. Digital video is the final link in the all-digital infrastructure and DLP technoogy provides that link. DLP technology is an enabler for digital, high-resolution, color projection displays that have high contrast, are bright, seamless, and have the accuracy of color and grayscale that can be achieved only by digital control. This paper contains an introduction to DMD and DLP technology, including the historical context from which to view their developemnt. The architecture, projection operation, and fabrication are presented. Finally, the paper includes an update about current DMD business opportunities in projection displays and hardcopy.

  14. Time Projection Compton Spectrometer (TPCS). User`s guide

    SciTech Connect

    Landron, C.O.; Baldwin, G.T.

    1994-04-01

    The Time Projection Compton Spectrometer (TPCS) is a radiation diagnostic designed to determine the time-integrated energy spectrum between 100 keV -- 2 MeV of flash x-ray sources. This guide is intended as a reference for the routine operator of the TPCS. Contents include a brief overview of the principle of operation, detailed component descriptions, detailed assembly and disassembly procedures, guide to routine operations, and troubleshooting flowcharts. Detailed principle of operation, signal analysis and spectrum unfold algorithms are beyond the scope of this guide; however, the guide makes reference to sources containing this information.

  15. Optical Time Projection Chamber for imaging nuclear decays

    NASA Astrophysics Data System (ADS)

    Miernik, K.; Dominik, W.; Czyrkowski, H.; Dabrowski, R.; Fomitchev, A.; Golovkov, M.; Janas, Z.; Kuśmierz, W.; Pfützner, M.; Rodin, A.; Stepantsov, S.; Slepniev, R.; Ter-Akopian, G. M.; Wolski, R.

    2007-10-01

    We present a novel type of a Time Projection Chamber in which tracks of charged particles ionizing an active gas volume are recorded by means of optical signals. By combining a CCD camera image with the electron drift-time profile measured by a photomultiplier, it is possible to reconstruct trajectories of particles in three dimensions. The chamber was developed to study exotic nuclear decays in which charged particles are emitted. The results of first measurements will be demonstrated in which beta-delayed protons from 13O, the two-alpha decay of 8Be, and the triple-alpha decay of 12C excited states were recorded.

  16. Integrated Project Scheduling and Staff Assignment with Controllable Processing Times

    PubMed Central

    Framinan, Jose M.

    2014-01-01

    This paper addresses a decision problem related to simultaneously scheduling the tasks in a project and assigning the staff to these tasks, taking into account that a task can be performed only by employees with certain skills, and that the length of each task depends on the number of employees assigned. This type of problems usually appears in service companies, where both tasks scheduling and staff assignment are closely related. An integer programming model for the problem is proposed, together with some extensions to cope with different situations. Additionally, the advantages of the controllable processing times approach are compared with the fixed processing times. Due to the complexity of the integrated model, a simple GRASP algorithm is implemented in order to obtain good, approximate solutions in short computation times. PMID:24895672

  17. The timing upgrade project of the TOTEM Roman Pots detectors

    NASA Astrophysics Data System (ADS)

    Berretti, M.

    2016-07-01

    We describe the upgrade project developed by the TOTEM Collaboration to measure the time of flight (TOF) of the protons in the vertical Roman Pot detectors. The physics program that the upgraded system aims to accomplish will be addressed. Simulation studies allowed us to define a geometry of the sensor such that the detection inefficiency due to the pile-up of the particles in the same electrode is low even with a small amount of read-out channels. The measurement of the protons TOF with 50 ps time resolution requires the development of several challenging technological solutions. The arrival time of the protons will be measured by scCVD diamond detectors, for which a dedicated fast and low-noise electronics for the signal amplification has been designed. Indeed, while diamond sensors have the advantage of higher radiation hardness, lower noise and faster signal than silicon sensors, the amount of charge released in the medium is lower. The sampling of the waveform is performed at a rate up to 10 GS/s with the SAMPIC chip. The sampled waveforms are then analysed offline where optimal algorithms can be implemented to reduce the time walk effects. The clock distribution system, based on the Universal Picosecond Timing System developed at GSI, is optimized in order to have a negligible uncertainty on the TOF measurement. Finally an overview of the control system which will interface the timing detectors to the experiment DAQ is given.

  18. Imaging nuclear decays with Optical Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Miernik, K.; Dominik, W.; Janas, Z.; Pfützner, M.; Bingham, C.; Czyrkowski, H.; Ćwiok, M.; Darby, I.; Dȧbrowski, R.; Fomitchev, A.; Gintei, T.; Golovkov, M.; Grzywacz, R.; Karny, M.; Korgul, A.; Kuśmierz, W.; Liddick, S.; Rajabali, M.; Rodin, A.; Rykaczewski, K.; Stepantsov, S.; Slepniev, R.; Stolz, A.; Ter-Akopian, G. M.; Wolski, R.

    2007-11-01

    A novel type of gaseous ionization detector—Optical Time Projection Chamber (OTPC)—developed to study rare nuclear decays is presented. The OTPC records tracks of charged particles ionizing a counting gas by optical imaging of the light generated by electrons multiplied in the amplification structures. By combining an electron drift-time profile measured by a photomultiplier and a CCD camera image we reconstruct three-dimensional trajectories of particles, energies and charges. The capabilities of the OTPC detector to study various decay modes are demonstrated by observation of beta-delayed proton emission from 13O, two-alpha break-up of 8Be, triple-alpha decay of 12C excited states and two-proton radioactivity of 45Fe.

  19. Decomposition-order effects of time integrator on ensemble averages for the Nosé-Hoover thermostat.

    PubMed

    Itoh, Satoru G; Morishita, Tetsuya; Okumura, Hisashi

    2013-08-14

    Decomposition-order dependence of time development integrator on ensemble averages for the Nosé-Hoover dynamics is discussed. Six integrators were employed for comparison, which were extensions of the velocity-Verlet or position-Verlet algorithm. Molecular dynamics simulations by these integrators were performed for liquid-argon systems with several different time steps and system sizes. The obtained ensemble averages of temperature and potential energy were shifted from correct values depending on the integrators. These shifts increased in proportion to the square of the time step. Furthermore, the shifts could not be removed by increasing the number of argon atoms. We show the origin of these ensemble-average shifts analytically. Our discussion can be applied not only to the liquid-argon system but also to all MD simulations with the Nosé-Hoover thermostat. Our recommended integrators among the six integrators are presented to obtain correct ensemble averages.

  20. Beam commissioning of the SπRIT time projection chamber

    NASA Astrophysics Data System (ADS)

    Jhang, Genie; Barney, Jon; Estee, Justin; Isobe, Tadaaki; Kaneko, Masanori; Kurata-Nishimura, Mizuki; Cerizza, Giordano; Santamaria, Clementine; Lee, Jung Woo; Lasko, Paweł; Łukasik, Jerzy; Lynch, William G.; McIntosh, Alan B.; Murakami, Tetsuya; Pawłowski, Piotr; Shane, Rebecca; Tangwancharoen, Suwat; Tsang, Manyee Betty; Baba, Hidetada; Hong, Byungsik; Kim, Young Jin; Lee, Hyo Sang; Otsu, Hideaki; Pelczar, Krzysztof; Sakurai, Hiroyoshi; Suzuki, Daisuke; Xiao, Zhigang; Yennello, Sherry J.; Zhang, Yan

    2016-07-01

    The SπRIT Time Projection Chamber (TPC) was constructed at Michigan State University in the U.S.A. and transported to the Radioactive Isotope Beam Factory at RIKEN in Japan. In October 2015, the SπRIT TPC was commissioned with 200 AMeV 79Se beams outside the SAMURAI dipole magnet. The experimental setup consists of the SπRIT TPC, a Multiplicity Trigger Array, a KATANA array, and a Active Veto array. The TPC is fully equipped with a newly-developed read-out electronics system, GET electronics. The trigger logic to select events of the TPC based on the ancillary detectors was tested. The analysis software, SpiRITROOT, was developed to analyze the SπRIT TPC data to determine the best trigger logic for upcoming experiments.

  1. "Babies Grow a Long Time": A Preschool Project about Babies

    ERIC Educational Resources Information Center

    Harrison, Andromahi

    2012-01-01

    This article describes a project related to babies undertaken by preschoolers in a university-affiliated child care center in the Midwest. Following a description of the class, the author discusses the three phases of the project. Photographs taken during the project are included throughout the article. The article concludes with the author's…

  2. Y-12 Respirator Flow Cycle Time Reduction Project

    SciTech Connect

    Hawk, C.T.; Rogers, P.E.

    2000-12-01

    In mid-July 2000, a Cycle Time Reduction (CTR) project was initiated by senior management to improve the flow and overall efficiency of the respirator distribution process at Y-12. A cross-functional team was formed to evaluate the current process and to propose necessary changes for improvement. Specifically, the team was challenged to make improvements that would eliminate production work stoppages due to the unavailability of respirators in Y-12 Stores. Prior to the team initiation, plant back orders for a specific model respirator were averaging above 600 and have been as high as 750+. The Cycle Time Reduction team segmented the respirator flow into detailed steps, with the focus and emphasis primarily being on the movement of dirty respirators out of work areas, transportation to Oak Ridge National Laboratory (ORNL) Laundry, and return back to Y-12 Stores inventory. The team selected a popular model respirator, size large, to track improvements. Despite a 30 percent increase in respirator usage for the same period of time in the previous year, the team has reduced the back orders by 89% with a steady trend downward. Summary of accomplishments: A 47 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse at the Y-12 Complex; A 73 percent reduction in the average cycle time for dirty respirators to be laundered and stocked for reuse specifically for major users: Enriched Uranium Operations (EUO) and Facilities Maintenance Organization (FMO); Development of a performance measure for tracking back orders; An 89 percent reduction in the number of laundered respirators on back order; Implementation of a tracking method to account for respirator loss; Achievement of an annual cost savings/avoidance of $800K with a one-time cost of $20K; Implementation of a routine pick-up schedule for EUO (major user of respirators); Elimination of activities no longer determined to be needed; Elimination of routine complaint calls to

  3. Relationship between time management in construction industry and project management performance

    NASA Astrophysics Data System (ADS)

    Nasir, Najuwa; Nawi, Mohd Nasrun Mohd; Radzuan, Kamaruddin

    2016-08-01

    Nowadays, construction industry particularly in Malaysia struggle in achieving status of eminent time management for construction project. Project managers have a great responsibility to keep the project success under time of project completion. However, studies shows that delays especially in Malaysian construction industry still unresolved due to weakness in managing the project. In addition, quality of time management on construction projects is generally poor. Due to the progressively extended delays issue, time performance becomes an important subject to be explored to investigate delay factors. The method of this study is review of literature towards issues in construction industry which affecting time performance of project in general by focusing towards process involved for project management. Based on study, it was found that knowledge, commitment, cooperation are the main criteria as an overall to manage the project into a smooth process during project execution until completion. It can be concluded that, the strength between project manager and team members in these main criteria while conducting the project towards good time performance is highly needed. However, there is lack of establishment towards factors of poor time performance which strongly related with project management. Hence, this study has been conducted to establish factors of poor time performance and its relations with project management.

  4. Directional Dark Matter Detector Prototype (Time Projection Chamber)

    NASA Astrophysics Data System (ADS)

    Oliver-Mallory, Kelsey; Garcia-Sciveres, Maurice; Kadyk, John; Lopex-Thibodeaux, Mayra

    2013-04-01

    The time projection chamber is a mature technology that has emerged as a promising candidate for the directional detection of the WIMP particle. In order to utilize this technology in WIMP detection, the operational parameters must be chosen in the non-ideal regime. A prototype WIMP detector with a 10cm field cage, double GEM amplification, and ATLAS FEI3 pixel chip readout was constructed for the purpose of investigating effects of varying gas pressure in different gas mixtures. The rms radii of ionization clusters of photoelectrons caused by X-rays from a Fe-55 source were measured for several gas pressures between 760torr and 99torr in Ar(70)/ CO2(30), CF4, He(80)/Isobutane(20), and He(80)/CF4(20) mixtures. Average radii were determined from distributions of the data for each gas mixture and pressure, and revealed a negative correlation between pressure and radius in Ar(70)/CO2(30) and He(80)/Isobutane(20) mixtures. Investigation of the pressure-radius measurements are in progress using distributions of photoelectron and auger electron practical ranges (Univ. of Pisa) and diffusion, using the Garfield Monte Carlo program.

  5. The projected timing of climate departure from recent variability.

    PubMed

    Mora, Camilo; Frazier, Abby G; Longman, Ryan J; Dacks, Rachel S; Walton, Maya M; Tong, Eric J; Sanchez, Joseph J; Kaiser, Lauren R; Stender, Yuko O; Anderson, James M; Ambrosino, Christine M; Fernandez-Silva, Iria; Giuseffi, Louise M; Giambelluca, Thomas W

    2013-10-10

    Ecological and societal disruptions by modern climate change are critically determined by the time frame over which climates shift beyond historical analogues. Here we present a new index of the year when the projected mean climate of a given location moves to a state continuously outside the bounds of historical variability under alternative greenhouse gas emissions scenarios. Using 1860 to 2005 as the historical period, this index has a global mean of 2069 (±18 years s.d.) for near-surface air temperature under an emissions stabilization scenario and 2047 (±14 years s.d.) under a 'business-as-usual' scenario. Unprecedented climates will occur earliest in the tropics and among low-income countries, highlighting the vulnerability of global biodiversity and the limited governmental capacity to respond to the impacts of climate change. Our findings shed light on the urgency of mitigating greenhouse gas emissions if climates potentially harmful to biodiversity and society are to be prevented.

  6. Real-Time Projection to Verify Plan Success During Execution

    NASA Technical Reports Server (NTRS)

    Wagner, David A.; Dvorak, Daniel L.; Rasmussen, Robert D.; Knight, Russell L.; Morris, John R.; Bennett, Matthew B.; Ingham, Michel D.

    2012-01-01

    The Mission Data System provides a framework for modeling complex systems in terms of system behaviors and goals that express intent. Complex activity plans can be represented as goal networks that express the coordination of goals on different state variables of the system. Real-time projection extends the ability of this system to verify plan achievability (all goals can be satisfied over the entire plan) into the execution domain so that the system is able to continuously re-verify a plan as it is executed, and as the states of the system change in response to goals and the environment. Previous versions were able to detect and respond to goal violations when they actually occur during execution. This new capability enables the prediction of future goal failures; specifically, goals that were previously found to be achievable but are no longer achievable due to unanticipated faults or environmental conditions. Early detection of such situations enables operators or an autonomous fault response capability to deal with the problem at a point that maximizes the available options. For example, this system has been applied to the problem of managing battery energy on a lunar rover as it is used to explore the Moon. Astronauts drive the rover to waypoints and conduct science observations according to a plan that is scheduled and verified to be achievable with the energy resources available. As the astronauts execute this plan, the system uses this new capability to continuously re-verify the plan as energy is consumed to ensure that the battery will never be depleted below safe levels across the entire plan.

  7. Schedule Analysis Software Saves Time for Project Planners

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Since the early 2000s, a resource management team at Marshall Space Flight Center has developed and improved the Schedule Test and Assessment Tool, a software add-on capable of analyzing, summarizing, and finding logic gaps in project schedules. Companies like Lanham, Maryland-based Vantage Systems Inc. use the tool to manage NASA projects, but it has also been released for free to more than 200 US companies, agencies, and other entities.

  8. Large Time Projection Chambers for Rare Event Detection

    SciTech Connect

    Heffner, M

    2009-11-03

    The Time Projection Chamber (TPC) concept [add ref to TPC section] has been applied to many projects outside of particle physics and the accelerator based experiments where it was initially developed. TPCs in non-accelerator particle physics experiments are principally focused on rare event detection (e.g. neutrino and darkmater experiments) and the physics of these experiments can place dramatically different constraints on the TPC design (only extensions to the traditional TPCs are discussed here). The drift gas, or liquid, is usually the target or matter under observation and due to very low signal rates a TPC with the largest active mass is desired. The large mass complicates particle tracking of short and sometimes very low energy particles. Other special design issues include, efficient light collection, background rejection, internal triggering and optimal energy resolution. Backgrounds from gamma-rays and neutrons are significant design issues in the construction of these TPCs. They are generally placed deep underground to shield from cosmogenic particles and surrounded with shielding to reduce radiation from the local surroundings. The construction materials have to be carefully screened for radiopurity as they are in close contact with the active mass and can be a signification source of background events. The TPC excels in reducing this internal background because the mass inside the fieldcage forms one monolithic volume from which fiducial cuts can be made ex post facto to isolate quiet drift mass, and can be circulated and purified to a very high level. Self shielding in these large mass systems can be significant and the effect improves with density. The liquid phase TPC can obtain a high density at low pressure which results in very good self-shielding and compact installation with a lightweight containment. The down sides are the need for cryogenics, slower charge drift, tracks shorter than the typical electron diffusion, lower energy resolution (e

  9. Extreme argon purity in a large, non-evacuated cryostat

    SciTech Connect

    Tope, Terry; Adamowski, Mark; Carls, B.; Hahn, A.; Jaskierny, W.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Skup, E.; Stancari, M.; Yang, T.

    2014-01-29

    Liquid Argon Time Projection Chambers (LArTPCs) show promise as scalable devices for the large detectors needed for long-baseline neutrino oscillation physics. Over the last several years at Fermilab a staged approach to developing the technology for large detectors has been developed. The TPC detectors require ultra-pure liquid argon with respect to electronegative contaminants such as oxygen and water. The tolerable electronegative contamination level may be as pure as 60 parts per trillion of oxygen. Three liquid argon cryostats operated at Fermilab have achieved the extreme purity required by TPCs. These three cryostats used evacuation to remove atmospheric contaminants as the first purification step prior to filling with liquid argon. Future physics experiments may require very large detectors with tens of kilotonnes of liquid argon mass. The capability to evacuate such large cryostats adds significant cost to the cryostat itself in addition to the cost of a large scale vacuum pumping system. This paper describes a 30 ton liquid argon cryostat at Fermilab which uses purging to remove atmospheric contaminants instead of evacuation as the first purification step. This cryostat has achieved electronegative contamination levels better than 60 parts per trillion of oxygen equivalent. The results of this liquid argon purity demonstration will strongly influence the design of future TPC cryostats.

  10. Estimating Performance Time for Air Force Military Construction Projects

    DTIC Science & Technology

    2005-03-01

    Arditi et al, (1985) NEDO, (1988) Mansfield et al, (1994) Naoum, (1991) Assaf et al, (1995) Chan and Kumaraswam y, (1997) Kaming et al, (1997...00 0, 00 0 Project Cost D ur at io n (d ay s) Regression Line Data Upper/Lower Quartiles 212 Bibliography Arditi ,D., G.T. Akan, and S. Gurdamer

  11. Design and construction of the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2017-02-24

    This article describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. Reported in this document are details of design specifications, assembly procedures, and acceptance tests.

  12. Design and construction of the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Aparicio, A.; Aponte, S.; Asaadi, J.; Auger, M.; Ayoub, N.; Bagby, L.; Baller, B.; Barger, R.; Barr, G.; Bass, M.; Bay, F.; Biery, K.; Bishai, M.; Blake, A.; Bocean, V.; Boehnlein, D.; Bogert, V. D.; Bolton, T.; Bugel, L.; Callahan, C.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chappa, S.; Chen, H.; Chen, K.; Chi, C.-Y.; Chiu, C. S.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, J. M.; Convery, M.; Cornele, J.; Cowan, P.; Crespo-Anadón, J. I.; Crutcher, G.; Darve, C.; Davis, R.; Del Tutto, M.; Devitt, D.; Duffin, S.; Dytman, S.; Eberly, B.; Ereditato, A.; Erickson, D.; Escudero Sanchez, L.; Esquivel, J.; Farooq, S.; Farrell, J.; Featherston, D.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Genty, V.; Geynisman, M.; Goeldi, D.; Goff, B.; Gollapinni, S.; Graf, N.; Gramellini, E.; Green, J.; Greene, A.; Greenlee, H.; Griffin, T.; Grosso, R.; Guenette, R.; Hackenburg, A.; Haenni, R.; Hamilton, P.; Healey, P.; Hen, O.; Henderson, E.; Hewes, J.; Hill, C.; Hill, K.; Himes, L.; Ho, J.; Horton-Smith, G.; Huffman, D.; Ignarra, C. M.; James, C.; James, E.; de Vries, J. Jan; Jaskierny, W.; Jen, C.-M.; Jiang, L.; Johnson, B.; Johnson, M.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kalousis, L. N.; Karagiorgi, G.; Katori, T.; Kellogg, P.; Ketchum, W.; Kilmer, J.; King, B.; Kirby, B.; Kirby, M.; Klein, E.; Kobilarcik, T.; Kreslo, I.; Krull, R.; Kubinski, R.; Lange, G.; Lanni, F.; Lathrop, A.; Laube, A.; Lee, W. M.; Li, Y.; Lissauer, D.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Lukhanin, G.; Luethi, M.; Lundberg, B.; Luo, X.; Mahler, G.; Majoros, I.; Makowiecki, D.; Marchionni, A.; Mariani, C.; Markley, D.; Marshall, J.; Martinez Caicedo, D. A.; McDonald, K. T.; McKee, D.; McLean, A.; Mead, J.; Meddage, V.; Miceli, T.; Mills, G. B.; Miner, W.; Moon, J.; Mooney, M.; Moore, C. D.; Moss, Z.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Norris, B.; Norton, N.; Nowak, J.; O'Boyle, M.; Olszanowski, T.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Pelkey, R.; Phipps, M.; Pordes, S.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Rameika, R. A.; Rebel, B.; Rechenmacher, R.; Rescia, S.; Rochester, L.; von Rohr, C. Rudolf; Ruga, A.; Russell, B.; Sanders, R.; Sands, W. R., III; Sarychev, M.; Schmitz, D. W.; Schukraft, A.; Scott, R.; Seligman, W.; Shaevitz, M. H.; Shoun, M.; Sinclair, J.; Sippach, W.; Smidt, T.; Smith, A.; Snider, E. L.; Soderberg, M.; Solano-Gonzalez, M.; Söldner-Rembold, S.; Soleti, S. R.; Sondericker, J.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Sutton, K.; Szelc, A. M.; Taheri, K.; Tagg, N.; Tatum, K.; Teng, J.; Terao, K.; Thomson, M.; Thorn, C.; Tillman, J.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Utes, M.; Van de Water, R. G.; Vendetta, C.; Vergani, S.; Voirin, E.; Voirin, J.; Viren, B.; Watkins, P.; Weber, M.; Wester, T.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Wu, K. C.; Yang, T.; Yu, B.; Zeller, G. P.; Zennamo, J.; Zhang, C.; Zuckerbrot, M.

    2017-02-01

    This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported.

  13. Fluctuations in Conjunction Miss Distance Projections as Time Approaches Time of Closest Approach

    NASA Technical Reports Server (NTRS)

    Christian, John A., III

    2005-01-01

    A responsibility of the Trajectory Operations Officer is to ensure that the International Space Station (ISS) avoids colliding with debris. United States Space Command (USSPACECOM) tracks and catalogs a portion of the debris in Earth orbit, but only objects with a perigee less than 600 km and a radar cross section (RCS) greater than 10 cm-objects that, in fact, represent only a small fraction of the objects in Earth orbit. To accommodate for this, the ISS uses shielding to protect against collisions with smaller objects. This study provides a better understanding of how quickly, and to what degree, USSPACECOM projections tend to converge to the final, true miss distance. The information included is formulated to better predict the behavior of miss distance data during real-time operations. It was determined that the driving components, in order of impact on miss distance fluctuations, are energy dissipation rate (EDR), RCS, and inclination. Data used in this analysis, calculations made, and conclusions drawn are stored in Microsoft Excel log sheets. A separate log sheet, created for each conjunction, contains information such as predicted miss distances, apogee and perigee of debris orbit, EDR, RCS, inclination, tracks and observations, statistical data, and other evaluation/orbital parameters.

  14. A Time for Immersion, A Time for Reflection: The Multigenre Research Project and Portfolio Assessment.

    ERIC Educational Resources Information Center

    Romano, Tom

    This paper describes the senior honors thesis (a multigenre research paper), and narrates the process by which a senior English major at the University of New Hampshire and her project advisor worked together on this semester-long project. In the first section, the multigenre research paper is defined as a work that combines poems, monologues,…

  15. Automobile Engine: Basic Ignition Timing. Fordson Bilingual Demonstration Project.

    ERIC Educational Resources Information Center

    Vick, James E.

    These two vocational instructional modules on basic automobile ignition timing and on engine operation, four-stroke cycle, are two of eight such modules designed to assist recently arrived Arab students, limited in English proficiency (LEP), in critical instructional areas in a comprehensive high school. Goal stated for this module is for the…

  16. A new timing detector for the CT-PPS project

    NASA Astrophysics Data System (ADS)

    Arcidiacono, R.

    2017-02-01

    The CT-PPS detector will be installed close to the beam line on both sides of CMS, 200 m downstream the interaction point. This detector will measure forward scattered protons, allowing detailed studies of diffractive hadron physics and Central Exclusive Production. The main components of the CT-PPS detector are a silicon tracking system and a timing system. In this contribution we present the proposal of an innovative solution for the timing system, based on Ultra-Fast Silicon Detectors (UFSD). UFSD are a novel concept of silicon detectors potentially able to obtain the necessary time resolution (∼20 ps on the proton arrival time). The use of UFSD has also other attractive features as its material budget is small and the pixel geometries can be tailored to the precise physics distribution of protons. UFSD prototypes for CT-PPS have been designed by CNM (Barcelona) and FBK (Trento): we will present the status of the sensor productions and of the low-noise front-end electronics currently under development and test.

  17. The Starlite Project - Prototyping Real-Time Software.

    DTIC Science & Technology

    1992-11-01

    protocol is presented. The must have priority (Ti) <priority(Tj) and thus results obtained through a simulation study indicate thatpriority (TO...have evaluated optimistic concurrency control protocols for real- time database systems. Our results indicate that optimistic or hybrid approaches may...task error or processor failure has been studied . Since most multiprocessor scheduling problems are NP-complete, we have developed heuristics to obtain

  18. Fission Fragment Angular Distributions measured with a Time Projection Chamber

    SciTech Connect

    Kleinrath, Verena

    2015-04-28

    The subject is presented in a series of slides with the following organization: Introduction (What is anisotropy? Relevance (Theory and ratio cross section), Previous measurements); Experiment (Particle tracking in the fissionTPC, Neutron time of flight, Data analysis & uncertainty calculation, Preliminary result for 235U); and Future Work (Refine 235U result, Process 239Pu data).

  19. Project deliverables - a waste of time or a chance for knowledge transfer and dissemination?

    NASA Astrophysics Data System (ADS)

    Walter, Sylvia

    2016-04-01

    Deliverables are a common tool to measure a distinct output of a project. They should be meaningful in terms of the project's objectives and are normally constituted by e.g. a written report or document, a developed tool or software, an organized training or conference. They can be scientific or technical. The number of deliverables must be reasonable and commensurate to the project and its content. Deliverables as contractual obligations are often time consuming and often seen as a waste of "research" time, as one more administrative task without any use. However, deliverables are needed to verify the progress of a project and to convince the sponsor that the project is going in the right direction and the money well-invested. The presentation will deal with the question on how to use a deliverable in a profitable way for the project and what are the possibilities of use.

  20. Real Time Technology Application Demonstration Project Final Report

    SciTech Connect

    Volpe, John; Hampson, Steve; Johnson, Robert L

    2008-09-01

    The work and results described in this final report pertain to the demonstration of real-time characterization technologies applied to potentially contaminated surface soils in and around Area of Concern (AOC) 492 at the Paducah Gaseous Diffusion Plant (PGDP). The work was conducted under the auspices of Kentucky Research Consortium for Energy and Environment (KRCEE). KRCEE was created to support the Department of Energy's (DOE) efforts to complete the expeditious and economically viable environmental restoration of the Paducah Gaseous Diffusion Plant (PGDP), the Western Kentucky Wildlife Management Area (WKWMA), and surrounding areas.

  1. Search for Millisecond Pulsars for the Pulsar Timing Array project

    NASA Astrophysics Data System (ADS)

    Milia, S.

    2012-03-01

    Pulsars are rapidly rotating highly magnetised neutron stars (i.e. ultra dense stars, where about one solar mass is concentrated in a sphere with a radius of ~ 10 km), which irradiate radio beams in a fashion similar to a lighthouse. As a consequence, whenever the beams cut our line of sight we perceive a radio pulses, one (or two) per pulsar rotation, with a frequency up to hundred of times a second. Owing to their compact nature, rapid spin and high inertia, pulsars are in general fairly stable rotators, hence the Times of Arrival (TOAs) of the pulses at a radio telescope can be used as the ticks of a clock. This holds true in particular for the sub­class of the millisecond pulsars (MSPs), having a spin period smaller than the conventional limit of 30 ms, whose very rapid rotation and relatively older age provide better rotational stability than the ordinary pulsars. Indeed, some MSPs rotate so regularly that they can rival the best atomic clocks on Earth over timespan of few months or years.This feature allows us to use MSPs as tools in a cosmic laboratory, by exploiting a procedure called timing, which consists in the repeated and regular measurement of the TOAs from a pulsar and then in the search for trends in the series of the TOAs over various timespans, from fraction of seconds to decades.For example the study of pulsars in binary systems has already provided the most stringent tests to date of General Relativity in strong gravitational fields and has unambiguously showed the occurrence of the emission of gravitational waves from a binary system comprising two massive bodies in a close orbit. In last decades a new exciting perspective has been opened, i.e. to use pulsars also for a direct detection of the so far elusive gravitational waves and thereby applying the pulsar timing for cosmological studies. In fact, the gravitational waves (GWs) going across our Galaxy pass over all the Galactic pulsars and the Earth, perturbing the space­time at the

  2. Project Education Reform: Time for Results. Newsletters--May, September, and December, 1987.

    ERIC Educational Resources Information Center

    Project Education Reform: Time for Results, 1987

    1987-01-01

    The major topics covered in these newsletters include: (1) background information on Project Education Reform; (2) "The Governors' 1991 Report on Education: Time for Results"; (3) elementary education and the National Governors' Association (NGA) project; (4) the goals of 16 school sites in carrying out recommendations from the NGA…

  3. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    PubMed

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  4. Control of the formation of projective synchronisation in lower-dimensional discrete-time systems

    NASA Astrophysics Data System (ADS)

    Chee, Chin Yi; Xu, Daolin

    2003-11-01

    Projective synchronisation was recently observed in partially linear discrete-time systems. The scaling factor that characterises the behaviour of projective synchronisation is however unpredictable. In order to manipulate the ultimate state of the synchronisation, a control algorithm based on Schur-Chon stability criteria is proposed to direct the scaling factor onto any predestined value. In the numerical experiment, we illustrate the application on two chaotic discrete-time systems.

  5. An Innovative Time-Cost-Quality Tradeoff Modeling of Building Construction Project Based on Resource Allocation

    PubMed Central

    2014-01-01

    The time, quality, and cost are three important but contradictive objectives in a building construction project. It is a tough challenge for project managers to optimize them since they are different parameters. This paper presents a time-cost-quality optimization model that enables managers to optimize multiobjectives. The model is from the project breakdown structure method where task resources in a construction project are divided into a series of activities and further into construction labors, materials, equipment, and administration. The resources utilized in a construction activity would eventually determine its construction time, cost, and quality, and a complex time-cost-quality trade-off model is finally generated based on correlations between construction activities. A genetic algorithm tool is applied in the model to solve the comprehensive nonlinear time-cost-quality problems. Building of a three-storey house is an example to illustrate the implementation of the model, demonstrate its advantages in optimizing trade-off of construction time, cost, and quality, and help make a winning decision in construction practices. The computational time-cost-quality curves in visual graphics from the case study prove traditional cost-time assumptions reasonable and also prove this time-cost-quality trade-off model sophisticated. PMID:24672351

  6. An innovative time-cost-quality tradeoff modeling of building construction project based on resource allocation.

    PubMed

    Hu, Wenfa; He, Xinhua

    2014-01-01

    The time, quality, and cost are three important but contradictive objectives in a building construction project. It is a tough challenge for project managers to optimize them since they are different parameters. This paper presents a time-cost-quality optimization model that enables managers to optimize multiobjectives. The model is from the project breakdown structure method where task resources in a construction project are divided into a series of activities and further into construction labors, materials, equipment, and administration. The resources utilized in a construction activity would eventually determine its construction time, cost, and quality, and a complex time-cost-quality trade-off model is finally generated based on correlations between construction activities. A genetic algorithm tool is applied in the model to solve the comprehensive nonlinear time-cost-quality problems. Building of a three-storey house is an example to illustrate the implementation of the model, demonstrate its advantages in optimizing trade-off of construction time, cost, and quality, and help make a winning decision in construction practices. The computational time-cost-quality curves in visual graphics from the case study prove traditional cost-time assumptions reasonable and also prove this time-cost-quality trade-off model sophisticated.

  7. Analysis and modeling of concurrency, cycle time, and productivity in aerospace development projects

    NASA Astrophysics Data System (ADS)

    Hilscher, Richard Walter

    Engineering development projects are a key element of continued economic growth and profitability for companies that produce durable goods based on evolving technology. Today's world economy and the rapid pace of technology development necessitate a minimum development project cycle time to maximize the economic value of new products. Concurrent engineering and Integrated Product-Process Development (IPPD) evolved as an industry-wide strategy in the late 1980's and early 1990's to address the need for rapid product development and improved product quality. Rapid development of computer-based tools for communications and engineering has occurred in parallel with the emergence of concurrent engineering strategies. The combination of new computer tools and concurrent engineering practices has rendered many project management tools less effective or obsolete. New methods are needed for tracking progress and benchmarking projects employing concurrent engineering. Concurrent engineering and the resulting concurrency between specific activities within development projects has been associated with both positive and negative effects on project performance. This research applies empirical data analysis and computer simulation to evaluate these relationships using new metrics designed specifically for concurrent engineering analysis. By looking within the project at concurrency between specific activities, new insights have been gained into the nature and progress of concurrent engineering implementation. These relationships are useful tools in developing project plans with greater probability of success. A new metric for measuring concurrency is applied that uses the timing of information transactions between project activities and yields different conclusions than those related to time-based metrics. The research also applies a new methodology for comparison of project performance across product lines within aerospace. By using productivity rates and a new work content

  8. U-D factorisation of the strengthened discrete-time optimal projection equations

    NASA Astrophysics Data System (ADS)

    Van Willigenburg, L. Gerard; De Koning, Willem L.

    2016-04-01

    Algorithms for optimal reduced-order dynamic output feedback control of linear discrete-time systems with white stochastic parameters are U-D factored in this paper. U-D factorisation enhances computational accuracy, stability and possibly efficiency. Since U-D factorisation of algorithms for optimal full-order output feedback controller design was recently published by us, this paper focusses on the U-D factorisation of the optimal oblique projection matrix that becomes part of the solution as a result of order-reduction. The equations producing the solution are known as the optimal projection equations which for discrete-time systems have been strengthened in the past. The U-D factored strengthened discrete-time optimal projection equations are presented in this paper by means of a transformation that has to be applied recursively until convergence. The U-D factored and conventional algorithms are compared through a series of examples.

  9. The WWW & OVER Project: Real-Time Distance Education and the Role of the Street Singer.

    ERIC Educational Resources Information Center

    Colazzo, Luigi; Conte, Francesco; Molinari, Andrea

    This paper describes the state of the "WWW & Over" project to design techniques for the remote control of hypermedia teaching materials. It reviews the main features of the new version of the prototype for distance teaching, where teacher and students interact at a distance in real time on teaching materials created by the teacher. Also described…

  10. Report on Fission Time Projection Chamber M3FT-12IN0210052

    SciTech Connect

    James K. Jewell

    2012-08-01

    The Time Projection Chamber is a collaborative effort to implement an innovative approach and deliver unprecedented fission measurements to DOE programs. This 4?-detector system will provide unrivaled 3-D data about the fission process. Shown here is a half populated TPC (2?) at the LLNL TPC laboratory as it undergoes testing before being shipped to LANSCE for beam experiments.

  11. "Making Time for What Matters Most." I3 Development Project: Year 5 Evaluation Report

    ERIC Educational Resources Information Center

    Donahue, Tara; Ho, Hsiang-Yah; Knotts, Ashli

    2015-01-01

    The purpose of this study evaluates the work completed in the "Jefferson County Public Schools" (JCPS) project, "Making Time for What Matters Most", aiming to improve student achievement, narrow achievement gaps, strengthen students' college readiness skills, and increase the percentages of students who graduate and go on to…

  12. Real-time interactive projection system based on infrared structured-light method

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaorui; Zhou, Qian; Ni, Kai; He, Liang; Wu, Guanhao; Mao, Leshan; Cheng, Xuemin; Ma, Jianshe

    2012-11-01

    Interactive technologies have been greatly developed in recent years, especially in projection field. However, at present, most interactive projection systems are based on special designed interactive pens or whiteboards, which is inconvenient and limits the improvement of user experience. In this paper, we introduced our recent progress on theoretically modeling a real-time interactive projection system. The system permits the user to easily operate or draw on the projection screen directly by fingers without any other auxiliary equipment. The projector projects infrared striping patterns onto the screen and the CCD captures the deformational image. We resolve the finger's position and track its movement by processing the deformational image in real-time. A new way to determine whether the finger touches the screen is proposed. The first deformational fringe on the fingertip and the first fringe at the finger shadow are the same one. The correspondence is obtained, so the location parameters can be decided by triangulation. The simulation results are given, and errors are analyzed.

  13. Timely integration of safeguards and security with projects at Los Alamos National Laboratory

    SciTech Connect

    Price, R.; Blount, P. M.; Garcia, S. W.; Gonzales, R. L.; Salazar, J. B.; Campbell, C. H.

    2004-01-01

    The Safeguards and Security (S&S) Requirements Integration Team at Los Alamos National Laboratory (LANL) has developed and implemented an innovative management process that will be described in detail. This process systematically integrates S&S planning into construction, facility modifications or upgrades, mission changes, and operational projects. It extends and expands the opportunities provided by the DOE project management manual, DOE M 413.3-1. Through a series of LANL documents, a process is defined and implemented that formally identifies an S&S professional to oversee, coordinate, facilitate, and communicate among the identified S&S organizations and the project organizations over the life cycle of the project. The derived benefits, namely (1) elimination/reduction of re-work or costly retrofitting, (2) overall project cost savings because of timely and improved planning, (3) formal documentation, and (4) support of Integrated Safeguards and Security Management at LANL, will be discussed. How many times, during the construction of a new facility or the modification of an existing facility, have the persons responsible for the project waited until the last possible minute or until after construction is completed to approach the security organizations for their help in safeguarding and securing the facility? It's almost like, 'Oh, by the way, do we need access control and a fence around this building and just what are we going to do with our classified anyway?' Not only is it usually difficult; it's also typically expensive to retrofit or plan for safeguards and security after the fact. Safeguards and security organizations are often blamed for budget overruns and delays in facility occupancy and program startup, but these problems are usually due to poor front-end planning. In an effort to help projects engage safeguards and security in the pre-conceptual or conceptual stages, we implemented a high level formality of operations. We established institutional

  14. WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection

    SciTech Connect

    Xu, Y; Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X; Zhou, L

    2014-06-15

    Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung

  15. Gaseous time projection chambers for rare event detection: results from the T-REX project. I. Double beta decay

    SciTech Connect

    Irastorza, I.G.; Aznar, F.; Castel, J. E-mail: faznar@unizar.es [Grupo de Física Nuclear y Astropartículas, Departamento de Física Teórica, Universidad de Zaragoza, C and others

    2016-01-01

    As part of the T-REX project, a number of R and D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. In both this and its companion paper, we compile the main results of the project and give an outlook of application prospects for this detection technique. While in the companion paper we focus on axions and WIMPs, in this paper we focus on the results regarding the measurement of the double beta decay (DBD) of {sup 136}Xe in a high pressure Xe (HPXe) TPC. Micromegas of the microbulk type have been extensively studied in high pressure Xe and Xe mixtures. Particularly relevant are the results obtained in Xe + trimethylamine (TMA) mixtures, showing very promising results in terms of gain, stability of operation, and energy resolution at high pressures up to 10 bar. The addition of TMA at levels of ∼ 1% reduces electron diffusion by up to a factor of 10 with respect to pure Xe, improving the quality of the topological pattern, with a positive impact on the discrimination capability. Operation with a medium size prototype of 30 cm diameter and 38 cm of drift (holding about 1 kg of Xe at 10 bar in the fiducial volume, enough to contain high energy electron tracks in the detector volume) has allowed to test the detection concept in realistic experimental conditions. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ∼ 3% FWHM @ Q{sub ββ}. This value was experimentally demonstrated for high-energy extended tracks at 10 bar, and is probably improvable down to the ∼ 1% FWHM levels as extrapolated from low energy events. In addition, first results on the topological signature information (one straggling track ending in two

  16. Comparison of back projection methods of determining earthquake rupture process in time and frequency domains

    NASA Astrophysics Data System (ADS)

    Wang, W.; Wen, L.

    2013-12-01

    Back projection is a method to back project the seismic energy recorded in a seismic array back to the earthquake source region and determine the rupture process of a large earthquake. The method takes advantage of the coherence of seismic energy in a seismic array and is quick in determining some important properties of earthquake source. The method can be performed in both time and frequency domains. In time domain, the most conventional procedure is beam forming with some measures of suppressing the noise, such as the Nth root stacking, etc. In the frequency domain, the multiple signal classification method (MUSIC) estimates the direction of arrivals of multiple waves propagating through an array using the subspace method. The advantage of this method is the ability to study rupture properties at various frequencies and to resolve simultaneous arrivals making it suitable for detecting biliteral rupture of an earthquake source. We present a comparison of back projection results on some large earthquakes between the methods in time domain and frequency domain. The time-domain procedure produces an image that is smeared and exhibits some artifacts, although some enhancing stacking methods can at some extent alleviate the problem. On the other hand, the MUSIC method resolves clear multiple arrivals and provides higher resolution of rupture imaging.

  17. Adaptive modified function projective synchronization of multiple time-delayed chaotic Rossler system

    NASA Astrophysics Data System (ADS)

    Sudheer, K. Sebastian; Sabir, M.

    2011-02-01

    In this Letter we consider modified function projective synchronization of unidirectionally coupled multiple time-delayed Rossler chaotic systems using adaptive controls. Recently, delay differential equations have attracted much attention in the field of nonlinear dynamics. The high complexity of the multiple time-delayed systems can provide a new architecture for enhancing message security in chaos based encryption systems. Adaptive control can be used for synchronization when the parameters of the system are unknown. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems are function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

  18. Design of low-cross-talk readout pads for time projection chamber

    NASA Astrophysics Data System (ADS)

    Fujiwara, K.; Isobe, T.; Kobayashi, T.; Taketani, A.

    2012-06-01

    We are developing a readout pad for the Time Projection Chamber (TPC) in the Superconducting Analyzer for the Multi-Particle Radio-Isotope beam (SAMURAI) spectrometer at RIKEN. The functionality of the TPC should have a wide dynamic range readout of 3200:1 for identifying injected particles. Therefore the transmission line in the TPC should have low crosstalk and high signal integrity. We describe development of the TPC pad using an electromagnetic and circuit simulator in this article.

  19. Incentive contract design in project management with serial tasks and uncertain completion times

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhao, Ruiqing; Lan, Yanfei

    2016-04-01

    This article investigates an incentive contract design problem for a project manager who operates a project consisting of multiple tasks performed sequentially by different subcontractors in which all task completion times are uncertain and described by fuzzy variables. On the basis of an expected value criterion and a critical value criterion, two classes of fuzzy bilevel programming models are developed. In the case where the uncertain task completion times are mutually independent, each model can first be decomposed into multiple equivalent sub-models by taking advantage of the structural characteristics, and then a two-step optimization method is employed to derive the optimal incentive contract in each sub-model. In a more general case where the uncertain task completion times are correlative, the approximation approach (AA) technique is adopted first in order to evaluate the objective functions involving fuzzy parameters, which are usually difficult to convert into their crisp equivalents. Then, an AA-based hybrid genetic algorithm integrated with the golden search method and variable neighbourhood search is designed to solve the proposed fuzzy bilevel programming models. Finally, a numerical example of a construction project is conducted to demonstrate the modelling idea and the effectiveness of the proposed methods.

  20. A TPC (Time Projection Chamber) detector for the study of high multiplicity heavy ion collisions

    SciTech Connect

    Rai, G.; Arthur, A.; Bieser, F.; Harnden, C.W.; Jones, R.; Klienfelder, S.; Lee, K.; Matis, H.S.; Nakamura, M.; McParland, C.; Nesbitt, D.; Odyniec, G.; Olson, D.; Pugh, H.G.; Ritter, H.G.; Symons, T.J.M.; Wieman, H.; Wright, M.; Wright, R. ); Rudge, A. )

    1990-01-01

    The design of a Time Projection Chamber (TPC) detector with complete pad coverage is presented. The TPC will allow the measurements of high multiplicity ({approx} 200 tracks) relativistic nucleus-nucleus collisions initiated with the heaviest, most energetic projectiles available at the LBL BEVALAC accelerator facility. The front end electronics, composed of over 15,000 time sampling channels, will be located on the chamber. The highly integrated, custom designed, electronics and the VME based data acquisition system are described. 10 refs., 8 figs., 1 tab.

  1. Development of an analog read-out channel for time projection chambers

    NASA Astrophysics Data System (ADS)

    Atkin, E.; Sagdiev, I.

    2017-01-01

    The development of an analog read-out channel for time projection chambers (TPC) is presented both in schematic and layout. Structure of the channel consists of a preamplifier, fourth order shaper and differential buffer. The channel operates with positive and negative polarities of input charge. The prototype has the following features: dynamic range of 100 fC for both polarities, 20 mv/fC of sensitivity for differential output, peaking time – 160 ns, ENC - <1000e at 40 pF of source capacitance. The presented channel was designed and verified in the CMOS UMC MMRF 180 nm process. The results of post layout simulation are presented.

  2. Fermion sign problem in imaginary-time projection continuum quantum Monte Carlo with local interaction.

    PubMed

    Calcavecchia, Francesco; Holzmann, Markus

    2016-04-01

    We use the shadow wave function formalism as a convenient model to study the fermion sign problem affecting all projector quantum Monte Carlo methods in continuum space. We demonstrate that the efficiency of imaginary-time projection algorithms decays exponentially with increasing number of particles and/or imaginary-time propagation. Moreover, we derive an analytical expression that connects the localization of the system with the magnitude of the sign problem, illustrating this behavior through numerical results. Finally, we discuss the computational complexity of the fermion sign problem and methods for alleviating its severity.

  3. Protein analysis using real-time PCR instrumentation: incorporation in an integrated, inquiry-based project.

    PubMed

    Southard, Jonathan N

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein structure studies possible with a real-time PCR instrument address core topics in biochemistry and have valuable high-throughput applications in the fields of drug discovery and protein engineering. Protein analysis using real-time PCR instrumentation has been incorporated in an undergraduate laboratory project based on previously described projects. Students express, purify, and characterize a protein. Based on literature research and analysis using bioinformatics tools, they select a specific mutation to investigate. They then attempt to express, purify, and characterize their mutated protein. Thermal denaturation using a real-time PCR instrument is the primary tool used to compare the wild-type and mutated proteins. Alternative means for incorporation of protein analysis by real-time PCR instrumentation into laboratory experiences and additional modes of analysis are also described.

  4. The NASA Smart Probe Project for real-time multiple microsensor tissue recognition

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.; Mah, Robert W.

    2003-01-01

    BACKGROUND: Remote surgery requires automated sensors, effectors and sensor-effector communication. The NASA Smart Probe Project has focused on the sensor aspect. METHODS: The NASA Smart Probe uses neural networks and data from multiple microsensors for a unique tissue signature in real time. Animal and human trials use several probe configurations: (1) 8-microsensor probe (2.5 mm in diameter) for rodent studies (normal and subcutaneous mammary tumor tissues), and (2) 21-gauge needle probe with 3 spectroscopic fibers and an impedance microelectrode for breast cancer diagnosis in humans. Multisensor data are collected in real time (update 100 times/s) using PCs. RESULTS: Human data (collected by NASA licensee BioLuminate) from 15 women undergoing breast biopsy distinguished normal tissue from both benign tumors and breast carcinoma. Tumor margins and necrosis are rapidly detected. CONCLUSION: Real-time tissue identification is achievable. Potential applications, including probes incorporating nanoelectrode arrays, are presented. Copyright 2003 S. Karger AG, Basel.

  5. Stone Soup Projects: Using real-time resources and creative partnering to meet multiple needs

    NASA Astrophysics Data System (ADS)

    McLean, S.; Searle, R.; Zala, K.

    2010-12-01

    Ocean Networks Canada oversees the VENUS and NEPTUNE Canada undersea cabled observatories. Its Centre for Enterprise and Engagement communicates the scientific discoveries and technological innovations happening at the two systems. Not surprisingly, funders in ocean science are interested in seeing evidence of increased recruitment of Highly Qualified Personnel into marine science and industry. This demand creates a series of opportunities for inspiring students, ranging from graduate school down to middle school, to pursue studies in chemistry, biology, physics, geology, engineering, and beyond. As the Engagement section is a small operation, we partner with others to produce educational assets incorporating real-time data from VENUS and NEPTUNE Canada observatories that enable frontline educators to create exciting ocean science experiences for students and the public. In one project, the lab component of an entire undergraduate course lets students conduct their own investigations into marine oxygen levels by using VENUS data. In another, Fine Arts graduate and undergraduate students are using high-tech tools to create a series of webisodes that map the principles of Ocean Literacy onto the science themes of VENUS and NEPTUNE Canada. In a third project, we hosted a website for a collaborative expedition to small coastal towns that focused on the marine science happening in the Salish Sea, British Columbia. Our projects and challenges for engaging students and the public with ocean science using real-time and other data offer strategies for outreach and education sections of similar organizations.

  6. Statistical analysis of real-time, enviromental radon monitoring results at the Fernald Enviromental Management Project

    SciTech Connect

    Liu, Ning; Spitz, H.B.; Tomezak, L.

    1996-02-01

    A comprehensive real-time, environmental radon monitoring program is being conducted at the Fernald Environmental Management Project, where a large quantity of radium-bearing residues have been stored in two covered earth-bermed silos. Statistical analyses was conducted to determine what impact radon emitted by the radium bearing materials contained in the silos has on the ambient radon concentration at the Fernald Environmental Management Project site. The distribution that best describes the outdoor radon monitoring data was determined before statistical analyses were conducted. Random effects associated with the selection of radon monitoring locations were accommodated by using nested and nested factorial classification models. The Project site was divided into four general areas according to their characteristics and functions: (1) the silo area, where the radium-bearing waste is stored; (2) the production/administration area; (3) the perimeter area, or fence-line, of the Fernald Environmental Management Project site; and (4) a background area, located approximately 13 km from the Fernald Environmental Management Project site, representing the naturally-occurring radon concentration. A total of 15 continuous, hourly readout radon monitors were installed to measure the outdoor radon concentration. Measurement results from each individual monitor were found to be log-normally distributed. A series of contrast tests, which take random effects into account, were performed to compare the radon concentration between different areas of the site. These comparisons demonstrate that the radon concentrations in the production/administration area and the perimeter area are statistically equal to the natural background, whereas the silo area is significantly higher than background. The study also showed that the radon concentration in the silo area was significantly reduced after a sealant barrier was applied to the contents of the silos. 10 refs., 6 figs., 8 tabs.

  7. Integration of the ATLAS FE-I4 Pixel Chip in the Mini Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lopez-Thibodeaux, Mayra; Garcia-Sciveres, Maurice; Kadyk, John; Oliver-Mallory, Kelsey

    2013-04-01

    This project deals with development of readout for a Time Projection Chamber (TPC) prototype. This is a type of detector proposed for direct detection of dark matter (WIMPS) with direction information. The TPC is a gaseous charged particle tracking detector composed of a field cage and a gas avalanche detector. The latter is made of two Gas Electron Multipliers in series, illuminating a pixel readout integrated circuit, which measures the distribution in position and time of the output charge. We are testing the TPC prototype, filled with ArCO2 gas, using a Fe-55 x-ray source and cosmic rays. The present prototype uses an FE-I3 chip for readout. This chip was developed about 10 years ago and is presently in use within the ATLAS pixel detector at the LHC. The aim of this work is to upgrade the TPC prototype to use an FE-I4 chip. The FE-I4 has an active area of 336 mm^2 and 26880 pixels, over nine times the number of pixels in the FE-I3 chip, and an active area about six times as much. The FE-I4 chip represents the state of the art of pixel detector readout, and is presently being used to build an upgrade of the ATLAS pixel detector.

  8. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    SciTech Connect

    Kollar, Lenka; Mathews, Caroline E.

    2009-07-01

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

  9. Time-Gated Optical Projection Tomography Allows Visualization of Adult Zebrafish Internal Structures

    PubMed Central

    Foglia, Efrem Alessandro; Pistocchi, Anna; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; De Silvestri, Sandro; Cerullo, Giulio; Cotelli, Franco

    2012-01-01

    Optical imaging through biological samples is compromised by tissue scattering and currently various approaches aim to overcome this limitation. In this paper we demonstrate that an all optical technique, based on non-linear upconversion of infrared ultrashort laser pulses and on multiple view acquisition, allows the reduction of scattering effects in tomographic imaging. This technique, namely Time-Gated Optical Projection Tomography (TGOPT), is used to reconstruct three dimensionally the internal structure of adult zebrafish without staining or clearing agents. This method extends the use of Optical Projection Tomography to optically diffusive samples yielding reconstructions with reduced artifacts, increased contrast and improved resolution with respect to those obtained with non-gated techniques. The paper shows that TGOPT is particularly suited for imaging the skeletal system and nervous structures of adult zebrafish. PMID:23185643

  10. Gaseous time projection chambers for rare event detection: results from the T-REX project. II. Dark matter

    SciTech Connect

    Irastorza, I.G.; Aznar, F.; Castel, J. E-mail: faznar@unizar.es [Grupo de Física Nuclear y Astropartículas, Departamento de Física Teórica, Universidad de Zaragoza, C and others

    2016-01-01

    As part of the T-REX project, a number of R and D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. While in the companion paper we focus on double beta decay, in this paper we focus on the results regarding the search for dark matter candidates, both axions and WIMPs. Small (few cm wide) ultra-low background Micromegas detectors are used to image the axion-induced x-ray signal expected in axion helioscopes like the CERN Axion Solar Telescope (CAST) experiment. Background levels as low as 0.8 × 10{sup −6} counts keV{sup −1} cm{sup −2} s{sup −1} have already been achieved in CAST while values down to ∼10{sup −7} counts keV{sup −1} cm{sup −2} s{sup −1} have been obtained in a test bench placed underground in the Laboratorio Subterráneo de Canfranc (LSC). Prospects to consolidate and further reduce these values down to ∼10{sup −8} counts keV{sup −1} cm{sup −2} s{sup −1} will be described. Such detectors, placed at the focal point of x-ray telescopes in the future International Axion Observatory (IAXO), would allow for 10{sup 5} better signal-to-noise ratio than CAST, and search for solar axions with g{sub a}γ down to few 10{sup 12} GeV{sup −1}, well into unexplored axion parameter space. In addition, a scaled-up version of these TPCs, properly shielded and placed underground, can be competitive in the search for low-mass WIMPs. The TREX-DM prototype, with ∼ 0.300 kg of Ar at 10 bar, or alternatively ∼ 0.160 kg of Ne at 10 bar, and energy threshold well below 1 keV, has been built to test this concept. We will describe the main technical solutions developed, as well as the results from the commissioning phase on surface. The anticipated sensitivity of this technique might reach ∼10{sup −44} cm{sup 2} for

  11. Recording A Sunrise: A Citizen Science Project to Enhance Sunrise/set Prediction Times

    NASA Astrophysics Data System (ADS)

    Wilson, Teresa; Chizek Frouard, Malynda; Bartlett, Jennifer L.

    2017-01-01

    Smartphones, with their ever increasing capabilities, are becoming quite instrumental for data acquisition in a number of fields. Understanding refraction and how it affects what we see on the horizon is no exception. Current algorithms that predict sunrise and sunset times have an error of one to four minutes at mid-latitudes (0° - 55° N/S) due to limitations in the atmospheric models they incorporate. At higher latitudes, slight changes in refraction can cause significant discrepancies, even including difficulties determining when the Sun appears to rise or set. A thorough investigation of the problem requires a substantial data set of observed rise/set times and corresponding meteorological data from around the world, which is currently lacking. We have developed a mobile application so that this data can be taken using smartphones as part of a citizen science project. The app allows the viewer to submit a video of sunrise/set and attaches geographic location along with meteorological data taken from a local weather station. The project will help increase scientific awareness in the public by allowing members of the community to participate in the data-taking process, and give them a greater awareness of the scientific significance of phenomenon they witness every day. The data from the observations will lead to more complete rise/set models that will provide more accurate times to the benefit of astronomers, navigators, and outdoorsmen. The app will be available on the Google Play Store.

  12. The Human Placenta Project: placental structure, development, and function in real time.

    PubMed

    Guttmacher, A E; Maddox, Y T; Spong, C Y

    2014-05-01

    Despite its crucial role in the health of both the fetus and the pregnant woman, the placenta is the least understood human organ. Since a growing body of evidence also underscores the importance of placental development in the lifelong health of both mother and offspring, this lack of knowledge about placental structure and function is particularly concerning. Given modern approaches and technologies and the ability to develop new methods, we propose a coordinated "Human Placenta Project", with the ultimate goal of understanding human placental structure, development, and function in real time.

  13. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    NASA Astrophysics Data System (ADS)

    Arimoto, Y.; Higashi, N.; Igarashi, Y.; Iwashita, Y.; Ino, T.; Katayama, R.; Kitaguchi, M.; Kitahara, R.; Matsumura, H.; Mishima, K.; Nagakura, N.; Oide, H.; Otono, H.; Sakakibara, R.; Shima, T.; Shimizu, H. M.; Sugino, T.; Sumi, N.; Sumino, H.; Taketani, K.; Tanaka, G.; Tanaka, M.; Tauchi, K.; Toyoda, A.; Tomita, T.; Yamada, T.; Yamashita, S.; Yokoyama, H.; Yoshioka, T.

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with 6Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  14. SAMURAI-TPC: A Time Projection Chamber for Constraining the Asymmetry Energy at High Density

    NASA Astrophysics Data System (ADS)

    McIntosh, A. B.; Maass, N.; Yennello, S. J.; Barney, J.; Chajecki, Z.; Chan, C. F.; Dunn, J. W.; Estee, J.; Gilbert, J.; Lu, F.; Lynch, W. G.; Shane, R.; Tsang, M. B.; Famiano, M.; Isobe, T.; Sakurai, H.; Taketani, A.; Murakami, T.; Samurai-Tpc Collaboration

    2011-10-01

    The SAMURAI-TPC is a time projection chamber designed to measure pions and light charged particles. By measuring pion yield ratios and particle flow in heavy ion collisions around E = 200A MeV, we expect to constrain the behavior of the nuclear asymmetry energy around twice saturation density. In this talk, the design and construction of the TPC components will be discussed. Upon completion, the SAMURAI-TPC will be installed in the SAMURAI spectrometer at the Radioactive Isotope Beam Facility at RIKEN, Japan. This work is supported by the Department of Energy (DE-SC0004835).

  15. Project My Heart Your Heart: An Idea Whose Time Has Come

    PubMed Central

    Eagle, Kim A.; Crawford, Thomas C.; Baman, Timir

    2015-01-01

    It is estimated that nearly 1 million patients in low-income countries die every year from bradyarrhythmias coupled with no access to a pacemaker. At the same time, it is estimated that tens of thousands of used devices could be harvested from hospitals, funeral homes, and crematories in wealthy nations if such a practice was legal and proven to be safe and efficacious. Project My Heart Your Heart is a collaborative, multinational effort with a goal of making pacemaker recycling a reality. Since its inception 4 years ago, the project has studied beliefs and attitudes of this idea among patients, pacemaker recipients, funeral home directors, and arrhythmia specialists. The project has explored the safety and efficacy of this practice in several small pilot studies. Nearly 15,000 used devices have been received and evaluated. Efforts to fully define optimal methods for sterilization and device processing have progressed positively. Safe, effective pacemaker recycling is possible and is generally supported by the public, patients, and cardiovascular specialists. An ongoing dialogue with the FDA will hopefully lead to a large pivotal study in five countries which will definitively establish this practice including optimal strategies for device removal, interrogation, sterilization, handling, implantation, and follow-up at charitable pacemaker facilities servicing low income patients throughout the world. PMID:26330671

  16. Project ARGUS and the challenge of real-time all-sky SETI

    NASA Astrophysics Data System (ADS)

    Shuch, H. P.

    1997-01-01

    Project Argus, a global effort of the non-profit SETI League, Inc., seeks to achieve continuous microwave monitoring of all four pi steradians of space, in real time. This project will ultimately involve 5000 small radiotelescopes worldwide, built, maintained, and operated by private individuals (primarily radio amateurs and microwave experimenters), coordinated so as to miss no likely candidate signals, and providing independent verification of any interesting signals detected. Prototype stations went into operation in 1996; full sky coverage is planned for 2001. Sensitivity and range are assessed by comparison of current capabilities to those in place at the Ohio State Radio Observatory 19 years ago, when the so-called Wow signal was detected. The Wow signal serves as a convenient benchmark, even though its exact nature remains unknown. Should a similar candidate signal appear during the fully deployed phase of Project Argus, it will not evade detection. Though utilizing just a small satellite TV dish as its antenna, each station achieves range and sensitivity on a par with the Ohio State Big Ear radio telescope, circa 1977. This paper explores the technological breakthroughs which have made this level of performance possible.

  17. Overview of the CAPTAIN program

    NASA Astrophysics Data System (ADS)

    Liu, Qiuguang; CAPTAIN Collaboration

    2016-03-01

    Liquid argon time projection chamber detectors are taking center stage for the next large projects that the high-energy physics society will pursue. A series of tens of kiloton liquid argon detectors are under development to be used to measure the neutrino oscillation parameters, the CP violation in the neutrino sector, and the neutrino mass hierarchy, while also for the opportunity to the search for proton decay and supernova measurement as part of the DUNE program. However, several smaller liquid argon detectors are needed to study cross-sections and perform studies at various energies. The CAPTAIN Collaboration is building a 10-ton liquid argon detector as well as a prototype detector to perform measurements that include neutron interactions in liquid argon using the beam at LANSCE and neutrino measurements using the beam at Fermilab. The prototype experiment, MiniCAPTAIN, has been commissioned and is successfully running with laser operations, cosmic rays, and recently with neutrons from LANSCE. I will present an overview and status of the CAPTAIN program.

  18. Real-time monitoring of CO2 storage sites: Application to Illinois Basin-Decatur Project

    USGS Publications Warehouse

    Picard, G.; Berard, T.; Chabora, E.; Marsteller, S.; Greenberg, S.; Finley, R.J.; Rinck, U.; Greenaway, R.; Champagnon, C.; Davard, J.

    2011-01-01

    Optimization of carbon dioxide (CO2) storage operations for efficiency and safety requires use of monitoring techniques and implementation of control protocols. The monitoring techniques consist of permanent sensors and tools deployed for measurement campaigns. Large amounts of data are thus generated. These data must be managed and integrated for interpretation at different time scales. A fast interpretation loop involves combining continuous measurements from permanent sensors as they are collected to enable a rapid response to detected events; a slower loop requires combining large datasets gathered over longer operational periods from all techniques. The purpose of this paper is twofold. First, it presents an analysis of the monitoring objectives to be performed in the slow and fast interpretation loops. Second, it describes the implementation of the fast interpretation loop with a real-time monitoring system at the Illinois Basin-Decatur Project (IBDP) in Illinois, USA. ?? 2011 Published by Elsevier Ltd.

  19. The LTDP ALTS Project: Contributing to the Continued Understanding and Exploitation of the ATSR Time Series

    NASA Astrophysics Data System (ADS)

    Clarke, Hannah; Done, Fay; Casadio, Stefano; Mackin, Stephen; Dinelli, Bianca Maria; Castelli, Elisa

    2016-08-01

    The long time-series of observations made by the Along Track Scanning Radiometers (ATSR) missions represents a valuable resource for a wide range of research and EO applications.With the advent of ESA's Long-TermData Preservation (LTDP) programme, thought has turned to the preservation and improved understanding of such long time-series, to support their continued exploitation in both existing and new areas of research, bringing the possibility of improving the existing data set and to inform and contribute towards future missions. For this reason, the 'Long Term Stability of the ATSR Instrument Series: SWIR Calibration, Cloud Masking and SAA' project, commonly known as the ATSR Long Term Stability (or ALTS) project, is designed to explore the key characteristics of the data set and new and innovative ways of enhancing and exploiting it.Work has focussed on: A new approach to the assessment of Short Wave Infra-Red (SWIR) channel calibration.; Developmentof a new method for Total Column Water Vapour (TCWV) retrieval.; Study of the South Atlantic Anomaly (SAA).; Radiative Transfer (RT) modelling for ATSR.; Providing AATSR observations with their location in the original instrument grid.; Strategies for the retrieval and archiving of historical ATSR documentation.; Study of TCWV retrieval over land; Development of new methods for cloud masking This paper provides an overview of these activities and illustrates the importance of preserving and understanding 'old' data for continued use in the future.

  20. Active Target-Time Projection Chambers for Reactions Induced by Rare Isotope Beams: Physics and Technology

    NASA Astrophysics Data System (ADS)

    Mittig, Wolfgang

    2013-04-01

    Weakly bound nuclear systems can be considered to represent a good testing-ground of our understanding of non-perturbative quantum systems. Great progress in experimental sensitivity has been attained by increase in rare isotope beam intensities and by the development of new high efficiency detectors. It is now possible to study reactions leading to bound and unbound states in systems with very unbalanced neutron to proton ratios. Application of Active Target-Time Projection Chambers to this domain of physics will be illustrated by experiments performed with existing detectors. The NSCL is developing an Active Target-Time Projection Chamber (AT-TPC) to be used to study reactions induced by rare isotope beams at the National Superconducting Cyclotron Facility (NSCL) and at the future Facility for Rare Isotope Beams (FRIB). The AT-TPC counter gas acts as both a target and detector, allowing investigations of fusion, isobaric analog states, cluster structure of light nuclei and transfer reactions to be conducted without significant loss in resolution due to the thickness of the target. The high efficiency and low threshold of the AT-TPC will allow investigations of fission barriers and giant resonances with fast fragmentation rare isotope beams. This detector type needs typically a large number of electronic channels (order of magnitude 10,000) and a high speed DAQ. A reduced size prototype detector with prototype electronics has been realized and used in several experiments. A short description of other detectors of this type under development will be given.

  1. A multi-term solution of the space–time Boltzmann equation for electrons in gases and liquids

    NASA Astrophysics Data System (ADS)

    Boyle, G. J.; Tattersall, W. J.; Cocks, D. G.; McEachran, R. P.; White, R. D.

    2017-02-01

    In this study we have developed a full multi-term space–time solution of Boltzmann’s equation for electron transport in gases and liquids. A Green’s function formalism is used that enables flexible adaptation to various experimental systems. The spatio-temporal evolution of electrons in liquids in the non-hydrodynamic regime is benchmarked for a model Percus–Yevick (PY) liquid against an independent Monte Carlo simulation, and then applied to liquid argon. The temporal evolution of Franck–Hertz oscillations in configuration and energy space are observed for the model liquid with large differences apparent when compared to the dilute gas case, for both the velocity distribution function components and the transport quantities. The packing density in the PY liquid is shown to influence both the magnitude and wavelength of Franck–Hertz oscillations of the steady-state Townsend (SST) simulation. Transport properties are calculated from the non-hydrodynamic theory in the long time limit under SST conditions which are benchmarked against hydrodynamic transport coefficients. Finally, the spatio-temporal relaxation of low-energy electrons in liquid argon was investigated, with striking differences evident in the spatio-temporal development of the velocity distribution function components between the uncorrelated gas and true liquid approximations, due largely to the presence of a Ramsauer minimum in the former and not in the latter.

  2. Statistical downscaling of meteorological time series and climatic projections in a watershed in Turkey

    NASA Astrophysics Data System (ADS)

    Göncü, S.; Albek, E.

    2016-10-01

    In this study, meteorological time series from five meteorological stations in and around a watershed in Turkey were used in the statistical downscaling of global climate model results to be used for future projections. Two general circulation models (GCMs), Canadian Climate Center (CGCM3.1(T63)) and Met Office Hadley Centre (2012) (HadCM3) models, were used with three Special Report Emission Scenarios, A1B, A2, and B2. The statistical downscaling model SDSM was used for the downscaling. The downscaled ensembles were put to validation with GCM predictors against observations using nonparametric statistical tests. The two most important meteorological variables, temperature and precipitation, passed validation statistics, and partial validation was achieved with other time series relevant in hydrological studies, namely, cloudiness, relative humidity, and wind velocity. Heat waves, number of dry days, length of dry and wet spells, and maximum precipitation were derived from the primary time series as annual series. The change in monthly predictor sets used in constructing the multiple regression equations for downscaling was examined over the watershed and over the months in a year. Projections between 1962 and 2100 showed that temperatures and dryness indicators show increasing trends while precipitation, relative humidity, and cloudiness tend to decrease. The spatial changes over the watershed and monthly temporal changes revealed that the western parts of the watershed where water is produced for subsequent downstream use will get drier than the rest and the precipitation distribution over the year will shift. Temperatures showed increasing trends over the whole watershed unparalleled with another period in history. The results emphasize the necessity of mitigation efforts to combat climate change on local and global scales and the introduction of adaptation strategies for the region under study which was shown to be vulnerable to climate change.

  3. Limited-memory scaled gradient projection methods for real-time image deconvolution in microscopy

    NASA Astrophysics Data System (ADS)

    Porta, F.; Zanella, R.; Zanghirati, G.; Zanni, L.

    2015-04-01

    Gradient projection methods have given rise to effective tools for image deconvolution in several relevant areas, such as microscopy, medical imaging and astronomy. Due to the large scale of the optimization problems arising in nowadays imaging applications and to the growing request of real-time reconstructions, an interesting challenge to be faced consists in designing new acceleration techniques for the gradient schemes, able to preserve their simplicity and low computational cost of each iteration. In this work we propose an acceleration strategy for a state-of-the-art scaled gradient projection method for image deconvolution in microscopy. The acceleration idea is derived by adapting a step-length selection rule, recently introduced for limited-memory steepest descent methods in unconstrained optimization, to the special constrained optimization framework arising in image reconstruction. We describe how important issues related to the generalization of the step-length rule to the imaging optimization problem have been faced and we evaluate the improvements due to the acceleration strategy by numerical experiments on large-scale image deconvolution problems.

  4. A radial Time Projection Chamber for the ALPHA-g antimatter gravity measurement at CERN

    NASA Astrophysics Data System (ADS)

    Martin, Lars; Amaudruz, Pierre-André; Bishop, Daryl; Capra, Andrea; Fujiwara, Makoto; Henderson, Robert; Kurchaninov, Leonid; Menary, Scott; Olchanski, Konstantin

    2016-09-01

    Antimatter is believed to be affected by gravity in exactly the same way as ordinary matter for a variety of good reasons, however this has never been measured directly. The ALPHA-g project is a new antihydrogen trap based on the previous ALPHA design (Antihydrogen Laser Physics Apparatus, the first experiment to trap antihydrogen in 2010). As in previous ALPHA experiments the trapped antihydrogen is detected via its charged annihilation products after switching off the trap. In order to be sensitive to small gravitational effects the setup extends more than 2 m in the vertical direction, requiring the particle detection system to cover a large volume with good tracking accuracy. The design chosen to replace the previous experiments' Silicon detectors is a radial field time-projection-chamber (rTPC) filled with an Argon/CO2 mixture. Results of extensive Garfield simulations and prototype tests are presented and evaluated in terms of vertex resolution and its consequences for the gravity measurement. Additionally we give a progress report on the construction of the final detector, which is scheduled to be on-line in late 2017 for a first stage up/down measurement.

  5. Nuclear recoil measurements with the ARIS experiment

    NASA Astrophysics Data System (ADS)

    Fan, Alden; ARIS Collaboration

    2017-01-01

    As direct dark matter searches become increasingly sensitive, it is important to fully characterize the target of the search. The goal of the Argon Recoil Ionization and Scintillation (ARIS) experiment is to quantify information related to the scintillation and ionization energy scale, quenching factor, ion recombination probability, and scintillation time response of nuclear recoils, as expected from WIMPs, in liquid argon. A time projection chamber with an active mass of 0.5 kg of liquid argon and capable of full 3D position reconstruction was exposed to an inverse kinematic neutron beam at the Institut de Physique Nucleaire d'Orsay in France. A scan of nuclear recoil energies was performed through coincidence with a set of neutron detectors to quantify properties of nuclear recoils in liquid argon at various electric fields. The difference in ionization and scintillation response with differing recoil track angle to the electric field was also studied. The preliminary results of the experiment will be presented.

  6. A time projection chamber for high accuracy and precision fission cross-section measurements

    DOE PAGES

    Heffner, M.; Asner, D. M.; Baker, R. G.; ...

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance ofmore » the fissionTPC.« less

  7. A time projection chamber for high accuracy and precision fission cross-section measurements

    SciTech Connect

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  8. A time projection chamber for high accuracy and precision fission cross-section measurements

    NASA Astrophysics Data System (ADS)

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  9. Liquid xenon time projection chamber for gamma rays in the MeV region: Development status

    NASA Technical Reports Server (NTRS)

    Aprile, E.; Bolotnikov, A.; Chen, D.; Mukherjee, R.

    1992-01-01

    The feasibility of a large volume Liquid Xenon Time Projection Chamber (LXe-TPC) for three dimensional imaging and spectroscopy of cosmic gamma ray sources, was tested with a 3.5 liter prototype. The observation of induction signals produced by MeV gamma rays in liquid xenon is reported, with a good signal-to-noise ratio. The results represent the first experimental demonstration with a liquid xenon ionization chamber of a nondestructive readout of the electron image produced by point-like charges, using a sense wire configuration of the type originally proposed in 1970 by Gatti et al. An energy resolution as good as that previously measured by the millimeter size chambers, was achieved with the large prototype of 4.4 cm drift gap.

  10. JPL's Real-Time Weather Processor project (RWP) metrics and observations at system completion

    NASA Technical Reports Server (NTRS)

    Loesh, Robert E.; Conover, Robert A.; Malhotra, Shan

    1990-01-01

    As an integral part of the overall upgraded National Airspace System (NAS), the objective of the Real-Time Weather Processor (RWP) project is to improve the quality of weather information and the timeliness of its dissemination to system users. To accomplish this, an RWP will be installed in each of the Center Weather Service Units (CWSUs), located in 21 of the 23 Air Route Traffic Control Centers (ARTCCs). The RWP System is a prototype system. It is planned that the software will be GFE and that production hardware will be acquired via industry competitive procurement. The ARTCC is a facility established to provide air traffic control service to aircraft operating on Instrument Flight Rules (IFR) flight plans within controlled airspace, principally during the en route phase of the flight. Covered here are requirement metrics, Software Problem Failure Reports (SPFRs), and Ada portability metrics and observations.

  11. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  12. Liquid xenon time projection chamber for gamma rays in the MeV region: Development status

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Bolotnikov, A.; Chen, D.; Mukherjee, R.

    1992-12-01

    The feasibility of a large volume Liquid Xenon Time Projection Chamber (LXe-TPC) for three dimensional imaging and spectroscopy of cosmic gamma ray sources, was tested with a 3.5 liter prototype. The observation of induction signals produced by MeV gamma rays in liquid xenon is reported, with a good signal-to-noise ratio. The results represent the first experimental demonstration with a liquid xenon ionization chamber of a nondestructive readout of the electron image produced by point-like charges, using a sense wire configuration of the type originally proposed in 1970 by Gatti et al. An energy resolution as good as that previously measured by the millimeter size chambers, was achieved with the large prototype of 4.4 cm drift gap.

  13. Analyses of operational times and technical aspects of the Salton Sea scientific drilling project: (Final report)

    SciTech Connect

    Not Available

    1986-12-01

    The Deep Salton Sea Scientific Drilling Program (DSSSDP) was conducted in Imperial County of California at the Southeastern edge of the Salton Sea. Emphasis was on the acquisition of scientific data for the evaluation of the geological environment encountered during the drilling of the well. The scientific data acquisition activities consisted of coring, running of numerous downhole logs and tools in support of defining the geologic environment and conducting two full scale flow tests primarily to obtain pristine fluid samples. In addition, drill cuttings, gases and drilling fluid chemistry measurements were obtained from the drilling fluid returns concurrent with drilling and coring operations. The well was drilled to 10,564 feet. This report describes the field portions of the project and presents an analysis of the time spent on the various activities associated with the normal drilling operations, scientific data gathering operations and the three major downhole problem activities - lost circulation, directional control and fishing.

  14. Resonant proton scattering on 46Ar using the Active-Target Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bradt, J.; Ahn, T.; Ayyad Limonge, Y.; Bazin, D.; Beceiro Novo, S.; Carpenter, L.; Kuchera, M. P.; Lynch, W.; Mittig, W.; Rost, S.; Watwood, N.; Barney, J.; Datta, U.; Estee, J.; Gillibert, A.; Manfredi, J.; Morfouace, P.; Perez Loureiro, D.; Pollacco, E.; Sammut, J.; Sweany, S.

    2016-09-01

    A well-known technique for studying the single-particle properties of neutron-rich nuclei is to use resonant proton scattering on a parent nucleus to populate the isobaric analog states of the corresponding neutron-rich nucleus. The locations and amplitudes of these resonances are directly related to the structure of the nucleus of interest by isospin symmetry. We performed an experiment of this type at the National Superconducting Cyclotron Laboratory to commission the recently completed Active-Target Time Projection Chamber (AT-TPC). A 4.6-MeV/u radioactive beam of 46Ar was injected into the AT-TPC. The detector was filled with isobutane gas-which provided the protons for the reaction and served as the tracking medium-and placed inside a 2-T magnetic field. We will present preliminary results from this experiment and discuss the benefits of the active-target method for this type of measurement.

  15. SπRIT: A time-projection chamber for symmetry-energy studies

    NASA Astrophysics Data System (ADS)

    Shane, R.; McIntosh, A. B.; Isobe, T.; Lynch, W. G.; Baba, H.; Barney, J.; Chajecki, Z.; Chartier, M.; Estee, J.; Famiano, M.; Hong, B.; Ieki, K.; Jhang, G.; Lemmon, R.; Lu, F.; Murakami, T.; Nakatsuka, N.; Nishimura, M.; Olsen, R.; Powell, W.; Sakurai, H.; Taketani, A.; Tangwancharoen, S.; Tsang, M. B.; Usukura, T.; Wang, R.; Yennello, S. J.; Yurkon, J.

    2015-06-01

    A time-projection chamber (TPC) called the SAMURAI Pion-Reconstruction and Ion-Tracker (SπRIT) has recently been constructed at Michigan State University as part of an international effort to constrain the symmetry-energy term in the nuclear Equation of State (EoS). The SπRIT TPC will be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Factory (RIBF) at RIKEN to measure yield ratios for pions and other light isospin multiplets produced in central collisions of neutron-rich heavy ions, such as 132Sn+124Sn. The SπRIT TPC can function both as a TPC detector and as an active target. It has a vertical drift length of 50 cm, parallel to the magnetic field. Gas multiplication is achieved through the use of a multi-wire anode plane. Image charges, produced in the 12096 pads, are read out with the recently developed Generic Electronics for TPCs.

  16. SAMURAI Time-Projection Chamber: A device for constraining the symmetry energy

    NASA Astrophysics Data System (ADS)

    Shane, R.; Andrews, K.; Barney, J.; Brophy, B.; Chajecki, Z.; Chan, C. F.; Dunn, J. W.; Ersoy, E.; Estee, J.; Gilbert, J.; Lu, F.; Lynch, W. G.; Tsang, M. B.; McIntosh, A. B.; Yennello, S. J.; Dye, S.; Elhoussieny, M.; Famiano, M.; Snow, C.; Isobe, T.; Sakurai, H.; Taketani, A.; Murakami, T.; Powell, W.

    2013-04-01

    The SAMURAI-TPC is a time-projection chamber to be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Facility at RIKEN, Japan. It is designed to detect charged pions as well as light charged particles up to oxygen produced in heavy ion collisions. Design of the TPC is based on the EOS TPC with similar dimensions. However, the TPC will be equipped with the newly designed General Electronics for TPCs (GET). One of the proposed experimental programs using the TPC is to measure pi+/pi- ratios from heavy-ion collisions which should provide constraints on the asymmetry term in the nuclear equation of state at densities about twice saturation density. In this talk, the design and construction of the detector will be discussed.

  17. AEP Ohio gridSMART Demonstration Project Real-Time Pricing Demonstration Analysis

    SciTech Connect

    Widergren, Steven E.; Subbarao, Krishnappa; Fuller, Jason C.; Chassin, David P.; Somani, Abhishek; Marinovici, Maria C.; Hammerstrom, Janelle L.

    2014-02-01

    This report contributes initial findings from an analysis of significant aspects of the gridSMART® Real-Time Pricing (RTP) – Double Auction demonstration project. Over the course of four years, Pacific Northwest National Laboratory (PNNL) worked with American Electric Power (AEP), Ohio and Battelle Memorial Institute to design, build, and operate an innovative system to engage residential consumers and their end-use resources in a participatory approach to electric system operations, an incentive-based approach that has the promise of providing greater efficiency under normal operating conditions and greater flexibility to react under situations of system stress. The material contained in this report supplements the findings documented by AEP Ohio in the main body of the gridSMART report. It delves into three main areas: impacts on system operations, impacts on households, and observations about the sensitivity of load to price changes.

  18. Project of a Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring (NRTSSS)

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; Calore, D.; Mangano, G.; D'Alessandro, A.; Favali, P.

    2011-12-01

    The INGV seismic network ensures reliable and continuous monitoring of the Italian territory. However, the peculiarity of the Italian peninsula, characterised by an intense offshore geodynamic and seismic activity, requires the extension of the seismic monitoring to the sea. The aim of this project is: - to identify bottleneck is related to the construction, installation and use of underwater seismic station; - to define the most appropriate and low-cost architecture to guarantee the minimum functionality required for a seismic station. In order to obtain reliable seafloor seismic signals integrated to land-based network, the requirements to be fulfill are: - an acceptable coupling with the seabed; - the orientation of the components with respect to the magnetic North and to the verticality; - the correct time stamp of the data; - the data transfer to the land for the integration. Currently, the optimal solution for offshore seismic station is a cable connection to power and real-time data transfer, like the case of Western Ionian Sea cabled observatory, one of the operative node of the EMSO research infrastructure (European Multidisciplinary Seafloor and water column Observatory, http://emso-eu.org). But in the Mediterranean many seismic areas are located a few tens-hundreds of miles from the coast and cabled solutions are not feasible essentially for economic reasons. For this kind of installations EMSO research infrastructure foresees no-cabled solution, that requires a surface buoy deployed in the vicinity seafloor modules.This project plans to develop a surface buoy equipped with autonomous power supply system to power also the seafloor platforms and two-way communication system enabling the data transfer through latest generation of broadband radio communication or satellite link (Fig. 1). All the components of the prototype system are described.

  19. Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring, SoilCAM project highlights

    NASA Astrophysics Data System (ADS)

    French, H. K.; Van Der Zee, S. E.; Wehrer, M.; Godio, A.; Pedersen, L. B.; Tsocano, G.

    2013-12-01

    The SoilCAM project (2008- 2012, EU-FP7-212663) aimed at improving methods for monitoring subsurace contaminant distribution and biodegradation. Two test sites were chosen, Oslo airport Gardermoen, Norway where de-icing agents infiltrate the soil during snowmelt and the Trecate site in Italy where an inland crude oil spill occurred in 1994. A number of geophysical investigation techniques were combined with soil and water sampling techniques. Data obtained from time-lapse measurements were further analysed by numerical modelling of flow and transport at different scales in order to characterise transport processes in the unsaturated and saturated zones. Laboratory experiments provided physical and biogeochemical data for model parameterisation and to select remediation methods. The geophysical techniques were used to map geological heterogeneities and to conduct time-lapse measurements of processes in the unsaturated zone. Both cross borehole and surface electrodes were used for electrical resistivity and induced polarisation surveys. Results showed clear indications of areas highly affected by de-icing chemicals along the runway at Oslo airport. The time lapse measurements along the runway at the airport showed infiltration patterns during snowmelt and were used to validate 2D unsaturated flow and transport simulations using SUTRA. The simulations illustrate the effect of layering geological structures and membranes, buried parallel to the runway, on the flow pattern. Complex interaction between bio-geo-chemical processes in a 1D vertical profile along the runway were described with the ORCHESTRA model. Smaller scale field site measurements revealed increase of iron and manganese during degradation of de-icing chemicals. At the Trecate site a combination of georadar, electrical resistivity and radio magneto telluric provided a broad outline of the geology down to 50 m. Anomalies in the Induced polarisation and electrical resistivity data from the cross borehole

  20. Meeting Environmental Guidelines and Completing School Construction Projects on Time and Within Budget.

    ERIC Educational Resources Information Center

    Preyar, Chester F.

    2000-01-01

    Taxpayers expect school-construction projects to be managed efficiently and in accordance with environmental standards. Phases include selecting an architect and site, stating project requirements, working with the architect, considering environmental factors, getting budget estimates and reviews, and choosing a contractor and project-schedule…

  1. Recent R&D results on LAr LEM TPC and plans for LBNO demonstrators

    NASA Astrophysics Data System (ADS)

    Cantini, C.; Epprecht, L.; Gendotti, A.; Horikawa, S.; Murphy, S.; Natterer, G.; Periale, L.; Regenfus, C.; Resnati, F.; Rubbia, A.; Sergiampietri, F.; Viant, T.; Wu, S.; LAGUNA-LBNO Collaboration; WA105 Collaboration

    2015-11-01

    The double phase Liquid Argon (LAr) Time Projection Chamber (TPC) is the state-of-art technology for neutrino detection thanks to its superb 3 Dimensional (3D) tracking and calorimetry performance. Based on this technology, the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER) is proposed to be the far detector for the Long Baseline Neutrino Oscillation (LBNO) experiment aiming at studying neutrinos 2300 km away from their production point. We report recent R&D results on the charge readout system for GLACIER and the plans to build the GLACIER demonstrators at CERN.

  2. The Chandra ACIS Timing Survey Project: glimpsing a sample of faint X-ray pulsators

    NASA Astrophysics Data System (ADS)

    Israel, G. L.; Esposito, P.; Rodríguez Castillo, G. A.; Sidoli, L.

    2016-11-01

    We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 yr of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190 000 light curves out of about 430 000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS @ BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above ˜2000 s resembles that of cataclysmic variables, while there is a paucity of sources with shorter period and low fluxes. Since there is not an obvious bias against these detections, a possible interpretation is in terms of a magnetic gating mechanism in accreting neutron stars. Finally, we note that CATS @ BAR is a living project and the detection algorithm will continue to be routinely applied to the new Chandra data as they become public. Based on the results obtained so far, we expect to discover about three new pulsators every year.

  3. Real time soil moisture forecasts for irrigation management: the Pre.G.I. project

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Mancini, M.; Salerno, R.

    2012-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully. Future climate change scenarios, combined with limited water resources require better irrigation management and planning for farmers' water cooperatives. This has occurred also in areas traditionally rich of water as Lombardy Region, in the North of Italy. In this study we show the development and implementation of a real-time drought forecasting system with a soil moisture hydrological alert, in particular we describe preliminary results of the Pre.G.I. Project, an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management", funded by Lombardy Region. The project develops a support decision system based on an ensemble weather prediction in the medium-long range (up to 30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin, in order to use the irrigation water in a wiser and thriftier way. The studied area covers 74,000 ha in the middle of the Po Valley, near Lodi city. The hydrological ensemble forecasts are based on 20 meteorological members of a modified version of the non-hydrostatic WRF model, with multiple nesting to scale to the region of interest. Different physical schemes are also used to take into account a larger variability; these data are provided by Epson Meteo Centre. The hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The analysis shows the system reliability based on most significant case-studies occurred in the recent years.

  4. Final Technical Report of project: "Contactless Real-Time Monitoring of Paper Mechanical Behavior During Papermaking"

    SciTech Connect

    Emmanuel Lafond; Paul Ridgway; Ted Jackson; Rick Russo; Ken Telschow; Vance Deason; Yves Berthelot; David Griggs; Xinya Zhang; Gary Baum

    2005-08-30

    The early precursors of laser ultrasonics on paper were Prof. Y. Berthelot from the Georgia Institute of Technology/Mechanical Engineering department, and Prof. P. Brodeur from the Institute of Paper Science and Technology, both located in Atlanta, Georgia. The first Ph.D. thesis that shed quite some light on the topic, but also left some questions unanswered, was completed by Mont A. Johnson in 1996. Mont Johnson was Prof. Berthelot's student at Georgia Tech. In 1997 P. Brodeur proposed a project involving himself, Y. Berthelot, Dr. Ken Telschow and Mr. Vance Deason from INL, Honeywell-Measurex and Dr. Rick Russo from LBNL. The first time the proposal was not accepted and P. Brodeur decided to re-propose it without the involvement from LBNL. Rick Russo proposed a separate project on the same topic on his side. Both proposals were finally accepted and work started in the fall of 1997 on the two projects. Early on, the biggest challenge was to find an optical detection method which could detect laser-induced displacements of the web surface that are of the order of .1 micron in the ultrasonic range. This was to be done while the web was having an out-of-plane amplitude of motion in the mm range due to web flutter; while moving at 10 m/s to 30 m/s in the plane of the web, on the paper machine. Both teams grappled with the same problems and tried similar methods in some cases, but came up with two similar but different solutions one year later. The IPST, GT, INL team found that an interferometer made by Lasson Technologies Inc. using the photo-induced electro-motive force in Gallium Arsenide was able to detect ultrasonic waves up to 12-15 m/s. It also developed in house an interferometer using the Two-Wave Mixing effect in photorefractive crystals that showed good promises for on-line applications, and experimented with a scanning mirror to reduce motion-induced texture noise from the web and improve signal to noise ratio. On its side, LBNL had the idea to combine a

  5. A Developmental Sensitive Period for Spike Timing-Dependent Plasticity in the Retinotectal Projection

    PubMed Central

    Tsui, Jennifer; Schwartz, Neil; Ruthazer, Edward S.

    2010-01-01

    The retinotectal projection in Xenopus laevis has been shown to exhibit correlation-based refinement of both anatomical and functional connectivity during development. Spike timing-dependent plasticity (STDP) is an appealing experimental model for correlation-based synaptic plasticity because, in contrast to plasticity induction paradigms using tetanic stimulation or sustained postsynaptic depolarization, its induction protocol more closely resembles natural physiological activity. In Xenopus tadpoles, where anatomical remodeling has been reported throughout much of the life of the animal, in vivo retinotectal STDP has only been examined under a limited set of experimental conditions. Using perforated-patch recordings of retina-evoked EPSCs in tectal neurons, we confirmed that repeatedly driving a retinotectal EPSP 5–10 ms prior to inducing an action potential in the postsynaptic cell, reliably produced timing-dependent long-term potentiation (t-LTP) of the retinotectal synapse in young wild type tadpoles (stages 41–44). At these stages, retinotectal timing-dependent long-term depression (t-LTD) also could be induced by evoking an EPSP to arrive 5–10 ms after an action potential in the tectal cell. However, retinotectal STDP using this standard protocol was limited to a developmental sensitive period, as we were unable to induce t-LTP or t-LTD after stage 44. Surprisingly, this STDP protocol also failed to induce reliable STDP in albino tadpoles at the early ages when it was effective in wild type pigmented animals. Nonetheless, low-frequency flashes to the eye produced a robust NMDA receptor-dependent retinotectal LTD in stage 47 albino tadpoles, demonstrating that the retinotectal synapse can nonetheless be modified in these animals using different plasticity paradigms. PMID:21423499

  6. A Project Focusing on Superintendents' Knowledge of Evidence-Based Practices of Structuring Time for Student Learning

    ERIC Educational Resources Information Center

    Husted, Jessica L.

    2016-01-01

    This report describes a problem based learning project focusing on superintendents' knowledge of evidence-based practices of structuring time for student learning. Current research findings offer evidence that structuring time for student learning is an important factor in student achievement. School district superintendents are challenged with…

  7. Complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems and coupling time delays

    NASA Astrophysics Data System (ADS)

    Wu, Xuefei; Xu, Chen; Feng, Jianwen

    2015-03-01

    In this paper, the complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems and linear coupling time delays are considered. The pinning control scheme are adopted to achieve complex projective synchronization and several simple and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of the proposed methods.

  8. Future satellite missions for time-variable geopotential recovery - results from the ESA Mass Transport Project

    NASA Astrophysics Data System (ADS)

    Reubelt, T.; Sneeuw, N.; Visser, P. N. A. M.; van Dam, T.; Losch, M.

    2009-04-01

    With the successful GRACE mission (data collection since Spring 2002), global time-variable gravity fields can be recovered beyond the lower degrees for the first time. Although GRACE is able to detect significant features of the time-variable geopotential, e.g. the continental hydrological cycle, trends in ice-mass change in Antarctica or Greenland or sea level rise, its mission concept suffers from inherent deficiencies. The main limitations of GRACE are (i) the range-rate measurements (insufficient accuracy, anisotropy of the leader-follower-formation), (ii) aliasing due to spatial and temporal undersampling and (iii) inaccurate de-aliasing products. This leads to an erroneous North-South striping pattern and a limited accuracy and resolution for many scientific studies. Within the ESA project „Monitoring and Modeling Individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites" potential future satellite mission concepts, which could improve time-variable geopotential-recovery, have been studied. An improved accuracy of a future laser instrument as well as an enhanced temporal sampling have been regarded in the simulations, which were based on repeat orbits. An enhanced sampling can be achieved by means of multi-satellite-missions, where the spatial and/or temporal resolutions are improved by: 1) additional satellites on interleaved groundtracks and/or 2) time shifted satellites on the same groundtrack. Another possibility is the so-called Pete-Bender-design, where the satellites fly on different repeat-orbits with different inclinations, which also allows for more homogeneous groundtrack coverage. Sophisticated satellite-formations such as cartwheels or gravity wheels have not been regarded so far due to the unsolved technical problems (e.g. control of the laser instrument) related to these designs. The primary objective of the simulation studies was the precise recovery of the input hydrological signal and the trends of

  9. Clinical Digital Libraries Project: design approach and exploratory assessment of timely use in clinical environments*

    PubMed Central

    MacCall, Steven L.

    2006-01-01

    Objective: The paper describes and evaluates the use of Clinical Digital Libraries Project (CDLP) digital library collections in terms of their facilitation of timely clinical information seeking. Design: A convenience sample of CDLP Web server log activity over a twelve-month period (7/2002 to 6/2003) was analyzed for evidence of timely information seeking after users were referred to digital library clinical topic pages from Web search engines. Sample searches were limited to those originating from medical schools (26% North American and 19% non-North American) and from hospitals or clinics (51% North American and 4% non-North American). Measurement: Timeliness was determined based on a calculation of the difference between the timestamps of the first and last Web server log “hit” during each search in the sample. The calculated differences were mapped into one of three ranges: less than one minute, one to three minutes, and three to five minutes. Results: Of the 864 searches analyzed, 48% were less than 1 minute, 41% were 1 to 3 minutes, and 11% were 3 to 5 minutes. These results were further analyzed by environment (medical schools versus hospitals or clinics) and by geographic location (North America versus non-North American). Searches reflected a consistent pattern of less than 1 minute in these environments. Though the results were not consistent on a month-by-month basis over the entire time period, data for 8 of 12 months showed that searches shorter than 1 minute predominated and data for 1 month showed an equal number of less than 1 minute and 1 to 3 minute searches. Conclusions: The CDLP digital library collections provided timely access to high-quality Web clinical resources when used for information seeking in medical education and hospital or clinic environments from North American and non–North American locations and consistently provided access to the sought information within the documented two-minute standard. The limitations of the use of

  10. Real-time Time-variability Analysis of GB to TB Datasets: Experience from SuperMACHO and Supernova projects at NOAO/CTIO

    NASA Astrophysics Data System (ADS)

    Smith, Chris; Rest, Armin; Hiriart, Rafael; Becker, Andrew; Stubbs, Christopher W.; Valdes, Francisco G.; Suntzeff, Nicholas

    2002-12-01

    The era of large survey datasets has arrived, and the era of large survey telescope projects is upon us. Many of these new telescope projects will not only produce large datasets, they will produce datasets that require real-time astronomical analysis, including object detection, photometry, and classification. These datasets promise to open new horizons in the exploration of the time domain in astrophysical systems on large scales. But to fulfill this promise, the projects must design and develop data management systems on a much larger scale (many Terabytes per day continuously) than has previously been achieved in astronomy. Working together, NOAO and the University of Washington are developing prototype pipeline systems to explore the issues involved in real-time time-variability analysis. These efforts are not simply theoretical exercises, but rather are driven by NOAO Survey programs which are generating large data flows. Our survey projects provide a science-driven testbed of data management strategies needed for future initiatives such as the Large Synoptic Survey Telescope and other large-scale astronomical data production systems.

  11. Lifetime Estimation of a Time Projection Chamber X-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, Joanne E.; Black, J. Kevin; Brieda, Lubos; Dickens, Patsy L.; deGarcia, Kristina Montt; Hawk, Douglas L.; Hayato, Asami; Jahoda, Keith; Mohammed, Jelila

    2013-01-01

    The Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimeter Instrument (XPI) was designed to measure the polarization of 23 sources over the course of its 9 month mission. The XPI design consists of two telescopes each with a polarimeter assembly at the focus of a grazing incidence mirror. To make sensitive polarization measurements the GEMS Polarimeter Assembly (PA) employed a gas detection system based on a Time Projection Chamber (TPC) technique. Gas detectors are inherently at risk of degraded performance arising from contamination from outgassing of internal detector components or due to loss of gas. This paper describes the design and the materials used to build a prototype of the flight polarimeter with the required GEMS lifetime. We report the results from outgassing measurements of the polarimeter subassemblies and assemblies, enclosure seal tests, life tests, and performance tests that demonstrate that the GEMS lifetime is achievable. Finally we report performance measurements and the lifetime enhancement from the use of a getter.

  12. Multiobjective Resource-Constrained Project Scheduling with a Time-Varying Number of Tasks

    PubMed Central

    Abello, Manuel Blanco

    2014-01-01

    In resource-constrained project scheduling (RCPS) problems, ongoing tasks are restricted to utilizing a fixed number of resources. This paper investigates a dynamic version of the RCPS problem where the number of tasks varies in time. Our previous work investigated a technique called mapping of task IDs for centroid-based approach with random immigrants (McBAR) that was used to solve the dynamic problem. However, the solution-searching ability of McBAR was investigated over only a few instances of the dynamic problem. As a consequence, only a small number of characteristics of McBAR, under the dynamics of the RCPS problem, were found. Further, only a few techniques were compared to McBAR with respect to its solution-searching ability for solving the dynamic problem. In this paper, (a) the significance of the subalgorithms of McBAR is investigated by comparing McBAR to several other techniques; and (b) the scope of investigation in the previous work is extended. In particular, McBAR is compared to a technique called, Estimation Distribution Algorithm (EDA). As with McBAR, EDA is applied to solve the dynamic problem, an application that is unique in the literature. PMID:24883398

  13. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  14. Reducing Uncertainties in Neutron Induced Fission Cross Sections via a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Magee, Joshua; Niffte Collaboration

    2016-09-01

    Neutron induced fission cross sections of actinides are of great interest in nuclear energy and stockpile stewardship. Traditionally, measurements of these cross sections have been made with fission chambers, which provide limited information on the actual fragments, and ultimately result in uncertainties on the order of several percent. The Neutron Induced Fission Fragment Tracking Experiment collaboration (NIFFTE) designed and built a fission Time Project Chamber (fission TPC), which provides additional information on these processes, through 3-dimensional tracking, improved particle identification, and in-situ profiles of target and beam non-uniformities. Ultimately, this should provide sub-percent measurements of (n,f) cross-sections. During the 2015 run cycle, measurements of several actinides were performed at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility. An overview of the fission TPC will be given, as well as the current progress towards a sub-percent measurement of the 239Pu/235U (n,f) cross-section ratio. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Exploiting the Photoelectric effect for X-ray Polarimetry using Time Projection Chamber

    NASA Technical Reports Server (NTRS)

    Jahoda, Keith; Black, Kevin; Deines-Jones, Philip; Hill, Joanne; Swank, Jean

    2008-01-01

    The promise of photoelectric X-ray polarimetry has now been realized in laboratory demonstrations and may soon be used for astrophysical observations. Photoelectric polarimetry in gas filled proportional counters achieves high sensitivity through a combination of broad band width and good modulation. The band can be tuned by careful choice of gas composition and pressure. The measurements rely on imaging the tracks of photoelectrons. The initial direction of each track carries information about the electric field of the X-ray photon, and an ensemble of such measurements thus measures the net polarization of the source. A novel readout geometry using time projection chambers (TPC) allows deep (i.e. high efficiency) detectors, albeit without the ability to image the sky. Polarimeters which exploit the TPC geometry can be optimized for use behind telescopes, to study faint persistent sources, or as wide field of view instruments, designed to study bright transient events such as gamma-ray bursts or solar flares. We present the conceptual design of both types of TPC polarimeter. Recent laboratory results demonstrate that these polarimeters can achieve substantial gains in the polarization sensitivity achievable in experiments of modest size.

  16. Field cage development for a time-projection chamber to constrain the nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Estee, J.; Barney, J.; Chajecki, Z.; Famiano, M.; Dunn, J.; Lu, F.; Lynch, W. G.; McIntosh, A. B.; Isobe, T.; Murakami, T.; Sakurai, H.; Shane, R.; Taketani, A.; Tangwancharoen, S.; Tsang, M. B.; Yennello, S.

    2012-10-01

    The SAMURAI time-projection chamber (sTPC) is being developed for use in the dipole magnet of the newly-commissioned SAMURAI spectrometer at the RIBF facility in Japan. The main scientific objective of the sTPC is to provide constraints on the nuclear symmetry energy at supra-saturation densities. The TPC allows for tracking and identification of light charged particles such as pions, protons, tritons and ^3He. The sTPC must have a Cartesian geometry to match the symmetry of the dipole magnet. The walls of the field cage (FC) detector volume consist of sections of rigid, two-layer circuit boards. Inside and outside copper strips form decreasing equipotentials via a resistor chain, and create a uniform electric field with a maximum of 400 V/cm. The FC volume is hermetically sealed from the enclosure volume to create an insulation volume which can be filled with dry N2 to inhibit corona discharge. I will be presenting the current status of the design and assembly of the sTPC field cage.

  17. Multiobjective resource-constrained project scheduling with a time-varying number of tasks.

    PubMed

    Abello, Manuel Blanco; Michalewicz, Zbigniew

    2014-01-01

    In resource-constrained project scheduling (RCPS) problems, ongoing tasks are restricted to utilizing a fixed number of resources. This paper investigates a dynamic version of the RCPS problem where the number of tasks varies in time. Our previous work investigated a technique called mapping of task IDs for centroid-based approach with random immigrants (McBAR) that was used to solve the dynamic problem. However, the solution-searching ability of McBAR was investigated over only a few instances of the dynamic problem. As a consequence, only a small number of characteristics of McBAR, under the dynamics of the RCPS problem, were found. Further, only a few techniques were compared to McBAR with respect to its solution-searching ability for solving the dynamic problem. In this paper, (a) the significance of the subalgorithms of McBAR is investigated by comparing McBAR to several other techniques; and (b) the scope of investigation in the previous work is extended. In particular, McBAR is compared to a technique called, Estimation Distribution Algorithm (EDA). As with McBAR, EDA is applied to solve the dynamic problem, an application that is unique in the literature.

  18. The design and performance of a prototype water Cherenkov optical time-projection chamber

    NASA Astrophysics Data System (ADS)

    Oberla, Eric; Frisch, Henry J.

    2016-04-01

    A first experimental test of tracking relativistic charged particles by 'drifting' Cherenkov photons in a water-based optical time-projection chamber (OTPC) has been performed at the Fermilab Test Beam Facility. The prototype OTPC detector consists of a 77 cm long, 28 cm diameter, 40 kg cylindrical water mass instrumented with a combination of commercial 5.1 × 5.1cm2 micro-channel plate photo-multipliers (MCP-PMT) and 6.7 × 6.7cm2 mirrors. Five MCP-PMTs are installed in two columns along the OTPC cylinder in a small-angle stereo configuration. A mirror is mounted opposite each MCP-PMT on the inner surface of the detector cylinder, effectively increasing the photo-detection efficiency and providing a time-resolved image of the Cherenkov light on the opposing wall. Each MCP-PMT is coupled to an anode readout consisting of thirty 50 Ω microstrips. A 180-channel data acquisition system digitizes the MCP-PMT signals on one end of the microstrips using the PSEC4 waveform sampling-and-digitizing chip operating at a sampling rate of 10.24 Gigasamples-per-second. The single-ended microstrip readout determines the time and position of a photon arrival at the face of the MCP-PMT by recording both the direct signal and the pulse reflected from the unterminated far end of the strip. The detector was installed on the Fermilab MCenter secondary beam-line behind a steel absorber where the primary flux is multi-GeV muons. Approximately 80 Cherenkov photons are detected for a through-going muon track in a total event duration of ~2 ns. By measuring the time-of-arrival and the position of individual photons at the surface of the detector to ≤ 100 ps and a few mm, respectively, we have measured a spatial resolution of ~15 mm for each MCP-PMT track segment, and, from linear fits over the entire track length of ~40 cm, an angular resolution on the track direction of ~60 mrad.

  19. "Our Journey through Time": An Oral History Project Carried out by Young People with Learning Disabilities

    ERIC Educational Resources Information Center

    Bentley, Sarah; Nicholls, Rickie; Price, Maxine; Wilkinson, Aaron; Purcell, Matthew; Woodhall, Martin; Walmsley, Jan

    2011-01-01

    We are five young people with learning disabilities who found out about the history of hospitals for people with learning disabilities in our area, and made a film about the project. The project taught us what life had been like for some people with learning disabilities only 30 years ago. It was very different to our lives; we have more choice,…

  20. Out of equilibrium thermal field theories: Finite time after switching on the interaction and Wigner transforms of projected functions

    NASA Astrophysics Data System (ADS)

    Dadić, I.

    2001-01-01

    We study out of equilibrium thermal field theories with switching on the interaction occurring at finite time using the Wigner transforms of two-point functions. For two-point functions we define the concept of a projected function: it is zero if any of the times refers to the time before switching on the interaction; otherwise it depends only on the relative coordinates. This definition includes bare propagators, one-loop self-energies, etc. For the infinite-average-time limit of the Wigner transforms of projected functions we define the analyticity assumptions: (1) The function of energy is analytic above (below) the real axis. (2) The function goes to zero as the absolute value of energy approaches infinity in the upper (lower) semiplane. Without use of the gradient expansion, we obtain the convolution product of projected functions. We sum the Schwinger-Dyson series in closed form. In the calculation of the Keldysh component (both resummed and single self-energy insertion approximation) contributions appear which are not the Fourier transforms of projected functions, signaling the limitations of the method. In the Feynman diagrams there is no explicit energy conservation at vertices; there is an overall energy-smearing factor taking care of the uncertainty relations. The relation between the theories with the Keldysh time path and with the finite time path enables one to rederive the results, such as the cancellation of pinching, collinear, and infrared singularities, hard thermal loop resummation, etc.

  1. A novel self-supporting GEM-based amplification structure for a Time Projection Chamber at the ILC

    NASA Astrophysics Data System (ADS)

    Behnke, T.; Diener, R.; Rosemann, C.; Steder, L.

    2013-12-01

    Modern Time Projection Chambers are increasingly based on micro-pattern gas detector readout systems. In this paper a self-supporting method used to mount Gas Electron Multiplier foils is presented. It is based on light weight ceramic grids, and promises to cover large readout areas with minimum dead zones and material, while ensuring a flat and mechanically stable mounting. The structure has been tested in a Time Projection Chamber prototype, using cosmic muon tracks. The impact of the mounting structure on the charge measurement, the track reconstruction and the single point resolution is quantified.

  2. Low-cost real-time infrared scene generation for image projection and signal injection

    NASA Astrophysics Data System (ADS)

    Buford, James A., Jr.; King, David E.; Bowden, Mark H.

    1998-07-01

    As cost becomes an increasingly important factor in the development and testing of Infrared sensors and flight computer/processors, the need for accurate hardware-in-the- loop (HWIL) simulations is critical. In the past, expensive and complex dedicated scene generation hardware was needed to attain the fidelity necessary for accurate testing. Recent technological advances and innovative applications of established technologies are beginning to allow development of cost-effective replacements for dedicated scene generators. These new scene generators are mainly constructed from commercial-off-the-shelf (COTS) hardware and software components. At the U.S. Army Aviation and Missile Command (AMCOM) Missile Research, Development, and Engineering Center (MRDEC), researchers have developed such a dynamic IR scene generator (IRSG) built around COTS hardware and software. The IRSG is used to provide dynamic inputs to an IR scene projector for in-band seeker testing and for direct signal injection into the seeker or processor electronics. AMCOM MRDEC has developed a second generation IRSG, namely IRSG2, using the latest Silicon Graphics Incorporated (SGI) Onyx2 with Infinite Reality graphics. As reported in previous papers, the SGI Onyx Reality Engine 2 is the platform of the original IRSG that is now referred to as IRSG1. IRSG1 has been in operation and used daily for the past three years on several IR projection and signal injection HWIL programs. Using this second generation IRSG, frame rates have increased from 120 Hz to 400 Hz and intensity resolution from 12 bits to 16 bits. The key features of the IRSGs are real time missile frame rates and frame sizes, dynamic missile-to-target(s) viewpoint updated each frame in real-time by a six-degree-of- freedom (6DOF) system under test (SUT) simulation, multiple dynamic objects (e.g. targets, terrain/background, countermeasures, and atmospheric effects), latency compensation, point-to-extended source anti-aliased targets, and

  3. Incidence of mesothelioma in Lombardy, Italy: exposure to asbestos, time patterns and future projections

    PubMed Central

    Mensi, Carolina; De Matteis, Sara; Dallari, Barbara; Riboldi, Luciano; Bertazzi, Pier Alberto; Consonni, Dario

    2016-01-01

    Objectives In Italy, asbestos has been extensively used from 1945 to 1992. We evaluated the impact of exposure to asbestos on occurrence of malignant mesothelioma (MM) in the Lombardy Region, Northwest Italy, the most populated and industrialised Italian region. Methods From the Lombardy Mesothelioma Registry, we selected all incident cases of MM diagnosed between 2000 and 2012. We described sources of exposure to asbestos and examined time trends of MM rates. Using Poisson age-cohort models, we derived projections of burden of MM in the Lombardy population for the period 2013–2029. Results In 2000–2012, we recorded 4442 cases of MM (2850 men, 1592 women). Occupational exposure to asbestos was more frequent in men (73.6%) than in women (38.2%). Non-occupational exposure was found for 13.6% of women and 3.6% of men. The average number of cases of MM per year was still increasing (+3.6% in men, +3.3% in women). Incidence rates were still increasing in individuals aged 65+ years and declining in younger people. A maximum of 417 cases of MM (267 men, 150 women) are expected in 2019. We forecast there will be 6832 more cases (4397 in men, 2435 in women) in the period 2013–2029, for a total of 11 274 cases of MM (7247 in men, 4027 in women) in 30 years. Conclusions This study documented a high burden of MM in both genders in the Lombardy Region, reflecting extensive occupational (mainly in men) and non-occupational (mainly in women) exposure to asbestos in the past. Incidence rates are still increasing; a downturn in occurrence of MM is expected to occur after 2019. PMID:27312399

  4. A Real-Time Synthetic Aperture Radar Processor: Introduction and Project Description (Een Real-Time Synthetic Aperture Radar Processor: Introductie en Project Beschrijving)

    DTIC Science & Technology

    1991-11-01

    ontworpen toegespitst op de nieuwe algorithmen. Door gebruik te maken van par- aflelle structuren van algoritmen en van VLSI array processing, kunnen...report Page 4 ABSTRACT 2 SAMENVATTING 3 CONTENTS 4 LIST OF SYMBOLS 6 1 INTRODUCTION 7 1.1 VLSI array processing for SAR 7 1.2 SAR processing for VLSI array... MANAGEMENT 32 5.1 Time planning 32 5.2 Quality 32 5.3 Communication and information 33 5.4 Organization 35 6 RESEARCH 36 6.1 Research area 36 6.2

  5. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  6. Effects of scatter modeling on time-activity curves estimated directly from dynamic SPECT projections

    SciTech Connect

    Reutter, Bryan W.; Gullberg, Grant T.; Huesman, Ronald H.

    2003-10-29

    Quantitative analysis of uptake and washout of cardiac single photon emission computed tomography (SPECT) radiopharmaceuticals has the potential to provide better contrast between healthy and diseased tissue, compared to conventional reconstruction of static images. Previously, we used B-splines to model time-activity curves (TACs) for segmented volumes of interest and developed fast least-squares algorithms to estimate spline TAC coefficients and their statistical uncertainties directly from dynamic SPECT projection data. This previous work incorporated physical effects of attenuation and depth-dependent collimator response. In the present work, we incorporate scatter and use a computer simulation to study how scatter modeling affects directly estimated TACs and subsequent estimates of compartmental model parameters. An idealized single-slice emission phantom was used to simulate a 15 min dynamic {sup 99m}Tc-teboroxime cardiac patient study in which 500,000 events containing scatter were detected from the slice. When scatter was modeled, unweighted least-squares estimates of TACs had root mean square (RMS) error that was less than 0.6% for normal left ventricular myocardium, blood pool, liver, and background tissue volumes and averaged 3% for two small myocardial defects. When scatter was not modeled, RMS error increased to average values of 16% for the four larger volumes and 35% for the small defects. Noise-to-signal ratios (NSRs) for TACs ranged between 1-18% for the larger volumes and averaged 110% for the small defects when scatter was modeled. When scatter was not modeled, NSR improved by average factors of 1.04 for the larger volumes and 1.25 for the small defects, as a result of the better-posed (though more biased) inverse problem. Weighted least-squares estimates of TACs had slightly better NSR and worse RMS error, compared to unweighted least-squares estimates. Compartmental model uptake and washout parameter estimates obtained from the TACs were less

  7. Design and Analysis for the DarkSide-10 Two-Phase Argon Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Love, Christina Elena

    Astounding evidence for invisible "dark" matter has been found from galaxy clusters, cosmic and stellar gas motion, gravitational lensing studies, cosmic microwave background analysis, and large scale galaxy surveys. Although all studies indicate that there is a dominant presence of non-luminous matter in the universe (about 22 percent of the total energy density with 5 times more dark matter than baryonic matter), its identity and its "direct" detection (through non-gravitational effects) has not yet been achieved. Dark matter in the form of massive, weakly interacting particles (WIMPs) could be detected through their collisions with target nuclei. This requires detectors to be sensitive to very low-energy (less than 100 keV) nuclear recoils with very low expected rates (a few interactions per year per ton of target). Reducing the background in a direct dark matter detector is the biggest challenge. A detector capable of seeing such low-energy nuclear recoils is difficult to build because of the necessary size and the radio- and chemical- purity. Therefore it is imperative to first construct small-scale prototypes to develop the necessary technology and systems, before attempting to deploy large-scale detectors in underground laboratories. Our collaboration, the DarkSide Collaboration, utilizes argon in two-phase time projection chambers (TPCs). We have designed, built, and commissioned DarkSide-10, a 10 kg prototype detector, and are designing and building DarkSide-50, a 50 kg dark matter detector. The present work is an account of my contribution to these efforts. The two-phase argon TPC technology allows powerful discrimination between dark matter nuclear recoils and background events. Presented here are simulations, designs, and analyses involving the electroluminescence in the gas phase from extracted ionization charge for both DarkSide-10 and DarkSide-50. This work involves the design of the HHV systems, including field cages, that are responsible for

  8. EOS: A project to investigate the design and construction of real-time distributed embedded operating systems

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Essick, R. B.; Grass, J.; Johnston, G.; Kenny, K.; Russo, V.

    1986-01-01

    The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing.

  9. Project of Near-Real-Time Generation of ShakeMaps and a New Hazard Map in Austria

    NASA Astrophysics Data System (ADS)

    Jia, Yan; Weginger, Stefan; Horn, Nikolaus; Hausmann, Helmut; Lenhardt, Wolfgang

    2016-04-01

    Target-orientated prevention and effective crisis management can reduce or avoid damage and save lives in case of a strong earthquake. To achieve this goal, a project for automatic generated ShakeMaps (maps of ground motion and shaking intensity) and updating the Austrian hazard map was started at ZAMG (Zentralanstalt für Meteorologie und Geodynamik) in 2015. The first goal of the project is set for a near-real-time generation of ShakeMaps following strong earthquakes in Austria to provide rapid, accurate and official information to support the governmental crisis management. Using newly developed methods and software by SHARE (Seismic Hazard Harmonization in Europe) and GEM (Global Earthquake Model), which allows a transnational analysis at European level, a new generation of Austrian hazard maps will be ultimately calculated. More information and a status of our project will be given by this presentation.

  10. Two ESP Projects under the Test of Time: The Case of Brazil and Tunisia

    ERIC Educational Resources Information Center

    Labassi, Tahar

    2010-01-01

    The paper is a response to Holmes and Celani's (2006) invitation to learn from the Brazilian ESP experience. It discusses the conditions which sustained this experience, and compares the Brazilian situation to the Tunisian one. The paper also discusses the challenges that ESP projects in EFL environments face, the opportunities that ESP…

  11. Time To Tell the Whole Story: Outcome-Based Evaluation and the Counting on Results Project.

    ERIC Educational Resources Information Center

    Steffan, Nicolle O.; Lance, Keith Curry; Logan, Rochelle

    2002-01-01

    Reports on Counting on Results, a project funded by the Institute of Museum and Library Services that developed and tested tools to standardize and simplify the collection of outcome data from public library patrons. Discusses results of questionnaires that addressed "Planning for Results" service responses. (Author/LRW)

  12. Time, Space and Structure in an E-Learning and E-Mentoring Project

    ERIC Educational Resources Information Center

    Loureiro-Koechlin, Cecilia; Allan, Barbara

    2010-01-01

    This study focuses on a project, "EMPATHY Net-Works," which developed a learning community as a means of encouraging women to progress into employment and management positions in the logistics and supply chain industries (LaSCI). Learning activities were organised in the form of a taught module containing face-to-face and online elements and…

  13. Time Past: Impacts of ICT on the Pedagogic Discourse in the Interactive Project

    ERIC Educational Resources Information Center

    Ingram, Neil R.

    2016-01-01

    The "pedagogic discourse" can describe the power relations and fields of influence within schools. This article extends the approach to include ICT-mediated learning in schools by considering evidence from the InterActive project, undertaken by the University of Bristol, England, in 2000-04. The article also considers how the pedagogic…

  14. Optimizing 4D cone beam computed tomography acquisition by varying the gantry velocity and projection time interval

    NASA Astrophysics Data System (ADS)

    O'Brien, Ricky T.; Cooper, Benjamin J.; Keall, Paul J.

    2013-03-01

    Four dimensional cone beam computed tomography (4DCBCT) is an emerging clinical image guidance strategy for tumour sites affected by respiratory motion. In current generation 4DCBCT techniques, both the gantry rotation speed and imaging frequency are constant and independent of the patient’s breathing which can lead to projection clustering. We present a mixed integer quadratic programming (MIQP) model for respiratory motion guided-4DCBCT (RMG-4DCBCT) which regulates the gantry velocity and projection time interval, in response to the patient’s respiratory signal, so that a full set of evenly spaced projections can be taken in a number of phase, or displacement, bins during the respiratory cycle. In each respiratory bin, an image can be reconstructed from the projections to give a 4D view of the patient’s anatomy so that the motion of the lungs, and tumour, can be observed during the breathing cycle. A solution to the full MIQP model in a practical amount of time, 10 s, is not possible with the leading commercial MIQP solvers, so a heuristic method is presented. Using parameter settings typically used on current generation 4DCBCT systems (4 min image acquisition, 1200 projections, 10 respiratory bins) and a sinusoidal breathing trace with a 4 s period, we show that the root mean square (RMS) of the angular separation between projections with displacement binning is 2.7° using existing constant gantry speed systems and 0.6° using RMG-4DCBCT. For phase based binning the RMS is 2.7° using constant gantry speed systems and 2.5° using RMG-4DCBCT. The optimization algorithm presented is a critical step on the path to developing a system for RMG-4DCBCT.

  15. Optimizing 4D cone beam computed tomography acquisition by varying the gantry velocity and projection time interval.

    PubMed

    O'Brien, Ricky T; Cooper, Benjamin J; Keall, Paul J

    2013-03-21

    Four dimensional cone beam computed tomography (4DCBCT) is an emerging clinical image guidance strategy for tumour sites affected by respiratory motion. In current generation 4DCBCT techniques, both the gantry rotation speed and imaging frequency are constant and independent of the patient's breathing which can lead to projection clustering. We present a mixed integer quadratic programming (MIQP) model for respiratory motion guided-4DCBCT (RMG-4DCBCT) which regulates the gantry velocity and projection time interval, in response to the patient's respiratory signal, so that a full set of evenly spaced projections can be taken in a number of phase, or displacement, bins during the respiratory cycle. In each respiratory bin, an image can be reconstructed from the projections to give a 4D view of the patient's anatomy so that the motion of the lungs, and tumour, can be observed during the breathing cycle. A solution to the full MIQP model in a practical amount of time, 10 s, is not possible with the leading commercial MIQP solvers, so a heuristic method is presented. Using parameter settings typically used on current generation 4DCBCT systems (4 min image acquisition, 1200 projections, 10 respiratory bins) and a sinusoidal breathing trace with a 4 s period, we show that the root mean square (RMS) of the angular separation between projections with displacement binning is 2.7° using existing constant gantry speed systems and 0.6° using RMG-4DCBCT. For phase based binning the RMS is 2.7° using constant gantry speed systems and 2.5° using RMG-4DCBCT. The optimization algorithm presented is a critical step on the path to developing a system for RMG-4DCBCT.

  16. Operation Sun Beam, Shot Small Boy. Project Officer's report - Project 7. 10. Spectral analysis with high-time resolution of the thermal-radiation pulse

    SciTech Connect

    Mahoney, J.J.; Harris, L.H.; Hennecke, H.J.; Claflin, A.B.; Fekete, M.W.

    1985-09-01

    The primary objective of this project was to investigate the spectral irradiance and luminosity versus time for the first thermal pulse at Shot Small Boy. This was accomplished by use of spectral filters with narrow band passes, phototubes, and magnetic tape recorders with high time resolution at two locations. The measured elapsed time to the first thermal maximum was from 50 to 110 microseconds, depending on wavelength. A graph of radiant thermal power versus time was obtained for the thermal pulse. The delineation of the first thermal pulse, especially the rise portion, is considered to be more definite than has been obtained previously. The resolution time of the instrumentation was approximately 50 microseconds. Secondary objectives were to measure the total luminosity versus time and also to measure the atmospheric attenuation. These objectives were accomplished by making measurements at two distances, 2.5 and 3.5 miles, from ground zero. In the case of the total luminosity measurements, a system of filters with a spectral transmittance approximating the sensitivity response of the average human eye was used. The results are tabulated in the report.

  17. The TimeStudio Project: An open source scientific workflow system for the behavioral and brain sciences.

    PubMed

    Nyström, Pär; Falck-Ytter, Terje; Gredebäck, Gustaf

    2016-06-01

    This article describes a new open source scientific workflow system, the TimeStudio Project, dedicated to the behavioral and brain sciences. The program is written in MATLAB and features a graphical user interface for the dynamic pipelining of computer algorithms developed as TimeStudio plugins. TimeStudio includes both a set of general plugins (for reading data files, modifying data structures, visualizing data structures, etc.) and a set of plugins specifically developed for the analysis of event-related eyetracking data as a proof of concept. It is possible to create custom plugins to integrate new or existing MATLAB code anywhere in a workflow, making TimeStudio a flexible workbench for organizing and performing a wide range of analyses. The system also features an integrated sharing and archiving tool for TimeStudio workflows, which can be used to share workflows both during the data analysis phase and after scientific publication. TimeStudio thus facilitates the reproduction and replication of scientific studies, increases the transparency of analyses, and reduces individual researchers' analysis workload. The project website ( http://timestudioproject.com ) contains the latest releases of TimeStudio, together with documentation and user forums.

  18. Multi-objective optimization of discrete time-cost tradeoff problem in project networks using non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shahriari, Mohammadreza

    2016-03-01

    The time-cost tradeoff problem is one of the most important and applicable problems in project scheduling area. There are many factors that force the mangers to crash the time. This factor could be early utilization, early commissioning and operation, improving the project cash flow, avoiding unfavorable weather conditions, compensating the delays, and so on. Since there is a need to allocate extra resources to short the finishing time of project and the project managers are intended to spend the lowest possible amount of money and achieve the maximum crashing time, as a result, both direct and indirect costs will be influenced in the project, and here, we are facing into the time value of money. It means that when we crash the starting activities in a project, the extra investment will be tied in until the end date of the project; however, when we crash the final activities, the extra investment will be tied in for a much shorter period. This study is presenting a two-objective mathematical model for balancing compressing the project time with activities delay to prepare a suitable tool for decision makers caught in available facilities and due to the time of projects. Also drawing the scheduling problem to real world conditions by considering nonlinear objective function and the time value of money are considered. The presented problem was solved using NSGA-II, and the effect of time compressing reports on the non-dominant set.

  19. EOS: A project to investigate the design and construction of real-time distributed Embedded Operating Systems

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Essick, Ray B.; Johnston, Gary; Kenny, Kevin; Russo, Vince

    1987-01-01

    Project EOS is studying the problems of building adaptable real-time embedded operating systems for the scientific missions of NASA. Choices (A Class Hierarchical Open Interface for Custom Embedded Systems) is an operating system designed and built by Project EOS to address the following specific issues: the software architecture for adaptable embedded parallel operating systems, the achievement of high-performance and real-time operation, the simplification of interprocess communications, the isolation of operating system mechanisms from one another, and the separation of mechanisms from policy decisions. Choices is written in C++ and runs on a ten processor Encore Multimax. The system is intended for use in constructing specialized computer applications and research on advanced operating system features including fault tolerance and parallelism.

  20. Timing Activities at INRIM in the Frame of the Galileo Project

    DTIC Science & Technology

    2008-12-01

    RESEARCH On 1 January 2006, the Istituto Elettrotecnico Nazionale “Galileo Ferraris” (IEN) and the Istituto di Metrologia Gustavo Colonnetti...Hahn, 2008, “GNSS Interoperability: Offset between reference Time Scales and Timing Biases,” Metrologia , 45, 87-102. [13] R. Zanello, M...transfer to TAI using geodetic receivers,” Metrologia , 40, 184-188. 40th Annual Precise Time and Time Interval (PTTI) Meeting 656 [17] L. Galleani

  1. Part-Time Faculty Employment. Project on the Status and Education of Women.

    ERIC Educational Resources Information Center

    Association of American Colleges, Washington, DC.

    Different types of policies adopted by colleges and universities to deal with part-time faculty employment and kinds of issues that may arise are considered. Three types of part-time teaching appointments are distinguished, and the shared appointments or split contracts arrangement is described. The shared appointment is one full-time position…

  2. Characterizing opto-electret based paper speakers by using a real-time projection Moiré metrology system

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Ling; Hsu, Kuan-Yu; Lee, Chih-Kung

    2016-03-01

    Advancement of distributed piezo-electret sensors and actuators facilitates various smart systems development, which include paper speakers, opto-piezo/electret bio-chips, etc. The array-based loudspeaker system possess several advantages over conventional coil speakers, such as light-weightness, flexibility, low power consumption, directivity, etc. With the understanding that the performance of the large-area piezo-electret loudspeakers or even the microfluidic biochip transport behavior could be tailored by changing their dynamic behaviors, a full-field real-time high-resolution non-contact metrology system was developed. In this paper, influence of the resonance modes and the transient vibrations of an arraybased loudspeaker system on the acoustic effect were measured by using a real-time projection moiré metrology system and microphones. To make the paper speaker even more versatile, we combine the photosensitive material TiOPc into the original electret loudspeaker. The vibration of this newly developed opto-electret loudspeaker could be manipulated by illuminating different light-intensity patterns. Trying to facilitate the tailoring process of the opto-electret loudspeaker, projection moiré was adopted to measure its vibration. By recording the projected fringes which are modulated by the contours of the testing sample, the phase unwrapping algorithm can give us a continuous phase distribution which is proportional to the object height variations. With the aid of the projection moiré metrology system, the vibrations associated with each distinctive light pattern could be characterized. Therefore, we expect that the overall acoustic performance could be improved by finding the suitable illuminating patterns. In this manuscript, the system performance of the projection moiré and the optoelectret paper speakers were cross-examined and verified by the experimental results obtained.

  3. Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Douglas, D.C.

    2010-01-01

    The Arctic region is warming faster than most regions of the world due in part to increasing greenhouse gases and positive feedbacks associated with the loss of snow and ice cover. One consequence has been a rapid decline in Arctic sea ice over the past 3 decades?a decline that is projected to continue by state-of-the-art models. Many stakeholders are therefore interested in how global warming may change the timing and extent of sea ice Arctic-wide, and for specific regions. To inform the public and decision makers of anticipated environmental changes, scientists are striving to better understand how sea ice influences ecosystem structure, local weather, and global climate. Here, projected changes in the Bering and Chukchi Seas are examined because sea ice influences the presence of, or accessibility to, a variety of local resources of commercial and cultural value. In this study, 21st century sea ice conditions in the Bering and Chukchi Seas are based on projections by 18 general circulation models (GCMs) prepared for the fourth reporting period by the Intergovernmental Panel on Climate Change (IPCC) in 2007. Sea ice projections are analyzed for each of two IPCC greenhouse gas forcing scenarios: the A1B `business as usual? scenario and the A2 scenario that is somewhat more aggressive in its CO2 emissions during the second half of the century. A large spread of uncertainty among projections by all 18 models was constrained by creating model subsets that excluded GCMs that poorly simulated the 1979-2008 satellite record of ice extent and seasonality. At the end of the 21st century (2090-2099), median sea ice projections among all combinations of model ensemble and forcing scenario were qualitatively similar. June is projected to experience the least amount of sea ice loss among all months. For the Chukchi Sea, projections show extensive ice melt during July and ice-free conditions during August, September, and October by the end of the century, with high agreement

  4. Rationale and study design for a randomised controlled trial to reduce sedentary time in adults at risk of type 2 diabetes mellitus: project stand (Sedentary Time ANd diabetes)

    PubMed Central

    2011-01-01

    Background The rising prevalence of Type 2 Diabetes Mellitus (T2DM) is a major public health problem. There is an urgent need for effective lifestyle interventions to prevent the development of T2DM. Sedentary behaviour (sitting time) has recently been identified as a risk factor for diabetes, often independent of the time spent in moderate-to-vigorous physical activity. Project STAND (Sedentary Time ANd Diabetes) is a study which aims to reduce sedentary behaviour in younger adults at high risk of T2DM. Methods/Design A reduction in sedentary time is targeted using theory driven group structured education. The STAND programme is subject to piloting and process evaluation in line with the MRC framework for complex interventions. Participants are encouraged to self-monitor and self-regulate their behaviour. The intervention is being assessed in a randomised controlled trial with 12 month follow up. Inclusion criteria are a) aged 18-40 years with a BMI in the obese range; b) 18-40 years with a BMI in the overweight range plus an additional risk factor for T2DM. Participants are randomised to the intervention (n = 89) or control (n = 89) arm. The primary outcome is a reduction in sedentary behaviour at 12 months as measured by an accelerometer (count < 100/min). Secondary outcomes include physical activity, sitting/lying time using the ActivPAL posture monitor, fasting and 2 h oral glucose tolerance test, lipids, inflammatory biomarkers, body weight, waist circumference, blood pressure, illness perceptions, and efficacy beliefs for behaviour change. Conclusions This is the first UK trial to address sedentary behaviour change in a population of younger adults at risk of T2DM. The results will provide a platform for the development of a range of future multidisciplinary interventions in this rapidly expanding high-risk population. Trial registration Current controlled trials ISRCTN08434554, MRC project 91409. PMID:22151909

  5. The Economics of Adolescents' Time Allocation: Evidence from the Young Agent Project in Brazil

    ERIC Educational Resources Information Center

    Martinez-Restrepo, Susana

    2012-01-01

    What are the socioeconomic implications of the time allocation decisions made by low-income adolescents? The way adolescents allocate their time between schooling, labor and leisure has important implications for their education attainment, college aspirations, job opportunities and future earnings. This study focuses on adolescents and young…

  6. Historical series and Near Real Time data analysis produced within ASI-SRV project infrastructures

    NASA Astrophysics Data System (ADS)

    Silvestri, M.; Musacchio, M.; Buongiorno, M.; Corradini, S.; Lombardo, V.; Merucci, L.; Spinetti, C.; Sansosti, E.; Pugnaghi, S.; Teggi, S.; Vignoli, S.; Amodio, A.; Dini, L.

    2009-12-01

    ASI-Sistema Rischio Vulcanico (SRV) project is devoted to the development of a pre-operative integrated system managing different Earth Observation (EO) and Non EO data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes. The project provides the capability to maintain a repository where the acquired data are stored and generates products offering a support to risk managers during the different volcanic activity phases. All the products are obtained considering technical choices and developments of ASI-SRV based on flexible and scalable modules which take into account also the new coming space sensors and new processing algorithms. An important step of the project development regards the technical and scientific feasibility of the provided products that depends on the data availability, accuracy algorithms and models used in the processing and of course the possibility to validate the results by means of comparison with non-EO independent measurements. The ASI-SRV infrastrucutre is based on a distributed client/server architecture which implies that different processors need to ingest data set characterized by a constant and common structure. ASI-SRV will develop, in its final version, a centralized HW-SW system located at INGV which will control two complete processing chains, one located at INGV for Optical data, and the other located at IREA for SAR data. The produced results will be disseminated through a WEB-GIS interface which will allow the DPC to overview and assimilate the products in a compatible format respect to their local monitoring system in order to have an immediate use of the provided information. In this paper the first results producing ground deformation measurement via Differential Interferometric SAR (DInSAR) techniques by using SAR data and via the application of the Small BAseline Subset (SBAS) technique developed at IREA, are reported. Moreover different

  7. Multiresolution constrained least-squares algorithm for direct estimation of time activity curves from dynamic ECT projection data

    NASA Astrophysics Data System (ADS)

    Maltz, Jonathan S.

    2000-06-01

    We present an algorithm which is able to reconstruct dynamic emission computed tomography (ECT) image series directly from inconsistent projection data that have been obtained using a rotating camera. By finding a reduced dimension time-activity curve (TAC) basis with which all physiologically feasible TAC's in an image may be accurately approximated, we are able to recast this large non-linear problem as one of constrained linear least squares (CLLSQ) and to reduce parameter vector dimension by a factor of 20. Implicit is the assumption that each pixel may be modeled using a single compartment model, as is typical in 99mTc teboroxime wash-in wash-out studies; and that the blood input function is known. A disadvantage of the change of basis is that TAC non-negativity is no longer ensured. As a consequence, non-negativity constraints must appear in the CLLSQ formulation. A warm-start multiresolution approach is proposed, whereby the problem is initially solved at a resolution below that finally desired. At the next iteration, the number of reconstructed pixels is increased and the solution of the lower resolution problem is then used to warm-start the estimation of the higher resolution kinetic parameters. We demonstrate the algorithm by applying it to dynamic myocardial slice phantom projection data at resolutions of 16 X 16 and 32 X 32 pixels. We find that the warm-start method employed leads to computational savings of between 2 and 4 times when compared to cold start execution times. A 20% RMS error in the reconstructed TAC's is achieved for a total number of detected sinogram counts of 1 X 105 for the 16 X 16 problem and at 1 X 106 counts for the 32 X 32 grid. These errors are 1.5 - 2 times greater than those obtained in conventional (consistent projection) SPECT imaging at similar count levels.

  8. Real Time Currents in the Harbors of the Great Lakes - A Pilot Project

    DTIC Science & Technology

    2007-01-01

    Mount and Platform The pilots of the Lake Carriers Association ( LCA ) identified a 30 m wide area beneath the Center Street swing bridge in... batteries (not shown in Fig 8) that supply power to the ADCP and IP modem and an AC outlet. The Maumee River site in Toledo was originally outfitted...utilized in real-time applications. solar panels (shown in Fig. 5) to supplement the 12-volt batteries that power real-time data collection and

  9. Time-dependent density-functional theory in massively parallel computer architectures: the OCTOPUS project.

    PubMed

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A L

    2012-06-13

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  10. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    NASA Astrophysics Data System (ADS)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.

    2012-06-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  11. A time splitting projection scheme for compressible two-phase flows. Application to the interaction of bubbles with ultrasound waves

    NASA Astrophysics Data System (ADS)

    Huber, Grégory; Tanguy, Sébastien; Béra, Jean-Christophe; Gilles, Bruno

    2015-12-01

    This paper is focused on the numerical simulation of the interaction of an ultrasound wave with a bubble. Our interest is to develop a fully compressible solver in the two phases and to account for surface tension effects. As the volume oscillation of the bubble occurs in a low Mach number regime, a specific care must be paid to the effectiveness of the numerical method which is chosen to solve the compressible Euler equations. Three different numerical solvers, an explicit HLLC (Harten-Lax-van Leer-Contact) solver [48], a preconditioning explicit HLLC solver [14] and the compressible projection method [21,53,55], are described and assessed with a one dimensional spherical benchmark. From this preliminary test, we can conclude that the compressible projection method outclasses the other two, whether the spatial accuracy or the time step stability are considered. Multidimensional numerical simulations are next performed. As a basic implementation of the surface tension leads to strong spurious currents and numerical instabilities, a specific velocity/pressure time splitting is proposed to overcome this issue. Numerical evidences of the efficiency of this new numerical scheme are provided, since both the accuracy and the stability of the overall algorithm are enhanced if this new time splitting is used. Finally, the numerical simulation of the interaction of a moving and deformable bubble with a plane wave is presented in order to bring out the ability of the new method in a more complex situation.

  12. Interpreting the Results of Diagnostic Testing: Some Statistics for Testing in Real Time. Methodology Project.

    ERIC Educational Resources Information Center

    McArthur, David; Chou, Chih-Ping

    Diagnostic testing confronts several challenges at once, among which are issues of test interpretation and immediate modification of the test itself in response to the interpretation. Several methods are available for administering and evaluating a test in real-time, towards optimizing the examiner's chances of isolating a persistent pattern of…

  13. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    ERIC Educational Resources Information Center

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  14. Project Golden Gate: towards real-time Java in space missions

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel; Bollella, Greg; Canham, Tim; Carson, Vanessa; Champlin, Virgil; Giovannoni, Brian; Indictor, Mark; Meyer, Kenny; Murray, Alex; Reinholtz, Kirk

    2004-01-01

    This paper describes the problem domain and our experimentation with the first commercial implementation of the Real Time Specification for Java. The two main issues explored in this report are: (1) the effect of RTSJ's non-heap memory on the programming model, and (2) performance benchmarking of RTSJ/Linux relative to C++/VxWorks.

  15. SATSIM—A real-time multi-satellite simulator for test and validation in formation flying projects

    NASA Astrophysics Data System (ADS)

    Bodin, Per; Nylund, Matti; Battelino, Milan

    2012-05-01

    The satellite simulator SATSIM was developed during the experimental PRISMA multi-satellite formation flying project and was primarily aimed to validate the Guidance, Navigation and Control system (GNC) and the on-board software in a simulated real-time environment. The SATSIM system has as a main feature the ability to simulate sensors and actuators, spacecraft dynamics, intra-satellite communication protocols, environmental disturbances, solar illumination conditions as well as solar and lunar blinding. The core of the simulator consists of MATLAB/Simulink models of the spacecraft hardware and the space environment. The models run on a standard personal computer that in the simplest scenario may be connected to satellite controller boards through a CAN (Controller Area Network) data bus. SATSIM is, in conjunction with the RAMSES Test and Verification system, able to perform open-loop, hardware-in-the-loop as well as full-fledged closed-loop tests through the utilisation of peripheral sensor unit simulators. The PRISMA satellites were launched in June 2010 and the project is presently in its operational phase. This paper describes how a low cost but yet reliable simulator such as the SATSIM platform in different configurations has been used through the different phases of a multi-satellite project, from early test of onboard software running on satellite controller boards in a lab environment, to full-fledged closed-loop tests of satellite flight models.

  16. The Milky Way Project: Mapping star formation in our home Galaxy, one click at a time

    NASA Astrophysics Data System (ADS)

    Jayasinghe, Tharindu K.; Povich, Matthew S.; Dixon, Don; Velasco, Jose; Milky Way Project Team

    2017-01-01

    In the recent years, citizen science has helped astronomers comb through large data sets to identify patterns and objects that are not easily found through automated processes. The Milky Way Project (MWP), a popular citizen science initiative, presents internet users with images from the GLIMPSE, MIPSGAL, SMOG and CYGNUS-X surveys of the Galactic plane using the Spitzer Space Telescope. These citizen scientists are directed to make "classification" drawings on the images to identify targeted classes of astronomical objects. We present an updated data reduction pipeline for the MWP. Written from the ground up in Python, this data reduction pipeline allows for the aggregation of classifications made by MWP users into catalogs of infrared (IR) bubbles, IR bow shocks and “yellowballs” (which may be the early precursors of IR bubbles). Coupled with the more accurate bubble classification tool used in the latest iterations of the MWP, this pipeline enables for better accuracy in the shapes and sizes of the bubbles when compared with those listed in the first MWP data release (DR1). We obtain an initial catalog of over 4000 bubbles using 2 million user classifications made between 2012 and 2015. Combined with the classifications from the latest MWP iteration (2016-2017), we will use a database of over 4 million classifications to produce a MWP DR2 bubble catalog. We will also create the first catalog of candidate IR bow shocks identified through citizen science and an updated “yellowball” catalog. This work is supported by the National Science Foundation under grants CAREER-1454334 and AST-1411851.

  17. Projection of controlled repeatable real-time moving targets to test and evaluate motion imagery quality

    NASA Astrophysics Data System (ADS)

    Scopatz, Stephen D.; Mendez, Michael; Trent, Randall

    2015-05-01

    The projection of controlled moving targets is key to the quantitative testing of video capture and post processing for Motion Imagery. This presentation will discuss several implementations of target projectors with moving targets or apparent moving targets creating motion to be captured by the camera under test. The targets presented are broadband (UV-VIS-IR) and move in a predictable, repeatable and programmable way; several short videos will be included in the presentation. Among the technical approaches will be targets that move independently in the camera's field of view, as well targets that change size and shape. The development of a rotating IR and VIS 4 bar target projector with programmable rotational velocity and acceleration control for testing hyperspectral cameras is discussed. A related issue for motion imagery is evaluated by simulating a blinding flash which is an impulse of broadband photons in fewer than 2 milliseconds to assess the camera's reaction to a large, fast change in signal. A traditional approach of gimbal mounting the camera in combination with the moving target projector is discussed as an alternative to high priced flight simulators. Based on the use of the moving target projector several standard tests are proposed to provide a corresponding test to MTF (resolution), SNR and minimum detectable signal at velocity. Several unique metrics are suggested for Motion Imagery including Maximum Velocity Resolved (the measure of the greatest velocity that is accurately tracked by the camera system) and Missing Object Tolerance (measurement of tracking ability when target is obscured in the images). These metrics are applicable to UV-VIS-IR wavelengths and can be used to assist in camera and algorithm development as well as comparing various systems by presenting the exact scenes to the cameras in a repeatable way.

  18. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms

    NASA Astrophysics Data System (ADS)

    Hosten, Onur; Engelsen, Nils J.; Krishnakumar, Rajiv; Kasevich, Mark A.

    2016-01-01

    Quantum metrology uses quantum entanglement—correlations in the properties of microscopic systems—to improve the statistical precision of physical measurements. When measuring a signal, such as the phase shift of a light beam or an atomic state, a prominent limitation to achievable precision arises from the noise associated with the counting of uncorrelated probe particles. This noise, commonly referred to as shot noise or projection noise, gives rise to the standard quantum limit (SQL) to phase resolution. However, it can be mitigated down to the fundamental Heisenberg limit by entangling the probe particles. Despite considerable experimental progress in a variety of physical systems, a question that persists is whether these methods can achieve performance levels that compare favourably with optimized conventional (non-entangled) systems. Here we demonstrate an approach that achieves unprecedented levels of metrological improvement using half a million 87Rb atoms in their ‘clock’ states. The ensemble is 20.1 ± 0.3 decibels (100-fold) spin-squeezed via an optical-cavity-based measurement. We directly resolve small microwave-induced rotations 18.5 ± 0.3 decibels (70-fold) beyond the SQL. The single-shot phase resolution of 147 microradians achieved by the apparatus is better than that achieved by the best engineered cold atom sensors despite lower atom numbers. We infer entanglement of more than 680 ± 35 particles in the atomic ensemble. Applications include atomic clocks, inertial sensors, and fundamental physics experiments such as tests of general relativity or searches for electron electric dipole moment. To this end, we demonstrate an atomic clock measurement with a quantum enhancement of 10.5 ± 0.3 decibels (11-fold), limited by the phase noise of our microwave source.

  19. Possibilities For The LAGUNA Projects At The Frejus Site

    SciTech Connect

    Mosca, Luigi

    2010-11-24

    The present laboratory (LSM) at the Frejus site and the project of a first extension of it, mainly aimed at the next generation of dark matter and double beta decay experiments, are briefly reviewed. Then the main characteristics of the LAGUNA cooperation and Design Study network are summarized. Seven underground sites in Europe are considered in LAGUNA and are under study as candidates for the installation of Megaton scale detectors using three different techniques: a liquid Argon TPC (GLACIER), a liquid scintillator detector (LENA) and a Water Cerenkov (MEMPHYS), all mainly aimed at investigation of proton decay and properties of neutrinos from SuperNovae and other astrophysical sources as well as from accelerators (Super-beams and/or Beta-beams from CERN). One of the seven sites is located at Frejus, near the present LSM laboratory, and the results of its feasibility study are presented and discussed. Then the physics potential of a MEMPHYS detector installed in this site are emphasized both for non-accelerator and for neutrino beam based configurations. The MEMPHYNO prototype with its R and D programme is presented. Finally a possible schedule is sketched.

  20. Combining endoscopic ultrasound with Time-Of-Flight PET: The EndoTOFPET-US Project

    NASA Astrophysics Data System (ADS)

    Frisch, Benjamin

    2013-12-01

    The EndoTOFPET-US collaboration develops a multimodal imaging technique for endoscopic exams of the pancreas or the prostate. It combines the benefits of high resolution metabolic imaging with Time-Of-Flight Positron Emission Tomography (TOF PET) and anatomical imaging with ultrasound (US). EndoTOFPET-US consists of a PET head extension for a commercial US endoscope and a PET plate outside the body in coincidence with the head. The high level of miniaturization and integration creates challenges in fields such as scintillating crystals, ultra-fast photo-detection, highly integrated electronics, system integration and image reconstruction. Amongst the developments, fast scintillators as well as fast and compact digital SiPMs with single SPAD readout are used to obtain the best coincidence time resolution (CTR). Highly integrated ASICs and DAQ electronics contribute to the timing performances of EndoTOFPET. In view of the targeted resolution of around 1 mm in the reconstructed image, we present a prototype detector system with a CTR better than 240 ps FWHM. We discuss the challenges in simulating such a system and introduce reconstruction algorithms based on graphics processing units (GPU).

  1. Satellite quenching time-scales in clusters from projected phase space measurements matched to simulated orbits

    NASA Astrophysics Data System (ADS)

    Oman, Kyle A.; Hudson, Michael J.

    2016-12-01

    We measure the star formation quenching efficiency and time-scale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed Sloan Digital Sky Survey galaxies in and around clusters based on their position and velocity offsets from their host cluster. We study the relationship between their star formation rates and their likely orbital histories via a simple model in which star formation is quenched once a delay time after infall has elapsed. Our orbit library method is designed to isolate the environmental effect on the star formation rate due to a galaxy's present-day host cluster from `pre-processing' in previous group hosts. We find that quenching of satellite galaxies of all stellar masses in our sample (109-10^{11.5}M_{⊙}) by massive (> 10^{13} M_{⊙}) clusters is essentially 100 per cent efficient. Our fits show that all galaxies quench on their first infall, approximately at or within a Gyr of their first pericentric passage. There is little variation in the onset of quenching from galaxy-to-galaxy: the spread in this time is at most ˜2 Gyr at fixed M*. Higher mass satellites quench earlier, with very little dependence on host cluster mass in the range probed by our sample.

  2. Implementing performance improvement in New Zealand emergency departments: the six hour time target policy national research project protocol

    PubMed Central

    2012-01-01

    Background In May 2009, the New Zealand government announced a new policy aimed at improving the quality of Emergency Department care and whole hospital performance. Governments have increasingly looked to time targets as a mechanism for improving hospital performance and from a whole system perspective, using the Emergency Department waiting time as a performance measure has the potential to see improvements in the wider health system. However, the imposition of targets may have significant adverse consequences. There is little empirical work examining how the performance of the wider hospital system is affected by such a target. This project aims to answer the following questions: How has the introduction of the target affected broader hospital performance over time, and what accounts for these changes? Which initiatives and strategies have been successful in moving hospitals towards the target without compromising the quality of other care processes and patient outcomes? Is there a difference in outcomes between different ethnic and age groups? Which initiatives and strategies have the greatest potential to be transferred across organisational contexts? Methods/design The study design is mixed methods; combining qualitative research into the behaviour and practices of specific case study hospitals with quantitative data on clinical outcomes and process measures of performance over the period 2006-2012. All research activity is guided by a Kaupapa Māori Research methodological approach. A dynamic systems model of acute patient flows was created to frame the study. Consequences of the target (positive and negative) will be explored by integrating analyses and insights gained from the quantitative and qualitative streams of the study. Discussion At the time of submission of this protocol, the project has been underway for 12 months. This time was necessary to finalise both the case study sites and the secondary outcomes through key stakeholder consultation. We

  3. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    NASA Astrophysics Data System (ADS)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  4. Estimating Total Program Cost of a Long-Term, High-Technology, High-Risk Project with Task Durations and Costs That May Increase Over Time

    DTIC Science & Technology

    2006-01-01

    through to the production decision; • Technology development will still be ongo- ing at the design readiness review, putting at risk the stability of...and time. EVALUATE EACH “PROJECT DESIGN” FOUR WAYS We were asked to analyze the FCS baseline plan and the two GAO alternatives. The follow- ing is...flexibility in program management, while showing good faith adher- ing to overall project budget guidance. FCS ANNUAL BUDGETS An FCS project budget estimate

  5. The projection of world geothermal energy consumption from time series and regression model

    NASA Astrophysics Data System (ADS)

    Simanullang, Elwin Y.; Supriatna, Agus; Supriatna, Asep K.

    2015-12-01

    World population growth has many impacts on human live activities and other related aspects. One among the aspects is the increase of the use of energy to support human daily activities, covering industrial aspect, transportation, domestic activities, etc. It is plausible that the higher the population size in a country the higher the needs for energy to support all aspects of human activities in the country. Considering the depletion of petroleum and other fossil-based energy, recently there is a tendency to use geothermal as other source of energy. In this paper we will discuss the prediction of the world consumption of geothermal energy by two different methods, i.e. via the time series of the geothermal usage and via the time series of the geothermal usage combined with the prediction of the world total population. For the first case, we use the simple exponential smoothing method while for the second case we use the simple regression method. The result shows that taking into account the prediction of the world population size giving a better prediction to forecast a short term of the geothermal energy consumption.

  6. First direct observation of two protons in the decay of 45Fe with a time-projection chamber.

    PubMed

    Giovinazzo, J; Blank, B; Borcea, C; Canchel, G; Dalouzy, J-C; Demonchy, C E; de Oliveira Santos, F; Dossat, C; Grévy, S; Hay, L; Huikari, J; Leblanc, S; Matea, I; Pedroza, J-L; Perrot, L; Pibernat, J; Serani, L; Stodel, C; Thomas, J-C

    2007-09-07

    The decay of the ground-state two-proton emitter 45Fe was studied with a time-projection chamber and the emission of two protons was unambiguously identified. The total decay energy and the half-life measured in this work agree with the results from previous experiments. The present result constitutes the first direct observation of the individual protons in the two-proton decay of a long-lived ground-state emitter. In parallel, we identified for the first time directly two-proton emission from 43Cr, a known beta-delayed two-proton emitter. The technique developed in the present work opens the way to a detailed study of the mechanism of ground state as well as beta-delayed two-proton radioactivity.

  7. A decision-theoretic approach to the display of information for time-critical decisions: The Vista project

    NASA Technical Reports Server (NTRS)

    Horvitz, Eric; Ruokangas, Corinne; Srinivas, Sampath; Barry, Matthew

    1993-01-01

    We describe a collaborative research and development effort between the Palo Alto Laboratory of the Rockwell Science Center, Rockwell Space Operations Company, and the Propulsion Systems Section of NASA JSC to design computational tools that can manage the complexity of information displayed to human operators in high-stakes, time-critical decision contexts. We shall review an application from NASA Mission Control and describe how we integrated a probabilistic diagnostic model and a time-dependent utility model, with techniques for managing the complexity of computer displays. Then, we shall describe the behavior of VPROP, a system constructed to demonstrate promising display-management techniques. Finally, we shall describe our current research directions on the Vista 2 follow-on project.

  8. Combination of two Gas Electron Multipliers and a Micromegas as gain elements for a time projection chamber

    NASA Astrophysics Data System (ADS)

    Aiola, S.; Ehlers, R. J.; Gu, S.; Harris, J. W.; Majka, R.; Mulligan, J. D.; Oliver, M.; Schambach, J.; Smirnov, N.

    2016-10-01

    We measured the properties of a novel combination of two Gas Electron Multipliers with a Micromegas for use as amplification devices in high-rate gaseous time projection chambers. The goal of this design is to minimize the buildup of space charge in the drift volume of such detectors in order to eliminate the standard gating grid and its resultant dead time, while preserving good tracking and particle identification performance. To characterize this micro-pattern gas detector configuration, we measured the positive ion back-flow and energy resolution at various element gains and electric fields, using a variety of gases, and additionally studied crosstalk effects and discharge rates. At a gain of 2000, this configuration achieves an ion back-flow below 0.4% and an energy resolution better than σ / E = 12 % for 55Fe X-rays.

  9. A comparative study on first-time and experienced project-based learning students in an engineering design module

    NASA Astrophysics Data System (ADS)

    Chua, K. J.

    2014-09-01

    This study aims to compare and evaluate the learning ability and performance differences between two groups of students undergoing project-based learning (PjBL), with one group having prior PjBL experience, while the other group is being freshly exposed to PjBL. More specifically, it examines if there are significant differences in knowledge score, problem-solving ability, and eventual project-deliverable outcomes between the two sets of students. Performances were compared via qualitative and quantitative analyses. Key findings have indicated a significant increase in fundamental formative knowledge; enhanced problem-solving abilities; and production of better performing artefacts with regard to the set of design skills between experienced and first-time PjBL groups. This study also highlighted that experienced PjBL students have less conflicts within their groups, and are more receptive to PjBL compared to first-time PjBL students. Results from this study provide a starting point for educators to seek new learning/facilitating strategies that are relevant based on the experience and learning styles of students.

  10. Status of FARTECH's Multi-Sensor Real-Time Resistive Wall Mode Identification Project

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Edgell, D. H.; Bogatu, I. N.; Kim, Y. B.; Humphreys, D. A.; Walker, M. L.; Leuer, J. A.; Turnbull, A. D.

    2002-11-01

    Early detection of resistive wall mode (RWM) identification (ID) is possible utilizing multiple sensors to enhance the signal-to-noise ratio, and mode structure recognition with a pre-modeled numerical structure, assuming similar equilibria to be reproduced. Magnetic probes, and internal and external saddle loops are currently used. The predicted structures are modeled via FARVAC(D.H. Edgell, FARTECH, Inc. Report FT020523, May (2002).) and VACUUM using the GATO linear RWM mode. The RWM structures are then matched to the experimental data in real-time. For better algorithm and understanding of the modes, other sensors such as soft x-ray data are being incorporated in the program. In addition, an equilibrium and stability code is being developed for basic understanding of the RWM physics such as RWM rotation and dissipation. Systematic implementation and communication of our mode identification to the DIII-D PCS are being developed and tested.

  11. Design and Operation of A Setup with A Camera and Adjustable Mirror to Inspect the Sense-Wire Planes of the Time Projection Chamber Inside the MicroBooNE Cryostat

    SciTech Connect

    Carls, Benjamin; Horton-Smith, Glenn; James, Catherine C.; Kubinski, Robert M.; Pordes, Stephen; Schukraft, Anne; Strauss, Thomas

    2015-08-26

    Detectors in particle physics, particularly when including cryogenic components, are often enclosed in vessels that do not provide any physical or visual access to the detectors themselves after installation. However, it can be desirable for experiments to visually investigate the inside of the vessel. The MicroBooNE cryostat hosts a TPC with sense-wire planes, which had to be inspected for damage such as breakage or sagging. This inspection was performed after the transportation of the vessel with the enclosed detector to its final location, but before filling with liquid argon. Our paper describes an approach to view the inside of the MicroBooNE cryostat with a setup of a camera and a mirror through one of its cryogenic service nozzles. The paper also describes the camera and mirror chosen for the operation, the illumination, and the mechanical structure of the setup. It explains how the system was operated and demonstrates its performance.

  12. The MODIS Rapid Response Project: Near-Real-Time Processing for Fire Monitoring and Other Applications

    NASA Astrophysics Data System (ADS)

    Descloitres, J.; Justice, C.; Sohlberg, R.; Giglio, L.; Schmaltz, J.; Seaton, J.; Davies, D.; Anyamba, A.; Hansen, M.; Carroll, M.; Sullivan, M.

    2003-12-01

    The Moderate-resolution Imaging Spectroradiometer (MODIS) instrument on board the Terra and Aqua satellites offers an unprecedented combination of daily spatial coverage, spatial resolution, and spectral characteristics. These capabilities make MODIS ideal to observe a variety of rapid events: active fires, floods, smoke transport, dust storms, severe storms, iceberg calving, and volcanic eruptions. The MODIS Rapid Response System (http://rapidfire.sci.gsfc.nasa.gov) was developed at NASA's Goddard Space Flight Center to provide a rapid response to those events, with initial emphasis on active fire detection and 250m-resolution imagery. MODIS data for most of the Earth's land surface is processed just a few hours after data acquisition. A collaboration between NASA, the University of Maryland and the U.S.D.A. Forest Service has been developed to provide fire information derived from MODIS to federal fire managers. Active fire locations in the conterminous United States are produced by the MODIS Rapid Response System and communicated to the Forest Service within a few minutes of production. The MODIS Rapid Response processing was also adapted to Direct Broadcast to reduce the product turn-around to just minutes after data acquisition regionally. MODIS active fire locations are used by the Forest Service to generate regional fire maps over the United States, updated twice daily and provided to the fire managers to help them allocate firefighting resources. Active fire locations are also distributed in near-real-time to the Global Observation of Forest Cover (G.O.F.C.) user community through a web interface integrating MODIS active fire locations and Geographic Information System (G.I.S.) datasets. The suite of MODIS rapid fire products is currently being complemented with a Smoke Index product and a Burned Area product that will represent two new key tools available to the fire community. Finally a new collaboration with the U.S.D.A. Foreign Agricultural Service was

  13. Total variation based reconstruction of scattering inhomogeneities in tissue from time-resolved optical projections

    NASA Astrophysics Data System (ADS)

    Konovalov, Alexander B.; Vlasov, Vitaly V.

    2016-04-01

    The important advantage of diffuse optical tomography (DOT) is the possibility of tissue functional diagnosis. However the possibility implements if only we separately reconstruct the spatial distributions of optical parameters, specifically the absorption and scattering coefficients. We have recently demonstrated that time-domain DOT based on the perturbation model by Lyubimov is capable of reconstructing absorbing inhomogeneities in tissue with a DOT high spatial resolution (better than 3 mm at a depth of 4 cm). This paper continues our research and focuses on the reconstruction of scattering inhomogeneities. We consider the flat layer transmission geometry which is traditional for optical mammography, and use diffusion approximation to derive analytical expressions for weight functions responsible for the reconstruction of scattering inhomogeneities. To confirm that our calculations are correct we perform a numerical experiment where we reconstruct a rectangular scattering object 10×8 cm in size with 4 circular scattering macroinhomogeneities 4 mm in diameter each, and a randomly inhomogeneous scattering structure. The inverse DOT problem is solved with a multiplicative algebraic reconstruction technique where interim iterations are processed through total variation norm minimization. The results suggest that our DOT method reliably resolves the scattering macroinhomogeneities of mentioned size against a randomly inhomogeneous structure.

  14. The Herschel Open Time Key Project; DUst Around NEarby Stars: Results from the Complete Survey

    NASA Astrophysics Data System (ADS)

    Danchi, William C.; Eiroa, C.; Consortium, DUNES

    2013-01-01

    The Herschel DUst Around Nearby Stars (DUNES) survey (Eiroa et al. 2010) was designed to address several fundamental questions regarding debris disks around nearby solar type stars, in order to put the Solar System into context. Our goals were to: (1) determine the fraction of stars with faint, Edgeworth-Kuiper Belt (EKB)-like disks, (2) explore collisional and dynamical evolution of EKB analogues, (3) observe dust properties and size distribution, and (4) determine the incidence of EKB-like disks vs. presence of planets. The final sample of stars directly observed by DUNES included 133 stars, including 27 F-type, 52 G-type and 54 K-type stars within 20 pc of the Sun. The integration time was set in order to make a 5-sigma detection of the expected photospheric emission at 100 and 160 microns, using the PACS instrument. In addition, 106 stars observed by DEBRIS survey (Mathews et al. 2010) satisfying the photospheric detection condition are shared targets, specifically 83 FGK stars - 51 F, 24 G and 8 K (the rest are A and M stars). We report the main conclusions from the survey including the frequency of detection of debris disks as a function of fractional luminosity of the dust, Ld/L*, and correlations of Ld/L* with metallicity, bolometric luminosity, effective temperature, and stellar age.

  15. Standards-based publication and sharing of time series information in the DRIHM project: a EU-US collaboration

    NASA Astrophysics Data System (ADS)

    Hooper, Richard; Zaslavsky, Ilya; Parodi, Antonio; Gochis, David; Jha, Shantenu; Whitenack, Thomas; Valentine, David; Caumont, Olivier; Dekic, Ljiljana; Ivkovic, Marija; Molini, Luca; Bedrina, Tatiana; Gijsbers, Peter J. A.; de Rooij, Erik; Rebora, Nicola

    2013-04-01

    To enable a plug-and-play infrastructure, the European DRIHM (Distributed Research Infrastructure for Hydro-Meteorology) project aims to develop a comprehensive data publication and sharing system presenting uniform standards-based data discovery and access interfaces for hydrometeorological data collected by DRIHM partners in several European countries. This is a challenging task due to heterogeneity in types of data being collected and organized for modeling, and different semantic and structural conventions adopted by different data publishers. To meet this goal, the DRIHM project, and its DRIHM2US extension, collaborates with the recently funded US SCIHM (Standards-based Cyberinfrastructure for HydroMeteorology) project to develop a data sharing infrastructure for time series information. We report initial results of the application of the data integrating technologies developed by the NSF-funded CUAHSI HIS (Consortium of Universities for the Advancement of Hydrologic Data, Inc., Hydrologic Information System) project, to information collected within DRIHM. The CUAHSI HIS system has been widely used in the US; it provides access to about a hundred water data collections that can be queried via uniform web services. The DRIHM partners initially implementing the system, include the CIMA Research Foundation (Italy), the French National Center for Scientific Research (CNRS), and the Republic Hydrometeorological Service of Serbia. The collected time series information was ingested into CUAHSI Observations Data Model databases, and water data services were created for each of the partners. At the time of writing, the water data services include SOAP and REST endpoints that provide access to the time series in WaterML 1 and WaterML 2.0 formats. The former encoding, developed by CUAHSI HIS, has been adopted by a number of federal agencies and research groups in the US, while the latter, created by an international group of experts under the aegis of the Hydrology

  16. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    NASA Astrophysics Data System (ADS)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale

  17. Introducing the Illustris project: the evolution of galaxy populations across cosmic time

    NASA Astrophysics Data System (ADS)

    Genel, Shy; Vogelsberger, Mark; Springel, Volker; Sijacki, Debora; Nelson, Dylan; Snyder, Greg; Rodriguez-Gomez, Vicente; Torrey, Paul; Hernquist, Lars

    2014-11-01

    We present an overview of galaxy evolution across cosmic time in the Illustris simulation. Illustris is an N-body/hydrodynamical simulation that evolves 2 × 18203 resolution elements in a (106.5 Mpc)3 box from cosmological initial conditions down to z = 0 using the AREPO moving-mesh code. The simulation uses a state-of-the-art set of physical models for galaxy formation that was tuned to reproduce the z = 0 stellar mass function and the history of the cosmic star formation rate density. We find that Illustris successfully reproduces a plethora of observations of galaxy populations at various redshifts, for which no tuning was performed, and provide predictions for future observations. In particular, we discuss (a) the buildup of galactic mass, showing stellar mass functions and the relations between stellar mass and halo mass from z = 7 to 0, (b) galaxy number density profiles around massive central galaxies out to z = 4, (c) the gas and total baryon content of both galaxies and their haloes for different redshifts, and as a function of mass and radius, and (d) the evolution of galaxy specific star formation rates up to z = 8. In addition, we (i) present a qualitative analysis of galaxy morphologies from z = 5 to 0, for the stellar as well as the gaseous components, and their appearance in Hubble Space Telescope mock observations, (ii) follow galaxies selected at z = 2 to their z = 0 descendants, and quantify their growth and merger histories, and (iii) track massive z = 0 galaxies to high redshift and study their joint evolution in star formation activity and compactness. We conclude with a discussion of several disagreements with observations, and lay out possible directions for future research.

  18. Theoretical background of back-projection imaging and its relation to time-reversal and inverse solutions

    NASA Astrophysics Data System (ADS)

    Fukahata, Yukitoshi; Yagi, Yuji; Rivera, Luis

    2013-04-01

    The back-projection (BP) method has become a popular tool to image the rupture process of large earthquakes since the success of Ishii et al. (2005), while it has not been clear what the BP image represents physically. We clarified the theoretical background of the back-projection (BP) imaging and related it to classical inverse solutions via the hybrid back-projection (HBP) imaging (Yagi et al., 2012). In the HBP method, which is mathematically almost equivalent to the time-reversal imaging, cross correlations of observed waveforms with the corresponding Green's functions are calculated. The key condition for BP to work well is that the Green's function is sufficiently close to the delta function after stacking. Then, we found that the BP image represents the slip motion on the fault, and approximately equals to the least squares solution. In HBP, instead of the Green's function in BP, the stacked auto-correlation function of the Green's function must be similar to the delta function to obtain a fine image. Because the auto-correlation function is usually closer to the delta function than the original function, we can expect that HBP works better than BP, if we can reasonably assume the Green's function. With another condition that the stacked cross-correlation function of the Green's functions for different source locations is small enough, the HBP image is approximately equal to the least squares solution. If these assumptions are not satisfied, however, the HBP image corresponds to a damped least squares solution with an extremely large damping parameter, which is clearly inferior to usual inverse solutions. From the viewpoint of inverse theory, an elaborate stacking technique (such as an N-th root stack) to obtain a finer resolution image inevitably leads to larger estimation errors.

  19. Project: "Project!"

    ERIC Educational Resources Information Center

    Grayson, Katherine

    2007-01-01

    In November 2006, the editors of "Campus Technology" launched their first-ever High-Resolution Projection Study, to find out if the latest in projector technology could really make a significant difference in teaching, learning, and educational innovation on US campuses. The author and her colleagues asked campus educators,…

  20. Search for α -Cluster Structure in Exotic Nuclei with the Prototype Active-Target Time-Projection Chamber

    NASA Astrophysics Data System (ADS)

    Fritsch, A.; Ayyad, Y.; Bazin, D.; Beceiro-Novo, S.; Bradt, J.; Carpenter, L.; Cortesi, M.; Mittig, W.; Suzuki, D.; Ahn, T.; Kolata, J. J.; Howard, A. M.; Becchetti, F. D.; Wolff, M.

    Some exotic nuclei appear to exhibit α -cluster structure, which may impact nucleosynthesis reaction rates. While various theoretical models currently describe such clustering, more experimental data are needed to constrain model predictions. The Prototype Active-Target Time-Projection Chamber (PAT-TPC) has low-energy thresholds for charged-particle decay and a high detection efficiency due to its thick gaseous active target volume, making it well-suited to search for low-energy α -cluster reactions. Radioactive-ion beams produced by the TwinSol facility at the University of Notre Dame were delivered to the PAT-TPC to study 14C via α -resonant scattering. Differential cross sections and excitation functions were measured and show evidence of three-body exit channels. Additional data were measured with an updated Micromegas detector more sensitive to three-body decay. Preliminary results are presented.

  1. Liquid-xenon time-projection chamber for gamma rays in the MeV region: development status

    NASA Astrophysics Data System (ADS)

    Aprile, Elena; Bolotnikov, Aleksey E.; Chen, D.; Mukherjee, Reshmi

    1992-12-01

    The feasibility of a large volume liquid xenon time projection chamber (LXe-TPC) for three- dimensional imaging and spectroscopy of cosmic gamma-ray sources, was tested with a 3.5 liter prototype. The observation of induction signals produced by MeV gamma rays in liquid xenon is reported, with a good signal-to-noise ratio. The results represent the first experimental demonstration with a liquid xenon ionization chamber of a non-destructive read- out of the electron image produced by point-like charges, using a sense wire configuration of the type originally proposed in 1970 by Gatti et al. An energy resolution as good as that previously measured by us with millimeter size chambers, was achieved with the large prototype of 4.4 cm drift gap.

  2. A Global R&D Program on Liquid Ar Time Projection Chambers Under Execution at the University of Bern

    NASA Astrophysics Data System (ADS)

    Badhrees, I.; Ereditato, A.; Janos, S.; Kreslo, I.; Messina, M.; Haug, S.; Rossi, B.; Rohr, C. Rudolf von; Weber, M.; Zeller, M.

    A comprehensive R&D program on LAr Time Projection Chambers (LAr TPC) is presently being carried out at the University of Bern. Many aspects of this technology are under investigation: HV, purity, calibration, readout, etc. Furthermore, multi-photon interaction of UV-laser beams with LAr has successfully been measured. Possible applications of the LAr TPC technology in the field of homeland security are also being studied. In this paper, the main aspects of the program will be reviewed and the achievements underlined. Emphasis will be given to the largest device in Bern, i.e. the 5 m long ARGONTUBE TPC, meant to prove the feasibility of very long drifts in view of future large scale applications of the technique.

  3. Neonatal Tissue Damage Promotes Spike Timing-Dependent Synaptic Long-Term Potentiation in Adult Spinal Projection Neurons

    PubMed Central

    Li, Jie

    2016-01-01

    Mounting evidence from both humans and rodents suggests that tissue damage during the neonatal period can “prime” developing nociceptive pathways such that a subsequent injury during adulthood causes an exacerbated degree of pain hypersensitivity. However, the cellular and molecular mechanisms that underlie this priming effect remain poorly understood. Here, we demonstrate that neonatal surgical injury relaxes the timing rules governing long-term potentiation (LTP) at mouse primary afferent synapses onto mature lamina I projection neurons, which serve as a major output of the spinal nociceptive network and are essential for pain perception. In addition, whereas LTP in naive mice was only observed if the presynaptic input preceded postsynaptic firing, early tissue injury removed this temporal requirement and LTP was observed regardless of the order in which the inputs were activated. Neonatal tissue damage also reduced the dependence of spike-timing-dependent LTP on NMDAR activation and unmasked a novel contribution of Ca2+-permeable AMPARs. These results suggest for the first time that transient tissue damage during early life creates a more permissive environment for the production of LTP within adult spinal nociceptive circuits. This persistent metaplasticity may promote the excessive amplification of ascending nociceptive transmission to the mature brain and thereby facilitate the generation of chronic pain after injury, thus representing a novel potential mechanism by which early trauma can prime adult pain pathways in the CNS. SIGNIFICANCE STATEMENT Tissue damage during early life can “prime” developing nociceptive pathways in the CNS, leading to greater pain severity after repeat injury via mechanisms that remain poorly understood. Here, we demonstrate that neonatal surgical injury widens the timing window during which correlated presynaptic and postsynaptic activity can evoke long-term potentiation (LTP) at sensory synapses onto adult lamina I

  4. DELIVERING TIMELY AIR QUALITY, TRAFFIC, AND WEATHER INFORMATION TO YOUR COMMUNITY/THE PASO DEL NORTE ENVIRONMENTAL MONITORING PROJECT

    EPA Science Inventory

    EPA has developed a technology transfer handbook for the EMPACT Paso del Norte Project. The EMPACT Paso del Norte Environmental Monitoring Project is a mobile vehicle emissions project that involves the international community of El Paso, TX; Sundland Park, NM; and Juarez, Mexico...

  5. 45 CFR 2102.10 - Timing, scope and content of submissions for proposed projects involving land, buildings, or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... proposed projects involving land, buildings, or other structures. 2102.10 Section 2102.10 Public Welfare... for proposed projects involving land, buildings, or other structures. (a) A party proposing a project... historical information about the building or other structure to be altered or razed; (ii) The identity of...

  6. Design Improvements and X-Ray Performance of a Time Projection Chamber Polarimeter for Persistent Astronomical Sources

    NASA Technical Reports Server (NTRS)

    Hill, Joanne E.; Black, J. Kevin; Emmett, Thomas J.; Enoto, Teruaki; Jahoda, Keith M.; Kaaret, Philip; Nolan, David S.; Tamagawa, Toru

    2014-01-01

    The design of the Time-Projection Chamber (TPC) Polarimeter for the Gravity and Extreme Magnetism Small Explorer (GEMS) was demonstrated to Technology Readiness Level 6 (TRL-6)3 and the flight detectors fabricated, assembled and performance tested. A single flight detector was characterized at the Brookhaven National Laboratory Synchrotron Light Source with polarized X-rays at 10 energies from 2.3-8.0 keV at five detector positions. The detector met all of the GEMS performance requirements. Lifetime measurements have shown that the existing flight design has 23 years of lifetime4, opening up the possibility of relaxing material requirements, in particular the consideration of the use of epoxy, to reduce risk elsewhere. We report on design improvements to the GEMS detector to enable a narrower transfer gap that, when operated with a lower transfer field, reduces asymmetries in the detector response. In addition, the new design reduces cost and risk by simplifying the assembly and reducing production time. Finally, we report on the performance of the narrow-gap detector in response to polarized and unpolarized X-rays.

  7. The FirnCover Project - Real-time Monitoring of Greenland's Firn Compaction in a Changing Climate

    NASA Astrophysics Data System (ADS)

    MacFerrin, M. J.; Stevens, C.; Waddington, E. D.; Abdalati, W.

    2015-12-01

    An unavoidable source of uncertainty in altimetry-based mass balance assessments of ice sheets is the conversion from volume change into mass change. A primary component of this volume change is firn compaction, or the rate at which snow compresses into glacial ice. Firn densification models simulate this process, but model outputs vary widely, and Greenland's rapidly changing climate challenges many of the steady-state assumptions held in most of these models. Contemporary measurements of firn compaction rates are extremely sparse across Greenland in both time and space and are nonexistent in many large regions. Here we present initial results from Greenland's Firn Compaction Verification and Reconnaissance (FirnCover) Project, a network of real-time strain gauges at over thirty boreholes that continuously monitor compaction rates at eight locations in Greenland's accumulation zones, ranging from areas of heavy percolation to dry snow. Initial results from these stations indicate a strong seasonality in compaction, especially in regions where heavy melt and refreezing release latent heat into the firn column, a process that will intensify as melt increases across Greenland. We also discuss the substantial challenge of measuring firn compaction in regions of heterogeneous percolation, and other challenges encountered when validating firn models and monitoring contemporary mass changes of the Greenland ice sheet.

  8. The allusive cognitive deficit in paranoia: the case for mental time travel or cognitive self-projection.

    PubMed

    Corcoran, R

    2010-08-01

    Delusional beliefs are characteristic of psychosis and, of the delusions, the paranoid delusion is the single most common type associated with psychosis. The many years of research focused on neurocognition in schizophrenia, using standardized neurocognitive tests, have failed to find conclusive cognitive deficits in relation to positive symptoms. However, UK-based psychological research has identified sociocognitive anomalies in relation to paranoid thinking in the form of theory of mind (ToM), causal reasoning and threat-related processing anomalies. Drawing from recent neuroscientific research on the default mode network, this paper asserts that the common theme running through the psychological tests that are sensitive to the cognitive impairment of paranoia is the need to cognitively project the self through time, referred to as mental time travel. Such an understanding of the cognitive roots of paranoid ideation provides a synthesis between psychological and biological accounts of psychosis while also retaining the powerful argument that understanding abnormal thinking must start with models of normal cognition. This is the core theme running through the cognitive psychological literature of psychiatric disorders that enables research from this area to inform psychological therapy.

  9. SU-E-J-167: Improvement of Time-Ordered Four Dimensional Cone-Beam CT; Image Mosaicing with Real and Virtual Projections

    SciTech Connect

    Nakano, M; Kida, S; Masutani, Y; Shiraki, T; Yamamoto, K; Shiraishi, K; Nakagawa, K; Haga, A

    2014-06-01

    Purpose: In the previous study, we developed time-ordered fourdimensional (4D) cone-beam CT (CBCT) technique to visualize nonperiodic organ motion, such as peristaltic motion of gastrointestinal organs and adjacent area, using half-scan reconstruction method. One important obstacle was that truncation of projection was caused by asymmetric location of flat-panel detector (FPD) in order to cover whole abdomen or pelvis in one rotation. In this study, we propose image mosaicing to extend projection data to make possible to reconstruct full field-of-view (FOV) image using half-scan reconstruction. Methods: The projections of prostate cancer patients were acquired using the X-ray Volume Imaging system (XVI, version 4.5) on Synergy linear accelerator system (Elekta, UK). The XVI system has three options of FOV, S, M and L, and M FOV was chosen for pelvic CBCT acquisition, with a FPD panel 11.5 cm offset. The method to produce extended projections consists of three main steps: First, normal three-dimensional (3D) reconstruction which contains whole pelvis was implemented using real projections. Second, virtual projections were produced by reprojection process of the reconstructed 3D image. Third, real and virtual projections in each angle were combined into one extended mosaic projection. Then, 4D CBCT images were reconstructed using our inhouse reconstruction software based on Feldkamp, Davis and Kress algorithm. The angular range of each reconstruction phase in the 4D reconstruction was 180 degrees, and the range moved as time progressed. Results: Projection data were successfully extended without discontinuous boundary between real and virtual projections. Using mosaic projections, 4D CBCT image sets were reconstructed without artifacts caused by the truncation, and thus, whole pelvis was clearly visible. Conclusion: The present method provides extended projections which contain whole pelvis. The presented reconstruction method also enables time-ordered 4D CBCT

  10. Fusion studies with low-intensity radioactive ion beams using an active-target time projection chamber

    NASA Astrophysics Data System (ADS)

    Kolata, J. J.; Howard, A. M.; Mittig, W.; Ahn, T.; Bazin, D.; Becchetti, F. D.; Beceiro-Novo, S.; Chajecki, Z.; Febbrarro, M.; Fritsch, A.; Lynch, W. G.; Roberts, A.; Shore, A.; Torres-Isea, R. O.

    2016-09-01

    The total fusion excitation function for 10Be+40Ar has been measured over the center-of-momentum (c.m.) energy range from 12 to 24 MeV using a time-projection chamber (TPC). The main purpose of this experiment, which was carried out in a single run of duration 90 h using a ≈100 particle per second (pps) 10Be beam, was to demonstrate the capability of an active-target TPC to determine fusion excitation functions for extremely weak radioactive ion beams. Cross sections as low as 12 mb were measured with acceptable (50%) statistical accuracy. It also proved to be possible to separate events in which charged particles were emitted from the fusion residue from those in which only neutrons were evaporated. The method permits simultaneous measurement of incomplete fusion, break-up, scattering, and transfer reactions, and therefore fully exploits the opportunities presented by the very exotic beams that will be available from the new generation of radioactive beam facilities.

  11. NIHAO project - I. Reproducing the inefficiency of galaxy formation across cosmic time with a large sample of cosmological hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Dutton, Aaron A.; Stinson, Gregory S.; Macciò, Andrea V.; Penzo, Camilla; Kang, Xi; Keller, Ben W.; Wadsley, James

    2015-11-01

    We introduce project NIHAO (Numerical Investigation of a Hundred Astrophysical Objects), a set of 100 cosmological zoom-in hydrodynamical simulations performed using the GASOLINE code, with an improved implementation of the SPH algorithm. The haloes in our study range from dwarf (M200 ˜ 5 × 109 M⊙) to Milky Way (M200 ˜ 2 × 1012 M⊙) masses, and represent an unbiased sampling of merger histories, concentrations and spin parameters. The particle masses and force softenings are chosen to resolve the mass profile to below 1 per cent of the virial radius at all masses, ensuring that galaxy half-light radii are well resolved. Using the same treatment of star formation and stellar feedback for every object, the simulated galaxies reproduce the observed inefficiency of galaxy formation across cosmic time as expressed through the stellar mass versus halo mass relation, and the star formation rate versus stellar mass relation. We thus conclude that stellar feedback is the chief piece of physics required to limit the efficiency of star formation in galaxies less massive than the Milky Way.

  12. "Play" and People Living With Dementia: A Humanities-Based Inquiry of TimeSlips and the Alzheimer's Poetry Project.

    PubMed

    Swinnen, Aagje; de Medeiros, Kate

    2017-01-18

    This paper is a humanities-based inquiry, applying Huizinga's framework of homo ludens ("man the player") to consider "play" in the context of two participatory arts programs (TimeSlips and the Alzheimer's Poetry Project) for people living with dementia. "Play," according to this Dutch historian, is at the heart of human activity and what gives meaning to life. Despite empirical research on play across the life course, play in dementia care is a relatively new idea. In addition, there is a dearth of reports based on humanistic inquiry which has slightly different goals than the growing body of qualitative and quantitative studies of participatory arts interventions. Play is not used to infantilize and trivialize people living with dementia but as a way to explore potential for expression, meaning-making, and relationship-building in later life. The arts programs were conducted at two residential care facilities, Scharwyerveld and De Beyart, in the Netherlands over 10 weeks. Close readings of the transcripts and notes from the programs resulted in three observations: people learned to play again, there is power in playing together, and play often led to expressions of joy. Overall, the notion of play may be a helpful framework for future research into innovative arts-based approaches to dementia care.

  13. Projected entangled pair states at finite temperature: Iterative self-consistent bond renormalization for exact imaginary time evolution

    NASA Astrophysics Data System (ADS)

    Czarnik, Piotr; Dziarmaga, Jacek

    2015-07-01

    A projected entangled pair state (PEPS) with ancillas can be evolved in imaginary time to obtain thermal states of a strongly correlated quantum system on a two-dimensional lattice. Every application of a Suzuki-Trotter gate multiplies the PEPS bond dimension D by a factor k . It has to be renormalized back to the original D . In order to preserve the accuracy of the Suzuki-Trotter (ST) decomposition, the renormalization in principle has to take into account full environment made of the new tensors with the bond dimension k ×D . Here, we propose a self-consistent renormalization procedure operating with the original bond dimension D , but without compromising the accuracy of the ST decomposition. The iterative procedure renormalizes the bond using full environment made of renormalized tensors with the bond dimension D . After every renormalization, the new renormalized tensors are used to update the environment, and then the renormalization is repeated again and again until convergence. As a benchmark application, we obtain thermal states of the transverse field quantum Ising model on a square lattice, both infinite and finite, evolving the system across a second-order phase transition at finite temperature.

  14. The Asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines.

    PubMed

    Shahar, Y; Miksch, S; Johnson, P

    1998-01-01

    Clinical guidelines can be viewed as generic skeletal-plan schemata that represent clinical procedural knowledge and that are instantiated and refined dynamically by care providers over significant time periods. In the Asgaard project, we are investigating a set of tasks that support the application of clinical guidelines by a care provider other than the guideline's designer. We are focusing on the application of the guideline, recognition of care providers' intentions from their actions, and critique of care providers' actions given the guideline and the patient's medical record. We are developing methods that perform these tasks in multiple clinical domains, given an instance of a properly represented clinical guideline and an electronic medical patient record. In this paper, we point out the precise domain-specific knowledge required by each method, such as the explicit intentions of the guideline designer (represented as temporal patterns to be achieved or avoided). We present a machine-readable language, called Asbru, to represent and to annotate guidelines based on the task-specific ontology. We also introduce an automated tool for the acquisition of clinical guidelines based on the same ontology, developed using the PROTEGE-II framework.

  15. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    SciTech Connect

    Dzib, Sergio A.; Rodriguez-Garza, Carolina B.; Rodriguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana

    2013-08-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact ({approx}0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of {alpha} = 1.3 {+-} 0.3 (S{sub {nu}}{proportional_to}{nu}{sup {alpha}}). This spectral index and the brightness temperature of the source ({approx}6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk.

  16. Using simulated historical time series to prioritize fuel treatments on landscapes across the United States: The LANDFIRE prototype project

    USGS Publications Warehouse

    Keane, R.E.; Rollins, M.; Zhu, Z.-L.

    2007-01-01

    Canopy and surface fuels in many fire-prone forests of the United States have increased over the last 70 years as a result of modern fire exclusion policies, grazing, and other land management activities. The Healthy Forest Restoration Act and National Fire Plan establish a national commitment to reduce fire hazard and restore fire-adapted ecosystems across the USA. The primary index used to prioritize treatment areas across the nation is Fire Regime Condition Class (FRCC) computed as departures of current conditions from the historical fire and landscape conditions. This paper describes a process that uses an extensive set of ecological models to map FRCC from a departure statistic computed from simulated time series of historical landscape composition. This mapping process uses a data-driven, biophysical approach where georeferenced field data, biogeochemical simulation models, and spatial data libraries are integrated using spatial statistical modeling to map environmental gradients that are then used to predict vegetation and fuels characteristics over space. These characteristics are then fed into a landscape fire and succession simulation model to simulate a time series of historical landscape compositions that are then compared to the composition of current landscapes to compute departure, and the FRCC values. Intermediate products from this process are then used to create ancillary vegetation, fuels, and fire regime layers that are useful in the eventual planning and implementation of fuel and restoration treatments at local scales. The complex integration of varied ecological models at different scales is described and problems encountered during the implementation of this process in the LANDFIRE prototype project are addressed. ?? 2007 Elsevier B.V. All rights reserved.

  17. A Proteomic Study of the HUPO Plasma Proteome Project's Pilot Samples using an Accurate Mass and Time Tag Strategy

    SciTech Connect

    Adkins, Joshua N.; Monroe, Matthew E.; Auberry, Kenneth J.; Shen, Yufeng; Jacobs, Jon M.; Camp, David G.; Vitzthum, Frank; Rodland, Karin D.; Zangar, Richard C.; Smith, Richard D.; Pounds, Joel G.

    2005-08-01

    Characterization of the human blood plasma proteome is critical to the discovery of routinely useful clinical biomarkers. We used an Accurate Mass and Time (AMT) tag strategy with high-resolution mass accuracy capillary liquid chromatography Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (cLC-FTICR MS) to perform a global proteomic analysis of pilot study samples as part of the HUPO Plasma Proteome Project. HUPO reference serum and citrated plasma samples from African Americans, Asian Americans, and Caucasian Americans were analyzed, in addition to a Pacific Northwest National Laboratory reference serum and plasma. The AMT tag strategy allowed us to leverage two previously published “shotgun” proteomics experiments to perform global analyses on these samples in triplicate in less than 4 days total analysis time. A total of 722 (22% with multiple peptide identifications) International Protein Index (IPI) redundant proteins, or 377 protein families by ProteinProphet, were identified over the 6 individual HUPO serum and plasma samples. The samples yielded a similar number of identified redundant proteins in the plasma samples (average 446 +/-23) as found in the serum samples (average 440+/-20). These proteins were identified by an average of 956+/-35 unique peptides in plasma and 930+/-11 unique peptides in serum. In addition to this high-throughput analysis, the AMT tag approach was used with a Z-score normalization to compare relative protein abundances. This analysis highlighted both known differences in serum and citrated plasma such as fibrinogens, and reproducible differences in peptide abundances from proteins such as soluble activin receptor-like kinase 7b and glycoprotein m6b. The AMT tag strategy not only improved our sample throughput, and provided a basis for estimated quantitation.

  18. Project 1: Microbial Genomes: A Genomic Approach to Understanding the Evolution of Virulence. Project 2: From Genomes to Life: Drosophilia Development in Space and Time

    SciTech Connect

    Robert DeSalle

    2004-09-10

    This project seeks to use the genomes of two close relatives, A. actinomycetemcomitans and H. aphrophilus, to understand the evolutionary changes that take place in a genome to make it more or less virulent. Our primary specific aim of this project was to sequence, annotate, and analyze the genomes of Actinobacillus actinomycetemcomitans (CU1000, serotype f) and Haemophilus aphrophilus. With these genome sequences we have then compared the whole genome sequences to each other and to the current Aa (HK1651 www.genome.ou.edu) genome project sequence along with other fully sequenced Pasteurellaceae to determine inter and intra species differences that may account for the differences and similarities in disease. We also propose to create and curate a comprehensive database where sequence information and analysis for the Pasteurellaceae (family that includes the genera Actinobacillus and Haemophilus) are readily accessible. And finally we have proposed to develop phylogenetic techniques that can be used to efficiently and accurately examine the evolution of genomes. Below we report on progress we have made on these major specific aims. Progress on the specific aims is reported below under two major headings--experimental approaches and bioinformatics and systematic biology approaches.

  19. 45 CFR 2102.10 - Timing, scope and content of submissions for proposed projects involving land, buildings, or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... information to the extent it is relevant, such as area studies, site plans, building and landscape schematics... proposed projects involving land, buildings, or other structures. 2102.10 Section 2102.10 Public Welfare... for proposed projects involving land, buildings, or other structures. (a) A party proposing a...

  20. Using project life-cycles as guide for timing the archival of scientific data and supporting documentation

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Glassy, J. M.; Fowler, D. K.; Khayat, M.; Olding, S. W.

    2014-12-01

    The NASA Earth Science Data Systems Working Groups (ESDSWG) focuses on improving technologies and processes related to science discovery and preservation. One particular group, the Data Preservation Practices, is defining a set of guidelines to aid data providers in planning both what to submit for archival, and when to submit artifacts, so that the archival process can begin early in the project's life cycle. This has the benefit of leveraging knowledge within the project before staff roll off to other work. In this poster we describe various project archival use cases and identify possible archival life cycles that map closely to the pace and flow of work. To understand "archival life cycles", i.e., distinct project phases that produce archival artifacts such as instrument capabilities, calibration reports, and science data products, the workig group initially mapped the archival requirements defined in the Preservation Content Specification to the typical NASA project life cycle. As described in the poster, this work resulted in a well-defined archival life cycle, but only for some types of projects; it did not fit well for condensed project life cycles experienced within airborne and balloon campaigns. To understand the archival process for projects with compressed cycles, the working group gathered use cases from various communities. This poster will describe selected uses cases that provided insight into the unique flow of these projects, as well as proposing archival life cycles that map artifacts to projects with compressed timelines. Finally, the poster will conclude with some early recommendations for data providers, which will be captured in a formal Guidelines document - to be published in 2015.

  1. SU-E-I-20: Dead Time Count Loss Compensation in SPECT/CT: Projection Versus Global Correction

    SciTech Connect

    Siman, W; Kappadath, S

    2014-06-01

    Purpose: To compare projection-based versus global correction that compensate for deadtime count loss in SPECT/CT images. Methods: SPECT/CT images of an IEC phantom (2.3GBq 99mTc) with ∼10% deadtime loss containing the 37mm (uptake 3), 28 and 22mm (uptake 6) spheres were acquired using a 2 detector SPECT/CT system with 64 projections/detector and 15 s/projection. The deadtime, Ti and the true count rate, Ni at each projection, i was calculated using the monitor-source method. Deadtime corrected SPECT were reconstructed twice: (1) with projections that were individually-corrected for deadtime-losses; and (2) with original projections with losses and then correcting the reconstructed SPECT images using a scaling factor equal to the inverse of the average fractional loss for 5 projections/detector. For both cases, the SPECT images were reconstructed using OSEM with attenuation and scatter corrections. The two SPECT datasets were assessed by comparing line profiles in xyplane and z-axis, evaluating the count recoveries, and comparing ROI statistics. Higher deadtime losses (up to 50%) were also simulated to the individually corrected projections by multiplying each projection i by exp(-a*Ni*Ti), where a is a scalar. Additionally, deadtime corrections in phantoms with different geometries and deadtime losses were also explored. The same two correction methods were carried for all these data sets. Results: Averaging the deadtime losses in 5 projections/detector suffices to recover >99% of the loss counts in most clinical cases. The line profiles (xyplane and z-axis) and the statistics in the ROIs drawn in the SPECT images corrected using both methods showed agreement within the statistical noise. The count-loss recoveries in the two methods also agree within >99%. Conclusion: The projection-based and the global correction yield visually indistinguishable SPECT images. The global correction based on sparse sampling of projections losses allows for accurate SPECT deadtime

  2. Idaho Completion Project’s Accelerated Retrieval Project Overview of the Pit 4 Non-Time Critical Removal Action

    SciTech Connect

    T. L. Clements; R. E. Arbon; B. D. Preussner

    2005-02-01

    This paper presents an overview of the Accelerated Retrieval Project performed by the Idaho Completion Project at the Idaho National Laboratory (INL). Topics include an overall description of the process and methods that will retrieve, characterize, and certify newly generated transuranic (TRU) waste for disposal at the Waste Isolation Pilot Plant (WIPP). The retrieval and characterization of buried TRU waste presents unique challenges. Innovative approaches developed and discussed are: excavation, RCRA waste sampling, visual examination, and deployment of the WIPP Central Characterization Project mobile systems to the INL.

  3. Fitting state-space integral projection models to size-structured time series data to estimate unknown parameters.

    PubMed

    White, J Wilson; Nickols, Kerry J; Malone, Daniel; Carr, Mark H; Starr, Richard M; Cordoleani, Flora; Baskett, Marissa L; Hastings, Alan; Botsford, Louis W

    2016-12-01

    Integral projection models (IPMs) have a number of advantages over matrix-model approaches for analyzing size-structured population dynamics, because the latter require parameter estimates for each age or stage transition. However, IPMs still require appropriate data. Typically they are parameterized using individual-scale relationships between body size and demographic rates, but these are not always available. We present an alternative approach for estimating demographic parameters from time series of size-structured survey data using a Bayesian state-space IPM (SSIPM). By fitting an IPM in a state-space framework, we estimate unknown parameters and explicitly account for process and measurement error in a dataset to estimate the underlying process model dynamics. We tested our method by fitting SSIPMs to simulated data; the model fit the simulated size distributions well and estimated unknown demographic parameters accurately. We then illustrated our method using nine years of annual surveys of the density and size distribution of two fish species (blue rockfish, Sebastes mystinus, and gopher rockfish, S. carnatus) at seven kelp forest sites in California. The SSIPM produced reasonable fits to the data, and estimated fishing rates for both species that were higher than our Bayesian prior estimates based on coast-wide stock assessment estimates of harvest. That improvement reinforces the value of being able to estimate demographic parameters from local-scale monitoring data. We highlight a number of key decision points in SSIPM development (e.g., open vs. closed demography, number of particles in the state-space filter) so that users can apply the method to their own datasets.

  4. The MicroBooNE Technical Design Report

    SciTech Connect

    Fleming, Bonnie

    2012-02-24

    MicroBooNE will build, operate, and extract physics from the first large liquid argon time projection chamber (LArTPC) that will be exposed to a high intensity neutrino beam. With its unparalleled capabilities in tracking, vertexing, calorimetry, and particle identification, all with full electronic readout, MicroBooNE represents a major advance in detector technology for neutrino physics in the energy regime of most importance for elucidating oscillation phenomena.

  5. Measuring the Low Energy Nuclear Quenching Factor in Liquid Argon for a Coherent Neutrino Scatter Detector

    NASA Astrophysics Data System (ADS)

    Foxe, M.; Bernstein, A.; Hagmann, C.; Joshi, T.; Jovanovic, I.; Kazkaz, K.; Sangiorgio, S.

    2012-08-01

    Coherent neutrino-nucleus scattering (CNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model [D. Freedman, Phys. Rev. D 9 (5) (1974) 1389-1392]. One of the primary reasons the CNS interaction has yet to be observed is the very low energy depositions (less than 1 keV for MeV-energy neutrinos) [A. Drukier, L. Stodolsky, Phys. Rev. D 30 (11) (1984) 2295-2309]. An additional challenge in detecting CNS is nuclear quenching, which is a phenomenon encountered in many detection materials in which nuclear recoils produce less observable energy per unit energy deposited than electronic recoils. The ratio observed signal for nuclear recoils to electronic recoils or nuclear ionization quench factor, is presently unknown in argon at typical CNS energies [C. Hagmann, A. Bernstein, IEEE Trans. on Nucl. Sci. 51 (5) (2004) 2151-2155]. Here we present plans for using the Gamma or Neutron Argon Recoils Resulting in Liquid Ionization (G/NARRLI) detector to measure the nuclear ionization quench factor at ˜8 keV.

  6. PLANNING AND IMPLEMENTING A REAL-TIME AIR POLLUTION MONITORING AND OUTREACH PROGRAM FOR YOUR COMMUNITY: THE AIRBEAT PROJECT OF ROXBURY, MASSACHUSETTS

    EPA Science Inventory

    EPA has developed a technology transfer handbook for the EMPACT Roxbury Air Monitoring (AirBeat) Project. The purpose of AirBeat is to make real-time air quality monitoring information (for ozone, black carbon, and fine particulates) available to the Boston MA community of Roxbur...

  7. TIME (Training in a Manila Envelope): A Child Care Plus+ Outreach Project To Expand Care and Education Options for Young Children with Disabilities. Final Report.

    ERIC Educational Resources Information Center

    Morris, Sandra L.

    This final report summarizes the activities of TIME (Training in a Manila Envelope), a federally funded project designed to replicate the Child Care plus+ model of inservice training by providing: (1) a course on inclusion directly for child care providers and other early childhood professionals in rural areas across the nation; and (2) training…

  8. NASA Ames DEVELOP Interns: Helping the Western United States Manage Natural Resources One Project at a Time

    NASA Technical Reports Server (NTRS)

    Justice, Erin; Newcomer, Michelle

    2010-01-01

    The western half of the United States is made up of a number of diverse ecosystems ranging from arid desert to coastal wetlands and rugged forests. Every summer for the past 7 years students ranging from high school to graduate level gather at NASA Ames Research Center (ARC) as part of the DEVELOP Internship Program. Under the guidance of Jay Skiles [Ames Research Center (ARC) - Ames DEVELOP Manager] and Cindy Schmidt [ARC/San Jose State University Ames DEVELOP Coordinator] they work as a team on projects exploring topics including: invasive species, carbon flux, wetland restoration, air quality monitoring, storm visualizations, and forest fires. The study areas for these projects have been in Washington, Utah, Oregon, Nevada, Hawaii, Alaska and California. Interns combine data from NASA and partner satellites with models and in situ measurements to complete prototype projects demonstrating how NASA data and resources can help communities tackle their Earth Science related problems.

  9. Building Partner Capacity: State and DOD Need to Define Time Frames to Guide and Track Global Security Contingency Fund Projects

    DTIC Science & Technology

    2014-11-01

    Reviews monitoring and evaluation reports for non-performing programs and proposals for significant program modifications, such as activities or...responsibilities including supporting project oversight and monitoring and evaluation . Includes a small number of personnel from State and DOD. Geographic...including implementation planning, plan endorsement, and execution. Participate in program assessment, to include monitoring and evaluation . Include

  10. DELIVERING TIMELY WATER QUALITY INFORMATION TO YOUR COMMUNITY: THE CHESAPEAKE BAY/NATIONAL AQUARIUM IN BALTIMORE EMPACT PROJECTS

    EPA Science Inventory

    The TTSD in conjunction with a multi-agency Chesapeake Bay Project team, has developed this handbook to provide state and local governments and others "How-to" steps needed to design, employ, and maintain water quality monitoring, data management/delivery, and communications syst...

  11. Balancing Act: How College Students Manage Technology While in the Library during Crunch Time. Project Information Literacy Research Report

    ERIC Educational Resources Information Center

    Head, Alison J.; Eisenberg, Michael B.

    2011-01-01

    The paper presents findings from 560 interviews with undergraduates on 10 campuses distributed across the US, as part of Project Information Literacy (PIL). Overall, the findings suggest that students use a "less is more" approach to manage and control all of the IT devices and information systems available to them while they are in the…

  12. A Comparative Study on First-Time and Experienced Project-Based Learning Students in an Engineering Design Module

    ERIC Educational Resources Information Center

    Chua, K. J.

    2014-01-01

    This study aims to compare and evaluate the learning ability and performance differences between two groups of students undergoing project-based learning (PjBL), with one group having prior PjBL experience, while the other group is being freshly exposed to PjBL. More specifically, it examines if there are significant differences in knowledge…

  13. Photon detection system designs for the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Whittington, D.

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  14. Photon Detection System Designs for the Deep Underground Neutrino Experiment

    SciTech Connect

    Whittington, Denver

    2015-11-19

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  15. Design and Operation of A Setup with A Camera and Adjustable Mirror to Inspect the Sense-Wire Planes of the Time Projection Chamber Inside the MicroBooNE Cryostat

    DOE PAGES

    Carls, Benjamin; Horton-Smith, Glenn; James, Catherine C.; ...

    2015-08-26

    Detectors in particle physics, particularly when including cryogenic components, are often enclosed in vessels that do not provide any physical or visual access to the detectors themselves after installation. However, it can be desirable for experiments to visually investigate the inside of the vessel. The MicroBooNE cryostat hosts a TPC with sense-wire planes, which had to be inspected for damage such as breakage or sagging. This inspection was performed after the transportation of the vessel with the enclosed detector to its final location, but before filling with liquid argon. Our paper describes an approach to view the inside of themore » MicroBooNE cryostat with a setup of a camera and a mirror through one of its cryogenic service nozzles. The paper also describes the camera and mirror chosen for the operation, the illumination, and the mechanical structure of the setup. It explains how the system was operated and demonstrates its performance.« less

  16. Reducing time delay in the thrombolysis of myocardial infarction: an internal quality improvement project. ARIAM Project Group. Analisis del Retraso en Infarto Agudo de Miocardio.

    PubMed

    Saturno, P J; Felices, F; Segura, J; Vera, A; Rodriguez, J J

    2000-01-01

    The objectives of this study were to improve thrombolytic therapy in acute myocardial infarction by reducing the "door-to-needle" time in a 285-bed university hospital in Spain. A quality management approach was used involving all the relevant staff. Target standard was set at 35 minutes. Baseline data, intervention effect, and continuous monitoring were analyzed using x control charts. Analysis of baseline data showed a wide out-of-control variation and 72 minutes' average delay. Cause analysis revealed organizational and clinical problems that were subjected to intervention. Postintervention data showed a stable process, with an average of 30 minutes. Continuous monitoring showed further improvement in average time and predictable variation. The template of the current control chart has an average of 26 minutes. Quality management methods, particularly staff involvement in problem analysis and intervention design, and the use of control charts were useful to understand, solve, and continuously monitor an important clinical problem whose existence was evident only after it was measured.

  17. Application of power time-projection on the operator-splitting coupling scheme of the TRACE/S3K coupled code

    SciTech Connect

    Wicaksono, D.; Zerkak, O.; Nikitin, K.; Ferroukhi, H.; Chawla, R.

    2013-07-01

    This paper reports refinement studies on the temporal coupling scheme and time-stepping management of TRACE/S3K, a dynamically coupled code version of the thermal-hydraulics system code TRACE and the 3D core simulator Simulate-3K. The studies were carried out for two test cases, namely a PWR rod ejection accident and the Peach Bottom 2 Turbine Trip Test 2. The solution of the coupled calculation, especially the power peak, proves to be very sensitive to the time-step size with the currently employed conventional operator-splitting. Furthermore, a very small time-step size is necessary to achieve decent accuracy. This degrades the trade-off between accuracy and performance. A simple and computationally cheap implementation of time-projection of power has been shown to be able to improve the convergence of the coupled calculation. This scheme is able to achieve a prescribed accuracy with a larger time-step size. (authors)

  18. The Gap-Tpc

    NASA Astrophysics Data System (ADS)

    Rossi, B.; Anastasio, A.; Boiano, A.; Catalanotti, S.; Cocco, A. G.; Covone, G.; Di Meo, P.; Longo, G.; Vanzanella, A.; Walker, S.; Wang, H.; Wang, Y.; Fiorillo, G.

    2016-02-01

    Several experiments have been conducted worldwide, with the goal of observing low-energy nuclear recoils induced by WIMPs scattering off target nuclei in ultra-sensitive, low-background detectors. In the last few decades noble liquid detectors designed to search for dark matter in the form of WIMPs have been extremely successful in improving their sensitivities and setting the best limits. One of the crucial problems to be faced for the development of large size (multi ton-scale) liquid argon experiments is the lack of reliable and low background cryogenic PMTs: their intrinsic radioactivity, cost, and borderline performance at 87 K rule them out as a possible candidate for photosensors. We propose a brand new concept of liquid argon-based detector for direct dark matter search: the Geiger-mode Avalanche Photodiode Time Projection Chamber (GAP-TPC) optimized in terms of residual radioactivity of the photosensors, energy and spatial resolution, light and charge collection efficiency.

  19. Charged Particle Multiplicity Analysis in MicroBooNE

    NASA Astrophysics Data System (ADS)

    Rafique, Aleena; MicroBooNE Experiment Collaboration

    2017-01-01

    MicroBooNE is a short baseline neutrino experiment that utilizes 89 ton active volume liquid argon Time Projection Chamber (TPC) situated on the Booster Neutrino Beamline at Fermilab. It is the first of three liquid argon TPC detectors planned for the Fermilab Short Baseline Neutrino program and will directly probe the source of the anomalous excess of electron-like events in MiniBooNE, while also measuring low-energy neutrino cross sections and providing important R&D for future detectors. In this talk, a study of charged particle multiplicity using neutrino charged-current inclusive events is presented. This analysis can be used to test models of neutrino-argon scattering, and it may be particularly sensitive to nuclear final state interaction effects. Kansas State University.

  20. Developing LAr Scintillation Light Collection Ideas in the Short Baseline Neutrino Detector

    SciTech Connect

    Szelc, A. M.

    2016-02-08

    Scintillation light is becoming the most rapidly developing feature of Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors due to its capability to enhance and expand their physics reach traditionally based on charge readout. The SBND detector, set to be built on the Booster Neutrino Beam Line at Fermilab, is in a unique position to test novel liquid argon scintillation light readout systems in a detector with physics neutrino events. The different ideas under consideration by the collaboration are described, including an array of PMTs detecting direct light, SiPM coupled lightguide bars and a setup which uses PMTs/SiPMS and wavelength shifter covered reflector foils, as well as their respective strengths and physics foci and the benchmarks used to compare them.

  1. Oral biopharmaceutics tools - time for a new initiative - an introduction to the IMI project OrBiTo.

    PubMed

    Lennernäs, H; Aarons, L; Augustijns, P; Beato, S; Bolger, M; Box, K; Brewster, M; Butler, J; Dressman, J; Holm, R; Julia Frank, K; Kendall, R; Langguth, P; Sydor, J; Lindahl, A; McAllister, M; Muenster, U; Müllertz, A; Ojala, K; Pepin, X; Reppas, C; Rostami-Hodjegan, A; Verwei, M; Weitschies, W; Wilson, C; Karlsson, C; Abrahamsson, B

    2014-06-16

    OrBiTo is a new European project within the IMI programme in the area of oral biopharmaceutics tools that includes world leading scientists from nine European universities, one regulatory agency, one non-profit research organization, four SMEs together with scientists from twelve pharmaceutical companies. The OrBiTo project will address key gaps in our knowledge of gastrointestinal (GI) drug absorption and deliver a framework for rational application of predictive biopharmaceutics tools for oral drug delivery. This will be achieved through novel prospective investigations to define new methodologies as well as refinement of existing tools. Extensive validation of novel and existing biopharmaceutics tools will be performed using active pharmaceutical ingredient (API), formulations and supporting datasets from industry partners. A combination of high quality in vitro or in silico characterizations of API and formulations will be integrated into physiologically based in silico biopharmaceutics models capturing the full complexity of GI drug absorption. This approach gives an unparalleled opportunity to initiate a transformational change in industrial research and development to achieve model-based pharmaceutical product development in accordance with the Quality by Design concept. Benefits include an accelerated and more efficient drug candidate selection, formulation development process, particularly for challenging projects such as low solubility molecules (BCS II and IV), enhanced and modified-release formulations, as well as allowing optimization of clinical product performance for patient benefit. In addition, the tools emerging from OrBiTo are expected to significantly reduce demand for animal experiments in the future as well as reducing the number of human bioequivalence studies required to bridge formulations after manufacturing or composition changes.

  2. Near Real Time SLA and SST products during 2-years of MFS pilot project: processing, analysis of the variability and of the coupled patterns

    NASA Astrophysics Data System (ADS)

    Buongiorno Nardelli, B.; Larnicol, G.; D'Acunzo, E.; Santoleri, R.; Marullo, S.; Le Traon, P. Y.

    2003-01-01

    The Near Real Time (NRT) operational products developed from satellite data (AVHRR, Topex/Poseidon, Ers-2) in the framework of the Mediterranean Forecasting System Pilot Project (MFSPP, autumn 1998-autumn 2000) are described and compared to delayed time products over the Mediterranean sea. MFSPP SLA and SST data are then discussed in the general context of the Mediterranean circulation, showing the interannual variability of the fields and identifying recurrent or anomalous features at mesoscale/sub-basin scales. Finally, MFSPP data are used to test, on a regional (Mediterranean) context, a multivariate method to identify coupled modes of variability, consisting in the SVD of the covariance between SST and SLA.

  3. Time-of-flight mass spectrometry of DNA laser-ablated from frozen aqueous solutions: applications to the Human Genome Project

    NASA Astrophysics Data System (ADS)

    Williams, Peter W.; Schieltz, David; Nelson, Randall W.; Chou, Chau-Wen; Luo, Cong-Wen; Thomas, Robert

    1993-06-01

    Techniques have been developed to volatilize intact massive DNA molecules using pulsed laser ablation of thin frozen films of aqueous DNA solutions. Electrophoresis assay of the ablated DNA shows that molecules as massive as approximately 400,000 Da can be ablated intact. It has been possible to obtain time-of-flight mass spectra of ablated multicomponent mixtures of single-stranded DNA with masses up to approximately 18,000 Da (a 60-nucleotide DNA oligomer). The possible application of time-of-flight mass spectrometry to the analysis and readout of DNA sequence mixtures, and the potential thereby to accelerate the Human Genome project, are discussed.

  4. Program Implementers' Evaluation of the Project P.A.T.H.S.: Findings Based on Different Datasets over Time

    PubMed Central

    Shek, Daniel T. L.; Ma, Cecilia M. S.

    2012-01-01

    This paper integrates the evaluation findings based on program implementers in nine datasets collected from 2005 to 2009 (244 schools and 7,926 implementers). Using consolidated data with schools as the unit of analysis, results showed that program implementers generally had positive perceptions of the program, themselves, and benefits of the program, with more than four-fifths of the implementers regarding the program as beneficial to the program participants. The subjective outcome evaluation instrument was found to be internally consistent. Multiple regression analyses revealed that perceived qualities of the program and program implementers predicted perceived effectiveness of the program. In conjunction with evaluation findings based on other sources, the present study provides support for the effectiveness of the Tier 1 Program of the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes) in Hong Kong. PMID:22629224

  5. 'Shooting at the sun god Apollo': the Apollonian-Dionysian balance of the TimeSlips Storytelling Project.

    PubMed

    George, Daniel R

    2013-09-01

    In The Birth of Tragedy, Friedrich Nietzsche celebrated the dueling forces of reason and emotion as personified by the ancient Greek gods Apollo and Dionysus. A subtle Apollonian-Dionysian balance can be observed in TimeSlips, a group-based creative storytelling activity developed in the 1990s and increasingly used in dementia care settings worldwide. This article explains how the Apollonion-Dionysian aspects of TimeSlips are beneficial not only for persons with dementia, but also for their carers. Narrative data from medical students at Penn State College of Medicine who participated in TimeSlips at a local retirement community are shared.

  6. 45 CFR 2102.10 - Timing, scope and content of submissions for proposed projects involving land, buildings, or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COMMISSION Procedures on Submissions of Plans or Designs § 2102.10 Timing, scope and content of submissions... information to the extent it is relevant, such as area studies, site plans, building and landscape...

  7. In Vivo Time-Lapse Imaging in the Zebrafish Lateral Line: A Flexible, Open-Ended Research Project for an Undergraduate Neurobiology Laboratory Course

    PubMed Central

    Marra, Molly H.; Tobias, Zachary J.C.; Cohen, Hannah R.; Glover, Greta; Weissman, Tamily A.

    2015-01-01

    The lateral line sensory system in fish detects movements in the water and allows fish to respond to predators, prey, and other stimuli. As the lateral line forms in the first two days of zebrafish development, axons extend caudally along the lateral surface of the fish, eventually forming synapses with hair cells of neuromasts. Growing lateral line axons are located superficially under the skin and can be labeled in living zebrafish using fluorescent protein expression. This system provides a relatively straightforward approach for in vivo time-lapse imaging of neuronal development in an undergraduate setting. Here we describe an upper-level neurobiology laboratory module in which students investigate aspects of axonal development in the zebrafish lateral line system. Students learn to handle and image living fish, collect time-lapse videos of moving mitochondria, and quantitatively measure mitochondrial dynamics by generating and analyzing kymographs of their movements. Energy demands may differ between axons with extending growth cones versus axons that have already reached their targets and are forming synapses. Since relatively little is known about this process in developing lateral line axons, students generate and test their own hypotheses regarding how mitochondrial dynamics may differ at two different time points in axonal development. Students also learn to incorporate into their analysis a powerful yet accessible quantitative tool, the kymograph, which is used to graph movement over time. After students measure and quantify dynamics in living fish at 1 and 2 days post fertilization, this module extends into independent projects, in which students can expand their studies in a number of different, inquiry-driven directions. The project can also be pared down for courses that wish to focus solely on the quantitative analysis (without fish handling), or vice versa. This research module provides a useful approach for the design of open-ended laboratory

  8. Ace Project as a Project Management Tool

    ERIC Educational Resources Information Center

    Cline, Melinda; Guynes, Carl S.; Simard, Karine

    2010-01-01

    The primary challenge of project management is to achieve the project goals and objectives while adhering to project constraints--usually scope, quality, time and budget. The secondary challenge is to optimize the allocation and integration of resources necessary to meet pre-defined objectives. Project management software provides an active…

  9. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    NASA Astrophysics Data System (ADS)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  10. Time-lapse 3D VSP monitoring of a carbon dioxide injection project at Delhi Field, Louisiana

    NASA Astrophysics Data System (ADS)

    Lubis, Muhammad Husni Mubarak

    Delhi Field is a producing oil field located in northeastern Louisiana. The estimated original oil in place (OOIP) is 357 mmbo and approximately 54% of OOIP has been produced through the primary production and water-flooding. A CO2-EOR program has been implemented since November 2009 to recover an additional 17% of OOIP. Reservoir surveillance using time-lapse 3D seismic data has been conducted to monitor the CO2 sweep efficiency. The goal of this study is to monitor the CO2 flow-path in the area around the injector using time-lapse 3D VSP data. For this purpose, two 3D VSPs acquired in June 2010 and again in August 2011 were processed together. Fluid substitution and VSP modeling were performed to understand the influence of pore-fluid saturation change on VSP records. A cross-equalization was performed to improve the similarity of the datasets. This step is important to reduce the ambiguity in time-lapse observation. The splice of a 3D VSP image into the surface seismic data becomes the key point in determining the reflector of the reservoir. By integrating the observation from the modeling and the splice of 3D VSP image to surface seismic, the CO2 flow-path from injector 164-3 can be identified from 3D time-lapse VSP data. The CO2 was not radially distributed around the injector, but moved toward southwest direction. This finding is also consistent with the flow-path interpreted from surface seismic. This consistency implies that time-lapse 3D VSP surveys at Delhi Field confirm and augment the time-lapse interpretation from surface seismic data.

  11. Integration of Multiple OGC Standards for Delivery of Earth Science Information - Presentation of Time-Enabled WMS Through KML as Implemented by the PHAiRS Project

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Benedict, K. K.

    2008-12-01

    Since 2004 the Earth Data Analysis Center has, in collaboration with researchers from the University of Arizona and George Mason University, with funding from NASA, developed a services oriented architecture (SOA) designed for the delivery of historic and current dust forecast data products to the public health user community. This system has generated nearly three years of daily 48-hour dust forecasts, ultimately representing over 289,000 individual hourly forecast rasters for ground surface dust concentrations in four model particle size classes and PM 2.5 and PM 10 size classes. This large collection of model outputs is published as a time-enabled Open Geospatial Consortium (OGC) Web Map Service (WMS) that allows for the efficient retrieval of a single hourly forecast map image for each of these particle size classes, for the entire collection of model outputs. While this WMS service has proven effective in meeting the specific project goals of providing services that support the integration of project products into existing public health decision support systems, the development of an alternative visualization capability that takes advantage of virtual globe technologies was also seen as a valuable complementary capability for making these model outputs accessible to a greater audience of environmental public health users. This paper presents the results of a development effort that produced a system that automatically generates time-enabled KML that enables sequential acquisition of hourly model outputs (via time-enabled WMS) in time-enabled virtual globe applications (e.g. Google Earth). While this effort has proven very successful, it has also highlighted areas where support for time-enabled WMS could be improved, both within the KML standard, and within clients that implement time-enabled viewers.

  12. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    NASA Technical Reports Server (NTRS)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  13. Nearshore waves in southern California: Hindcast, and modeled historical and 21st-century projected time series

    USGS Publications Warehouse

    Hegermiller, Christie; Erikson, Li; Barnard, Patrick

    2016-01-01

    As part of the Coastal Storm Modeling System (CoSMoS), time series of hindcast, historical, and 21st-century nearshore wave parameters (wave height, period, and direction) were simulated for the southern California coast from Point Conception to the Mexican border. The hindcast (1980-2010) time series represents reanalysis-forced offshore waves propagated to the nearshore, whereas the historical (1976-2005) and 21st-century (2012-2100) time series represent global climate model-forced offshore waves propagated to the nearshore. Changes in deep-water wave conditions directly regulate the energy driving coastal processes. However, a number of physical processes, for example, refraction on continental shelves and/or diffraction by islands, transform deep-water waves as they propagate to the coast, which complicates large-scale modeling efforts. In this work, a hindcast of nearshore waves was simulated by forcing a numerical wave model with hindcasted intermediate-water waves and reanalysis winds. A lookup table was created by relating corresponding offshore winds and waves with nearshore wave conditions. Using the lookup table, historical and 21st-century nearshore wave time series were generated for global climate model-forced offshore winds and waves.

  14. TRANSIT MONITORING IN THE SOUTH (TraMoS) PROJECT: DISCARDING TRANSIT TIMING VARIATIONS IN WASP-5b

    SciTech Connect

    Hoyer, S.; Rojo, P.; Lopez-Morales, M. E-mail: pato@das.uchile.cl

    2012-03-20

    We report nine new transit epochs of the extrasolar planet WASP-5b, observed in the Bessell I band with the Southern Astrophysical Research Telescope at the Cerro Pachon Observatory and with the SMARTS 1 m Telescope at the Cerro Tololo Inter-American Observatory, between 2008 August and 2009 October. The new transits have been combined with all previously published transit data for this planet to provide a new Transit Timing Variation (TTV) analysis of its orbit. We find no evidence of TTV rms variations larger than 1 minute over a 3 year time span. This result discards the presence of planets more massive than about 5 M{sub Circled-Plus }, 1 M{sub Circled-Plus }, and 2 M{sub Circled-Plus} around the 1:2, 5:3, and 2:1 orbital resonances, respectively. These new detection limits exceed by {approx}5-30 times the limits imposed by current radial velocity observations in the mean motion resonances of this system. Our search for the variation of other parameters, such as orbital inclination and transit depth, also yields negative results over the total time span of the transit observations. This result supports formation theories that predict a paucity of planetary companions to hot Jupiters.

  15. The LAGUNA-LBNO Project

    NASA Astrophysics Data System (ADS)

    Avanzini, Margherita Buizza

    LAGUNA-LBNO is a Design Study funded by the European Commission to develop the design of a large and deep underground neutrino observatory; its physics program involves the study of neutrino oscillations at long baselines, the investigation of the Grand Unification of elementary forces and the detection of neutrinos from astrophysical sources. Building on the successful format and on the findings of the previous LAGUNA Design Study, LAGUNA-LBNO is more focused and is specifically considering Long Baseline Neutrino Oscillations (LBNO) with neutrino beams from CERN. Two sites, Fréjus (in France at 130 km) and Pyhäsalmi (in Finland at 2300 km), are being considered. Three different detector technologies are being studied: Water Cherenkov, Liquid Scintillator and Liquid Argon. Recently the LAGUNA-LBNO consortium has submitted an Expression of Interest for a very long baseline neutrino experiment, selecting as a first priority the option of a Liquid Argon detector at Pyhäsalmi. Detailed potential studies have been curried out for the determination of the neutrino Mass Hierarchy and the discovery of the CP-violation, using a conventional neutrino beam from the CERN SPS with a power of 750 kW.

  16. Catalog of earth photographs from the Apollo-Soyuz test project. [listing cloud photographs and data acquired at time photograph was taken

    NASA Technical Reports Server (NTRS)

    El-Baz, F. (Editor)

    1979-01-01

    Information is given on earth photographs obtained by the Apollo astronauts during the Apollo Soyuz Test Project. The data are arranged in three sections. A map index shows the boundaries of each photograph and is used for a quick survey of the coverage for a given geographical area. A tabular index provides the following data: list of photographs by serial number, description of geographic location, latitude and longitude of the center point of the photograph, date when photograph was taken, ground elapsed time, revolution number of Apollo spacecraft, approximate spacecraft altitude, tilt, sun angle, camera, and lens. The photographic index provides same size black and white prints made from the original color negatives.

  17. A biopharmaceutical classification-based Right-First-Time formulation approach to reduce human pharmacokinetic variability and project cycle time from First-In-Human to clinical Proof-Of-Concept.

    PubMed

    Ku, M Sherry; Dulin, Wendy

    2012-01-01

    A Right-First-Time approach is described for developing bona fide formulations for First-In-Human (FIH) to Proof-Of-Concept (POC) studies to meet an overarching goal of reduced project cycle time from IND to NDA (as short as four years). Bona fide formulations are tailor-made according to the drug's biopharmaceutical properties including solubility, permeability and stability. Solubilization techniques are used extensively to reduce oral absorption variability for most compounds. Bona fide formulations contain all necessary functional excipients such as diluent, solubilizer, stabilizer, pH adjuster, disintegrant and lubricant so formulation changes are minimized to avoid significant PK bridging studies. Cycle time of FIH formulation development is aligned with IND-enabling toxicology studies, generally 4-6 months. Resources range from 0.5 full time equivalents (FTE) for a BCS-1 compound to 3 FTE for a BCS-4 compound with high drug delivery hurdles. We have achieved our goal by taking the same formulation from FIH to POC 90% of the time and maintaining the same formulation platform from POC to commercial manufacturing 80% of the time in the past eight years. This strategy enables cycle time reduction from 7 to 4 years for IND to NDA by overlapping clinical study phases and eliminating clinical downtime due to PK bridging studies.

  18. Electron lifetime measurement using cosmic ray muons at the MicroBooNE LArTPC

    NASA Astrophysics Data System (ADS)

    Meddage, Varuna Crishan; MicroBooNE Collaboration

    2017-01-01

    MicroBooNE, a 170 ton liquid argon time projection chamber (LArTPC) located on the Fermilab's Booster Neutrino Beamline (BNB), is designed to both probe neutrino physics phenomena and further develop the LArTPC detector technology. MicroBooNE is the largest currently operating LArTPC detector and began collecting data in Fall 2015. LArTPCs are imaging detectors that offer exceptional capabilities for studying neutrinos. A fundamental requirement for the performance of such detectors is to maintain electronegative contaminants such as oxygen and water at extremely low concentrations, which otherwise can absorb the ionization electrons. The impurity levels in liquid argon can be estimated from the drift electron lifetime as they are inversely proportional to each other. This talk presents a measurement of the drift electron lifetime using cosmic ray muon data collected by MicroBooNE. An interpretation of the observed drift electron lifetime as a function of time indicates that the electron attenuation due to impurities in the liquid argon is negligible during normal operations, implying that the argon purification and gas recirculation system in MicroBooNE is performing successfully.

  19. Wavelet-based Time Series Bootstrap Approach for Multidecadal Hydrologic Projections Using Observed and Paleo Data of Climate Indicators

    NASA Astrophysics Data System (ADS)

    Erkyihun, S. T.

    2013-12-01

    Understanding streamflow variability and the ability to generate realistic scenarios at multi-decadal time scales is important for robust water resources planning and management in any River Basin - more so on the Colorado River Basin with its semi-arid climate and highly stressed water resources It is increasingly evident that large scale climate forcings such as El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO) are known to modulate the Colorado River Basin hydrology at multi-decadal time scales. Thus, modeling these large scale Climate indicators is important to then conditionally modeling the multi-decadal streamflow variability. To this end, we developed a simulation model that combines the wavelet-based time series method, Wavelet Auto Regressive Moving Average (WARMA) with a K-nearest neighbor (K-NN) bootstrap approach. In this, for a given time series (climate forcings), dominant periodicities/frequency bands are identified from the wavelet spectrum that pass the 90% significant test. The time series is filtered at these frequencies in each band to create ';components'; the components are orthogonal and when added to the residual (i.e., noise) results in the original time series. The components, being smooth, are easily modeled using parsimonious Auto Regressive Moving Average (ARMA) time series models. The fitted ARMA models are used to simulate the individual components which are added to obtain simulation of the original series. The WARMA approach is applied to all the climate forcing indicators which are used to simulate multi-decadal sequences of these forcing. For the current year, the simulated forcings are considered the ';feature vector' and K-NN of this are identified; one of the neighbors (i.e., one of the historical year) is resampled using a weighted probability metric (with more weights to nearest neighbor and least to the farthest) and the corresponding streamflow is the

  20. Development of Hyperon Time-Projection-Chamber (HypTPC) for the H-Dibaryon Search Experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    Hwang, Sanghoon; Imai, Kenichi; Ahn, Jung Keun

    We the E42 collaboration proposed to search for the H-dibaryon in ΛΛ production from (K-, K-) reaction off nuclei by using a high-intensity K- beam at J-PARC with 100 times better statistics than KEK-E224 and E552 experiments. Our proposed experiment will be designed to confirm if the enhancement is due to the H-dibaryon as a ΛΛ resonance or a virtual bound state or ΛΛ final state interaction. We plan to construct a large-acceptance hyperon spectrometer with a Time-Projection-Chamber (HypTPC) to detector ΛΛ particles, simultaneously K+ particle is measured by the KURAMA spectrometer. We expect to collect 11000 ΛΛ events with a mass resolution of 1.0 MeV/c2 near the ΛΛ threshold. The sensitivity of the detector shows two orders of magitude improvement from the present limit.

  1. Calculation of the electron spin relaxation times in InSb and InAs by the projection-reduction method

    SciTech Connect

    Kang, Nam Lyong

    2014-12-07

    The electron spin relaxation times in a system of electrons interacting with piezoelectric phonons mediated through spin-orbit interactions were calculated using the formula derived from the projection-reduction method. The results showed that the temperature and magnetic field dependence of the relaxation times in InSb and InAs were similar. The piezoelectric material constants obtained by a comparison with the reported experimental result were P{sub pe}=4.0×10{sup 22} eV/m for InSb and P{sub pe}=1.2×10{sup 23} eV/m for InAs. The result also showed that the relaxation of the electron spin by the Elliot-Yafet process is more relevant for InSb than InAs at a low density.

  2. Antibiotic Prescriptions and Prophylaxis in Italian Children. Is It Time to Change? Data from the ARPEC Project

    PubMed Central

    Montagnani, Carlotta; Lo Vecchio, Andrea; Romanengo, Marta; Tagliabue, Claudia; Centenari, Chiara; D’Argenio, Patrizia; Lundin, Rebecca; Giaquinto, Carlo; Galli, Luisa; Guarino, Alfredo; Esposito, Susanna; Sharland, Mike; Versporten, Ann; Goossens, Herman; Nicolini, Giangiacomo

    2016-01-01

    Background Antimicrobials are the most commonly prescribed drugs. Many studies have evaluated antibiotic prescriptions in the paediatric outpatient but few studies describing the real antibiotic consumption in Italian children’s hospitals have been published. Point-prevalence survey (PPS) has been shown to be a simple, feasible and reliable standardized method for antimicrobials surveillance in children and neonates admitted to the hospital. In this paper, we presented data from a PPS on antimicrobial prescriptions carried out in 7 large Italian paediatric institutions. Methods A 1-day PPS on antibiotic use in hospitalized neonates and children was performed in Italy between October and December 2012 as part of the Antibiotic Resistance and Prescribing in European Children project (ARPEC). Seven institutions in seven Italian cities were involved. The survey included all admitted patients less than 18 years of age present in the ward at 8:00 am on the day of the survey, who had at least one on-going antibiotic prescription. For all patients data about age, weight, underlying disease, antimicrobial agent, dose and indication for treatment were collected. Results The PPS was performed in 61 wards within 7 Italian institutions. A total of 899 patients were eligible and 349 (38.9%) had an on-going prescription for one or more antibiotics, with variable rates among the hospitals (25.7% - 53.8%). We describe antibiotic prescriptions separately in neonates (<30 days old) and children (> = 30 days to <18 years old). In the neonatal cohort, 62.8% received antibiotics for prophylaxis and only 37.2% on those on antibiotics were treated for infection. Penicillins and aminoglycosides were the most prescribed antibiotic classes. In the paediatric cohort, 64.4% of patients were receiving antibiotics for treatment of infections and 35.5% for prophylaxis. Third generation cephalosporins and penicillin plus inhibitors were the top two antibiotic classes. The main reason for

  3. A case study on the feasibility and performance of an UWB-AoA real time location system for resources management of civil construction projects

    NASA Astrophysics Data System (ADS)

    Mok, Esmond; Xia, Linyuan; Retscher, Guenther; Tian, Hui

    2010-06-01

    The application of integrated satellite and modern wireless positioning technologies for ubiquitous real-time resources management in large scale civil engineering projects can greatly optimize the time and cost in the construction process, and is now the trend for modern construction project management. As the outdoor conditions of most civil construction sites are open to sky, satellite positioning with the popularly used Global Positioning System (GPS) has been proved to be very efficient and effective. However, the condition in indoor and underground construction site is very complicated due to the fact that different construction activities would be carried out in different congested areas, involving heavy construction plant, equipment, professionals and technical personnel. Nowadays different emerging technologies such as Wi-Fi and ZigBee can be adopted for position and tracking in indoor environments. Nevertheless, under the very complicated construction site conditions these technologies may fail due to movement of human resources and construction plant, variation of metrological conditions, and serious multipath effects of signals. It is considered that Ultra Wide Band (UWB) technology is more suitable for indoor construction site environments. In this paper, a case study on the attempt of integrating GPS with Ubisense Real-time Location System (RTLS) for resources management in an underground railway construction site is discussed. Laboratory and field tests have shown that the RTLS can provide better resources management capability in terms of positioning accuracy and stability than Wi-Fi and ZigBee technologies under complicated construction environments. The test results show that the system can normally achieve better than 15 cm accuracy, and better than 1 m under adverse geometrical site condition. However, the high instrumental set up cost and the requirement for high quality data transmission cable for high precision time synchronization between

  4. Calculation of the weighting functions for the reconstruction of absorbing inhomogeneities in tissue by time-resolved optical projections

    SciTech Connect

    Konovalov, A B; Vlasov, V V

    2014-08-31

    We report a new method for determining the weighting functions to reconstruct absorbing inhomogeneities in tissue by perturbation time-domain diffuse optical tomography using the transmission geometry of a flat layer. The method is based on an analytical approach to the calculation of the weighting functions for a semi-infinite scattering medium and on the use of the original method of an equivalent inverse source in order to obtain weight distributions for the flat layer geometry. The correctness of the proposed method of the weighting function calculation is evaluated by a numerical experiment on the reconstruction of absorbing inhomogeneities. It is shown that the perturbation reconstruction model based on the proposed weighting function calculation method allows the inhomogeneities smaller than 0.3 cm and ∼0.4 cm, located respectively in the transverse and longitudinal directions to the probe light direction, to be resolved in the centre of an 8-cm-thick object. (laser biophotonics)

  5. Time of flight mass spectrometry of DNA laser-ablated from frozen aqueous solutions: applications to the Human Genome Project

    NASA Astrophysics Data System (ADS)

    Williams, Peter

    1994-02-01

    Time of flight mass spectrometry offers an extremely rapid and accurate alternative to gel electrophoresis for sizing DNA fragments in the Sanger sequencing process, if large single-stranded DNA molecules can be volatilized and ionized without fragmentation. A process based on pulsed laser ablation of thin frozen films of DNA solutions has been shown to ablate intact DNA molecules up to [approximate]400 kDa in mass, and also has been shown to yield molecular ions of single-stranded DNA up to [approximate]18 500 Da. The theoretical basis and the progress to date in this approach are described and the potential impact of mass spectrometry on large-scale DNA sequencing is discussed.

  6. The AMERE project: Enabling real-time detection of radiation effects in individual cells in deep space

    NASA Astrophysics Data System (ADS)

    De Vos, Winnok H.; Meesen, Geert; Szpirer, Cedric; Scohy, Sophie; Cherukuri, Chaitanya; Evrard, Olivier; Hutsebaut, Xavier; Beghuin, Didier

    2012-12-01

    A major concern for long-term deep space missions is the detrimental impact of cosmic radiation on human health. Especially the presence of high-energy particles of high atomic mass (HZE) represents a serious threat. To contribute to a fundamental understanding of space radiation effects and to help improving risk assessment for humans on the Moon, the ESA Lunar Lander mission model payload includes a package dedicated to cell-based radiobiology experiments in the form of an Autonomous Microscope for Examination of Radiation Effects (AMERE). The purpose of this setup is to enable real-time visualization of DNA damage repair in living cells after traversal of HZE particles on the Moon. To assess the feasibility of this challenging experiment, we have analysed the biological and technological demands. In this article, we discuss the experimental concept, the biological considerations and describe the implications for system design.

  7. A real-time ocean reanalyses intercomparison project in the context of tropical pacific observing system and ENSO monitoring

    NASA Astrophysics Data System (ADS)

    Xue, Yan; Wen, C.; Kumar, A.; Balmaseda, M.; Fujii, Y.; Alves, O.; Martin, M.; Yang, X.; Vernieres, G.; Desportes, C.; Lee, T.; Ascione, I.; Gudgel, R.; Ishikawa, I.

    2017-02-01

    An ensemble of nine operational ocean reanalyses (ORAs) is now routinely collected, and is used to monitor the consistency across the tropical Pacific temperature analyses in real-time in support of ENSO monitoring, diagnostics, and prediction. The ensemble approach allows a more reliable estimate of the signal as well as an estimation of the noise among analyses. The real-time estimation of signal-to-noise ratio assists the prediction of ENSO. The ensemble approach also enables us to estimate the impact of the Tropical Pacific Observing System (TPOS) on the estimation of ENSO-related oceanic indicators. The ensemble mean is shown to have a better accuracy than individual ORAs, suggesting the ensemble approach is an effective tool to reduce uncertainties in temperature analysis for ENSO. The ensemble spread, as a measure of uncertainties in ORAs, is shown to be partially linked to the data counts of in situ observations. Despite the constraints by TPOS data, uncertainties in ORAs are still large in the northwestern tropical Pacific, in the SPCZ region, as well as in the central and northeastern tropical Pacific. The uncertainties in total temperature reduced significantly in 2015 due to the recovery of the TAO/TRITON array to approach the value before the TAO crisis in 2012. However, the uncertainties in anomalous temperature remained much higher than the pre-2012 value, probably due to uncertainties in the reference climatology. This highlights the importance of the long-term stability of the observing system for anomaly monitoring. The current data assimilation systems tend to constrain the solution very locally near the buoy sites, potentially damaging the larger-scale dynamical consistency. So there is an urgent need to improve data assimilation systems so that they can optimize the observation information from TPOS and contribute to improved ENSO prediction.

  8. Pembina Cardium CO2-EOR monitoring project: Integrated surface seismic and VSP time-lapse seismic analysis

    NASA Astrophysics Data System (ADS)

    Alshuhail, A. A.

    2009-12-01

    In the Pembina field in west-central Alberta, Canada, approximately 40,000 tons of supercritical CO2 was injected into the 1650 m deep, 20 m thick upper-Cretaceous Cardium Fm. between March 2005 and 2007. A time-lapse seismic program was designed and incorporated into the overall measurement, monitoring and verification program. The objectives were to track the CO2 plume within the reservoir, and to evaluate the integrity of storage. Fluid replacement modeling predicts a decrease in the P-wave velocity and bulk density in the reservoir by about 4% and 1%, respectively. Synthetic seismograms show subtle reflectivity changes at the Cardium Fm. and a traveltime delay at the later high-amplitude Viking event of less than 1 ms. The time-lapse datasets, however, show no significant anomalies in the P-wave seismic data that can be attributed to supercritical CO2 injected into the Cardium Fm. (Figure 1). The converted-wave (P-S) data, on the other hand, showed small traveltime anomalies. The most coherent results were those obtained by the fixed-array VSP dataset (Figure 2) due to higher frequency bandwidth and high signal to noise ratio. The amplitude and traveltime changes observed in the VSP dataset are small but are consistent in magnitude with those predicted from rock physics modeling. The analysis suggests that the inability to clearly detect the CO2 plume in surface seismic data is likely due to the CO2 being contained in thin permeable sandstone members of the Cardium Formation. The seismic signature of the Cardium Fm. in this area may also be degraded by multiples and strong attenuation involving the shallow Ardley coals. However, the lack of a 4D seismic changes above the reservoir indicates that the injected CO2 is not migrating through the caprock into shallower formations.

  9. Real-Time Access to Altimetry and Operational Oceanography Products via OPeNDAP/LAS Technologies : the Example of Aviso, Mercator and Mersea Projects

    NASA Astrophysics Data System (ADS)

    Baudel, S.; Blanc, F.; Jolibois, T.; Rosmorduc, V.

    2004-12-01

    The Products and Services (P&S) department in the Space Oceanography Division at CLS is in charge of diffusing and promoting altimetry and operational oceanography data. P&S is so involved in Aviso satellite altimetry project, in Mercator ocean operational forecasting system, and in the European Godae /Mersea ocean portal. Aiming to a standardisation and a common vision and management of all these ocean data, these projects led to the implementation of several OPeNDAP/LAS Internet servers. OPeNDAP allows the user to extract via a client software (like IDL, Matlab or Ferret) the data he is interested in and only this data, avoiding him to download full information files. OPeNDAP allows to extract a geographic area, a period time, an oceanic variable, and an output format. LAS is an OPeNDAP data access web server whose special feature consists in the facility for unify in a single vision the access to multiple types of data from distributed data sources. The LAS can make requests to different remote OPeNDAP servers. This enables to make comparisons or statistics upon several different data types. Aviso is the CNES/CLS service which distributes altimetry products since 1993. The Aviso LAS distributes several Ssalto/Duacs altimetry products such as delayed and near-real time mean sea level anomaly, absolute dynamic topography, absolute geostrophic velocities, gridded significant wave height and gridded wind speed modulus. Mercator-Ocean is a French operational oceanography centre which distributes its products by several means among them LAS/OPeNDAP servers as part of Mercator Mersea-strand1 contribution. 3D ocean description (temperature, salinity, current and other oceanic variables) of the North Atlantic and Mediterranean are real-time available and weekly updated. LAS special feature consisting in the possibility of making requests to several remote data centres with same OPeNDAP configurations particularly fitted to Mersea strand-1 problematics. This European

  10. Development Status of the WetLab-2 Project: New Tools for On-orbit Real-time Quantitative Gene Expression.

    NASA Technical Reports Server (NTRS)

    Jung, Jimmy; Parra, Macarena P.; Almeida, Eduardo; Boone, Travis; Chinn, Tori; Ricco, Antonio; Souza, Kenneth; Hyde, Liz; Rukhsana, Yousuf; Richey, C. Scott

    2013-01-01

    The primary objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform to facilitate gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens grown or cultured on orbit. The WetLab-2 equipment will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. In addition to the logistical benefits of in-situ sample processing and analysis, conducting qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms. The system can also validate terrestrial analyses of samples returned from ISS by providing quantitative on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experimental parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Finally, WetLab-2 can be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-5 in Aug. 2014.Progress to date: The WetLab-2 project completed a thorough study of commercially available qRT-PCR systems and performed a downselect based on both scientific and engineering requirements. The selected instrument, the Cepheid SmartCycler, has advantages including modular design (16 independent PCR modules), low power consumption, and rapid ramp times. The SmartCycler has multiplex capabilities, assaying up to four genes of interest in each of the 16 modules. The WetLab-2 team is currently working with Cepheid to modify the unit for housing within an EXPRESS rack locker on the ISS. This will enable the downlink of data to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project is

  11. Mechanisms of time-dependent crack growth at elevated temperature. Final project report, July 1, 1986--August 31, 1989

    SciTech Connect

    Saxena, A.; Stock, S.R.

    1990-04-15

    Objective of this 3-y study was to conduct creep and creep-fatigue crack growth experiments and to characterize the crack tip damage mechanisms in a model material (Cu-1wt%Sb), which is known to cavitate at grain boundaries under creep deformation. Results were: In presence of large scale cavitation damage and crack branching, time rate of creep crack growth da/dt does not correlate with C{sub t} or C{sup *}. When cavitation damage is constrained, da/dt is characterized by C{sub t}. Area fraction of grain boundary cavitated is the single damage parameter for the extent of cavitation damage ahead of crack tips. C{sub t} is used for the creep-fatigue crack growth behavior. In materials prone to rapid cavity nucleation, creep cracks grow faster initially and then reach a steady state whose growth rate is determined by C{sub t}. Percent creep life exhausted correlates with average cavity diameter and fraction of grain boundary area occupied by cavities. Synchrotron x-ray tomographic microscopy was used to image individual cavities in Cu-1wt% Sb. A methodology was developed for predicting the remaining life of elevated temperature power plant components; (C{sub t}){sub avg} was used to correlate creep-fatigue crack growth in Cr-Mo and Cr-Mo-V steel and weldments.

  12. BRITICE-CHRONO: A multi-method project to determine the timing and rates of change of a marine-influenced ice sheet

    NASA Astrophysics Data System (ADS)

    Fabel, Derek; Clark, Chris; Chiverrell, Richard; O'Cofaigh, Colm; Scourse, James; Hindmarsh, Richard

    2016-04-01

    BRITICE-CHRONO is a five-year Natural Environment Research Council (NERC) funded consortium of more than 44 researchers comprising glaciologists, marine and terrestrial Quaternary scientists and ice sheet-modellers, with the specific aim to systematically collect and date material to constrain the timing and rates of change of the marine-influenced sectors of the collapsing British Irish Ice Sheet (http://britice-chrono.org/). At the halfway point of the project we have collected over 400 cores during two 40-day research cruises circumnavigating the British Isles and Ireland, and completed over 300 person-days of terrestrial fieldwork, yielding around 15 tonnes of samples for dating by optically stimulated luminescence-, surface exposure-, and radiocarbon methods. By end 2016 we expect to have generated about 850 new dates from landforms associated with the deglaciation of the last British and Irish ice-sheet. The success of the project will in part depend on the team being able to provide ice-sheet modellers with robust chronological markers against which the ice-sheet models can be tested. The decision-making process in deciding robustness of ages derived from multiple samples and different Quaternary geochronological methods will be discussed. Some geochronological highlights thus far are that deglaciation of the northwest sector of the ice-sheet was in progress at 28ka, well before the global LGM, and the northern tip of mainland Scotland was ice free by 25ka. At the same time the Irish Sea ice stream in the south appears to have been advancing towards its maximum extend. Although deglaciation in the south commences much later, both the main southern and northern ice streams appear to have persisted for at least 10ka with final retreat onto the mainland occurring at approximately the same time (16ka).

  13. Decadal Time Scale change in terrestrial plant communities in North American arctic and alpine tundra: A contribution to the International Polar Year Back to the Future Project (Invited)

    NASA Astrophysics Data System (ADS)

    Tweedie, C. E.; Ebert-May, D.; Hollister, R. D.; Johnson, D. R.; Lara, M. J.; Villarreal, S.; Spasojevic, M.; Webber, P.

    2010-12-01

    The International Polar Year-Back to the Future (IPY-BTF) is an endorsed International Polar Year project (IPY project #214). The overarching goal of this program is to determine how key structural and functional characteristics of high latitude/altitude terrestrial ecosystems have changed over the past 25 or more years and assess if such trajectories of change are likely to continue in the future. By rescuing data, revisiting, re-sampling historic research sites and assessing environmental change over time, we aim to provide greater understanding of how tundra is changing and what the possible drivers of these changes are. Resampling of sites established by Patrick J. Webber between 1964 and 1975 in northern Baffin Island, Northern Alaska and in the Rocky Mountains form a key contribution to the BTF project. Here we report on resampling efforts at each of these locations and initial results of a synthesis effort that finds similarities and differences in change between sites. Results suggest that although shifts in plant community composition are detectable at each location, the magnitude and direction of change differ among locations. Vegetation shifts along soil moisture gradients is apparent at most of the sites resampled. Interestingly, however, wet communities seem to have changed more than dry communities in the Arctic locations, while plant communities at the alpine site appear to be becoming more distinct regardless of soil moisture status. Ecosystem function studies performed in conjunction with plant community change suggest that there has been an increase in plant productivity at most sites resampled, especially in wet and mesic land cover types.

  14. HELICoiD project: a new use of hyperspectral imaging for brain cancer detection in real-time during neurosurgical operations

    NASA Astrophysics Data System (ADS)

    Fabelo, Himar; Ortega, Samuel; Kabwama, Silvester; Callico, Gustavo M.; Bulters, Diederik; Szolna, Adam; Pineiro, Juan F.; Sarmiento, Roberto

    2016-05-01

    Hyperspectral images allow obtaining large amounts of information about the surface of the scene that is captured by the sensor. Using this information and a set of complex classification algorithms is possible to determine which material or substance is located in each pixel. The HELICoiD (HypErspectraL Imaging Cancer Detection) project is a European FET project that has the goal to develop a demonstrator capable to discriminate, with high precision, between normal and tumour tissues, operating in real-time, during neurosurgical operations. This demonstrator could help the neurosurgeons in the process of brain tumour resection, avoiding the excessive extraction of normal tissue and unintentionally leaving small remnants of tumour. Such precise delimitation of the tumour boundaries will improve the results of the surgery. The HELICoiD demonstrator is composed of two hyperspectral cameras obtained from Headwall. The first one in the spectral range from 400 to 1000 nm (visible and near infrared) and the second one in the spectral range from 900 to 1700 nm (near infrared). The demonstrator also includes an illumination system that covers the spectral range from 400 nm to 2200 nm. A data processing unit is in charge of managing all the parts of the demonstrator, and a high performance platform aims to accelerate the hyperspectral image classification process. Each one of these elements is installed in a customized structure specially designed for surgical environments. Preliminary results of the classification algorithms offer high accuracy (over 95%) in the discrimination between normal and tumour tissues.

  15. Near Real Time Surface Solar Radiation and Meteorological Parameters From the CERES FLASHFlux Project: Examples of Usage for Energy-Related Applications

    NASA Astrophysics Data System (ADS)

    Hoell, J. M.; Stockhouse, P.; Chandler, W.; Zhang, T.; Kratz, D. P.; Gupta, S. K.; Wilber, A. C.; Sawaengphokhai, P.; Edwards, A. C.; Westberg, D.; Zell, E.; Leng, G.

    2010-12-01

    The NASA Langley Research Center Fast Longwave And SHortwave Radiative Fluxes (FLASHFlux) project is producing global near real-time surface and top of Atmosphere (TOA) radiative fluxes and analyzing these quantities and their variability on regional and global scales. This is being accomplished by using a portion of the existing Clouds and the Earth's Radiant Energy System (CERES) processing system that fuses CERES with MODIS (Moderate Resolution Imaging Spectrometer) to produce orbital flux products. The orbital products from both Terra and Aqua are subsequently merged to derive global gridded radiative flux products. The FLASHFlux processing system also uses meteorological surface and profile file information from NASA Global Modeling and Data Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) operational analysis version 5.2. The production of these together considering the latency times results in the global gridded surface radiative fluxes within 6-7 days of the original satellite observations. Data from the FLASHFlux have been merged and made available through a user-friendly web-based data portal (http://power.larc.nasa.gov/). Solar data from this portal are being continuously updated to provide time series of daily solar radiation to current time minus 7-days. While the current solar data represents an average over a 1-degree cell, comparison with ground observations exhibits a high degree of correlation on a daily time scale. These data are promoted to the web along with surface meteorological data from the GMAO GEOS 5.2 to provide a complete suite of parameters useful for many applications. This paper highlights the use of these data sets in the Ventyx Corporation database Velocity Suite that is being provided to utilities for power load forecasting. Examples of the usage and impact of this data on subsequent load forecasts are presented. The data sets are also being evaluated in collaboration with the Natural Resource Canada RETScreen

  16. Fragment Angular Distributions in Neutron-Induced Fission of {sup 235}U and {sup 239}Pu using a Time Projection Chamber

    SciTech Connect

    Kleinrath, Verena

    2015-07-01

    Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for {sup 235}U and even more so for {sup 239}Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. In-beam data collected at the Los Alamos Neutron Science Center with a {sup 235}U/{sup 239}Pu target during the 2014 run-cycle will provide angular distributions as a function of incident neutron energy for these isotopes. (LA-UR-1426972). (authors)

  17. Measurement and simulation of two-phase CO2 cooling in Micromegas modules for a Large Prototype of Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D. S.; Attié, D.; Colas, P.; Mukhopadhyay, S.; Majumdar, N.; Bhattacharya, S.; Sarkar, S.; Bhattacharya, A.; Ganjour, S.

    2015-08-01

    The readout electronics of a Micromegas (MM) module consume nearly 26 W of electric power, which causes the temperature of electronic board to increase upto 70 oC. Increase in temperature results in damage of electronics. Development of temperature gradient in the Time Projection Chamber (TPC) may affect precise measurement as well. Two-phase CO2 cooling has been applied to remove heat from the MM modules during two test beam experiments at DESY, Hamburg. Following the experimental procedure, a comprehensive study of the cooling technique has been accomplished for a single MM module by means of numerical simulation. This paper is focused to discuss the application of two-phase CO2 cooling to keep the temperature below 30 oC and stabilized within 0.2 oC.

  18. Joint penalized-likelihood reconstruction of time-activity curves and regions-of-interest from projection data in brain PET.

    PubMed

    Krestyannikov, E; Tohka, J; Ruotsalainen, U

    2008-06-07

    This paper presents a novel statistical approach for joint estimation of regions-of-interest (ROIs) and the corresponding time-activity curves (TACs) from dynamic positron emission tomography (PET) brain projection data. It is based on optimizing the joint objective function that consists of a data log-likelihood term and two penalty terms reflecting the available a priori information about the human brain anatomy. The developed local optimization strategy iteratively updates both the ROI and TAC parameters and is guaranteed to monotonically increase the objective function. The quantitative evaluation of the algorithm is performed with numerically and Monte Carlo-simulated dynamic PET brain data of the 11C-Raclopride and 18F-FDG tracers. The results demonstrate that the method outperforms the existing sequential ROI quantification approaches in terms of accuracy, and can noticeably reduce the errors in TACs arising due to the finite spatial resolution and ROI delineation.

  19. Interpretaion of synthetic seismic time-lapse monitoring data for Korea CCS project based on the acoustic-elastic coupled inversion

    NASA Astrophysics Data System (ADS)

    Oh, J.; Min, D.; Kim, W.; Huh, C.; Kang, S.

    2012-12-01

    Recently, the CCS (Carbon Capture and Storage) is one of the promising methods to reduce the CO2 emission. To evaluate the success of the CCS project, various geophysical monitoring techniques have been applied. Among them, the time-lapse seismic monitoring is one of the effective methods to investigate the migration of CO2 plume. To monitor the injected CO2 plume accurately, it is needed to interpret seismic monitoring data using not only the imaging technique but also the full waveform inversion, because subsurface material properties can be estimated through the inversion. However, previous works for interpreting seismic monitoring data are mainly based on the imaging technique. In this study, we perform the frequency-domain full waveform inversion for synthetic data obtained by the acoustic-elastic coupled modeling for the geological model made after Ulleung Basin, which is one of the CO2 storage prospects in Korea. We suppose the injection layer is located in fault-related anticlines in the Dolgorae Deformed Belt and, for more realistic situation, we contaminate the synthetic monitoring data with random noise and outliers. We perform the time-lapse full waveform inversion in two scenarios. One scenario is that the injected CO2 plume migrates within the injection layer and is stably captured. The other scenario is that the injected CO2 plume leaks through the weak part of the cap rock. Using the inverted P- and S-wave velocities and Poisson's ratio, we were able to detect the migration of the injected CO2 plume. Acknowledgment This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).

  20. Using loose-fill perlite with normal weight precast wall panels to lower the cost, time of construction projects, and to provide an alternative to lightweight concrete

    NASA Astrophysics Data System (ADS)

    Al kulabi, Ahmed Kamil

    Lightweight concrete has been used in construction because of its properties, such as thermal, and fire resistances although it is more expensive and less available than normal weight concrete. One way to save time, cost, and to provide an alternative to lightweight concrete in construction projects is to reduce the number of installed insulations on precast wall panels and to improve the properties of normal weight concrete panels, respectively. These goals can be achieved by improving the four properties of precast panels, such as thermal resistance, fire resistance, heat capacity, and sound insulation by using perlite as insulation. The main goals of this research are getting buildings constructed or modified in less time and cost by producing superior wall panels and improving the properties of normal weight panels. Superior wall panels are new panels that provide the four properties listed above. Precast panels with different cross sections, concrete type, and different amounts of perlite will be investigated to observe the impact of each factor on the mentioned properties. The cost of each panel will be studied, and analytical methods will be used to find the optimum panel that provides the four mentioned properties with least cost. Moreover, theoretical methods will be applied to calculate the four properties for each panel. The preliminary theoretical calculations approved a good improvement in the four properties. In summary, the four properties of precast panels can be improved, time, and cost of construction can be reduced by using perlite as insulation.

  1. TraMoS project - III. Improved physical parameters, timing analysis and starspot modelling of the WASP-4b exoplanet system from 38 transit observations

    NASA Astrophysics Data System (ADS)

    Hoyer, S.; López-Morales, M.; Rojo, P.; Nascimbeni, V.; Hidalgo, S.; Astudillo-Defru, N.; Concha, F.; Contreras, Y.; Servajean, E.; Hinse, T. C.

    2013-09-01

    We report 12 new transit observations of the exoplanet WASP-4b from the Transit Monitoring in the South (TraMoS) project. These transits are combined with all previously published transit data for this planet to provide an improved radius measurement of Rp = 1.395 ± 0.022Rjup and improved transit ephemerides. In a new homogeneous analysis in search for transit timing variations (TTVs) we find no evidence of those with rms amplitudes larger than 20 s over a 4-yr time span. This lack of TTVs rules out the presence of additional planets in the system with masses larger than about 2.5, 2.0 and 1.0 M⊕ around the 1:2, 5:3 and 2:1 orbital resonances. Our search for the variation of other parameters, such as orbital inclination and transit depth, also yields negative results over the total time span of the transit observations. Finally, we perform a simple study of stellar spots configurations of the system and conclude that the star rotational period is about 34 d.

  2. Real-time PCR for the detection of Salmonella spp. in food: An alternative approach to a conventional PCR system suggested by the FOOD-PCR project.

    PubMed

    Hein, Ingeborg; Flekna, Gabriele; Krassnig, Martina; Wagner, Martin

    2006-09-01

    A real-time PCR assay using non-patented primers and a TaqMan probe for the detection and quantification of Salmonella spp. is presented. The assay is based on an internationally validated conventional PCR system, which was suggested as a standard method for the detection of Salmonella spp. in the FOOD-PCR project. The assay was sensitive and specific. Consistent detection of 9.5 genome equivalents per PCR reaction was achieved, whereas samples containing an average of 0.95 genome equivalents per reaction were inconsistently positive. The assay performed equally well as a commercially available real-time PCR assay and allowed sensitive detection of Salmonella spp. in artificially contaminated food. After enrichment for 16 h in buffered peptone water (BPW) or universal pre-enrichment broth (UPB) 2.5 CFU/25 g salmon and minced meat, and 5 CFU/25 g chicken meat and 25 ml raw milk were detected. Enrichment in BPW yielded higher numbers of CFU/ml than UPB for all matrices tested. However, the productivity of UPB was sufficient, as all samples were positive with both real-time PCR methods, including those containing less than 300 CFU/ml enrichment broth (enrichment of 5 CFU/25 ml raw milk in UPB).

  3. Analysis of GPS Data Using Near Real-Time Data from the Volcano Exploration Project in the Community College Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    House, M.; Nagy-Shadman, E.; Wilbur, B.

    2010-12-01

    Using real-time data or near-real-time data in the classroom is an exciting prospect in Introductory Physical Geology courses, especially since it promises to offer students a chance to experience the excitement and uncertainty associated with the study of the natural world that appeals to so many of their instructors. However, there are several obstacles to this approach in the community college. Namely, many introductory level community college earth science courses have no mathematics prerequisites; as such, a typical classroom may include a wide range of mathematical skills and many students may be unable to participate in the analysis of “real” data. Further, reliable computer access to websites offering real-time data can be spotty at some institutions and for some students on home computers. In response to this problem we have created a multipart volcano monitoring activity based on the USGS Volcano Exploration Project: Pu`u `O`o (VEPP) website. This activity is designed for freshman or sophomore level courses in Introductory Geology or Geological Hazards for non-majors. No prior math skills are assumed; the activity can be completed without prior knowledge of GPS data, volcano monitoring or Hawaiian geology. The activity consists of three parts: (1) a background lecture on basic geology of volcanoes like Kilauea and use of GPS in volcano monitoring; (2) a lab activity or a homework assignment based on near real-time data downloaded from the VEPP website; and (3) a group wrap-up that focuses on real-time data by exploring other aspects of the VEPP website. The lab activity requires examination of downloaded GPS time series data for a specified time period (this can be modified as desired by the instructor), computation of displacements, graphing of displacement vectors for identified time intervals and determination of actual motion vectors, followed by a discussion of the displacements observed. These activities are interspersed by guided questions

  4. Project PRISM: Project Manual.

    ERIC Educational Resources Information Center

    Cunnion, Maryellen; And Others

    The first of three volumes of Project PRISM, a program designed to help classroom teachers (grades 6 through 8) provide for the needs of their gifted and talented students without removing those students from the mainstream of education, outlines the project's background and achievements. Sections review the following project aspects (sample…

  5. Project Choice.

    ERIC Educational Resources Information Center

    Ewing Marion Kauffman Foundation, Kansas City, MO.

    Project Choice was begun with the goal of increasing the number of inner-city students who graduate on time. Ewing M. Kauffman and his business and foundation associates designed and elected to test a model that used the promise of postsecondary education or training as the incentive to stay in school. This report details the evolution of Project…

  6. Estimated lag time in global carbon emissions and CO2 concentrations produced by commercial nuclear power through 2009 with projections through 2030.

    PubMed

    Coleman, Neil M; Abramson, Lee R; Coleman, Fiona A B

    2012-03-01

    This study examines the past and future impact of nuclear reactors on anthropogenic carbon emissions to the atmosphere. If nuclear power had never been commercially developed, what additional global carbon emissions would have occurred? More than 44 y of global nuclear power have caused a lag time of at least 1.2 y in carbon emissions and CO2 concentrations through the end of 2009. This lag time incorporates the contribution of life cycle carbon emissions due to the construction and operation of nuclear plants. Cumulative global carbon emissions would have been about 13 Gt greater through 2009, and the mean annual CO2 concentration at Mauna Loa would have been ~2.7 ppm greater than without nuclear power. This study finds that an additional 14–17 Gt of atmospheric carbon emissions could be averted by the global use of nuclear power through 2030, for a cumulative total of 27–30 Gt averted during the period 1965–2030. This result is based on International Atomic Energy Agency projections of future growth in nuclear power from 2009–2030, modified by the recent loss or permanent shutdown of 14 reactors in Japan and Germany

  7. The application of operations research methodologies to the delivery of care model for traumatic spinal cord injury: the access to care and timing project.

    PubMed

    Noonan, Vanessa K; Soril, Lesley; Atkins, Derek; Lewis, Rachel; Santos, Argelio; Fehlings, Michael G; Burns, Anthony S; Singh, Anoushka; Dvorak, Marcel F

    2012-09-01

    The long-term impact of spinal cord injury (SCI) on the health care system imposes a need for greater efficiency in the use of resources and the management of care. The Access to Care and Timing (ACT) project was developed to model the health care delivery system in Canada for patients with traumatic SCI. Techniques from Operations Research, such as simulation modeling, were used to predict the impact of best practices and policy initiatives on outcomes related to both the system and patients. These methods have been used to solve similar problems in business and engineering and may offer a unique solution to the complexities encountered in SCI care delivery. Findings from various simulated scenarios, from the patients' point of injury to community re-integration, can be used to inform decisions on optimizing practice across the care continuum. This article describes specifically the methodology and implications of producing such simulations for the care of traumatic SCI in Canada. Future publications will report on specific practices pertaining to the access to specialized services and the timing of interventions evaluated using the ACT model. Results from this type of research will provide the evidence required to support clinical decision making, inform standards of care, and provide an opportunity to engage policymakers.

  8. Relative sea level trend and variability in the central Mediterranean in the time span 1872-2014 from tide gauge data: implications for future projections

    NASA Astrophysics Data System (ADS)

    Anzidei, Marco; Vecchio, Antonio

    2015-04-01

    We used tidal data collected in the time span 1872-2014 from a set of historical and modern stations located in the central Mediterranean, along the coasts of Italy, France, Slovenia and Croatia. The longest records span across the last two or three centuries for the tidal stations of Genova, Marseille, Trieste and Venice. While data from Bakar, Dubrovink, Rovinji and Split, all located along the coast of the Adriatic sea, provide valid records for a time span about 50 years long. In addition to these stations, since 1998 become available for the Italian region new sea level data from the dense national tidal network (www.mareografico.it). These digital stations are collecting data continuously at 10 minute sampling interval with a nominal accuracy at 1 mm. Therefore, in addition to the historical stations, we have the opportunity to analyze a sea level data set that cover about the last 16 years. In this study we show and discuss the results of our analysis of sea level data for the central Mediterranean, providing new insights on sea level trend and variability for about the past 140 years. Finally, based on sea level data and IPCC reports, we provide future sea level projections for this region for the year 2100 with implications for coastal flooding of lowland areas.

  9. Project Artemis

    NASA Technical Reports Server (NTRS)

    Birchenough, Shawn; Kato, Denise; Kennedy, Fred; Akin, David

    1990-01-01

    The goals of Project Artemis are designed to meet the challege of President Bush to return to the Moon, this time to stay. The first goal of the project is to establish a permanent manned base on the Moon for the purposes of scientific research and technological development. The knowledge gained from the establishment and operations of the lunar base will then be used to achieve the second goal of Project Artemis, the establishment of a manned base on the Martian surface. Throughout both phases of the program, crew safety will be the number one priority. There are four main issues that have governed the entire program: crew safety and mission success, commonality, growth potential, and costing and scheduling. These issues are discussed in more detail.

  10. Bayesian Event Tree (BET) approach to Near Real Time monitoring on active volcanoes within ASI-SRV project: Mt. Etna test case

    NASA Astrophysics Data System (ADS)

    Silvestri, Malvina; Musacchio, Massimo; Taroni, Matteo; Fabrizia Buongiorno, Maria; Dini, Luigi

    2010-05-01

    ASI-Sistema Rischio Vulcanico (SRV) project is devoted to the development of a pre-operative integrated system managing different Earth Observation (EO) and Non EO data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes. The project provides the capability to maintain a repository where the acquired data are stored and generates products offering a support to risk managers during the different volcanic activity phases. All the products are obtained considering technical choices and developments of ASI-SRV based on flexible and scalable modules which take into account also the new coming space sensors and new processing algorithms. An important step of the project development regards the technical and scientific feasibility of the provided products that depends on the data availability, accuracy algorithms and models used in the processing and of course the possibility to validate the results by means of comparison with non-EO independent measurements. The multivariate analysis allows to perform multiple comparisons in order to have a first idea of which variables are largely preferentially or rather rarely distributed, also considering their geographic localization. The "Volcanic Parameter" cross correlation will allow to define the weight of each product that will be used as input in the BET-EF model (Bayesian Event Tree model for eruption forecasting ) which is an already developed algorithm for the eruption model, and will be adapt, as it is, to the ASI-SRV needs. The BET model represents a flexible tool to provide probabilities of any specific event at which we are interested in, by merging any kind of available and relevant information, such as theoretical models, a priori beliefs, monitoring measures, and past data. It is mainly based on a Bayesian procedure and it relies on the fuzzy approach to manage monitoring data. The method deals with short- and long-term forecasting

  11. The Challenge of Time-Dependent Control of Both Processing and Performance of Materials at the Mesoscale, and the MaRIE Project

    NASA Astrophysics Data System (ADS)

    Barnes, Cris W.

    DOE and NNSA are recognizing a mission need for flexible and reduced-cost product-based solutions to materials through accelerated qualification, certification, and assessment. The science challenge lies between the nanoscale of materials and the integral device scale, at the middle or ''mesoscale'' where interfaces, defects, and microstructure determine the performance of the materials over the lifecycle of the intended use. Time-dependent control of the processing, structure and properties of materials at this scale lies at the heart of qualifying and certifying additive manufactured parts; experimental data of high fidelity and high resolution are necessary to discover the right physical mechanisms to model and to validate and calibrate those reduced-order models in codes on Exascale computers. The scientific requirements to do this are aided by a revolution in coherent imaging of non-periodic features that can be combined with scattering off periodic structures. This drives the need to require a coherent x-ray source, brilliant and high repetition rate, of sufficiently high energy to see into and through the mesoscale. The Matter-Radiation Interactions in Extremes (MaRIE) Project is a proposal to build such a very-high-energy X-ray Free Electron Laser.

  12. Can reductions in logging damage increase carbon storage over time? Evaluation of a simulation model for a pilot carbon offset project in Malaysia

    SciTech Connect

    Pinard, M.A.

    1995-09-01

    Selective timber harvesting operations, if uncontrolled, can severely degrade a forest. Although techniques for reducing logging damage are well-known and inexpensive to apply, incentives to adopt these techniques are generally lacking. Power companies and other emitters of {open_quotes}greenhouse{close_quotes} gases soon may be forced to reduce or otherwise offset their net emissions; one offset option is to fund programs aimed at reducing logging damage. To investigate the consequences of reductions in logging damage for ecosystem carbon storage, I constructed a model to simulate changes in biomass and carbon pools following logging of primary dipterocarp forests in southeast Asia. I adapted a physiologically-driven, tree-based model of natural forest gap dynamics (FORMIX) to simulate forest recovery following logging. Input variables included stand structure, volume extracted, stand damage (% stems), and soil disturbance (% area compacted). Output variables included total biomass, tree density, and total carbon storage over time. Assumptions of the model included the following: (1) areas with soil disturbances have elevated probabilities of vine colonization and reduced rates of tree establishment, (2) areas with broken canopy but no soil disturbance are colonized initially by pioneer tree species and 20 yr later by persistent forest species, (3) damaged trees have reduced growth and increased mortality rates. Simulation results for two logging techniques, conventional and reduced-impact logging, are compared with data from field studies conducted within a pilot carbon offset project in Sabah, Malaysia.

  13. Hydrothermal conditions and resaturation times in underground openings for a nuclear waste repository in the Umtanum flow at the Basalt Waste Isolation Project

    SciTech Connect

    Pruess, K.; Bodvarsson, G.

    1982-07-01

    Numerical simulation techniques have been used to study heat flow and pore fluid migration in the near field of storage tunnels and canister storage holes in a proposed high-level nuclear waste repository in the Umtanum Basalt at the Basalt Waste Isolation Project site at Hanford, Washington. Particular emphasis was placed on evaluating boiling conditions in the host rock. Sensitivity studies were performed to determine the influence of variations in critical site-specific parameters which are not presently accurately known. The results indicate that, even when rather extreme values are assumed for key hydrothermal parameters, the volume of rock dried by boiling of pore fluids is negligible compared to the volume of excavated openings. The time required for saturation of backfilling materials is thus controlled by the volume of the mined excavations. When realistic values for the parameters of the natural and man-made systems are used resaturation is predicted to occur within less than two years after backfilling is placed. The approximations used in the analyses, and their limitations, are discussed in the body of the report. Recommendations are made for additional studies of the thermohydrological behavior of a high-level nuclear waste repository. 31 references, 76 figures, 7 tables.

  14. A time series study on the effects of heat on mortality and evaluation of heterogeneity into European and Eastern-Southern Mediterranean cities: results of EU CIRCE project

    PubMed Central

    2013-01-01

    Background The Mediterranean region is particularly vulnerable to the effect of summer temperature. Within the CIRCE project this time-series study aims to quantify for the first time the effect of summer temperature in Eastern-Southern Mediterranean cities and compared it with European cities around the Mediterranean basin, evaluating city characteristics that explain between-city heterogeneity. Methods The city-specific effect of maximum apparent temperature (Tappmax) was assessed by Generalized Estimation Equations, assuming a linear threshold model. Then, city-specific estimates were included in a random effect meta-regression analysis to investigate the effect modification by several city characteristics. Results Heterogeneity in the temperature-mortality relationship was observed among cities. Thresholds recorded higher values in the warmest cities of Tunis (35.5°C) and Tel-Aviv (32.8°C) while the effect of Tappmax above threshold was greater in the European cities. In Eastern-Southern Mediterranean cities a higher effect was observed among younger age groups (0–14 in Tunis and 15–64 in Tel-Aviv and Istanbul) in contrast with the European cities where the elderly population was more vulnerable. Climate conditions explained most of the observed heterogeneity and among socio-demographic and economic characteristics only health expenditure and unemployment rate were identified as effect modifiers. Conclusions The high vulnerability observed in the young populations in Eastern-Southern Mediterranean cities represent a major public health problem. Considering the large political and economic changes occurring in this region as well future temperature increase due to climate change, it is important to strengthen research and public health efforts in these Mediterranean countries. PMID:23822609

  15. Developmental Switch in Spike Timing-Dependent Plasticity and Cannabinoid-Dependent Reorganization of the Thalamocortical Projection in the Barrel Cortex

    PubMed Central

    Huang, Jui-Yen; Yamasaki, Miwako; Watanabe, Masahiko; Lu, Hui-Chen

    2016-01-01

    The formation and refinement of thalamocortical axons (TCAs) is an activity-dependent process (Katz and Shatz, 1996), but its mechanism and nature of activity are elusive. We studied the role of spike timing-dependent plasticity (STDP) in TCA formation and refinement in mice. At birth (postnatal day 0, P0), TCAs invade the cortical plate, from which layers 4 (L4) and L2/3 differentiate at P3-P4. A portion of TCAs transiently reach toward the pia surface around P2-P4 (Senft and Woolsey, 1991; Rebsam et al., 2002) but are eventually confined below the border between L2/3 and L4. We previously showed that L4-L2/3 synapses exhibit STDP with only potentiation (timing-dependent long-term potentiation [t-LTP]) during synapse formation, then switch to a Hebbian form of STDP. Here we show that TCA-cortical plate synapses exhibit robust t-LTP in neonates, whose magnitude decreased gradually after P4-P5. After L2/3 is differentiated, TCA-L2/3 gradually switched to STDP with only depression (t-LTD) after P7-P8, whereas TCA-L4 lost STDP. t-LTP was dependent on NMDA receptor and PKA, whereas t-LTD was mediated by Type 1 cannabinoid receptors (CB1Rs) probably located at TCA terminals, revealed by global and cortical excitatory cell-specific knock-out of CB1R. Moreover, we found that administration of CB1R agonists, including Δ9-tetrahydrocannabinol, caused substantial retraction of TCAs. Consistent with this, individual thalamocortical axons exuberantly innervated L2/3 at P12 in CB1R knock-outs, indicating that endogenous cannabinoid signaling shapes TCA projection. These results suggest that the developmental switch in STDP and associated appearance of CB1R play important roles in the formation and refinement of TCAs. SIGNIFICANCE STATEMENT It has been shown that neural activity is required for initial synapse formation of thalamocortical axons with cortical cells, but precisely what sort of activities in presynaptic and postsynaptic cells are required is not yet clear. In

  16. Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

    1998-01-01

    It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming

  17. Project BALLOTS: Bibliographic Automation of Large Library Operations Using a Time-Sharing System. Progress Report (3/27/69 - 6/26/69).

    ERIC Educational Resources Information Center

    Veaner, Allen B.

    Project BALLOTS is a large-scale library automation development project of the Stanford University Libraries which has demonstrated the feasibility of conducting on-line interactive searches of complex bibliographic files, with a large number of users working simultaneously in the same or different files. This report documents the continuing…

  18. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT ESTABLISHMENT OF METHODOLOGY FOR TIME DOMAIN SOIL STRUCTURE INTERACTION ANALYSIS OF HANFORD DST

    SciTech Connect

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank DSV Integrity Project-DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DST assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil, and the effects of the primary tank contents. The DST and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste. Soil-structure interaction analyses are traditionally solved in the frequency

  19. The Light Response of the XENON100 Time Projection Chamber and the Measurements of the Optical Parameters with the Xenon Scintillation Light

    NASA Astrophysics Data System (ADS)

    Choi, Bin

    The XENON program is a phased project using liquid xenon as a sensitive detector medium in search for weakly interacting massive particles (WIMPs). These particles are the leading candidates to explain the non-baryonic, cold dark matter in our Universe. XENON100, the successor experiment of XENON10, has increased the target liquid xenon mass to 61 kg with a 100 times reduction in background rate enabling a large increase in sensitivity to WIMP-nucleon interaction cross-section. To-date, the most stringent limit on this cross-section over a wide range of WIMP masses have been obtained with XENON100. XENON100 is a detector responding to the scintillation of xenon and the work of this thesis will mainly focus on the light response of the detector. Chapter 1 describes the evidences for dark matter and some of the detection methods, roughly divided by the indirect and the direct detection. In the section 1.2.2 for direct detection, a treatment of interaction rate of WIMPs is introduced. Chapter 2 is a description of the XENON100 detector, some of the main characteristics of liquid xenon, followed by the detector design. In Chapter 3, the light response of the XENON100 time projection chamber (TPC) is explained, including the Monte Carlo simulation work that was carried out prior to the main data taking. The Monte Carlo provided the basic idea of understanding the detector in the early stage of design and calibration, but the actual corrections of the light signals were determined later with the real data. Several optical parameters are critical in explaining the light response, such as the quantum efficiency (QE) of the photomultipliers (PMTs) used in the detector and the reflectivity of the teflon (Polytetrafluoroethylene, PTFE) material that surrounds the liquid xenon target volume and defines the TPC. Since the few existing measurements of reflectivity of PTFE in liquid xenon were performed in different conditions and thus could not be applied, the XENON

  20. Project Notes

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Presents sixteen project notes developed by pupils of Chipping Norton School and Bristol Grammar School, in the United Kingdom. These Projects include eight biology A-level projects and eight Chemistry A-level projects. (HM)

  1. SIMBIOS Project

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; McClain, Charles R.; Busalacchi, Antonio J. (Technical Monitor)

    2001-01-01

    The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRAI) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.

  2. Provision of near-real-time atmospheric CO2 concentrations in the MACC-II project: combining observations, land surface modelling, and high-resolution transport

    NASA Astrophysics Data System (ADS)

    Engelen, R. J.; Agusti-Panareda, A.; Balsamo, G.; Boussetta, S.; Chevallier, F.; Massart, S.

    2012-12-01

    The Monitoring Atmospheric Composition and Climate project (MACC-II) is the current pre-operational atmospheric service of the European GMES programme. MACC-II provides data records on atmospheric composition for recent years, data for monitoring present conditions and forecasts of the distribution of key constituents for a few days ahead. MACC combines state-of-the-art atmospheric modelling with Earth observation data to provide information services covering Air Quality and Atmospheric Composition, Climate Forcing, the Ozone Layer and UV radiation, Solar Energy, and Emissions and Surface Fluxes MACC-II uses a wide array of satellite and in-situ data observing both meteorological and atmospheric composition variables to provide a best estimate of the current state of the atmosphere on a daily basis. These analyses are then used as initial conditions for 5-day global forecasts of atmospheric composition and 4-day European air quality forecasts (http://www.gmes-atmosphere.eu). One of the aims of the MACC-II greenhouse gas service is to monitor fluxes of CO2 and CH4 using a combination of satellite and in-situ observations. However, a newly developed product is the provision of global atmospheric CO2 concentrations in near-real-time (NRT) that can be used as boundary conditions for regional studies as well as to monitor and support newly developed satellite observations, such as GOSAT and OCO-2. The system is able to produce various statistics about the behaviour of the satellite retrievals relative to the model. Also, the MACC-II system can provide accurate a priori information in NRT as input to these satellite retrievals. The CO2 forecasting system uses the ECMWF numerical weather prediction (NWP) model with a fully integrated version of the C-TESSEL land carbon model to model the net ecosystem exchange (NEE) fluxes over land. Anthropogenic emissions and ocean fluxes are currently prescribed, while the emissions from wild fires and biomass burning are provided by

  3. The electronics and data acquisition system for the DarkSide-50 veto detectors

    SciTech Connect

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; Cecco, S. De; Deo, M. De; Vincenzi, M. De; Derbin, A.; Devoto, A.; Eusanio, F. Di; Pietro, G. Di; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2016-12-01

    DarkSide-50 is a detector for dark matter candidates in the form of weakly interacting massive particles (WIMPs). It utilizes a liquid argon time projection chamber (LAr TPC) for the inner main detector. The TPC is surrounded by a liquid scintillator veto (LSV) and a water Cherenkov veto detector (WCV). The LSV and WCV, both instrumented with PMTs, act as the neutron and cosmogenic muon veto detectors for DarkSide-50. This paper describes the electronics and data acquisition system used for these two detectors.

  4. CALIS - a CALibration Insertion System for the DarkSide-50 dark matter search experiment

    SciTech Connect

    Agnes, P.; et al.

    2012-12-28

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  5. Recent Results from ArgoNeuT and Status of MicroBooNE

    SciTech Connect

    Szelc, Andrzej

    2015-07-10

    Liquid Argon Time Projection Chamber (LArTPC) detectors hold the key to answering the outstanding questions about the role of neutrinos in the Standard Model of Particle physics and beyond. Their fine granularity combined with calorimetric capabilities allows for precision measurements that answering these questions will require. Here, we discuss the recent results from the ArgoNeuT experiment as well as the status and prospects for MicroBooNE, both a part of the US-based LArTPC neutrino program.

  6. Accelerators for the PS neutrino beam

    NASA Astrophysics Data System (ADS)

    Steerenberg, R.; Calviani, M.; Gschwendtner, E.; Pardons, A.; Vincke, H.

    2013-02-01

    A recent memorandum for an experimental proposal [1] was discussed during the CERN PS and SPS experimental committee (SPSC) of April 2011 and at the Research Board of June 2011. The proposed experiment, with objective to investigate the anomalous νμ → νe oscillations, aims at re-using the discontinued CERN PS Neutrino Facility (PSNF) and experimental zones to install a 150 ton liquid argon time projection chamber (LArTPC) as near detector and a 600 ton LArTPC as far detector. This article will summarize the experimental needs, the proposed facility layout, a primary beam production scheme and the requirements for the reconstruction of the PSNF.

  7. The ICARUS T600 Experiment in the Gran Sasso Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Kisiel, J.; Cieślik, K.; Dąbrowska, A.; Holeczek, J.; Kiełczewska, D.; Kochanek, I.; Kozłowski, T.; Łagoda, J.; Mania, S.; Mijakowski, P.; Palczewski, T. J.; Posiadała, M.; Przewłocki, P.; Rondio, E.; Sobczyk, J.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Szeglowski, T.; Szeptycka, M.; Wąchała, T.; Zalewska, A.

    2009-11-01

    With a mass of about 600 tons of Liquid Argon (LAr), the ICARUS T600 detector is the biggest, up to now, LAr Time Projection Chamber (TPC). Following its successful test run, on the Earth surface, in Pavia (Italy) in 2001, the detector is now very close to start data taking in the Gran Sasso underground laboratory. The main features of the LAr TPC technique, together with a short discussion of some of the ICARUS T600 test run results, are presented in this paper.

  8. Improving Dark Matter Searches by Measuring the Nucleon Axial Form Factor: Perspectives from MicroBooNE

    SciTech Connect

    Miceli, Tia; Papavassiliou, Vassili; Pate, Stephen; Woodruff, Katherine

    2015-11-01

    The MicroBooNE neutrino experiment at Fermilab is constructing a liquid-argon time-projection chamber for the Booster Neutrino Beam to study neutrino oscillations and interactions with nucleons and nuclei, starting in 2014. We describe the experiment and focus on its unique abilities to measure cross sections at low values of $Q^2$. In particular, the neutral-current elastic scattering cross section is especially interesting, as it is sensitive to the contribution of the strange sea quark spin to the angular-momentum of the nucleon, $\\Delta s$. Implications for dark-matter searches are discussed.

  9. Time-Encoded Imagers.

    SciTech Connect

    Marleau, Peter; Brubaker, Erik

    2014-11-01

    This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.

  10. Accelerating Software Development through Agile Practices--A Case Study of a Small-Scale, Time-Intensive Web Development Project at a College-Level IT Competition

    ERIC Educational Resources Information Center

    Zhang, Xuesong; Dorn, Bradley

    2012-01-01

    Agile development has received increasing interest both in industry and academia due to its benefits in developing software quickly, meeting customer needs, and keeping pace with the rapidly changing requirements. However, agile practices and scrum in particular have been mainly tested in mid- to large-size projects. In this paper, we present…

  11. Steady Stream of High School Graduates Enter B.C. Public Post-Secondary Education for the First Time Each Year. Research Results from the Student Transitions Project

    ERIC Educational Resources Information Center

    Student Transitions Project, 2014

    2014-01-01

    The Student Transition project (STP) has collected eleven years of grade 12 and post-secondary enrollment data, since it's inception in 2003. This information is used to track student transitions from grade 12 graduation into post-secondary education, student mobility between post-secondary institutions and post-secondary credential completions.…

  12. I Thought This Was Going to Be a Waste of Time: How Portfolio Construction Can Support Student Learning from Project-Based Experiences

    ERIC Educational Resources Information Center

    Turns, Jennifer; Cuddihy, Elisabeth; Guan, Zhiwei

    2010-01-01

    In this work, we sought to understand ways that students experienced a small-scale portfolio assignment provided to them as an opportunity reflect on their experiences in a project-based class. This work was motivated by research in various instructional contexts showing that portfolio construction results in important learning outcomes. We wanted…

  13. No Enemies in Aliceville: A Seventh Grade Writing Project Takes on a Deeper Meaning, Thanks to a Piece of Local History that Time Forgot

    ERIC Educational Resources Information Center

    Davidson, Alice

    2005-01-01

    In this article, the author shares her experience of participating in "The Novel Process" workshop, given by Roz Morris in Hoover, Alabama, for her seventh grade advanced reading class at Robert F. Bumpus Middle School. "The Novel Process" is a year-long writing project that culminates in the publication of a novel that…

  14. Projects Work!

    ERIC Educational Resources Information Center

    Textor, Martin R.

    2005-01-01

    The great educational value of projects is emphasized by contrasting negative aspects of the life of today's children with the goals of project work. This is illustrated by a project "Shopping." It is shown what children are learning in such projects and what the advantages of project work are. Relevant topic areas, criteria for selecting a…

  15. Project Wild (Project Tame).

    ERIC Educational Resources Information Center

    Siegenthaler, David

    For 37 states in the United States, Project Wild has become an officially sanctioned, distributed and funded "environemtnal and conservation education program." For those who are striving to implement focused, sequential, learning programs, as well as those who wish to promote harmony through a non-anthropocentric world view, Project…

  16. Photovoltaic Installation Data from the Open PV Project: Real-time Status of the Solar Photovoltaic Market in the U.S.

    DOE Data Explorer

    The Open PV Project is a collaborative effort between government, industry, and the public that is compiling a comprehensive database of photovoltaic (PV) installation data for the United States. Data for the project are voluntarily contributed from a variety of sources including utilities, installers, and the general public. The data collected is actively maintained by the contributors and are always changing to provide an evolving, up-to-date snapshot of the US solar power market. The database allows searching by state or zipcode, size or date ranges, and organization name. The results include the cost of each solar install and an average of cost per power watt in that specific state. The Open PV Visualization Gallery features four interactive data maps that instantly reconfigure to display updated information as soon as an individual or organization uploads new data.

  17. Cost-Constrained Project Scheduling with Task Durations and Costs That May Increase Over Time: Demonstrated with the U.S. Army Future Combat Systems

    DTIC Science & Technology

    2004-06-01

    INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is...Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction...Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE June 2004 3. REPORT TYPE AND DATES COVERED Master’s

  18. Project Explorer

    NASA Technical Reports Server (NTRS)

    Dannenberg, K. K.; Henderson, A.; Lee, J.; Smith, G.; Stluka, E.

    1984-01-01

    PROJECT EXPLORER is a program that will fly student-developed experiments onboard the Space Shuttle in NASA's Get-Away Special (GAS) containers. The program is co-sponsored by the Alabama Space and Rocket Center, the Alabama-Mississippi Section of the American Institute of Aeronautics and Astronautics, Alabama A&M University and requires extensive support by the University of Alabama in Huntsville. A unique feature of this project will demonstrate transmissions to ground stations on amateur radio frequencies in English language. Experiments Nos. 1, 2, and 3 use the microgravity of space flight to study the solidification of lead-antimony and aluminum-copper alloys, the growth of potassium-tetracyanoplatinate hydrate crystals in an aqueous solution, and the germination of radish seeds. Flight results will be compared with Earth-based data. Experiment No. 4 features radio transmission and will also provide timing for the start of all other experiments. A microprocessor will obtain real-time data from all experiments as well as temperature and pressure measurements taken inside the canister. These data will be transmitted on previously announced amateur radio frequencies after they have been converted into the English language by a digitalker for general reception.

  19. VIPER project

    NASA Technical Reports Server (NTRS)

    Kershaw, John

    1990-01-01

    The VIPER project has so far produced a formal specification of a 32 bit RISC microprocessor, an implementation of that chip in radiation-hard SOS technology, a partial proof of correctness of the implementation which is still being extended, and a large body of supporting software. The time has now come to consider what has been achieved and what directions should be pursued in the future. The most obvious lesson from the VIPER project was the time and effort needed to use formal methods properly. Most of the problems arose in the interfaces between different formalisms, e.g., between the (informal) English description and the HOL spec, between the block-level spec in HOL and the equivalent in ELLA needed by the low-level CAD tools. These interfaces need to be made rigorous or (better) eliminated. VIPER 1A (the latest chip) is designed to operate in pairs, to give protection against breakdowns in service as well as design faults. We have come to regard redundancy and formal design methods as complementary, the one to guard against normal component failures and the other to provide insurance against the risk of the common-cause failures which bedevil reliability predictions. Any future VIPER chips will certainly need improved performance to keep up with increasingly demanding applications. We have a prototype design (not yet specified formally) which includes 32 and 64 bit multiply, instruction pre-fetch, more efficient interface timing, and a new instruction to allow a quick response to peripheral requests. Work is under way to specify this device in MIRANDA, and then to refine the spec into a block-level design by top-down transformations. When the refinement is complete, a relatively simple proof checker should be able to demonstrate its correctness. This paper is presented in viewgraph form.

  20. Time trends of esophageal cancer mortality in Linzhou city during the period 1988-2010 and a Bayesian approach projection for 2020.

    PubMed

    Liu, Shu-Zheng; Zhang, Fang; Quan, Pei-Liang; Lu, Jian-Bang; Liu, Zhi-Cai; Sun, Xi-Bin

    2012-01-01

    In recent decades, decreasing trends in esophageal cancer mortality have been observed across China. We here describe esophageal cancer mortality trends in Linzhou city, a high-incidence region of esophageal cancer in China, during 1988-2010 and make a esophageal cancer mortality projection in the period 2011-2020 using a Bayesian approach. Age standardized mortality rates were estimated by direct standardization to the World population structure in 1985. A Bayesian age-period-cohort (BAPC) analysis was carried out in order to investigate the effect of the age, period and birth cohort on esophageal cancer mortality in Linzhou during 1988-2010 and to estimate future trends for the period 2011-2020. Age-adjusted rates for men and women decreased from 1988 to 2005 and changed little thereafter. Risk increased from 30 years of age until the very elderly. Period effects showed little variation in risk throughout 1988-2010. In contrast, a cohort effect showed risk decreased greatly in later cohorts. Forecasting, based on BAPC modeling, resulted in a increasing burden of mortality and a decreasing age standardized mortality rate of esophageal cancer in Linzhou city. The decrease of esophageal cancer mortality risk since the 1930 cohort could be attributable to the improvements of social- economic environment and lifestyle. The standardized mortality rates of esophageal cancer should decrease continually. The effect of aging on the population could explain the increase in esophageal mortality projected for 2020.

  1. Underestimation of Project Costs

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    Large projects almost always exceed their budgets. Estimating cost is difficult and estimated costs are usually too low. Three different reasons are suggested: bad luck, overoptimism, and deliberate underestimation. Project management can usually point to project difficulty and complexity, technical uncertainty, stakeholder conflicts, scope changes, unforeseen events, and other not really unpredictable bad luck. Project planning is usually over-optimistic, so the likelihood and impact of bad luck is systematically underestimated. Project plans reflect optimism and hope for success in a supposedly unique new effort rather than rational expectations based on historical data. Past project problems are claimed to be irrelevant because "This time it's different." Some bad luck is inevitable and reasonable optimism is understandable, but deliberate deception must be condemned. In a competitive environment, project planners and advocates often deliberately underestimate costs to help gain project approval and funding. Project benefits, cost savings, and probability of success are exaggerated and key risks ignored. Project advocates have incentives to distort information and conceal difficulties from project approvers. One naively suggested cure is more openness, honesty, and group adherence to shared overall goals. A more realistic alternative is threatening overrun projects with cancellation. Neither approach seems to solve the problem. A better method to avoid the delusions of over-optimism and the deceptions of biased advocacy is to base the project cost estimate on the actual costs of a large group of similar projects. Over optimism and deception can continue beyond the planning phase and into project execution. Hard milestones based on verified tests and demonstrations can provide a reality check.

  2. Understanding Population Projections.

    ERIC Educational Resources Information Center

    Haub, Carl

    1987-01-01

    Population projections are "what if" computational exercises. Given selected assumptions about future trends in fertility, mortality, and migration, population trends can be projected. Government and business planners need this information, and they also require enough time to put facilities in place to meet future needs. Everyone benefits from a…

  3. The ANTARES Project

    NASA Astrophysics Data System (ADS)

    Amram, Ph.; Anvar, S.; Aslanides, E.; Aubert, J. J.; Azoulay, R.; Basa, S.; Benhammou, Y.; Bernard, F.; Berthier, R.; Bertin, V.; Billault, M.; Biller, S.; Blanc, F.; Blanc, P. E.; Bland, R. W.; Blondeau, F.; de Botton, N.; Bottu, N.; Boulesteix, J.; Brooks, B.; Brunner, J.; Calzas, A.; Carloganu, C.; Carr, J.; Carton, P. H.; Cartwright, S.; Cases, R.; Cassol, F.; Charles, F.; Charles, J.; Desages, F.; Destelle, J. J.; Dispau, G.; Duval, P. Y.; Engelen, J.; Feinstein, F.; Flores, E. C.; Fopma, J.; Fuda, J. L.; Goret, P.; Gosset, L.; Gournay, J. F.; Hernandez, J. J.; Hubaut, F.; Hubbard, R.; Huss, D.; Jaquet, M.; Jelley, N.; Kajfasz, E.; Kouchner, A.; Kudryavtsev, V.; Lachartre, D.; Lafoux, H.; Lamare, P.; Languillat, J. C.; Laugier, J. P.; Le Provost, H.; Loiseau, D.; Loucatos, S.; Magnier, P.; Marc, K.; Marcelin, M.; Martin, L.; Mazeau, B.; Mazure, A.; McMillan, J.; Meessen, C.; Millot, C.; Mols, P.; Montanet, F.; Moorhead, M.; Moscoso, L.; Navas, S.; Nooren, Van; Olivetto, C.; Palanque-Delabrouille, N.; Pallares, A.; Payre, P.; Perrin, P.; Poinsignon, J.; Potheau, R.; Qian, Z.; Raymond, M.; Roberts, J.; Sacquin, Y.; Schuller, J. P.; Schuster, W.; Spooner, N.; Stolarczyk, T.; Tabary, A.; Talby, M.; Tao, C.; Thompson, L.; Triay, R.; Valdy, M.; Velasco, J.; Vigeolas, E.; Vignaud, D.; Vilanova, D.; Wark, D.; Zuniga, J.

    1999-03-01

    The ANTARES project is an international collaboration with the aim of building a deep-sea large area neutrino telescope within the next decade. The achievements and status of the project as at the time of the conference are briefly discussed, and short term steps as well as longer term plans are described.

  4. SISCAL project

    NASA Astrophysics Data System (ADS)

    Santer, Richard P.; Fell, Frank

    2003-05-01

    The first "ocean colour" sensor, Coastal Zone Color Scanner (CZCS), was launched in 1978. Oceanographers learnt a lot from CZCS but it remained a purely scientific sensor. In recent years, a new generation of satellite-borne earth observation (EO) instruments has been brought into space. These instruments combine high spectral and spatial resolution with revisiting rates of the order of one per day. More instruments with further increased spatial, spectral and temporal resolution will be available within the next years. In the meantime, evaluation procedures taking advantage of the capabilities of the new instruments were derived, allowing the retrieval of ecologically important parameters with higher accuracy than before. Space agencies are now able to collect and to process satellite data in real time and to disseminate them via the Internet. It is therefore meanwhile possible to envisage using EO operationally. In principle, a significant demand for EO data products on terrestrial or marine ecosystems exists both with public authorities (environmental protection, emergency management, natural resources management, national parks, regional planning, etc) and private companies (tourist industry, insurance companies, water suppliers, etc). However, for a number of reasons, many data products that can be derived from the new instruments and methods have not yet left the scientific community towards public or private end users. It is the intention of the proposed SISCAL (Satellite-based Information System on Coastal Areas and Lakes) project to contribute to the closure of the existing gap between space agencies and research institutions on one side and end users on the other side. To do so, we intend to create a data processor that automatically derives and subsequently delivers over the Internet, in Near-Real-Time (NRT), a number of data products tailored to individual end user needs. The data products will be generated using a Geographical Information System (GIS

  5. SIMBIOS Project

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; McClain, Charles R.

    2002-01-01

    The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project. The SIMBIOS Science Team Principal Investigators' (PIs) original contributions to this report are in chapters four and above. The purpose of these contributions is to describe the current research status of the SIMBIOS-NRA-96 funded research. The contributions are published as submitted, with the exception of minor edits to correct obvious grammatical or clerical errors.

  6. Evaluating interannual vegetation anomalies in the Basilicata region using satellite spot vegetation 1999-2011 time series: preliminary results from the Mitra project

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Desantis, Fortunato; Aromando, Angelo; Lanorte, Antonio

    2013-04-01

    The Basilicata region funded a fesr project, MITRA to develop reliable low cost technologies to preserve and enhance natural and cultural heritage in some relevant areas selected as test cases. " Cultural heritage and the natural heritage are increasingly threatened with destruction not only by the traditional causes of decay, but also by changing social and economic conditions which aggravate the situation with even more formidable phenomena of damage or destruction, from THE GENERAL CONFERENCE of the United Nations Educational, Scientific and Cultural Organization meeting in Paris from 17 October to 21 November 1972, at its seventeenth session, available on line " (http://whc.unesco.org/en/conventiontext/). This paper is focused on the preliminary results obtained in the framework of the Mitra project. In particular, a temporal series (1999-2011) of the yearly Maximum Value Composit of SPOT/VEGETATION NDVI was used to carried out investigation on the whole Basilicata region. The PCA was used as a first step of data transform to enhance regions of localized change in multi-temporal data sets (Lasaponara 2006). Results from PCA were further processed using Support Vector machine (SVM) to identify and map land degradation phenomenon Both naturally vegetated areas (forest, shrub-land, herbaceous cover) and agricultural lands have been investigated in order to extract the most prominent natural and/or man induced alterations affecting vegetation behavior. Such analyses can provide valuable information for monitoring the status of vegetation which is an indicator of the degree of stress namely any disturbance that adversely influences plants in response to natural hazards and/or anthropogenic activities. Our findings suggest that the jointly use of PCA and SVM PCA can provide valuable information for environmental management policies involving biodiversity preservation and rational exploitation of natural and agricultural resources. Rosa Lasaponara 2006, On the use of

  7. Manpower and project planning

    NASA Technical Reports Server (NTRS)

    Johnson, David W.

    1991-01-01

    The purpose was to study how manpower and projects are planned at the Facilities Engineering Division (FENGD) within the Systems Engineering and Operations Directorate of the LaRC and to make recommendations for improving the effectiveness and productivity ot the tools that are used. The existing manpower and project planning processes (including the management plan for the FENGD, existing manpower planning reports, project reporting to LaRC and NASA Headquarters, employee time reporting, financial reporting, and coordination/tracking reports for procurement) were discussed with several people, and project planning software was evaluated.

  8. The UP4FUN Intervention Effect on Breaking Up Sedentary Time in 10- to 12-Year-Old Belgian Children: The ENERGY-Project.

    PubMed

    Verloigne, Maïté; Berntsen, Sveinung; Ridgers, Nicola D; Cardon, Greet; Chinapaw, Mai; Altenburg, Teatske; Brug, Johannes; Bere, Elling; De Bourdeaudhuij, Ilse; Van Lippevelde, Wendy; Maes, Lea

    2015-05-01

    There are currently no studies available reporting intervention effects on breaking up children's sedentary time. This study examined the UP4FUN intervention effect on objectively measured number of breaks in sedentary time, number of sedentary bouts (≥ 10 mins) and total and average amount of time spent in those sedentary bouts among 10- to 12-year-old Belgian children. The total sample included 354 children (mean age: 10.9 ± 0.7 years; 59% girls) with valid ActiGraph accelerometer data at pre- and posttest. Only few and small intervention effects were found, namely on total time spent in sedentary bouts immediately after school hours (4-6PM; β = -3.51mins) and on average time spent in sedentary bouts before school hours (6-8.30AM; β = -4.83mins) and immediately after school hours in favor of children from intervention schools (β = -2.71mins). Unexpectedly, girls from intervention schools decreased the number of breaks during school hours (8.30AM-4PM; β = -23.45breaks) and increased the number of sedentary bouts on a weekend day (β = +0.90bouts), whereas girls in control schools showed an increase in number of breaks and a decrease in number of bouts. In conclusion, UP4FUN did not have a consistent or substantial effect on breaking up children's sedentary time and these data suggest that more intensive and longer lasting interventions are needed.

  9. DOE Robotics Project

    SciTech Connect

    Not Available

    1991-01-01

    This document provide the bimonthly progress reports on the Department of Energy (DOE) Robotics Project by the University of Michigan. Reports are provided for the time periods of December 90/January 91 through June 91/July 91. (FI)

  10. The ‘pit-crew’ model for improving door-to-needle times in endovascular stroke therapy: a Six-Sigma project

    PubMed Central

    Rai, Ansaar T; Smith, Matthew S; Boo, SoHyun; Tarabishy, Abdul R; Hobbs, Gerald R; Carpenter, Jeffrey S

    2016-01-01

    Background Delays in delivering endovascular stroke therapy adversely affect outcomes. Time-sensitive treatments such as stroke interventions benefit from methodically developed protocols. Clearly defined roles in these protocols allow for parallel processing of tasks, resulting in consistent delivery of care. Objective To present the outcomes of a quality-improvement (QI) process directed at reducing stroke treatment times in a tertiary level academic medical center. Methods A Six-Sigma-based QI process was developed over a 3-month period. After an initial analysis, procedures were implemented and fine-tuned to identify and address rate-limiting steps in the endovascular care pathway. Prospectively recorded treatment times were then compared in two groups of patients who were treated ‘before’ (n=64) or ‘after’ (n=30) the QI process. Three time intervals were measured: emergency room (ER) to arrival for CT scan (ER–CT), CT scan to interventional laboratory arrival (CT–Lab), and interventional laboratory arrival to groin puncture (Lab–puncture). Results The ER–CT time was 40 (±29) min in the ‘before’ and 26 (±15) min in the ‘after’ group (p=0.008). The CT–Lab time was 87 (±47) min in the ‘before’ and 51 (±33) min in the ‘after’ group (p=0.0002). The Lab–puncture time was 24 (±11) min in the ‘before’ and 15 (±4) min in the ‘after’ group (p<0.0001). The overall ER–arrival to groin-puncture time was reduced from 2 h, 31 min (±51) min in the ‘before’ to 1 h, 33 min (±37) min in the ‘after’ group, (p<0.0001). The improved times were seen for both working hours and off-hours interventions. Conclusions A protocol-driven process can significantly improve efficiency of care in time-sensitive stroke interventions. PMID:26863106

  11. Project GlobWave

    NASA Astrophysics Data System (ADS)

    Busswell, Geoff; Ash, Ellis; Piolle, Jean-Francois; Poulter, David J. S.; Snaith, Helen; Collard, Fabrice; Sheera, Harjit; Pinnock, Simon

    2010-12-01

    The ESA GlobWave project is a three year initiative, funded by ESA and CNES, to service the needs of satellite wave product users across the globe. Led by Logica UK, with support from CLS, IFREMER, SatOC and NOCS, the project will provide free access to satellite wave data and products in a common format, both historical and in near real time, from various European and American SAR and altimeter missions. Building on the successes of similar projects for Sea Surface Temperature and ocean colour, the project aims to stimulate increased use and analysis of satellite wave products. In addition to common-format satellite data the project will provide comparisons with in situ measurements, interactive data analysis tools and a pilot spatial wave forecast verification scheme for operational forecast production centres. The project will begin operations in January 2010, with direction from regular structured user consultation.

  12. The 3rd Joint Solar Dynamics Project data summary: Solar magnetic field, chromospheric and coronal observations near the time of the 18 March 1988 solar eclipse

    NASA Astrophysics Data System (ADS)

    Sime, D. G.; Garcia, C. J.; Lundin, W. E.; Yasukawa, E. A.; Mickey, D. L.; Labonte, B.

    1988-11-01

    The general goal of the HAO/University of Hawaii Joint Solar Dynamics Project is to establish the relationships that exist between the solar magnetic field which is detected in the photosphere and the structure and evolution of the corona. The SOLDYN programs of 1982 and 1983 demonstrated the ability to use existing instruments to gather data of value in the pursuit of that goal. The goals for the observations in 1988 are as follows: (1) Document the state of the sun, from the photosphere up through the chromosphere and out into the corona for the approximately four-week interval around the total solar eclipse of 18 March 1988, and (2) Identify the relationship between the photospheric magnetic fields and the temperature and density structure of the corona. The reduced observations made during this SOLDYN 3 period necessary to achieve these goals are provided. The observations are presented both in the form of daily photographic and photo-electric measurements, and in synoptic format for the period.

  13. High sensitive reflection type long period fiber grating biosensor for real time detection of thyroglobulin, a differentiated thyroid cancer biomarker: the Smart Health project

    NASA Astrophysics Data System (ADS)

    Quero, G.; Severino, R.; Vaiano, P.; Consales, M.; Ruvo, M.; Sandomenico, A.; Borriello, A.; Giordano, M.; Zuppolini, S.; Diodato, L.; Cutolo, A.; Cusano, A.

    2015-09-01

    We report the development of a reflection-type long period fiber grating (LPG) biosensor able to perform the real time detection of thyroid cancer markers in the needle washout of fine-needle aspiration biopsy. A standard LPG is first transformed in a practical probe working in reflection mode, then it is coated by an atactic-polystyrene overlay in order to increase its surrounding refractive index sensitivity and to provide, at the same time, the desired interfacial properties for a stable bioreceptor immobilization. The results provide a clear demonstration of the effectiveness and sensitivity of the developed biosensing platform, allowing the in vitro detection of human Thyroglobulin at sub-nanomolar concentrations.

  14. Analysis of High Precision GPS Time Series and Strain Rates for the Geothermal Play Fairway Analysis of Washington State Prospects Project

    DOE Data Explorer

    Michael Swyer

    2015-02-22

    Global Positioning System (GPS) time series from the National Science Foundation (NSF) Earthscope’s Plate Boundary Observatory (PBO) and Central Washington University’s Pacific Northwest Geodetic Array (PANGA). GPS station velocities were used to infer strain rates using the ‘splines in tension’ method. Strain rates were derived separately for subduction zone locking at depth and block rotation near the surface within crustal block boundaries.

  15. An Overview of CC Coherent Pion Production

    NASA Astrophysics Data System (ADS)

    Williams, Zachary

    2017-01-01

    Neutrino cross-sections are a critical component to any neutrino measurement. With the modern neutrino experiments aiming to measure precision parameters, such as those in long-baseline oscillation experiments, the need for a detailed understanding of neutrino interactions has become even more important. Within this landscape remains a number of experimental challenges in the regime of low energy neutrino cross-sections. This talk will give an overview of recent publications on Charged Current-Coherent Pion Production (CC-Coh Pion) results from a number of experimental collaborations. Specifically, the lack of observation from the SciBooNE and T2K collaborations to observe CC-Coh Pion below one GeV in contrast to the observation of this signature at higher energies by other experiments. The work presented here is a part of the beginning steps to a reanalysis of the SciBooNE data using a modern neutrino generator in order to better understand the previous results. There will be included details of a liquid Argon purification system that is being built at UTA, and of plans for a ``Baby Time Projection Chamber (TPC)'' which will also be built at UTA, and the instrumentation and detector methods used in their construction. The closing is a look to the future for a new analysis at low neutrino energies utilizing Liquid Argon Time Projection Chambers (LArTPCs) based at Fermilab.

  16. First operation and performance of a 200 lt double phase LAr LEM-TPC with a 40 × 76 cm2 readout

    NASA Astrophysics Data System (ADS)

    Badertscher, A.; Curioni, A.; Degunda, U.; Epprecht, L.; Gendotti, A.; Horikawa, S.; Knecht, L.; Lussi, D.; Natterer, G.; Nguyen, K.; Resnati, F.; Rubbia, A.; Viant, T.

    2013-04-01

    In this paper we describe the design, construction, and operation of a first large area double-phase liquid argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). The detector has a maximum drift length of 60 cm and the readout consists of a 40 × 76 cm2 LEM and 2D projective anode to multiply and collect drifting charges. Scintillation light is detected by means of cryogenic PMTs positioned below the cathode. To record both charge and light signals, we have developed a compact acquisition system, which is scalable up to ton-scale detectors with thousands of charge readout channels. The acquisition system, as well as the design and the performance of custom-made charge sensitive preamplifiers, are described. The complete experimental setup has been operated for a first time during a period of four weeks at CERN in the cryostat of the ArDM experiment, which was equipped with liquid and gas argon purification systems. The detector, exposed to cosmic rays, recorded events with a single-channel signal-to-noise ratio in excess of 30 for minimum ionising particles. Cosmic muon tracks and their δ-rays were used to assess the performance of the detector, and to estimate the liquid argon purity and the gain at different amplification fields.

  17. The Fleming Applied Projects Program

    ERIC Educational Resources Information Center

    Spasov, Peter

    2004-01-01

    Applied Projects is a program where every technology student engages in an intensive team project full time during the final academic semester. A wide range of enterprises provide the real-world problems that form the basis of student projects. This article describes the program and how Fleming College uses this program for applied research. To…

  18. Pre-waste-emplacement ground-water travel time sensitivity and uncertainty analyses for Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect

    Kaplan, P.G.

    1993-01-01

    Yucca Mountain, Nevada is a potential site for a high-level radioactive-waste repository. Uncertainty and sensitivity analyses were performed to estimate critical factors in the performance of the site with respect to a criterion in terms of pre-waste-emplacement ground-water travel time. The degree of failure in the analytical model to meet the criterion is sensitive to the estimate of fracture porosity in the upper welded unit of the problem domain. Fracture porosity is derived from a number of more fundamental measurements including fracture frequency, fracture orientation, and the moisture-retention characteristic inferred for the fracture domain.

  19. Global Project Management: Graduate Course

    DTIC Science & Technology

    2006-01-01

    business and if the project will have successful performance. In the final project presentation, the student should address what countries they may...the idiosyncrasies of different countries in an effort to plan a successful global project execution. Alternate schedule. This class may be used for...required? * Will religious factors influence the project? 24-Mar-06 ENCE ft 24 13 GP Characteristics * Multiple Time Zones * Exchange rates * Long

  20. The ACS LCID Project. XI. On the Early Time Resolution of SFHs of Local Group Dwarf Galaxies: Comparing the Effects of Reionization in Models with Observations

    NASA Astrophysics Data System (ADS)

    Aparicio, Antonio; Hidalgo, Sebastian L.; Skillman, Evan; Cassisi, Santi; Mayer, Lucio; Navarro, Julio; Cole, Andrew; Gallart, Carme; Monelli, Matteo; Weisz, Daniel; Bernard, Edouard; Dolphin, Andrew; Stetson, Peter

    2016-05-01

    The analysis of the early star formation history (SFH) of nearby galaxies, obtained from their resolved stellar populations, is relevant as a test for cosmological models. However, the early time resolution of observationally derived SFHs is limited by several factors. Thus, direct comparison of observationally derived SFHs with those derived from theoretical models of galaxy formation is potentially biased. Here we investigate and quantify this effect. For this purpose, we analyze the duration of the early star formation activity in a sample of four Local Group dwarf galaxies and test whether they are consistent with being true fossils of the pre-reionization era; i.e., if the quenching of their star formation occurred before cosmic reionization by UV photons was completed. Two classical dSph (Cetus and Tucana) and two dTrans (LGS-3 and Phoenix) isolated galaxies with total stellar masses between 1.3× {10}6 and 7.2× {10}6 {M}⊙ have been studied. Accounting for time resolution effects, the SFHs peak as much as 1.25 Gyr earlier than the optimal solutions. Thus, this effect is important for a proper comparison of model and observed SFHs. It is also shown that none of the analyzed galaxies can be considered a true fossil of the pre-reionization era, although it is possible that the outer regions of Cetus and Tucana are consistent with quenching by reionization. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #10505.

  1. Map projections

    USGS Publications Warehouse

    ,

    1993-01-01

    A map projection is used to portray all or part of the round Earth on a flat surface. This cannot be done without some distortion. Every projection has its own set of advantages and disadvantages. There is no "best" projection. The mapmaker must select the one best suited to the needs, reducing distortion of the most important features. Mapmakers and mathematicians have devised almost limitless ways to project the image of the globe onto paper. Scientists at the U. S. Geological Survey have designed projections for their specific needs—such as the Space Oblique Mercator, which allows mapping from satellites with little or no distortion. This document gives the key properties, characteristics, and preferred uses of many historically important projections and of those frequently used by mapmakers today.

  2. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system

    NASA Astrophysics Data System (ADS)

    Takarada, S.

    2012-12-01

    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  3. Continuous determination of fine particulate matter mass in the Salt Lake City Environmental Monitoring project: a comparison of real-time and conventional TEOM monitor results.

    PubMed

    Long, Russell W; Eatough, Norman L; Eatough, Delbert J; Meyer, Michael B; Wilson, William E

    2005-12-01

    Fine particulate matter (PM2.5) mass was determined on a continuous basis at the Salt Lake City Environmental Protection Agency Environmental Monitoring for Public Awareness and Community Tracking monitoring site in Salt Lake City, UT, using three different monitoring techniques. Hourly averaged PM2.5 mass data were collected during two sampling periods (summer 2000 and winter 2002) using a real-time total ambient mass sampler (RAMS), sample equilibration system (SES)-tapered element oscillating microbalance (TEOM), and conventional TEOM monitor. This paper compares the results obtained from the various monitoring systems, which differ in their treatment of semivolatile material (SVM; particle-bound water, semivolatile ammonium nitrate, and semivolatile organic compounds). PM2.5 mass results obtained by the RAMS were consistently higher than those obtained by the SES-TEOM and conventional TEOM monitors because of the RAMS ability to measure semivolatile ammonium nitrate and semivolatile organic material but not particle-bound water. The SES-TEOM monitoring system was able to account for an average of 28% of the SVM, whereas the conventional TEOM monitor loses essentially all of the SVM from the single filter during sampling. Occasional mass readings by the various TEOM monitors that are higher than RAMS results may reflect particle-bound water, which, under some conditions, is measured by the TEOM but not the RAMS.

  4. Project LASER

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  5. A clinically integrated curriculum in Evidence-based Medicine for just-in-time learning through on-the-job training: The EU-EBM project

    PubMed Central

    Coppus, Sjors FPJ; Emparanza, Jose I; Hadley, Julie; Kulier, Regina; Weinbrenner, Susanne; Arvanitis, Theodoros N; Burls, Amanda; Cabello, Juan B; Decsi, Tamas; Horvath, Andrea R; Kaczor, Marcin; Zanrei, Gianni; Pierer, Karin; Stawiarz, Katarzyna; Kunz, Regina; Mol, Ben WJ; Khan, Khalid S

    2007-01-01

    Background Over the last years key stake holders in the healthcare sector have increasingly recognised evidence based medicine (EBM) as a means to improving the quality of healthcare. However, there is considerable uncertainty about the best way to disseminate basic knowledge of EBM. As a result, huge variation in EBM educational provision, setting, duration, intensity, content, and teaching methodology exists across Europe and worldwide. Most courses for health care professionals are delivered outside the work context ('stand alone') and lack adaptation to the specific needs for EBM at the learners' workplace. Courses with modern 'adaptive' EBM teaching that employ principles of effective continuing education might fill that gap. We aimed to develop a course for post-graduate education which is clinically integrated and allows maximum flexibility for teachers and learners. Methods A group of experienced EBM teachers, clinical epidemiologists, clinicians and educationalists from institutions from eight European countries participated. We used an established methodology of curriculum development to design a clinically integrated EBM course with substantial components of e-learning. An independent European steering committee provided input into the process. Results We defined explicit learning objectives about knowledge, skills, attitudes and behaviour for the five steps of EBM. A handbook guides facilitator and learner through five modules with clinical and e-learning components. Focussed activities and targeted assignments round off the learning process, after which each module is formally assessed. Conclusion The course is learner-centred, problem-based, integrated with activities in the workplace and flexible. When successfully implemented, the course is designed to provide just-in-time learning through on-the-job-training, with the potential for teaching and learning to directly impact on practice. PMID:18042271

  6. Leisure time and occupational physical activity in relation to obesity and insulin resistance: a population-based study from the Skaraborg Project in Sweden.

    PubMed

    Larsson, Charlotte A; Krøll, Lotte; Bennet, Louise; Gullberg, Bo; Råstam, Lennart; Lindblad, Ulf

    2012-04-01

    The objective was to study obesity and insulin resistance in relation to leisure time physical activity (LTPA) and occupational physical activity (OPA) in a Swedish population, with particular focus on sex differences. Using a cross-sectional design, waist circumference, body mass index (BMI), glucose/insulin metabolism, blood pressure, heart rate, self-reported education, smoking, alcohol consumption, LTPA, and OPA were assessed in 1745 men and women (30-74 years) randomly chosen from 2 municipalities in southwestern Sweden. In both men and women, LTPA was inversely associated with BMI, waist circumference, and the homeostasis model assessment of insulin resistance (HOMA-IR), respectively. These associations remained statistically significant after adjustments for age, OPA, education, alcohol consumption, smoking, and study area, and also for BMI in the analyses concerning waist circumference and HOMA-IR. A statistically significant interaction term (P = .030), adjusted for multiple confounders, revealed a stronger association between LTPA and HOMA-IR in women compared with men. Occupational physical activity was positively associated with BMI (P < .001), waist circumference (P < .001), and HOMA-IR (P = .001), however, only in women. These associations remained when adjusting for multiple confounders. The sex differences were confirmed by statistically significant interaction terms between sex and OPA in association with BMI, waist circumference, and HOMA-IR, respectively. The observed sex differences regarding the strength of the association between LTPA and insulin resistance, and the positive association between OPA and obesity and insulin resistance found solely in women, warrant further investigation. Although exploration of the metabolic effects of OPA appears to be needed, thorough measurement of potential confounders is also vital to understand contextual effects.

  7. The Mini-CAPTAIN Neutron Run and Future CAPTAIN Program

    NASA Astrophysics Data System (ADS)

    Cooper, Robert; CAPTAIN Collaboration

    2016-09-01

    The Cryogenic Apparatus for Precision Tests of Argon Interaction with Neutrinos (CAPTAIN) is an experimental program to measure critical neutrino interaction cross sections in argon for the DUNE long-baseline program. These cross sections are important for understanding and improving the energy resolution of measurements for neutrino oscillations and supernova detection in argon. The full CAPTAIN detector is a 5-ton fiducial volume liquid argon (LAr) time-projection chamber (TPC) with an independently triggered photon detection system (PDS) for fast-timing capabilities on accelerators. To test the full CAPTAIN concept, the 1-ton fiducial volume mini-CAPTAIN detector has been deployed. Mini-CAPTAIN is another LAr TPC with PDS. It was recently deployed to the Weapons Neutron Research (WNR) facility at Los Alamos National Laboratory to measure high-energy neutron interactions in argon. The WNR is a pulsed accelerator capable of delivering neutrons up to 800 MeV in energy. In this talk, I will report on the analysis of the first time-of-flight tagged, high-energy neutron response in liquid argon from our February 2016 run. I will also highlight a second neutron run at the WNR scheduled for Summer 2017 and discuss the implications these data have on the future CAPTAIN program.

  8. The Supernova Key Project

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew

    2017-01-01

    Las Cumbres Observatory is a global network of robotic telescopes specializing in time domain astronomy. It currently has nine 1m telescopes, two 2m telescopes, and seven 0.4m telescopes. The Supernova Key Project is a 3 year program to obtain light curves and spectra of 500 supernovae with Las Cumbres Observatory. Here we show recent results, detail plans for the next Supernova Key Project, and explain how the US community can get involved.

  9. Project SEED.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1986

    1986-01-01

    Reports on Project SEED (Summer Educational Experience for the Disadvantaged) a project in which high school students from low-income families work in summer jobs in a variety of academic, industrial, and government research labs. The program introduces the students to career possibilities in chemistry and to the advantages of higher education.…

  10. Project EASIER.

    ERIC Educational Resources Information Center

    Alvord, David J.; Tack, Leland R.; Dallam, Jerald W.

    1998-01-01

    Describes the development of Project EASIER, a collaborative electronic-data interchange for networking Iowa local school districts, education agencies, community colleges, universities, and the Department of Education. The primary goal of this project is to develop and implement a system for collection of student information for state and federal…

  11. Project Success.

    ERIC Educational Resources Information Center

    Meredith, Larry D.

    Project Success consists of after-school, weekend, and summer educational programs geared toward minority and disadvantaged students to increase their numbers seeking postsecondary education from the Meadville, Pennsylvania area. The project is funded primarily through the Edinboro University of Pennsylvania, whose administration is committed to…

  12. Project CHILD.

    ERIC Educational Resources Information Center

    Robison, Helen F.; And Others

    This document described Project CHILD, a program of educational change and curriculum development for disadvantaged prekindergarten and kindergarten children. The historical part of this report indicates that the project began in 1966 with a small-scale study of teacher behavior and children's responses in a few classrooms in a Harlem school…

  13. Project FAST.

    ERIC Educational Resources Information Center

    Essexville-Hampton Public Schools, MI.

    Described are components of Project FAST (Functional Analysis Systems Training) a nationally validated project to provide more effective educational and support services to learning disordered children and their regular elementary classroom teachers. The program is seen to be based on a series of modules of delivery systems ranging from mainstream…

  14. Improvements in NOAA SURFRAD and ISIS sites for near real-time solar irradiance for verification of NWP solar forecasts for the DOE NOAA Solar Forecast Improvement Project (SFIP)

    NASA Astrophysics Data System (ADS)

    Lantz, K. O.; McComiskey, A. C.; Long, C. N.; Marquis, M.; Olson, J. B.; James, E.; Benjamin, S.; Clack, C.

    2015-12-01

    The DOE-NOAA Solar Forecasting Improvement Project's (SFIP) main goal is to improve solar forecasting and thereby increase penetration of solar renewable energy on the electric grid. NOAA's ISIS and SURFRAD network is part of this initiative by providing high quality solar irradiance measurements for verification of improvements in solar forecasting for the short-term, day ahead, and ramp events. There are 14 ISIS and SURFRAD stations across the continental United States. We will give an overview of recent improvements in the networks for this project. The NOAA SURFRAD team has three main components: 1) In addition to the existing stations, two mobile SURFRAD stations have been built and deployed for 1 year each at two separate solar utility plants. 2) NOAA SURFRAD/ISIS will update the communications at their sites to provide near real-time data for verification activities at the 14 sites. 3) Global horizontal irradiance (GHI), direct normal solar irradiance (DNI), and aerosol optical depth at various spatial and temporal averaging will be compared to forecasts from the 3-km High-Resolution Rapid Refresh (HRRR) and an advanced version of the 13-km Rapid Refresh (RAP) models. We will explore statistical correlations between in-coming and out-going shortwave radiation and longwave radiation at the surface for specific meteorological regimes and how well these are captured by NWP models.

  15. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Evaluating Wetland Restoration Projects in the Columbia River Estuary using Hydroacoustic Telemetry Arrays to Estimate Movement, Survival, and Residence Times of Juvenile Salmonids, Volume XXII (22).

    SciTech Connect

    Perry, Russell W.; Skalski, John R.

    2008-08-01

    Wetlands in the Columbia River estuary are actively being restored by reconnecting these habitats to the estuary, making more wetland habitats available to rearing and migrating juvenile salmon. Concurrently, thousands of acoustically tagged juvenile salmonids are released into the Columbia River to estimate their survival as they migrate through the estuary. Here, we develop a release-recapture model that makes use of these tagged fish to measure the success of wetland restoration projects in terms of their contribution to populations of juvenile salmon. Specifically, our model estimates the fraction of the population that enter the wetland, survival within the wetland, and the mean residence time of fish within the wetland. Furthermore, survival in mainstem Columbia River downstream of the wetland can be compared between fish that remained the mainstem and entered the wetland. These conditional survival estimates provide a means of testing whether the wetland improves the subsequent survival of juvenile salmon by fostering growth or improving their condition. Implementing such a study requires little additional cost because it takes advantage of fish already released to estimate survival through the estuary. Thus, such a study extracts the maximum information at minimum cost from research projects that typically cost millions of dollars annually.

  16. Project summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    California Polytechnic State University's design project for the 1990-91 school year was the design of a close air support aircraft. There were eight design groups that participated and were given requests for proposals. These proposals contained mission specifications, particular performance and payload requirements, as well as the main design drivers. The mission specifications called for a single pilot weighing 225 lb with equipment. The design mission profile consisted of the following: (1) warm-up, taxi, take off, and accelerate to cruise speed; (2) dash at sea level at 500 knots to a point 250 nmi from take off; (3) combat phase, requiring two combat passes at 450 knots that each consist of a 360 deg turn and an energy increase of 4000 ft. - at each pass, half of air-to-surface ordnance is released; (4) dash at sea level at 500 knots 250 nmi back to base; and (5) land with 20 min of reserve fuel. The request for proposal also specified the following performance requirements with 50 percent internal fuel and standard stores: (1) the aircraft must be able to accelerate from Mach 0.3 to 0.5 at sea level in less than 20 sec; (2) required turn rates are 4.5 sustained g at 450 knots at sea level; (3) the aircraft must have a reattack time of 25 sec or less (reattack time was defined as the time between the first and second weapon drops); (4) the aircraft is allowed a maximum take off and landing ground roll of 2000 ft. The payload requirements were 20 Mk 82 general-purpose free-fall bombs and racks; 1 GAU-8A 30-mm cannon with 1350 rounds; and 2 AIM-9L Sidewinder missiles and racks. The main design drivers expressed in the request for proposal were that the aircraft should be survivable and maintainable. It must be able to operate in remote areas with little or no maintenance. Simplicity was considered the most important factor in achieving the former goal. In addition, the aircraft must be low cost both in acquisition and operation. The summaries of the aircraft

  17. Rapid Building Assessment Project

    DTIC Science & Technology

    2014-05-01

    Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT...complication to the site managers , while simultaneously yielding performance analysis results similar to ASHRAE Level II onsite audits (the comparison...38 Figure 16: Energy Site manager time for FirstFuel RBA Time vs ASHRAE Level II Audit Time (in hours) for one building

  18. Rapid Building Assessment Project

    DTIC Science & Technology

    2014-05-01

    15  Figure 10. Energy Site manager time for FirstFuel RBA Time versus ASHRAE Level II audit time (in hours) for one building... ASHRAE American Society of Heating Refrigeration and Air Conditioning Engineers CVRMSE Root-mean-square deviation DoD Department of Defense DOE...Heating Refrigeration and Air Conditioning Engineers ( ASHRAE ) Level II on-site audits across 16 of the DoD buildings. The results of this project and

  19. Project ATLANTA (Atlanta Land use Analysis: Temperature and Air Quality): Use of Remote Sensing and Modeling to Analyze How Urban Land Use Change Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.

  20. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  1. Project LEAF

    EPA Pesticide Factsheets

    Project LEAF has a goal of educating farmworkers about how to reduce pesticide exposure to their families from pesticide residues they may be inadvertently taking home on their clothing, etc. Find outreach materials.

  2. Geodynamics Project

    ERIC Educational Resources Information Center

    Drake, Charles L.

    1977-01-01

    Describes activities of Geodynamics Project of the Federal Council on Science and Technology, such as the application of multichannel seismic-reflection techniques to study the nature of the deep crust and upper mantle. (MLH)

  3. Project Reptile!

    ERIC Educational Resources Information Center

    Diffily, Deborah

    2001-01-01

    Integrating curriculum is important in helping children make connections within and among areas. Presents a class project for kindergarten children which came out of the students' interests and desire to build a reptile exhibit. (ASK)

  4. Project Review: Teleoperation and Time Delays

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D.; Ellis, Stephen; Yeom, Kiwon; Kaiser, Mary K.

    2013-01-01

    We plan to study the invariance in the shift in control strategy from continuous control to move-and-wait as a function of latency and control difficulty. To do so we have developed a theoretically understood way of introducing measurable levels of control difficulty using misalignment between display and control axes . We now use this understanding to study the interaction of control difficulty and system latency. We have conducted an experiment to calibrate our imposition of control difficulty using more representative control rotations. We use these levels of difficulty to directly study the interaction of control difficulty with latency. Results suggest a way to generalize latency requirements across control difficulties that should aid establishment of standards for managing latency in teleoperation.

  5. Swedish Projects

    DTIC Science & Technology

    2005-12-01

    development, evaluate training regimes and design of new systems with complex man- machine interface problems. The project uses advanced statistical...physiological measures to provide input to adaptive man- machine interfaces . The goal of the projects is to further develop measurement methods with...dinteraction Homme -Système Intuitive)., The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  6. Status of CSNS Project

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Fu, S. N.; Chen, H. S.; Chen, Y. W.; Chen, Y. B.; Dong, H. Y.; Fang, S. X.; Huang, K. X.; Jin, D. P.; Kang, W.; Li, J.; Liu, H. C.; Ma, L.; Ouyang, H. F.; Qu, H. M.; Qi, X.; Sun, H.; Tang, J. Y.; Wang, Q. B.; Wang, S.; Xu, T. G.

    The China Spallation Neutron Source (CSNS) accelerator is designed to accelerate proton beam pulses to 1.6 GeV at 25 Hz repetition rate, striking a solid metal target to produce spallation neutrons. The accelerator provides a beam power of 100 kW on the target in the first phase and then 500 kW in the second phase by increasing the average beam intensity 5 times while raising the linac output energy. The project construction has been formally launched in 2011 and it is planned to complete the project in March 2018. It is one of the high intensity proton accelerator projects in the world and it imposes a great challenge to Chinese accelerator community. This presentation will cover the status and challenges of the CSNS project.

  7. Project Management Methodology in Human Resource Management

    ERIC Educational Resources Information Center

    Josler, Cheryl; Burger, James

    2005-01-01

    When charged with overseeing a project, how can one ensure that the project will be completed on time, within budget, and to the satisfaction of everyone involved? In this article, the authors examine project management methodology as a means of ensuring that projects are conducted in a disciplined, well-managed and consistent manner that serves…

  8. Workplace Factors That Shape Information Technology Project Success

    ERIC Educational Resources Information Center

    Nguyen, Dan Schilling

    2013-01-01

    Information technology (IT) project success depends on having a project manager with effective decision making, leadership, and project management skills. Project success also depends on completing the project in a given budget, time, and scope. Despite these critical qualities of a successful project manager, little research has explored the…

  9. Development and Testing of a High Voltage Feedthrough for Noble Liquid TPCs

    NASA Astrophysics Data System (ADS)

    Teymourian, Artin; Meng, Yixiong; Pantic, Emilija; Wang, Hanguo

    2013-04-01

    Noble liquid Time Projection Chambers (TPCs) are used in many experiments for the detection of WIMPs and neutrinos. In a TPC, an incoming particle deposits energy in the target material (liquid argon or liquid xenon) and creates scintillation light, which is detected by photodetectors. The deposited energy also ionizes some of the atoms of the target material, and the ionized electrons are drifted toward a gas phase or charge readout wires as a secondary signal. The TPCs require electric fields on the order of 1 kV/cm in order to drift the ionized electrons. For this reason, larger TPCs will require higher voltages to maintain the same electric field. The voltage required for the electric field is provided by a high voltage feedthrough. In this talk, I will present the development and testing of a high voltage feedthrough at UCLA capable of exceeding 100 kV in liquid argon and liquid xenon TPCs. This feedthrough design will be used in the future XENON1Ton, DarkSide50, and LBNE detectors. The feedthrough must withstand the high voltage and should be vacuum tight. In the case of dark matter detectors, the feedthrough must also be constructed with materials that contain ultra-low intrinsic radioactivity.

  10. Results from the first use of low radioactivity argon in a dark matter search

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-04-01

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).

  11. Results from the first use of low radioactivity argon in a dark matter search

    DOE PAGES

    Agnes, P.

    2016-04-08

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 103 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulatedmore » over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10-44 cm2 (8.6 x 10-44 cm2, 8.0 x 10-43 cm2) for a WIMP mass of 100 GeV/c2 (1 TeV/c2 , 10 TeV/c2).« less

  12. $xy$ Position Reconstruction in DarkSide-50

    SciTech Connect

    Brodsky, Jason Philip

    2015-01-01

    The DarkSide-50 experiment seeks to directly detect dark matter in a liquid argon time projection chamber. In this dissertation, I present an algorithm of my design that determines the position of particle interactions with the liquid argon. This position reconstruction algorithm will be used by DarkSide-50 to reject backgrounds, particularly backgrounds from radioactive elements on the detector surface. The position reconstruction algorithm functions by constructing light response functions (LRFs) that map locations in the detector to the expected distribution of signal in DarkSide-50's 38 photomultiplier tubes. Accurate LRFs cannot be produced by simulations of DarkSide-50's optics because such simulations are known to be awed. Instead, this algorithm constructs LRFs using an iterative process driven by data. Initial, awed LRFs are produced using simulated events but then used to produce new LRFs from data events. Multiple generations of LRFs are created from data with each generation driven to better satisfy a known feature of the detector: the dominant argon-39 background is uniformly distributed. I also discuss a method of discriminating against surface background as an alternative to the common approach of ducialization. This method considers the di erence in goodnessof- t between the best- t reconstructed position and the best- t position at the detector's surface. I conclude by presenting results on the performance and validity of this algorithm, including some discussion of reconstruction errors.

  13. Front End Readout Electronics of the MicroBooNE Experiment

    NASA Astrophysics Data System (ADS)

    Chen, H.; De Geronimo, G.; Lanni, F.; Lissauer, D.; Makowiecki, D.; Radeka, V.; Rescia, S.; Thorn, C.; Yu, B.

    MicroBooNE experiment is to build a ˜170 tons Liquid Argon (LAr) Time Projection Chamber (TPC) detector that will observe interactions of neutrinos from the on-axis Booster Neutrino Beam and off-axis NuMI Beam at Fermi National Accelerator Laboratory. The experiment will address the low energy excess observed by the MiniBooNE experiment, measure low energy neutrino cross sections, and serve as the necessary next step in a phased program towards massive Liquid Argon TPC detectors. MicroBooNE TPC will have 3 readout wire planes with 8,256 wires/signal channels. All the signals will be pre-amplified, shaped, digitized and pre-processed online before recording for offline analysis of a wide variety of physics programs. To optimize the detector performance and signal-to-noise ratio, analog front end ASIC designed in 180 nm CMOS technology will be deployed and operated in LAr. Pre-amplified and shaped detector signals will be differentially driven to ADC boards operated in detector hall where signals are digitized and prepared for online data pre-processing in FPGAs. This article is an overview of the front end readout architecture of the MicroBooNE experiment, which describes the development of the front end readout electronics and preliminary test results.

  14. Results from the first use of low radioactivity argon in a dark matter search

    SciTech Connect

    Agnes, P.

    2016-04-08

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 103 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10-44 cm2 (8.6 x 10-44 cm2, 8.0 x 10-43 cm2) for a WIMP mass of 100 GeV/c2 (1 TeV/c2 , 10 TeV/c2).

  15. Operation and performance of the ICARUS T600 cryogenic plant at Gran Sasso underground Laboratory

    NASA Astrophysics Data System (ADS)

    Antonello, M.; Aprili, P.; Baibussinov, B.; Boffelli, F.; Bubak, A.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieślik, K.; Cline, D. B.; Cocco, A. G.; Dabrowska, A.; Dermenev, A.; Disdier, J. M.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Rubbia, C.; Sala, P. R.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Sulej, R.; Szarska, M.; Terrani, M.; Torti, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H. G.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.

    2015-12-01

    ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with an excellent calorimetric energy measurement. After the three months demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam (CNGS) and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid argon. Overall plant performance and stability during the underground run are discussed. Finally, the decommissioning procedures, carried out about six months after the end of the CNGS neutrino beam operation, are reported.

  16. Maximum Capital Project Management.

    ERIC Educational Resources Information Center

    Adams, Matt

    2002-01-01

    Describes the stages of capital project planning and development: (1) individual capital project submission; (2) capital project proposal assessment; (3) executive committee; and (4) capital project execution. (EV)

  17. A Walk through Time.

    ERIC Educational Resources Information Center

    Renfroe, Mark; Letendre, Wanda

    1996-01-01

    Describes a seventh-grade class project where students constructed a "time tunnel" (a walk-through display with models and exhibits illustrating various themes and eras). Beginning modestly, the tunnel grew over seven years to include 11 different display scenes. Discusses the construction of the project and benefits to the school. (MJP)

  18. The Wish Tree Project

    ERIC Educational Resources Information Center

    Brooks, Sarah DeWitt

    2010-01-01

    This article describes the author's experience in implementing a Wish Tree project in her school in an effort to bring the school community together with a positive art-making experience during a potentially stressful time. The concept of a wish tree is simple: plant a tree; provide tags and pencils for writing wishes; and encourage everyone to…

  19. Project Choice: Lessons Learned.

    ERIC Educational Resources Information Center

    Ewing Marion Kauffman Foundation, Kansas City, MO.

    Project Choice began with a simple goal: to increase the number of inner-city students who graduate from high school on time and become productive members of society. To that end, Ewing M. Kauffman, his Foundation, and associates designed and implemented a program that promised postsecondary education or training to some students in the Kansas…

  20. Meteor Beliefs Project: Introduction

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2003-05-01

    A new project to investigate beliefs in meteors and meteoric phenomena in past and present times using chiefly folklore, mythology, prose and poetic literature, is described. Some initial examples are given, along with a bibliography of relevant items already in print in IMO publications.