Sample records for liquid-liquid extraction application

  1. Recent progress of task-specific ionic liquids in chiral resolution and extraction of biological samples and metal ions.

    PubMed

    Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Kong, Yong; Pan, Yuanjiang

    2018-01-01

    Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task-specific ionic liquids. Various task-specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task-specific ionic liquids are generally used in techniques such as liquid-liquid extraction, solid-phase extraction, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task-specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    PubMed

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Liquid-liquid extraction assisted by a carbon nanoparticles interface. Electrophoretic determination of atrazine in environmental samples.

    PubMed

    Caballero-Díaz, Encarnación; Simonet, Bartolomé; Valcárcel, Miguel

    2013-10-21

    A novel method for the determination of atrazine, using liquid-liquid extraction assisted by a nanoparticles film formed in situ and composed of organic solvent stabilized-carbon nanoparticles, is described. The presence of nanoparticles located at the liquid-liquid interface reinforced the extraction of analyte from matrix prior to capillary electrophoresis (CE) analysis. Some influential experimental variables were optimized in order to enhance the extraction efficiency. The developed procedure confirmed that carbon nanoparticles, especially multi-walled carbon nanotubes, are suitable to be used in sample treatment processes introducing new mechanisms of interaction with the analyte. The application of the proposed preconcentration method followed by CE detection enabled the determination of atrazine in spiked river water providing acceptable RSD values (11.6%) and good recoveries (about 87.0-92.0%). Additionally, a similar extraction scheme was tested in soil matrices with a view to further applications in real soil samples.

  4. Extraction of organic compounds with room temperature ionic liquids.

    PubMed

    Poole, Colin F; Poole, Salwa K

    2010-04-16

    Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Application of ionic liquid in liquid phase microextraction technology.

    PubMed

    Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho

    2012-11-01

    Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Extraction of ranitidine and nizatidine with using imidazolium ionic liquids prior spectrophotometric and chromatographic detection.

    PubMed

    Kiszkiel, Ilona; Starczewska, Barbara; Leśniewska, Barbara; Późniak, Patrycja

    2015-03-15

    A new extraction medium was proposed for liquid-liquid extraction of the histamine H2 receptor antagonists ranitidine (RNT) and nizatidine (NZT). The ionic liquids with low vapor pressure and favorable solvating properties for a range of compounds such as 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim][Tf2N] were tested for isolation of analytes. The extraction parameters of RNT and NZT, namely, amount of ionic liquid, pH of sample solution, shaking and centrifugation time were optimized. The isolation processes were performed with 1 mL of the ionic liquids. The extracted samples (pH values near 4) were shaken at 1750 rpm. The influence of interfering substances on the efficiency of extraction process was also studied. Methods for the histamine H2 receptor antagonists (ranitidine and nizatidine) determination after their separation using imidazolium ionic liquids by high performance liquid chromatography (HPLC) combined with UV spectrophotometry were developed. The application of ionic liquids in extraction step allows for selective isolation of analytes from aqueous matrices and their preconcentration. The above methods were applied to the determination of RNT and NZT in environmental samples (river water and wastewater after treatment). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Accelerated solvent extraction combined with dispersive liquid-liquid microextraction before gas chromatography with mass spectrometry for the sensitive determination of phenols in soil samples.

    PubMed

    Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-05-01

    A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ionic liquids in chemical engineering.

    PubMed

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  9. Selective extraction and separation of oxymatrine from Sophora flavescens Ait. extract by silica-confined ionic liquid.

    PubMed

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-01-01

    This study highlighted the application of a two-stepped extraction method for extraction and separation of oxymatrine from Sophora flavescens Ait. extract by utilizing silica-confined ionic liquids as sorbent. The optimized silica-confined ionic liquid was firstly mixed with plant extract to adsorb oxymatrine. Simultaneously, some interference, such as matrine, was removed. The obtained suspension was then added to a cartridge for solid phase extraction. Through these two steps, target compound was adequately separated from interferences with 93.4% recovery. In comparison with traditional solid phase extraction, this method accelerates loading and reduces the use of organic solvents during washing. Moreover, the optimization of loading volume was simplified as optimization of solid/liquid ratio. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Application of an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum.

    PubMed

    Chen, Tao; Liu, Yongling; Zou, Denglang; Chen, Chen; You, Jinmao; Zhou, Guoying; Sun, Jing; Li, Yulin

    2014-01-01

    This study presents an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum. A new solvent system composed of petroleum ether/ethyl acetate/water (4:2:1, v/v/v) was developed for the liquid-liquid extraction of the crude extract from R. tanguticum. As a result, emodin, aloe-emodin, physcion, and chrysophanol were greatly enriched in the organic layer. In addition, an efficient method was successfully established to separate and purify the above anthraquinones by high-speed counter-current chromatography and preparative HPLC. This study supplies a new alternative method for the rapid enrichment, separation, and purification of emodin, aloe-emodin, physcione, and chrysophanol. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis, Characterization and Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization of Liquid Fuel

    PubMed Central

    Dharaskar, Swapnil A.; Varma, Mahesh N.; Shende, Diwakar Z.; Yoo, Chang Kyoo; Wasewar, Kailas L.

    2013-01-01

    The possible application of imidazolium ionic liquids as energy-efficient green material for extractive deep desulfurization of liquid fuel has been investigated. 1-Butyl-3-methylimidazolium chloride [BMIM]Cl was synthesized by nucleophilic substitution reaction of n-methylimidazolium and 1-chlorobutane. Molecular structures of the ILs were confirmed by FTIR, 1H-NMR, and 13C-NMR. The thermal properties, conductivity, solubility, water content and viscosity analysis of [BMIM]Cl were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of IL without regeneration on dibenzothiophene removal of liquid fuel were presented. In the extractive desulfurization process, the removal of dibenzothiophene in n-dodecane using [BMIM]Cl was 81% with mass ratio of 1 : 1, in 30 min at 30°C under the mild reaction conditions. Also, desulfurization of real fuels with IL and multistage extraction were studied. The results of this work might offer significant insights in the perceptive use of imidazoled ILs as energy-efficient green material for extractive deep desulfurization of liquid fuels as it can be reused without regeneration with considerable extraction efficiency. PMID:24307868

  12. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves.

    PubMed

    Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Evaluation of ionic liquids supported on silica as a sorbent for fully automated online solid-phase extraction with LC-MS determination of sulfonamides in bovine milk samples.

    PubMed

    da Silva, Meire Ribeiro; Mauro Lanças, Fernando

    2018-03-10

    Sulfonamides are antibiotics widely used in the treatment of diseases in dairy cattle. However, their indiscriminate use for disease control may lead to their presence in tissues and milk and their determination requires a sample preparation step as part of an analytical approach. Among the several sample preparation techniques available, those based upon the use of sorptive materials have been widely employed. Recently, the application of ionic liquids immobilized on silica surfaces or polymeric materials has been evaluated for such an application. This manuscript addresses the evaluation of silica-based ionic liquid obtained by a sol-gel synthesis process by basic catalysis as sorbent for online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry for sulfonamides determination. Infrared vibrational spectroscopy confirmed the presence of the ionic liquid on the silica surface, suggesting that the ionic liquid was anchored on to the silica surface. Other sorbents varying the ionic liquid alkyl chain were also synthesized and evaluated by off-line solid-phase extraction in the sulfonamide extraction. As the length of the alkyl chain increased, the amount of extracted sulfonamides decreased, possibly due to a decrease in the electrostatic interaction caused by the reduction in the polarity, as well as the presence of a hexafluorophosphate anion that increases the hydrophobic character of the material. The use of 1-butyl-3-methylimidazolium hexafluorophosphate as a selective ionic liquid sorbent enabled the isolation and sulfonamide preconcentration in bovine milk by online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The limit of quantification for the method developed was 5-7, 5 μg/mL, with extraction recoveries ranging between 74 and 93% and intra- and interassay between 1.5-12.5 and 2.3-13.1, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Advances in the analysis of biological samples using ionic liquids.

    PubMed

    Clark, Kevin D; Trujillo-Rodríguez, María J; Anderson, Jared L

    2018-02-12

    Ionic liquids are a class of solvents and materials that hold great promise in bioanalytical chemistry. Task-specific ionic liquids have recently been designed for the selective extraction, separation, and detection of proteins, peptides, nucleic acids, and other physiologically relevant analytes from complex biological samples. To facilitate rapid bioanalysis, ionic liquids have been integrated in miniaturized and automated procedures. Bioanalytical separations have also benefited from the modification of nonspecific magnetic materials with ionic liquids or the implementation of ionic liquids with inherent magnetic properties. Furthermore, the direct detection of the extracted molecules in the analytical instrument has been demonstrated with structurally tuned ionic liquids and magnetic ionic liquids, providing a significant advantage in the analysis of low-abundance analytes. This article gives an overview of these advances that involve the application of ionic liquids and derivatives in bioanalysis. Graphical abstract Ionic liquids, magnetic ionic liquids, and ionic liquid-based sorbents are increasing the speed, selectivity, and sensitivity in the analysis of biological samples.

  15. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    PubMed

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.

  16. Ionic-liquid-based ultrasound-assisted extraction of isoflavones from Belamcanda chinensis and subsequent screening and isolation of potential α-glucosidase inhibitors by ultrafiltration and semipreparative high-performance liquid chromatography.

    PubMed

    Li, Senlin; Li, Sainan; Huang, Yu; Liu, Chunming; Chen, Lina; Zhang, Yuchi

    2017-06-01

    The separation of a compound of interest from its structurally similar homologues to produce high-purity natural products is a challenging problem. This work proposes a novel method for the separation of iristectorigenin A from its structurally similar homologues by ionic-liquid-based ultrasound-assisted extraction and the subsequent screening and isolation of potential α-glucosidase inhibitors via ultrafiltration and semipreparative high-performance liquid chromatography. Ionic-liquid-based ultrasound-assisted extraction was successfully applied to the extraction of tectorigenin, iristectorigenin A, irigenin, and irisflorentin from Belamcanda chinensis. The optimum conditions for the efficient extraction of isoflavones were determined as 1.0 M 1-ethyl-3-methylimidazolium tetrafluoroborate with extraction time of 30 min and a solvent to solid ratio of 30 mL/g. Ultrafiltration with liquid chromatography and mass spectrometry was applied to screen and identify α-glucosidase inhibitors from B. chinensis, followed by the application of semipreparative high-performance liquid chromatography to separate and isolate the active constituents. Four major compounds including tectorigenin, iristectorigenin A, irigenin, and irisflorentin were screened and identified as α-glucosidase inhibitors, and then the four active compounds abovementioned were subsequently isolated by semipreparative high-performance liquid chromatography (99.89, 88.97, 99.79, and 99.97% purity, respectively). The results demonstrate that ionic liquid extraction can be successfully applied to the extraction of isoflavones from B. chinensis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

    2014-11-01

    An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe

    DOEpatents

    Van Berkel, Gary J.

    2015-06-23

    An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.

  19. Application of liquid-liquid microextraction for the effective separation and simultaneous determination of 11 pharmaceuticals in wastewater samples using HPLC-MS/MS.

    PubMed

    Diuzheva, Alina; Balogh, József; Jekő, József; Cziáky, Zoltán

    2018-05-17

    A dispersive liquid-liquid microextraction method for the simultaneous determination of 11 pharmaceuticals has been developed. The method is based on a microextraction procedure applied to wastewater samples from different regions of Hungary followed by high performance liquid chromatography with mass spectrometry. The effect of the nature of the extractant, dispersive solvent, different additives and extraction time were examined on the extraction efficiently of the dispersive liquid-liquid microextraction method. Under optimal conditions, the linearity for determining the pharmaceuticals was in the range of 1-500 ng mL -1 , with the correlation coefficients ranging from 0.9922 to 0.9995. The limits of detection and limits of quantification were in the range 0.31-6.65 and 0.93-22.18 ng mL -1 , respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    PubMed

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Understanding the liquid-liquid (water-hexane) interface

    NASA Astrophysics Data System (ADS)

    Murad, Sohail; Puri, Ishwar K.

    2017-10-01

    Nonequilibrium molecular dynamics simulations are employed to investigate the interfacial thermal resistance of nanoscale hexane-water interfaces subject to an applied heat flux. Our studies show that these liquid-liquid interfaces exhibit behavior significantly dissimilar to that of solid-liquid and solid-vapor interfaces. Notably, the thermal resistance of a hexane-water interface is contingent on the interfacial temperature gradient alone with negligible dependence on the mean interfacial temperature, while the solid-liquid dependent strongly on the interfacial temperature. Application of a heat flux also increases the interface thickness significantly as compared to an equilibrium isothermal interface. Since liquid-liquid interfaces have been proposed for diverse applications, e.g., sensors for wastewater treatment and for extraction of toxic ions from water, they can be designed to be wider by applying a heat flux. This may allow the interface to be used for other applications not possible currently because of the very limited thickness of the interface in isothermal systems.

  2. Application of solid/liquid extraction for the gravimetric determination of lipids in royal jelly.

    PubMed

    Antinelli, Jean-François; Davico, Renée; Rognone, Catherine; Faucon, Jean-Paul; Lizzani-Cuvelier, Louisette

    2002-04-10

    Gravimetric lipid determination is a major parameter for the characterization and the authentication of royal jelly quality. A solid/liquid extraction was compared to the reference method, which is based on liquid/liquid extraction. The amount of royal jelly and the time of the extraction were optimized in comparison to the reference method. Boiling/rinsing ratio and spread of royal jelly onto the extraction thimble were identified as critical parameters, resulting in good accuracy and precision for the alternative method. Comparison of reproducibility and repeatability of both methods associated with gas chromatographic analysis of the composition of the extracted lipids showed no differences between the two methods. As the intra-laboratory validation tests were comparable to the reference method, while offering rapidity and a decrease in amount of solvent used, it was concluded that the proposed method should be used with no modification of quality criteria and norms established for royal jelly characterization.

  3. Application of Ionic Liquids in the Microwave-Assisted Extraction of Proanthocyanidins from Larix gmelini Bark

    PubMed Central

    Yang, Lei; Sun, Xiaowei; Yang, Fengjian; Zhao, Chunjian; Zhang, Lin; Zu, Yuangang

    2012-01-01

    Ionic liquid based, microwave-assisted extraction (ILMAE) was successfully applied to the extraction of proanthocyanidins from Larix gmelini bark. In this work, in order to evaluate the performance of ionic liquids in the microwave-assisted extraction process, a series of 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were evaluated for extraction yield, and 1-butyl-3-methylimidazolium bromide was selected as the optimal solvent. In addition, the ILMAE procedure for the proanthocyanidins was optimized and compared with other conventional extraction techniques. Under the optimized conditions, satisfactory extraction yield of the proanthocyanidins was obtained. Relative to other methods, the proposed approach provided higher extraction yield and lower energy consumption. The Larix gmelini bark samples before and after extraction were analyzed by Thermal gravimetric analysis, Fourier-transform infrared spectroscopy and characterized by scanning electron microscopy. The results showed that the ILMAE method is a simple and efficient technique for sample preparation. PMID:22606036

  4. Sequential injection ionic liquid dispersive liquid-liquid microextraction for thallium preconcentration and determination with flame atomic absorption spectrometry.

    PubMed

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2012-08-01

    A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.

  5. Cloud-point extraction is compatible with liquid chromatography coupled to electrospray ionization mass spectrometry for the determination of antazoline in human plasma.

    PubMed

    Giebułtowicz, Joanna; Kojro, Grzegorz; Piotrowski, Roman; Kułakowski, Piotr; Wroczyński, Piotr

    2016-09-05

    Cloud-point extraction (CPE) is attracting increasing interest in a number of analytical fields, including bioanalysis, as it provides a simple, safe and environmentally-friendly sample preparation technique. However, there are only few reports on the application of this extraction technique in liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this study, CPE was used for the isolation of antazoline from human plasma. To date, only one method of antazoline isolation from plasma exists-liquid-liquid extraction (LLE). The aim of this study was to prove the compatibility of CPE and LC-ESI-MS/MS and the applicability of CPE to the determination of antazoline in spiked human plasma and clinical samples. Antazoline was isolated from human plasma using Triton X-114 as a surfactant. Xylometazoline was used as an internal standard. NaOH concentration, temperature and Triton X-114 concentration were optimized. The absolute matrix effect was carefully investigated. All validation experiments met international acceptance criteria and no significant relative matrix effect was observed. The compatibility of CPE and LC-ESI-MS/MS was confirmed using clinical plasma samples. The determination of antazoline concentration in human plasma in the range 10-2500ngmL(-1) by the CPE method led to results which are equivalent to those obtained by the widely used liquid-liquid extraction method. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas.

    PubMed

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel

    2009-10-23

    This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.

  7. Salting-out assisted liquid-liquid extraction coupled to ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of tetracycline residues in infant foods.

    PubMed

    Moreno-González, David; García-Campaña, Ana M

    2017-04-15

    The use of salting-out assisted liquid-liquid extraction (SALLE) combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) has been evaluated for the determination of tetracyclines in infant foods based on meat and vegetables or in milk. To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized. Analytical performances of the method were satisfactory, obtaining limits of quantification lower than 0.48μgkg -1 in all cases. The precision, expressed as relative standard deviation (%, RSD) was below 11.3%. The extraction efficiency for fortified samples ranged from 89.2 to 96.8%, with RSDs lower than 7.3%. Matrix effect was evaluated for all samples studied, being lower than |21|% in all cases. In relation to the low solvent consumption, the proposed methodology could be considered rapid, cheap and environmentally friendly. Its applicability has been successfully tested in a wide range of infant foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ionic liquid-modified materials for solid-phase extraction and separation: a review.

    PubMed

    Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio

    2012-02-17

    In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Dispersive solid-phase extraction followed by vortex-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for the determination of benzoylurea insecticides in soil and sewage sludge.

    PubMed

    Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua

    2016-04-01

    A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Magnetomotive room temperature dicationic ionic liquid: a new concept toward centrifuge-less dispersive liquid-liquid microextraction.

    PubMed

    Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani

    2015-01-09

    A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05μgL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Application of Ionic Liquids in Hydrometallurgy

    PubMed Central

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  12. Determination of triazine herbicides in juice samples by microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography.

    PubMed

    Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei

    2017-07-01

    A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Applications of derivatization reactions to trace organic compounds during sample preparation based on pressurized liquid extraction.

    PubMed

    Carro, Antonia M; González, Paula; Lorenzo, Rosa A

    2013-06-28

    Pressurized liquid extraction (PLE) is an exhaustive technique used for the extraction of analytes from solid samples. Temperature, pressure, solvent type and volume, and the addition of other reagents notably influence the efficiency of the extraction. The analytical applications of this technique can be improved by coupling with appropriate derivatization reactions. The aim of this review is to discuss the recent applications of the sequential combination of PLE with derivatization and the approaches that involve simultaneous extraction and in situ derivatization. The potential of the latest developments to the trace analysis of environmental, food and biological samples is also analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Application of ionic liquid-based dispersive liquid phase microextraction for highly sensitive simultaneous determination of three endocrine disrupting compounds in food packaging.

    PubMed

    Wang, Lingling; Zhang, Danfeng; Xu, Xu; Zhang, Lei

    2016-04-15

    Ionic liquid (IL) dispersive liquid-liquid microextraction (DLLME) method was successfully developed for extracting three endocrine disrupting compounds (EDCs) (bisphenol A, bisphenol AF and bisphenol AP) from the food packaging. 1-Octyl-3-methylimidazoliumhexafluorophosphate ([C8MIM][PF6]) was selected as extraction solution. The extraction procedure did not require a dispersive solvent. Three EDCs extraction kinetics were found to be very fast and the equilibrium was attained within 3.0 min following the pseudo-first-order model. The H-bonding and hydrophobic interactions play an important role in the partitioning of EDCs into IL from aqueous solution. The recovered IL could be reused for three runs without significant loss of extraction efficiencies. The spiked recoveries of three targets in food packaging were in the range of 97.8-103.1%. The limits of detection ranged from 0.50 to 1.50 ng mL(-1) (S/N=3). As a result, this method has been successfully applied for the sensitive detection of three EDCs in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Determination of rutin and quercetin in Chinese herbal medicine by ionic liquid-based pressurized liquid extraction-liquid chromatography-chemiluminescence detection.

    PubMed

    Wu, Hongwei; Chen, Meilan; Fan, Yunchang; Elsebaei, Fawzi; Zhu, Yan

    2012-01-15

    A novel ionic liquid-based pressurized liquid extraction (IL-PLE) procedure coupled with high performance liquid chromatography (HPLC) tandem chemiluminescence (CL) detection capable of quantifying trace amounts of rutin and quercetin in four Chinese medicine plants including Flos sophorae Immaturus, Crateagus pinnatifida Bunge, Hypericum japonicum Thunb and Folium Mori was described in this paper. To avoid environmental pollution and toxicity to the operators, ionic liquids (ILs), 1-alkyl-3-methylimidazolium chloride ([C(n)mim][Cl]) aqueous solutions were used in the PLE procedure as extractants replacing traditional organic solvents. In addition, chemiluminescence detection was utilized for its minimal interference from endogenous components of complex matrix. Parameters affecting extraction and analysis were carefully optimized. Compared with the conventional ultrasonic-assisted extraction (UAE) and heat-reflux extraction (HRE), the optimized method achieved the highest extraction efficiency in the shortest extraction time with the least solvent consumption. The applicability of the proposed method to real sample was confirmed. Under the optimized conditions, good reproducibility of extraction performance was obtained and good linearity was observed with correlation coefficients (r) between 0.9997 and 0.9999. The detection limits of rutin and quercetin (LOD, S/N=3) were 1.1×10(-2)mg/L and 3.8×10(-3)mg/L, respectively. The average recoveries of rutin and quercetin for real samples were 93.7-105% with relative standard deviation (RSD) lower than 5.7%. To the best of our knowledge, this paper is the first contribution to utilize a combination of IL-PLE with chemiluminescence detection. And the experimental results indicated that the proposed method shows a promising prospect in extraction and determination of rutin and quercetin in medicinal plants. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. An approach of ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergistic extraction for two coumarins preparation from Cortex fraxini.

    PubMed

    Liu, Zaizhi; Gu, Huiyan; Yang, Lei

    2015-10-23

    Ionic liquids/lithium salts solvent system was successfully introduced into the separation technique for the preparation of two coumarins (aesculin and aesculetin) from Cortex fraxini. Ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergy extraction (ILSMP-UMSE) procedure was developed and optimized for the sufficient extraction of these two analytes. Several variables which can potentially influence the extraction yields, including pretreatment time and temperature, [C4mim]Br concentration, LiAc content, ultrasound-microwave synergy extraction (UMSE) time, liquid-solid ratio, and UMSE power were optimized by Plackett-Burman design. Among seven variables, UMSE time, liquid-solid ratio, and UMSE power were the statistically significant variables and these three factors were further optimized by Box-Behnken design to predict optimal extraction conditions and find out operability ranges with maximum extraction yields. Under optimum operating conditions, ILSMP-UMSE showed higher extraction yields of two target compounds than those obtained by reference extraction solvents. Method validation studies also evidenced that ILSMP-UMSE is credible for the preparation of two coumarins from Cortex fraxini. This study is indicative of the proposed procedure that has huge application prospects for the preparation of natural products from plant materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    PubMed

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  18. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    ERIC Educational Resources Information Center

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  19. Measuring Interfacial Tension Between Immiscible Liquids

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser; Balasubramaniam, R.; Delsignore, David M.

    1995-01-01

    Glass capillary tube technique measures interfacial tension between two immiscible liquids. Yields useful data over fairly wide range of interfacial tensions, both for pairs of liquids having equal densities and pairs of liquids having unequal densities. Data on interfacial tensions important in diverse industrial chemical applications, including enhanced extraction of oil; printing; processing foods; and manufacture of paper, emulsions, foams, aerosols, detergents, gel encapsulants, coating materials, fertilizers, pesticides, and cosmetics.

  20. Green aspects, developments and perspectives of liquid phase microextraction techniques.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2014-02-01

    Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented. © 2013 Published by Elsevier B.V.

  1. Comparison of three different dispersive liquid-liquid microextraction modes performed on their most usual configurations for the extraction of phenolic, neutral aromatic, and amino compounds from waters.

    PubMed

    Saraji, Mohammad; Ghambari, Hoda

    2018-06-21

    In this work we seek clues to select the appropriate dispersive liquid-liquid microextraction mode for extracting three categories of compounds. For this purpose, three common dispersive liquid-liquid microextraction modes were compared under optimized conditions. Traditional dispersive liquid-liquid microextraction, in situ ionic liquid dispersive liquid-liquid microextraction and conventional ionic liquid dispersive liquid-liquid microextraction using chloroform, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-hexyl-3-methylimidazolium hexafluorophosphate as the extraction solvent, respectively, were considered in this work. Phenolic, neutral aromatic and amino compounds (each category included six members) were studied as analytes. The analytes in the extracts were determined by high-performance liquid chromatography with UV detection. For the analytes with polar functionalities, the in situ ionic liquid dispersive liquid-liquid microextraction mode mostly led to better results. In contrast, for neutral hydrocarbons without polar functionalities, traditional dispersive liquid-liquid microextraction using chloroform produced better results. In this case, where dispersion forces were the dominant interactions in the extraction, the refractive index of solvent and analyte predicted the extraction performance better than the octanol-water partition coefficient. It was also revealed that none of the methods were successful in extracting very hydrophilic analytes (compounds with the log octanol-water partition coefficient < 2). The results of this study could be helpful in selecting a dispersive liquid-liquid microextraction mode for the extraction of various groups of compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Novel applications of ionic liquids in materials processing

    NASA Astrophysics Data System (ADS)

    Reddy, Ramana G.

    2009-05-01

    Ionic liquids are mixtures of organic and inorganic salts which are liquids at room temperature. Several potential applications of ionic liquids in the field of materials processing are electrowinning and electrodeposition of metals and alloys, electrolysis of active metals at low temperature, liquid-liquid extraction of metals. Results using 1-butyl-3-methylimidazolium chloride with AlCl3 at low temperatures yielded high purity aluminium deposits (>99.9% pure) and current efficiencies >98%. Titanium and aluminium were co-deposited with/without the addition of TiCl4 with up to 27 wt% Ti in the deposit with current efficiencies in the range of 78-85 %. Certain ionic liquids are potential replacements for thermal oils and molten salts as heat transfer fluids in solar energy applications due to high thermal stability, very low corrosivity and substantial sensible heat retentivity. The calculated storage densities for several chloride and fluoride ionic liquids are in the range of 160-210 MJ/m3. A 3-D mathematical model was developed to simulate the large scale electrowinning of aluminium. Since ionic liquids processing results in their low energy consumption, low pollutant emissions many more materials processing applications are expected in future.

  3. Quantitative ionspray liquid chromatographic/tandem mass spectrometric determination of reserpine in equine plasma.

    PubMed

    Anderson, M A; Wachs, T; Henion, J D

    1997-02-01

    A method based on ionspray liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed for the determination of reserpine in equine plasma. A comparison was made of the isolation of reserpine from plasma by liquid-liquid extraction and by solid-phase extraction. A structural analog, rescinnamine, was used as the internal standard. The reconstituted extracts were analyzed by ionspray LC/MS/MS in the selected reaction monitoring (SRM) mode. The calibration graph for reserpine extracted from equine plasma obtained using liquid-liquid extraction was linear from 10 to 5000 pg ml-1 and that using solid-phase extraction from 100 to 5000 pg ml-1. The lower level of quantitation (LLQ) using liquid-liquid and solid-phase extraction was 50 and 200 pg ml-1, respectively. The lower level of detection for reserpine by LC/MS/MS was 10 pg ml-1. The intra-assay accuracy did not exceed 13% for liquid-liquid and 12% for solid-phase extraction. The recoveries for the LLQ were 68% for liquid-liquid and 58% for solid-phase extraction.

  4. [Advances of poly (ionic liquid) materials in separation science].

    PubMed

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  5. Hollow-Fibre-Supported Dispersive Liquid-Liquid Microextraction for Determination of Atrazine and Triclosan in Aqueous Samples

    PubMed Central

    Letseka, Thabiso

    2017-01-01

    We report the application of the dispersive liquid-liquid microextraction coupled to hollow-fibre membrane-assisted liquid-phase microextraction and its application for extraction of atrazine and triclosan. Under optimum conditions, namely, 25 μL of a 1 : 4 chlorobenzene : ethyl acetate mixture dispersed in 1 mL of aqueous sample, 10% (m/v) NaCl, a magnetic stirrer speed at 600 rpm, and 10 minutes' extraction time with toluene-filled fibre as the acceptor phase, the method demonstrates sufficient figures of merit. These include linearity (R2 ≥ 0.9975), intravial precision (%RSD ≤ 7.6), enrichment factors (127 and 142), limits of detection (0.0081 and 0.0169 µg/mL), and recovery from river water and sewerage (96–101%). The relatively high detection limits are attributed to the flame ionization detector which is less preferred than a mass spectrometer in trace analyses. This is the first report of a homogenous mixture of the dispersed organic solvent in aqueous solutions and its employment in extraction of organic compounds from aqueous solutions. It therefore adds yet another candidate in the pool of miniaturised solvent microextraction techniques. PMID:29158736

  6. Design of guanidinium ionic liquid based microwave-assisted extraction for the efficient extraction of Praeruptorin A from Radix peucedani.

    PubMed

    Ding, Xueqin; Li, Li; Wang, Yuzhi; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-12-01

    A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids were confirmed by (1)H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave-assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed-phase high-performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single-factor and L9 (3(4)) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3-tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave-assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound-assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave-assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave-assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine.

    PubMed

    Egorova, Ksenia S; Gordeev, Evgeniy G; Ananikov, Valentine P

    2017-05-24

    Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.

  8. Ionic liquids: solvents and sorbents in sample preparation.

    PubMed

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Semi-automated 96-well liquid-liquid extraction for quantitation of drugs in biological fluids.

    PubMed

    Zhang, N; Hoffman, K L; Li, W; Rossi, D T

    2000-02-01

    A semi-automated liquid-liquid extraction (LLE) technique for biological fluid sample preparation was introduced for the quantitation of four drugs in rat plasma. All liquid transferring during the sample preparation was automated using a Tomtec Quadra 96 Model 320 liquid handling robot, which processed up to 96 samples in parallel. The samples were either in 96-deep-well plate or tube-rack format. One plate of samples can be prepared in approximately 1.5 h, and the 96-well plate is directly compatible with the autosampler of an LC/MS system. Selection of organic solvents and recoveries are discussed. Also, precision, relative error, linearity and quantitation of the semi automated LLE method are estimated for four example drugs using LC/MS/MS with a multiple reaction monitoring (MRM) approach. The applicability of this method and future directions are evaluated.

  10. Determination of low molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Newton, Gerald L.

    1988-01-01

    Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.

  11. Method and apparatus for continuous flow injection extraction analysis

    DOEpatents

    Hartenstein, Steven D.; Siemer, Darryl D.

    1992-01-01

    A method and apparatus for a continuous flow injection batch extraction aysis system is disclosed employing extraction of a component of a first liquid into a second liquid which is a solvent for a component of the first liquid, and is immiscible with the first liquid, and for separating the first liquid from the second liquid subsequent to extraction of the component of the first liquid.

  12. Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction high-performance liquid chromatography.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-01-01

    A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.

  13. Application of liquid-liquid-liquid microextraction and high-performance liquid chromatography for the determination of alkylphenols and bisphenol-A in water.

    PubMed

    Lin, Che-Yi; Fuh, Ming-Ren; Huang, Shang-Da

    2011-02-01

    A method termed liquid-liquid-liquid microextraction (LLLME) was utilized to extract 4-t-butylphenol, 4-t-octylphenol, 4-n-nonylphenol, and bisphenol-A from water. The extracted target analytes were separated and quantified by high-performance liquid chromatography using a fluorescence detector. In LLLME, the donor phase (i.e. water sample) was made weakly acidic by adding monobasic potassium phosphate (KH(2) PO(4)); the organic phase adopted was 4-chlorotoluene; the acceptor phase (i.e. enriched extract) was 0.2 M tetraethylammonium hydroxide dissolved in ethylene glycol. This study solves a problem associated with the surface activity of long-chain alkylphenolate ions, permitting LLLME to extract long-chain alkylphenols. Experimental conditions such as acceptor phase composition, organic phase identity, acceptor phase volume, sample agitation, extraction time, and salt addition were optimized. The relative standard deviation (RSD, 2.0-5.8%), coefficient of determination (r(2) 0.9977-0.9999), and detection limit (0.017-0.0048 ng/mL) of the proposed method were achieved under the selected optimized conditions. The method was successfully applied to analyses of lake and tap water samples, and the relative recoveries of target analytes from the spiked lake and tap water samples were 92.8-106.3 and 93.6-105.6%, respectively. The results obtained with the proposed method confirm this microextraction technique to be reliable for the monitoring of alkylphenols and bisphenol-A in water samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [The progress in speciation analysis of trace elements by atomic spectrometry].

    PubMed

    Wang, Zeng-Huan; Wang, Xu-Nuo; Ke, Chang-Liang; Lin, Qin

    2013-12-01

    The main purpose of the present work is to review the different non-chromatographic methods for the speciation analysis of trace elements in geological, environmental, biological and medical areas. In this paper, the sample processing methods in speciation analysis were summarized, and the main strategies for non-chromatographic technique were evaluated. The basic principles of the liquid extractions proposed in the published literatures recently and their advantages and disadvantages were discussed, such as conventional solvent extraction, cloud point extraction, single droplet microextraction, and dispersive liquid-liquid microextraction. Solid phase extraction, as a non-chromatographic technique for speciation analysis, can be used in batch or in flow detection, and especially suitable for the online connection to atomic spectrometric detector. The developments and applications of sorbent materials filled in the columns of solid phase extraction were reviewed. The sorbents include chelating resins, nanometer materials, molecular and ion imprinted materials, and bio-sorbents. Other techniques, e. g. hydride generation technique and coprecipitation, were also reviewed together with their main applications.

  15. Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.; Hu, Shih-Yao

    2000-01-01

    This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.

  16. Determination of Niacinamide in Lotions and Creams Using Liquid-Liquid Extraction and High-Performance Liquid Chromatography

    ERIC Educational Resources Information Center

    Usher, Karyn M.; Simmons, Carolyn R.; Keating, Daniel W.; Rossi, Henry F., III

    2015-01-01

    Chemical separations are an important part of an undergraduate chemistry curriculum. Sophomore students often get experience with liquid-liquid extraction in organic chemistry classes, but liquid-liquid extraction is not as often introduced as a quantitative sample preparation method in honors general chemistry or quantitative analysis classes.…

  17. Atomizing, continuous, water monitoring module

    DOEpatents

    Thompson, C.V.; Wise, M.B.

    1997-07-08

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.

  18. Atomizing, continuous, water monitoring module

    DOEpatents

    Thompson, Cyril V.; Wise, Marcus B.

    1997-01-01

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.

  19. Extraction of trace tilmicosin in real water samples using ionic liquid-based aqueous two-phase systems.

    PubMed

    Pan, Ru; Shao, Dejia; Qi, Xueyong; Wu, Yun; Fu, Wenyan; Ge, Yanru; Fu, Haizhen

    2013-01-01

    The effective method of ionic liquid-based aqueous two-phase extraction, which involves ionic liquid (IL) (1-butyl-3-methyllimidazolium chloride, [C4mim]Cl) and inorganic salt (K2HPO4) coupled with high-performance liquid chromatography (HPLC), has been used to extract trace tilmicosin in real water samples which were passed through a 0.45 μm filter. The effects of the different types of salts, the concentration of K2HPO4 and of ILs, the pH value and temperature of the systems on the extraction efficiencies have all been investigated. Under the optimum conditions, the average extraction efficiency is up to 95.8%. This method was feasible when applied to the analysis of tilmicosin in real water samples within the range 0.5-40 μg mL(-1). The limit of detection was found to be 0.05 μg mL(-1). The recovery rate of tilmicosin was 92.0-99.0% from the real water samples by the proposed method. This process is suggested to have important applications for the extraction of tilmicosin.

  20. Aluminium sensitized spectrofluorimetric determination of fluoroquinolones in milk samples coupled with salting-out assisted liquid-liquid ultrasonic extraction

    NASA Astrophysics Data System (ADS)

    Xia, Qinghai; Yang, Yaling; Liu, Mousheng

    2012-10-01

    An aluminium sensitized spectrofluorimetric method coupled with salting-out assisted liquid-liquid ultrasonic extraction for the determination of four widely used fluoroquinolones (FQs) namely norfloxacin (NOR), ofloxacin (OFL), ciprofloxacin (CIP) and gatifloxacin (GAT) in bovine raw milk was described. The analytical procedure involves the fluorescence sensitization of aluminium (Al3+) by complexation with FQs, salting-out assisted liquid-liquid ultrasonic extraction (SALLUE), followed by spectrofluorometry. The influence of several parameters on the extraction (the salt species, the amount of salt, pH, temperature and phase volume ratio) was investigated. Under optimized experimental conditions, the detection limits of the method in milk varied from 0.009 μg/mL for NOR to 0.016 μg/mL for GAT (signal-to-noise ratio (S/N) = 3). The relative standard deviations (RSD) values were found to be relatively low (0.54-2.48% for four compounds). The calibration graph was linear from 0.015 to 2.25 μg/mL with coefficient of determinations not less than 0.9974. The methodology developed was applied to the determination of FQs in bovine raw milk samples. The main advantage of this method is simple, accurate and green. The method showed promising applications for analyzing polar analytes especially polar drugs in various sample matrices.

  1. Ionic Liquids as Extraction Media for Metal Ions

    NASA Astrophysics Data System (ADS)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  2. Salting-out homogenous extraction followed by ionic liquid/ionic liquid liquid-liquid micro-extraction for determination of sulfonamides in blood by high performance liquid chromatography.

    PubMed

    Liu, Zhongling; Yu, Wei; Zhang, Hanqi; Gu, Fanbin; Jin, Xiangqun

    2016-12-01

    Salting-out homogenous extraction followed by ionic liquid/ionic liquid dispersive liquid-liquid micro-extraction system was developed and applied to the extraction of sulfonamides in blood. High-performance liquid chromatography was applied to the determination of the analytes. The blood sample was centrifuged to obtain the serum. After the proteins in the serum were removed in the presence of acetonitrile, ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, dipotassium hydrogen phosphate, ionic liquid 1-Hexyl-3-methylimidazolium hexafluorophosphate were added into the resulting solution. After the resulting mixture was ultrasonically shaken and centrifuged, the precipitate was separated. The acetonitrile was added in the precipitate and the analytes were extracted into the acetonitrile phase. The parameters affecting the extraction efficiency, such as volume of ionic liquid, amount of dipotassium hydrogen phosphate, volume of dispersant, extraction time and temperature were investigated. The limits of detection of sulfamethizole (STZ), sulfachlorpyridazine (SCP), sulfamethoxazole (SMX) and Sulfisoxazole (SSZ) were 4.78, 3.99, 5.21 and 3.77μgL -1 , respectively. When the present method was applied to the analysis of real blood samples, the recoveries of analytes ranged from 90.0% to 113.0% and relative standard deviations were lower than 7.2%. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Pharmacokinetic Studies of Chinese Medicinal Herbs Using an Automated Blood Sampling System and Liquid Chromatography-mass Spectrometry.

    PubMed

    Wu, Yu-Tse; Wu, Ming-Tsang; Lin, Chia-Chun; Chien, Chao-Feng; Tsai, Tung-Hu

    2012-01-01

    The safety of herbal products is one of the major concerns for the modernization of traditional Chinese medicine, and pharmacokinetic data of medicinal herbs guide us to design the rational use of the herbal formula. This article reviews the advantages of the automated blood sampling (ABS) systems for pharmacokinetic studies. In addition, three commonly used sample preparative methods, protein precipitation, liquid-liquid extraction and solid-phase extraction, are introduced. Furthermore, the definition, causes and evaluation of matrix effects in liquid chromatography-mass spectrometry (LC/MS) analysis are demonstrated. Finally, we present our previous works as practical examples of the application of ABS systems and LC/MS for the pharmacokinetic studies of Chinese medicinal herbs.

  4. [Preparation and applications of a supported liquid-liquid extraction column with a composite diatomite material].

    PubMed

    Bao, Jianmin; Ma, Zhishuang; Sun, Ying; Wang, Yongzun; Li, Youxin

    2012-08-01

    A rapid and special supported liquid-liquid extraction (SLE) column was developed with a composite diatomite material. The SLE column was evaluated by high performance liquid chromatography (HPLC) with acidic, neutral and alkaline compounds dissolved in water. Furthermore, some real complex samples were also analyzed by HPLC with the SLE method. The recoveries of benzoic acid (acidic), p-nitroaniline (alkaline) and 4-hydroxy-benzoic methyl ester (neutral) treated by the SLE column were 90.6%, 98.1% and 97.7%. However, the recoveries of the three compounds treated by traditional liquid-liquid extraction (LLE) method were 71.9%, 81.9% and 83.9%. The results showed that the SLE technique had higher recoveries than the traditional LLE method. The spiked recoveries of the complex samples, such as benzoic acid in Sprite and dexamethasone acetate, chlorphenamine maleate, indomethacin in bovine serum, were between 80% and 110% and the relative standard deviations (RSDs) were less than 15%. For biological specimen, the results could be accepted. Meantime, many disadvantages associated with traditional LLE method, such as emulsion formation, didn't occur using SLE column. The SLE column technique is a good sample preparation method with many advantages, such as rapid, simple, robust, easily automated, high recovery and high-throughput, which would be widely used in the future.

  5. Magnetic ionic liquid-based dispersive liquid-liquid microextraction technique for preconcentration and ultra-trace determination of Cd in honey.

    PubMed

    Fiorentini, Emiliano F; Escudero, Leticia B; Wuilloud, Rodolfo G

    2018-04-19

    A simple, highly efficient, batch, and centrifuge-less dispersive liquid-liquid microextraction method based on a magnetic ionic liquid (MIL-DLLME) and electrothermal atomic absorption spectrometry (ETAAS) detection was developed for ultra-trace Cd determination in honey. Initially, Cd(II) was chelated with ammonium diethyldithiophosphate (DDTP) at pH 0.5 followed by its extraction with the MIL trihexyl(tetradecyl)phosphonium tetrachloroferrate(III) ([P 6,6,6,14 ]FeCl 4 ) and acetonitrile as dispersant. The MIL phase containing the analyte was separated from the aqueous phase using only a magnet. A back-extraction procedure was applied to recover Cd from the MIL phase using diluted HNO 3 and this solution was directly injected into the graphite furnace of ETAAS instrument. An extraction efficiency of 93% and a sensitivity enhancement factor of 112 were obtained under optimal experimental conditions. The detection limit (LOD) was 0.4 ng L -1 Cd, while the relative standard deviation (RSD) was 3.8% (at 2 μg L -1 Cd and n = 10), calculated from the peak height of absorbance signals. This work reports the first application of the MIL [P 6,6,6,14 ]FeCl 4 along with the DLLME technique for the successful determination of Cd at trace levels in different honey samples. Graphical abstract Preconcentration of ultratraces of Cd in honey using a magnetic ionic liquid and dispersive liquid-liquid microextraction technique.

  6. Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool.

    PubMed

    Mansour, Fotouh R; Danielson, Neil D

    2017-08-01

    Dispersive liquid-liquid microextraction (DLLME) is a special type of microextraction in which a mixture of two solvents (an extracting solvent and a disperser) is injected into the sample. The extraction solvent is then dispersed as fine droplets in the cloudy sample through manual or mechanical agitation. Hence, the sample is centrifuged to break the formed emulsion and the extracting solvent is manually separated. The organic solvents commonly used in DLLME are halogenated hydrocarbons that are highly toxic. These solvents are heavier than water, so they sink to the bottom of the centrifugation tube which makes the separation step difficult. By using solvents of low density, the organic extractant floats on the sample surface. If the selected solvent such as undecanol has a freezing point in the range 10-25°C, the floating droplet can be solidified using a simple ice-bath, and then transferred out of the sample matrix; this step is known as solidification of floating organic droplet (SFOD). Coupling DLLME to SFOD combines the advantages of both approaches together. The DLLME-SFOD process is controlled by the same variables of conventional liquid-liquid extraction. The organic solvents used as extractants in DLLME-SFOD must be immiscible with water, of lower density, low volatility, high partition coefficient and low melting and freezing points. The extraction efficiency of DLLME-SFOD is affected by types and volumes of organic extractant and disperser, salt addition, pH, temperature, stirring rate and extraction time. This review discusses the principle, optimization variables, advantages and disadvantages and some selected applications of DLLME-SFOD in water, food and biomedical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation.

    PubMed

    Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen

    2013-10-21

    The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity.

  8. Application of ionic liquids in vacuum microwave-assisted extraction followed by macroporous resin isolation of three flavonoids rutin, hyperoside and hesperidin from Sorbus tianschanica leaves.

    PubMed

    Gu, Huiyan; Chen, Fengli; Zhang, Qiang; Zang, Jing

    2016-03-01

    Rutin, hyperoside and hesperidin were effectively extracted from Sorbus tianschanica leaves by an ionic liquid vacuum microwave-assisted method. A series of ionic liquids with various anions and alkyl chain length of the cations were studied and the extraction was performed in [C6mim][BF4] aqueous solution. After optimization by a factorial design and response surface methodology, total extraction yield of 2.37mg/g with an error of 0.12mg/g (0.71±0.04mg/g, 1.18±0.06mg/g and 0.48±0.02 for rutin, hyperoside and hesperidin, respectively) was achieved under -0.08MPa for vacuum, 19min and 420W for microwave irradiation time and power, and 15mL/g for liquid-solid ratio. The proposed method here is more efficient and needs a shorter extraction time for rutin, hyperoside and hesperidin from S. tianschanica leaves than reference extraction techniques. In stability studies performed with standard rutin, hyperoside and hesperidin, the target analytes were stable under the optimum conditions. The proposed method had a high reproducibility and precision. In addition, separation of rutin, hyperoside and hesperidin from [C6mim][BF4] extraction solution was completed effectively by AB-8 macroporous resin adsorption and desorption process. Ionic liquid vacuum microwave-assisted extraction is a simple, rapid and efficient sample extraction technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hollow fiber-based liquid-liquid-liquid micro-extraction with osmosis: II. Application to quantification of endogenous gibberellins in rice plant.

    PubMed

    Wu, Qian; Wu, Dapeng; Duan, Chunfeng; Shen, Zheng; Guan, Yafeng

    2012-11-23

    The phenomenon and benefits of osmosis in hollow fiber-based liquid-liquid-liquid micro-extraction (HF-LLLME) were theoretically discussed in part I of this study. In this work, HF-LLLME with osmosis was coupled with high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-triple quadrupole MS/MS) to analyze eight gibberellins (gibberellin A(1), gibberellin A(3), gibberellin A(4), gibberellin A(7), gibberellin A(8), gibberellin A(9), gibberellin A(19) and gibberellin A(20)) in rice plant samples. According to the theory of HF-LLLME with osmosis, single factor experiments, orthogonal design experiments and mass transfer simulation of extraction process were carried out to select the optimal conditions. Cyclohexanol - n-octanol (1:3, v/v) was selected as organic membrane. Donor phase of 12 mL was adjusted to pH 2 and 20% NaCl (w/v) was added. Acceptor phase with an initial volume of 20 μL was the solution of 0.12 mol L(-1) Na(2)CO(3)-NaHCO(3) buffer (pH 9). Temperature was chosen to be 30 °C and extraction time was selected to be 90 min. Under optimized conditions, this method provided good linearity (r, 0.99552-0.99991) and low limits of detection (0.0016-0.061 ng mL(-1)). Finally, this method was applied to the analysis of endogenous gibberellins from plant extract which was obtained with traditional solvent extraction of rice plant tissues, and the relative recoveries were from 62% to 166%. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Comparative Evaluation of Different Cell Lysis and Extraction Methods for Studying Benzo(a)pyrene Metabolism in HT-29 Colon Cancer Cell Cultures

    PubMed Central

    Myers, Jeremy N.; Rekhadevi, Perumalla V.; Ramesh, Aramandla

    2011-01-01

    Lysis and extraction of cells are essential sample processing steps for investigations pertaining to metabolism of xenobiotics in cell culture studies. Of particular importance to these procedures are maintaining high lysis efficiency and analyte integrity as they influence the qualitative and quantitative distribution of drug and toxicant metabolites in the intra- and extracellular milieus. In this study we have compared the efficiency of different procedures viz. homogenization, sonication, bead beating, and molecular grinding resin treatment for disruption of HT-29 colon cells exposed to benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH) compound and a suspected colon carcinogen. Also, we have evaluated the efficiency of various procedures for extracting BaP parent compound/metabolites from colon cells and culture media prior to High Performance Liquid Chromatography (HPLC) analyses. The extraction procedures include solid phase extraction, solid-supported liquid- liquid extraction, liquid-liquid extraction, and homogeneous liquid- liquid extraction. Our findings showed that bead-beating in combination with detergent treatment of cell pellet coupled with liquid-liquid extraction yielded greater concentrations of BaP metabolites compared to the other methods employed. Our method optimization strategy revealed that disruption of HT-29 colon cells by a combination of mechanical and chemical lysis followed by liquid-liquid extraction is efficient and robust enough for analyzing BaP metabolites from cell culture studies. PMID:21865728

  11. Evaluation and application of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of polar heterocyclic aromatic amines in hamburger patties.

    PubMed

    Aeenehvand, Saeed; Toudehrousta, Zahra; Kamankesh, Marzieh; Mashayekh, Morteza; Tavakoli, Hamid Reza; Mohammadi, Abdorreza

    2016-01-01

    This study developed an analytical method based on microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of three polar heterocyclic aromatic amines from hamburger patties. Effective parameters controlling the performance of the microextraction process, such as the type and volume of extraction and disperser solvents, microwave time, nature of alkaline aqueous solution, pH and salt amount, were optimized. The calibration graphs were linear in the range of 1-200 ng g(-1), with a coefficient of determination (R(2)) better than 0.9993. The relative standard deviations (RSD) for seven analyses were between 3.2% and 6.5%. The recoveries of those compounds in hamburger patties were from 90% to 105%. Detection limits were between 0.06 and 0.21 ng g(-1). A comparison of the proposed method with the existing literature demonstrates that it is a simple, rapid, highly selective and sensitive, and it gives good enrichment factors and detection limits for determining HAAs in real hamburger patties samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Coupling of solvent-based de-emulsification dispersive liquid-liquid microextraction with high performance liquid chromatography for simultaneous simple and rapid trace monitoring of 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid.

    PubMed

    Behbahani, Mohammad; Najafi, Fatemeh; Bagheri, Saman; Bojdi, Majid Kalate; Hassanlou, Parmoon Ghareh; Bagheri, Akbar

    2014-04-01

    A simple, rapid, and efficient sample pretreatment technique, based on solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for simultaneous preconcentration and trace detection of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in water and urine samples. Some parameters such as acidity of solution, the amount of salt, type, and volume of extraction solvents, type of disperser/de-emulsifier solvent, and its volume were investigated and optimized. Under optimum extraction conditions, the limits of detections (LODs) of this method for MCPA and 2,4-D were 0.2 and 0.6 μg L(-1) (based on 3S(b)/m) in water and 0.4 and 1.6 μg L(-1) in urine, respectively. Furthermore, dynamic linear range of this method for MCPA and 2,4-D was 1-300 and 2-400 μg L(-1), repectively. Finally, the applicability of the proposed method was evaluated by extraction and determination of the herbicides in urine and different water samples.

  13. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Chen, Hao

    2016-06-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.

  14. Ringer tablet-based ionic liquid phase microextraction: Application in extraction and preconcentration of neonicotinoid insecticides from fruit juice and vegetable samples.

    PubMed

    Farajzadeh, Mir Ali; Bamorowat, Mahdi; Mogaddam, Mohammad Reza Afshar

    2016-11-01

    An efficient, reliable, sensitive, rapid, and green analytical method for the extraction and determination of neonicotinoid insecticides in aqueous samples has been developed using ionic liquid phase microextraction coupled with high performance liquid chromatography-diode array detector. In this method, a few microliters of 1-hexyl-3-methylimidazolium hexafluorophosphate (as an extractant) is added onto a ringer tablet and it is transferred into a conical test tube containing aqueous phase of the analytes. By manually shaking, the ringer tablet is dissolved and the extractant is released into the aqueous phase as very tiny droplets to provide a cloudy solution. After centrifuging the extracted analytes into ionic liquid are collected at the bottom of a conical test tube. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.12 and 0.33 and 0.41 and 1.11ngmL(-1), respectively. Extraction recoveries and enrichment factors were from 66% to 84% and 655% to 843%, respectively. Finally different aqueous samples were successfully analyzed using the proposed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Liquid by-products from fish canning industry as sustainable sources of ω3 lipids.

    PubMed

    Monteiro, Ana; Paquincha, Diogo; Martins, Florinda; Queirós, Rui P; Saraiva, Jorge A; Švarc-Gajić, Jaroslava; Nastić, Nataša; Delerue-Matos, Cristina; Carvalho, Ana P

    2018-08-01

    Fish canning industry generates large amounts of liquid wastes, which are discarded, after proper treatment to remove the organic load. However, alternative treatment processes may also be designed in order to target the recovery of valuable compounds; with this procedure, these wastewaters are converted into liquid by-products, becoming an additional source of revenue for the company. This study evaluated green and economically sustainable methodologies for the extraction of ω3 lipids from fish canning liquid by-products. Lipids were extracted by processes combining physical and chemical parameters (conventional and pressurized extraction processes), as well as chemical and biological parameters. Furthermore, LCA was applied to evaluate the environmental performance and costs indicators for each process. Results indicated that extraction with high hydrostatic pressure provides the highest amounts of ω3 polyunsaturated fatty acids (3331,5 mg L -1 effluent), apart from presenting the lowest environmental impact and costs. The studied procedures allow to obtain alternative, sustainable and traceable sources of ω3 lipids for further applications in food, pharmaceutical and cosmetic industries. Additionally, such approach contributes towards the organic depuration of canning liquid effluents, therefore reducing the overall waste treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques.

    PubMed

    Provazi, Kellie; Campos, Beatriz Amaral; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    2011-01-01

    The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Simultaneous determination of dextromethorphan, dextrorphan, and guaifenesin in human plasma using semi-automated liquid/liquid extraction and gradient liquid chromatography tandem mass spectrometry.

    PubMed

    Eichhold, Thomas H; McCauley-Myers, David L; Khambe, Deepa A; Thompson, Gary A; Hoke, Steven H

    2007-01-17

    A method for the simultaneous determination of dextromethorphan (DEX), dextrorphan (DET), and guaifenesin (GG) in human plasma was developed, validated, and applied to determine plasma concentrations of these compounds in samples from six clinical pharmacokinetic (PK) studies. Semi-automated liquid handling systems were used to perform the majority of the sample manipulation including liquid/liquid extraction (LLE) of the analytes from human plasma. Stable-isotope-labeled analogues were utilized as internal standards (ISTDs) for each analyte to facilitate accurate and precise quantification. Extracts were analyzed using gradient liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Use of semi-automated LLE with LC-MS/MS proved to be a very rugged and reliable approach for analysis of more than 6200 clinical study samples. The lower limit of quantification was validated at 0.010, 0.010, and 1.0 ng/mL of plasma for DEX, DET, and GG, respectively. Accuracy and precision of quality control (QC) samples for all three analytes met FDA Guidance criteria of +/-15% for average QC accuracy with coefficients of variation less than 15%. Data from the thorough evaluation of the method during development, validation, and application are presented to characterize selectivity, linearity, over-range sample analysis, accuracy, precision, autosampler carry-over, ruggedness, extraction efficiency, ionization suppression, and stability. Pharmacokinetic data are also provided to illustrate improvements in systemic drug and metabolite concentration-time profiles that were achieved by formulation optimization.

  18. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1 , B2 , G1 , and G2 in animal feeds by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling

    2016-10-01

    A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Lanekoff, Ingela

    2015-11-13

    Mass spectrometry imaging (MSI) is a powerful analytical technique that enables label-free spatial localization and identification of molecules in complex samples.1-4 MSI applications range from forensics5 to clinical research6 and from understanding microbial communication7-8 to imaging biomolecules in tissues.1, 9-10 Recently, MSI protocols have been reviewed.11 Ambient ionization techniques enable direct analysis of complex samples under atmospheric pressure without special sample pretreatment.3, 12-16 In fact, in ambient ionization mass spectrometry, sample processing (e.g., extraction, dilution, preconcentration, or desorption) occurs during the analysis.17 This substantially speeds up analysis and eliminates any possible effects of sample preparation on the localization of moleculesmore » in the sample.3, 8, 12-14, 18-20 Venter and co-workers have classified ambient ionization techniques into three major categories based on the sample processing steps involved: 1) liquid extraction techniques, in which analyte molecules are removed from the sample and extracted into a solvent prior to ionization; 2) desorption techniques capable of generating free ions directly from substrates; and 3) desorption techniques that produce larger particles subsequently captured by an electrospray plume and ionized.17 This review focuses on localized analysis and ambient imaging of complex samples using a subset of ambient ionization methods broadly defined as “liquid extraction techniques” based on the classification introduced by Venter and co-workers.17 Specifically, we include techniques where analyte molecules are desorbed from solid or liquid samples using charged droplet bombardment, liquid extraction, physisorption, chemisorption, mechanical force, laser ablation, or laser capture microdissection. Analyte extraction is followed by soft ionization that generates ions corresponding to intact species. Some of the key advantages of liquid extraction techniques include the ease of operation, ability to analyze samples in their native environments, speed of analysis, and ability to tune the extraction solvent composition to a problem at hand. For example, solvent composition may be optimized for efficient extraction of different classes of analytes from the sample or for quantification or online derivatization through reactive analysis. In this review, we will: 1) introduce individual liquid extraction techniques capable of localized analysis and imaging, 2) describe approaches for quantitative MSI experiments free of matrix effects, 3) discuss advantages of reactive analysis for MSI experiments, and 4) highlight selected applications (published between 2012 and 2015) that focus on imaging and spatial profiling of molecules in complex biological and environmental samples.« less

  20. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Taehun

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations,more » better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.« less

  1. Determination of fluoroquinolones in chicken feces - a new liquid-liquid extraction method combined with LC-MS/MS.

    PubMed

    Janusch, Franziska; Scherz, Gesine; Mohring, Siegrun A I; Hamscher, Gerd

    2014-11-01

    The application of antibiotics including fluoroquinolones to farming animals is widespread and may lead to the development of antibiotic resistance and other environmental effects. To calculate environmental loads and for a proper risk assessment it is necessary to determine the antibiotic concentration in feces. Therefore, a new liquid-liquid extraction method combined with HPLC-MS/MS for the detection of marbofloxacin, ciprofloxacin, enrofloxacin and difloxacin in chicken feces was developed. Recoveries ranged from 51.0% to 83.5%. LOQs were between 0.10 and 1.09μg/kg. Feces of chickens treated with an enrofloxacin dosage of 10mg/kg bodyweight revealed maximum enrofloxacin and ciprofloxacin concentrations of 61.3 and 18.8mg/kg. Both antibiotics could be detected in feces up to two days after the last application in notable amounts (∼1mg/kg). Thus, feces of recently medicated chickens should not be used as a fertilizer without any further processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synthesis and application of magnetic deep eutectic solvents: Novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene.

    PubMed

    Khezeli, Tahere; Daneshfar, Ali

    2017-09-01

    Two novel magnetic deep eutectic solvents (MDESs), comprised of cheap and simple components named [choline chloride/phenol] [FeCl 4 ] and [choline chloride/ethylene glycol] [FeCl 4 ] were prepared and characterized by CHN elemental analysis, proton nuclear magnetic resonance ( 1 H NMR), vibrating sample magnetometery (VSM), Raman, Fourier transform-infrared (FT-IR) and UV-Vis spectrometery. The extraction efficiency of the prepared MDESs has been investigated in ultrasound assisted liquid-liquid microextraction based MDES (UALLME-MDES). Briefly, MDESs were added to n-heptan containing thiophene. Then, MDESs were dispersed in n-heptane by sonication. After that, microdroplets of MDESs were collected by a magnet and the remained concentration of thiophene in n-heptane phase was analyzed by GC-FID. The results indicated that [choline chloride/phenol] [FeCl 4 ] has higher extraction efficiency than [choline chloride/ethylene glycol] [FeCl 4 ]. This work opens a new way to the application of MDESs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardle, K.E.

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor aremore » reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.« less

  4. Acid-switched Eu(III) coordination inside reverse aggregates: Insights into a synergistic liquid-liquid extraction system

    DOE PAGES

    Ellis, Ross J.

    2016-08-09

    Determining the structure of complex solutions bearing metal ions is challenging, but crucial for developing important technologies such as liquid-liquid extraction for metal refining and separation purposes. Herein, the structure of an organic Eu(III) solution consisting a binary mixture of lipophilic ligands di-2-ethylhexyl phosphoric acid (HDEHP) and tetraoctyl diglycolamide (TODGA) in dodecane is studied using synchrotron small angle X-ray scattering (SAXS) and X-ray absorption fine structure spectroscopy (EXAFS). This system is of technological importance in f-element separation for nuclear fuel cycle applications, where extraction is controlled by varying nitric acid concentration. Extraction is promoted at low and high concentration, butmore » is retarded at intermediate concentration, leading to a U-shaped function; the structural origins of which we investigate. At the nanoscale, the solution is apparently comprised of reverse micelles with polar cores of approximately 1 nm in size, and these remain virtually unchanged as acid concentration is varied. Inside the polar cores, the coordination environment of Eu(III) switches from a 9-coordinate [Eu(TODGA) 3] 3+ motif at high acid, to a 6-coordinate HDEHP-dominated complex resembling Eu(HDEHP·DEHP) 3 at low acid. The results show that extraction is controlled within the coordination sphere, where it is promoted under conditions that favor coordination of either one of the two organic ligands, but is retarded under conditions that encourage mixed complexes. Lastly, our results link solution structure with ion transport properties in a technologically-important liquid-liquid ion extraction system.« less

  5. Ternary liquid-liquid equilibria for the phenolic compounds extraction from artificial textile industrial waste

    NASA Astrophysics Data System (ADS)

    Fardhyanti, Dewi Selvia; Prasetiawan, Haniif; Hermawan, Sari, Lelita Sakina

    2017-03-01

    Liquid waste in textile industry contains large amounts of dyes and chemicals which are capable of harming the environment and human health. It is due to liquid waste characteristics which have high BOD, COD, temperature, dissolved and suspended solid. One of chemical compound which might be harmful for environment when disposed in high concentration is phenol. Currently, Phenol compound in textile industrial waste has reached 10 ppm meanwhile maximum allowable phenol concentration is not more than 0.2 ppm. Otherwise, Phenol also has economic value as feedstock of plastic, pharmaceutical and cosmetic industry. Furthermore, suitable method to separate phenol from waste water is needed. In this research, liquid - liquid extraction method was used with extraction time for 70 minutes. Waste water sample was then separated into two layers which are extract and raffinate. Thereafter, extract and raffinate were then tested by using UV-Vis Spectrophotometer to obtained liquid - liquid equilibrium data. Aim of this research is to study the effect of temperature, stirring speed and type of solvent to obtain distribution coefficient (Kd), phenol yield and correlation of Three-Suffix Margules model for the liquid - liquid extraction data equilibrium. The highest extraction yield at 80.43 % was found by using 70% methanol as solvent at extraction temperature 50 °C with stirring speed 300 rpm, coefficient distribution was found 216.334. From this research it can be concluded that Three-Suffix Margules Model is suitable to predict liquid - liquid equilibrium data for phenol system.

  6. Downstream valorization and comprehensive two-dimensional liquid chromatography-based chemical characterization of bioactives from black chokeberries (Aronia melanocarpa) pomace.

    PubMed

    Brazdauskas, T; Montero, L; Venskutonis, P R; Ibañez, E; Herrero, M

    2016-10-14

    In this work, a new alternative for the downstream processing and valorization of black chokeberry pomace (Aronia melanocarpa) which could be potentially coupled to a biorefinery process is proposed. This alternative is based on the application of pressurized liquid extraction (PLE) to the residue obtained after the supercritical fluid extraction of the berry pomace. An experimental design is employed to study and optimize the most relevant extraction conditions in order to attain extracts with high extraction yields, total phenols content and antioxidant activity. Moreover, the PLE extracts were characterized by using a new method based on the application of comprehensive two-dimensional liquid chromatography in order to correlate their activity with their chemical composition. Thanks to the use of this powerful analytical tool, 61 compounds could be separated being possible the tentative identification of different anthocyanins, proanthocyanidins, flavonoids and phenolic acids. By using the optimized PLE approach (using pressurized 46% ethanol in water at 165°C containing 1.8% formic acid), extracts with high total phenols content (236.6mg GAE g -1 extract) and high antioxidant activities (4.35mmol TE g -1 extract and EC 50 5.92μgmL -1 ) could be obtained with high yields (72.5%). Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Approximating the nonlinear density dependence of electron transport coefficients and scattering rates across the gas-liquid interface

    NASA Astrophysics Data System (ADS)

    Garland, N. A.; Boyle, G. J.; Cocks, D. G.; White, R. D.

    2018-02-01

    This study reviews the neutral density dependence of electron transport in gases and liquids and develops a method to determine the nonlinear medium density dependence of electron transport coefficients and scattering rates required for modeling transport in the vicinity of gas-liquid interfaces. The method has its foundations in Blanc’s law for gas-mixtures and adapts the theory of Garland et al (2017 Plasma Sources Sci. Technol. 26) to extract electron transport data across the gas-liquid transition region using known data from the gas and liquid phases only. The method is systematically benchmarked against multi-term Boltzmann equation solutions for Percus-Yevick model liquids. Application to atomic liquids highlights the utility and accuracy of the derived method.

  8. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding.

    PubMed

    Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde

    2011-06-01

    Liquid-liquid extraction of actinides and lanthanides by use of ionic liquids is reviewed, considering, first, phenomenological aspects, then looking more deeply at the various mechanisms. Future trends in this developing field are presented.

  9. A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.

    PubMed

    Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia

    2016-07-05

    Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.

  10. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.

    PubMed

    Farajzadeh, Mir Ali; Feriduni, Behruz; Mogaddam, Mohammad Reza Afshar

    2016-01-01

    In this paper, a new extraction method based on counter current salting-out homogenous liquid-liquid extraction (CCSHLLE) followed by dispersive liquid-liquid microextraction (DLLME) has been developed for the extraction and preconcentration of widely used pesticides in fruit juice samples prior to their analysis by gas chromatography-flame ionization detection (GC-FID). In this method, initially, sodium chloride as a separation reagent is filled into a small column and a mixture of water (or fruit juice) and acetonitrile is passed through the column. By passing the mixture sodium chloride is dissolved and the fine droplets of acetonitrile are formed due to salting-out effect. The produced droplets go up through the remained mixture and collect as a separated layer. Then, the collected organic phase (acetonitrile) is removed with a syringe and mixed with 1,1,2,2-tetrachloroethane (extraction solvent at µL level). In the second step, for further enrichment of the analytes the above mixture is injected into 5 mL de-ionized water placed in a test tube with conical bottom in order to dissolve acetonitrile into water and to achieve a sedimented phase at µL-level volume containing the enriched analytes. Under the optimal extraction conditions (extraction solvent, 1.5 mL acetonitrile; pH, 7; flow rate, 0.5 mL min(-1); preconcentration solvent, 20 µL 1,1,2,2-tetrachloroethane; NaCl concentration; 5%, w/w; and centrifugation rate and time, 5000 rpm and 5 min, respectively), the extraction recoveries and enrichment factors ranged from 87% to 96% and 544 to 600, respectively. Repeatability of the proposed method, expressed as relative standard deviations, ranged from 2% to 6% for intra-day (n=6, C=250 or 500 µg L(-1)) and inter-days (n=4, C=250 or 500 µg L(-1)) precisions. Limits of detection are obtained between 2 and 12 µg L(-1). Finally, the proposed method is applied for the determination of the target pesticide residues in the juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  12. The limit of the film extraction technique for annular two-phase flow in a small tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.

    1999-07-01

    The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et. al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In these experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirelymore » from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.« less

  13. The limit of the film extraction technique for annular two-phase flow in a small tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.

    1999-07-01

    The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In the experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirelymore » from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.« less

  14. Compound Separation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Jet Propulsion Laboratory developed a new one-step liquid-liquid extraction technique which cuts processing time, reduces costs and eliminates much of the equipment required. Technique employs disposable extraction columns, originally developed as an aid to the Los Angeles Police Department, which allow more rapid detection of drugs as part of the department's drug abuse program. Applications include medical treatment, pharmaceutical preparation and forensic chemistry. NASA waived title to Caltech, and Analytichem International is producing Extubes under Caltech license.

  15. Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.

    PubMed

    Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan

    2015-09-01

    In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Application of dispersion-solidification liquid-liquid microextraction for the determination of triazole fungicides in environmental water samples by high-performance liquid chromatography.

    PubMed

    Wang, Chun; Wu, Qiuhua; Wu, Chunxia; Wang, Zhi

    2011-01-15

    A simple, rapid and environmentally friendly method has been developed for the determination of four triazole fungicides (myclobutanil, tebuconazole, triadimenol, hexaconazole) in water samples by dispersion-solidification liquid-liquid microextraction coupled with high performance liquid chromatography-diode array detection. Several variables that affect the extraction efficiencies, including the type and volume of the extraction solvent and dispersive solvent, extraction time, effect of pH and salt addition, were investigated and optimized. Under the optimum conditions, the proposed method is sensitive and shows a good linearity within a range of 0.5-200 ng mL(-1), with the correlation coefficients (r) varying from 0.9992 to 0.9998. High enrichment factors were achieved ranging from 190 to 450. The recoveries of the target analytes from water samples at spiking levels of 1.0, 5.0 and 50.0 ng mL(-1) were between 84.8% and 110.2%. The limits of detection (LODs) for the analytes were ranged in 0.06-0.1 ng mL(-1), and the relative standard deviations (RSD) varied from 3.9% to 5.7%. The proposed method has been successfully applied for the determination of the triazole fungicides in real water samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    PubMed

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Suitability of dispersive liquid-liquid microextraction for the in situ silylation of chlorophenols in water samples before gas chromatography with mass spectrometry.

    PubMed

    Saraji, Mohammad; Ghambari, Hoda

    2015-10-01

    Trace analysis of chlorophenols in water was performed by simultaneous silylation and dispersive liquid-liquid microextraction followed by gas chromatography with mass spectrometry. Dispersive liquid-liquid microextraction was carried out using an organic solvent lighter than water (n-hexane). The effect of different silylating reagents on the method efficiency was investigated. The influence of derivatization reagent volume, presence of catalyst and derivatization/extraction time on the yield of the derivatization reaction was studied. Different parameters affecting extraction efficiency such as kind and volume of extraction and disperser solvents, pH of the sample and addition of salt were also investigated and optimized. Under the optimum conditions, the calibration graphs were linear in the range of 0.05-100 ng/mL and the limit of detection was 0.01 ng/mL. The enrichment factors were 242, 351, and 363 for 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol, respectively. The values of intra- and inter-day relative standard deviations were in the range of 3.0-6.4 and 6.1-9.9%, respectively. The applicability of the method was investigated by analyzing water and wastewater samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Extraction of S- and N-compounds from the mixture of hydrocarbons by ionic liquids as selective solvents.

    PubMed

    Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan

    2013-01-01

    Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation.

  20. Extraction of S- and N-Compounds from the Mixture of Hydrocarbons by Ionic Liquids as Selective Solvents

    PubMed Central

    Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan

    2013-01-01

    Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation. PMID:23843736

  1. Solid-Phase Extraction (SPE): Principles and Applications in Food Samples.

    PubMed

    Ötles, Semih; Kartal, Canan

    2016-01-01

    Solid-Phase Extraction (SPE) is a sample preparation method that is practised on numerous application fields due to its many advantages compared to other traditional methods. SPE was invented as an alternative to liquid/liquid extraction and eliminated multiple disadvantages, such as usage of large amount of solvent, extended operation time/procedure steps, potential sources of error, and high cost. Moreover, SPE can be plied to the samples combined with other analytical methods and sample preparation techniques optionally. SPE technique is a useful tool for many purposes through its versatility. Isolation, concentration, purification and clean-up are the main approaches in the practices of this method. Food structures represent a complicated matrix and can be formed into different physical stages, such as solid, viscous or liquid. Therefore, sample preparation step particularly has an important role for the determination of specific compounds in foods. SPE offers many opportunities not only for analysis of a large diversity of food samples but also for optimization and advances. This review aims to provide a comprehensive overview on basic principles of SPE and its applications for many analytes in food matrix.

  2. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba

    2013-01-01

    A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.

  3. Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Rezaee Aghdam, Samaneh; Nouri, Nina; Bamorrowat, Mahdi

    2016-12-01

    In the present study, an elevated temperature, dispersive, liquid-liquid microextraction/gas chromatography-flame ionization detection was investigated for the determination, pre-concentration, and extraction of six organophosphorus pesticides (malathion, phosalone, dichlorvos, diazinon, profenofos, and chlorpyrifos) residues in fruit juice and aqueous samples. A mixture of 1,2-dibromoethane (extraction solvent) and dimethyl sulfoxide (disperser solvent) was injected rapidly into the sample solution heated at an elevated temperature. Analytical parameters, including enrichment factors (1600-2075), linearity (r>0.994), limits of detection (0.82-2.72ngmL(-1)) and quantification (2.60-7.36ngmL(-1)), relative standard deviations (<7%) and extraction recoveries (64-83%), showed the high efficiency of the method developed for analysis of the target analytes. The proposed procedure was used effectively to analyse selected analytes in river water and fruit juice, and diazinon was found at ngmL(-1) concentrations in apple juice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 10 CFR Appendix J to Part 110 - Illustrative List of Uranium Conversion Plant Equipment and Plutonium Conversion Plant Equipment...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reactors, flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction... to UF6 is performed by exothermic reaction with fluorine in a tower reactor. UF6 is condensed from..., flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction columns. Hot...

  5. Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe

    NASA Astrophysics Data System (ADS)

    Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.

    2018-04-01

    The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.

  6. Downstream process options for the ABE fermentation.

    PubMed

    Friedl, Anton

    2016-05-01

    Butanol is a very interesting substance both for the chemical industry and as a biofuel. The classical distillation process for the removal of butanol is far too energy demanding, at a factor of 220% of the energy content of butanol. Alternative separation processes studied are hybrid processes of gas-stripping, liquid-liquid extraction and pervaporation with distillation and a novel adsorption/drying/desorption hybrid process. Compared with the energy content of butanol, the resulting energy demand for butanol separation and concentration of optimized hybrid processes is 11%-22% for pervaporation/distillation and 11%-17% for liquid-liquid extraction/distillation. For a novel adsorption/drying/desorption process, the energy demand is 9.4%. But all downstream process options need further proof of industrial applicability. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Dynamic ultrasonic nebulisation extraction coupled with headspace ionic liquid-based single-drop microextraction for the analysis of the essential oil in Forsythia suspensa.

    PubMed

    Yang, Jinjuan; Wei, Hongmin; Teng, Xiane; Zhang, Hanqi; Shi, Yuhua

    2014-01-01

    Ionic liquids have attracted much attention as an extraction solvent instead of traditional organic solvent in single-drop microextraction. However, non-volatile ionic liquids are difficult to couple with gas chromatography. Thus, the following injection system for the determination of organic compounds is described. To establish an environmentally friendly, simple, and effective extraction method for preparation and analysis of the essential oil from aromatic plants. The dynamic ultrasonic nebulisation extraction was coupled with headspace ionic liquid-based single-drop microextraction(UNE-HS/IL/SDME)for the extraction of essential oils from Forsythia suspense fruits. After 13 min of extraction for 50 mg sample, the extracts in ionic liquid were evaporated rapidly in the gas chromatography injector through a thermal desorption unit (5 s). The traditional extraction method was carried out for comparative study. The optimum conditions were: 3 μL of 1-methyl-3-octylimidazolium hexafluorophosphate was selected as the extraction solvent, the sample amount was 50 mg, the flow rate of purging gas was 200 mL/min, the extraction time was 13 min, the injection volume was 2 μL, and the thermal desorption temperature and time were 240 °C and 5 s respectively. Comparing with hydrodistillation (HD), the proposed method was environment friendly and efficient. The proposed method is environmentally friendly, time saving, with high efficiency and low consumption. It would extend the application range of the HS/SDME and would be useful especially for aromatic plants analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Preparation of magnetic chitosan and graphene oxide-functional guanidinium ionic liquid composite for the solid-phase extraction of protein.

    PubMed

    Ding, Xueqin; Wang, Yuzhi; Wang, Ying; Pan, Qi; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2015-02-25

    A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized, and then magnetic chitosan graphene oxide (MCGO) composite has been prepared and coated with these functional guanidinium ionic liquids to extract protein by magnetic solid-phase extraction. MCGO-functional guanidinium ionic liquid has been characterized by vibrating sample magnetometer, field emission scanning electron microscopy, X-ray diffraction spectrometer and Fourier transform infrared spectrometer. After extraction, the concentrations of protein were determined by measuring the absorbance at 278 nm using an ultra violet visible spectrophotometer. The advantages of MCGO-functional guanidinium ionic liquid in protein extraction were compared with magnetic chitosan, graphene oxide, MCGO and MCGO-ordinary imidazolium ionic liquid. The proposed method has been applied to extract trypsin, lysozyme, ovalbumin and bovine serum albumin. A comprehensive study of the adsorption conditions such as the concentration of protein, the amount of MCGO-functional guanidinium ionic liquid, the pH, the temperature and the extraction time were also presented. Moreover, the MCGO-functional guanidinium ionic liquid can be easily regenerated, and the extraction capacity was about 94% of the initial one after being used three times. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. METHOD OF LIQUID-LIQUID EXTRACTION OF BLOOD SURROGATES FOR ASSESSING HUMAN EXPOSURE TO JET FUEL

    EPA Science Inventory

    A baseline method of liquid?liquid extraction for assessing human exposure to JP-8 jet fuel was established by extracting several representative compounds ranging from very volatile to semi-volatile organic compounds, including benzene, toluene, nonane, decane, undecane, tridec...

  10. Design criteria for extraction with chemical reaction and liquid membrane permeation

    NASA Technical Reports Server (NTRS)

    Bart, H. J.; Bauer, A.; Lorbach, D.; Marr, R.

    1988-01-01

    The design criteria for heterogeneous chemical reactions in liquid/liquid systems formally correspond to those of classical physical extraction. More complex models are presented which describe the material exchange at the individual droplets in an extraction with chemical reaction and in liquid membrane permeation.

  11. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-09-01

    Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Optimization of an accelerated solvent extraction dispersive liquid-liquid microextraction method for the separation and determination of essential oil from Ligusticum chuanxiong Hort by gas chromatography with mass spectrometry.

    PubMed

    Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong

    2015-10-01

    In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually <1 g, 0.01 g for this study) and solvent (<20 mL) than the conventional system. To sum up, the proposed method could be recommended as a new approach in the extraction and analysis of essential oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 10 CFR Appendix J to Part 110 - Illustrative List of Uranium Conversion Plant Equipment and Plutonium Conversion Plant Equipment...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reactors, flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction... UF4 to UF6 is performed by exothermic reaction with fluorine in a tower reactor. UF6 is condensed from..., flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction columns. Hot...

  14. Chemical treatment of low-grade uranium ores. Extraction of uranium from tricalcium phosphate; TRAITEMENT CHIMIQUE DES MINERAIS PAUVRES D'URANIUM. EXTRACTION DE L'URANIUM DU PHOSPHATE TRICALCIQUE (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mechelynck, Ph.

    1958-07-15

    After an examination of the different processes for the treatment of uranium minerals, it is concluded that the extraction of uranium by ion exchange is not applicable to hydrochloric acid solutions of phosphates. A sulfuric or phosphoric solution can be used. For solvent extraction of uranium, sulfuric or phosphoric solutions are the best, but hydrochloric solutions can be used. The cost of the solvents used would determine the cost of the operation. It is necessary, in the case of liquid-liquid extraction, to filter or decant the solution before extraction. (tr-auth)

  15. Capabilities and limitations of dispersive liquid-liquid microextraction with solidification of floating organic drop for the extraction of organic pollutants from water samples.

    PubMed

    Vera-Avila, Luz E; Rojo-Portillo, Tania; Covarrubias-Herrera, Rosario; Peña-Alvarez, Araceli

    2013-12-17

    Dispersive liquid-liquid microextraction with solidification of floating organic drop (DLLME-SFO) is one of the most interesting sample preparation techniques developed in recent years. Although several applications have been reported, the potentiality and limitations of this simple and rapid extraction technique have not been made sufficiently explicit. In this work, the extraction efficiency of DLLME-SFO for pollutants from different chemical families was determined. Studied compounds include: 10 polycyclic aromatic hydrocarbons, 5 pesticides (chlorophenoxy herbicides and DDT), 8 phenols and 6 sulfonamides, thus, covering a large range of polarity and hydrophobicity (LogKow 0-7, overall). After optimization of extraction conditions using 1-dodecanol as extractant, the procedure was applied for extraction of each family from 10-mL spiked water samples, only adjusting sample pH as required. Absolute recoveries for pollutants with LogKow 3-7 were >70% and recovery values within this group (18 compounds) were independent of structure or hydrophobicity; the precision of recovery was very acceptable (RSD<12%) and linear behavior was observed in the studied concentration range (r(2)>0.995). Extraction recoveries for pollutants with LogKow 1.46-2.8 were in the range 13-62%, directly depending on individual LogKow values; however, good linearity (r(2)>0.993) and precision (RSD<6.5%) were also demonstrated for these polar solutes, despite recovery level. DLLME-SFO with 1-dodecanol completely failed for extraction of compounds with LogKow≤1 (sulfa drugs), other more polar extraction solvents (ionic liquids) should be explored for highly hydrophilic pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. [Application of microwave technology in extraction process of Guizhi Fuling capsule].

    PubMed

    Wang, Zheng-kuan; Zhou, Mao; Liu, Yuan; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    In this paper, optimization of the conditions of microwave technique in extraction process of Guizhi Fuling capsule in the condition of a pilot scale was carried out. First of all, through the single factor experiment investigation of various factors, the overall impact tendency and range of each factor were determined. Secondly, L9 (3(4)) orthogonal test optimization was used, and the contents of gallic acid in liquid, paeoniflorin, benzoic acid, cinnamic acid, benzoyl paeoniflorin, amygdalin of the liquid medicine were detected. The extraction rate and comprehensive evaluation were calculated with the extraction effect, as the judgment basis. Theoptimum extraction process of Guizhi Fuling capsule by microwave technology was as follows: the ratio of liquid to solid was 6: 1 added to drinking water, the microwave power was 6 kW, extraction time was 20 min for 3 times. The process of the three batch of amplification through verification, the results are stable, and compared with conventional water extraction has the advantages of energy saving, time saving, high efficiency advantages. The above results show the optimum extracting technology of high efficiency, stable and feasible.

  17. Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods.

    PubMed

    Da Porto, Carla; Natolino, Andrea

    2018-08-30

    Analysis of the extraction kinetic modelling for natural compounds is essential for industrial application. The second order rate model was applied to estimate the extraction kinetics of conventional solid-liquid extraction (CSLE), ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) of total polyphenols (TPC) from saffron floral bio-residues at different solid-to-liquid ratios (R S/L )(1:10, 1:20, 1:30, 1:50 g ml -1 ), ethanol 59% as solvent and 66 °C temperature. The optimum solid-to-liquid ratios for TPC kinetics were 1:20 for CLSE, 1:30 for UAE and 1:50 for MAE. The kinetics of total anthocyanins (TA) and antioxidant activity (AA) were investigated for the optimum R S/L for each method. The results showed a good prediction of the model for extraction kinetics in all experiments (R 2  > 0.99; NRMS 0.65-3.35%). The kinetic parameters were calculated and discussed. UAE, compared with the other methods, had the greater efficiency for TPC, TA and AA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Lumped Multi-Bubble Analysis of Injection Cooling System for Storage of Cryogenic Liquids

    NASA Astrophysics Data System (ADS)

    Saha, Pritam; Sandilya, Pavitra

    2017-12-01

    Storage of cryogenic liquids is a critical issue in many cryogenic applications. Subcooling of the liquid by bubbling a gas has been suggested to extend the storage period by reducing the boil-off loss. Liquid evaporation into the gas may cause liquid subcooling by extracting the latent heat of vaporization from the liquid. The present study aims at studying the factors affecting the liquid subcooling during gas injection. A lumped parameter model is presented to capture the effects of bubble dynamics (coalescence, breakup, deformation etc.) on the heat and mass transport between the gas and the liquid. The liquid subcooling has been estimated as a function of the key operating variables such as gas flow rate and gas injection temperature. Numerical results have been found to predict the change in the liquid temperature drop reasonably well when compared with the previously reported experimental results. This modelling approach can therefore be used in gauging the significance of various process variables on the liquid subcooling by injection cooling, as well as in designing and rating an injection cooling system.

  19. Analysis of malondialdehyde in human plasma samples through derivatization with 2,4-dinitrophenylhydrazine by ultrasound-assisted dispersive liquid-liquid microextraction-GC-FID approach.

    PubMed

    Malaei, Reyhane; Ramezani, Amir M; Absalan, Ghodratollah

    2018-05-04

    A sensitive and reliable ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) procedure was developed and validated for extraction and analysis of malondialdehyde (MDA) as an important lipids-peroxidation biomarker in human plasma. In this methodology, to achieve an applicable extraction procedure, the whole optimization processes were performed in human plasma. To convert MDA into readily extractable species, it was derivatized to hydrazone structure-base by 2,4-dinitrophenylhydrazine (DNPH) at 40 °C within 60 min. Influences of experimental variables on the extraction process including type and volume of extraction and disperser solvents, amount of derivatization agent, temperature, pH, ionic strength, sonication and centrifugation times were evaluated. Under the optimal experimental conditions, the enhancement factor and extraction recovery were 79.8 and 95.8%, respectively. The analytical signal linearly (R 2  = 0.9988) responded over a concentration range of 5.00-4000 ng mL -1 with a limit of detection of 0.75 ng mL -1 (S/N = 3) in the plasma sample. To validate the developed procedure, the recommend guidelines of Food and Drug Administration for bioanalytical analysis have been employed. Copyright © 2018. Published by Elsevier B.V.

  20. Chembio extraction on a chip by nanoliter droplet ejection.

    PubMed

    Yu, Hongyu; Kwon, Jae Wan; Kim, Eun Sok

    2005-03-01

    This paper describes a novel liquid separation technique for chembio extraction by an ultrasonic nanoliter-liquid-droplet ejector built on a PZT sheet. This technique extracts material from an aqueous two-phase system (ATPS) in a precise amount through digital control of the number of nanoliter droplets, without any mixing between the two liquids in the ATPS. The ultrasonic droplet ejector uses an acoustic streaming effect produced by an acoustic beam focused on the liquid surface, and ejects liquid droplets only from the liquid surface without disturbing most of the liquid below the surface. This unique characteristic of the focused acoustic beam is perfect (1) for separating a top-layer liquid (from the bulk of liquid) that contains particles of interest or (2) for recovering a top-layer liquid that has different phase from a bottom-layer liquid. Three kinds of liquid extraction are demonstrated with the ultrasonic droplet ejector: (1) 16 microl of top layer in Dextran-polyethylene glycol-water ATPS (aqueous two-phase system) is recovered within 20 s; (2) micron sized particles that float on water surface are ejected out with water droplets; and (3) oil layer on top of water is separated out.

  1. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy.

    PubMed

    Beiraghi, Asadollah; Shokri, Masood

    2018-02-01

    In the present study a new centrifuge-less dispersive liquid-liquid microextraction technique based on application of a new task specific magnetic polymeric ionic liquid (TSMPIL) as a chelating and extraction solvent for selective preconcentration of trace amounts of potassium from oil samples is developed, for the first time. After extraction, the fine droplets of TSMPIL were transferred into an eppendorf tube and diluted to 500µL using distilled water. Then, the enriched analyte was determined by flame atomic emission spectroscopy (FAES). Several important factors affecting both the complexation and extraction efficiency including extraction time, rate of vortex agitator, amount of carbonyl iron powder, pH of sample solution, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) and quantification (LOQ) were 0.5 and 1.6µgL -1 respectively with the preconcentration factor of 128. The precision (RSD %) for seven replicate determinations at 10µgL -1 of potassium was better than 3.9%. The relative recoveries for the spiked samples were in the acceptable range of 95-104%. The results demonstrated that no remarkable interferences are created by other various ions in the determination of potassium, so that the tolerance limits (W Ion /W K ) of major cations and anions were in the range of 2500-10,000. The purposed method was successfully applied for the analysis of potassium in some oil samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of Some Volatile Water-Soluble Compounds of Rose Aromatic Water

    PubMed Central

    2017-01-01

    Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs < 5%) and excellent recovery (>95%). For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE. PMID:28791049

  3. Electrochemical methods for monitoring of environmental carcinogens.

    PubMed

    Barek, J; Cvacka, J; Muck, A; Quaiserová, V; Zima, J

    2001-04-01

    The use of modern electroanalytical techniques, namely differential pulse polarography, differential pulse voltammetry on hanging mercury drop electrode or carbon paste electrode, adsorptive stripping voltammetry and high performance liquid chromatography with electrochemical detection for the determination of trace amounts of carcinogenic N-nitroso compounds, azo compounds, heterocyclic compounds, nitrated polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines is discussed. Scope and limitations of these methods are described and some practical applications based on their combination with liquid-liquid or solid phase extraction are given.

  4. Application of ionic liquids based microwave-assisted simultaneous extraction of carnosic acid, rosmarinic acid and essential oil from Rosmarinus officinalis.

    PubMed

    Liu, Tingting; Sui, Xiaoyu; Zhang, Rongrui; Yang, Lei; Zu, Yuangang; Zhang, Lin; Zhang, Ying; Zhang, Zhonghua

    2011-11-25

    An ionic liquid based microwave-assisted simultaneous extraction and distillation (ILMSED) method has been developed for the effective extraction of carnosic acid (CA), rosmarinic acid (RA) and essential oil (EO) from Rosmarinus officinalis. A series of 1-alkyl-3-methylimidazolium ionic liquids differing in composition of anion and cation were evaluated for extraction yield in this work. The results obtained indicated that the anions and cations of ionic liquids had influences on the extraction of CA and RA, 1.0M 1-octyl-3-methylimidazolium bromide ([C8mim]Br) solution was selected as solvent. In addition, the ILMSED procedures for the three target ingredients were optimized and compared with other conventional extraction techniques. ILMSED gave the best result due to the highest extraction yield within the shortest extraction time for CA and RA. The novel process developed offered advantages in term of yield and selectivity of EO and shorter isolation time (20 min in comparison of 4h of hydrodistillation), and provides a more valuable EO (with high amount of oxygenated compounds). The microstructures and chemical structures of rosemary samples before and after extraction were also investigated. Moreover, the proposed method was validated by the stability, repeatability and recovery experiments. The results indicated that the developed ILMSED method provided a good alternative for the both extraction of non-volatile compounds (CA and RA) and EO from rosemary as well as other herbs. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Application of response surface methodology to optimize pressurized liquid extraction of antioxidant compounds from sage (Salvia officinalis L.), basil (Ocimum basilicum L.) and thyme (Thymus vulgaris L.).

    PubMed

    Hossain, M B; Brunton, N P; Martin-Diana, A B; Barry-Ryan, C

    2010-12-01

    The present study optimized pressurized liquid extraction (PLE) conditions using Dionex ASE® 200, USA to maximize the antioxidant activity [Ferric ion Reducing Antioxidant Power (FRAP)] and total polyphenol content (TP) of the extracts from three spices of Lamiaceae family (sage, basil and thyme). Optimal conditions with regard to extraction temperature (66-129 °C) and solvent concentration (32-88% methanol) were identified using response surface methodology (RSM). For all three spices, results showed that 129 °C was the optimum temperature with regard to antioxidant activity. Optimal methanol concentrations with respect to the antioxidant activity of sage and basil extracts were 58% and 60% respectively. Thyme showed a different trend with regard to methanol concentration and was optimally extracted at 33%. Antioxidant activity yields of the optimal PLE were significantly (p < 0.05) higher than solid/liquid extracts. Predicted models were highly significant (p < 0.05) for both total phenol (TP) and FRAP values in all the spices with high regression coefficients (R(2)) ranging from 0.651 to 0.999.

  6. Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction.

    PubMed

    Hossain, Mohammad B; Rawson, Ashish; Aguiló-Aguayo, Ingrid; Brunton, Nigel P; Rai, Dilip K

    2015-05-13

    A higher yield of glycoalkaloids was recovered from potato peels using pressurized liquid extraction (1.92 mg/g dried potato peels) compared to conventional solid-liquid extraction (0.981 mg/g dried potato peels). Response surface methodology deduced the optimal temperature and extracting solvent (methanol) for the pressurized liquid extraction (PLE) of glycoalkaloids as 80 °C in 89% methanol. Using these two optimum PLE conditions, levels of individual steroidal alkaloids obtained were of 597, 873, 374 and 75 µg/g dried potato peel for α-solanine, α-chaconine, solanidine and demissidine respectively. Corresponding values for solid liquid extraction were 59%, 46%, 40% and 52% lower for α-solanine, α-chaconine, solanidine and demissidine respectively.

  7. Environmental impact analysis of batik natural dyes using life cycle assessment

    NASA Astrophysics Data System (ADS)

    Rinawati, Dyah Ika; Sari, Diana Puspita; Purwanggono, Bambang; Hermawan, Andy Tri

    2017-11-01

    The use of natural dyes for batik dyeing is fewer than synthetic dyes because of its limitations in the application such complexity in manufacture and usage. For ease of use, natural dyes need to be processed into instant products. Extract of natural dyes are generally produced in liquid form that are less practical in long-term use. Dye powder obtained by drying the liquid extract using spray dryer. Production process of liquid natural dye is simpler and require less energy but need more energy for transporting. It is important to know which type of natural dyes should be produced based on their environmental impact. This research aim to compare environmental impact between liquid and powder natural dyes and also to find relative contribution of different stage in life cycle to total environmental impact. The appropriate method to analyze and compare the environmental impacts of powder and liquid natural dyes is Life Cycle Assessment (LCA). The "cradle to grave" approach used to assess environmental impact of powder and liquid natural dyes of Jalawe rind throughout production process of natural dyes, distribution and use of natural dyes for coloring batik. Results of this research show that powder natural dyes has lower environmental impacts than liquid natural dyes. It was found that distribution, mordanting and packaging of liquid dyes have big contribution to environmental impact.

  8. Application of a macrocyclic compound, bambus[6]uril, in tailor-made liquid membranes for highly selective electromembrane extractions of inorganic anions.

    PubMed

    Šlampová, Andrea; Šindelář, Vladimír; Kubáň, Pavel

    2017-01-15

    A tailor-made liquid membrane consisting of a resistive organic solvent (nitrobenzene, NB) and a highly selective non-ionic macrocyclic compound (bambus[6]uril, BU6) was employed for electromembrane extraction (EME) of inorganic anions. BU6 facilitates strong host-guest interactions of its internal cavity with selected inorganic anions only and its presence in the liquid membrane ensured excellent selectivity of the EME process. EME transfers were directly related to association constants between BU6 and inorganic anions and nearly absolute selectivity was achieved for EMEs of iodide, bromide and perchlorate. Major inorganic anions (chloride, nitrate, sulphate and carbonate), which exhibit low interactions with BU6 cavity, were efficiently eliminated from the EME transfer. No interferences were observed for EMEs of target analytes from samples containing up to 100.000-fold higher concentrations of the major anions. Addition of species-specific macrocyclic modifiers to free and supported liquid membranes might thus open new directions in fine-tuning of EME selectivity. At optimized EME conditions (polypropylene hollow fiber impregnated with NB + 3% (w/w) BU6, extraction voltage 25 V, extraction time 15 min, deionized water as acceptor solution) perchlorate was selectively extracted from tap water at concentrations below the guideline value recommended by United States Environmental Protection Agency. Excellent selectivity of the tailor-made liquid membrane was further demonstrated by EME of bromide from sea water. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of two membrane-based microextraction techniques for the determination of endocrine disruptors in aqueous samples by HPLC with diode array detection.

    PubMed

    Luiz Oenning, Anderson; Lopes, Daniela; Neves Dias, Adriana; Merib, Josias; Carasek, Eduardo

    2017-11-01

    In this study, the viability of two membrane-based microextraction techniques for the determination of endocrine disruptors by high-performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid-liquid extraction and hollow-fiber-supported dispersive liquid-liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2-ethylhexyl-4-methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid-liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1-octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5-4.6 μg/L and the limits of quantification were 2-16 μg/L. The analyte relative recoveries were 67-116%, and the relative standard deviations were less than 15.5%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Salting-out assisted liquid-liquid extraction for the determination of biogenic amines in fruit juices and alcoholic beverages after derivatization with 1-naphthylisothiocyanate and high performance liquid chromatography.

    PubMed

    Jain, Archana; Gupta, Manju; Verma, Krishna K

    2015-11-27

    A new method for determining biogenic amines in fruit juices and alcoholic beverages is described involving reaction of biogenic amines with 1-naphthylisothiocyanate followed by extraction of 1-naphthylthiourea derivatives with water-miscible organic solvent acetonitrile when solvents phase separation occurred using ammonium sulphate, a process called salting-out assisted liquid-liquid extraction. The extract was analyzed by high-performance liquid chromatography with UV detection at 254nm. The new reagent avoided many of the inconveniences as observed with existing derivatizing agents, such as dansyl chloride and benzoyl chloride, in regard to their inselectivity, instability, adverse effect of excess reagent, and necessity to remove excess reagent. The procedure has been optimized with respect to reaction time and temperature, water-miscible extraction solvent, and salt for solvents phase separation. Use of reagent as dispersed phase in aqueous medium produced derivatives in high yield. A linear calibration was obtained between the amount of biogenic amines in range 1-1000μgL(-1) and peak areas of corresponding thioureas formed; the correlation coefficient was 0.9965, and the limit of detection and limit of quantification found were 1.1μgL(-1) and 3.2μgL(-1), respectively. The pre-concentration method gave an average enrichment factor of 94. The application of the method has been demonstrated in the determination of biogenic amines in commercial samples of fruit juices and alcoholic beverages. In spiking experiments to real samples, the average recovery found by the present method was 94.5% that agreed well with 95.8% obtained by established comparison methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Benzene and cyclohexane separation using 1-butyl-3-methylimidazolium thiocyanate

    NASA Astrophysics Data System (ADS)

    Gonfa, Girma; Ismail, Marhaina; Bustam, Mohamad Azmi

    2017-09-01

    Cyclohexane is mainly produced by catalytic hydrogenation of benzene. Removal of unreacted benzene from the product stream is very important in this process. However, due to their close boiling points and azeotrope formation, it is very difficult to separate cyclohexane and benzene by conventional distillation. Currently, special separation processes such as processes extractive distillation is commercially used for this separation. However, this extractive distillation suffers from process complexity and higher energy consumption due to their low extractive selectivity of molecular entrainers used. The aim of the present work is to investigate the applicability of ionic liquids as entrainer in extractive distillation of benzene and cyclohexane mixture. In this study, we investigated 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) ionic liquid for separation of benzene and cyclohexane by measuring the Vapor Liquid Equilibrium data of the two components in the presence of the ionic liquid. As green and potential environmentally friendly solvents, ionic liquids have attracted increasing attention as alternative conventional entrainers in extractive distillation. Isothermal Vapor Liquid Equilibrium for the benzene + cyclohexane + [BMIM][SCN] ternary system was obtained at 353.15 K using a Head Space Gas Chromatography. The addition of [BMIM][SCN] breaks the benzene-cyclohexane azeotrope and increased the relative volatility cyclohexane to benzene in the mixture. The effect of [BMIM][SCN] on the relative volatility cyclohexane to benzene was studied at various benzene and cyclohexane compositions and solvent to feed ratios. The performance of [BMIM][SCN] was compared with typical conventional solvents, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The results show that the relative volatility of cyclohexane to benzene in the presence of [BMIM][SCN] is higher compared that of DMSO and DMF.

  12. Salting-out assisted liquid-liquid extraction combined with capillary HPLC for the determination of sulfonylurea herbicides in environmental water and banana juice samples.

    PubMed

    Gure, Abera; Lara, Francisco J; Moreno-González, David; Megersa, Negussie; del Olmo-Iruela, Monsalud; García-Campaña, Ana M

    2014-09-01

    A salting-out assisted liquid-liquid extraction (SALLE) combined with capillary high performance liquid chromatography with diode array detector (capillary HPLC-DAD) was proposed for extraction and determination of residues of nine sulfonylurea herbicides (SUHs) in environmental water and banana juice samples. Various parameters affecting the extraction process such as the type and volume of the organic solvent, sample volume, type and amount of salt, pH of the sample and vortex time were optimized. Under optimum conditions, matrix matched calibration curves were established using river water and banana juice samples. Good linear relationships as well as low limits of detection, LODs (0.4-1.3 and 3-13 µg/L) and quantification, LOQs (1.3-4.3 and 10-43 µg/L) were obtained in water and banana juice samples, respectively. The precision (intra- and inter-day) of the peak areas expressed as relative standard deviations (%, RSD), at two concentration levels were below 10 % in both matrices. Recoveries obtained from spiked environmental waters (river water and groundwater) and banana juice samples, at two concentration levels, ranged from 72 to 115%. The results of the analysis revealed that the proposed SALLE-capillary HPLC method is simple, rapid, cheap and environmentally friendly, being successfully applicable for the determination of SUH residues in waters and banana juices. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Development of a dispersive liquid-liquid microextraction method using a lighter-than-water ionic liquid for the analysis of polycyclic aromatic hydrocarbons in water.

    PubMed

    Medina, Giselle S; Reta, Mario

    2016-11-01

    A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Determination of sudan dyes in red wine and fruit juice using ionic liquid-based liquid-liquid microextraction and high-performance liquid chromatography.

    PubMed

    Sun, Shuo; Wang, Ying; Yu, Wenzhi; Zhao, Tianqi; Gao, Shiqian; Kang, Mingqin; Zhang, Yupu; Zhang, Hanqi; Yu, Yong

    2011-07-01

    The liquid-liquid microextraction (LLME) was developed for extracting sudan dyes from red wine and fruit juice. Room temperature ionic liquid was used as the extraction solvent. The target analytes were determined by high-performance liquid chromatography. The extraction parameters were optimized. The optimal conditions are as follows: volume of [C(6)MIM][PF(6)] 50 μL; the extraction time 10 min; pH value of the sample solution 7.0; NaCl concentration in sample solution 5%. The extraction recoveries for the analytes in red wine and fruit samples are 86.79-108.28 and 68.54-85.66%, whereas RSDs are 1.42-5.12 and 1.43-6.19%, respectively. The limits of detection and quantification were 0.428 and 1.426 ng/mL for sudan I, 0.938 and 3.127 ng/mL for sudan II, 1.334 and 4.445 ng/mL for sudan III, 1.454 and 4.846 ng/mL for sudan IV, respectively. Compared with conventional liquid-liquid extraction (CLLE) and ultrasonic extraction (UE), when LLME was applied, the sample amount was less (LLME: 4 mL; CLLE: 10 mL; UE: 10 mL), the extraction time was shorter (LLME: 15 min; CLLE: 110 min; UE: 50 min) and the extraction solvent amount was less (LLME: 0.05 mL IL; CLLE: 15 mL hexane; UE: 20 mL hexane). The proposed method offers a simple, rapid and efficient sample preparation for determining sudan dyes in red wine and fruit juice samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Preparation of penta-O-galloyl-β-D-glucose from tannic acid and plasma pharmacokinetic analyses by liquid-liquid extraction and reverse-phase HPLC.

    PubMed

    Li, Li; Shaik, Ahmad Ali; Zhang, Jinhui; Nhkata, Katai; Wang, Lei; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Lü, Junxuan

    2011-02-20

    The gallotannin penta-O-galloyl-beta-D-glucose (PGG) has many biological activities including in vivo anti-cancer efficacy. We present in this paper a scaled-up protocol for its preparation in high purity from tannic acid by acidic methanolysis with typical yield of 15%. We also describe a method for the analysis of PGG in mouse plasma by HPLC and its application in preliminary pharmacokinetic studies. A liquid-liquid extraction (LLE) protocol was optimized for the extraction of PGG from mouse plasma. The extraction efficiency for PGG at 1 μg/mL in mouse plasma was 70.0±1.3% (n=5). The limit of detection (LOD) for PGG was approximately 0.2 μg/mL. Preliminary pharmacokinetic parameters of PGG following a single i.p. injection with 5% ethanol/saline vehicle in mice were established. The peak plasma PGG concentrations (C(max)) were approximately 3-4 μM at a dose of 0.5 mg per mouse (∼20 mg/kg) at 2 h post-injection (T(max)). Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Analytical strategies for organic food packaging contaminants.

    PubMed

    Sanchis, Yovana; Yusà, Vicent; Coscollà, Clara

    2017-03-24

    In this review, we present current approaches in the analysis of food-packaging contaminants. Gas and liquid chromatography coupled to mass spectrometry detection have been widely used in the analysis of some relevant families of these compounds such as primary aromatic amines, bisphenol A, bisphenol A diglycidyl ether and related compounds, UV-ink photoinitiators, perfluorinated compounds, phthalates and non-intentionally added substances. Main applications for sample treatment and different types of food-contact material migration studies have been also discussed. Pressurized Liquid Extraction, Solid-Phase Microextraction, Focused Ultrasound Solid-Liquid Extraction and Quechers have been mainly used in the extraction of food contact material (FCM) contaminants, due to the trend of minimising solvent consumption, automatization of sample preparation and integration of extraction and clean-up steps. Recent advances in analytical methodologies have allowed unequivocal identification and confirmation of these contaminants using Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-HRMS) through mass accuracy and isotopic pattern applying. LC-HRMS has been used in the target analysis of primary aromatic amines in different plastic materials, but few studies have been carried out applying this technique in post-target and non-target analysis of FCM contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ionic liquid foam floatation coupled with solid phase extraction for separation and determination of hormones by high-performance liquid chromatography.

    PubMed

    Zhang, Rui; Li, Na; Wang, Chuanliu; Bai, Yuping; Ren, Ruibing; Gao, Shiqian; Yu, Wenzhi; Zhao, Tianqi; Zhang, Hanqi

    2011-10-17

    The foaming property of ionic liquids (ILs) was found and the factors that can influence foamability of the ILs were investigated. Based on the property of the ILs, the foam floatation-solid phase extraction (FF-SPE) was developed. The IL-based FF-SPE was applied to the extraction and concentration of steroid hormones, including corticosterone, 17-β-estadiol, 17-α-estradiol, 19-nortestosterone, estrone, testosterone, 17-α-hydroxyprogesterone, medroxyprogesterone, chloromadinon 17-acetate, norethisterone acetate, medroxyprogesterone-17-acetate, progesterone, 17-β-estradiol 3-benzoate and testosteron 17-propionate in water samples and then the steroid hormones were determined by high-performance liquid chromatography. The extraction and concentration were performed synchronously in 10 min. Some experimental conditions were examined and optimized. The recoveries ranged from 50.6% to 95.2% for lake water sample and from 53.4% to 98.7% for rain water sample. The precision ranged from 2.43% to 7.43% for the lake water sample and 2.07-7.01% for rain water sample. Based on the foaming property of ILs, the application of foam floatation should be widened. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Application and optimization of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for sensitive determination of polyamines in turkey breast meat samples.

    PubMed

    Bashiry, Moein; Mohammadi, Abdorreza; Hosseini, Hedayat; Kamankesh, Marzieh; Aeenehvand, Saeed; Mohammadi, Zaniar

    2016-01-01

    A novel method based on microwave-assisted extraction and dispersive liquid-liquid microextraction (MAE-DLLME) followed by high-performance liquid chromatography (HPLC) was developed for the determination of three polyamines from turkey breast meat samples. Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effective factors in DLLME process. The optimum microextraction efficiency was obtained under optimized conditions. The calibration graphs of the proposed method were linear in the range of 20-200 ng g(-1), with the coefficient determination (R(2)) higher than 0.9914. The relative standard deviations were 6.72-7.30% (n = 7). The limits of detection were in the range of 0.8-1.4 ng g(-1). The recoveries of these compounds in spiked turkey breast meat samples were from 95% to 105%. The increased sensitivity in using the MAE-DLLME-HPLC-UV has been demonstrated. Compared with previous methods, the proposed method is an accurate, rapid and reliable sample-pretreatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Air-assisted liquid-liquid microextraction using floating organic droplet solidification for simultaneous extraction and spectrophotometric determination of some drugs in biological samples through chemometrics methods

    NASA Astrophysics Data System (ADS)

    Farahmand, Farnaz; Ghasemzadeh, Bahar; Naseri, Abdolhossein

    2018-01-01

    An air assisted liquid-liquid microextraction by applying the solidification of a floating organic droplet method (AALLME-SFOD) coupled with a multivariate calibration method, namely partial least squares (PLS), was introduced for the fast and easy determination of Atenolol (ATE), Propanolol (PRO) and Carvedilol (CAR) in biological samples via a spectrophotometric approach. The analytes would be extracted from neutral aqueous solution into 1-dodecanol as an organic solvent, using AALLME. In this approach a low-density solvent with a melting point close to room temperature was applied as the extraction solvent. The emulsion was immediately formed by repeatedly pulling in and pushing out the aqueous sample solution and extraction solvent mixture via a 10-mL glass syringe for ten times. After centrifugation, the extractant droplet could be simply collected from the aqueous samples by solidifying the emulsion at a lower than the melting point temperature. In the next step, analytes were back extracted simultaneously into the acidic aqueous solution. Derringer and Suich multi-response optimization were utilized for simultaneous optimizing the parameters of three analytes. This method incorporates the benefits of AALLME and dispersive liquid-liquid microextraction considering the solidification of floating organic droplets (DLLME-SFOD). Calibration graphs under optimized conditions were linear in the range of 0.30-6.00, 0.32-2.00 and 0.30-1.40 μg mL- 1 for ATE, CAR and PRO, respectively. Other analytical parameters were obtained as follows: enrichment factors (EFs) were found to be 11.24, 16.55 and 14.90, and limits of detection (LODs) were determined to be 0.09, 0.10 and 0.08 μg mL- 1 for ATE, CAR and PRO, respectively. The proposed method will require neither a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly.

  20. [Rapid identification of micro-constituents in monoammonium glycyrrhizinate raw materials by high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry].

    PubMed

    Yang, Xue-Dong; Tang, Xu-Yan; Sang, Lin

    2012-11-01

    To establish a method for rapid identification of micro-constituents in monoammonium glycyrrhizinate by high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry. HPLC preparative chromatograph was adopted for determining the optimal method for high-pressure solid phase extraction under optimal conditions. 5C18-MS-II column (20.0 mm x 20.0 mm) was used as the extraction column, with 35% acetonitrile-acetic acid solution (pH 2. 20) as eluent at the speed of 16 mL x min(-1). The sample size was 0.5 mL, and the extraction cycle was 4.5 min. Then, extract liquid was analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) after being concentrated by 100 times. Under the optimal condition of high-pressure solid phase extraction-high performance liquid chromatography-mass spectrometry, 10 components were rapidly identified from monoammonium glycyrrhizinate raw materials. Among them, the chemical structures of six micro-constituents were identified as 3-O-[beta-D-glucuronopyranosyl-beta-D-glucuronopyranosyl]-30-0-beta-D-apiopyranosylglycyrrhetic/3-O- [P-D-glucuronopyranosyl-beta-D-glucuronopyranosyl]-30-O-beta-D-arabinopyranosylglycyrrhetic, glycyrrhizic saponin F3, 22-hydroxyglycyrrhizin/18alpha-glycyrrhizic saponin G2, 3-O-[beta-D-rhamnopyranosyl]-24-hydroxyglycyrrhizin, glycyrrhizic saponin J2, and glycyrrhizic saponin B2 by MS(n) spectra analysis and reference to literatures. Four main chemical components were identified as glycyrrhizic saponin G2, 18beta-glycyrrhizic acid, uralglycyrrhizic saponin B and 18alpha-glycyrrhizic acid by liquid chromatography, MS(n) and ultraviolet spectra information and comparison with reference substances. The method can be used to identify chemical constituents in monoammonium glycyrrhizinate quickly and effectively, without any reference substance, which provides basis for quality control and safe application of monoammonium glycyrrhizinate-related products.

  1. Air-assisted liquid-liquid microextraction using floating organic droplet solidification for simultaneous extraction and spectrophotometric determination of some drugs in biological samples through chemometrics methods.

    PubMed

    Farahmand, Farnaz; Ghasemzadeh, Bahar; Naseri, Abdolhossein

    2018-01-05

    An air assisted liquid-liquid microextraction by applying the solidification of a floating organic droplet method (AALLME-SFOD) coupled with a multivariate calibration method, namely partial least squares (PLS), was introduced for the fast and easy determination of Atenolol (ATE), Propanolol (PRO) and Carvedilol (CAR) in biological samples via a spectrophotometric approach. The analytes would be extracted from neutral aqueous solution into 1-dodecanol as an organic solvent, using AALLME. In this approach a low-density solvent with a melting point close to room temperature was applied as the extraction solvent. The emulsion was immediately formed by repeatedly pulling in and pushing out the aqueous sample solution and extraction solvent mixture via a 10-mL glass syringe for ten times. After centrifugation, the extractant droplet could be simply collected from the aqueous samples by solidifying the emulsion at a lower than the melting point temperature. In the next step, analytes were back extracted simultaneously into the acidic aqueous solution. Derringer and Suich multi-response optimization were utilized for simultaneous optimizing the parameters of three analytes. This method incorporates the benefits of AALLME and dispersive liquid-liquid microextraction considering the solidification of floating organic droplets (DLLME-SFOD). Calibration graphs under optimized conditions were linear in the range of 0.30-6.00, 0.32-2.00 and 0.30-1.40μg mL -1 for ATE, CAR and PRO, respectively. Other analytical parameters were obtained as follows: enrichment factors (EFs) were found to be 11.24, 16.55 and 14.90, and limits of detection (LODs) were determined to be 0.09, 0.10 and 0.08μg mL -1 for ATE, CAR and PRO, respectively. The proposed method will require neither a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An inkjet-printed microfluidic device for liquid-liquid extraction.

    PubMed

    Watanabe, Masashi

    2011-04-07

    A microfluidic device for liquid-liquid extraction was quickly produced using an office inkjet printer. An advantage of this method is that normal end users, who are not familiar with microfabrication, can produce their original microfluidic devices by themselves. In this method, the printer draws a line on a hydrophobic and oil repellent surface using hydrophilic ink. This line directs a fluid, such as water or xylene, to form a microchannel along the printed line. Using such channels, liquid-liquid extraction was successfully performed under concurrent and countercurrent flow conditions. © The Royal Society of Chemistry 2011

  3. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    A method for the separation of radionuclides with Z greater than 88, from lower-level radioactive wastes (liquid scintillation cocktail or LSC wastes), is described. The method is liquid-liquid extraction (LLX) and demulsification. The actinide elements are removed from the LSC wastes by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated, then the wastes type remaining may be incinerated. Future experiments will be performed to study the effects of pH and temperature and to extend the study to wastes containing americium.

  4. Ultra-high performance liquid chromatography with fluorescence detection following salting-out assisted liquid-liquid extraction for the analysis of benzimidazole residues in farm fish samples.

    PubMed

    Tejada-Casado, Carmen; Lara, Francisco J; García-Campaña, Ana M; Del Olmo-Iruela, Monsalud

    2018-03-30

    Ultra-high performance liquid chromatography (UHPLC) coupled with fluorescence detection (FL) has been proposed for the first time to determine thirteen benzimidazoles (BZs) in farmed fish samples. In order to optimize the chromatographic separation, parameters such as mobile phase composition and flow rate were carefully studied, establishing a gradient mode with a mobile phase consisted of water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.4 mL/min. The separation was performed on a Zorbax Eclipse Plus RRHD C 18 column (50 × 2.1 mm, 1.8 μm), involving a total analysis time lower than 12 min. Salting-out assisted liquid-liquid extraction (SALLE) was applied as sample treatment to different types of farmed fish (trout, sea bream and sea bass). To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized including the amount of sample, type and volume of the extraction solvent, and the nature and amount of the salt used. Characterization of the method in terms of performance characteristics was carried out, obtaining satisfactory results for the linearity (R 2  ≥ 0.997), repeatability (RSD ≤ 6.1%), reproducibility (RSD ≤ 10.8%) and recoveries (R ≥ 79%; RSD ≤ 7.8%). Detection limits between 0.04-29.9 μg kg -1 were obtained, demonstrating the applicability of this fast, simple and environmentally friendly method. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligandless extraction and preconcentraion of lead and cadmium in edible oils.

    PubMed

    Karimi, Mehdi; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Tamaddon, Fatemeh; Azadi, Davood

    2015-11-01

    Deep eutectic liquid organic salt was used as the solvent and a liquid phase microextraction (DES-LPME) combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for separation, preconcentration and determination of lead and cadmium in edible oils. A 4:1 mixture of deep eutectic solvent and 2% nitric acid (200 µL) was added to an oil sample. The mixture was vortexed and transferred into a water bath at 50 °C and stirred for 5 minutes. After the extraction was completed, the phases were separated by centrifugation, and the enriched analytes in the deep eutectic solvent phase were determined by ETAAS. Under optimized extraction conditions and for an oil sample of 28 g, enhancement factors of 198 and 195 and limits of detection (defined as 3 Sb/m) of 8 and 0. 2 ng kg(-1) were achieved for lead and cadmium respectively. The method was successfully applied to the determination of lead and cadmium in various edible oils. Copyright © 2015. Published by Elsevier B.V.

  6. Determination of phthalate esters in distillates by ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction (USVADLLME) coupled with gas chromatography/mass spectrometry.

    PubMed

    Montevecchi, Giuseppe; Masino, Francesca; Zanasi, Luca; Antonelli, Andrea

    2017-04-15

    A method for the extraction of phthalate esters (PAEs) by Ultrasound-Vortex-Assisted Dispersive Liquid-Liquid Micro-Extraction (USVADLLME) approach was optimised and applied for the first time to a historical series of brandies. These contaminants are widely spread in the environment as a consequence of about half century of use in different fields of applications. The concern about these substances and the recent legal restrictions of China in distillates import need a quick and sensitive method for their quantification. The proposed method, moreover, is environmentally oriented due to the disposal of micro-quantities of solvent required. In fact, sub-ppm-limits of detection were achieved with a solvent volume as low as 160μL. The analysed samples were within the legal limits, except for some very ancient brandies whose contamination was probably due to a PAEs concentration effect as a consequence of long ageing and for the use of plastic pipelines no more operative. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. OPTIMIZED DETERMINATION OF TRACE JET FUEL VOLATILE ORGANIC COMPOUNDS IN HUMAN BLOOD USING IN-FIELD LIQUID-LIQUID EXTRACTION WITH SUBSEQUENT LABORATORY GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC ANALYSIS AND ON-COLUMN LARGE VOLUME INJECTION

    EPA Science Inventory

    A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...

  8. Environmentally friendly ionic liquid-in-water microemulsions for extraction of hydrophilic and lipophilic components from Flos Chrysanthemi.

    PubMed

    Chen, Jue; Cao, Jun; Gao, Wen; Qi, Lian-Wen; Li, Ping

    2013-10-21

    Ionic liquids (ILs) have numerous chemical applications as environmentally green solvents that are extending into microemulsion applications. In this work, a novel benign IL-in-water microemulsion system modified by an IL surfactant has been proposed for simultaneous extraction of hydrophilic and lipophilic constituents from Flos Chrysanthemi (Chrysanthemum morifolium). Constituents were analyzed by rapid-resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. A mixture-design approach was used to optimize the IL surfactant and the IL oil phase in the microemulsion system. Microemulsions consisting of 6.0% 1-dodecyl-3-methylimidazolium hydrogen sulfate, 0.1% 1-vinyl-3-methylimidazolium hexafluorophosphate and 93.9% water offered the acceptable extract efficiency that are comparable to or even better than conventional volatile organic solvents. This assay was fully validated with respect to the linearity of response (r(2) > 0.999 over two orders of magnitude), precision (intra-RSD < 0.49 and inter-day RSD < 2.21), and accuracy (recoveries ranging from 93.73% to 101.84%). The proposed IL-in-water microemulsion method provided an environmentally friendly alternative for efficient extraction of compounds from Flos Chrysanthemi and could be extended to complex environmental and pharmaceutical samples.

  9. Novel Fission-Product Separation based on Room-Temperature Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Robin D.

    2004-12-31

    U.S. DOE's underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive cesium-137 and strontium-90. Because the primary chemical components of alkaline supernatants are sodium nitrate and sodium hydroxide, the majority of this could be disposed of as low level waste if radioactive cesium-137 and strontium- 90 could be selectively removed. The underlying goal of this project was to investigate the application of ionic liquids as novel solvents for new solvent extraction processes for separation of cesium-137 and strontium-90 from tank wastes. Ionic liquids are a distinct sub-set of liquids, comprising only of cationsmore » and anions they are proving to be increasingly interesting fluids for application in systems from electrochemistry to energetic materials, and are also rapidly establishing their promise as viable media for synthesis and separations operations. Properties including low melting points, electrochemical conductivity, wide liquid ranges, lack of vapor-pressure, and chemical tunability have encouraged researchers to explore the uses of ILs in place of volatile organic solvents. The most promising current developments arise from control of the unique combinations of chemical and physical properties characteristic of ionic liquids.« less

  10. A simple and selective method for determination of phthalate biomarkers in vegetable samples by high pressure liquid chromatography-electrospray ionization-tandem mass spectrometry.

    PubMed

    Zhou, Xi; Cui, Kunyan; Zeng, Feng; Li, Shoucong; Zeng, Zunxiang

    2016-06-01

    In the present study, solid-phase extraction cartridges including silica reversed-phase Isolute C18, polymeric reversed-phase Oasis HLB and mixed-mode anion-exchange Oasis MAX, and liquid-liquid extractions with ethyl acetate, n-hexane, dichloromethane and its mixtures were compared for clean-up of phthalate monoesters from vegetable samples. Best recoveries and minimised matrix effects were achieved using ethyl acetate/n-hexane liquid-liquid extraction for these target compounds. A simple and selective method, based on sample preparation by ultrasonic extraction and liquid-liquid extraction clean-up, for the determination of phthalate monoesters in vegetable samples by liquid chromatography/electrospray ionisation-tandem mass spectrometry was developed. The method detection limits for phthalate monoesters ranged from 0.013 to 0.120 ng g(-1). Good linearity (r(2)>0.991) between MQLs and 1000× MQLs was achieved. The intra- and inter-day relative standard deviation values were less than 11.8%. The method was successfully used to determine phthalate monoester metabolites in the vegetable samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Review of online coupling of sample preparation techniques with liquid chromatography.

    PubMed

    Pan, Jialiang; Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-03-07

    Sample preparation is still considered as the bottleneck of the whole analytical procedure, and efforts has been conducted towards the automation, improvement of sensitivity and accuracy, and low comsuption of organic solvents. Development of online sample preparation techniques (SP) coupled with liquid chromatography (LC) is a promising way to achieve these goals, which has attracted great attention. This article reviews the recent advances on the online SP-LC techniques. Various online SP techniques have been described and summarized, including solid-phase-based extraction, liquid-phase-based extraction assisted with membrane, microwave assisted extraction, ultrasonic assisted extraction, accelerated solvent extraction and supercritical fluids extraction. Specially, the coupling approaches of online SP-LC systems and the corresponding interfaces have been discussed and reviewed in detail, such as online injector, autosampler combined with transport unit, desorption chamber and column switching. Typical applications of the online SP-LC techniques have been summarized. Then the problems and expected trends in this field are attempted to be discussed and proposed in order to encourage the further development of online SP-LC techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Agricultural and Food Processing Applications of Pulsed Power and Plasma Technologies

    NASA Astrophysics Data System (ADS)

    Takaki, Koichi

    Agricultural and food processing applications of pulsed power and plasma technologies are described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power are developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as germination control of plants such as Basidiomycota and arabidopsis inactivation of bacteria in soil and liquid medium of hydroponics; extraction of juice from fruits and vegetables; decontamination of air and liquid, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power and plasma are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei. This paper mainly describes the application of the pulsed power for the germination control of Basidiomycota i.e. mushroom, inactivation of fungi in the soil and the liquid medium in hydroponics, and extraction of polyphenol from skins of grape.

  13. Application of dispersive liquid-liquid microextraction for the preconcentration of eight parabens in real samples and their determination by high-performance liquid chromatography.

    PubMed

    Shen, Xiong; Liang, Jian; Zheng, Luxia; Lv, Qianzhou; Wang, Hong

    2017-11-01

    A simple and sensitive method for the simultaneous determination of eight parabens in human plasma and urine samples was developed. The samples were preconcentrated using dispersive liquid-liquid microextraction based on the solidification of floating organic drops and determined by high-performance liquid chromatography with ultraviolet detection. The influence of variables affecting the extraction efficiency was investigated and optimized using Placket-Burman design and Box-Behnken design. The optimized values were: 58 μL of 1-decanol (as extraction solvent), 0.65 mL methanol (as disperser solvent), 1.5% w/v NaCl in 5.0 mL of sample solution, pH 10.6, and 4.0 min centrifugation at 4000 rpm. The extract was injected into the high-performance liquid chromatography system for analysis. Under the optimum conditions, the linear ranges for eight parabens in plasma and urine were 1.0-1000 ng/mL, with correlation coefficients above 0.994. The limit of detection was 0.2-0.4 and 0.1-0.4 ng/mL for plasma and urine samples, respectively. Relative recoveries were between 80.3 and 110.7%, while relative standard deviations were less than 5.4%. Finally, the method was applied to analyze the parabens in 98 patients of primary breast cancer. Results showed that parabens existed widely, at least one paraben detected in 96.9% (95/98) of plasma samples and 98.0% (96/98) of urine samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dispersive liquid-liquid microextraction and preconcentration of thallium species in water samples by two ionic liquids applied as ion-pairing reagent and extractant phase.

    PubMed

    Escudero, Leticia B; Berton, Paula; Martinis, Estefanía M; Olsina, Roberto A; Wuilloud, Rodolfo G

    2012-01-15

    In the present work, a simple and highly sensitive analytical methodology for determination of Tl(+) and Tl(3+) species, based on the use of modern and non-volatile solvents, such as ionic liquids (ILs), was developed. Initially, Tl(+) was complexed by iodide ion at pH 1 in diluted sulfuric acid solution. Then, tetradecyl(trihexyl)phosphonium chloride ionic liquid (CYPHOS(®) IL 101) was used as ion-pairing reagent and a dispersive liquid-liquid microextraction (DLLME) procedure was developed by dispersing 60 mg of 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6) mim][PF(6)] with 500 μL of ethanol in the aqueous solution. After the microextraction procedure was finished, the final IL phase was solubilized in methanol and directly injected into the graphite furnace of an electrothermal atomic absorption spectrometer (ETAAS). An extraction efficiency of 77% and a sensitivity enhancement factor of 100 were obtained with only 5.00 mL of sample. The limit of detection (LOD) was 3.3 ng L(-1) Tl while the relative standard deviation (RSD) was 5.3% (at 0.4 μg L(-1) Tl and n=10), calculated from the peak height of absorbance signals. The method was finally applied to determine Tl species in tap and river water samples after separation of Tl(3+) species. To the best of our knowledge, this work reports the first application of ILs for Tl extraction and separation in the analytical field. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. An assessment of the liquid-gas partitioning behavior of major wastewater odorants using two comparative experimental approaches: liquid sample-based vaporization vs. impinger-based dynamic headspace extraction into sorbent tubes.

    PubMed

    Iqbal, Mohammad Asif; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-01-01

    The gas-liquid partitioning behavior of major odorants (acetic acid, propionic acid, isobutyric acid, n-butyric acid, i-valeric acid, n-valeric acid, hexanoic acid, phenol, p-cresol, indole, skatole, and toluene (as a reference)) commonly found in microbially digested wastewaters was investigated by two experimental approaches. Firstly, a simple vaporization method was applied to measure the target odorants dissolved in liquid samples with the aid of sorbent tube/thermal desorption/gas chromatography/mass spectrometry. As an alternative method, an impinger-based dynamic headspace sampling method was also explored to measure the partitioning of target odorants between the gas and liquid phases with the same detection system. The relative extraction efficiency (in percent) of the odorants by dynamic headspace sampling was estimated against the calibration results derived by the vaporization method. Finally, the concentrations of the major odorants in real digested wastewater samples were also analyzed using both analytical approaches. Through a parallel application of the two experimental methods, we intended to develop an experimental approach to be able to assess the liquid-to-gas phase partitioning behavior of major odorants in a complex wastewater system. The relative sensitivity of the two methods expressed in terms of response factor ratios (RFvap/RFimp) of liquid standard calibration between vaporization and impinger-based calibrations varied widely from 981 (skatole) to 6,022 (acetic acid). Comparison of this relative sensitivity thus highlights the rather low extraction efficiency of the highly soluble and more acidic odorants from wastewater samples in dynamic headspace sampling.

  16. Superbase-derived protic ionic liquid extractants for metal ion separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Jason R.; Dai, Sheng; Luo, Huimin

    2014-04-19

    Solvent extraction of La 3+ and Ba 2+ by an ionic liquid extractant in an imidazolium-based ionic liquid diluent was investigated. Seven protic ionic liquid extractants were examined and these protic ILs are based on five organic superbases and either 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octadione (Hfod) or 1,1,1,5,5,5-hexafluoroacetylacetone (Hhfac) -diketones as anion. For fod-based extractants, the extraction efficiencies and separation factors were found to be concentration dependent. The effects of aqueous phase acidity, extractant structure, and extractant concentration on separation properties of La 3+ and Ba 2+ are discussed in this paper.

  17. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil.

    PubMed

    Ferrone, Vincenzo; Genovese, Salvatore; Carlucci, Maura; Tiecco, Matteo; Germani, Raimondo; Preziuso, Francesca; Epifano, Francesco; Carlucci, Giuseppe; Taddeo, Vito Alessandro

    2018-04-15

    A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r 2 >0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ultrasound-Assisted Extraction of Carnosic Acid and Rosmarinic Acid Using Ionic Liquid Solution from Rosmarinus officinalis

    PubMed Central

    Zu, Ge; Zhang, Rongrui; Yang, Lei; Ma, Chunhui; Zu, Yuangang; Wang, Wenjie; Zhao, Chunjian

    2012-01-01

    Ionic liquid based, ultrasound-assisted extraction was successfully applied to the extraction of phenolcarboxylic acids, carnosic acid and rosmarinic acid, from Rosmarinus officinalis. Eight ionic liquids, with different cations and anions, were investigated in this work and [C8mim]Br was selected as the optimal solvent. Ultrasound extraction parameters, including soaking time, solid–liquid ratio, ultrasound power and time, and the number of extraction cycles, were discussed by single factor experiments and the main influence factors were optimized by response surface methodology. The proposed approach was demonstrated as having higher efficiency, shorter extraction time and as a new alternative for the extraction of carnosic acid and rosmarinic acid from R. officinalis compared with traditional reference extraction methods. Ionic liquids are considered to be green solvents, in the ultrasound-assisted extraction of key chemicals from medicinal plants, and show great potential. PMID:23109836

  19. Microwave-assisted ionic liquid homogeneous liquid-liquid microextraction coupled with high performance liquid chromatography for the determination of anthraquinones in Rheum palmatum L.

    PubMed

    Wang, Zhibing; Hu, Jianxue; Du, Hongxia; He, Shuang; Li, Qing; Zhang, Hanqi

    2016-06-05

    The microwave-assisted ionic liquid homogeneous liquid-liquid microextraction (MA-IL-HLLME) coupled with high performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of anthraquinones, including aloe-emodin, emodin, chrysophanol and physcion in root of Rheum palmatum L. Several experimental parameters influencing the extraction efficiency, including amount of sample, type and volume of ionic liquid, volume and pH value of extraction medium, microwave power and extraction time, concentration of NH4PF6 as well as centrifugal condition were optimized. When 140μL of ionic liquid ([C8MIM][BF4]) was used as an extraction solvent, target analytes can be extracted from sample matrix in one minute with the help of microwave irradiation. The MA-IL-HLLME is simple and quick. The calibration curves exhibited good linear relationship (r>0.9984). The limits of detection and quantification were in the range of 0.015-0.026 and 0.051-0.088μgmL(-1), respectively. The spiked recovery for each analyte was in the range of 81.13-93.07% with relative standard deviations lower than 6.89%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with ultrasonic and heat reflux extraction. The results indicated that the present method can be successfully applied to the determination of anthraquinones in medicinal plant. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A novel application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the HPLC determination of two endocrine disrupting compounds (EDCs), n-octylphenol and n-nonylphenol, in environmental waters.

    PubMed

    Villar-Navarro, Mercedes; Ramos-Payán, María; Fernández-Torres, Rut; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel

    2013-01-15

    This work proposes for the first time the use of a three phase hollow fiber liquid phase microextraction (HF-LPME) procedure for the extraction, and the later HPLC determination using fluorescence detection, of two much known endocrine disrupting compounds (EDCs): n-octylphenol (OP) and n-nonylphenol (NP). The extraction was carried out through a dihexyl ether liquid membrane supported on an Accurel® Q3/2 polypropylene hollow fiber. Optimum pH for donor and acceptor phases and extraction time were established. Enrichment (preconcentration) factors of 50 were obtained that allows detection limits of 0.54 and 0.52 ng mL(-1) for OP and NP, respectively. The method was successfully applied to the determination of these EDCs in environmental water samples, including urban wastewaters. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Predictive model for ionic liquid extraction solvents for rare earth elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabda, Mariusz; Oleszek, Sylwia; Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effectivemore » extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.« less

  2. Sensitive gas analysis system on a microchip and application for on-site monitoring of NH3 in a clean room.

    PubMed

    Hiki, Shinichiro; Mawatari, Kazuma; Aota, Arata; Saito, Maki; Kitamori, Takehiko

    2011-06-15

    A portable, highly sensitive, and continuous ammonia gas monitoring system was developed with a microfluidic chip. The system consists of a main unit, a gas pumping unit, and a computer which serves as an operation console. The size of the system is 45 cm width × 30 cm depth × 30 cm height, and the portable system was realized. A highly efficient and stable extraction method was developed by utilizing an annular gas/liquid laminar flow. In addition, a stable gas/liquid separation method with a PTFE membrane was developed by arranging a fluidic network in three dimensions to achieve almost zero dead volume at the gas/liquid extraction part. The extraction rate was almost 100% with a liquid flow rate of 3.5 μL/min and a gas flow rate of 100 mL/min (contact time of ~15 ms), and the concentration factor was 200 times by calculating the NH(3) concentration (w/w unit) in the gas and liquid phases. Stable phase separation and detection was sustained for more than 3 weeks in an automated operation, which was sufficient for the monitoring application. The lower limit of detection calculated based on a signal-to-noise ratio of 3 was 84 ppt, which showed good detectability for NH(3) analysis. We believe that our system is a very powerful tool for gas analysis due to the advantages of portable size, high sensitivity, and continuous monitoring, and it is particularly useful in the semiconductor field.

  3. Ionic Liquid-Bonded Fused Silica as a New Solid-Phase Microextraction Fiber for the Liquid Chromatographic Determination of Bisphenol A as an Endocrine Disruptor.

    PubMed

    Mohammadnezhad, Nasim; Matin, Amir Abbas; Samadi, Naser; Shomali, Ashkan; Valizadeh, Hassan

    2017-01-01

    Linear ionic liquid bonded to fused silica and its application as a solid-phase microextraction fiber for the extraction of bisphenol A (BPA) from water samples were studied. After optimization of microextraction conditions (15 mL sample volume, extraction time of 40 min, extraction temperature of 30 ± 1°C, 300 μL acetonitrile as the desorption solvent, and desorption time of 7 min), the fiber was used to extract BPA from packed mineral water, followed by HPLC-UV on an XDB-C18 column (150 × 4.6 mm id, 3.5 μm particle) with a mobile phase of acetonitrile-water (45 + 55%, v/v) and flow rate of 1 mL . min-1). A low LOD (0.20 μg . L-1) and good linearity (0.9977) in the calibration graph indicated that the proposed method was suitable for the determination of BPA.

  4. Comparison of salting-out and sugaring-out liquid-liquid extraction methods for the partition of 10-hydroxy-2-decenoic acid in royal jelly and their co-extracted protein content.

    PubMed

    Tu, Xijuan; Sun, Fanyi; Wu, Siyuan; Liu, Weiyi; Gao, Zhaosheng; Huang, Shaokang; Chen, Wenbin

    2018-01-15

    Homogeneous liquid-liquid extraction (h-LLE) has been receiving considerable attention as a sample preparation method due to its simple and fast partition of compounds with a wide range of polarities. To better understand the differences between the two h-LLE extraction approaches, salting-out assisted liquid-liquid extraction (SALLE) and sugaring-out assisted liquid-liquid extraction (SULLE), have been compared for the partition of 10-hydroxy-2-decenoic acid (10-HDA) from royal jelly, and for the co-extraction of proteins. Effects of the amount of phase partition agents and the concentration of acetonitrile (ACN) on the h-LLE were discussed. Results showed that partition efficiency of 10-HDA depends on the phase ratio in both SALLE and SULLE. Though the partition triggered by NaCl and glucose is less efficient than MgSO 4 in the 50% (v/v) ACN-water mixture, their extraction yields can be improved to be similar with that in MgSO 4 SALLE by increasing the initial concentration of ACN in the ACN-water mixture. The content of co-extracted protein was correlated with water concentration in the obtained upper phase. MgSO 4 showed the largest protein co-extraction at the low concentration of salt. Glucose exhibited a large protein co-extraction in the high phase ratio condition. Furthermore, NaCl with high initial ACN concentration is recommended because it produced high extraction yield for 10-HDA and the lowest amount of co-extracted protein. These observations would be valuable for the sample preparation of royal jelly. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Membrane contactor assisted extraction/reaction process employing ionic liquids

    DOEpatents

    Lin, Yupo J [Naperville, IL; Snyder, Seth W [Lincolnwood, IL

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  6. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  7. Current trends in sample preparation for cosmetic analysis.

    PubMed

    Zhong, Zhixiong; Li, Gongke

    2017-01-01

    The widespread applications of cosmetics in modern life make their analysis particularly important from a safety point of view. There is a wide variety of restricted ingredients and prohibited substances that primarily influence the safety of cosmetics. Sample preparation for cosmetic analysis is a crucial step as the complex matrices may seriously interfere with the determination of target analytes. In this review, some new developments (2010-2016) in sample preparation techniques for cosmetic analysis, including liquid-phase microextraction, solid-phase microextraction, matrix solid-phase dispersion, pressurized liquid extraction, cloud point extraction, ultrasound-assisted extraction, and microwave digestion, are presented. Furthermore, the research and progress in sample preparation techniques and their applications in the separation and purification of allowed ingredients and prohibited substances are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Optimization of squalene produced from crude palm oil waste

    NASA Astrophysics Data System (ADS)

    Wandira, Irda; Legowo, Evita H.; Widiputri, Diah I.

    2017-01-01

    Squalene is a hydrocarbon originally and still mostly extracted from shark liver oil. Due to environmental issues over shark hunting, there have been efforts to extract squalene from alternative sources, such as Palm Fatty Acid Distillate (PFAD), one of crude palm oil (CPO) wastes. Previous researches have shown that squalene can be extracted from PFAD using saponification process followed with liquid-liquid extraction process although the method had yet to be optimized in order to optimize the amount of squalene extracted from PFAD. The optimization was done by optimizing both processes of squalene extraction method: saponification and liquid-liquid extraction. The factors utilized in the saponification process optimization were KOH concentration and saponification duration while during the liquid-liquid extraction (LLE) process optimization, the factors used were the volumes of distilled water and dichloromethane. The optimum percentage of squalene content in the extract (24.08%) was achieved by saponifying the PFAD with 50%w/v KOH for 60 minutes and subjecting the saponified PFAD to LLE, utilizing 100 ml of distilled water along with 3 times addition of fresh dichloromethane, 75 ml each; those factors would be utilized in the optimum squalene extraction method.

  9. Development and Validation of a Sensitive Method for Trace Nickel Determination by Slotted Quartz Tube Flame Atomic Absorption Spectrometry After Dispersive Liquid-Liquid Microextraction.

    PubMed

    Yolcu, Şükran Melda; Fırat, Merve; Chormey, Dotse Selali; Büyükpınar, Çağdaş; Turak, Fatma; Bakırdere, Sezgin

    2018-05-01

    In this study, dispersive liquid-liquid microextraction was systematically optimized for the preconcentration of nickel after forming a complex with diphenylcarbazone. The measurement output of the flame atomic absorption spectrometer was further enhanced by fitting a custom-cut slotted quartz tube to the flame burner head. The extraction method increased the amount of nickel reaching the flame and the slotted quartz tube increased the residence time of nickel atoms in the flame to record higher absorbance. Two methods combined to give about 90 fold enhancement in sensitivity over the conventional flame atomic absorption spectrometry. The optimized method was applicable over a wide linear concentration range, and it gave a detection limit of 2.1 µg L -1 . Low relative standard deviations at the lowest concentration in the linear calibration plot indicated high precision for both extraction process and instrumental measurements. A coal fly ash standard reference material (SRM 1633c) was used to determine the accuracy of the method, and experimented results were compatible with the certified value. Spiked recovery tests were also used to validate the applicability of the method.

  10. Literature Review: Crud Formation at the Liquid/Liquid Interface of TBP-Based Solvent-Extraction Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Casella, Amanda J.

    2016-09-30

    This report summarizes the literature reviewed on crud formation at the liquid:liquid interface of solvent extraction processes. The review is focused both on classic PUREX extraction for industrial reprocessing, especially as practiced at the Hanford Site, and for those steps specific to plutonium purification that were used at the Plutonium Reclamation Facility (PRF) within the Plutonium Finishing Plant (PFP) at the Hanford Site.

  11. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds

    USDA-ARS?s Scientific Manuscript database

    Several parameters of Microwave-assisted extraction (MAE) including extraction time, extraction temperature, ethanol concentration and solid-liquid ratio were selected to describe the MAE processing. The silybin content, measured by an UV-Vis spectrophotometry, was considered as the silymarin yield....

  12. A Guided Inquiry Liquid/Liquid Extractions Laboratory for Introductory Organic Chemistry

    ERIC Educational Resources Information Center

    Raydo, Margaret L.; Church, Megan S.; Taylor, Zane W.; Taylor, Christopher E.; Danowitz, Amy M.

    2015-01-01

    A guided inquiry laboratory experiment for teaching liquid/liquid extractions to first semester undergraduate organic chemistry students is described. This laboratory is particularly useful for introductory students as the analytes that are separated are highly colored dye molecules. This allows students to track into which phase each analyte…

  13. Sensitive determination of three aconitum alkaloids and their metabolites in human plasma by matrix solid-phase dispersion with vortex-assisted dispersive liquid-liquid microextraction and HPLC with diode array detection.

    PubMed

    Wang, Xiaozhong; Li, Xuwen; Li, Lanjie; Li, Min; Liu, Ying; Wu, Qian; Li, Peng; Jin, Yongri

    2016-05-01

    A simple and sensitive method for determination of three aconitum alkaloids and their metabolites in human plasma was developed using matrix solid-phase dispersion combined with vortex-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection. The plasma sample was directly purified by matrix solid-phase dispersion and the eluate obtained was concentrated and further clarified by vortex-assisted dispersive liquid-liquid microextraction. Some important parameters affecting the extraction efficiency, such as type and amount of dispersing sorbent, type and volume of elution solvent, type and volume of extraction solvent, salt concentration as well as sample solution pH, were investigated in detail. Under optimal conditions, the proposed method has good repeatability and reproducibility with intraday and interday relative standard deviations lower than 5.44 and 5.75%, respectively. The recoveries of the aconitum alkaloids ranged from 73.81 to 101.82%, and the detection limits were achieved within the range of 1.6-2.1 ng/mL. The proposed method offered the advantages of good applicability, sensitivity, simplicity, and feasibility, which makes it suitable for the determination of trace amounts of aconitum alkaloids in human plasma samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Neoteric Media as Tools for Process Intensification

    NASA Astrophysics Data System (ADS)

    Beh, C. C.; Mammucari, R.; Foster, N. R.

    2017-06-01

    Process intensification (PI) is a commonly used term in the chemical processing industry. When the concept of PI was first introduced in the late 1970s within the Imperial Chemical Industries (ICI) company, the main impetus was to reduce the processing cost without impairing the production rate. Neoteric media present as alternatives in chemical processing include gas-expanded liquids, ionic liquids, subcritical water, and combination of gas-expanded liquids and ionic liquids. The applications of neoteric media include particle engineering for improved bioavailability, controlled release of therapeutic implants, pharmaceutical formulations, extraction of natural products, nano-carriers for drug delivery, sterilisation of implants, and chemical reactions. This paper provides an overview of the use of these neoteric media.

  15. Comparison of micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction and modified quick, easy, cheap, effective, rugged, and safe method for the determination of difenoconazole in cowpea.

    PubMed

    Chen, Xiaochu; Bian, Yanli; Liu, Fengmao; Teng, Peipei; Sun, Pan

    2017-10-06

    Two simple sample pretreatment for the determination of difenoconazole in cowpea was developed including micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction (ME-IL-VALLME) prior to high performance liquid chromatography (HPLC), and modified quick, easy, cheap, effective, rugged, and safe method (QuEChERS) coupled with HPLC-MS/MS. In ME-IL-VALLME method, the target analyte was extracted by surfactant Tween 20 micellar solution, then the supernatant was diluted with 3mL water to decrease the solubility of micellar solution. Subsequently, the vortex-assisted liquid-liquid microextraction (VALLME) procedure was performed in the diluted extraction solution by using the ionic liquid of 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF 6 ) as the extraction solvent and Tween 20 as an emulsifier to enhance the dispersion of the water-immiscible ionic liquid into the aqueous phase. Parameters that affect the extraction have been investigated in both methods Under the optimum conditions, the limits of quantitation were 0.10 and 0.05mgkg -1 , respectively. And good linearity was achieved with the correlation coefficient higher than 0.9941. The relative recoveries ranged from 78.6 to 94.8% and 92.0 to 118.0% with the relative standard deviations (RSD) of 7.9-9.6% and 1.2-3.2%, respectively. Both methods were quick, simple and inexpensive. However, the ME-IL-VALLME method provides higher enrichment factor compared with conventional QuEChERS method. The ME-IL-VALLME method has a strong potential for the determination of difenoconazole in complex vegetable matrices with HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System

    PubMed Central

    Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen

    2013-01-01

    Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434

  17. Detection of Organophosphorus Pesticides in Wheat by Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction Combined with HPLC

    PubMed Central

    Quan, Ji; Hu, Zeshu

    2018-01-01

    Food safety issues closely related to human health have always received widespread attention from the world society. As a basic food source, wheat is the fundamental support of human survival; therefore, the detection of pesticide residues in wheat is very necessary. In this work, the ultrasonic-assisted ionic liquid-dispersive liquid-liquid microextraction (DLLME) method was firstly proposed, and the extraction and analysis of three organophosphorus pesticides were carried out by combining high-performance liquid chromatography (HPLC). The extraction efficiencies of three ionic liquids with bis(trifluoromethylsulfonyl)imide (Tf2N) anion were compared by extracting organophosphorus in wheat samples. It was found that the use of 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([OMIM][Tf2N]) had both high enrichment efficiency and appropriate extraction recovery. Finally, the method was used for the determination of three wheat samples, and the recoveries of them were 74.8–112.5%, 71.8–104.5%, and 83.8–115.5%, respectively. The results show that the method proposed is simple, fast, and efficient, which can be applied to the extraction of organic matters in wheat samples. PMID:29854562

  18. Liquid microjunction surface sampling coupled with high-pressure liquid chromatography-electrospray ionization-mass spectrometry for analysis of drugs and metabolites in whole-body thin tissue sections.

    PubMed

    Kertesz, Vilmos; Van Berkel, Gary J

    2010-07-15

    In this work, a commercially available autosampler was adapted to perform direct liquid microjunction (LMJ) surface sampling followed by a high-pressure liquid chromatography (HPLC) separation of the extract components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the utility of coupling a separation with this direct liquid extraction based surface sampling approach, four different organs (brain, lung, kidney, and liver) from whole-body thin tissue sections of propranolol dosed and control mice were examined. The parent drug was observed in the chromatograms of the surface sampling extracts from all the organs of the dosed mouse examined. In addition, two isomeric phase II metabolites of propranolol (an aliphatic and an aromatic hydroxypropranolol glucuronide) were observed in the chromatograms of the extracts from lung, kidney, and liver. Confirming the presence of one or the other or both of these glucuronides in the extract from the various organs was not possible without the separation. These drug and metabolite data obtained using the LMJ surface sampling/HPLC-MS method and the results achieved by analyzing similar samples by conventional extraction of the tissues and subsequent HPLC-MS analysis were consistent. The ability to directly and efficiently sample from thin tissue sections via a liquid extraction and then perform a subsequent liquid phase separation increases the utility of this liquid extraction surface sampling approach.

  19. Polytetrafluorethylene film-based liquid-three phase micro extraction coupled with differential pulse voltammetry for the determination of atorvastatin calcium.

    PubMed

    Ensafi, Ali A; Khoddami, Elaheh; Rezaei, Behzad

    2013-01-01

    In this paper, we describe a new combination method based on polytetrafluorethylene (PTFE) film-based liquid three-phase micro extraction coupled with differential pulse voltammetry (DPV) for the micro extraction and quantification of atorvastatin calcium (ATC) at the ultra-trace level. Different factors affecting the liquid-three phases micro extraction of atorvastatin calcium, including organic solvent, pH of the donor and acceptor phases, concentration of salt, extraction time, stirring rate and electrochemical factors, were investigated, and the optimal extraction conditions were established. The final stable signal was achieved after a 50 min extraction time, which was used for analytical applications. An enrichment factor of 21 was achieved, and the relative standard deviation (RSD) of the method was 4.5% (n = 4). Differential pulse voltammetry exhibited two wide linear dynamic ranges of 20.0-1000.0 pmol L(-1) and 0.001-11.0 µmol L(-1) of ATC. The detection limit was found to be 8.1 pmol L(-1) ATC. Finally, the proposed method was used as a new combination method for the determination of atorvastatin calcium in real samples, such as human urine and plasma.

  20. Development of a novel ultrasound-assisted headspace liquid-phase microextraction and its application to the analysis of chlorophenols in real aqueous samples.

    PubMed

    Xu, Hui; Liao, Ying; Yao, Jinrong

    2007-10-05

    A new sample pretreatment technique, ultrasound-assisted headspace liquid-phase microextraction was developed as mentioned in this paper. In the technique, the volatile analytes were headspace extracted into a small drop of solvent, which suspended on the bottom of a cone-shaped PCR tube instead of the needle tip of a microsyringe. More solvent could be suspended in the PCR tube than microsyringe due to the larger interfacial tension, thus the analysis sensitivity was significantly improved with the increase of the extractant volume. Moreover, ultrasound-assisted extraction and independent controlling temperature of the extractant and the sample were performed to enhance the extraction efficiency. Following the extraction, the solvent-loaded sample was analyzed by high-performance liquid chromatography. Chlorophenols (2-chlorophenol, 2,4-dichlorophenol and 2,6-dichlorophenol) were chosen as model analytes to investigate the feasibility of the method. The experimental conditions related to the extraction efficiency were systematically studied. Under the optimum experimental conditions, the detection limit (S/N=3), intra- and inter-day RSD were 6 ng mL(-1), 4.6%, 3.9% for 2-chlorophenol, 12 ng mL(-1), 2.4%, 8.8% for 2,4-dichlorophenol and 23 ng mL(-1), 3.3%, 5.3% for 2,6-dichlorophenol, respectively. The proposed method was successfully applied to determine chlorophenols in real aqueous samples. Good recoveries ranging from 84.6% to 100.7% were obtained. In addition, the extraction efficiency of our method and the conventional headspace liquid-phase microextraction were compared; the extraction efficiency of the former was about 21 times higher than that of the latter. The results demonstrated that the proposed method is a promising sample pretreatment approach, its advantages over the conventional headspace liquid-phase microextraction include simple setup, ease of operation, rapidness, sensitivity, precision and no cross-contamination. The method is very suitable for the analysis of trace volatile and semivolatile pollutants in real aqueous sample.

  1. A novel liquid/liquid extraction process composed of surfactant and acetonitrile for purification of polygalacturonase enzyme from Durio zibethinus.

    PubMed

    Amid, Mehrnoush; Manap, Yazid; Azmira, Farhana; Hussin, Muhaini; Sarker, Zaidul Islam

    2015-07-01

    Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. CHARACTERIZATION AND RECYCLING OF WASTE WATER FROM GUAYULE LATEX EXTRACTION

    USDA-ARS?s Scientific Manuscript database

    Guayule commercialization for latex production to be used in medical products and other applications is now a reality. Currently, waste water following latex extraction is discharged into evaporation ponds. As commercialization reaches full scale, the liquid waste stream from latex extraction will b...

  3. Salting-out assisted liquid-liquid extraction with the aid of experimental design for determination of benzimidazole fungicides in high salinity samples by high-performance liquid chromatography.

    PubMed

    Wen, Yingying; Li, Jinhua; Yang, Fangfang; Zhang, Weiwei; Li, Weiran; Liao, Chunyang; Chen, Lingxin

    2013-03-15

    A novel method for the simultaneous separation and determination of four benzimidazole fungicides (i.e., carbendazim, fuberidazole, thiophanate-methyl and thiophanate) in high salinity samples was developed by using salting-out assisted liquid-liquid extraction (SALLE) via water-miscible acetonitrile as the extractant coupled with high-performance liquid chromatography. Box-Behnken design and response surface were employed to assist the optimization of SALLE conditions, including volume of salting-out solvent, the pH of sample solution and salting-out solvent as variable factors. The optimal salting-out parameters were obtained as follows: 2 mL of acetonitrile was added to 2 mL of sample solution with pH=4 and then 2 mL salting-out solvent containing 5 mol L(-1) sodium chloride at a pH of 7 was added to the solution for extraction. This procedure afforded a convenient and cost-saving operation with good cleanup ability for the benzimidazole fungicides, such as good linear relationships (R>0.996) between peak area and concentration from 2.5 ng mL(-1) to 500 ng mL(-1), low limits of detection between 0.14 ng mL(-1) and 0.38 ng mL(-1) and the intra-day precisions of retention time below 1.0%. The method recoveries obtained at fortified three concentrations for three seawater samples ranged from 60.4% to 99.1%. The simple, rapid and eco-benign SALLE based method proved potentially applicable for trace benzimidazole fungicides analysis in high salinity samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Air-assisted liquid-liquid microextraction by solidifying the floating organic droplets for the rapid determination of seven fungicide residues in juice samples.

    PubMed

    You, Xiangwei; Xing, Zhuokan; Liu, Fengmao; Zhang, Xu

    2015-05-22

    A novel air assisted liquid-liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid-liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μgL(-1). The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3-13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Dispersive liquid-liquid microextraction of phenolic compounds from vegetable oils using a magnetic ionic liquid.

    PubMed

    Zhu, Shuqiang; Wang, Lijun; Su, Along; Zhang, Haixia

    2017-08-01

    A novel method was developed for the determination of two endocrine-disrupting chemicals, bisphenol A and 4-nonylphenol, in vegetable oil by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography with tandem mass spectrometry. Using a magnetic liquid as the microextraction solvent, several key parameters were optimized, including the type and volume of the magnetic liquid, extraction time, amount of dispersant, and the type of reverse extractant. The detection limits for bisphenol A and 4-nonylphenol were 0.1 and 0.06 μg/kg, respectively. The recoveries were 70.4-112.3%, and the relative standard deviations were less than 4.2%. The method is simple for the extraction of bisphenol A and 4-nonylphenol from vegetable oil and suitable for routine analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of deep eutectic solvents applied in extraction and separation.

    PubMed

    Li, Xiaoxia; Row, Kyung Ho

    2016-09-01

    Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nicotine Levels and Presence of Selected Tobacco-Derived Toxins in Tobacco Flavoured Electronic Cigarette Refill Liquids

    PubMed Central

    Farsalinos, Konstantinos E.; Gillman, I. Gene; Melvin, Matt S.; Paolantonio, Amelia R.; Gardow, Wendy J.; Humphries, Kathy E.; Brown, Sherri E.; Poulas, Konstantinos; Voudris, Vassilis

    2015-01-01

    Background. Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Methods. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Results. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from −21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200–300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. Conclusions. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2–3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products. PMID:25811768

  8. Nicotine levels and presence of selected tobacco-derived toxins in tobacco flavoured electronic cigarette refill liquids.

    PubMed

    Farsalinos, Konstantinos E; Gillman, I Gene; Melvin, Matt S; Paolantonio, Amelia R; Gardow, Wendy J; Humphries, Kathy E; Brown, Sherri E; Poulas, Konstantinos; Voudris, Vassilis

    2015-03-24

    Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from -21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200-300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2-3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products.

  9. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends.

    PubMed

    Ventura, Sónia P M; E Silva, Francisca A; Quental, Maria V; Mondal, Dibyendu; Freire, Mara G; Coutinho, João A P

    2017-05-24

    Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.

  10. Selective Solid-liquid Extraction and Liquid-liquid Extraction of Lithium Chloride using Strapped Calix[4]pyrroles

    DOE PAGES

    He, Qing; Williams, Neil J.; Oh, Ju; ...

    2018-05-25

    LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less

  11. Fast and comprehensive analysis of secondary metabolites in cocoa products using ultra high-performance liquid chromatography directly after pressurized liquid extraction.

    PubMed

    Damm, Irina; Enger, Eileen; Chrubasik-Hausmann, Sigrun; Schieber, Andreas; Zimmermann, Benno F

    2016-08-01

    Fast methods for the extraction and analysis of various secondary metabolites from cocoa products were developed and optimized regarding speed and separation efficiency. Extraction by pressurized liquid extraction is automated and the extracts are analyzed by rapid reversed-phase ultra high-performance liquid chromatography and normal-phase high-performance liquid chromatography methods. After extraction, no further sample treatment is required before chromatographic analysis. The analytes comprise monomeric and oligomeric flavanols, flavonols, methylxanthins, N-phenylpropenoyl amino acids, and phenolic acids. Polyphenols and N-phenylpropenoyl amino acids are separated in a single run of 33 min, procyanidins are analyzed by normal-phase high-performance liquid chromatography within 16 min, and methylxanthins require only 6 min total run time. A fourth method is suitable for phenolic acids, but only protocatechuic acid was found in relevant quantities. The optimized methods were validated and applied to 27 dark chocolates, one milk chocolate, two cocoa powders and two food supplements based on cocoa extract. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Selective Solid-liquid Extraction and Liquid-liquid Extraction of Lithium Chloride using Strapped Calix[4]pyrroles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Qing; Williams, Neil J.; Oh, Ju

    LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less

  13. Synthesis and evaluation of a maltose-bonded silica gel stationary phase for hydrophilic interaction chromatography and its application in Ginkgo Biloba extract separation in two-dimensional systems.

    PubMed

    Sheng, Qianying; Yang, Kaiya; Ke, Yanxiong; Liang, Xinmiao; Lan, Minbo

    2016-09-01

    Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross-linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two-dimensional hydrophilic interaction liquid chromatography× reversed-phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two-dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Combination of solvent extractants for dispersive liquid-liquid microextraction of fungicides from water and fruit samples by liquid chromatography with tandem mass spectrometry.

    PubMed

    Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José

    2017-10-15

    A multiresidue method was developed to determine twenty-five fungicides belonging to three different chemical families, oxazoles, strobilurins and triazoles, in water and fruit samples, using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography/tandem mass spectrometry (LC-MS 2 ). Solid-liquid extraction with acetonitrile was used for the analysis in fruits, the extract being used as dispersant solvent in DLLME. Since some of the analytes showed high affinity for chloroform and the others were more efficiently extracted with undecanol, a mixture of both solvents was used as extractant in DLLME. After evaporation of CHCl 3 , the enriched phase was analyzed. Enrichment factors in the 23-119 and 12-60 ranges were obtained for waters and fruits, respectively. The approach was most sensitive for metominostrobin with limits of quantification of 1ngL -1 and 5ngkg -1 in waters and fruits, respectively, while a similar sensitivity was attained for tebuconazole in fruits. Recoveries of the fungicides varied between 86 and 116%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata.

    PubMed

    Sermkaew, Namfa; Ketjinda, Wichan; Boonme, Prapaporn; Phadoongsombut, Narubodee; Wiwattanapatapee, Ruedeekorn

    2013-11-20

    The purpose of this study was to develop self-microemulsifying formulations of an Andrographis paniculata extract in liquid and pellet forms for an improved oral delivery of andrographolide. The optimized liquid self-microemulsifying drug delivery system (SMEDDS) was composed of A. paniculata extract (11.1%), Capryol 90 (40%), Cremophor RH 40 (40%) and Labrasol (8.9%). This liquid SMEDDS was further adsorbed onto colloidal silicon dioxide and microcrystalline cellulose, and converted to SMEDDS pellets by the extrusion/spheronization technique. The microemulsion droplet sizes of the liquid and pellet formulations after dilution with water were in the range of 23.4 and 30.3 nm. The in vitro release of andrographolide from the liquid SMEDDS and SMEDDS pellets was 97.64% (SD 1.97%) and 97.74% (SD 3.36%) within 15 min, respectively while the release from the initial extract was only 10%. The oral absorption of andrographolide was determined in rabbits. The C(max) value of andrographolide from the A. paniculata extract liquid SMEDDS and SMEDDS pellet formulations (equivalent to 17.5mg/kg of andrographolide) was 6-fold and 5-fold greater than the value from the initial extract in aqueous suspension (equivalent to 35 mg/kg of andrographolide), respectively. In addition, the AUC(0-12h) was increased 15-fold by the liquid SMEDDS and 13-fold by the SMEDDS pellets compared to the extract in aqueous suspension, respectively. The results clearly indicated that the liquid and solid SMEDDS could be effectively used to improve the dissolution and oral bioavailability that would also enable a reduction in the dose of the poorly water soluble A. paniculata extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Rapid analysis of ultraviolet filters using dispersive liquid-liquid microextraction coupled to headspace gas chromatography and mass spectrometry.

    PubMed

    Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L

    2018-05-29

    An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction.

    PubMed

    Khani, Rouhollah; Ghasemi, Jahan B; Shemirani, Farzaneh

    2014-03-25

    A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL(-)(1), respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL(-)(1), respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Determination of gymnemagenin in rat plasma using high-performance liquid chromatography-tandem mass spectrometry: application to pharmacokinetics after oral administration of Gymnema sylvestre extract.

    PubMed

    Kamble, Bhagyashree; Gupta, Ankur; Patil, Dada; Khatal, Laxman; Janrao, Shirish; Moothedath, Ismail; Duraiswamy, Basavan

    2013-05-01

    A sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method has been developed and validated for the determination of gymnemagenin (GMG), a triterpene sapogenin from Gymnema sylvestre, in rat plasma using withaferin A as the internal standard (IS). Plasma samples were simply extracted using liquid-liquid extraction with tetra-butyl methyl ether. Chromatographic separation was performed on Luna C(18) column using gradient elution of water and methanol (with 0.1% formic acid and 0.3% ammonia) at a flow rate of 0.8 mL/min. GMG and IS were eluted at 4.64 and 4.36 min, ionized in negative and positive mode, respectively, and quantitatively estimated using multiple reaction monitoring (MRM) mode. Two MRM transitions were selected at m/z 505.70 → 455.5 and m/z 471.50 → 281.3 for GMG and IS, respectively. The assay was linear over the concentration range of 5.280-300.920 ng/mL. The mean plasma extraction recoveries for GMG and IS were found to be 80.92 ± 8.70 and 55.63 ± 0.76%, respectively. The method was successfully applied for the determination of pharmacokinetic parameters of GMG after oral administration of G. sylvestre extract. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Use of liquid/supercritical CO2 extraction process for butanol recovery from fermentation broth

    USDA-ARS?s Scientific Manuscript database

    In order for butanol fermentation to be a viable option, it is essential to recover it from fermentation broth using economical alternate in-situ product recovery techniques such as liquid/supercritical CO2 extraction as compared to distillation. This technique (liquid CO2 extraction & supercritical...

  20. Screening of commercial and pecan shell-extracted liquid smoke agents as natural antimicrobials against foodborne pathogens.

    PubMed

    Van Loo, Ellen J; Babu, D; Crandall, Philip G; Ricke, Steven C

    2012-06-01

    Liquid smoke extracts have traditionally been used as flavoring agents, are known to possess antioxidant properties, and serve as natural alternatives to conventional antimicrobials. The antimicrobial efficacies of commercial liquid smoke samples may vary depending on their source and composition and the methods used to extract and concentrate the smoke. We investigated the MICs of eight commercial liquid smoke samples against Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli . The commercial liquid smoke samples purchased were supplied by the manufacturer as water-based or concentrated extracts of smoke from different wood sources. The MICs of the commercial smokes to inhibit the growth of foodborne pathogens ranged from 0.5 to 6.0% for E. coli, 0.5 to 8.0% for Salmonella, and 0.38 to 6% for S. aureus. The MIC for each liquid smoke sample was similar in its effect on both E. coli and Salmonella. Solvent-extracted antimicrobials prepared using pecan shells displayed significant differences between their inhibitory concentrations depending on the type of solvent used for extraction. The results indicated that the liquid smoke samples tested in this study could serve as effective natural antimicrobials and that their inhibitory effects depended more on the solvents used for extraction than the wood source.

  1. Application of HRAM screening and LC-MS/MS confirmation of active pharmaceutical ingredient in "natural" herbal supplements.

    PubMed

    Pascali, Jennifer P; Fais, Paolo; Vaiano, Fabio; Bertol, Elisabetta

    2018-05-01

    The growing market of herbal remedies worldwide could pose severe problems to consumers' health due to the possible presence of potentially harmful, undeclared synthetic substances or analogues of prescription drugs. The present work shows a simple but effective approach to unequivocally identify synthetic anorectic compounds in allegedly 'natural' herbal extracts, by exploiting liquid chromatography/time of flight (Q-TOF LC/MS) technology coupled to liquid chromatography/triple quadrupole (LC-MS/MS) confirmation and quantitation. The procedure was applied to five tea herbal extracts and pills sold as coadjutant for weigh loss. The method exploited liquid-liquid sample extraction (LLE) and separation in a C18 (2.1mm×150mm, 1.8μm) column. QTOF acquisitions were carried out both in scan mode and all ion MS/MS mode and results were obtained after search against ad hoc prepared library. Sibutramine, 4-hydroxyamphetamine, caffeine and theophylline were preliminary identified samples. Confirmation and quantitation of the preliminary identified compounds were obtained in LC-MS/MS after preparation of appropriated standards. Sibutramine, caffeine and theophylline were finally confirmed and quantitate. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Solvent extraction separation of Th-227 and Ac-225 in room temperature ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Jason R; Boll, Rose Ann; Dai, Sheng

    2012-01-01

    The solvent extractions of Th-227 and Ac-225 from the aqueous phase into ionic liquids (ILs) were investigated by using N,N,N ,N - tetraoctyldiglycolamide (TODGA) or di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant. Four ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium bis(perfluoroethanesulfonyl)imide ([C4mim][BETI]), 1-butyl-2,3-trimethyleneimidazolium (trifluoromethanesulfonyl)imide [BuI5][NTf2], and 1-benzyl pyridinium bis(trifluoromethanesulfonyl)imide ([PhCH2Py][NTf2]) were used as extraction solvents for separation of Th-227 and Ac-225 in this study. Excellent extraction efficiencies and selectivities were found for Th-227/Ac-225 when HDEHP was used as an extractant in these ionic liquids. The effects of different extractant concentrations in ionic liquids and acidities of the aqueous phase on extraction efficienciesmore » and selectivities of Th-227/Ac-225 are also presented in this article.« less

  3. Pyridinium ionic liquid-based liquid-solid extraction of inorganic and organic iodine from Laminaria.

    PubMed

    Peng, Li-Qing; Yu, Wen-Yan; Xu, Jing-Jing; Cao, Jun

    2018-01-15

    A simple, green and effective extraction method, namely, pyridinium ionic liquid- (IL) based liquid-solid extraction (LSE), was first designed to extract the main inorganic and organic iodine compounds (I - , monoiodo-tyrosine (MIT) and diiodo-tyrosine (DIT)). The optimal extraction conditions were as follows: ultrasonic intensity 100W, IL ([EPy]Br) concentration 200mM, extraction time 30min, liquid/solid ratio 10mL/g, and pH value 6.5. The morphologies of Laminaria were studied by scanning electron microscopy and transmission electron microscopy. The recovery values of I - , MIT and DIT from Laminaria were in the range of 88% to 94%, and limits of detection were in the range of 59.40 to 283.6ng/g. The proposed method was applied to the extraction and determination of iodine compounds in three Laminaria. The results showed that IL-based LSE could be a promising method for rapid extraction of bioactive iodine from complex food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Drilling to Extract Liquid Water on Mars: Feasible and Worth the Investment

    NASA Technical Reports Server (NTRS)

    Stoker, C.

    2004-01-01

    A critical application for the success of the Exploration Mission is developing cost effective means to extract resources from the Moon and Mars needed to support human exploration. Water is the most important resource in this regard, providing a critical life support consumable, the starting product of energy rich propellants, energy storage media (e.g. fuel cells), and a reagent used in virtually all manufacturing processes. Water is adsorbed and chemically bound in Mars soils, ice is present near the Martian surface at high latitudes, and water vapor is a minor atmospheric constituent, but extracting meaningful quantities requires large complex mechanical systems, massive feedstock handling, and large energy inputs. Liquid water aquifers are almost certain to be found at a depth of several kilometers on Mars based on our understanding of the average subsurface thermal gradient, and geological evidence from recent Mars missions suggests liquid water may be present much closer to the surface at some locations. The discovery of hundreds of recent water-carved gullies on Mars indicates liquid water can be found at depths of 200-500 meters in many locations. Drilling to obtain liquid water via pumping is therefore feasible and could lower the cost and improve the return of Mars exploration more than any other ISRU technology on the horizon. On the Moon, water ice may be found in quantity in permanently shadowed regions near the poles.

  5. Application of a thiourea-containing task-specific ionic liquid for the solid-phase extraction cleanup of lead ions from red lipstick, pine leaves, and water samples.

    PubMed

    Saljooqi, Asma; Shamspur, Tayebeh; Mohamadi, Maryam; Mostafavi, Ali

    2014-07-01

    Here, task-specific ionic liquid solid-phase extraction is proposed for the first time. In this approach, a thiourea-functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid-phase extraction column are used for the selective extraction and preconcentration of ultra-trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5-40.0 ng/mL with the detection limit of 0.13 ng/mL (3(Sb)/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Syringe needle-based sampling coupled with liquid-phase extraction for determination of the three-dimensional distribution of l-ascorbic acid in apples.

    PubMed

    Tang, Sheng; Lee, Hian Kee

    2016-05-15

    A novel syringe needle-based sampling approach coupled with liquid-phase extraction (NBS-LPE) was developed and applied to the extraction of l-ascorbic acid (AsA) in apple. In NBS-LPE, only a small amount of apple flesh (ca. 10mg) was sampled directly using a syringe needle and placed in a glass insert for liquid extraction of AsA by 80 μL oxalic acid-acetic acid. The extract was then directly analyzed by liquid chromatography. This new procedure is simple, convenient, almost organic solvent free, and causes far less damage to the fruit. To demonstrate the applicability of NBS-LPE, AsA levels at different sampling points in a single apple were determined to reveal the spatial distribution of the analyte in a three-dimensional model. The results also showed that this method had good sensitivity (limit of detection of 0.0097 mg/100g; limit of quantification of 0.0323 mg/100g), acceptable reproducibility (relative standard deviation of 5.01% (n=6)), a wide linear range of between 0.05 and 50mg/100g, and good linearity (r(2)=0.9921). This interesting extraction technique and modeling approach can be used to measure and monitor a wide range of compounds in various parts of different soft-matrix fruits and vegetables, including single specimens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Multiple functional ionic liquids based dispersive liquid-liquid microextraction combined with high performance chromatography for the determination of phenolic compounds in water samples.

    PubMed

    Sun, Jian-Nan; Chen, Juan; Shi, Yan-Ping

    2014-07-01

    A new mode of ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) is developed. In this work, [C6MIm][PF6] was chosen as the extraction solvent, and two kinds of hydrophilic ionic liquids, [EMIm][BF4] and [BSO3HMIm][OTf], functioned as the dispersive solvent. So in the whole extraction procedure, no organic solvent was used. With the aid of SO3H group, the acidic compound was extracted from the sample solution without pH adjustment. Two phenolic compounds, namely, 2-naphthol and 4-nitrophenol were chosen as the target analytes. Important parameters affecting the extraction efficiency, such as the type of hydrophilic ionic liquids, the volume ratio of [EMIm][BF4] to [BSO3HMIm][OTf], type and volume of extraction solvent, pH value of sample solution, sonication time, extraction time and centrifugation time were investigated and optimized. Under the optimized extraction conditions, the method exhibited good sensitivity with the limits of detection (LODs) at 5.5 μg L(-1)and 10.0 μg L(-1) for 4-nitrophenol and 2-naphthol, respectively. Good linearity over the concentration ranges of 24-384 μg L(-1) for 4-nitrophenol and 28-336 μg L(-1) for 2-naphthol was obtained with correlation coefficients of 0.9998 and 0.9961, respectively. The proposed method can directly extract acidic compound from environmental sample or even more complex sample matrix without any pH adjustment procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Sensitive spectrophotometric determination of Co(II) using dispersive liquid-liquid micro-extraction method in soil samples.

    PubMed

    Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira

    2016-05-01

    Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples.

  9. Green synthesis of Copper nanoparticle using ionic liquid-based extraction from Polygonum minus and their applications.

    PubMed

    Ullah, Habib; Wilfred, Cecilia Devi; Shaharun, Maizatul Shima

    2018-06-06

    The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO 4 ] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterized by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesized CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 minutes.

  10. A novel fatty-acid-based in-tube dispersive liquid-liquid microextraction technique for the rapid determination of nonylphenol and 4-tert-octylphenol in aqueous samples using high-performance liquid chromatography-ultraviolet detection.

    PubMed

    Shih, Hou-Kuang; Shu, Ting-Yun; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon

    2015-01-07

    In this study, a novel fatty-acid-based in-tube dispersive liquid-liquid microextraction (FA-IT-DLLME) technique is proposed for the first time and is developed as a simple, rapid and eco-friendly sample extraction method for the determination of alkylphenols in aqueous samples using high-performance liquid chromatography-ultraviolet detection (HPLC-UV). In this extraction method, medium-chain saturated fatty acids were investigated as a pH-dependent phase because they acted as either anionic surfactants or neutral extraction solvents based on the acid-base reaction caused solely by the adjustment of the pH of the solution. A specially designed home-made glass extraction tube with a built-in scaled capillary tube was utilized as the phase-separation device for the FA-IT-DLLME to collect and measure the separated extractant phase for analysis. Nonylphenol (NP) and 4-tert-octylphenol (4-tOP) were chosen as model analytes. The parameters influencing the FA-IT-DLLME were thoroughly investigated and optimized. Under the optimal conditions, the detector responses of NP and 4-tOP were linear in the concentration ranges of 5-4000 μg L(-1), with correlation coefficients of 0.9990 and 0.9996 for NP and 4-tOP, respectively. The limits of detection based on a signal-to-noise ratio of 3 were 0.7 and 0.5 μg L(-1), and the enrichment factors were 195 and 143 for NP and 4-tOP, respectively. The applicability of the developed method was demonstrated for the analysis of alkylphenols in environmental wastewater samples, and the recoveries ranged from 92.9 to 107.1%. The extraction process required less than 4 min and utilized only acids, alkalis, and fatty acids to achieve the extraction. The results demonstrated that the presented FA-IT-DLLME approach is highly cost-effective, simple, rapid and environmentally friendly in its sample preparation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Rational approach to solvent system selection for liquid-liquid extraction-assisted sample pretreatment in counter-current chromatography.

    PubMed

    Wang, Jiajia; Gu, Dongyu; Wang, Miao; Guo, Xinfeng; Li, Haoquan; Dong, Yue; Guo, Hong; Wang, Yi; Fan, Mengqi; Yang, Yi

    2017-05-15

    A rational liquid-liquid extraction approach was established to pre-treat samples for high-speed counter-current chromatography (HSCCC). n-Hexane-ethyl acetate-methanol-water (4:5:4:5, v/v) and (1:5:1:5, v/v) were selected as solvent systems for liquid-liquid extraction by systematically screening K of target compounds to remove low- and high-polarity impurities in the sample, respectively. After liquid-liquid extraction was performed, 1.4g of crude sample II was obtained from 18.5g of crude sample I which was extracted from the flowers of Robinia pseudoacacia L., and then separated with HSCCC by using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v). As a result, 31mg of robinin and 37mg of kaempferol 7-O-α-l-rhamnopyranoside were isolated from 200mg of crude sample II in a single run of HSCCC. A scale-up separation was also performed, and 160mg of robinin with 95% purity and 188mg of kaempferol 7-O-α-l-rhamnopyranoside with 97% purity were produced from 1.2g of crude sample II. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Validated method for determination of bromopride in human plasma by liquid chromatography--electrospray tandem mass spectrometry: application to the bioequivalence study.

    PubMed

    Nazare, P; Massaroti, P; Duarte, L F; Campos, D R; Marchioretto, M A M; Bernasconi, G; Calafatti, S; Barros, F A P; Meurer, E C; Pedrazzoli, J; Moraes, L A B

    2005-09-01

    A simple, sensitive and specific liquid chromatography-tandem mass spectrometry method for the quantification of bromopride I in human plasma is presented. Sample preparation consisted of the addition of procainamide II as the internal standard, liquid-liquid extraction in alkaline conditions using hexane-ethyl acetate (1 : 1, v/v) as the extracting solvent, followed by centrifugation, evaporation of the solvent and sample reconstitution in acetonitrile. Both I and II (internal standard, IS) were analyzed using a C18 column and the mobile-phase acetonitrile-water (formic acid 0.1%). The eluted compounds were monitored using electrospray tandem mass spectrometry. The analyses were carried out by multiple reaction monitoring (MRM) using the parent-to-daughter combinations of m/z 344.20 > 271.00 and m/z 236.30 > 163.10. The areas of peaks from analyte and IS were used for quantification of I. The achieved limit of quantification was 1.0 ng/ml and the assay exhibited a linear dynamic range of 1-100.0 ng/ml and gave a correlation coefficient (r) of 0.995 or better. Validation results on linearity, specificity, accuracy, precision and stability, as well as application to the analysis of samples taken up to 24 h after oral administration of 10 mg of I in healthy volunteers demonstrated the applicability to bioequivalence studies.

  13. Preparation of [13C3]-melamine and [13C3]-cyanuric acid and their application to the analysis of melamine and cyanuric acid in meat and pet food using liquid chromatography-tandem mass spectrometry.

    PubMed

    Varelis, P; Jeskelis, R

    2008-10-01

    For the determination of melamine and cyanuric acid the labelled internal standards [(13)C(3)]-melamine and [(13)C(3)]-cyanuric acid were synthesized using the common substrate [(13)C(3)]-cyanuric chloride by reaction with ammonia and acidified water, respectively. Standards with excellent isotopic and chemical purities were obtained in acceptable yields. These compounds were used to develop an isotope dilution liquid chromatography/mass spectrometry (LC/MS) method to determine melamine and cyanuric acid in catfish, pork, chicken, and pet food. The method involved extraction into aqueous methanol, liquid-liquid extraction and ion exchange solid phase clean-up, with normal phase high-performance liquid chromatography (HPLC) in the so-called hydrophilic interaction mode. The method had a limit of detection (LOD) of 10 microg kg(-1) for both melamine and cyanuric acid in the four foods with a percentage coefficient of variation (CV) of less than 10%. The recovery of the method at this level was in the range of 87-110% and 96-110% for melamine and cyanuric acid, respectively.

  14. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    PubMed

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage could be enhanced significantly with the use of organic solvent as a device rinse after breath sampling to collect the non-aqueous fraction as opposed to neat breath condensate sample. Here, we show the detected ranges of compounds in each case and provide a practical guide for methodology selection for optimal detection of specific compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  16. ON-SITE SOLID PHRASE EXTRACTION AND LABORATORY ...

    EPA Pesticide Factsheets

    Fragrance materials, such as synthetic musks in aqueous samples, are normally analyzed by GC/MS in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. A I -L sample, however, usually provides too little analyte for full-scan data acquisition. An on-site extraction method for extracting synthetic musks from 60 L of wastewater effluent has been developed. Such a large sample volume permits high-quality, full-scan mass spectra to be obtained for various synthetic musk compounds. Quantification of these compounds was conveniently achieved from the full-scan data directly, without preparing SIM descriptors for each compound to acquire SIM data. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-sol

  17. IN SITU SOLID-PHASE EXTRACTION AND ANALYSIS OF ...

    EPA Pesticide Factsheets

    Fragrance materials, such as synthetic musks in aqueous samples, are normally analyzed by GC/MS in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of 1-L samples. A 1-L sample, however, usually provides too little analyte for full-scan data acquisition.We have developed an on-site extraction method for extracting synthetic musks from 60 L of wastewater effluent. Such a large sample volume permits high-quality, full-scan mass spectra to be obtained for various synthetic musk compounds. Quantification of these compounds was conveniently achieved from the full-scan data directly, without preparing SIM descriptors for each compound to acquire SIM data. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-s

  18. Inorganic selenium speciation analysis in Allium and Brassica vegetables by ionic liquid assisted liquid-liquid microextraction with multivariate optimization.

    PubMed

    Castro Grijalba, Alexander; Martinis, Estefanía M; Wuilloud, Rodolfo G

    2017-03-15

    A highly sensitive vortex assisted liquid-liquid microextraction (VA-LLME) method was developed for inorganic Se [Se(IV) and Se(VI)] speciation analysis in Allium and Brassica vegetables. Trihexyl(tetradecyl)phosphonium decanoate phosphonium ionic liquid (IL) was applied for the extraction of Se(IV)-ammonium pyrrolidine dithiocarbamate (APDC) complex followed by Se determination with electrothermal atomic absorption spectrometry. A complete optimization of the graphite furnace temperature program was developed for accurate determination of Se in the IL-enriched extracts and multivariate statistical optimization was performed to define the conditions for the highest extraction efficiency. Significant factors of IL-VA-LLME method were sample volume, extraction pH, extraction time and APDC concentration. High extraction efficiency (90%), a 100-fold preconcentration factor and a detection limit of 5.0ng/L were achieved. The high sensitivity obtained with preconcentration and the non-chromatographic separation of inorganic Se species in complex matrix samples such as garlic, onion, leek, broccoli and cauliflower, are the main advantages of IL-VA-LLME. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Determination of sedative hypnotics in sewage sludge by pressurized liquid extraction with high-performance liquid chromatography and tandem mass spectrometry.

    PubMed

    Arbeláez, Paula; Granados, Judith; Borrull, Francesc; Marcé, Rosa Maria; Pocurull, Eva

    2014-12-01

    This paper describes a method for the determination of eight sedative hypnotics (benzodiazepines and barbiturates) in sewage sludge using pressurized liquid extraction and liquid chromatography with tandem mass spectrometry. Pressurized liquid extraction operating conditions were optimized and maximum recoveries were reached using methanol under the following operational conditions: 100ºC, 1500 psi, extraction time of 5 min, one extraction cycle, flush volume of 60% and purge time of 120 s. Pressurized liquid extraction recoveries were higher than 88% for all the compounds except for carbamazepine (55%). The repeatability and reproducibility between days, expressed as relative standard deviation (n = 5), were lower than 6 and 10%, respectively. The detection limits for all compounds were lower than 12.5 μg/kg of dry weight. The method was applied to determine benzodiazepines and barbiturates in sewage sludge from urban sewage treatment plants, and carbamazepine showed the highest concentration (7.9-18.9 μg/kg dry weight). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Determination of sulfonamide antibiotics and metabolites in liver, muscle and kidney samples by pressurized liquid extraction or ultrasound-assisted extraction followed by liquid chromatography-quadrupole linear ion trap-tandem mass spectrometry (HPLC-QqLIT-MS/MS).

    PubMed

    Hoff, Rodrigo Barcellos; Pizzolato, Tânia Mara; Peralba, Maria do Carmo Ruaro; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-03-01

    Sulfonamides are widely used in human and veterinary medicine. The presence of sulfonamides residues in food is an issue of great concern. Throughout the present work, a method for the targeted analysis of 16 sulfonamides and metabolites residue in liver of several species has been developed and validated. Extraction and clean-up has been statistically optimized using central composite design experiments. Two extraction methods have been developed, validated and compared: i) pressurized liquid extraction, in which samples were defatted with hexane and subsequently extracted with acetonitrile and ii) ultrasound-assisted extraction with acetonitrile and further liquid-liquid extraction with hexane. Extracts have been analyzed by liquid chromatography-quadrupole linear ion trap-tandem mass spectrometry. Validation procedure has been based on the Commission Decision 2002/657/EC and included the assessment of parameters such as decision limit (CCα), detection capability (CCβ), sensitivity, selectivity, accuracy and precision. Method׳s performance has been satisfactory, with CCα values within the range of 111.2-161.4 µg kg(-1), limits of detection of 10 µg kg(-1) and accuracy values around 100% for all compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The radiation chemistry of ionic liquids: A review

    DOE PAGES

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less

  2. Laboratory Production of Lemon Liqueur (Limoncello) by Conventional Maceration and a Two-Syringe System to Illustrate Rapid Solid-Liquid Dynamic Extraction

    ERIC Educational Resources Information Center

    Naviglio, Daniele; Montesano, Domenico; Gallo, Monica

    2015-01-01

    Two experimental techniques of solid-liquid extraction are compared relating to the lab-scale production of lemon liqueur, most commonly named "limoncello"; the first is the official method of maceration for the solid-liquid extraction of analytes and is widely used to extract active ingredients from a great variety of natural products;…

  3. Microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid for the determination of sulfonamides in environmental water samples.

    PubMed

    Song, Ying; Wu, Lijie; Lu, Chunmei; Li, Na; Hu, Mingzhu; Wang, Ziming

    2014-12-01

    An easy, quick, and green method, microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1-Ethy-3-methylimidazolium hexafluorophosphate, which is a solid-state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid-state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00-400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Influence of liquid or solid culture conditions on the volatile components of mycelia of Isariacateinannulata].

    PubMed

    Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin

    2011-12-01

    To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.

  5. Dispersive liquid-liquid microextraction combined with microwave-assisted derivatization for determining lipoic acid and its metabolites in human urine.

    PubMed

    Tsai, Chia-Ju; Chen, Yen-Ling; Feng, Chia-Hsien

    2013-10-04

    This study explored dispersive liquid-liquid microextraction for extraction and concentration of lipoic acid in human urine. To improve the detection of lipoic acid by both capillary liquid chromatography (CapLC) with UV detection and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), microwave-assisted derivatization with 4-bromomethyl-6,7-dimethoxycoumarin was performed to render lipoic acid chromophores for UV detection and also high ionization efficiency in MALDI. All parameters that affected lipoic acid extraction and derivatization from urine were investigated and optimized. In the analyses of human urine samples, the two methods had a linear range of 0.1-20 μM with a correlation coefficient of 0.999. The detection limits of CapLC-UV and MALDI-TOF MS were 0.03 and 0.02 μM (S/N ≧ 3), respectively. The major metabolites of lipoic acid, including 6,8-bismethylthio-octanoic acid, 4,6-bismethylthio-hexanoic acid, and 2,4-bismethylthio-butanoic acid were also extracted by dispersive liquid-liquid microextraction and detected by MALDI-TOF MS. The minor metabolites (undetectable by MALDI-TOF MS), bisnorlipoic acid and tetranorlipoic acid were also extracted by dispersive liquid-liquid microextraction and identified with an LTQ Orbitrap mass spectrometer. After dispersive liquid-liquid microextraction and microwave-assisted derivatization, all lipoic acid derivatizations and metabolites were structurally confirmed by LTQ Orbitrap. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Air assisted dispersive liquid-liquid microextraction with solidification of the floating organic droplets (AA-DLLME-SFO) and UHPLC-PDA method: Application to antibiotics analysis in human plasma of hospital acquired pneumonia patients.

    PubMed

    Ferrone, Vincenzo; Cotellese, Roberto; Carlucci, Maura; Di Marco, Lorenzo; Carlucci, Giuseppe

    2018-03-20

    An ultra high-performance liquid chromatographic (UHPLC) method with PDA detection was developed and validated for the simultaneous quantification of metronidazole, meropenem, ciprofloxacin, linezolid and piperacillin in human plasma and applied to patients suffering from hospital acquired pneumonia (HAP). The method uses an air assisted dispersive liquid-liquid microextraction for sample preparation. All parameters in the extraction step, including selection of extractant, amount of extractant, ionic strength, pH, and extraction cycles, were investigated and optimized. Chromatography was carried out using a Poroshell 120 SB C 18 (50 × 2.1 mm I.D. 2.6 μm particle size) column and a gradient mobile phase consisting of ammonium acetate buffer (10 mM, pH 4.0) (eluent A); and a mixture of acetonitrile-methanol in a ratio (80/20)(eluent B). Ulifloxacin was used as internal standard. The method demonstrated good linearity with correlation coefficients, r 2  > 0.9995 for the drugs, as well as high precision (RSD% ≤ 9.87%), accuracy ranged from -8.14% to +8.98. The enrichment factor (EF) obtained ranged within 87 and 121. During the validation, the concentrations of the analytes were found to be stable after 3 freeze-thaw cycles and for at least 24 h after extraction. Subsequently, this method was used to quantify the drugs in patients with HAP in order to establish if the dosage regimen given was sufficient to eradicate the infection at the target site. Copyright © 2017. Published by Elsevier B.V.

  7. Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma.

    PubMed

    Xu, Xu; Su, Rui; Zhao, Xin; Liu, Zhuang; Zhang, Yupu; Li, Dan; Li, Xueyuan; Zhang, Hanqi; Wang, Ziming

    2011-11-30

    The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Production of needle-type liquid-metal ion sources and their application in a scanning ion muscope

    NASA Astrophysics Data System (ADS)

    Knapp, Helmut; Rübesame, Detlef; Niedrig, Heinz

    1991-07-01

    A tungsten wire is electrochemically etched in NaOH to produce tip radii of 4-10 μm for use in liquid-metal ion sources (LMIS). To ensure complete wetting of the needle with the liquid metal (Sn, Ga), the needle has to be annealed at 800-1000°C by electron bombardment in a vacuum. It is then immediately dipped into the liquid metal in the same vacuum chamber. An anode prepared in this way is part of a triode system, followed by an octupole stigmator, an electrostatic einzel lens and the scanning unit. Upon application of a high voltage the liquid metal will form a Taylor cone at the needle tip. In the resulting high electrical field ions are extracted through field evaporation. Typical beam current and spot size values during scanning ion muscope (SIM) operation are 2.5 μA and 10 μm respectively. An Everhart-Thornley detector and a quadrupole mass spectrometer are available to allow analysis of secondary particles emitted from the target.

  9. Process to upgrade coal liquids by extraction prior to hydrodenitrogenation

    DOEpatents

    Schneider, Abraham; Hollstein, Elmer J.; Janoski, Edward J.; Scheibel, Edward G.

    1982-01-01

    Oxygen compounds are removed, e.g., by extraction, from a coal liquid prior to its hydrogenation. As a result, compared to hydrogenation of such a non-treated coal liquid, the rate of nitrogen removal is increased.

  10. Liquid CO2 extraction of Jasminum grandiflorum and comparison with conventional processes.

    PubMed

    Prakash, Om; Sahoo, Deeptanjali; Rout, Prasant Kumar

    2012-01-01

    The concrete (0.35%) of Jasminum grandiflorum L. flowers was prepared by extraction in n-pentane, and the absolute (0.27%) by fractionation of the n-pentane extract (concrete) with cold methanol. Direct extraction of flowers with liquid CO2 gave a relatively fat-free product in 0.26% yield. The liquid CO2 extract was enriched with terpenoids and benzenoids, thus providing the organoleptically accepted product. The major compounds, such as benzyl acetate, (E,E)-alpha-farnesene and (Z)-3-hexenyl benzoate, along with compounds like indole, methyl anthranilate, (Z)-jasmone, (Z)-methyl jasmonoate and (Z)-methyl epi-jasmonoate, are responsible for the high diffusivity of the jasmine fragrance. These compounds have been obtained with improved recoveries in the liquid CO2 extract. On the other hand, the yield of the essential oil was poor (0.05%), and some polar compounds (oxygenated terpenoids) were recovered in less amounts in comparison with either the n-pentane or liquid CO2 extract.

  11. Development of an UPLC-MS/MS micromethod for quantitation of cinitapride in plasma and its application in a pharmacokinetic interaction trial.

    PubMed

    Marcelín-Jiménez, Gabriel; Contreras, Leticia; Esquivel, Javier; Ávila, Óscar; Batista, Dany; Ángeles, Alionka P; García-González, Alberto

    2017-03-01

    Cinitapride (CIN) is a benzamide-derived molecule used for the treatment of gastroesophageal reflux and dyspepsia. Its pharmacokinetics are controversial due to the use of supratherapeutic doses and the lack of sensitive methodology. Therefore, a sensitive and accurate micromethod was developed for its quantitation in human plasma. CIN was extracted from 300 µl of heparinized plasma by liquid-liquid extraction using cisapride as internal standard, and analyzed with an ultra performance liquid chromatograph employing positive multiple-reaction monitoring-MS. The method proved to be rapid, accurate and stable within a range between 50 and 2000 pg/ml and was successfully validated and applied in a pharmacokinetic interaction trial, where it was demonstrated that oral co-administration of simethicone does not modify the bioavailability of CIN.

  12. Ionic liquid-based ultrasonic/microwave-assisted extraction combined with UPLC-MS-MS for the determination of tannins in Galla chinensis.

    PubMed

    Lu, Chunxia; Wang, Hongxin; Lv, Wenping; Ma, Chaoyang; Lou, Zaixiang; Xie, Jun; Liu, Bo

    2012-01-01

    Ionic liquid was used as extraction solvents and applied to the extraction of tannins from Galla chinensis in the simultaneous ultrasonic- and microwave-assisted extraction (UMAE) technique. Several parameters of UMAE were optimised, and the results were compared with of the conventional extraction techniques. Under optimal conditions, the content of tannins was 630.2 ± 12.1 mg g⁻¹. Compared with the conventional heat-reflux extraction, maceration extraction, regular ultrasound- and microwave-assisted extraction, the proposed approach exhibited higher efficiency (11.7-22.0% enhanced) and shorter extraction time (from 6 h to 1 min). The tannins were then identified by ultraperformance liquid chromatography tandem mass spectrometry. This study suggests that ionic liquid-based UMAE is an efficient, rapid, simple and green sample preparation technique.

  13. Hydrogen, lithium, and lithium hydride production

    DOEpatents

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.

    2017-06-20

    A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.

  14. Ionic liquid solutions as extractive solvents for value-added compounds from biomass

    PubMed Central

    Passos, Helena; Freire, Mara G.; Coutinho, João A. P.

    2014-01-01

    In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid–liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass–solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed. PMID:25516718

  15. Ionic liquid solutions as extractive solvents for value-added compounds from biomass.

    PubMed

    Passos, Helena; Freire, Mara G; Coutinho, João A P

    2014-12-01

    In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid-liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass-solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed.

  16. Quantitative Analysis of Tetramethylenedisulfotetramine ("Tetramine") Spiked into Beverages by Liquid Chromatography Tandem Mass Spectrometry with Validation by Gas Chromatography Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, J; Hok, S; Alcaraz, A

    Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD{sub 50} = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limitmore » of quantitation was 0.10 {micro}g/mL by LC/MS/MS versus 0.15 {micro}g/mL for GC/MS. Fortifications of the beverages at 2.5 {micro}g/mL and 0.25 {micro}g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.« less

  17. Preconcentration and determination of ceftazidime in real samples using dispersive liquid-liquid microextraction and high-performance liquid chromatography with the aid of experimental design.

    PubMed

    Razmi, Rasoul; Shahpari, Behrouz; Pourbasheer, Eslam; Boustanifar, Mohammad Hasan; Azari, Zhila; Ebadi, Amin

    2016-11-01

    A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid-liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001-10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Vortex-assisted liquid-liquid microextraction for the rapid screening of short-chain chlorinated paraffins in water.

    PubMed

    Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien

    2016-01-01

    The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Liquid chromatography tandem mass spectrometry determination of chemical markers and principal component analysis of Vitex agnus-castus L. fruits (Verbenaceae) and derived food supplements.

    PubMed

    Mari, Angela; Montoro, Paola; Pizza, Cosimo; Piacente, Sonia

    2012-11-01

    A validated analytical method for the quantitative determination of seven chemical markers occurring in a hydroalcoholic extract of Vitex agnus-castus fruits by liquid chromatography electrospray triple quadrupole tandem mass spectrometry (LC/ESI/(QqQ)MSMS) is reported. To carry out a comparative study, five commercial food supplements corresponding to hydroalcoholic extracts of V. agnus-castus fruits were analysed under the same chromatographic conditions of the crude extract. Principal component analysis (PCA), based only on the variation of the amount of the seven chemical markers, was applied in order to find similarities between the hydroalcoholic extract and the food supplements. A second PCA analysis was carried out considering the whole spectroscopic data deriving from liquid chromatography electrospray linear ion trap mass spectrometry (LC/ESI/(LIT)MS) analysis. High similarity between the two PCA was observed, showing the possibility to select one of these two approaches for future applications in the field of comparative analysis of food supplements and quality control procedures. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Phytochemical composition of fractions isolated from ten Salvia species by supercritical carbon dioxide and pressurized liquid extraction methods.

    PubMed

    Šulniūtė, Vaida; Pukalskas, Audrius; Venskutonis, Petras Rimantas

    2017-06-01

    Ten Salvia species, S. amplexicaulis, S. austriaca, S. forsskaolii S. glutinosa, S. nemorosa, S. officinalis, S. pratensis, S. sclarea, S. stepposa and S. verticillata were fractionated using supercritical carbon dioxide and pressurized liquid (ethanol and water) extractions. Fifteen phytochemicals were identified using commercial standards (some other compounds were identified tentatively), 11 of them were quantified by ultra high pressure chromatography (UPLC) with quadruple and time-of-flight mass spectrometry (Q/TOF, TQ-S). Lipophilic CO 2 extracts were rich in tocopherols (2.36-10.07mg/g), while rosmarinic acid was dominating compound (up to 30mg/g) in ethanolic extracts. Apigenin-7-O-β-d-glucuronide, caffeic and carnosic acids were quantitatively important phytochemicals in the majority other Salvia spp. Antioxidatively active constituents were determined by using on-line high-performance liquid chromatography (HPLC) analysis combined with 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay (HPLC-DPPH). Development of high pressure isolation process and comprehensive characterisation of phytochemicals in Salvia spp. may serve for their wider applications in functional foods and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Polymeric ionic liquid bucky gels as sorbent coatings for solid-phase microextraction.

    PubMed

    Zhang, Cheng; Anderson, Jared L

    2014-05-30

    Novel cross-linked polymeric ionic liquid (PIL) bucky gels were formed by free-radical polymerization of polymerizable ionic liquids gelled with multi-walled carbon nanotubes (MWCNT) and used as sorbent coatings for solid-phase microextraction (SPME). The combination of PIL with MWCNTs significantly enhanced the π-π interaction between the sorbent coatings and the aromatic analytes. Compared to the neat PIL-based sorbent coating, the PIL bucky gel sorbent coatings demonstrated higher extraction efficiency for the extraction of polycyclic aromatic hydrocarbons (PAHs). A partitioning extraction mechanism was observed for the PIL/MWCNT-based sorbent coatings indicating that the addition of MWCNTs did not seem to affect the extraction mechanism of the sorbent coating. The analyte-to-coating partition coefficients (logKfs) were estimated and the limits of detection (LOD) for selected PIL bucky gel sorbent coating were determined to be in the range of 1-2.5 ng L(-1). Recovery studies were also performed for PAHs in river and tap water to validate the applicability of the developed method. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    PubMed

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Salting-Out Assisted Liquid-Liquid Extraction for Quantification of Febuxostat in Plasma Using RP-HPLC and Its Pharmacokinetic Application.

    PubMed

    Tandel, Devang; Shah, Purvi; Patel, Kalpana; Thakkar, Vaishali; Patel, Kirti; Gandhi, Tejal

    2016-11-01

    A rapid and sensitive reversed-phase high-performance liquid chromatography (HPLC) method using novel salting-out assisted liquid-liquid extraction technique has been developed for the quantitative determination of febuxostat (FEB), used for the treatment of gout, in rat plasma. The method was validated according to US FDA guideline. Separation was achieved using a Phenomenex Luna-C 18 (250 × 4.60 mm, 5 µm) column and mobile phase composed of potassium dihydrogen orthophosphate buffer 25 mM, adjusted to pH 6.8 with triethylamine:methanol in a ratio of 35:65 (v/v) showing retention time 5.56 and 8.86 min for FEB and internal standard, respectively. The optimal salting-out parameters; 1 mL of acetonitrile and 200 µL of 2 M ammonium acetate salt showed extraction recovery >90% for FEB from plasma. This extraction procedure afforded clear samples resulting in convenient and cost-saving procedure and showed good linear relationship (r > 0.9997) between peak area ratio and concentration from 0.3 to 20 µg/mL. The results of pharmacokinetic study showed that absorption profile of spherical agglomerate of FEB compared to marketed formulation was higher indicating greater systemic absorption. In conclusion, the developed SALLE-HPLC method with simple ultraviolet detection offered a number of advantages including good quantitative ability, wide linear range, high recovery, short analysis time as well as low cost. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Determination of fluoroquinolone antibiotics via ionic-liquid-based, salt-induced, dual microextraction in swine feed.

    PubMed

    Wang, Huili; Gao, Ming; Gao, Jiajia; Yu, Nana; Huang, Hong; Yu, Qing; Wang, Xuedong

    2016-09-01

    In conventional microextraction procedures, the disperser (organic solvent or ionic liquid) is left in the aqueous phase and discarded after finishing the microextraction process. Because the disperser is water-soluble, it results in low extraction recovery for polar compounds. In this investigation, an ionic-liquid-based microextraction (ILBME) was integrated with salting-out assisted liquid-liquid microextraction (SALLME) to build an ionic-liquid-based, salt-induced, dual microextraction (ILSDME) for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P, -1.0 to 1.0). The proposed ILSDME method incorporates a dual microextraction by converting the disperser in the ILBME to the extractor in the SALLME. Optimization of key factors was conducted by integrating single-factor experiments and central composite design. The optimized experimental parameters were 80 μL [C8MIM][PF6] as extractor, 505 μL acetone as disperser, pH = 2.0, 4.1 min extraction time, and 4.2 g of Na2SO4. Under optimized conditions, high ERs (90.6-103.2 %) and low LODs (0.07-0.61 μg kg(-1)) were determined for five FQs in swine feed. Experimental precision based on RSDs was 1.4-5.2 % for intra-day and 2.4-6.9 % for inter-day analyses. The combination of ILBME with SALLME increased FQ recoveries by 15-20 % as compared with SALLME, demonstrating that the ILSDME method can enhance extraction efficiency for polar compounds compared to single-step microextraction. Therefore, the ILSDME method developed in this study has wide application for pretreatment of moderately to highly polar pollutants in complex matrices. Graphical Abstract A dual microextraction was developed by integrating ionic-liquid-based microextraction with salting-out assisted liquid-liquid microextraction for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P = -1.0 to 1.0). The principle of dual microextraction is based on converting the remaining disperser from the first microextraction into an extractor in the second microextraction. Single-factor experiment and central composite design were applied for optimizing operational parameters using 3D response surfaces and contour lines. Under optimized conditions, the method provided high extraction recoveries and low LODs for five FQs in swine feed. The prominent advantage of the dual microextraction is rapid and highly efficient extraction of moderately to highly polar fluoroquinolones from complex matrices.

  5. Automation of liquid-liquid extraction-spectrophotometry using prolonged pseudo-liquid drops and handheld CCD for speciation of Cr(VI) and Cr(III) in water samples.

    PubMed

    Chen, Wen; Zhong, Guanping; Zhou, Zaide; Wu, Peng; Hou, Xiandeng

    2005-10-01

    A simple spectrophotometric system, based on a prolonged pseudo-liquid drop device as an optical cell and a handheld charge coupled device (CCD) as a detector, was constructed for automatic liquid-liquid extraction and spectrophotometric speciation of trace Cr(VI) and Cr(III) in water samples. A tungsten halogen lamp was used as the light source, and a laboratory-constructed T-tube with two open ends was used to form the prolonged pseudo-liquid drop inside the tube. In the medium of perchloric acid solution, Cr(VI) reacted with 1,5-diphenylcarbazide (DPC); the formed complex was automatically extracted into n-pentanol, with a preconcentration ratio of about 5. The organic phase with extracted chromium complex was then pumped through the optical cell for absorbance measurement at 548 nm. Under optimal conditions, the calibration curve was linear in the range of 7.5 - 350 microg L(-1), with a correlation coefficient of 0.9993. The limit of detection (3sigma) was 7.5 microg L(-1). That Cr(III) species cannot react with DPC, but can be oxidized to Cr(VI) prior to determination, is the basis of the speciation analysis. The proposed speciation analysis was sensitive, yet simple, labor-effective, and cost-effective. It has been preliminarily applied for the speciation of Cr(VI) and Cr(III) in spiked river and tap water samples. It can also be used for other automatic liquid-liquid extraction-spectrophotometric determinations.

  6. Determination of three estrogens and bisphenol A by functional ionic liquid dispersive liquid-phase microextraction coupled with ultra-high performance liquid chromatography and ultraviolet detection.

    PubMed

    Jiang, Yuehuang; Tang, Tingting; Cao, Zhen; Shi, Guoyue; Zhou, Tianshu

    2015-06-01

    A hydroxyl-functionalized ionic liquid, 1-hydroxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid-phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H-bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0-1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0-1000 μg/L for estriol. The detection limits were in the range of 1.7-3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sensitive determination of methadone in human serum and urine by dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet followed by HPLC-UV.

    PubMed

    Taheri, Salman; Jalali, Fahimeh; Fattahi, Nazir; Jalili, Ronak; Bahrami, Gholamreza

    2015-10-01

    Dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the extraction of methadone and determination by high-performance liquid chromatography with UV detection. In this method, no microsyringe or fiber is required to support the organic microdrop due to the usage of an organic solvent with a low density and appropriate melting point. Furthermore, the extractant droplet can be collected easily by solidifying it at low temperature. 1-Undecanol and methanol were chosen as extraction and disperser solvents, respectively. Parameters that influence extraction efficiency, i.e. volumes of extracting and dispersing solvents, pH, and salt effect, were optimized by using response surface methodology. Under optimal conditions, enrichment factor for methadone was 134 and 160 in serum and urine samples, respectively. The limit of detection was 3.34 ng/mmL in serum and 1.67 ng/mL in urine samples. Compared with the traditional dispersive liquid-liquid microextraction, the proposed method obtained lower limit of detection. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvents of traditional dispersive liquid-liquid microextraction method. The proposed method was successfully applied to the determination of methadone in serum and urine samples of an addicted individual under methadone therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by high-performance liquid chromatography with ultraviolet detection and liquid chromatography-tandem mass spectrometry for the determination of triclosan and 2,4-dichlorophenol in water samples.

    PubMed

    Zheng, Cao; Zhao, Jing; Bao, Peng; Gao, Jin; He, Jin

    2011-06-24

    A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Supercritical Fluid Fractionation of JP-8

    DTIC Science & Technology

    1991-12-26

    applications, such as coffee decaffeination , spice extraction, and lipids purification. The processing principles have also long been well known and ipracticed...PRINCIPLES OF SUPERCRITICAL FLUID EXTRACTION 8 A. Background on Supercritical Fluid Solubility 8 B. Supercritical Fluid Extraction Process ...Operation I0 1. Batch Extraction of Solid Materials 10 2. Counter-Current Continuous SCF Processing of Liquid 15 Products 3. Supercritical Fluid Extraction vs

  10. Rapid analysis of aflatoxins B1, B2, and ochratoxin A in rice samples using dispersive liquid-liquid microextraction combined with HPLC.

    PubMed

    Lai, Xian-Wen; Sun, Dai-Li; Ruan, Chun-Qiang; Zhang, He; Liu, Cheng-Lan

    2014-01-01

    A novel, simple, and rapid method is presented for the analysis of aflatoxin B1, aflatoxin B2, and ochratoxin A in rice samples by dispersive liquid-liquid microextraction combined with LC and fluorescence detection. After extraction of the rice samples with a mixture of acetonitrile/water/acetic acid, mycotoxins were rapidly partitioned into a small volume of organic solvent (chloroform) by dispersive liquid-liquid microextraction. The three mycotoxins were simultaneously determined by LC with fluorescence detection after precolumn derivatization for aflatoxin B1 and B2. Parameters affecting both extraction and dispersive liquid-liquid microextraction procedures, including the extraction solvent, the type and volume of extractant, the volume of dispersive solvent, the addition of salt, the pH and the extraction time, were optimized. The optimized protocol provided an enrichment factor of approximately 1.25 and with detection of limits (0.06-0.5 μg/kg) below the maximum levels imposed by current regulations for aflatoxins and ochratoxin A. The mean recovery of three mycotoxins ranged from 82.9-112%, with a RSD less than 7.9% in all cases. The method was successfully applied to measure mycotoxins in commercial rice samples collected from local supermarkets in China. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Determination of triazine herbicides in fresh vegetables by dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction high performance liquid chromatography.

    PubMed

    Wu, Lijie; Hu, Mingzhu; Li, Zhanchao; Song, Ying; Yu, Cui; Zhang, Yupu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-02-01

    A novel extraction method, dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction, was developed for the determination of triazine herbicides, including desmetryn, terbumeton, propazine, terbuthylazine, dimethametryn, and dipropetryn in fresh vegetable samples by high performance liquid chromatography (HPLC). In the developed method, 120 μL of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]) was added to 10 mL of aqueous solution containing 0.3 g of NaCl to obtained the extraction solvent. Six triazines could be extracted completely within 4 min by the present method. Then, [NH4][PF6] was added into the extract to form a water-insoluble ionic liquid [C4MIM][PF6] via a simple metathesis reaction, and the analytes were enriched into the ionic liquid phase. After centrifugation and dilution with acetonitrile, the resulting solution was analyzed directly by HPLC. The effects of some experimental parameters, including type and volume of ionic liquid, volume of extraction solvent, amount of ion-pairing agent [NH4][PF6], salt concentration, microwave power, and flow rate of extraction solvent on the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 2.50-250.00 μg kg(-1), with the correlation coefficients ranging from 0.9989 to 0.9999. When the present method was applied to the analysis of vegetable samples, satisfactory recoveries were obtained in the range of 76.8%-106.9%, and relative standard deviations were lower than 9.8%.

  12. Waterflooding injectate design systems and methods

    DOEpatents

    Brady, Patrick V.; Krumhansl, James L.

    2016-12-13

    A method of recovering a liquid hydrocarbon using an injectate includes recovering the liquid hydrocarbon through primary extraction. Physico-chemical data representative of electrostatic interactions between the liquid hydrocarbon and the reservoir rock are measured. At least one additive of the injectate is selected based on the physico-chemical data. The method includes recovering the liquid hydrocarbon from the reservoir rock through secondary extraction using the injectate.

  13. Extraction of triazole fungicides in environmental waters utilizing poly (ionic liquid)-functionalized magnetic adsorbent.

    PubMed

    Liu, Cheng; Liao, Yingmin; Huang, Xiaojia

    2017-11-17

    This work prepared a new poly (ionic liquid)-functionalized magnetic adsorbent (PFMA) for the extraction of triazole fungicides (TFs) in environmental waters prior to determination by high performance liquid chromatography/diode array detection (HPLC-DAD). A polymerizable ionic liquid, 1-methyl-3-allylimidazolium bis(trifluoromethylsulfonyl)imide was employed to copolymerize with divinylbenzene on the surface of modified magnetite to fabricate the PFMA. The morphology, spectroscopic and magnetic properties of the new adsorbent were investigated by different techniques. A series of key parameters that influence the extraction performance including the amount of PFMA, desorption solvent, adsorption and desorption time, sample pH value and ionic strength were optimized in detail. Under the optimum conditions, the prepared PFMA could extract targeted TFs effectively and quickly under the format of magnetic solid-phase extraction (MSPE). Satisfactory linearities were achieved in the range of 0.1-200.0μg/L for triadimenol and 0.05-200.0μg/L for other TFs with good coefficients of determination above 0.99 for all analytes. The limits of detection (S/N=3) and limits of quantification (S/N=10) for TFs were in the range of 0.0050-0.0078μg/L and 0.017-0.026μg/L, respectively. Environmental waters including lake, river and well waters were used to demonstrate the applicability of developed MSPE-HPLC-DAD method, and satisfactory recoveries and repeatability were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Extraction protocol and liquid chromatography/tandem mass spectrometry method for determining micelle-entrapped paclitaxel at the cellular and subcellular levels: Application to a cellular uptake and distribution study.

    PubMed

    Zheng, Nan; Lian, Bin; Du, Wenwen; Xu, Guobing; Ji, Jiafu

    2018-01-01

    Paclitaxel-loaded polymeric micelles (PTX-PM) are commonly used as tumor-targeted nanocarriers and display outstanding antitumor features in clinic, but its accumulation and distribution in vitro are lack of investigation. It is probably due to the complex micellar system and its low concentration at the cellular or subcellular levels. In this study, we developed an improved extraction method, which was a combination of mechanical disruption and liquid-liquid extraction (LLE), to extract the total PTX from micelles in the cell lysate and subcellular compartments. An ultra-performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS) method was optimized to detect the low concentration of PTX at cellular and subcellular levels simultaneously, using docetaxel as internal standard (IS). The method was proved to release PTX totally from micelles (≥95.93%) with a consistent and reproducible extraction recovery (≥75.04%). Good linearity was obtained at concentrations ranging from 0.2 to 20ng/mL. The relative error (RE%) for accuracy varied from 0.68 to 7.56%, and the intra- and inter-precision (relative standard deviation, RSD%) was less than 8.64% and 13.14%, respectively. This method was fully validated and successfully applied to the cellular uptake and distribution study of PTX-loaded PLGA-PEG micelles in human breast cancer cells (MCF-7). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Preconcentration of aqueous dyes through phase-transfer liquid-phase microextraction with a room-temperature ionic liquid.

    PubMed

    Chen, Hsiu-Liang; Chang, Shuo-Kai; Lee, Chia-Ying; Chuang, Li-Lin; Wei, Guor-Tzo

    2012-09-12

    In this study, we employed the room-temperature ionic liquid [bmim][PF(6)] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF(6)] in a relatively large amount of CH(2)Cl(2), which serves as the disperser solvent to an extraction solution. Following extraction, CH(2)Cl(2) was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L(-1), respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  17. A two-step approach for copper and nickel extracting and recovering by emulsion liquid membrane.

    PubMed

    Bi, Qiang; Xue, Juanqin; Guo, Yingjuan; Li, Guoping; Cui, Haibin

    2016-11-01

    The recycling of copper and nickel from metallurgical wastewater using emulsion liquid membrane (ELM) was studied. P507 (2-ethylhexyl phosphonic acid-2-ethylhexyl ester) and TBP (tributyl phosphate) were used as carriers for the extraction of copper and nickel by ELMs, respectively. The influence of four emulsion composition variables, namely, the internal phase volume fraction (ϕ), surfactant concentration (Wsurf), internal phase stripping acid concentration (Cio) and the carrier concentration (Cc), and the process variable treat ratio on the extraction efficiencies of copper or nickel were studied. Under the optimum conditions, 98% copper and nickel were recycled by using ELM. The results indicated that ELM extraction is a promising industrial application technology to retrieve valuable metals in low concentration metallurgical wastewater.

  18. [Determination of capsaicinoids and eugenol in waste-edible-oil by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry].

    PubMed

    Zhang, Zhong; Ren, Fei; Zhang, Pan

    2012-11-01

    A method was developed for the determination of capsaicinoids (capsaicin, dihydrocapsaicin and synthetic capsaicin) and eugenol in waste-edible-oil extracted by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The capsaicinoids and eugenol in waste-edible-oil were extracted by methanol, and then separated by a SUPEL COSIL ABZ + Plus dC18 column (150 mm x4.6 mm, 5 microm). The analysis was performed by MS/MS with electrospray ionization in positive and negative ion modes with multiple reaction monitoring (MRM). The limits of detection for capsaicin, dihydrocapsaicin, synthetic capsaicin and eugenol were 0.02, 0.03, 0.03 and 0.6 microg/L, respectively. The good linear relationships were obtained in certain concentration ranges of capsaicinoids and eugenol. The relative standard deviations (RSDs, n=5) of same-worker and different-worker were less than 5%. The method is exclusive, sensitive and accurate, and can be used in waste-edible-oil determination.

  19. Oxidative desulfurization of fuel oil by pyridinium-based ionic liquids.

    PubMed

    Zhao, Dishun; Wang, Yanan; Duan, Erhong

    2009-10-28

    In this work, an N-butyl-pyridinium-based ionic liquid [BPy]BF(4) was prepared. The effect of extraction desulfurization on model oil with thiophene and dibenzothiophene (DBT) was investigated. Ionic liquids and hydrogen peroxide (30%) were tested in extraction-oxidation desulfurization of model oil. The results show that the ionic liquid [BPy]BF(4) has a better desulfurization effect. The best technological conditions are: V(IL)/V(Oil) /V(H(2)O(2)) = 1:1:0.4, temperature 55 degrees C, the time 30 min. The ratio of desulfurization to thiophene and DBT reached 78.5% and 84.3% respectively, which is much higher than extraction desulfurization with simple ionic liquids. Under these conditions, the effect of desulfurization on gasoline was also investigated. The used ionic liquids can be recycled up to four times after regeneration.

  20. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.

    PubMed

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-06-15

    The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga.

    PubMed

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho

    2017-08-01

    Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ionic liquid-based dispersive liquid-liquid microextraction with back-extraction coupled with capillary electrophoresis to determine phenolic compounds.

    PubMed

    Zhou, Caihong; Tong, Shanshan; Chang, Yunxia; Jia, Qiong; Zhou, Weihong

    2012-04-01

    Ionic liquid (IL) based dispersive liquid-liquid microextraction (DLLME) with back-extraction coupled with capillary electrophoresis ultraviolet detection was developed to determine four phenolic compounds (bisphenol-A, β-naphthol, α-naphthol, 2, 4-dichlorophenol) in aqueous cosmetics. The developed method was used to preconcentrate and clean up the four phenolic compounds including two steps. The analytes were transferred into room temperature ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate, [C(8) MIM][PF(6) ]) rich-phase in the first step. In the second step, the analytes were back-extracted into the alkaline aqueous phase. The effects of extraction parameters, such as type and volume of extraction solvent, type and volume of disperser, extraction and centrifugal time, sample pH, salt addition, and concentration and volume of NaOH in back-extraction were investigated. Under the optimal experimental conditions, the preconcentration factors were 60.1 for bisphenol-A, 52.7 for β-naphthol, 49.2 for α-naphthol, and 18.0 for 2, 4-dichlorophenol. The limits of detection for bisphenol-A, β-naphthol, α-naphthol and 2, 4-dichlorophenol were 5, 5, 8, and 100 ng mL(-1), respectively. Four kinds of aqueous cosmetics including toner, soften lotion, make-up remover, and perfume were analyzed and yielded recoveries ranging from 81.6% to 119.4%. The main advantages of the proposed method are quick, easy, cheap, and effective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Trace determination of five triazole fungicide residues in traditional Chinese medicine samples by dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and UHPLC-MS/MS.

    PubMed

    Ma, Shuping; Yuan, Xucan; Zhao, Pengfei; Sun, Hong; Ye, Xiu; Liang, Ning; Zhao, Longshan

    2017-08-01

    A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction before ultra-high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid-phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid-liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0-400 (tebuconazole, diniconazole, and hexaconazole) and 4.0-800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5-1.1 and 1.8-4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Separations by supported liquid membrane cascades

    DOEpatents

    Danesi, P.R.

    1983-09-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solution and the supported liquid membranes are arranged to provide a continuous process.

  5. Development and application of stir bar sorptive extraction with polyurethane foams for the determination of testosterone and methenolone in urine matrices.

    PubMed

    Sequeiros, R C P; Neng, N R; Portugal, F C M; Pinto, M L; Pires, J; Nogueira, J M F

    2011-04-01

    This work describes the development, validation, and application of a novel methodology for the determination of testosterone and methenolone in urine matrices by stir bar sorptive extraction using polyurethane foams [SBSE(PU)] followed by liquid desorption and high-performance liquid chromatography with diode array detection. The methodology was optimized in terms of extraction time, agitation speed, pH, ionic strength and organic modifier, as well as back-extraction solvent and desorption time. Under optimized experimental conditions, convenient accuracy were achieved with average recoveries of 49.7 8.6% for testosterone and 54.2 ± 4.7% for methenolone. Additionally, the methodology showed good precision (<9%), excellent linear dynamic ranges (>0.9963) and convenient detection limits (0.2-0.3 μg/L). When comparing the efficiency obtained by SBSE(PU) and with the conventional polydimethylsiloxane phase [SBSE(PDMS)], yields up to four-fold higher are attained for the former, under the same experimental conditions. The application of the proposed methodology for the analysis of testosterone and methenolone in urine matrices showed negligible matrix effects and good analytical performance.

  6. 40 CFR 761.320 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Applicability. 761.320 Section 761.320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT...-Implementing Alternative Extraction and Chemical Analysis Procedures for Non-liquid PCB Remediation Waste...

  7. 40 CFR 761.320 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Applicability. 761.320 Section 761.320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT...-Implementing Alternative Extraction and Chemical Analysis Procedures for Non-liquid PCB Remediation Waste...

  8. 40 CFR 761.320 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Applicability. 761.320 Section 761.320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT...-Implementing Alternative Extraction and Chemical Analysis Procedures for Non-liquid PCB Remediation Waste...

  9. 40 CFR 761.320 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Applicability. 761.320 Section 761.320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT...-Implementing Alternative Extraction and Chemical Analysis Procedures for Non-liquid PCB Remediation Waste...

  10. Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste.

    PubMed

    Bi, Wentao; Tian, Minglei; Zhou, Jun; Row, Kyung Ho

    2010-08-15

    Astaxanthin, as an outstanding antioxidant reagent, was successfully extracted from shrimp waste by the ionic liquids based ultrasonic-assisted extraction. Seven kinds of imidazolium ionic liquids with different cations and anions were investigated in this work and one task-specific ionic liquid in ethanol with 0.50molL(-1) was selected as the solvent. At the optimized ultrasonic extraction conditions, the extraction amount of astaxanthin increased 98% (92.7microg g(-1)) compared to the conventional method (46.7microg g(-1)). Furthermore, the extracted solution was isolated through the solid-phase extraction with a molecularly imprinted polymer sorbent. After loading the samples on molecularly imprinted polymer cartridge, the different washing and elution solvents, such as water, methanol, n-hexane, acetone and dichloromethane, were evaluated, and finally, astaxanthin was separated from the shrimp waste extract. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry.

    PubMed

    Waseem, Rabia; Low, Kah Hin

    2015-02-01

    In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An Efficient Strategy Based on Liquid-Liquid Extraction with Three-Phase Solvent System and High Speed Counter-Current Chromatography for Rapid Enrichment and Separation of Epimers of Minor Bufadienolide from Toad Meat.

    PubMed

    Zou, Denglang; Zhu, Xuelin; Zhang, Fan; Du, Yurong; Ma, Jianbin; Jiang, Renwang

    2018-01-31

    This study presents an efficient strategy based on liquid-liquid extraction with three-phase solvent system and high speed counter-current chromatography for rapid enrichment and separation of epimers of minor bufadienolide from toad meat. The reflux extraction conditions were optimized by response surface methodology first, and a novel three-phase solvent system composed of n-hexane/methyl acetate/acetonitrile/water (3:6:5:5, v/v) was developed for liquid-liquid extraction of the crude extract. This integrative extraction process could enrich minor bufadienolide from complex matrix efficiently and minimize the loss of minor targets induced by repeated extraction with different kinds of organic solvents occurring in the classical liquid two-phase extraction. As a result, four epimers of minor bufadienolide were greatly enriched in the middle phase and total content of these epimers of minor bufadienolide was increased from 3.25% to 46.23%. Then, the enriched four epimers were separated by HSCCC with a two-phase solvent system composed of chloroform/methanol/water (4:2:2, v/v) successfully. Furthermore, we tested Na + ,K + -ATPase (NKA) inhibitory effect of the four epimers. 3β-Isomers of bufadienolide showed stronger (>8-fold) inhibitory activity than 3α-isomers. The characterization of minor bufadienolide in toad meat and their significant difference of inhibitory effect on NKA would promote the further quantitative analysis and safety evaluation of toad meat as a food source.

  13. Literature survey of properties of synfuels derived from coal

    NASA Technical Reports Server (NTRS)

    Flores, F.

    1982-01-01

    A literature survey of the properties of synfuels for ground-based turbine applications is presented. The four major concepts for converting coal into liquid fuels (solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction), and the most important concepts for coal gasification (fixed bed, fluidized bed, entrained flow, and underground gasification) are described. Upgrading processes for coal derived liquid fuels are also described. Data presented for liquid fuels derived from various processes, including H-coal, synthoil, solvent refined coal, COED, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Typical composition, and property data is also presented for low and medium-BTU gases derived from the various coal gasification processes.

  14. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends

    PubMed Central

    2017-01-01

    Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid–liquid extractions, IL-based liquid–liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations. PMID:28151648

  15. Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction.

    PubMed

    Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Angel

    2009-12-01

    Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72-100% for table grapes and 66-105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64-75% and 58-66%, respectively). Limits of detection (LODs) were in the range 0.651-5.44 microg/kg for table grapes and 0.902-6.33 microg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).

  16. 40 CFR 60.631 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...

  17. 40 CFR 60.631 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...

  18. Electrolysis of a molten semiconductor

    PubMed Central

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  19. Electrolysis of a molten semiconductor.

    PubMed

    Yin, Huayi; Chung, Brice; Sadoway, Donald R

    2016-08-24

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  20. Electrolysis of a molten semiconductor

    NASA Astrophysics Data System (ADS)

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  1. Flow-based analysis using microfluidics-chemiluminescence systems.

    PubMed

    Al Lawati, Haider A J

    2013-01-01

    This review will discuss various approaches and techniques in which analysis using microfluidics-chemiluminescence systems (MF-CL) has been reported. A variety of applications is examined, including environmental, pharmaceutical, biological, food and herbal analysis. Reported uses of CL reagents, sample introduction techniques, sample pretreatment methods, CL signal enhancement and detection systems are discussed. A hydrodynamic pumping system is predominately used for these applications. However, several reports are available in which electro-osmotic (EO) pumping has been implemented. Various sample pretreatment methods have been used, including liquid-liquid extraction, solid-phase extraction and molecularly imprinted polymers. A wide range of innovative techniques has been reported for CL signal enhancement. Most of these techniques are based on enhancement of the mixing process in the microfluidics channels, which leads to enhancement of the CL signal. However, other techniques are also reported, such as mirror reaction, liquid core waveguide, on-line pre-derivatization and the use of an opaque white chip with a thin transparent seal. Photodetectors are the most commonly used detectors; however, other detection systems have also been used, including integrated electrochemiluminescence (ECL) and organic photodiodes (OPDs). Copyright © 2012 John Wiley & Sons, Ltd.

  2. Ionic liquids in solid-phase microextraction: a review.

    PubMed

    Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L

    2011-06-10

    Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts.

    PubMed

    Ou, Zong-Quan; Schmierer, David M; Rades, Thomas; Larsen, Lesley; McDowell, Arlene

    2013-02-01

    To use an online assay to identify key antioxidants in Sonchus oleraceus leaf extracts and to investigate the effect of leaf position and extraction conditions on antioxidant concentration and activity. Separation of phytochemicals and simultaneous assessment of antioxidant activity were performed online using HPLC and post-column reaction with a free-radical reagent (2, 2-diphenylpicrylhydrazyl, DPPH). Active compounds were identified using nuclear magnetic resonance spectroscopy and mass spectrometry. We applied the online HPLC-DPPH radical assay to evaluate antioxidants in leaves from different positions on the plant and to assess the effect of pre-treatment of leaves with liquid N(2) before grinding, extraction time, extraction temperature and method of concentrating extracts. Key antioxidants identified in S. oleraceus leaf extracts were caftaric acid, chlorogenic acid and chicoric acid. Middle leaves contained the highest total amount of the three key antioxidant compounds, consisting mainly of chicoric acid. Pre-treatment with liquid N(2), increasing the extraction temperature and time and freeze-drying the extract did not enhance the yield of the key antioxidants. The online HPLC-DPPH radical assay was validated as a useful screening tool for investigating individual antioxidants in leaf extracts. Optimized extraction conditions were middle leaves pre-treated with liquid N(2), extraction at 25°C for 0.5 h and solvent removal by rotary evaporation. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.

  4. Rapid pretreatment and determination of bisphenol A in water samples based on vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Yang, Xiao; Diao, Chun-Peng; Sun, Ai-Ling; Liu, Ren-Min

    2014-10-01

    A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut-glass dropper was designed and applied to collect the floating extraction drop in liquid-liquid microextraction when low-density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low-density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex-assisted liquid-liquid microextraction was employed to investigate the usefulness of the apparatus. High-performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r(2) = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Extraction and analysis of intact glucosinolates--a validated pressurized liquid extraction/liquid chromatography-mass spectrometry protocol for Isatis tinctoria, and qualitative analysis of other cruciferous plants.

    PubMed

    Mohn, Tobias; Cutting, Brian; Ernst, Beat; Hamburger, Matthias

    2007-09-28

    Glucosinolates have attracted significant interest due to the chemopreventive properties of some of their transformation products. Numerous protocols for the extraction and analysis of glucosinolates have been published, but limited effort has been devoted to optimize and validate crucial extraction parameters and sample preparation steps. We carried out a systematic optimization and validation of a quantitative assay for the direct analysis of intact glucosinolates in Isatis tinctoria leaves (woad, Brassicaceae). Various parameters such as solvent composition, particle size, temperature, and number of required extraction steps were optimized using pressurized liquid extraction (PLE). We observed thermal degradation of glucosinolates at temperatures above 50 degrees C, and loss of >60% within 10min at 100 degrees C, but no enzymatic degradation in the leaf samples at ambient temperature. Excellent peak shape and resolution was obtained by reversed-phase chromatography on a Phenomenex Aqua column using 10mM ammonium formate as ion-pair reagent. Detection was carried out by electrospray ionisation mass spectrometry in the negative ion mode. Analysis of cruciferous vegetables and spices such as broccoli (Brassica oleracea L. var. italica), garden cress (Lepidium sativum L.) and black mustard (Sinapis nigra L.) demonstrated the general applicability of the method.

  6. Rapid determination of triclosan in personal care products using new in-tube based ultrasound-assisted salt-induced liquid-liquid microextraction coupled with high performance liquid chromatography-ultraviolet detection.

    PubMed

    Chen, Ming-Jen; Liu, Ya-Ting; Lin, Chiao-Wen; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon

    2013-03-12

    This paper describes the development of a novel, simple and efficient in-tube based ultrasound-assisted salt-induced liquid-liquid microextraction (IT-USA-SI-LLME) technique for the rapid determination of triclosan (TCS) in personal care products by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. IT-USA-SI-LLME method is based on the rapid phase separation of water-miscible organic solvent from the aqueous phase in the presence of high concentration of salt (salting-out phenomena) under ultrasonication. In the present work, an indigenously fabricated home-made glass extraction device (8-mL glass tube inbuilt with a self-scaled capillary tip) was utilized as the phase separation device for USA-SI-LLME. After the extraction, the upper extractant layer was narrowed into the self-scaled capillary tip by pushing the plunger plug; thus, the collection and measurement of the upper organic solvent layer was simple and convenient. The effects of various parameters on the extraction efficiency were thoroughly evaluated and optimized. Under optimal conditions, detection was linear in the concentration range of 0.4-100ngmL(-1) with correlation coefficient of 0.9968. The limit of detection was 0.09ngmL(-1) and the relative standard deviations ranged between 0.8 and 5.3% (n=5). The applicability of the developed method was demonstrated for the analysis of TCS in different commercial personal care products and the relative recoveries ranged from 90.4 to 98.5%. The present method was proven to be a simple, sensitive, less organic solvent consuming, inexpensive and rapid procedure for analysis of TCS in a variety of commercially available personal care products or cosmetic preparations. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Surface nanodroplets for highly efficient liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua

    2016-11-01

    Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.

  8. Ionic-liquid-based ultrasound/microwave-assisted extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize (Zea mays L.) seedlings.

    PubMed

    Li, Chunying; Lu, Zhicheng; Zhao, Chunjian; Yang, Lei; Fu, Yujie; Shi, Kunming; He, Xin; Li, Zhao; Zu, Yuangang

    2015-01-01

    We evaluated an ionic-liquid-based ultrasound/microwave-assisted extraction method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from etiolated maize seedlings. We performed single-factor and central composite rotatable design experiments to optimize the most important parameters influencing this technique. The best results were obtained using 1.00 M 1-octyl-3-methylimidazolium bromide as the extraction solvent, a 50°C extraction temperature, a 20:1 liquid/solid ratio (mL/g), a 21 min treatment time, 590 W microwave power, and 50 W fixed ultrasonic power. We performed a comparison between ionic-liquid-based ultrasound/microwave-assisted extraction and conventional homogenized extraction. Extraction yields of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one by the ionic-liquid-based ultrasound/microwave-assisted extraction method were 1.392 ± 0.051 and 0.205 ± 0.008 mg/g, respectively, which were correspondingly 1.46- and 1.32-fold higher than those obtained by conventional homogenized extraction. All the results show that the ionic-liquid-based ultrasound/microwave-assisted extraction method is therefore an efficient and credible method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize seedlings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pressurized liquid extracts from Spirulina platensis microalga. Determination of their antioxidant activity and preliminary analysis by micellar electrokinetic chromatography.

    PubMed

    Herrero, Miguel; Ibáñez, Elena; Cifuentes, Alejandro; Señoráns, Javier

    2004-08-27

    In this work, different extracts from the microalga Spirulina platensis are obtained using pressurized liquid extraction (PLE) and four different solvents (hexane, light petroleum, ethanol and water). Different extraction temperatures (115 and 170 degrees C) were tested using extraction times ranging from 9 to 15 min. The antioxidant activity of the different extracts is determined by means of an in vitro assay using a free radical method. Moreover, a new and fast method is developed using micellar electrokinetic chromatography with diode array detection (MEKC-DAD) to provide a preliminary analysis on the composition of the extracts. This combined application (i.e., in vitro assays plus MEKC-DAD) allowed the fast characterization of the extracts based on their antioxidant activity and the UV-vis spectra of the different compounds found in the extracts. To our knowledge, this work shows for the first time the great possibilities of the combined use of PLE-in vitro assay-MEKC-DAD to investigate natural sources of antioxidants.

  10. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography.

    PubMed

    Fan, Chen; Li, Nai; Cao, Xueli

    2015-05-01

    In-situ ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) method was developed as a pretreatment method for the detection of six chlorophenols (CPs) in honey samples. The hydrophobic ionic liquid [C4MIM][NTf2], formed in-situ by the hydrophilic ionic liquid [C4MIM][BF4] and the ion exchange reagent LiNTf2 was used as the microextractant solvent of CPs from honey sample. Then the enriched analytes were back-extracted into 40 μL of 0.14 M NaOH solution and finally subjected to analysis by high-performance liquid chromatography. The method showed low limit of detection of CPs, 0.8-3.2 μg/L and high enrichment factor, 34-65 with the recoveries range from 91.60% to 114.33%. The method is simple, rapid, environmentally friendly and with high extraction efficiency. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Using dispersive liquid-liquid microextraction and liquid chromatography for determination of guaifenesin enantiomers in human urine.

    PubMed

    Hatami, Mehdi; Farhadi, Khalil; Abdollahpour, Assem

    2011-11-01

    A simple, rapid, and efficient method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-fluorescence detector, has been developed for the determination of guaifenesin (GUA) enantiomers in human urine samples after an oral dose administration of its syrup formulation. Urine samples were collected during the time intervals 0-2, 2-4, and 4-6 h and concentration and ratio of two enantiomers was determined. The ratio of R-(-) to S-(+) enantiomer concentrations in urine showed an increase with time, with R/S ratios of 0.66 at 2 h and 2.23 at 6 h. For microextraction process, a mixture of extraction solvent (dichloromethane, 100 μL) and dispersive solvent (THF, 1 mL) was rapidly injected into 5.0 mL diluted urine sample for the formation of cloudy solution and extraction of enantiomers into the fine droplets of CH(2)Cl(2). After optimization of HPLC enantioselective conditions, some important parameters, such as the kind and volume of extraction and dispersive solvents, extraction time, temperature, pH, and salt effect were optimized for dispersive liquid-liquid microextraction process. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 10 to 2000 ng/mL for target analytes. LOD was 3.00 ng/mL for both of the enantiomers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. EPA Method 8321B (SW-846): Solvent-Extractable Nonvolatile Compounds by High Performance Liquid Chromatography-Thermospray-Mass Spectrometry (HPLC-TS-MS) or Ultraviolet (UV) Detection

    EPA Pesticide Factsheets

    Method 8321B describes procedures for preparation and analysis of solid, aqueous liquid, drinking water and wipe samples using high performance liquid chromatography and mass spectrometry for extractable non-volatile compounds.

  13. Composition of liquid rice hull smoke and anti-inflamatory effects in mice

    USDA-ARS?s Scientific Manuscript database

    Antioxidative, antiallergic, and antiinflammatory activities of a new liquid rice hull (husk) smoke extract prepared by pyrolysis of rice hulls followed by liquefaction of the resulting smoke were assessed in vitro and in vivo. At pH 5, the liquid smoke extract inhibited 1-diphenyl-2-picrylhydrazyl ...

  14. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    PubMed Central

    Çabuk, Hasan; Köktürk, Mustafa

    2013-01-01

    A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries. PMID:23853535

  15. Screening and confirmation of steroids and nitroimidazoles in urine, blood, and food matrices: Sample preparation methods and liquid chromatography tandem mass spectrometric separations.

    PubMed

    Tölgyesi, Ádám; Barta, Enikő; Simon, Andrea; McDonald, Thomas J; Sharma, Virender K

    2017-10-25

    Veterinary drugs containing synthetic anabolic steroid and nitroimidazole active agents are not allowed for their applications in livestock of the European Union (EU). This paper presents analyses of twelve selected steroids and six nitroimidazole antibiotics at low levels (1.56μg/L-4.95μg/L and 0.17μg/kg-2.14μg/kg, respectively) in body fluids and egg incurred samples. Analyses involved clean-up procedures, high performance liquid chromatography (HPLC) separation, and tandem mass spectrometric screening and confirmatory methods. Target steroids and nitroimidazoles in samples were cleaned by two independent supported liquid extraction and solid phase extraction procedures. Separation of the selected compounds was conducted on Kinetex XB C-18 HPLC column using gradient elution. The screening methods utilised supported liquid extraction that enabled fast and cost effective clean-up. The confirmatory methods were improved by extending the number of matrices and compounds, and by introducing an isotope dilution mass spectrometry for nitroimidazoles. The new methods were validated according to the recommendation of the European Union Reference Laboratories and the performance characteristics evaluated met fully the criteria. The methods were applied to incurred samples in the proficiency tests. The obtained results of Z-scores demonstrated the applicability of developed protocols of the methods to real samples. The confirmatory methods were applied to the national monitoring program and natural contamination of prednisolone could be detected in urine at low concentration in few samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. SPECTROSCOPIC ONLINE MONITORING FOR PROCESS CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Samuel A.; Levitskaia, Tatiana G.

    2013-09-29

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved used nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper summarizes application of the absorption and vibrational spectroscopicmore » techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for online real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. These techniques demonstrate robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical process control and safeguarding. Additionally, the ability to identify material intentionally diverted from a liquid-liquid extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion and detection from a liquid-liquid extraction scheme was demonstrated using a centrifugal contactor system operating with the simulant PUREX extraction system of Nd(NO3)3/nitric acid aqueous phase and TBP/n-dodecane organic phase. During a continuous extraction experiment, a portion of the feed from a counter-current extraction system was diverted while the spectroscopic on-line process monitoring system was simultaneously measuring the feed, raffinate and organic products streams. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of sample directly taken (diverted) from system feed solution.« less

  17. A rapid and simple pretreatment method for benzoylurea insecticides in honey samples using in-syringe dispersive liquid-liquid microextraction based on the direct solidification of ionic liquids.

    PubMed

    Wang, Huazi; Hu, Lu; Li, Wanzhen; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang

    2016-11-04

    A pretreatment method using in-syringe dispersive liquid-liquid microextraction based on the direct solidification of ionic liquids before high performance liquid chromatography analysis was developed for the determination of benzoylurea insecticides (BUs) in honey samples. The hydrophobic ionic liquid [N 4444 ][PF 6 ], formed in situ by the hydrophilic ionic liquid [N 4444 ]Cl and the ion exchange reagent KPF 6 , was used to extract the target analytes. The entire extraction procedure was performed in a syringe. The extractant was solidified at room temperature and collected using a nylon membrane filter. This technique did not require a dispersive solvent, vortex mixer, ultrasound bath, or centrifugation. The parameters affecting the extraction efficiency were investigated through an experimental design. Under the optimal conditions, the limits of detection for the four BUs varied from 0.21 to 0.42μgL -1 in solution (2.1-4.2μgkg -1 in honey). Good linearities were obtained in the range of 2-300μgL -1 , with coefficients of determination greater than 0.999. The recoveries of the four BUs ranged from 80.94% to 84.59%. The intra-day (n=3) and inter-day (n=3) relative standard deviations were less than 5.08%. Finally, the proposed method was applied to the determination of BUs in commercial honey samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Aqueous two-phase based on ionic liquid liquid-liquid microextraction for simultaneous determination of five synthetic food colourants in different food samples by high-performance liquid chromatography.

    PubMed

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2015-05-01

    A rapid and effective method of aqueous two-phase systems based on ionic liquid microextraction for the simultaneous determination of five synthetic food colourants (tartrazine, sunset yellow, amaranth, ponceau 4R and brilliant blue) in food samples was established. High-performance liquid chromatography coupled with an ultraviolet detector of variable wavelength was used for the determinations. 1-alkyl-3-methylimidazolium bromide was selected as the extraction reagent. The extraction efficiency of the five colourants in the proposed system is influenced by the types of salts, concentrations of salt and [CnMIM]Br, as well as the extracting time. Under the optimal conditions, the extraction efficiencies for these five colourants were above 95%. The phase behaviours of aqueous two-phase system and extraction mechanism were investigated by UV-vis spectroscopy. This method was applied to the analysis of the five colourants in real food samples with the detection limit of 0.051-0.074 ng/mL. Good spiked recoveries from 93.2% to 98.9% were obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction

    NASA Technical Reports Server (NTRS)

    Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.

    2001-01-01

    Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.

  20. "Bligh and Dyer" and Folch Methods for Solid-Liquid-Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents.

    PubMed

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-03-27

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are "gold standards" for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid-liquid extraction of yeast ( Yarrowia lipolytica IFP29 ) and subsequent liquid-liquid partition-the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid-liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol-chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.

  1. Ionic liquid-anionic surfactant based aqueous two-phase extraction for determination of antibiotics in honey by high-performance liquid chromatography.

    PubMed

    Yang, Xiao; Zhang, Shaohua; Yu, Wei; Liu, Zhongling; Lei, Lei; Li, Na; Zhang, Hanqi; Yu, Yong

    2014-06-01

    An ionic liquid-anionic surfactant based aqueous two-phase extraction was developed and applied for the extraction of tetracycline, oxytetracycline and chloramphenicol in honey. The honey sample was mixed with Na2EDTA aqueous solution. The sodium dodecyl sulfate, ionic liquid 1-octyl-3-methylimidazolium bromide and sodium chloride were added in the mixture. After the resulting mixture was ultrasonically shaken and centrifuged, the aqueous two phase system was formed and analytes were extracted into the upper phase. The parameters affecting the extraction efficiency, such as the volume of ionic liquid, the category and amount of salts, sample pH value, extraction time and temperature were investigated. The limits of detection of tetracycline, oxytetracycline and chloramphenicol were 5.8, 8.2 and 4.2 μg kg(-1), respectively. When the present method was applied to the analysis of real honey samples, the recoveries of analytes ranged from 85.5 to 110.9% and relative standard deviations were lower than 6.9%. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A validated solid-liquid extraction method for the HPLC determination of polyphenols in apple tissues Comparison with pressurised liquid extraction.

    PubMed

    Alonso-Salces, Rosa M; Barranco, Alejandro; Corta, Edurne; Berrueta, Luis A; Gallo, Blanca; Vicente, Francisca

    2005-02-15

    A solid-liquid extraction procedure followed by reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a photodiode array detector (DAD) for the determination of polyphenols in freeze-dried apple peel and pulp is reported. The extraction step consists in sonicating 0.5g of freeze-dried apple tissue with 30mL of methanol-water-acetic acid (30:69:1, v/v/v) containing 2g of ascorbic acid/L, for 10min in an ultrasonic bath. The whole method was validated, concluding that it is a robust method that presents high extraction efficiencies (peel: >91%, pulp: >95%) and appropriate precisions (within day: R.S.D. (n = 5) <5%, and between days: R.S.D. (n = 5) <7%) at the different concentration levels of polyphenols that can be found in apple samples. The method was compared with one previously published, consisting in a pressurized liquid extraction (PLE) followed by RP-HPLC-DAD determination. The advantages and disadvantages of both methods are discussed.

  3. Assessment of dispersive liquid-liquid microextraction conditions for gas chromatography time-of-flight mass spectrometry identification of organic compounds in honey.

    PubMed

    Moniruzzaman, M; Rodríguez, I; Rodríguez-Cabo, T; Cela, R; Sulaiman, S A; Gan, S H

    2014-11-14

    The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.J. Miller; G. Elias; N.C. Schmitt

    2010-06-01

    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that weremore » used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.« less

  5. Determination of antibiotic residues in manure, soil, and surface waters

    USGS Publications Warehouse

    Christian, T.; Schneider, R.J.; Farber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E.

    2003-01-01

    In the last years more and more often detections of antimicrobially active compounds ("antibiotics") in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run-off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1...2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 ??g/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.

  6. Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography.

    PubMed

    Tao, Yong; Liu, Jing-Fu; Hu, Xia-Lin; Li, Hong-Cheng; Wang, Thanh; Jiang, Gui-Bin

    2009-08-28

    By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C(8)MIM][PF(6)] with 14% TOPO (w/v); donor phase: 4mL, pH 4.5 KH(2)PO(4) with 2M Na(2)SO(4); acceptor phase: 25microL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1-0.4microg/L, RSDor=0.999) were obtained for all the analytes. The presence of humic acid (0-25mg/L dissolved organic carbon) and bovine serum albumin (0-100microg/mL) had no significant effect on the extraction efficiency. Good spike recoveries over the range of 82.2-103.2% were obtained when applying the proposed method on five real environmental water samples. These results indicated that this present method was very sensitive and reliable with good repeatabilities and excellent clean-up in water samples. The proposed method confirmed hollow fiber supported ionic liquid membrane based LPME to be robust to monitoring trace levels of sulfadiazine, sulfamerazine, sulfamethazine, sulfadimethoxine and sulfamethoxazole in aqueous samples.

  7. Laboratory studies on the removal of radon-born lead from KamLAND's organic liquid scintillator

    NASA Astrophysics Data System (ADS)

    Keefer, G.; Grant, C.; Piepke, A.; Ebihara, T.; Ikeda, H.; Kishimoto, Y.; Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; Takeuchi, S.; Mauger, C.; Zhang, C.; Schweitzer, G.; Berger, B. E.; Dazeley, S.; Decowski, M. P.; Detwiler, J. A.; Djurcic, Z.; Dwyer, D. A.; Efremenko, Y.; Enomoto, S.; Freedman, S. J.; Fujikawa, B. K.; Furuno, K.; Gando, A.; Gando, Y.; Gratta, G.; Hatakeyama, S.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Inoue, K.; Iwamoto, T.; Kamyshkov, Y.; Karwowski, H. J.; Koga, M.; Kozlov, A.; Lane, C. E.; Learned, J. G.; Maricic, J.; Markoff, D. M.; Matsuno, S.; McKee, D.; McKeown, R. D.; Miletic, T.; Mitsui, T.; Motoki, M.; Nakajima, Kyo; Nakajima, Kyohei; Nakamura, K.; O`Donnell, T.; Ogawa, H.; Piquemal, F.; Ricol, J.-S.; Shimizu, I.; Suekane, F.; Suzuki, A.; Svoboda, R.; Tajima, O.; Takemoto, Y.; Tamae, K.; Tolich, K.; Tornow, W.; Watanabe, Hideki; Watanabe, Hiroko; Winslow, L. A.; Yoshida, S.

    2015-01-01

    The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon-born lead from liquid scintillator.

  8. Laboratory studies on the removal of radon-born lead from KamLAND׳s organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefer, G.; Grant, C.; Piepke, A.

    We studied the removal of radioactivity from liquid scintillator in preparation of a low background phase of KamLAND. We describe the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. Lastly, we report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.

  9. Laboratory studies on the removal of radon-born lead from KamLAND׳s organic liquid scintillator

    DOE PAGES

    Keefer, G.; Grant, C.; Piepke, A.; ...

    2014-09-28

    We studied the removal of radioactivity from liquid scintillator in preparation of a low background phase of KamLAND. We describe the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. Lastly, we report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.

  10. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272

    NASA Astrophysics Data System (ADS)

    Salgado, Aline L.; Veloso, Aline M. O.; Pereira, Daniel D.; Gontijo, Glayson S.; Salum, Adriane; Mansur, Marcelo B.

    A hydrometallurgical route based on the liquid-liquid extraction technique using Cyanex 272 as extractant is investigated for the selective separation of metal values, in particular, zinc and manganese from spent alkaline batteries. The recycling route consists of following steps: (1) cryogenic dismantling of the spent batteries, (2) pre-treatment of the internal material consisting of drying, grinding and screening steps in order to produce a dry homogeneous powder, (3) leaching of the powder with sulphuric acid and (4) metal separation by liquid-liquid extraction. Bench scale experiments have shown that zinc and manganese are easily separated (ΔpH 1/2≈2.0) using 20% (v/v) Cyanex 272 dissolved in Escaid 110 at 50 °C. Therefore, the proposed route can treat residues from both zinc-carbon and alkaline batteries because metal composition of these batteries is quite similar. The metal content of other batteries such as Ni-Cd and nickel-metal hydride (NiMH) has been also determined in order to include them in future investigations.

  11. Extraction and Esterification of Low-Titer Short-Chain Volatile Fatty Acids from Anaerobic Fermentation with Ionic Liquids.

    PubMed

    Andersen, Stephen J; Berton, Jan K E T; Naert, Pieter; Gildemyn, Sylvia; Rabaey, Korneel; Stevens, Christian V

    2016-08-23

    Ionic liquids can both act as a solvent and mediate esterification to valorize low-titer volatile fatty acids and generate organic solvents from renewable carbon sources including biowaste and CO2 . In this study, four phosphonium ionic liquids were tested for single-stage extraction of acetic acid from a dilute stream and esterification to ethyl acetate with added ethanol and heat. The esterification proceeded with a maximum conversion of 85.9±1.3 % after 30 min at 75 °C at a 1:1 stoichiometric ratio of reactants. Extraction and esterification can be tailored using mixed-anion ionic liquids; this is demonstrated herein using a common trihexyl(tetradecyl)phosphonium cation and a mixed chloride and bis(trifluoromethylsulfonyl)imide anion ionic liquid. As a further proof-of-concept, ethyl acetate was generated from an ionic liquid-driven esterification of an acetic acid extractant generated using CO2 as the only carbon source by microbial electrosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fast, simple and efficient salting-out assisted liquid-liquid extraction of naringenin from fruit juice samples prior to their enantioselective determination by liquid chromatography.

    PubMed

    Magiera, Sylwia; Kwietniowska, Ewelina

    2016-11-15

    In this study, an easy, simple and efficient method for the determination of naringenin enantiomers in fruit juices after salting-out-assisted liquid-liquid extraction (SALLE) and high-performance liquid chromatography (HPLC) with diode-array detection (DAD) was developed. The sample treatment is based on the use of water-miscible acetonitrile as the extractant and acetonitrile phase separation under high-salt conditions. After extraction, juice samples were incubated with hydrochloric acid in order to achieve hydrolysis of naringin to naringenin. The hydrolysis parameters were optimized by using a half-fraction factorial central composite design (CCD). After sample preparation, chromatographic separation was obtained on a Chiralcel® OJ-RH column using the mobile phase consisting of 10mM aqueous ammonium acetate:methanol:acetonitrile (50:30:20; v/v/v) with detection at 288nm. The average recovery of the analyzed compounds ranged from 85.6 to 97.1%. The proposed method was satisfactorily used for the determination of naringenin enantiomers in various fruit juices samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sensitive quantitation of polyamines in plant foods by ultrasound-assisted benzoylation and dispersive liquid-liquid microextraction with the aid of experimental designs.

    PubMed

    Pinto, Edgar; Melo, Armindo; Ferreira, Isabel M P L V O

    2014-05-14

    A new method involving ultrasound-assisted benzoylation and dispersive liquid-liquid microextraction was optimized with the aid of chemometrics for the extraction, cleanup, and determination of polyamines in plant foods. Putrescine, cadaverine, spermidine, and spermine were derivatized with 3,5-dinitrobenzoyl chloride and extracted by dispersive liquid-liquid microextraction using acetonitrile and carbon tetrachloride as dispersive and extraction solvents, respectively. Two-level full factorial design and central composite design were applied to select the most appropriate derivatization and extraction conditions. The developed method was linear in the 0.5-10.0 mg/L range, with a R(2) ≥ 0.9989. Intra- and interday precisions ranged from 0.8 to 6.9% and from 3.0 to 10.3%, respectively, and the limit of detection ranged between 0.018 and 0.042 μg/g of fresh weight. This method was applied to the analyses of six different types of plant foods, presenting recoveries between 81.7 and 114.2%. The method is inexpensive, versatile, simple, and sensitive.

  14. Application and recovery of ionic liquids in the preparative separation of four flavonoids from Rhodiola rosea by on-line three-dimensional liquid chromatography.

    PubMed

    Ma, Shufeng; Hu, Liming; Ma, Chaoyang; Lv, Wenping; Wang, Hongxin

    2014-09-01

    A novel on-line three-dimensional liquid chromatography method was developed to separate four main flavonoids from Rhodiola rosea. Ethyl acetate/0.5 mol/L ionic liquid 1-butyl-3-methylimidazolium chloride aqueous solution was selected as the solvent system. In the first-dimension separation, the target flavonoids were entrapped and subsequently desorbed into the second-dimension high-speed countercurrent chromatographic column for separation. In the third-dimension chromatography, the residual ionic liquid in the four separated flavonoids was removed and the used ionic liquid was recovered. As a result, 35.1 mg of compound 1, 20.4 mg of compound 2, 8.5 mg of compound 3, and 10.6 mg of compound 4 were obtained from 1.53 g R. rosea extract. They were identified as rhodiosin, rhodionin, herbacetin, and kaempferol, respectively. The recovery of ionic liquid reached 99.1% of the initial amount. The results showed that this method is a powerful technology for the separation of R. rosea flavonoids and that the ionic-liquid-based solvent system has advantages over traditional solvent systems in renewable and environmentally friendly properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development of an ionic liquid-based ultrasonic-assisted liquid-liquid microextraction method for sensitive determination of biogenic amines: application to the analysis of octopamine, tyramine and phenethylamine in beer samples.

    PubMed

    Huang, Ke-Jing; Jin, Chun-Xue; Song, Shi-Lin; Wei, Cai-Yun; Liu, Yan-Ming; Li, Jing

    2011-03-15

    A simple and efficient method, ionic liquid-based ultrasound-assisted liquid-liquid microextraction, has been developed for the determination of three biogenic amines including octopamine (OCT), tyramine (TYR) and phenethylamine (PHE). Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines and high-performance liquid chromatography coupled with fluorescence detection was used for the determination of the derivatives. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, ultrasonication time and centrifugation time have been investigated in detail. Under the optimum conditions, linearity of the method was observed in the range of 0.5-50 μgmL(-1) for OCT and TYR, and 0.025-2.5 μgmL(-1) for PHE, respectively, with correlation coefficients (γ)>0.996. The limits of detection ranged from 0.25-50 ngmL(-1) (S/N=3). The spiked recoveries of three target compounds in beer samples were in the range of 90.2-114%. As a result, this method has been successfully applied for the sensitive determination of OCT, TYR and PHE in beer samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Centrifugal contactor with liquid mixing and flow control vanes and method of mixing liquids of different phases

    DOEpatents

    Jubin, Robert T.; Randolph, John D.

    1991-01-01

    The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.

  17. Bio-dispersive liquid liquid microextraction based on nano rhaminolipid aggregates combined with magnetic solid phase extraction using Fe3O4@PPy magnetic nanoparticles for the determination of methamphetamine in human urine.

    PubMed

    Haeri, Seyed Ammar; Abbasi, Shahryar; Sajjadifar, Sami

    2017-09-15

    In the present investigation, extraction and preconcentration of methamphetamine in human urine samples was carried out using a novel bio-dispersive liquid liquid microextraction (Bio-DLLME) technique coupled with magnetic solid phase extraction (MSPE). Bio-DLLME is a kind of microextraction technique based nano-materials which have potential capabilities in many application fields. Bio-DLLME is based on the use of a binary part system consisting of methanol and nano rhaminolipid biosurfactant. Use of this binary mixture is ecologically accepted due to their specificity, biocompatibility and biodegradable nature. The potential of nano rhaminolipid biosurfactant as a biological agent in the extraction of organic compounds has been investigated in recent years. They are able to partition at the oil/water interfaces and reduce the interfacial tension in order to increase solubility of hydrocarbons. The properties of the prepared Fe 3 O 4 @PPy magnetic nanoparticles were characterized using Fourier transform infrared spectroscopy and X-ray diffraction methods The influences of the experimental parameters on the quantitative recovery of analyte were investigated. Under optimized conditions, the enrichment factor was 310, the calibration graph was linear in the methamphetamine concentration range from 1 to 60μgL -1 , with a correlation coefficient of 0.9998. The relative standard deviations for six replicate measurements was 5.2%. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development of fast, efficient and ecological method employing vortex-assisted dispersive liquid-liquid microextraction combined with fast gas chromatography-mass spectrometry for pesticide residues analysis in alcohol-content samples.

    PubMed

    Hrouzková, Svetlana; Brišová, Mária; Szarka, Agneša

    2017-07-14

    A fast, ecological, and efficient method employing vortex-assisted dispersive liquid-liquid microextraction (DLLME) method for isolation and preconcentration of selected endocrine disrupting pesticides from beverages containing some degree of alcohol was developed. The effect of several extraction parameters, such as selection of extractive solvent, its volume and extraction time, the salt addition was investigated. Four different extractive solvents (chloroform, tetrachloroethane, tetrachloromethane and toluene) and their combinations were evaluated for DLLME. Under the following conditions: 1mL of fortified sample, 80μL of tetrachloroethane, 1.5mL of water, vortex assistance for 3min at the speed of 1800rpm, and no salt addition, the method was validated. Linearity was studied in the concentration range of 0.01-250μg/L with coefficient of correlation ranging between 0.9940 and 1.0000, limits of detection and quantification ranging between 0.02-1.4μg/L and 0.07-4.7μg/L, respectively. Recoveries were satisfactory in the range of 70-120%, with the exception of diphenyl, alachlor and fenarimol at the lowest concentration level and p,p-DDE at concentration level of 100 and 250μg/L. The applicability of the developed and validated method was proved by the analysis of real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Development of magnetic dispersive solid phase extraction using toner powder as an efficient and economic sorbent in combination with dispersive liquid-liquid microextraction for extraction of some widely used pesticides in fruit juices.

    PubMed

    Farajzadeh, Mir Ali; Mohebbi, Ali

    2018-01-12

    In this study, for the first time, a magnetic dispersive solid phase extraction method using an easy-accessible, cheap, and efficient magnetic sorbent (toner powder) combined with dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of some widely used pesticides (diazinon, ametryn, chlorpyrifos, penconazole, oxadiazon, diniconazole, and fenazaquin) from fruit juices prior to their determination by gas chromatography-flame ionization detection. In this method, the magnetic sorbent is mixed with an appropriate dispersive solvent (methanol-water, 80:20, v/v) and then injected into an aqueous sample containing the analytes. By this action the analytes are rapidly adsorbed on the sorbent by binding to its carbon. The sorbent particles are isolated from the aqueous solution in the presence of an external magnetic field. Then an appropriate organic solvent (acetone) is used to desorb the analytes from the sorbent. Finally, the obtained supernatant is mixed with an extraction solvent and injected into deionized water in order to achieve high enrichment factors and sensitivity. Several significant factors affecting the performance of the introduced method were investigated and optimized. Under the optimum experimental conditions, the extraction recoveries of the proposed method for the selected analytes ranged from 49-75%. The relative standard deviations were ≤7% for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 10 μg L -1 of each analyte. The limits of detection were in the range of 0.15-0.36 μg L -1 . Finally, the applicability of the proposed method was evaluated by analysis of the selected analytes in some fruit juices. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A novel dual-valve sequential injection manifold (DV-SIA) for automated liquid-liquid extraction. Application for the determination of picric acid.

    PubMed

    Skrlíková, Jana; Andruch, Vasil; Sklenárová, Hana; Chocholous, Petr; Solich, Petr; Balogh, Ioseph S

    2010-05-07

    A novel dual-valve sequential injection system (DV-SIA) for online liquid-liquid extraction which resolves the main problems of LLE utilization in SIA has been designed. The main idea behind this new design was to construct an SIA system by connecting two independent units, one for aqueous-organic mixture flow and the second specifically for organic phase flow. As a result, the DV-SIA manifold consists of an Extraction unit and a Detection unit. Processing a mixture of aqueous-organic phase in the Extraction unit and a separated organic phase in the Detection unit solves the problems associated with the change of phases having different affinities to the walls of the Teflon tubing used in the SI-system. The developed manifold is a simple, user-friendly and universal system built entirely from commercially available components. The system can be used for a variety of samples and organic solvents and is simple enough to be easily handled by operators less familiar with flow systems. The efficiency of the DV-SIA system is demonstrated by the extraction of picric acid in the form of an ion associate with 2-[2-(4-methoxy-phenylamino)-vinyl]-1,3,3-trimethyl-3H-indolium reagent, with subsequent spectrophotometric detection. The suggested DV-SIA concept can be expected to stimulate new experiments in analytical laboratories and can be applied to the elaboration of procedures for the determination of other compounds extractable by organic solvents. It could thus form a basis for the design of simple, single-purpose commercial instruments used in LLE procedures. 2010 Elsevier B.V. All rights reserved.

  1. Correction of a liquid lens for 3D imaging systems

    NASA Astrophysics Data System (ADS)

    Bower, Andrew J.; Bunch, Robert M.; Leisher, Paul O.; Li, Weixu; Christopher, Lauren A.

    2012-06-01

    3D imaging systems are currently being developed using liquid lens technology for use in medical devices as well as in consumer electronics. Liquid lenses operate on the principle of electrowetting to control the curvature of a buried surface, allowing for a voltage-controlled change in focal length. Imaging systems which utilize a liquid lens allow extraction of depth information from the object field through a controlled introduction of defocus into the system. The design of such a system must be carefully considered in order to simultaneously deliver good image quality and meet the depth of field requirements for image processing. In this work a corrective model has been designed for use with the Varioptic Arctic 316 liquid lens. The design is able to be optimized for depth of field while minimizing aberrations for a 3D imaging application. The modeled performance is compared to the measured performance of the corrected system over a large range of focal lengths.

  2. Separation of m-cresol from neutral oils with liquid-liquid extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venter, D.L.; Nieuwoudt

    Coal pyrolysis liquors are a major source of valuable phenolic compounds. In this study, the separation of m-cresol from neutral oils by means of liquid-liquid extraction is investigated. Liquid-liquid equilibria for the systems m-cresol + o-toluonitrile + hexane + water + tetraethylene glycol + undecane + dodecane and m-cresol + o-toluonitrile + hexane + water + tetraethylene glycol have bee determined at 313.15 K in order to evaluate the suitability of tetraethylene glycol as a high-boiling solvent for the separation of m-cresol from neutral oils. The effect of parameters such as solvent ratios on the desired separation were investigated. Thesemore » are illustrated on the basis of separation factors, percentage of feed o-toluonitrile remaining in the solvent phase, and percentage recovery of m-cresol. From the experimental results it was concluded that tetraethylene glycol is suitable for the proposed separation. The nonrandom two-liquid model fitted the experimental data satisfactorily. The model was used in the simulation of a multistage extraction column. m-Cresol recoveries of greater than 97% and m-cresol purity of greater than 99.5% were predicted.« less

  3. Solid and Liquid Waste Drying Bag

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  4. One-step liquid-liquid extraction of cocaine from urine samples for gas chromatographic analysis.

    PubMed

    Farina, Marcelo; Yonamine, Maurício; Silva, Ovandir A

    2002-07-17

    An improved technique for cocaine extraction from urine samples for gas chromatographic (GC) analysis is described. Employing a simple liquid-liquid extraction (LLE) of cocaine with a mixture of ethyl ether:isopropanol (9:1) the method presents a mean recovery of 74.49%. Limit of detection (LOD) and limit of quantification (LOQ) were 5 and 20 ng/ml, respectively. The method is highly precise (coefficient of variation (CV) <8%) and linear from 20 to 2000 ng/ml. It can he applied to detect the presence of cocaine in urine as a marker of its recent use in drug abuse treatment protocols.

  5. LC-MS/MS method for the simultaneous quantification of luteolin, wedelolactone and apigenin in mice plasma using hansen solubility parameters for liquid-liquid extraction: Application to pharmacokinetics of Eclipta alba chloroform fraction.

    PubMed

    Cheruvu, Hanumanth Srikanth; Yadav, Navneet K; Valicherla, Guru R; Arya, Rakesh K; Hussain, Zakir; Sharma, Chetan; Arya, Kamal R; Singh, Rama K; Datta, Dipak; Gayen, Jiaur R

    2018-04-01

    Eclipta alba (Bhringraj) in ayurveda has been widely used as a traditional medicine for its multi-therapeutic properties for ages. Luteolin (LTL), wedelolactone (WDL) and apigenin (APG) are the three main bioactive phytochemicals present in Eclipta alba extract. However there was a lack of sensitive bioanalytical method for the pharmacokinetics of these free compounds in plasma which majorly contributes for their activities after oral administration of Eclipta alba. The present study aims to develop a sensitive, rapid and reliable liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous estimation of mice plasma concentrations of LTL, WDL and APG using quercetin as an internal standard for the pharmacokinetic analysis. Analytes were separated on Phenomenex Luna C18 (150 × 4.6 mm, 3.0 μm) column with mobile phase containing methanol: acetonitrile (90: 10, v/v) and 0.1% formic acid in 10 mM ammonium formate buffer in the ratio of 70: 30 (v/v) in isocratic mode. Liquid-liquid extraction was optimized using Hansen solubility parameters and diethyl ether finalized as an extraction solvent for the recovery ranging from 61 to 76% for all analytes in mice plasma. The validated method has an accuracy and precision over the linearity range of 0.1-200 ng/mL with a correlation coefficient (r 2 ) of ≥0.997. The intra and inter-day assay accuracy was between 98.17 and 107% and 95.83-107.89% respectively and the intra and inter day assay precision ranged from 0.37-6.05% and 1.85-10.76%, respectively for all the analytes. This validated method can be used for future clinical investigation studies of Eclipta alba extracts. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass spectrometry.

    PubMed

    Ziarrusta, Haizea; Val, Nahia; Dominguez, Haizea; Mijangos, Leire; Prieto, Ailette; Usobiaga, Aresatz; Etxebarria, Nestor; Zuloaga, Olatz; Olivares, Maitane

    2017-11-01

    This work describes the optimization, validation, and application in real samples of accurate and precise analytical methods to determine ten fluoroquinolones (FQs) (norfloxacin, enoxacin, pefloxacin, ofloxacin, levofloxacin, ciprofloxacin, danofloxacin, lomefloxacin, enrofloxacin, and sparfloxacin) in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle and liver), and fish biofluids (plasma and bile). The analysis step performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was fully optimized to improve the separation and detection steps. The extraction of analytes from fish tissues was accomplished using focused ultrasound solid-liquid extraction using methanol/acetic acid (95:5 v/v) as extractant. The preconcentration and clean-up steps were optimized in terms of extraction efficiency and cleanliness and the best strategy for each matrix was selected: (i) Oasis HLB for seawater and muscle, (ii) liquid-liquid extraction combined with Oasis HLB for the lipid-rich liver, (iii) the combination of Evolute-WAX and Oasis HLB for estuarine water and wastewater treatment plant effluent, and (iv) molecular imprinted polymers for biofluids. The methods afforded satisfactory apparent recoveries (80-126%) and repeatability (RSD < 15%), except for sparfloxacin, which showed a lack of correction with the available isotopically labeled surrogates ([ 2 H 8 ]-ciprofloxacin and [ 2 H 5 ]-enrofloxacin). Ciprofloxacin, norfloxacin, and ofloxacin were detected in both water and fish liver samples from the Biscay Coast at concentrations up to 278 ng/L and 4 ng/g, respectively. To the best of our knowledge, this work is one of the few analyzing up to ten FQs and in so many fish tissues and biofluids. Graphical abstract Determination of fluoroquinolones in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle and liver), and fish biofluids (plasma and bile).

  7. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    NASA Astrophysics Data System (ADS)

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-07-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process.

  8. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review.

    PubMed

    Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C

    2016-01-28

    Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root.

    PubMed

    Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad

    2015-06-01

    In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.

  10. Thermal stability of liquid antioxidative extracts from pomegranate peel.

    PubMed

    Qu, Wenjuan; Li, Pingping; Hong, Jihua; Liu, Zhiling; Chen, Yufang; Breksa, Andrew P; Pan, Zhongli

    2014-03-30

    Liquid extracts from pomegranate peel have the potential for use as natural antioxidant products. This study investigates the quality changes of liquid extracts before and after thermal treatment during sterilization and storage. Liquid pomegranate peel extracts were prepared, sterilized under ultra-high temperature (UHT) at 121 °C for 10 s and then stored at three temperatures (4, 25 and 37 °C) for up to 180 days. The industrial, color, UV-visible spectrum profile and antioxidant (phenolics) characteristics were measured. Thermal sterilization treatment had no negative effects on the industrial, color, spectral and antioxidant characteristics of the extracts. After 180 days, the extracts stored at 4 °C retained 67% of the initial total soluble phenolic content and 58% of the original scavenging activity. The major antioxidant components in the extracts (stored at 4 °C for 180 days) were gallic acid, punicalagin A, punicalagin B and ellagic acid having concentrations of 19.3, 197.2, 221.1 and 92.4 mg L⁻¹, respectively. The results show that liquid pomegranate peel extracts had acceptable thermal stability after sterilization and storage. The recommended storage condition of this product was low temperature. © 2013 Society of Chemical Industry.

  11. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    PubMed

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Use of experimental design in the investigation of stir bar sorptive extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry for the analysis of explosives in water samples.

    PubMed

    Schramm, Sébastien; Vailhen, Dominique; Bridoux, Maxime Cyril

    2016-02-12

    A method for the sensitive quantification of trace amounts of organic explosives in water samples was developed by using stir bar sorptive extraction (SBSE) followed by liquid desorption and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The proposed method was developed and optimized using a statistical design of experiment approach. Use of experimental designs allowed a complete study of 10 factors and 8 analytes including nitro-aromatics, amino-nitro-aromatics and nitric esters. The liquid desorption study was performed using a full factorial experimental design followed by a kinetic study. Four different variables were tested here: the liquid desorption mode (stirring or sonication), the chemical nature of the stir bar (PDMS or PDMS-PEG), the composition of the liquid desorption phase and finally, the volume of solvent used for the liquid desorption. On the other hand, the SBSE extraction study was performed using a Doehlert design. SBSE extraction conditions such as extraction time profiles, sample volume, modifier addition, and acetic acid addition were examined. After optimization of the experimental parameters, sensitivity was improved by a factor 5-30, depending on the compound studied, due to the enrichment factors reached using the SBSE method. Limits of detection were in the ng/L level for all analytes studied. Reproducibility of the extraction with different stir bars was close to the reproducibility of the analytical method (RSD between 4 and 16%). Extractions in various water sample matrices (spring, mineral and underground water) have shown similar enrichment compared to ultrapure water, revealing very low matrix effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Combination of Cyclodextrin and Ionic Liquid in Analytical Chemistry: Current and Future Perspectives.

    PubMed

    Hui, Boon Yih; Raoov, Muggundha; Zain, Nur Nadhirah Mohamad; Mohamad, Sharifah; Osman, Hasnah

    2017-09-03

    The growth in driving force and popularity of cyclodextrin (CDs) and ionic liquids (ILs) as promising materials in the field of analytical chemistry has resulted in an exponentially increase of their exploitation and production in analytical chemistry field. CDs belong to the family of cyclic oligosaccharides composing of α-(1,4) linked glucopyranose subunits and possess a cage-like supramolecular structure. This structure enables chemical reactions to proceed between interacting ions, radical or molecules in the absence of covalent bonds. Conversely, ILs are an ionic fluids comprising of only cation and anion often with immeasurable vapor pressure making them as green or designer solvent. The cooperative effect between CD and IL due to their fascinating properties, have nowadays contributed their footprints for a better development in analytical chemistry nowadays. This comprehensive review serves to give an overview on some of the recent studies and provides an analytical trend for the application of CDs with the combination of ILs that possess beneficial and remarkable effects in analytical chemistry including their use in various sample preparation techniques such as solid phase extraction, magnetic solid phase extraction, cloud point extraction, microextraction, and separation techniques which includes gas chromatography, high-performance liquid chromatography, capillary electrophoresis as well as applications of electrochemical sensors as electrode modifiers with references to recent applications. This review will highlight the nature of interactions and synergic effects between CDs, ILs, and analytes. It is hoped that this review will stimulate further research in analytical chemistry.

  14. Analysis of Ergot Alkaloids

    PubMed Central

    Crews, Colin

    2015-01-01

    The principles and application of established and newer methods for the quantitative and semi-quantitative determination of ergot alkaloids in food, feed, plant materials and animal tissues are reviewed. The techniques of sampling, extraction, clean-up, detection, quantification and validation are described. The major procedures for ergot alkaloid analysis comprise liquid chromatography with tandem mass spectrometry (LC-MS/MS) and liquid chromatography with fluorescence detection (LC-FLD). Other methods based on immunoassays are under development and variations of these and minor techniques are available for specific purposes. PMID:26046699

  15. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    EPA Science Inventory

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  16. Nanofluid of zinc oxide nanoparticles in ionic liquid for single drop liquid microextraction of fungicides in environmental waters prior to high performance liquid chromatographic analysis.

    PubMed

    Amde, Meseret; Tan, Zhi-Qiang; Liu, Rui; Liu, Jing-Fu

    2015-05-22

    Using a nanofluid obtained by dispersing ZnO nanoparticles (ZnO NPs) in 1-hexyl-3-methylimidazolium hexafluorophosphate, new single drop microextraction method was developed for simultaneous extraction of three fungicides (chlorothalonil, kresoxim-methyl and famoxadone) in water samples prior to their analysis by high performance liquid chromatography (HPLC-VWD). The parameters affecting the extraction efficiency such as amount of ZnO NPs in the nanofluid, solvent volume, extraction time, stirring rate, pH and ionic strength of the sample solution were optimized. Under the optimized conditions, the limits of detection were in the range of 0.13-0.19ng/mL, the precision of the method assessed with intra-day and inter-day relative standard deviations were <4.82% and <7.04%, respectively. The proposed method was successfully applied to determine the three fungicides in real water samples including lake water, river water, as well as effluent and influent of wastewater treatment plant, with recoveries in the range of 74.94-96.11% at 5ng/mL spiking level. Besides to being environmental friendly, the high enrichment factor and the data quality obtained with the proposed method demonstrated its potential for application in multi residue analysis of fungicides in actual water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Development and validation of LC-MS/MS methods for the determination of mirabegron and its metabolites in human plasma and their application to a clinical pharmacokinetic study.

    PubMed

    Teijlingen, Raymond van; Meijer, John; Takusagawa, Shin; Gelderen, Marcel van; Beld, Cas van den; Usui, Takashi

    2012-03-01

    Mirabegron is being developed for the treatment of overactive bladder. To support the development of mirabegron, including pharmacokinetic studies, liquid chromatography/tandem mass spectrometry methods for mirabegron and eight metabolites (M5, M8, M11-M16) were developed and validated for heparinized human plasma containing sodium fluoride. Four separate bioanalytical methods were developed for the analysis of: (1) mirabegron; (2) M5 and M16; (3) M8; and (4) M11-M15. Either solid-phase extraction or liquid-liquid extraction was used to extract the analytes of interest from matrix constituents. For mirabegron, an Inertsil C₈-3 analytical column was used and detection was performed using a triple-quad mass spectrometer equipped with an atmospheric pressure chemical ionization interface. For the metabolite assays, chromatographic separation was performed through a Phenomenex Synergi Fusion-RP C₁₈ analytical column and detection was performed using a triple-quad mass spectrometer equipped with a Heated Electrospray Ionization interface. The validation results demonstrated that the developed liquid chromatography/tandem mass spectrometry methods were precise, accurate, and selective for the determination of mirabegron and its metabolites in human plasma. All methods were successfully applied in evaluating the pharmacokinetic parameters of mirabegron and metabolites in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Hollow Fiber Supported Ionic Liquids Liquid-Phase Micro-extraction Followed by High-Performance Liquid Chromatography for the Determination of Polycyclic Aromatic Hydrocarbons in Milk Samples.

    PubMed

    Wang, Meng; Cheng, Chunsheng; Liu, Chunbo; Yang, Yaling

    2018-01-01

    A rapid, simple, reliable and efficient hollow fiber supported ionic liquids liquid-phase micro-extraction method (IL-HF-LPME) followed by high-performance liquid chromatography was successfully applied to the determination of four kinds of polycyclic aromatic hydrocarbons (PAHs) in milk samples. In the IL-HF-LPME method, a mixture of [OMIM]PF6 and lauric acid, in a ratio of 3:1, was immobilized in the pores of a polypropylene hollow fiber used as extraction solvent. A series of essential parameters influencing the extraction efficiency were investigated and optimized. Under the optimal conditions, the extraction equilibrium is achieved within 3 min, the good linearity was >0.9990, the limits of detection varied from 0.14 to 0.71 ng/mL, the limit of quantification values were between 0.4 and 1.8 ng/mL, and the relative standard deviations were in the range of 1.24-3.27% (n = 5). The proposed method was applied to analyze four PAHs in milk samples and recoveries were between 93.6 and 102.8%. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Extraction and Chromatographic Determination of Shikimic Acid in Chinese Conifer Needles with 1-Benzyl-3-methylimidazolium Bromide Ionic Liquid Aqueous Solutions

    PubMed Central

    Chen, Fengli; Hou, Kexin; Li, Shuangyang; Zu, Yuangang; Yang, Lei

    2014-01-01

    An ionic liquids-based ultrasound-assisted extraction (ILUAE) method was successfully developed for extracting shikimic acid from conifer needles. Eleven 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were investigated and 1-benzyl-3-methylimidazolium bromide solution was selected as the solvent. The conditions for ILUAE, including the ionic liquid concentration, ultrasound power, ultrasound time, and liquid-solid ratio, were optimized. The proposed method had good recovery (99.37%–100.11%) and reproducibility (RSD, n = 6; 3.6%). ILUAE was an efficient, rapid, and simple sample preparation technique that showed high reproducibility. Based on the results, a number of plant species, namely, Picea koraiensis, Picea meyeri, Pinus elliottii, and Pinus banksiana, were identified as among the best resources of shikimic acid. PMID:24782942

  20. Use of Innovative (Micro)Extraction Techniques to Characterise Harpagophytum procumbens Root and its Commercial Food Supplements.

    PubMed

    Diuzheva, Alina; Carradori, Simone; Andruch, Vasil; Locatelli, Marcello; De Luca, Elisa; Tiecco, Matteo; Germani, Raimondo; Menghini, Luigi; Nocentini, Alessio; Gratteri, Paola; Campestre, Cristina

    2018-05-01

    For the determination of harpagoside and the wide phenolic pattern in Harpagophytum procumbens root and its commercial food supplements, dispersive liquid-liquid microextraction (DLLME), ultrasound-assisted DLLME (UA-DLLME), and sugaring-out liquid-liquid extraction (SULLE) were tested and compared. In order to optimise the extraction efficiency, DLLME and UA-DLLME were performed in different solvents (water and aqueous solutions of glucose, β-cyclodextrin, (2-hydroxypropyl)-β-cyclodextrin, sodium chloride, natural deep eutectic solvent, and ionic liquid). The plant material was ground and sieved to obtain a uniform granulometry before extraction. Commercial food supplements, containing H. procumbens are commercially available in Italy. The most effective sodium chloride-aided-DLLME was then optimised and applied for analyses followed by HPLC-PDA. For comparison, microwave-assisted extraction was performed using the same solvents and the best results were obtained using 1% of β-cyclodextrin or 15% of sodium chloride. All commercial samples respected the European Pharmacopoeia monograph for this plant material, showing a harpagoside content ≥ 1.2%. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon followed by high performance liquid chromatography for determination of Sudan dyes in different species.

    PubMed

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2018-04-01

    In this work, a novel method, namely centrifugeless dispersive liquid-liquid microextraction, is introduced for the efficient extraction of banned Sudan dyes from foodstuff and water samples. In this method, which is based upon the salting-out phenomenon, in order to accelerate the extraction process, the extraction solvent (1-undecanol, 75 μL) is dispersed into the sample solution. Then the mixture is passed through a small column filled with 5 g sodium chloride, used as a separating reagent. In this condition, fine droplets of the extraction solvent are floated on the mixture, and the phase separation is simply achieved. This method is environmentally friendly, simple, and very fast, so that the overall extraction time is only 7 min. Under the optimal experimental conditions, the preconcentration factors in the range of 90-121 were obtained for the analytes. Also good linearities were obtained in the range of 2.5-1200 ng mL -1 (r 2  ≥ 0.993). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Trace determination of volatile polycyclic aromatic hydrocarbons in natural waters by magnetic ionic liquid-based stir bar dispersive liquid microextraction.

    PubMed

    Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto

    2018-01-01

    In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L -1 level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability.

    PubMed

    Li, Xiaohua; Luque-Moreno, Luis C; Oudenhoven, Stijn R G; Rehmann, Lars; Kersten, Sascha R A; Schuur, Boelo

    2016-09-01

    Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid-liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created from acid-leached and untreated pinewood, with levoglucosan contents (most abundant sugar) of 29.0% and 8.3% (w/w), respectively. In a single stage extraction, 70% of the aromatics were effectively removed by P666,14[N(CN)2] and 50% by EA, while no levoglucosan was extracted. The IL was regenerated by vacuum evaporation (100mbar) at 220°C, followed by extraction of aromatics from fresh pyrolytic sugar solutions. Regenerated IL extracted aromatics with similar extraction efficiency as the fresh IL, and the purified sugar fraction from pretreated pinewood was hydrolyzed to glucose and fermented to ethanol, yielding 0.46g ethanol/(g glucose), close to the theoretical maximum yield. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Ultrasound-assisted magnetic solid-phase extraction based ionic liquid-coated Fe3O4@graphene for the determination of nitrobenzene compounds in environmental water samples.

    PubMed

    Cao, Xiaoji; Shen, Lingxiao; Ye, Xuemin; Zhang, Feifei; Chen, Jiaoyu; Mo, Weimin

    2014-04-21

    An ultrasound-assisted magnetic solid-phase extraction procedure with the [C7MIM][PF6] ionic liquid-coated Fe3O4-grafted graphene nanocomposite as the magnetic adsorbent has been developed for the determination of five nitrobenzene compounds (NBs) in environmental water samples, in combination with high performance liquid chromatography-photodiode array detector (HPLC-PDA). Several significant factors that affect the extraction efficiency, such as the types of magnetic nanoparticle and ionic liquid, the volume of ionic liquid and the amount of magnetic nanoparticles, extraction time, ionic strength, and solution pH, were investigated. With the assistance of ultrasound, adsorbing nitrobenzene compounds by ionic liquid and self-aggregating ionic liquid onto the surface of the Fe3O4-grafted graphene proceeded synchronously, which made the extraction achieved the maximum within 20 min using only 144 μL [C7MIM][PF6] and 3 mg Fe3O4-grafted graphene. Under the optimized conditions, satisfactory linearities were obtained for all NBs with correlation coefficients larger than 0.9990. The mean recoveries at two spiked levels ranged from 80.35 to 102.77%. Attributed to the convenient magnetic separation, the Fe3O4-grafted graphene could be recycled many times. The proposed method was demonstrated to be feasible, simple, solvent-saving and easy to operate for the trace analysis of NBs in environmental water samples.

  5. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples.

    PubMed

    Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong

    2017-07-04

    In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ionic-liquid-based dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the forensic determination of methamphetamine in human urine.

    PubMed

    Wang, Ruifeng; Qi, Xiujuan; Zhao, Lei; Liu, Shimin; Gao, Shuang; Ma, Xiangyuan; Deng, Youquan

    2016-07-01

    Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid-liquid microextraction combined with high-performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1-Octyl-3-methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10-1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal-to-noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220-fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Separations by supported liquid membrane cascades

    DOEpatents

    Danesi, Pier R.

    1986-01-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid membranes. The membranes contain alternatively a liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solutions and the supported liquid membranes are arranged in such a way to provide a continuous process which leads to the continuous enrichment of the species which show the highest permeability coefficients. By virtue of the very high number of stages which can be arranged, even chemical species having very similar chemical behavior (and consequently very similar permeability coefficients) can be completely separated. The invention also provide a way to concentrate the separated species.

  8. Applicability of solid-phase microextraction combined with gas chromatography atomic emission detection (GC-MIP AED) for the determination of butyltin compounds in sediment samples.

    PubMed

    Carpinteiro, J; Rodríguez, I; Cela, R

    2004-11-01

    The performance of solid-phase microextraction (SPME) applied to the determination of butyltin compounds in sediment samples is systematically evaluated. Matrix effects and influence of blank signals on the detection limits of the method are studied in detail. The interval of linear response is also evaluated in order to assess the applicability of the method to sediments polluted with butyltin compounds over a large range of concentrations. Advantages and drawbacks of including an SPME step, instead of the classic liquid-liquid extraction of the derivatized analytes, in the determination of butyltin compounds in sediment samples are considered in terms of achieved detection limits and experimental effort. Analytes were extracted from the samples by sonication using glacial acetic acid. An aliquot of the centrifuged extract was placed on a vial where compounds were ethylated and concentrated on a PDMS fiber using the headspace mode. Determinations were carried out using GC-MIP AED.

  9. Salting-out-enhanced ionic liquid microextraction with a dual-role solvent for simultaneous determination of trace pollutants with a wide polarity range in aqueous samples.

    PubMed

    Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong

    2017-11-01

    In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several analytical fields. Graphical Abstract A salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) was developed for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan and methyltriclosan, with log K ow ranging from -1.32 to 5.40. The novelty of SILM-DS method lies in (1) simultaneous quantification of pollutants with contrasting polarity; (2) microextraction based on a dual-role solvent (as a disperser and extractant); (3) giving high recoveries for analytes with a wide range of polarities; and (4) reducing workload for ordinary environmental monitoring and food tests.

  10. The influence of purge times on the yields of essential oil components extracted from plants by pressurized liquid extraction.

    PubMed

    Wianowska, Dorota

    2014-01-01

    The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.

  11. 17 CFR 210.4-10 - Financial accounting and reporting for oil and gas producing activities pursuant to the Federal...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... natural gas liquids, or natural gas (“oil and gas”) in their natural states and original locations; (B... processing gas to extract liquid hydrocarbons); and (D) Extraction of saleable hydrocarbons, in the solid... production function as: a. The first point at which oil, gas, or gas liquids, natural or synthetic, are...

  12. 17 CFR 210.4-10 - Financial accounting and reporting for oil and gas producing activities pursuant to the Federal...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... natural gas liquids, or natural gas (“oil and gas”) in their natural states and original locations; (B... processing gas to extract liquid hydrocarbons); and (D) Extraction of saleable hydrocarbons, in the solid... production function as: a. The first point at which oil, gas, or gas liquids, natural or synthetic, are...

  13. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry.

    PubMed

    Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua

    2016-01-15

    A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ultra-high-pressure liquid chromatography-tandem mass spectrometry method for the determination of alkylphenols in soil.

    PubMed

    Wang, Jing; Pan, Hefang; Liu, Zhengzheng; Ge, Fei

    2009-03-20

    A novel method has been developed for the determination of alkylphenols in soil by ultra-high-pressure liquid chromatography employing small particle sizes, combined with tandem mass spectrometry. Soil samples were extracted with pressurized liquid extraction (PLE) and then cleaned with solid-phase extraction (SPE). The extracts were separated on C18 column (1.7 microm, 50 mm x 2.1mm) with a gradient elution and a mobile phase consisting of water and acetonitrile, and then detected by an electrospray ionization tandem mass spectrometry in negative ion mode with multiple reaction monitoring (MRM). Compared with traditional liquid chromatography, it took ultra-high-pressure liquid chromatography much less time to analyze alkylphenols. Additionally, the ultra-high-pressure liquid chromatography/tandem mass spectrometry method produces satisfactory reliability, sensitivity, and accuracy. The average recoveries of the three target analytes were 74.0-103.4%, with the RSD<15%. The calibration curves for alkylphenols were linear within the range of 0.01-0.4 microg/ml, with the correlation coefficients greater than 0.99. When 10 g soil sample was used for analysis, the limits of quantification (LOQs) of the three alkylphenols were all 1.0 microg/kg.

  15. Simultaneous determination of brazilin and protosappanin B in Caesalpinia sappan by ionic-liquid dispersive liquid-phase microextraction method combined with HPLC.

    PubMed

    Xia, Zhaoyang; Li, Dongdong; Li, Qing; Zhang, Yan; Kang, Wenyi

    2017-11-13

    The conditions of heating, ionic liquid-based ultrasonic-assisted extraction combined with reverse-phase high performance liquid chromatography were optimized to simultaneously isolate and determinate brazilin and protosappanin B in Caesalpinia sappan. Ionic liquids, including [BMIM]Br, [BMIM]BF 4 , [BMIM]PF 6 and [HMIM]PF 6 , were selected as extraction solvents while methanol, acetone, acetonitrile, ethanol and water were selected as dispersants. The chromatographic column was Purospher star RP-C 18 (250 mm × 4.6 mm, 5 μm), a mixture of methanol and 0.2% phosphoric acid-water was used as mobile phase at a flow rate 0.65 mL/min. The result displayed that the extraction yields of brazilin and protosappanin B were highest when the concentration of [BMIM]Br methanol solution as extraction solvent was 0.5 mol/L and the solid-liquid ratio was 1:50 (g/mL). Under the optimal extraction conditions, the contents of brazilin showed a good linearity (r = 1.0000) within the range of 1.25-7.50 μg with the average recovery of 99.33%, the contents of protosappanin B also showed a good linearity (r = 0.9999) within the range of 0.50-3.00 μg with the average recovery of 98.31%. This experiment, which adopted environmentally friendly reagent as extraction solvent, not only improved the extraction efficiency, but also avoided the environmental pollution caused by organic solvent. Moreover, it was simple and reliable, and can be of important significance in the study of Traditional Chinese Medicine active ingredient extraction methods. The antibacterial activities of the ionic liquids and methanol extracts were determined using the paper disc diffusion method. The ionic liquid extract was found to possess antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MIC value of 37.5 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 18.8 mg crude drug/mL), but not against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa. Compared with the ionic liquid extract, the methanol extract was found to have antibacterial activity against S. aureus and methicillin-resistant S. aureus (MIC value of 75.0 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 150.0 mg crude drug/mL). However, the same, the methanol extract did not have antibacterial activity against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa.

  16. IMPROVEMENTS IN LIQUID-LIQUID EXTRACTION APPARATUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-06-28

    A description is given of a liquid-liquid extraction apparatus and of the method of effecting a net transportation in opposed directions of a heavy liquid and a light liquid. The apparatus consists of a plurality of series- connected ves sels, inlet and outlet means for the phases at the ends, and a pulsing means. The upper part of one vessel is joined to the lower part of the next vessel by one connection line or a plurality of parallel-connected lines. The lower part of the second vessel is below the upper part of the first vessel. The volume of eachmore » connection line is less than or the same as the volume displaced by one stroke of the pulsing means. The method is characterized in that a mixture of both liquids is caused to flow to and fro between adjacent vessels through the connection lines which joins the vessels. (N.W.R.)« less

  17. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations.

    PubMed

    Cull, S G; Holbrey, J D; Vargas-Mora, V; Seddon, K R; Lye, G J

    2000-07-20

    Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimi- dazolium hexafluorophosphate, [bmim][PF(6)], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1, 3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF(6)] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF(6)] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF(6)] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF(6)] phase. It was also shown that the specific activity of the biocatalyst in the water-[bmim] [PF(6)] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst. Copyright 2000 John Wiley & Sons, Inc.

  18. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples.

    PubMed

    Liang, Ning; Huang, Peiting; Hou, Xiaohong; Li, Zhen; Tao, Lei; Zhao, Longshan

    2016-02-01

    A novel method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was developed for ultra-preconcentration of 10 antibiotics in different environmental water samples prior to ultra-high performance liquid chromatography-tandem mass spectrometry detection. The optimized results were obtained as follows: after being adjusted to pH 4.0, the water sample was firstly passed through PEP-2 column at 10 mL min(-1), and then methanol was used to elute the target analytes for the following steps. Dichloromethane was selected as extraction solvent, and methanol/acetonitrile (1:1, v/v) as dispersive solvent. Under optimal conditions, the calibration curves were linear in the range of 1-1000 ng mL(-1) (sulfamethoxazole, cefuroxime axetil), 5-1000 ng mL(-1) (tinidazole), 10-1000 ng mL(-1) (chloramphenicol), 2-1000 ng mL(-1) (levofloxacin oxytetracycline, doxycycline, tetracycline, and ciprofloxacin) and 1-400 ng mL(-1) (sulfadiazine) with a good precision. The LOD and LOQ of the method were at very low levels, below 1.67 and 5.57 ng mL(-1), respectively. The relative recoveries of the target analytes were in the range from 64.16% to 99.80% with relative standard deviations between 0.7 and 8.4%. The matrix effect of this method showed a great decrease compared with solid-phase extraction and a significant value of enrichment factor (EF) compared with dispersive liquid-liquid microextraction. The developed method was successfully applied to the extraction and analysis of antibiotics in different water samples with satisfactory results.

  19. On-line comprehensive two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography for preparative isolation of toad venom.

    PubMed

    Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun

    2016-07-22

    An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Oscillatory interfacial instability between miscible fluids

    NASA Astrophysics Data System (ADS)

    Shevtsova, Valentina; Gaponenko, Yuri; Mialdun, Aliaksandr; Torregrosa, Marita; Yasnou, Viktar

    Interfacial instabilities occurring between two fluids are of fundamental interest in fluid dynamics, biological systems and engineering applications such as liquid storage, solvent extraction, oil recovery and mixing. Horizontal vibrations applied to stratified layers of immiscible liquids may generate spatially periodic waving of the interface, stationary in the reference frame of the vibrated cell, referred to as a "frozen wave". We present experimental evidence that frozen wave instability exists between two ordinary miscible liquids of similar densities and viscosities. At the experiments and at the numerical model, two superimposed layers of ordinary liquids, water-alcohol of different concentrations, are placed in a closed cavity in a gravitationally stable configuration. The density and viscosity of these fluids are somewhat similar. Similar to the immiscible fluids this instability has a threshold. When the value of forcing is increased the amplitudes of perturbations grow continuously displaying a saw-tooth structure. The decrease of gravity drastically changes the structure of frozen waves.

  1. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    PubMed Central

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-01-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process. PMID:26223474

  2. Method for treating liquid wastes

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

    1995-12-26

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

  3. Method for treating liquid wastes

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Singh, Prahlad; Ketring, Alan R.

    1995-01-01

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

  4. Integration of phase separation with ultrasound-assisted salt-induced liquid-liquid microextraction for analyzing the fluoroquinones in human body fluids by liquid chromatography.

    PubMed

    Wang, Huili; Gao, Ming; Wang, Mei; Zhang, Rongbo; Wang, Wenwei; Dahlgren, Randy A; Wang, Xuedong

    2015-03-15

    Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted salt-induced liquid-liquid microextraction for determination of five fluoroquinones (FQs) in human body fluids. The integrated device consisted of three simple HDPE components used to separate the extraction solvent from the aqueous phase prior to retrieving the extractant. A series of extraction parameters were optimized using the response surface method based on central composite design. Optimal conditions consisted of 945μL acetone extraction solvent, pH 2.1, 4.1min stir time, 5.9g Na2SO4, and 4.0min centrifugation. Under optimized conditions, the limits of detection (at S/N=3) were 0.12-0.66μgL(-1), the linear range was 0.5-500μgL(-1) and recoveries were 92.6-110.9% for the five FQs extracted from plasma and urine. The proposed method has several advantages, such as easy construction from inexpensive materials, high extraction efficiency, short extraction time, and compatibility with HPLC analysis. Thus, this method shows excellent prospects for sample pretreatment and analysis of FQs in human body fluids. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Electrolysis of a molten semiconductor

    DOE PAGES

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-24

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb 2S 3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across themore » cell. In conclusion, as opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO 2, CO and SO 2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.« less

  6. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris.

    PubMed

    Fettig, Ina; Krüger, Simone; Deubel, Jan H; Werrel, Martin; Raspe, Tina; Piechotta, Christian

    2014-05-01

    The chemical analysis of fire debris represents a crucial part in fire investigations to determine the cause of a fire. A headspace solid-phase microextraction (HS-SPME) procedure for the detection of ignitable liquids in fire debris using a fiber coated with a mixture of three different sorbent materials (Divinylbenzene/Carboxen/Polydimethylsiloxane, DVB/CAR/PDMS) is described. Gasoline and diesel fuel were spiked upon a preburnt matrix (wood charcoal), extracted and concentrated with HS-SPME and then analyzed with gas chromatography/mass spectrometry (GC/MS). The experimental conditions--extraction temperature, incubation and exposure time--were optimized. To assess the applicability of the method, fire debris samples were prepared in the smoke density chamber (SDC) and a controlled-atmosphere cone calorimeter. The developed methods were successfully applied to burnt particleboard and carpet samples. The results demonstrate that the procedure that has been developed here is suitable for detecting these ignitable liquids in highly burnt debris. © 2013 American Academy of Forensic Sciences.

  7. Detection of fullerenes (C60 and C70) in commercial cosmetics

    PubMed Central

    Benn, Troy M.; Westerhoff, Paul; Herckes, Pierre

    2013-01-01

    Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C60 and C70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C60. Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27–42%. C60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C60, demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. PMID:21300421

  8. Ionic liquid-based air-assisted liquid-liquid microextraction followed by high performance liquid chromatography for the determination of five fungicides in juice samples.

    PubMed

    You, Xiangwei; Chen, Xiaochu; Liu, Fengmao; Hou, Fan; Li, Yiqiang

    2018-01-15

    A novel and simple ionic liquid-based air-assisted liquid-liquid microextraction technique combined with high performance liquid chromatography was developed to analyze five fungicides in juice samples. In this method, ionic liquid was used instead of a volatile organic solvent as the extraction solvent. The emulsion was formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent repeatedly using a 10mL glass syringe. No organic dispersive solvent was required. Under the optimized conditions, the limits of detection (LODs) were 0.4-1.8μgL -1 at a signal-to-noise ratio of 3. The limits of quantification (LOQs) set as the lowest spiking levels with acceptable recovery in juices were 10μgL -1 , except for fludioxonil whose LOQ was 20μgL -1 . The proposed method was applied to determine the target fungicides in juice samples, and acceptable recoveries ranging from 74.9% to 115.4% were achieved. Copyright © 2017. Published by Elsevier Ltd.

  9. Method and turbine for extracting kinetic energy from a stream of two-phase fluid

    NASA Technical Reports Server (NTRS)

    Elliott, D. G. (Inventor)

    1979-01-01

    An axial flow separator turbine is described which includes a number of nozzles for delivering streams of a two-phase fluid along linear paths. A phase separator which responsively separates the vapor and liquid is characterized by concentrically related annuli supported for rotation within the paths. The separator has endless channels for confining the liquid under the influence of centrifugal forces. A vapor turbine fan extracts kinetic energy from the liquid. Angular momentum of both the liquid phase and the vapor phase of the fluid is converted to torque.

  10. Ionic liquid-based ultrasound-assisted emulsification microextraction coupled with high performance liquid chromatography for the determination of four fungicides in environmental water samples.

    PubMed

    Liang, Pei; Wang, Fang; Wan, Qin

    2013-02-15

    A highly efficient and environmentally friendly sample preparation method termed ionic liquid-based ultrasound-assisted emulsification microextraction (IL-USAEME) combined with high performance liquid chromatography has been developed for the determination of four fungicides (azoxystrobin, diethofencarb, pyrimethanil and kresoxim-methyl) in water samples. In this novel approach, ionic liquid (IL) was used as extraction solvent in place of the organic solvent used in conventional USAEME assay, and there is no need for using organic dispersive solvent which is typically required in the common dispersive liquid-liquid microextraction method. Various parameters that affect the extraction efficiency, such as the kind and volume of IL, ultrasound emulsification time, extraction temperature and salt addition were investigated and optimized. Under the optimum extraction condition, the linearities of calibration curves were in the range from 3 to 5000 ng mL(-1) for target analytes with the correlation coefficient higher than 0.9992. The enrichment factors and the limits of detection were in the range of 88-137 and 0.73-2.2 ng mL(-1), depending on the analytes. The environmental water samples were successfully analyzed using the proposed method, and the relative recoveries at fortified levels of 50 and 100 ng mL(-1) were in the range of 83.9%-116.2%. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A dispersive liquid-liquid micellar microextraction for the determination of pharmaceutical compounds in wastewaters using ultra-high-performace liquid chromatography with DAD detection.

    PubMed

    Montesdeoca-Esponda, Sarah; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2015-03-01

    A dispersive liquid-liquid micellar microextraction (DLLMME) method coupled with ultra-high-performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid-phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47-fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: Approaches based on extractant drop-, plug-, film- and microflow-formation.

    PubMed

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-04

    Simplicity, effectiveness, swiftness, and environmental friendliness - these are the typical requirements for the state of the art development of green analytical techniques. Liquid phase microextraction (LPME) stands for a family of elegant sample pretreatment and analyte preconcentration techniques preserving these principles in numerous applications. By using only fractions of solvent and sample compared to classical liquid-liquid extraction, the extraction kinetics, the preconcentration factor, and the cost efficiency can be increased. Moreover, significant improvements can be made by automation, which is still a hot topic in analytical chemistry. This review surveys comprehensively and in two parts the developments of automation of non-dispersive LPME methodologies performed in static and dynamic modes. Their advantages and limitations and the reported analytical performances are discussed and put into perspective with the corresponding manual procedures. The automation strategies, techniques, and their operation advantages as well as their potentials are further described and discussed. In this first part, an introduction to LPME and their static and dynamic operation modes as well as their automation methodologies is given. The LPME techniques are classified according to the different approaches of protection of the extraction solvent using either a tip-like (needle/tube/rod) support (drop-based approaches), a wall support (film-based approaches), or microfluidic devices. In the second part, the LPME techniques based on porous supports for the extraction solvent such as membranes and porous media are overviewed. An outlook on future demands and perspectives in this promising area of analytical chemistry is finally given. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Application of dispersive liquid-liquid microextraction coupled with vortex-assisted hydrophobic magnetic nanoparticles based solid-phase extraction for determination of aflatoxin M1 in milk samples by sensitive micelle enhanced spectrofluorimetry.

    PubMed

    Amoli-Diva, Mitra; Taherimaslak, Zohreh; Allahyari, Mehdi; Pourghazi, Kamyar; Manafi, Mohammad Hanif

    2015-03-01

    An efficient, simple and fast low-density solvent based dispersive liquid-liquid microextraction (LDS-DLLME) followed by vortex-assisted dispersive solid phase extraction (VA-D-SPE) has been developed as a new approach for extraction and preconcentration of aflatoxin M1 in milk samples prior to its micelle enhanced spectrofluorimetic determination. In this LDS-DLLME coupled VA-D-SPE method, milk samples were first treated with methanol/water (80:20, v/v) after removing the fat layer. This solvent was directly used as the dispersing solvent in DLLME along with using 1-heptanol (as a low-density solvent with respect to water) as the extracting solvent. In VA-D-SPE approach, hydrophobic oleic acid modified Fe3O4 nanoparticles were used to retrieve the analyte from the DLLME step. It is considerably that the target of VA-D-SPE was 1-heptanol rather than the aflatoxin M1 directly. The main parameters affecting the efficiency of LDS-DLLME and VA-D-SPE procedures and signal enhancement of aflatoxin M1 were investigated and optimized. Under the optimum conditions, the method was linear in the range from 0.02 to 200 µg L(-1) with the correlation coefficient (R(2)) of 0.9989 and detection limit of 13 ng L(-1). The intra-day precision was 2.9 and 4.3% and the inter-day precision was 2.1 and 3.3% for concentration of 2 and 50 µg L(-1) respectively. The developed method was applied for extraction and preconcentration of AFM1 in three commercially available milk samples and the results were compared with the official AOAC method. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Multi-class analysis of new psychoactive substances and metabolites in hair by pressurized liquid extraction coupled to HPLC-HRMS.

    PubMed

    Montesano, Camilla; Vannutelli, Gabriele; Massa, Maristella; Simeoni, Maria Chiara; Gregori, Adolfo; Ripani, Luigi; Compagnone, Dario; Curini, Roberta; Sergi, Manuel

    2017-05-01

    In this paper, an analytical method has been developed and validated for the analysis of new psychoactive substances (NPS) and metabolites in hair samples. The method was based on pressurized liquid extraction (PLE) followed by solid-phase extraction (SPE) clean-up and high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) analysis. To evaluate extraction efficiency and the applicability of the method, hair samples were fortified by soaking in order to obtain a good surrogate for drug users' hair; the amount of incorporated drugs related to their lipophilicity, similarly to in vivo drug incorporation. To the best of our knowledge, this is the first method that allowed for the analysis of both cathinones (5) and synthetic cannabinoids (7) in hair with a single extraction procedure and chromatographic run. A phenethylamine (2C-T-4), 4- fluorophenylpiperazine and methoxetamine were also included showing that PLE coupled to SPE clean-up was suitable for a multi-class analysis of NPS in hair. In addition, the use of PLE significantly reduced hair analysis time: decontamination, incubation, clean-up, and liquid chromatography-mass spectrometry (LC-MS) analysis were carried out in approximately 45 min. The method was fully validated according to Scientific Working Group for Forensic Toxicology (SWGTOX) and Society of Hair Testing (SoHT) guidelines. Limit of quantification (LOQ) values ranged from 8 to 50 pg mg -1 for cathinones, phenetylamines and piperazines, and from 9 to 40 pg mg -1 for synthetic cannabinoids (10 pg mg -1 for methoxetamine). Matrix effects were below 15% for all the analytes, demonstrating the effectiveness of the clean-up step. Inaccuracy was lower than 9% in terms of bias. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Chemical speciation and recovery of gold(I, III) from wastewater and silver by liquid-liquid extraction with the ion-pair reagent amiloride mono hydrochloride and AAS determination.

    PubMed

    El-Shahawi, M S; Bashammakh, A S; Bahaffi, S O

    2007-06-15

    A novel and low cost liquid-liquid extraction procedure for the separation of gold(III) at trace level from aqueous medium of pH 5-9 has been developed. The method has been based upon the formation of a yellow colored ternary complex ion associate of tetrachloro gold(III) complex anion, AuCl(4)(-) with the ion-pair reagent 1-(3,5-diamino-6-chloropyrazinecarboxyl) guanidine hydrochloride monohydrate, namely amiloride, DPG(+).Cl(-). The effect of various parameters, e.g. pH, organic solvent, shaking time, etc. on the preconcentration of gold(III) from the aqueous media by the DPG(+).Cl(-) reagent has been investigated. The colored gold species was quantitatively extracted into 4-methyl pentan-2-one. The chemical composition of the ion associate of DPG(+).Cl(-) with AuCl(4)(-) in the organic solvent has been determined by the Job's method. The molar absorptivity (2.19x10(4)Lmol(-1)cm(-1)) of the associate DPG(+).AuCl(4)(-) at 362nm enabled a convenient application of the developed extraction procedure for the separation and AAS determination of traces of aurate ions. Mono-valence gold ions after oxidation to gold(III) with bromine water in HCl (1.0molL(-1)) media have been also extracted quantitatively from the aqueous media by the developed procedure. The chemical speciation of mono- and/or tri-valence gold species spiked to fresh and industrial wastewater samples has been achieved. The method has been also applied successfully from the separation of gold(I) and gold(III) species from metallic ions and silver. The developed method has also the advantage of freedom from most diverse ions.

  16. Removing Biostatic Agents From Fermentation Solutions

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Liquid carbon dioxide inexpensive solvent. Inexpensive process proposed for removing such poisons as furfural and related compounds from fermentation baths of biomass hydrolysates. New process based on use of liquid carbon dioxide as extraction solvent. Liquid CO2 preferable to such other liquid solvents as ether or methylene chloride.

  17. Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents.

    PubMed

    An, Jiwoo; Rahn, Kira L; Anderson, Jared L

    2017-05-15

    A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl 4 2- ])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl 4 2- ]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R 2 ) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL -1 with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL -1 . Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for analytes with relatively higher vapor pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Partition coefficients of organic compounds between water and imidazolium-, pyridinium-, and phosphonium-based ionic liquids.

    PubMed

    Padró, Juan M; Pellegrino Vidal, Rocío B; Reta, Mario

    2014-12-01

    The partition coefficients, P IL/w, of several compounds, some of them of biological and pharmacological interest, between water and room-temperature ionic liquids based on the imidazolium, pyridinium, and phosphonium cations, namely 1-octyl-3-methylimidazolium hexafluorophosphate, N-octylpyridinium tetrafluorophosphate, trihexyl(tetradecyl)phosphonium chloride, trihexyl(tetradecyl)phosphonium bromide, trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide, and trihexyl(tetradecyl)phosphonium dicyanamide, were accurately measured. In this way, we extended our database of partition coefficients in room-temperature ionic liquids previously reported. We employed the solvation parameter model with different probe molecules (the training set) to elucidate the chemical interactions involved in the partition process and discussed the most relevant differences among the three types of ionic liquids. The multiparametric equations obtained with the aforementioned model were used to predict the partition coefficients for compounds (the test set) not present in the training set, most being of biological and pharmacological interest. An excellent agreement between calculated and experimental log P IL/w values was obtained. Thus, the obtained equations can be used to predict, a priori, the extraction efficiency for any compound using these ionic liquids as extraction solvents in liquid-liquid extractions.

  19. Magnetical hollow fiber bar collection of extract in homogenous ionic liquid microextraction of triazine herbicides in water samples.

    PubMed

    Wang, Kun; Jiang, Jia; Kang, Mingqin; Li, Dan; Zang, Shuang; Tian, Sizhu; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei

    2017-04-01

    The homogeneous ionic liquid microextraction combined with magnetical hollow fiber bar collection was developed for extracting triazine herbicides from water samples. These analytes were separated and determined by high performance liquid chromatography. The triazines were quickly extracted into ionic liquid microdroplets dispersed in solution, and then these microdroplets were completely collected with magnetical hollow fiber bars; the pores of which were impregnated with hydrophobic ionic liquid, which makes the phase separation simplified with no need of centrifugation. Some experimental parameters, such as the type of ionic liquid, ultrasonic immersion time of hollow fiber, pH of sample solution, volume of hydrophilic ionic liquid, amount of ion-pairing agent NH 4 PF 6 , NaCl concentration, number of magnetical hollow fiber bar, stirring rate, and collection time were investigated and optimized. When the present method was applied to the analysis of real water samples, the precision and recoveries of six triazine herbicides vary from 0.1 to 9.2% and 73.4 to 118.5%, respectively. The detection limits for terbumeton, ametryn, prometryn, terbutryn, trietazine, and dimethametryn were 0.48, 0.15, 0.15, 0.14, 0.35, and 0.16 μg L -1 , respectively.

  20. A regulator for pressure-controlled total-liquid ventilation.

    PubMed

    Robert, Raymond; Micheau, Philippe; Avoine, Olivier; Beaudry, Benoit; Beaulieu, Alexandre; Walti, Hervé

    2010-09-01

    Total-liquid ventilation (TLV) is an innovative experimental method of mechanical-assisted ventilation in which lungs are totally filled and then ventilated with a tidal volume of perfluorochemical liquid by using a dedicated liquid ventilator. Such a novel medical device must resemble other conventional ventilators: it must be able to conduct controlled-pressure ventilation. The objective was to design a robust controller to perform pressure-regulated expiratory flow and to implement it on our latest liquid-ventilator prototype (Inolivent-4). Numerical simulations, in vitro experiments, and in vivo experiments in five healthy term newborn lambs have demonstrated that it was efficient to generate expiratory flows while avoiding collapses. Moreover, the in vivo results have demonstrated that our liquid ventilator can maintain adequate gas exchange, normal acid-base equilibrium, and achieve greater minute ventilation, better oxygenation and CO2 extraction, while nearing flow limits. Hence, it is our suggestion to perform pressure-controlled ventilation during expiration with minute ventilation equal or superior to 140 mL x min(-1) x kg(-1) in order to ensure PaCO2 below 55 mmHg. From a clinician's point of view, pressure-controlled ventilation greatly simplifies the use of the liquid ventilator, which will certainly facilitate its introduction in intensive care units for clinical applications.

  1. Simple high-performance liquid chromatography method for formaldehyde determination in human tissue through derivatization with 2,4-dinitrophenylhydrazine.

    PubMed

    Yilmaz, Bilal; Asci, Ali; Kucukoglu, Kaan; Albayrak, Mevlut

    2016-08-01

    A simple high-performance liquid chromatography method has been developed for the determination of formaldehyde in human tissue. FA Formaldehyde was derivatized with 2,4-dinitrophenylhydrazine. It was extracted from human tissue with ethyl acetate by liquid-liquid extraction and analyzed by high-performance liquid chromatography. The calibration curve was linear in the concentration range of 5.0-200 μg/mL. Intra- and interday precision values for formaldehyde in tissue were <6.9%, and accuracy (relative error) was better than 6.5%. The extraction recoveries of formaldehyde from human tissue were between 88 and 98%. The limits of detection and quantification of formaldehyde were 1.5 and 5.0 μg/mL, respectively. Also, this assay was applied to liver samples taken from a biopsy material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of Lard in Lipstick Formulation Using FTIR Spectroscopy and Multivariate Calibration: A Comparison of Three Extraction Methods.

    PubMed

    Waskitho, Dri; Lukitaningsih, Endang; Sudjadi; Rohman, Abdul

    2016-01-01

    Analysis of lard extracted from lipstick formulation containing castor oil has been performed using FTIR spectroscopic method combined with multivariate calibration. Three different extraction methods were compared, namely saponification method followed by liquid/liquid extraction with hexane/dichlorometane/ethanol/water, saponification method followed by liquid/liquid extraction with dichloromethane/ethanol/water, and Bligh & Dyer method using chloroform/methanol/water as extracting solvent. Qualitative and quantitative analysis of lard were performed using principle component (PCA) and partial least square (PLS) analysis, respectively. The results showed that, in all samples prepared by the three extraction methods, PCA was capable of identifying lard at wavelength region of 1200-800 cm -1 with the best result was obtained by Bligh & Dyer method. Furthermore, PLS analysis at the same wavelength region used for qualification showed that Bligh and Dyer was the most suitable extraction method with the highest determination coefficient (R 2 ) and the lowest root mean square error of calibration (RMSEC) as well as root mean square error of prediction (RMSEP) values.

  3. Exploiting 1,2,3-Triazolium Ionic Liquids for Synthesis of Tryptanthrin and Chemoselective Extraction of Copper(II) Ions and Histidine-Containing Peptides.

    PubMed

    Li, Hsin-Yi; Chen, Chien-Yuan; Cheng, Hui-Ting; Chu, Yen-Ho

    2016-10-13

    Based on a common structural core of 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5- a ]pyridine, a number of bicyclic triazolium ionic liquids 1 - 3 were designed and successfully prepared. In our hands, this optimized synthesis of ionic liquids 1 and 2 requires no chromatographic separation. Also in this work, ionic liquids 1 , 2 were shown to be efficient ionic solvents for fast synthesis of tryptanthrin natural product. Furthermore, a new affinity ionic liquid 3 was tailor-synthesized and displayed its effectiveness in chemoselective extraction of both Cu(II) ions and, for the first time, histidine-containing peptides.

  4. A novel high-throughput method for supported liquid extraction of retinol and alpha-tocopherol from human serum and simultaneous quantitation by liquid chromatography tandem mass spectrometry.

    PubMed

    Hinchliffe, Edward; Rudge, James; Reed, Paul

    2016-07-01

    Measurement of vitamin A (retinol) and E (alpha-tocopherol) in UK clinical laboratories is currently performed exclusively by high-performance liquid chromatography with ultraviolet detection. We investigated whether retinol and alpha-tocopherol could be measured simultaneously by liquid chromatography tandem mass spectrometry. Serum samples (100 μL) were extracted using Isolute + Supported Liquid Extraction plates. Chromatography was performed on a Phenomenex Kinetex Biphenyl 2.6 μm, 50 × 2.1 mm column, and liquid chromatography tandem mass spectrometry on a Waters Acquity TQD. Injection-to-injection time was 4.3 min. The assay was validated according to published guidelines. Patient samples were used to compare liquid chromatography tandem mass spectrometry and high-performance liquid chromatography with ultraviolet detection methods. For retinol and alpha-tocopherol, respectively, the assay was linear up to 6.0 and 80.0 μmol/L, and lower limit of quantification was 0.07 and 0.26 μmol/L. Intra and interassay imprecision were within desirable analytical specifications. Analysis of quality control material aligned to NIST SRM 968e, and relative spiked recovery from human serum, both yielded results within 15% of target values. Method comparison with high-performance liquid chromatography with ultraviolet detection methodology demonstrated a negative bias for retinol and alpha-tocopherol by the liquid chromatography tandem mass spectrometry method. Analysis of United Kingdom National External Quality Assurance Scheme samples yielded mean bias from the target value of +3.0% for retinol and -11.2% for alpha-tocopherol. We have developed a novel, high-throughput method for extraction of retinol and alpha-tocopherol from human serum followed by simultaneous quantitation by liquid chromatography tandem mass spectrometry. The method offers a rapid, sensitive, specific and cost-effective alternative to high-performance liquid chromatography with ultraviolet detection methodology, and is suitable for routine clinical monitoring of patients predisposed to fat-soluble vitamin malabsorption. © The Author(s) 2015.

  5. Estimated content percentages of volatile liquids and fat extractables in ready-to-eat foods.

    PubMed

    Daft, J L; Cline, J K; Palmer, R E; Sisk, R L; Griffitt, K R

    1996-01-01

    Content percentages of volatile liquids and fat extractables in 340 samples of ready-to-eat foods were determined gravimetrically. Volatile liquids were determined by drying samples in a microwave oven with a self-contained balance; results were printed out automatically. Fat extractables were extracted from the samples with mixed ethers; extracts were dried and weighed manually. The samples, 191 nonfat and 149 fatty (containing ca 2% or more fat) foods, represent about 5000 different food items and include infant and toddler, ethnic, fast, and imported items. Samples were initially prepared for screening of essential and toxic elements and chemical contamination by chopping and mixing into homogenous composites. Content determinations were then made on separate portions from each composite. Content results were put into a database for evaluation. Overall, mean results from both determinations agree with published data for moisture and fat contents of similar food items. Coefficients of variation, however, were lower for determination of volatile liquids than for that of fat extractables.

  6. Determination of volatile components of green, black, oolong and white tea by optimized ultrasound-assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography.

    PubMed

    Sereshti, Hassan; Samadi, Soheila; Jalali-Heravi, Mehdi

    2013-03-08

    Ultrasound assisted extraction (UAE) followed by dispersive liquid-liquid microextraction (DLLME) was used for extraction and preconcentration of volatile constituents of six tea plants. The preconcentrated compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Totally, 42 compounds were identified and caffeine was quantitatively determined. The main parameters (factors) of the extraction process were optimized by using a central composite design (CCD). Methanol and chloroform were selected as the extraction solvent and preconcentration solvent, respectively .The optimal conditions were obtained as 21 in for sonication time; 32°C for temperature; 27 L for volume of extraction solvent and 7.4% for salt concentration (NaCl/H(2)O). The determination coefficient (R(2)) was 0.9988. The relative standard deviation (RSD %) was 4.8 (n=5), and the enhancement factors (EFs) were 4.0-42.6. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction.

    PubMed

    Chisvert, Alberto; Benedé, Juan L; Anderson, Jared L; Pierson, Stephen A; Salvador, Amparo

    2017-08-29

    With the aim of contributing to the development and improvement of microextraction techniques, a novel approach combining the principles and advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) is presented. This new approach, termed stir bar dispersive liquid microextraction (SBDLME), involves the addition of a magnetic ionic liquid (MIL) and a neodymium-core magnetic stir bar into the sample allowing the MIL coat the stir bar due to physical forces (i.e., magnetism). As long as the stirring rate is maintained at low speed, the MIL resists rotational (centrifugal) forces and remains on the stir bar surface in a manner closely resembling SBSE. By increasing the stirring rate, the rotational forces surpass the magnetic field and the MIL disperses into the sample solution in a similar manner to DLLME. After extraction, the stirring is stopped and the MIL returns to the stir bar without the requirement of an additional external magnetic field. The MIL-coated stir bar containing the preconcentrated analytes is thermally desorbed directly into a gas chromatographic system coupled to a mass spectrometric detector (TD-GC-MS). This novel approach opens new insights into the microextraction field, by using the benefits provided by SBSE and DLLME simultaneously, such as automated thermal desorption and high surface contact area, respectively, but most importantly, it enables the use of tailor-made solvents (i.e., MILs). To prove its utility, SBDLME has been used in the extraction of lipophilic organic UV filters from environmental water samples as model analytical application with excellent analytical features in terms of linearity, enrichment factors (67-791), limits of detection (low ng L -1 ), intra- and inter-day repeatability (RSD<15%) and relative recoveries (87-113%, 91-117% and 89-115% for river, sea and swimming pool water samples, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Summer 2017 Microfluidics Research Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcculloch, Quinn

    Liquid-liquid Extraction (LLE), also known as solvent extraction, represents a large subset of chemistry where one or more solutes are transferred across an interface between two immiscible liquids. This type of chemistry is used in industrial scale processes to purify solvents, refine ore, process petroleum, treat wastewater, and much more. Although LLE has been successfully employed at the macroscale, where many liters/kgs of species are processed at large flow rates, LLE stands to benefit from lab-on-a-chip technology, where reactions take place quickly and efficiently at the microscale. A device, called a screen contactor, has been invented at Los Alamos Nationalmore » Laboratory (LANL) to perform solvent extraction at the microscale. This invention has been submitted to LANL’s Feynman Center for Innovation, and has been filed for provisional patent under U.S. Patent Application No. 62/483,107 1. The screen contactor consists of a housing that contains two different screen materials, flametreated stainless steel and polyether ether ketone (PEEK) thermoplastic, that are uniquely wetted by either an aqueous or an organic liquid phase, respectively. Liquids in this device flow longitudinally through the screens. The fine pore size of the screens (tens of microns) provide large capillary/adhesional forces while maintaining small hydraulic pressure drops. These physical characteristics are paramount to efficient microscale liquid phase separation. To demonstrate mass transfer using the screen contactor, a well-known chemical system 2 consisting of water and n-decane as solvents and trimethylamine (TEA) as a solute was selected. TEA is basic in water so its concentration can easily be quantified using a digital pH meter and an experimentally determined base dissociation constant. Characterization of this solvent system and its behavior in the screen contactor have been the focus of my research activities this summer. In the following sections, I have detailed experimental results that have been gathered.« less

  9. A broadband helical saline water liquid antenna for wearable systems

    NASA Astrophysics Data System (ADS)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  10. A generalized theory of chromatography and multistep liquid extraction

    NASA Astrophysics Data System (ADS)

    Chizhkov, V. P.; Boitsov, V. N.

    2017-03-01

    A generalized theory of chromatography and multistep liquid extraction is developed. The principles of highly efficient processes for fine preparative separation of binary mixture components on a fixed sorbent layer are discussed.

  11. Liquid-liquid and solid-phase extractions of phenols from virgin olive oil and their separation by chromatographic and electrophoretic methods.

    PubMed

    Bendini, Alessandra; Bonoli, Matteo; Cerretani, Lorenzo; Biguzzi, Barbara; Lercker, Giovanni; Toschi, Tullia Gallina

    2003-01-24

    The high oxidative stability of virgin olive oil is related to its high monounsaturated/polyunsaturated ratio and to the presence of antioxidant compounds, such as tocopherols and phenols. In this paper, the isolation of phenolic compounds from virgin olive oil, by different methods, was tested and discussed. Particularly liquid-liquid and solid-phase extraction methods were compared, assaying, for the latter, three stationary phases (C8, C18 and Diol) and several elution mixtures. Quantification of phenolic and o-diphenolic substances in the extracts was performed by the traditional Folin-Ciocalteau method and the sodium molybdate reaction, respectively. Furthermore, the quantification of phenolic compounds in the extracts and in a standard mixture was carried out both with diode array and mass spectrometric detection and capillary zone electrophoresis.

  12. Speciation of organotin compounds in urine by GC-MIP-AED and GC-MS after ethylation and liquid-liquid extraction.

    PubMed

    Zachariadis, G A; Rosenberg, E

    2009-04-15

    A method for the determination of organotin compounds in urine samples based on liquid-liquid extraction (LLE) in hexane and gas chromatographic separation was developed and optimized. Seven organotin species, namely monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), tetrabutyltin (TeBT), monophenyltin (MPhT), diphenyltin (DPhT) and triphenyltin (TPhT), were in situ derivatized by sodium tetraethylborate (NaBEt(4)) to form ethylated less polar derivatives directly in the urine matrix. The critical parameters which have a significant effect on the yield of the successive liquid-liquid extraction procedure were examined, by using standard solutions of tetrabutyltin in hexane. The method was optimized for use in direct analysis of undiluted human urine samples and ways to overcome practical problems such as foam formation during extraction, due to various constituents of urine are discussed. After thorough optimization of the extraction procedure, all examined species could be determined after 3 min of simultaneous derivatization and extraction at room temperature and 5 min phase separation by centrifugation. Gas chromatography with a microwave-induced plasma atomic emission detector (MIP-AED) as element specific detector was employed for quantitative measurements, while a quadrupole mass spectrometric detector (MS) was used as molecular specific detector. The detection limits were between 0.42 and 0.67 microg L(-1) (as Sn) for the quantitative LLE-GC-MIP-AED method and the precision between 4.2% and 11.7%, respectively.

  13. Analytical methods for the assessment of endocrine disrupting chemical exposure during human fetal and lactation stages: a review.

    PubMed

    Jiménez-Díaz, I; Vela-Soria, F; Rodríguez-Gómez, R; Zafra-Gómez, A; Ballesteros, O; Navalón, A

    2015-09-10

    In the present work, a review of the analytical methods developed in the last 15 years for the determination of endocrine disrupting chemicals (EDCs) in human samples related with children, including placenta, cord blood, amniotic fluid, maternal blood, maternal urine and breast milk, is proposed. Children are highly vulnerable to toxic chemicals in the environment. Among these environmental contaminants to which children are at risk of exposure are EDCs -substances able to alter the normal hormone function of wildlife and humans-. The work focuses mainly on sample preparation and instrumental techniques used for the detection and quantification of the analytes. The sample preparation techniques include, not only liquid-liquid extraction (LLE) and solid-phase extraction (SPE), but also modern microextraction techniques such as extraction with molecular imprinted polymers (MIPs), stir-bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME), matrix solid phase dispersion (MSPD) or ultrasound-assisted extraction (UAE), which are becoming alternatives in the analysis of human samples. Most studies focus on minimizing the number of steps and using the lowest solvent amounts in the sample treatment. The usual instrumental techniques employed include liquid chromatography (LC), gas chromatography (GC) mainly coupled to tandem mass spectrometry. Multiresidue methods are being developed for the determination of several families of EDCs with one extraction step and limited sample preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Automated dynamic hollow fiber liquid-liquid-liquid microextraction combined with capillary electrophoresis for speciation of mercury in biological and environmental samples.

    PubMed

    Li, Pingjing; He, Man; Chen, Beibei; Hu, Bin

    2015-10-09

    A simple home-made automatic dynamic hollow fiber based liquid-liquid-liquid microextraction (AD-HF-LLLME) device was designed and constructed for the simultaneous extraction of organomercury and inorganic mercury species with the assistant of a programmable flow injection analyzer. With 18-crown-6 as the complexing reagent, mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were extracted into the organic phase (chlorobenzene), and then back-extracted into the acceptor phase of 0.1% (m/v) 3-mercapto-1-propanesulfonic acid (MPS) aqueous solution. Compared with automatic static (AS)-HF-LLLME system, the extraction equilibrium of target mercury species was obtained in shorter time with higher extraction efficiency in AD-HF-LLLME system. Based on it, a new method of AD-HF-LLLME coupled with large volume sample stacking (LVSS)-capillary electrophoresis (CE)/UV detection was developed for the simultaneous analysis of methyl-, phenyl- and inorganic mercury species in biological samples and environmental water. Under the optimized conditions, AD-HF-LLLME provided high enrichment factors (EFs) of 149-253-fold within relatively short extraction equilibrium time (25min) and good precision with RSD between 3.8 and 8.1%. By combining AD-HF-LLLME with LVSS-CE/UV, EFs were magnified up to 2195-fold and the limits of detection (at S/N=3) for target mercury species were improved to be sub ppb level. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Application of solvent floatation to separation and determination of triazine herbicides in honey by high-performance liquid chromatography.

    PubMed

    Wang, Kun; Jiang, Jia; Lv, Xinping; Zang, Shuang; Tian, Sizhu; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei; Yu, Yong

    2018-03-01

    Based on the foaming property of the honey, a rapid, simple, and effective method solvent floatation (SF) was developed and firstly applied to the extraction and separation of triazine herbicides in honey. The analytes were determined by high-performance liquid chromatography. Some parameters affecting the extraction efficiencies, such as the type and volume of extraction solvent, type of salt, amount of (NH 4 ) 2 SO 4 , pH value of sample solution, gas flow rate, and floatation time, were investigated and optimized. The limits of detection for analytes are in the range of 0.16-0.56 μg kg -1 . The recoveries and relative standard deviations for determining triazines in five real honey samples are in the range of 78.2-112.9 and 0.2-9.2%, respectively.

  16. Rapid screening of oxytetracycline residue in catfish muscle by dispersive liquid-liquid microextraction and europium-sensitized luminescence

    USDA-ARS?s Scientific Manuscript database

    Oxytetracycline (OTC) residue in catfish muscle was screened by dispersive liquid-liquid microextraction (DLLME) and europium-sensitized luminescence (ESL). After extraction in EDTA, HCl, and acetonitrile, cleanup was carried out by DLLME, and ESL was measured at microgram = 385 nm and wavelength = ...

  17. Isolation of Xanthomegnin from Penicillium viridicatum by Preparative High-Pressure Liquid Chromatography

    PubMed Central

    Peterson, R. E.; Grove, M. D.

    1983-01-01

    A method was developed for the production and purification of xanthomegnin from Penicillium viridicatum (NRRL 6430) cultured on rice at 15°C for 29 days. Liquid-liquid extraction followed by high-pressure liquid chromatography afforded 440 mg of crystalline xanthomegnin per kg of rice. PMID:6881966

  18. Luminescence screening of enrofloxacin and ciprofloxacin residues in swine liver after dispersive liquid - liquid microextraction cleanup

    USDA-ARS?s Scientific Manuscript database

    A rapid luminescence method was developed to screen residues of enrofloxacin (ENRO) and its metabolite, ciprofloxacin (CIPRO), in swine liver. Target analytes were extracted in acetonitrile-2.5% trifluoroacetic acid-NaCl, cleaned up by dispersive liquid-liquid microextraction (DLLME), and finally de...

  19. Liquid Crystals in Chromatography

    NASA Astrophysics Data System (ADS)

    Witkiewicz, Zygfryd

    The following sections are included: * INTRODUCTION * LIQUID CRYSTALS SUITABLE FOR GAS CHROMATOGRAPHY * Monomeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Conventional Analytical Columns * Capillary Columns * FACTORS AFFECTING THE CHROMATOGRAPHIC SEPARATIONS ON LIQUID CRYSTAL STATIONARY PHASES * Kind of Mesophase of the Liquid Crystal * Molecular Structure of the Liquid Crystals and of the Chromatographed Substances * Substrate on which the Liquid Crystal is Deposited * ANALYTICAL APPLICATIONS OF LIQUID CRYSTAL STATIONARY PHASES IN GAS CHROMATOGRAPHY * Separation of Isomers of Benzene and Naphthalene Derivatives * Separation of Alkane and Alkene Isomers * Separation of Mixtures of Benzene and Aliphatic Hydrocarbon Derivatives Containing Heteroatoms * Separation of Polynuclear Hydrocarbons * INVESTIGATION OF THE PROPERTIES OF LIQUID CRYSTALS BY GAS CHROMATOGRAPHY * APPLICATION OF LIQUID CRYSTALS IN LIQUID CHROMATOGRAPHY * Column Chromatography * Thin-Layer Chromatography * APPLICATION OF LIQUID CRYSTAL STATIONARY PHASES IN SUPERCRITICAL FLUID CHROMATOGRAPHY * FINAL REMARKS * References

  20. Sample processor for the automatic extraction of families of compounds from liquid samples and/or homogenized solid samples suspended in a liquid

    NASA Technical Reports Server (NTRS)

    Jahnsen, Vilhelm J. (Inventor); Campen, Jr., Charles F. (Inventor)

    1980-01-01

    A sample processor and method for the automatic extraction of families of compounds, known as extracts, from liquid and/or homogenized solid samples are disclosed. The sample processor includes a tube support structure which supports a plurality of extraction tubes, each containing a sample from which families of compounds are to be extracted. The support structure is moveable automatically with respect to one or more extraction stations, so that as each tube is at each station a solvent system, consisting of a solvent and reagents, is introduced therein. As a result an extract is automatically extracted from the tube. The sample processor includes an arrangement for directing the different extracts from each tube to different containers, or to direct similar extracts from different tubes to the same utilization device.

  1. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.

    PubMed

    Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  2. Recovery of Scandium from Leachate of Sulfation-Roasted Bayer Red Mud by Liquid-Liquid Extraction

    NASA Astrophysics Data System (ADS)

    Liu, Zhaobo; Li, Hongxu; Jing, Qiankun; Zhang, Mingming

    2017-11-01

    The leachate obtained from sulfation-roasted Bayer red mud is suitable for extraction of scandium by liquid-liquid solvent extraction because it contains trace amounts of Fe3+ and Si4+. In this study, a completely new metallurgical process for selective recovery of scandium from Bayer red mud was proposed. The extraction performances of Sc3+, Fe3+, Al3+, Si4+, Ca2+, and Na+ from synthetic leachate of sulfation-roasted red mud were first investigated using organophosphorus extractants (di-2-ethylhexyl phosphoric acid P204 and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester P507) and carboxylic acid extractant (Versatic acid 10). It shows that P204 has an excellent extraction ability and that it can be applied to the scandium recovery. P507 and Versatic acid 10 are much poorer in performance for selective extraction of scandium. In the leachate of sulfation-roasted red mud, approximately 97% scandium can be recovered using a P204/sulfonated kerosene (1% v/v) extraction system under the condition of an organic-to-aqueous phase ratio of 10:1 and with an extraction temperature of 15°C.

  3. Stability, purification, and applications of bromelain: A review.

    PubMed

    de Lencastre Novaes, Letícia Celia; Jozala, Angela Faustino; Lopes, André Moreni; de Carvalho Santos-Ebinuma, Valéria; Mazzola, Priscila Gava; Pessoa Junior, Adalberto

    2016-01-01

    Bromelain is a cysteine protease found in pineapple tissue. Because of its anti-inflammatory and anti-cancer activities, as well as its ability to induce apoptotic cell death, bromelain has proved useful in several therapeutic areas. The market for this protease is growing, and several studies exploring various properties of this molecule have been reported. This review aims to compile this data, and summarize the main findings on bromelain in the literature to date. The physicochemical properties and stability of bromelain under different conditions are discussed. Several studies on the purification of bromelain from crude extracts using a wide range of techniques such as liquid-liquid extractions by aqueous two-phase system, ultrafiltration, precipitation, and chromatography, have been reported. Finally, the various applications of bromelain are presented. This review therefore covers the main properties of bromelain, aiming to provide an up-to-date compilation of the data reported on this enzyme. © 2015 American Institute of Chemical Engineers.

  4. A new method for microwave assisted ethanolic extraction of Mentha rotundifolia bioactive terpenoids.

    PubMed

    García-Sarrió, María Jesús; Sanz, María Luz; Sanz, Jesús; González-Coloma, Azucena; Cristina Soria, Ana

    2018-04-14

    A new microwave-assisted extraction (MAE) method using ethanol as solvent has been optimized by means of a Box-Behnken experimental design for the enhanced extraction of bioactive terpenoids from Mentha rotundifolia leaves; 100°C, 5 min, 1.125 g dry sample: 10 mL solvent and a single extraction cycle were selected as optimal conditions. Improved performance of MAE method in terms of extraction yield and/or reproducibility over conventional solid-liquid extraction and ultrasound assisted extraction was also previously assessed. A comprehensive characterization of MAE extracts was carried out by GC-MS. A total of 46 compounds, mostly terpenoids, were identified; piperitenone oxide and piperitenone were the major compounds determined. Several neophytadiene isomers were also detected for the first time in MAE extracts. Different procedures (solid-phase extraction and activated charcoal (AC) treatment) were also evaluated for clean-up of MAE extracts, with AC providing the highest enrichment in bioactive terpenoids. Finally, the MAE method here developed is shown as a green, fast, efficient and reproducible liquid extraction methodology to obtain M. rotundifolia bioactive extracts for further application, among others, as food preservatives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Determination of capsaicinoids in topical cream by liquid-liquid extraction and liquid chromatography.

    PubMed

    Kaale, Eliangiringa; Van Schepdael, Ann; Roets, Eugène; Hoogmartens, Jos

    2002-11-07

    A reversed-phase liquid chromatography (LC) method has been developed, optimised and validated for the separation and quantitation of capsaicin (CP) and dihydrocapsaicin (DHCP) in a topical cream formulation. Sample preparation involves liquid-liquid extraction prior to LC analysis. The method uses a Hypersil C(18) BDS, 5 micrometer, 250x4.6 mm I.D. column maintained at 35 degrees C. The mobile phase comprises methanol, water, acetonitrile (ACN) and acetic acid (47:42:10:1, v/v/v/v) at a flow rate of 1.0 ml/min. Robustness was evaluated by performing a central composite face-centred design (CCF) experiment. The method shows good selectivity, linearity, sensitivity and repeatability. The conditions allow the separation and quantitation of CP and DHCP without interference from the other substances contained in the cream.

  6. Development and application of an in-cell cleanup pressurized liquid extraction with ultra-high-performance liquid chromatography-tandem mass spectrometry to detect prohibited antiviral agents sensitively in livestock and poultry feces.

    PubMed

    Wu, Huizhen; Wang, Jianmei; Yang, Hua; Li, Guoqin; Zeng, Yinhuan; Xia, Wei; Li, Zuguang; Qian, Mingrong

    2017-03-10

    An in-cell cleanup pressurized liquid extraction was developed to analyze prohibited antiviral agents in livestock and poultry feces. Extraction and cleanup were integrated into one step. The extraction was performed using methanol-acetonitrile (1:1, v/v) with 0.5% glacial acetic acid at 90°C, and 0.75g of PSA was used as the adsorbent during the extraction procedure. Under optimal conditions, the average recoveries for 11 antiviral drugs were 71.5-112.5% at three spiked levels (20, 40, and 100μgkg -1 ). The detection limits and detection quantitations of the analysis method for the eleven antiviral drugs were 0.6-1.4 and 1.4-4.7μgkg -1 , respectively. Finally, the method was applied to analyze amantadine, oseltamivir and its metabolites oseltamivir acid in duck feces based on an experiment of an oral dose of two antiviral drugs in duck. The amantadine, oseltamivir and oseltamivir acid can be detected in feces within approximately four weeks after amantadine and oseltamivir were orally administered. The results indicate that the residue analysis in feces is a noninvasive method to monitor inhibited antiviral agents efficiently in livestock and poultry breeding. Copyright © 2017. Published by Elsevier B.V.

  7. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses

    PubMed Central

    2011-01-01

    Background Black elderberries (Sambucus nigra L.) are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV) infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG) for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus. Methods The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays. Results For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of Streptococcus pyogenes and group C and G Streptococci, and the Gram-negative bacterium Branhamella catarrhalis in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses. Conclusion Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product. PMID:21352539

  8. Supported liquid inorganic membranes for nuclear waste separation

    DOEpatents

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  9. Optimization of Pressurized Liquid Extraction of Three Major Acetophenones from Cynanchum bungei Using a Box-Behnken Design

    PubMed Central

    Li, Wei; Zhao, Li-Chun; Sun, Yin-Shi; Lei, Feng-Jie; Wang, Zi; Gui, Xiong-Bin; Wang, Hui

    2012-01-01

    In this work, pressurized liquid extraction (PLE) of three acetophenones (4-hydroxyacetophenone, baishouwubenzophenone, and 2,4-dihydroxyacetophenone) from Cynanchum bungei (ACB) were investigated. The optimal conditions for extraction of ACB were obtained using a Box-Behnken design, consisting of 17 experimental points, as follows: Ethanol (100%) as the extraction solvent at a temperature of 120 °C and an extraction pressure of 1500 psi, using one extraction cycle with a static extraction time of 17 min. The extracted samples were analyzed by high-performance liquid chromatography using an UV detector. Under this optimal condition, the experimental values agreed with the predicted values by analysis of variance. The ACB extraction yield with optimal PLE was higher than that obtained by soxhlet extraction and heat-reflux extraction methods. The results suggest that the PLE method provides a good alternative for acetophenone extraction. PMID:23203079

  10. An automated system for liquid-liquid extraction in monosegmented flow analysis

    PubMed Central

    Facchin, Ileana; Pasquini, Celio

    1997-01-01

    An automated system to perform liquid-liquid extraction in monosegmented flow analysis is described. The system is controlled by a microcomputer that can track the localization of the aqueous monosegmented sample in the manifold. Optical switches are employed to sense the gas-liquid interface of the air bubbles that define the monosegment. The logical level changes, generated by the switches, are flagged by the computer through a home-made interface that also contains the analogue-to-digital converter for signal acquisition. The sequence of operations, necessary for a single extraction or for concentration of the analyte in the organic phase, is triggered by these logical transitions. The system was evaluated for extraction of Cd(II), Cu(II) and Zn(II) and concentration of Cd(II) from aqueous solutions at pH 9.9 (NH3/NH4Cl buffer) into chloroform containing PAN (1-(2-pyridylazo)-2-naphthol) . The results show a mean repeatability of 3% (rsd) for a 2.0 mg l-1 Cd(II) solution and a linear increase of the concentration factor for a 0.5mg l-1 Cd(II) solution observed for up to nine extraction cycles. PMID:18924792

  11. A simple, rapid and novel method based on salting-out assisted liquid-liquid extraction for ochratoxin A determination in beer samples prior to ultra-high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Mariño-Repizo, Leonardo; Goicoechea, Hector; Raba, Julio; Cerutti, Soledad

    2018-06-07

    A novel, simple, easy and cheap sample treatment strategy based on salting-out assisted liquid-liquid extraction (SALLE) for ochratoxin A (OTA) ultra-trace analysis in beer samples using ultra-high performance liquid chromatography-tandem mass spectrometry determination was developed. The factors involved in the efficiency of pretreatment were studied employing factorial design in the screening phase and the optimal conditions of the significant variables on the analytical response were evaluated using a central composite face-centred design (CCF). Consequently, the amount of salt ((NH 4 ) 2 SO 4 ), together with the volumes of sample, hydrophilic (acetone) and nonpolar (toluene) solvents, and times of vortexing and centrifugation were optimized. Under optimized conditions, the limits of detection (LOD) and quantification (LOQ) were 0.02 µg l -1 and 0.08 µg l -1 respectively. OTA extraction recovery by SALLE was approximately 90% (0.2 µg l -1 ). Furthermore, the methodology was in agreement with EU Directive requirements and was successfully applied for analysis of beer samples.

  12. Liquid to liquid extraction and liquid chromatography-tandem mass spectrometry determination of hainanmycin in feed.

    PubMed

    Wang, Ze Ping; Shen, Jian Zhong; Linhardt, Robert J; Jiang, Hui; Cheng, Lin Li

    2017-03-01

    Hainanmycin is a new veterinary polyether antibiotic and has few sensitive analytical method in present days. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) relying on multiple reaction monitoring (MRM) detection was developed for analysis of hainanmycin in animal feed. Feed samples were extracted with ethyl acetate and purified by two steps of liquid-liquid extraction (LLE) to get rid of water solvable matrix and lipids one by one. The final simple was analyzed by LC-MS/MS. The LC mobile phase was composed of 0.1% aqueous formic acid and 0.1% formic acidified acetonitrile by gradient elution. Average recoveries ranged from 74.22% to 87.85%, as determined by spiking with 2.0 (LOQ) ∼2500μgkg -1 of hainanmycin. The inter-day and intra-day coefficient of variation was 9.21% to 11.77% and 7.67% to 13.49%, respectively. The limit of detection (LOD) and the limit of quantitation (LOQ) were 0.36μgkg -1 and 2.0μgkg -1 , respectively. Copyright © 2016. Published by Elsevier B.V.

  13. Microvolume trace environmental analysis using peak-focusing online solid-phase extraction-nano-liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Stravs, Michael A; Mechelke, Jonas; Ferguson, P Lee; Singer, Heinz; Hollender, Juliane

    2016-03-01

    Online solid-phase extraction was combined with nano-liquid chromatography coupled to high-resolution mass spectrometry (HRMS) for the analysis of micropollutants in environmental samples from small volumes. The method was validated in surface water, Microcystis aeruginosa cell lysate, and spent Microcystis growth medium. For 41 analytes, quantification limits of 0.1-28 ng/L (surface water) and 0.1-32 ng/L (growth medium) were obtained from only 88 μL of sample. In cell lysate, quantification limits ranged from 0.1-143 ng/L or 0.33-476 ng/g dry weight from a sample of 88 μL, or 26 μg dry weight, respectively. The method matches the sensitivity of established online and offline solid-phase extraction-liquid chromatography-mass spectrometry methods but requires only a fraction of the sample used by those techniques, and is among the first applications of nano-LC-MS for environmental analysis. The method was applied to the determination of bioconcentration in Microcystis aeruginosa in a laboratory experiment, and the benefit of coupling to HRMS was demonstrated in a transformation product screening.

  14. The Use of Isotope Dilution Alpha Spectrometry and Liquid Scintillation Counting to Determine Radionuclides in Environmental Samples (abstract)

    NASA Astrophysics Data System (ADS)

    Bylyku, Elida

    2009-04-01

    In Albania in recent years it has been of increasing interest to determine various pollutants in the environment and their possible effects on human health. The radiochemical procedure used to identify Pu, Am, U, Th, and Sr radioisotopes in soil, sediment, water, coal, and milk samples is described. The analysis is carried out in the presence of respective tracer solutions and combines the procedure for Pu analysis based on anion exchange, the selective method for Sr isolation based on extraction chromatography using Sr-Spec resin, and the application of the TRU-Spec column for separation of Am fraction. An acid digestion method has been applied for the decomposition of samples. The radiochemical procedure involves the separation of Pu from Th, Am, and Sr by anion exchange, followed by the preconcentration of Am and Sr by coprecipitation with calcium oxalate. Am is separated from Sr by extraction chromatography. Uranium is separated from the bulk elements by liquid-liquid extraction using UTEVA® resin. Thin sources for alpha spectrometric measurements are prepared by microprecipitation with NdF3. Two International Atomic Energy Agency reference materials were analyzed in parallel with the samples.

  15. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V. V.; Murin, I. V.

    2016-01-01

    This review is the first attempt to integrate the available data on all types of phase equilibria (solubility, extraction and sorption) in systems containing light fullerenes (C60 and C70). In the case of solubility diagrams, the following types of phase equilibria are considered: individual fullerene (C60 or C70)-solvent under polythermal and polybaric conditions; C60-C70-solvent, individual fullerene-solvent(1)-solvent(2), as well as multicomponent systems comprising a single fullerene or an industrial mixture of fullerenes and vegetable oils, animal fats or essential oils under polythermal conditions. All published experimental data on the extraction equilibria in C60-C70-liquid phase(1)-liquid phase(2) systems are described systematically and the sorption characteristics of various materials towards light fullerenes are estimated. The possibility of application of these experimental data for development of pre-chromatographic and chromatographic methods for separation of fullerene mixtures and application of fullerenes as nanomodifiers are described. The bibliography includes 87 references.

  16. Liquid Microjunction Surface Sampling Coupled with High-Pressure Liquid Chromatography-Electrospray Ionization-Mass Spectrometry for Analysis of Drugs and Metabolites in Whole-Body Thin Tissue Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Van Berkel, Gary J

    2010-01-01

    In this work, a commercially available autosampler was adapted to perform direct liquid microjunction (LMJ) surface sampling followed by a high-pressure liquid chromatography (HPLC) separation of the extract components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the utility of coupling a separation with this direct liquid extraction based surface sampling approach, four different organs (brain, lung, kidney, and liver) from whole-body thin tissue sections of propranolol dosed and control mice were examined. The parent drug was observed in the chromatograms of the surface sampling extracts from all the organs of the dosed mouse examined. In addition, twomore » isomeric phase II metabolites of propranolol (an aliphatic and an aromatic hydroxypropranolol glucuronide) were observed in the chromatograms of the extracts from lung, kidney, and liver. Confirming the presence of one or the other or both of these glucuronides in the extract from the various organs was not possible without the separation. These drug and metabolite data obtained using the LMJ surface sampling/HPLC-MS method and the results achieved by analyzing similar samples by conventional extraction of the tissues and subsequent HPLC-MS analysis were consistent.« less

  17. Solid-phase extraction assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet to determine sildenafil and its analogues in dietary supplements.

    PubMed

    Li, Jing; Roh, Si Hun; Shaodong, Jia; Hong, Ji Yeon; Lee, Dong-Kyu; Shin, Byong-Kyu; Park, Jeong Hill; Lee, Jeongmi; Kwon, Sung Won

    2017-08-01

    A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid-phase extraction assisted reversed-phase dispersive liquid-liquid microextraction based on solidification of floating organic droplet combined with ion-pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid-phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0-100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10-100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparison of a Lyophilized Drug Product to Other Solid and Liquid Media for the Extraction of Elastomeric Oligomers from a Butyl Rubber Stopper.

    PubMed

    Zdravkovic, Steven A

    2017-01-01

    Lyophilization is commonly used to extend the shelf life of pharmaceutical products that are otherwise unstable when stored as a liquid formulation. However, the ability of a lyophilized drug, or other solid medium, to leach or extract substances from a pharmaceutical packaging material is not well characterized. To provide insight into this area of uncertainty, the extraction properties of a lyophilized drug product, the lyophilized drug product reconstituted in water, and several other solid and liquid media of varying polarity were determined using a glass vial with a butyl rubber stopper as a representative pharmaceutical packaging system. The results obtained in this study show that the extracting power of a medium, whether solid or liquid, was primarily a function of polarity. Thus, the amount of each extractable observed for the lyophilized and reconstituted drug product were in trend with the other solid and liquid media, respectively. Nevertheless, it was notable that the lyophilized drug product was able to leach substances from the stopper in quantifiable amounts, whereas the reconstituted drug product contained no detectable leachables. Using a mathematical relationship, it was determined that the extraction power of the lyophilized drug product was equivalent to a 50/50 isopropanol/water solution. LAY ABSTRACT: Freeze drying is commonly used to extend the shelf life of pharmaceutical products that are otherwise unstable when stored as a liquid formulation. However, the propensity for substances to migrate from a pharmaceutical packaging material and into a solid drug formulation is not well characterized. To provide insight into this area of uncertainty, the migration of substances from a glass vial with a butyl rubber stopper and into a lyophilized drug product, the drug product reconstituted with water, as well as several solid and liquid media of varying polarity were assessed. The results obtained in this study show that the extracting power of a medium, whether solid or liquid, was primarily a function of polarity and thus could be related to one another. Furthermore, the results for the freeze-dried and reconstituted drug products were in trend with the other solid and liquid media tested, respectively, and showed that the freeze-dried drug was able to leach substances from the stopper in measureable amounts, whereas the reconstituted drug product contained no substances that had originated from the stopper. © PDA, Inc. 2017.

  19. Isolation and characterization of antimicrobial food components.

    PubMed

    Papetti, Adele

    2012-04-01

    Nowadays there is an evident growing interest in natural antimicrobial compounds isolated from food matrices. According to the type of matrix, different isolation and purification steps are needed and as these active compounds belong to different chemical classes, also different chromatographic and electrophoretic methods coupled with various detectors (the most used diode array detector and mass spectrometer) have to be performed. This review covers recent steps made in the fundamental understanding of sample preparation methods as well as of analytical tools useful for the complete characterization of bioactive food compounds. The most commonly used methods for extraction of natural antimicrobial compounds are the conventional liquid-liquid or solid-liquid extraction and the modern techniques such as pressurized liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, solid-phase micro-extraction, supercritical fluid extraction, and matrix solid phase dispersion. The complete characterization of the compounds is achieved using both monodimensional chromatographic processes (LC, nano-LC, GC, and CE coupled with different type of detectors) and, recently, using comprehensive two-dimensional systems (LC×LC and GC×GC). Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Ionic Liquid Dispersive Liquid-Liquid Microextraction Method for the Determination of Irinotecan, an Anticancer Drug, in Water and Urine Samples Using UV-Vis Spectrophotometry.

    PubMed

    Uysal, Deniz; Karadaş, Cennet; Kara, Derya

    2017-05-01

    A new, simple, efficient, and environmentally friendly ionic liquid dispersive liquid-liquid microextraction method was developed for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was used as the extraction solvent, and ethanol was used as the disperser solvent. The main parameters affecting the extraction efficiency, including sample pH, volume of the ionic liquid, choice of the dispersive solvent and its volume, concentration of NaCl, and extraction and centrifugation times, were investigated and optimized. The effect of interfering species on the recovery of irinotecan was also examined. Under optimal conditions, the LOD (3σ) was 48.7 μg/L without any preconcentration. Because the urine sample was diluted 10-fold, the LOD for urine would be 487 μg/L. However, this could be improved 16-fold if preconcentration using a 40 mL aliquot of the sample is used. The proposed method was successfully applied to the determination of irinotecan in tap water, river water, and urine samples spiked with 10.20 mg/L for the water samples and 8.32 mg/L for the urine sample. The average recovery values of irinotecan determined were 99.1% for tap water, 109.4% for river water, and 96.1% for urine.

  1. Capillary liquid chromatography combined with pressurized liquid extraction and dispersive liquid-liquid microextraction for the determination of vitamin E in cosmetic products.

    PubMed

    Viñas, Pilar; Pastor-Belda, Marta; Campillo, Natalia; Bravo-Bravo, María; Hernández-Córdoba, Manuel

    2014-06-01

    Capillary liquid chromatography (LC) is used for the determination of tocopherols and tocotrienols in cosmetic products. Dispersive liquid-liquid microextraction (DLLME) allows the analytes to be preconcentrated into a very small volume of organic solvent which is then injected into the chromatograph running at a very low flow rate. Pressurized liquid extraction (PLE) at a high temperature and pressure was used to isolate vitamin E forms from cosmetics. The Taguchi experimental method was used to optimize the factors affecting DLLME. The parameters selected were 2mL of acetonitrile (disperser solvent), 100μL carbon tetrachloride (extraction solvent) and 10mL aqueous solution. A volume of 5μL of the organic phase was injected into the reversed-phase capillary LC system equipped with a diode array detector and using an isocratic mobile phase composed of an 95:5 (v/v) methanol:water mixture at a flow-rate of 20μLmin(-1). Quantification was carried out using aqueous standards and detection limits were in the range 0.1-0.5ngmL(-1), corresponding to 3-15ngg(-1) in the cosmetic sample. The recoveries were in the 87-105% range, with RSDs lower than 7.8%. The method was validated according to international guidelines and using a certified reference material. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM](+)[FeCl4](-) ionic liquid in desulfurization: A novel charge transfer mechanism.

    PubMed

    Li, Hongping; Zhu, Wenshuai; Chang, Yonghui; Jiang, Wei; Zhang, Ming; Yin, Sheng; Xia, Jiexiang; Li, Huaming

    2015-06-01

    In this work, interaction nature between a group of aromatic sulfur compounds and [BMIM](+)[FeCl4](-) have been investigated by density functional theory (DFT). A coordination structure is found to be critical to the mechanism of extractive desulfurization. Interaction energy and extractive selectivity follow the order: thiophene (TH)

  3. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  4. Determination of parabens in serum by liquid chromatography-tandem mass spectrometry: Correlation with lipstick use.

    PubMed

    Tahan, Gabriella Padovani; Santos, Nayara de Kássia Souza; Albuquerque, Ana Carolina; Martins, Isarita

    2016-08-01

    Parabens are the most widely used preservative and are considered to be relatively safe compounds. However, studies have demonstrated that they may have estrogenic activity, and there is ongoing debate regarding the safety and potential cancer risk of using products containing these compounds. In the present work, liquid chromatography-tandem mass spectrometry was applied to determine methylparaben and propylparaben concentrations in serum, and the results were correlated with lipstick application. Samples were analyzed using liquid-liquid extraction, followed by liquid chromatography-tandem mass spectrometry. The validation results demonstrated the linearity of the method over a range of 1-20 ng/mL, in addition to the method's precision and accuracy. A statistically significant difference was demonstrated between serum parabens in women who used lipstick containing these substances compared with those not using this cosmetic (p = 0.0005 and 0.0016, respectively), and a strong association was observed between serum parabens and lipstick use (Spearman correlation = 0.7202). Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology.

    PubMed

    Yang, Miyi; Wu, Xiaoling; Jia, Yuhan; Xi, Xuefei; Yang, Xiaoling; Lu, Runhua; Zhang, Sanbing; Gao, Haixiang; Zhou, Wenfeng

    2016-02-04

    In this work, a novel effervescence-assisted microextraction technique was proposed for the detection of four fungicides. This method combines ionic liquid-based dispersive liquid-liquid microextraction with the magnetic retrieval of the extractant. A magnetic effervescent tablet composed of Fe3O4 magnetic nanoparticles, sodium carbonate, sodium dihydrogen phosphate and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonimide) was used for extractant dispersion and retrieval. The main factors affecting the extraction efficiency were screened by a Plackett-Burman design and optimized by a central composite design. Under the optimum conditions, good linearity was obtained for all analytes in pure water model and real water samples. Just for the pure water, the recoveries were between 84.6% and 112.8%, the limits of detection were between 0.02 and 0.10 μg L(-1) and the intra-day precision and inter-day precision both are lower than 4.9%. This optimized method was successfully applied in the analysis of four fungicides (azoxystrobin, triazolone, cyprodinil, trifloxystrobin) in environmental water samples and the recoveries ranged between 70.7% and 105%. The procedure promising to be a time-saving, environmentally friendly, and efficient field sampling technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Rapid determination of polycyclic aromatic hydrocarbons in rainwater by liquid-liquid microextraction and LC with core-shell particles column and fluorescence detection.

    PubMed

    Vinci, Giuliana; Antonelli, Marta L; Preti, Raffaella

    2013-02-01

    Liquid-liquid microextraction coupled to LC with fluorescence detection for the determination of Environmental Protection Agency's 16 priority pollutant polycyclic aromatic hydrocarbons in rainwater has been developed. The optimization of the extraction method has involved several parameters, including the comparison between an ultrasonic bath and a magnetic stirrer as extractant apparatus, the choice of the extractant solvent, and the optimization of the extraction time. Liquid-liquid microextraction gave good results in terms of recoveries (from 73.6 to 102.8% in rainwater) and repeatability, with a very simple procedure and low solvent consumption. The reported chromatographic method uses a Core-Shell technology column, with particle size <3 μm instead of classical 5-μm particles column. The resulting backpressure was below 300 bar, allowing the use of a conventional HPLC system rather than the more expensive ultrahigh performance LC (UHPLC). An average decrease of 59% in run time and 75% in eluent consumption has been obtained, compared to classical HPLC methods, keeping good separation, sensitivity, and repeatability. The proposed conditions were successfully applied to the determinations of polycyclic aromatic hydrocarbons in genuine rainwater samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [Determination of fatty acid esters of chloropropanediols in diet samples by gas chromatography-mass spectrometry coupled with solid-supported liquid-liquid extraction].

    PubMed

    Gao, Jie; Liu, Qing; Han, Feng; Miao, Hong; Zhao, Yunfeng; Wu, Yongning

    2014-05-01

    To establish a method for the determination of fatty acid esters of 3-monochloropropane-1, 2-diol (3-MCPD) and 2-monochloropropane-1, 3-diol (2-MCPD) in diet samples by gas chromatography-mass spectrometry (GC-MS) with solid-supported liquid-liquid extraction (SLE). Diet samples were ultrasonically extracted by hexane, followed by ester cleavage reaction with sodium methylate in methanol, and then purified by solid-supported liquid-liquid extraction. (SLE) using diatomaceous earth as the sorbent. After derivatization with heptafluorobutyrylimidazole, the analytes were detected by GC-MS and quantified by the deuterated internal standards. The limits of detection (LODs) of 3-MCPD esters and 2-MCPD esters in different diet samples were 0.002 - 0.005 mg/kg and 0.002 - 0.006 mg/kg. The average recoveries of 3-MCPD esters and 2-MCPD esters at the spiking levels of 0.05 and 0.1 mg/kg in the diet samples were in the range of 65.9% - 104.2% and 75.4% - 118.0%, respectively, with the relative standard deviations in the range of 2.2% - 14.2% and 0.8% - .13.9%. The method is simple, accurate and rugged for the determination of fatty acid esters of 3-MCPD and 2-MCPD in diet samples.

  8. Simultaneous Determination of 13 Priority Polycyclic Aromatic Hydrocarbons in Tehran’s Tap Water and Water for Injection Samples Using Dispersive Liquid-Liquid Micro Extraction Method and Gas Chromatography-Mass Spectrometry

    PubMed Central

    Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayate, Mitra

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are classified as persistent and carcinogenic organic pollutants. PAHs contamination has been reported in water. Many of relevant regulatory bodies such as EU and EPA have regulated the limit levels for PAHs in drinking water. In this study, 13 priority polycyclic aromatic hydrocarbons (PAHs) were determined in tap water samples of Tehran and water for injection. Dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry was used for the extraction and determination of PAHs in the samples. Under the optimized conditions, the range of extraction recoveries and relative standard deviations (RSDs) of PAHs in water using internal standard (anthracene-d10) were in the range of 71-90% and 4-16%, respectively. Limit of detection for different PAHs were between 0.03 and 0.1 ngmL-1. The concentration of PAHs in all tap water as well as water for injection samples were lower than the limit of quantification of PAHs. This is the first study addressing the occurrence of PAHs in water for injection samples in Iran using dispersive liquid-liquid micro extraction procedure combined with gas chromatography-mass spectrometry. PMID:27642318

  9. Determination of metal ions in tea samples using task-specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction coupled to liquid chromatography with ultraviolet detection.

    PubMed

    Werner, Justyna

    2016-04-01

    Task-specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction was used for the preconcentration of cadmium(II), cobalt(II), and lead(II) ions in tea samples, which were subsequently analyzed by liquid chromatography with UV detection. The proposed method of preconcentration is free of volatile organic compounds, which are often used as extractants and dispersing solvents in classic techniques of microextraction. A task-specific ionic liquid trioctylmethylammonium thiosalicylate was used as an extractant and a chelating agent. Ultrasound was used to disperse the ionic liquid. After microextraction, the phases were separated by centrifugation, and the ionic liquid phase was solubilized in methanol and directly injected into the liquid chromatograph. Selected microextraction parameters, such as the volume of ionic liquid, the pH of the sample, the duration of ultrasound treatment, the speed and time of centrifugation, and the effect of ionic strength, were optimized. Under optimal conditions an enrichment factor of 200 was obtained for each analyte. The limits of detection were 0.002 mg/kg for Cd(II), 0.009 mg/kg for Co(II), and 0.013 mg/kg for Pb(II). The accuracy of the proposed method was evaluated by an analysis of the Certified Reference Materials (INCT-TL-1, INCT-MPH-2) with the recovery values in the range of 90-104%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Extraction of mercury(II) with sulfurized jojoba oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisniak, J.; Schorr, G.; Zacovsky, D.

    1990-09-01

    Sulfurized jojoba oil containing 12% by weight S has been tested as an extractant for Hg(II) from aqueous solutions. This paper reports on experiments performed with the extractant dissolved in a solvent (liquid--liquid extraction) or adsorbed in an appropriate resin matrix (solid--liquid extraction). The extraction characteristics of both systems have been measured and show that sulfurized jojoba oil exhibits very good possibilities as an extractant. The performance of several resins treated with sulfurized jojoba oil for adsorbing mercury(II) was studied. The morphology of the different resins was examined by using scanning electron microscopy. The sulfurized oil is attached to themore » resin sites through the sulfur atoms; it is estimated that there are about 2 mol of S active sites per kilogram of resin.« less

  11. Ionic liquid-based microwave-assisted extraction of flavonoids from Bauhinia championii (Benth.) Benth.

    PubMed

    Xu, Wei; Chu, Kedan; Li, Huang; Zhang, Yuqin; Zheng, Haiyin; Chen, Ruilan; Chen, Lidian

    2012-12-03

    An ionic liquids (IL)-based microwave-assisted approach for extraction and determination of flavonoids from Bauhinia championii (Benth.) Benth. was proposed for the first time. Several ILs with different cations and anions and the microwave-assisted extraction (MAE) conditions, including sample particle size, extraction time and liquid-solid ratio, were investigated. Two M 1-butyl-3-methylimidazolium bromide ([bmim] Br) solution with 0.80 M HCl was selected as the optimal solvent. Meanwhile the optimized conditions a ratio of liquid to material of 30:1, and the extraction for 10 min at 70 °C. Compared with conventional heat-reflux extraction (CHRE) and the regular MAE, IL-MAE exhibited a higher extraction yield and shorter extraction time (from 1.5 h to 10 min). The optimized extraction samples were analysed by LC-MS/MS. IL extracts of Bauhinia championii (Benth.)Benth consisted mainly of flavonoids, among which myricetin, quercetin and kaempferol, β-sitosterol, triacontane and hexacontane were identified. The study indicated that IL-MAE was an efficient and rapid method with simple sample preparation. LC-MS/MS was also used to determine the chemical composition of the ethyl acetate/MAE extract of Bauhinia championii (Benth.) Benth, and it maybe become a rapid method to determine the composition of new plant extracts.

  12. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    PubMed

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Theory of hydrophobicity: transient cavities in molecular liquids

    NASA Technical Reports Server (NTRS)

    Pratt, L. R.; Pohorille, A.

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or "squeezing" force, reaches a maximum near cavity diameters of 2.4 angstroms. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studied here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems.

  14. Theory of hydrophobicity: Transient cavities in molecular liquids

    PubMed Central

    Pratt, Lawrence R.; Pohorille, Andrew

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or “squeezing” force, reaches a maximum near cavity diameters of 2.4 Å. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studies here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems. PMID:11537863

  15. A comparison of various modes of liquid-liquid based microextraction techniques: determination of picric acid.

    PubMed

    Burdel, Martin; Šandrejová, Jana; Balogh, Ioseph S; Vishnikin, Andriy; Andruch, Vasil

    2013-03-01

    Three modes of liquid-liquid based microextraction techniques--namely auxiliary solvent-assisted dispersive liquid-liquid microextraction, auxiliary solvent-assisted dispersive liquid-liquid microextraction with low-solvent consumption, and ultrasound-assisted emulsification microextraction--were compared. Picric acid was used as the model analyte. The determination is based on the reaction of picric acid with Astra Phloxine reagent to produce an ion associate easily extractable by various organic solvents, followed by spectrophotometric detection at 558 nm. Each of the compared procedures has both advantages and disadvantages. The main benefit of ultrasound-assisted emulsification microextraction is that no hazardous chlorinated extraction solvents and no dispersive solvent are necessary. Therefore, this procedure was selected for validation. Under optimized experimental conditions (pH 3, 7 × 10(-5) mol/L of Astra Phloxine, and 100 μL of toluene), the calibration plot was linear in the range of 0.02-0.14 mg/L and the LOD was 7 μg/L of picric acid. The developed procedure was applied to the analysis of spiked water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Analysis of endocrine disruptor compounds in marine sediments by in cell clean up-pressurized liquid extraction-liquid chromatography tandem mass spectrometry determination.

    PubMed

    Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2014-12-10

    A less time-, solvent- and sorbent-consuming analytical methodology for the determination of bisphenol A and alkylphenols (4-tert-octylphenol, 4-octylphenol, 4-n-nonylphenol, nonylphenol) in marine sediment was developed and validated. The method was based on selective pressurized liquid extraction (SPLE) with a simultaneous in cell clean up combined with liquid chromatography-electrospray ionization tandem mass spectrometry in negative mode (LC-ESI-MS/MS). The SPLE extraction conditions were optimized by a Plackett-Burman design followed by a central composite design. Quantitation was performed by standard addition curves in order to correct matrix effects. The analytical features of the method were satisfactory: relative recoveries varied between 94 and 100% and repeatability and intermediate precision were <6% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) ranged between 0.17 (4-n-nonylphenol) and 4.01 ng g(-1) dry weight (nonylphenol). Sensitivity, selectivity, automaticity and fastness are the main advantages of this green methodology. As an application, marine sediment samples from Galicia coast (NW of Spain) were analysed. Nonylphenol and 4-tert-octylphenol were measured in all samples at concentrations between 20.1 and 1409 ng g(-1) dry weight, respectively. Sediment toxicity was estimated and no risk to aquatic biota was found. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Lipophilic ternary complexes in liquid-liquid extraction of trivalent lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Levitskaia, Tatiana G.; Latesky, Stanley

    2012-03-01

    The formation of ternary complexes between lanthanide ions [Nd(III) or Eu(III)], octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO), and bis-(2-ethylhexyl)phosphoric acid (HDEHP) was probed by liquid-liquid extraction and spectroscopic techniques. Equilibrium modeling of data for the extraction of Nd(III) or Eu(III) from lactic acid media into n-dodecane solutions of CMPO and HDEHP indicates the predominant extracted species are of the type [Ln(AHA){sub 2}(A)] and [Ln(CMPO)(AHA){sub 2}(A)], where Ln = Nd or Eu and A represents the DEHP{sup -} anion. FTIR (for both Eu and Nd) and visible spectrophotometry (in the case of Nd) indicate the formation of the [Ln(CMPO)(A){sup 3}] complexes when CMPO ismore » added to n-dodecane solutions of the LnA{sub 3} compounds. Both techniques indicate a stronger propensity of CMPO to complex Nd(III) versus Eu(III).« less

  18. Isolation and recovery of selected polybrominated diphenyl ethers from human serum and sheep serum: coupling reversed-phase solid-phase disk extraction and liquid-liquid extraction techniques with a capillary gas chromatographic electron capture negative ion mass spectrometric determinative technique.

    PubMed

    Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.

  19. [Optimization of Polysaccharide Extraction from Spirodela polyrrhiza by Plackett-Burman Design Combined with Box-Behnken Response Surface Methodology].

    PubMed

    Jiang, Zheng; Wang, Hong; Wu, Qi-nan

    2015-06-01

    To optimize the processing of polysaccharide extraction from Spirodela polyrrhiza. Five factors related to extraction rate of polysaccharide were optimized by the Plackett-Burman design. Based on this study, three factors, including alcohol volume fraction, extraction temperature and ratio of material to liquid, were regarded as investigation factors by Box-Behnken response surface methodology. The effect order of three factors on the extraction rate of polysaccharide from Spirodela polyrrhiza were as follows: extraction temperature, alcohol volume fraction,ratio of material to liquid. According to Box-Behnken response, the best extraction conditions were: alcohol volume fraction of 81%, ratio of material to liquid of 1:42, extraction temperature of 100 degrees C, extraction time of 60 min for four times. Plackett-Burman design and Box-Behnken response surface methodology used to optimize the extraction process for the polysaccharide in this study is effective and stable.

  20. Dynamic Mass Transfer of Hemoglobin at the Aqueous/Ionic-Liquid Interface Monitored with Liquid Core Optical Waveguide.

    PubMed

    Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua

    2015-08-04

    Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.

  1. Recovery of phenolic compounds from grape seeds: effect of extraction time and solid-liquid ratio.

    PubMed

    Casazza, Alessandro A; Aliakbarian, Bahar; Perego, Patrizia

    2011-10-01

    The aim of this research was to study the recovery of phenolic compounds from grape seeds, by-products from winemaking industries, using ethanolic solid-liquid extraction. For such a purpose, the combined effects of the extraction time (9, 19 and 29 h) and the solid-liquid ratio (0.10, 0.20 and 0.30 gdw mL(-1)), were investigated (where dw = dry waste). Results demonstrated that Pinot Noir seeds had high levels of both total polyphenols (73.66 mg(Gallic Acid Equivalent) gdw(-1)) and flavonoids (30.90 mg(Catechin Equivalent) gdw(-1)), being the optimum extraction time 19 h approximately. The main phenolic compounds analysed with high performance liquid chromatography were catechin and quercetin with a maximum extraction yield obtained at 29 h (362.23 and 339.35 mg/100 gdw, respectively). Concentration of the polyphenols and their antiradical powers are demonstrated to have a significant linear correlation.

  2. High-performance liquid chromatographic method for the simultaneous determination of nalbuphine and its prodrug, sebacoyl dinalbuphine ester, in dog plasma and application to pharmacokinetic studies in dogs.

    PubMed

    Pao, L H; Hsiong, C H; Hu, O Y; Ho, S T

    2000-09-15

    For the determination of nalbuphine and its long acting prodrug, sebacoyl dinalbuphine ester (SDN), in biological samples, a reversed-phase high-performance liquid chromatographic method using dual detectors was established. Ultraviolet and fluorescence detectors were connected in series for determining SDN and nalbuphine, respectively. The two analytes and internal standard were extracted from plasma by alkaline liquid-liquid extraction using n-hexane-isoamyl alcohol (9:1, v/v). The calibration curve for nalbuphine was linear over the range from 10 to 2,500 ng/ml, while the range was 25 to 2,500 ng/ml for SDN. The within- and between-day precision and accuracy were all within 10% for both nalbuphine and SDN over these concentrations. The method was applied successfully to a pharmacokinetic study of SDN administered at 20 mg/kg to two beagle dogs. Pharmacokinetic analysis revealed that SDN followed a linear one-compartment model with an elimination half-life of 74.7 min. Formation of nalbuphine after intravenous administration of SDN was observed in the first time point sample (5 min). These results indicate that SDN is rapidly metabolized to its active moiety, nalbuphine, in dogs and no other metabolites are detected in plasma.

  3. Automated dynamic liquid-liquid-liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection for the determination of phenoxy acid herbicides in environmental waters.

    PubMed

    Wu, Jingming; Ee, Kim Huey; Lee, Hian Kee

    2005-08-05

    Automated dynamic liquid-liquid-liquid microextraction (D-LLLME) controlled by a programmable syringe pump and combined with HPLC-UV was investigated for the extraction and determination of 5 phenoxy acid herbicides in aqueous samples. In the extraction procedure, the acceptor phase was repeatedly withdrawn into and discharged from the hollow fiber by the syringe pump. The repetitive movement of acceptor phase into and out of the hollow fiber channel facilitated the transfer of analytes into donor phase, from the organic phase held in the pore of the fiber. Parameters such as the organic solvent, concentrations of the donor and acceptor phases, plunger movement pattern, speed of agitation and ionic strength of donor phase were evaluated. Good linearity of analytes was achieved in the range of 0.5-500 ng/ml with coefficients of determination, r2 > 0.9994. Good repeatabilities of extraction performance were obtained with relative standard deviations lower than 7.5%. The method provided up-to 490-fold enrichment within 13 min. In addition, the limits of detection (LODs) ranged from 0.1 to 0.4 ng/mL (S/N = 3). D-LLLME was successfully applied for the analysis of phenoxy acid herbicides from real environmental water samples.

  4. Modification of the fluorescent antibody virus neutralisation test--elimination of the cytotoxic effect for the detection of rabies virus neutralising antibodies.

    PubMed

    Bedeković, Tomislav; Lemo, Nina; Lojkić, Ivana; Mihaljević, Zeljko; Jungić, Andreja; Cvetnić, Zeljko; Cač, Zeljko; Hostnik, Peter

    2013-04-01

    The virus neutralisation test is used for the quantitation of specific antibodies in serum samples. However, the success of the test depends on the quality of samples. In the case of poor quality samples, a cytotoxic effect can be observed and the results of the test can be compromised. Additionally, the cytotoxic effect limits the use of different substances, such as muscle extract or liquid from thoracic cavity (thoracic liquid), as a sample for the detection of rabies virus neutralising antibodies in the follow-up of fox oral vaccination campaigns. To eliminate the cytotoxic effect, a modified fluorescent antibody virus neutralisation (mFAVN) test was developed and evaluated. In the mFAVN test, inocula were removed after a 1h and the cytotoxic effect was prevented. According to the results obtained, the specificity of the mFAVN test compared to the FAVN test was 88.8% and the sensitivity was 94.4%. The diagnostic validity of the test was 0.99 (CI=0.98-1.00). To evaluate the possibility of using muscle extract and thoracic liquid as samples for the virus neutralisation test, 102 sera, muscle extract and thoracic liquid samples of dog origin were tested with the mFAVN test. The correlation between sera and muscle extracts was 87.9% (r=0.88, p<0.001). The correlation between sera and thoracic liquid was 94.2% (r=0.94, p<0.001). These findings indicated that both muscle extract and thoracic liquid could be used as samples for detection of rabies virus neutralising antibodies in the follow-up of oral vaccination campaigns. To evaluate the level of elimination of the cytotoxic effect, the 102 samples of sera, muscle extracts and thoracic liquid of dog origin were also tested in parallel using the mFAVN and FAVN tests. In the mFAVN test, no instance of cytotoxic effect was observed in the cells. In the FAVN test, two sera (1.9%), 35 muscle extracts (34.3%) and 56 thoracic liquid samples (54.9%) showed cytotoxic effect. The results of this study strongly suggest that cytotoxic effect can be eliminated completely from the rabies virus neutralising antibody detection tests used in the follow-up of oral vaccination campaigns and that very poor quality samples, such as muscle extract and thoracic liquid, can be used. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Simultaneous dispersive liquid-liquid microextraction derivatisation and gas chromatography mass spectrometry analysis of subcritical water extracts of sweet and sour cherry stems.

    PubMed

    Švarc-Gajić, Jaroslava; Clavijo, Sabrina; Suárez, Ruth; Cvetanović, Aleksandra; Cerdà, Víctor

    2018-03-01

    Cherry stems have been used in traditional medicine mostly for the treatment of urinary tract infections. Extraction with subcritical water, according to its selectivity, efficiency and other aspects, differs substantially from conventional extraction techniques. The complexity of plant subcritical water extracts is due to the ability of subcritical water to extract different chemical classes of different physico-chemical properties and polarities in a single run. In this paper, dispersive liquid-liquid microextraction (DLLME) with simultaneous derivatisation was optimised for the analysis of complex subcritical water extracts of cherry stems to allow simple and rapid preparation prior to gas chromatography-mass spectrometry (GC-MS). After defining optimal extracting and dispersive solvents, the optimised method was used for the identification of compounds belonging to different chemical classes in a single analytical run. The developed sample preparation protocol enabled simultaneous extraction and derivatisation, as well as convenient coupling with GC-MS analysis, reducing the analysis time and number of steps. The applied analytical protocol allowed simple and rapid chemical screening of subcritical water extracts and was used for the comparison of subcritical water extracts of sweet and sour cherry stems. Graphical abstract DLLME GC MS analysis of cherry stem extracts obtained by subcritical water.

  6. Fast and sensitive analysis of beta blockers by ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry.

    PubMed

    Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan

    2017-07-01

    This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Supported liquid membrane-liquid chromatography-mass spectrometry analysis of cyanobacterial toxins in fresh water systems

    NASA Astrophysics Data System (ADS)

    Mbukwa, Elbert A.; Msagati, Titus A. M.; Mamba, Bhekie B.

    Harmful algal blooms (HABs) are increasingly becoming of great concern to water resources worldwide due to indiscriminate waste disposal habits resulting in water pollution and eutrophication. When cyanobacterial cells lyse (burst) they release toxins called microcystins (MCs) that are well known for their hepatotoxicity (causing liver damage) and have been found in eutrophic lakes, rivers, wastewater ponds and other water reservoirs. Prolonged exposure to low concentrated MCs are equally of health importance as they are known to be bioaccumulative and even at such low concentration do exhibit toxic effects to aquatic animals, wildlife and human liver cells. The application of common treatment processes for drinking water sourced from HABs infested reservoirs have the potential to cause algal cell lyses releasing low to higher amounts of MCs in finished water. Trace microcystins in water/tissue can be analyzed and quantified using Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) following solid-phase extraction (SPE) sample clean-up procedures. However, extracting MCs from algal samples which are rich in chlorophyll pigments and other organic matrices the SPE method suffers a number of drawbacks, including cartridge clogging, long procedural steps and use of larger volumes of extraction solvents. We applied a supported liquid membrane (SLM) based technique as an alternative sample clean-up method for LC-ESI-MS analysis of MCs from both water and algal cells. Four (4) MC variants (MC-RR, -YR, -LR and -WR) from lyophilized cells of Microcystis aeruginosa and water collected from a wastewater pond were identified) and quantified using LC-ESI-MS following a SLM extraction and liquid partitioning step, however, MC-WR was not detected from water extracts. Within 45 min of SLM extraction all studied MCs were extracted and pre-concentrated in approximately 15 μL of an acceptor phase at an optimal pH 2.02 of the donor phase (sample). The highest total quantifiable intracellular and extracellular MCs were 37.039 ± 0.087 μg/g DW and 5.123 ± 0.018 μg/L, respectively. The concentrations of MC-RR were the highest from all samples studied recording maximum values of 21.579 ± 0.066 μg/g DW and 3.199 ± 0.012 μg/L for intracellular and extracellular quantities, respectively.

  8. Synergistic effect of dicarbollide anions in liquid-liquid extraction: a molecular dynamics study at the octanol-water interface.

    PubMed

    Chevrot, G; Schurhammer, R; Wipff, G

    2007-04-28

    We report a molecular dynamics study of chlorinated cobalt bis(dicarbollide) anions [(B(9)C(2)H(8)Cl(3))(2)Co](-)"CCD(-)" in octanol and at the octanol-water interface, with the main aim to understand why these hydrophobic species act as strong synergists in assisted liquid-liquid cation extraction. Neat octanol is quite heterogeneous and is found to display dual solvation properties, allowing to well solubilize CCD(-), Cs(+) salts in the form of diluted pairs or oligomers, without displaying aggregation. At the aqueous interface, octanol behaves as an amphiphile, forming either monolayers or bilayers, depending on the initial state and confinement conditions. In biphasic octanol-water systems, CCD(-) anions are found to mainly partition to the organic phase, thus attracting Cs(+) or even more hydrophilic counterions like Eu(3+) into that phase. The remaining CCD(-) anions adsorb at the interface, but are less surface active than at the chloroform interface. Finally, we compare the interfacial behavior of the Eu(BTP)(3)(3+) complex in the absence and in the presence of CCD(-) anions and extractant molecules. It is found that when the CCD(-)'s are concentrated enough, the complex is extracted to the octanol phase. Otherwise, it is trapped at the interface, attracted by water. These results are compared to those obtained with chloroform as organic phase and discussed in the context of synergistic effect of CCD(-) in liquid-liquid extraction, pointing to the importance of dual solvation properties of octanol and of the hydrophobic character of CCD(-) for synergistic extraction of cations.

  9. Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid-liquid microextraction for determination of 2,4,6-trinitrotoluene.

    PubMed

    Fernández, Elena; Vidal, Lorena; Iniesta, Jesús; Metters, Jonathan P; Banks, Craig E; Canals, Antonio

    2014-03-01

    A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid-liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett-Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L(-1) and 9 μg L(-1), respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L(-1)), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.

  10. New drostanolone metabolites in human urine by liquid chromatography time-of-flight tandem mass spectrometry and their application for doping control.

    PubMed

    Liu, Yang; Lu, Jianghai; Yang, Sheng; Zhang, Qingying; Xu, Youxuan

    2016-04-01

    Drostanolone is one of the most frequently detected anabolic androgenic steroids in doping control analysis. Here, we studied drostanolone urinary metabolic profiles using liquid chromatography quadruple time of flight mass spectrometry (LC-QTOF-MS) in full scan and targeted MS/MS modes with accurate mass measurement. The drug was administered to one healthy male volunteer and liquid-liquid extraction along with direct-injection were used to analyze urine samples. Chromatographic peaks for potential metabolites were identified with the theoretical [M-H](-) as a target ion in a full scan experiment and actual deprotonated ions were analyzed in targeted MS/MS mode. Eleven metabolites including five new sulfates, five glucuronide conjugates, and one free metabolite were confirmed for drostanolone. Due to the absence of useful fragment ions to illustrate the steroid ring structure of drostanolone phase II metabolites, gas chromatography mass spectrometry (GC-MS) was used to obtain structural details of the trimethylsilylated phase I metabolite released after enzymatic hydrolysis and a potential structure was proposed using a combined MS approach. Metabolite detection times were recorded and S4 (2α-methyl-5α-androstan-17-one-6β-ol-3α-sulfate) and G1 (2α-methyl-5α-androstan-17-one-3α-glucuronide) were thought to be new potential biomarkers for drostanolone misuse which can be detected up to 24days by liquid-liquid extraction and 7days by direct-injection analysis after intramuscular injection. S4 and G1 were also detected in two drostanolone-positive routine urine samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. In vitro antioxidant activity and inhibitory effect, on oleic acid-induced hepatic steatosis, of fractions and subfractions from oat (Avena sativa L.) ethanol extract

    USDA-ARS?s Scientific Manuscript database

    Oats (Avena sativa L.) were extracted with 80% aqueous ethanol and the extract was successively isolated by liquid-liquid partition to yield n-hexane, ethyl acetate, n-butanol and water layers. Among these extractions the ethyl acetate (EA) layer exhibited the highest total phenolic content (TPC), t...

  12. A new dispersive liquid-liquid microextraction using ionic liquid based microemulsion coupled with cloud point extraction for determination of copper in serum and water samples.

    PubMed

    Arain, Salma Aslam; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Mariam Shahzadi; Panhwar, Abdul Haleem; Khan, Naeemullah; Baig, Jameel Ahmed; Shah, Faheem

    2016-04-01

    A simple and rapid dispersive liquid-liquid microextraction procedure based on ionic liquid assisted microemulsion (IL-µE-DLLME) combined with cloud point extraction has been developed for preconcentration copper (Cu(2+)) in drinking water and serum samples of adolescent female hepatitits C (HCV) patients. In this method a ternary system was developed to form microemulsion (µE) by phase inversion method (PIM), using ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and nonionic surfactant, TX-100 (as a stabilizer in aqueous media). The Ionic liquid microemulsion (IL-µE) was evaluated through visual assessment, optical light microscope and spectrophotometrically. The Cu(2+) in real water and aqueous acid digested serum samples were complexed with 8-hydroxyquinoline (oxine) and extracted into IL-µE medium. The phase separation of stable IL-µE was carried out by the micellar cloud point extraction approach. The influence of of different parameters such as pH, oxine concentration, centrifugation time and rate were investigated. At optimized experimental conditions, the limit of detection and enhancement factor were found to be 0.132 µg/L and 70 respectively, with relative standard deviation <5%. In order to validate the developed method, certified reference materials (SLRS-4 Riverine water) and human serum (Sero-M10181) were analyzed. The resulting data indicated a non-significant difference in obtained and certified values of Cu(2+). The developed procedure was successfully applied for the preconcentration and determination of trace levels of Cu(2+) in environmental and biological samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, Matthias; Ovchinnikova, Olga S; Van Berkel, Gary J

    RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system.more » RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant materials.« less

  14. Binary Solvents Dispersive Liquid-Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography.

    PubMed

    Kiarostami, Vahid; Rouini, Mohamad-Reza; Mohammadian, Razieh; Lavasani, Hoda; Ghazaghi, Mehri

    2014-02-03

    Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.

  15. Microorganism Nutrition Processes as a General Route for the Preparation of Bionic Nanocomposites Based on Intractable Polymers.

    PubMed

    Valentini, L; Bon, S Bittolo; Pugno, N M

    2016-08-31

    In this paper the fermentation process activated by living microorganisms of the baker's yeast is proposed as a facile assembly method of hybrid nanoparticles at liquid interface. Water dispersion of commercial baker's yeast extract used for bread production, graphene nanoplatelets (GNPs), and carbon nanotubes (CNTs) were added to oil/water interface; when the yeast is activated by adding sugar, the byproduct carbon dioxide bubbles migrate from the water phase to the oil/water interface generating a floating nanostructured film at liquid interface where it is trapped. Starting from this simple method, we propose a general approach for the stabilization of intractable poly(etheretherketone) polymeric particles with GNPs and CNTs at immiscible liquid interface. This process allowed the formation of sintered porous composites with improved mechanical properties. The porous structure of the composites gave rise to a low thermal conductivity making them good candidates for thermal insulating applications. Liquid absorption by these porous composites has been also reported. We believe that this new approach may have applications in the large scale fabrication of nanomaterials and is particularly suited for the preparation of nanocomposites starting from polymers that are intractable by solvent casting.

  16. Application of liquid chromatography-electrospray ionization mass spectrometry for study of steroid-converting enzymes.

    PubMed

    Miksík, Ivan; Mikulíková, Katerina; Pácha, Jirí; Kucka, Marek; Deyl, Zdenek

    2004-02-05

    A high-performance liquid chromatography-atmospheric pressure ionization-electrospray ionization mass spectrometry (HPLC-API-ESI-MS) method was developed for the analysis of steroids in a study of steroid-converting enzymes. Separations ware done on a Zorbax Eclipse XDB-C18 column (eluted with a linear methanol-water-acetic acid gradient) and identification of the steroids involved was done by API-ESI-MS using positive ion mode and extracted ion analysis. The applicability of the present method for studying steroid metabolism was proven in assaying two steroid-converting enzymes (20beta-hydroxysteroid dehydrogenase and 11beta-hydroxysteroid dehydrogenase) in various biological samples (rat and chicken intestine, chicken oviduct).

  17. Genotoxicity of wastewaters used for irrigation of food crops.

    PubMed

    Ansari, Mohd Ikram; Malik, Abdul

    2009-04-01

    In most towns of India, wastewater coming from both industrial and domestic sources and without any treatment is used to irrigate the agricultural crops. This practice has been polluting the soil, and pollutants could possibly reach the food chain. For the above reasons, the wastewaters of Ghaziabad City (India), which is used for irrigation, were sampled (at two different sites) and monitored for the presence of genotoxic agents from January 2005 to June 2007. Gas chromatographic analysis showed the presence of certain OC (DDE, DDT, Dieldrin, Aldrin, and Endosulfan) and OP (Dimethoate, Malathion, Methlyparathion, and Chlorpyrifos) pesticides in both the sampling sites. Wastewater samples were concentrated using XAD resins (XAD-4 and XAD-8) and liquid-liquid extraction procedures, and the extracts were assayed for genotoxic potential by Ames Salmonella/microsome test, DNA repair defective mutants, and bacteriophage lambda systems. The test samples exhibited significant mutagenicity with TA98, TA97a, and TA100 strains with the probable role of contaminating pesticides in the wastewater. However, XAD-concentrated samples were more mutagenic in both sites as compared to liquid-liquid-extracted samples. The damage in the DNA repair defective mutants in the presence of XAD-concentrated water samples were also found to be higher to that of liquid-liquid-extracted water samples at the dose level of 20 muL/mL culture. All the mutants invariably exhibited significant decline in their colony-forming units as compared to their isogenic wild-type counterparts. The survival was decreased by 81.7 and 75.5% in polA(-) strain in site I, and 76.0 and 73.5% in site II in polA(-) under the same experimental conditions after 6 h of treatment with XAD-concentrated and liquid-liquid-extracted samples, respectively. A significant decrease in the survival of bacteriophage lambda was also observed when treated with the test samples. Copyright 2008 Wiley Periodicals, Inc.

  18. Combination of solid phase extraction and dispersive liquid-liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination.

    PubMed

    Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz

    2013-12-15

    A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A Teaching Laboratory for Comprehensive Lipid Characterization from Food Samples

    ERIC Educational Resources Information Center

    Bendinskas, Kestutis; Weber, Benjamin; Nsouli, Tamara; Nguyen, Hoangvy V.; Joyce, Carolyn; Niri, Vadoud; Jaskolla, Thorsten W.

    2014-01-01

    Traditional and state-of-the-art techniques were combined to probe for various lipid classes from egg yolk and avocado qualitatively and quantitatively. A total lipid extract was isolated using liquid-liquid extraction. An aliquot of the total lipid extract was subjected to transesterification to form volatile fatty acid methyl esters suitable for…

  20. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING LIQUID FOOD SAMPLES FOR ANALYSIS OF POLAR ORGANIC POLLUTANTS (SOP-5.29)

    EPA Science Inventory

    This SOP describes the extraction and preparation of a liquid food sample for analysis of acidic persistent organic pollutants such as acid herbicides, pentachlorphenol, and 3,5,6-trichloro-2-phenol. It covers the extraction, concentration and derivatization of samples that are t...

  1. Determination of trihalomethanes in waters by ionic liquid-based single drop microextraction/gas chromatographic/mass spectrometry.

    PubMed

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-10-31

    A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.

  2. Simultaneous determination of furfural and its degradation products, furoic acid and maleic acid, in transformer oil by the reversed-phase vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography.

    PubMed

    Wang, Yifan; Li, Haiyan; Yang, Zhen; Zhang, Weijie; Hua, Jia

    2017-12-01

    To explore why the use of furfural as a transformer oil-paper insulation aging characteristic is problematic in real world application, we developed a method for the simultaneous determination of furfural, furoic acid, and maleic acid in transformer oil by reversed-phase vortex-assisted liquid-liquid microextraction combined with high-performance liquid chromatography. The conditions for the proposed method were optimized, and the obtained extract can be directly analyzed by high-performance liquid chromatography. The detection limits (signal-to-noise ratio = 3) of the method ranged from 1.0 to 4.6 μg/L, the enrichment factors for furfural, furoic acid, maleic acid, and fumaric acid were 4.6, 25.1, 15.6, and 17.5, respectively, and the recovery rates for three analytes (fumaric acid was undetected) range from 82.1 to 106.2%. The contents of furfural, furoic acid, and maleic acid resulted from accelerated aging of transformer insulation oil-paper were measured using the present method for the first time, and the aging samples were analyzed by liquid chromatography with mass spectrometry for the identification of furoic acid and maleic acid in the aging transformer oil samples. Using the optimal method, the target products of samples at different aging time were tracked and measured. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Dispersive liquid-liquid microextraction based on the solidification of floating organic droplet for the determination of polychlorinated biphenyls in aqueous samples.

    PubMed

    Dai, Liping; Cheng, Jing; Matsadiq, Guzalnur; Liu, Lu; Li, Jun-Kai

    2010-08-03

    In the proposed method, an extraction solvent with a lower toxicity and density than the solvents typically used in dispersive liquid-liquid microextraction was used to extract seven polychlorinated biphenyls (PCBs) from aqueous samples. Due to the density and melting point of the extraction solvent, the extract which forms a layer on top of aqueous sample can be collected by solidifying it at low temperatures, which form a layer on top of the aqueous sample. Furthermore, the solidified phase can be easily removed from the aqueous phase. Based on preliminary studies, 1-undecanol was selected as the extraction solvent, and a series of parameters that affect the extraction efficiency were systematically investigated. Under the optimized conditions, enrichment factors for PCBs ranged between 494 and 606. Based on a signal-to-noise ratio of 3, the limit of detection for the method ranged between 3.3 and 5.4 ng L(-1). Good linearity, reproducibility and recovery were also obtained. 2010 Elsevier B.V. All rights reserved.

  4. Ionic Liquids and Relative Process Design

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Lu, X.; Zhang, Y.; Zhou, Q.; Sun, J.; Han, L.; Yue, G.; Liu, X.; Cheng, W.; Li, S.

    Ionic liquids have gained increasing attention in recent years due to their significant advantages, not only as alternative solvents but also as new materials and catalysts. Until now, most research work on ionic liquids has been at the laboratory or pilot scale. In view of the multifarious applications of ionic liquids, more new knowledge is needed and more systematic work on ionic liquids should be carried out deeply and broadly in order to meet the future needs of process design. For example, knowledge of the physicochemical properties is indispensable for the design of new ionic liquids and for the development of novel processes. The synthesis and application of ionic liquids are fundamental parts of engineering science, and the toxicity and environmental assessment of ionic liquids is critical importance for their large scale applications, especially for process design. These research aspects are closely correlated to the industrial applications of ionic liquids and to sustainable processes. However, material process design in the industrial applications of ionic liquids has hardly been implemented. Therefore, this chapter reviews several essential issues that are closely related to process design, such as the synthesis, structure-property relationships, important applications, and toxicity of ionic liquids.

  5. Sensitive determination of nitrophenol isomers by reverse-phase high-performance liquid chromatography in conjunction with liquid-liquid extraction

    USDA-ARS?s Scientific Manuscript database

    A method for the highly sensitive determination of 2-, 3- and 4- nitrophenols was developed using reverse-phase high-performance liquid chromatography (RP-HPLC) with a UV photodiode array detector. Using a reverse-phase column and 40% aqueous acetonitrile as an eluent (i.e. isocratic elution), the i...

  6. Quantitative determination of antidepressants and their select degradates by liquid chromatography/electrospray ionization tandem mass spectrometry in biosolids destined for land application.

    PubMed

    Niemi, Lydia M; Stencel, Katherine A; Murphy, Madigan J; Schultz, Melissa M

    2013-08-06

    Antidepressants are one of the most widely dispensed classes of pharmaceuticals in the United States. As wastewater treatment plants are a primary source of pharmaceuticals in the environment, the use of biosolids as fertilizer is a potential route for antidepressants to enter the terrestrial environment. A microsolvent extraction method, utilizing green chemistry, was developed for extraction of the target antidepressants and degradation products from biosolids, or more specifically lagoon biosolids. Liquid chromatography/tandem mass spectrometry was used for quantitative determination of antidepressants in the lagoon biosolid extracts. Recoveries from matrix spiking experiments for the individual antidepressants had an average of 96%. The limits of detection for antidepressant pharmaceuticals and degradates ranged from 0.36 to 8.0 ng/kg wet weight. The method was applied to biosolids destined for land application. A suite of antidepressants was consistently detected in the lagoon biosolid samples, and thus antidepressants are being introduced to terrestrial environments through the land application of these biosolids. Sertraline and norsertraline were the most abundant antidepressant and degradation product detected in the biosolid samples. Detected, individual antidepressant concentrations ranged from 8.5 ng/kg (norfluoxetine) to 420 ng/kg wet weight (norsertraline).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Stephen A.; Nacham, Omprakash; Clark, Kevin D.

    Magnetic ionic liquids (MILs) are distinguished from traditional ionic liquids (ILs) by the incorporation of a paramagnetic component within their chemical structure. Hydrophobic MILs are novel solvents that can be used in many applications, including liquid–liquid extraction (LLE) and catalysis. Low viscosity and low water solubility are essential features that determine their feasibility in LLE. Here, we synthesized extremely hydrophobic MILs by using transition and rare earth metal hexafluoroacetylacetonate chelated anions paired with the trihexyl(tetradecyl)phosphonium ([P 66614 +]) cation. Hydrophobic MILs exhibiting water solubilities less than 0.01% (v/v) were synthesized in a rapid two-step procedure. Furthermore, the viscosities of themore » MILs are among some of the lowest ever reported for hydrophobic MILs (276.5–927.9 centipoise (cP) at 23.7 °C) dramatically improving the ease of handling these liquids. For the first time, the magnetic properties of MILs possessing hexafluoroacetylacetonate chelated metal anions synthesized in this study are reported using a superconducting quantum interference device (SQUID) magnetometer. We also achieved an effective magnetic moments (μ eff) as high as 9.7 and 7.7 Bohr magnetons (μ B) by incorporating high spin dysprosium and gadolinium ions, respectively, into the anion component of the MIL. The low viscosity, high hydrophobicity, and large magnetic susceptibility of these MILs make them highly attractive and promising solvents for separations and purification, liquid electrochromic materials, catalytic studies, as well as microfluidic applications.« less

  8. The Influence of Lactic Acid Concentration on the Separation of Light Rare Earth Elements by Continuous Liquid-Liquid Extraction with 2-Ethylhexyl Phosphonic Acid Mono-2-ethylhexyl Ester

    NASA Astrophysics Data System (ADS)

    de Carvalho Gomes, Rafael; Seruff, Luciana Amaral; Scal, Maira Labanca Waineraich; Vera, Ysrael Marrero

    2018-02-01

    The separation of rare earth elements (REEs) using solvent extraction adding complexing agents appears to be an alternative to saponification of the extractant. We evaluated the effect of lactic acid concentration on didymium (praseodymium and neodymium) and lanthanum extraction with 2-ethylhexyl phosphonic acid mono-2-ethyl hexyl ester [HEH(EHP)] as extractant. First, we investigated in batch experiments the separation of lanthanum (La) and didymium (Pr and Nd) using McCabe-Thiele diagrams to estimate the number of extraction stages when the feed solution was or was not conditioned with lactic acid. Additionally, we conducted continuous liquid-liquid extraction experiments and evaluated the influence of lactic acid concentration on the REE extraction and separation. The tests showed that the extraction percentage of REEs and the separation factor Pr/La increased when the lactic acid concentration increased, but the didymium purity decreased. Lanthanum, praseodymium, and neodymium extraction rate were 23.0, 89.7, and 99.2 pct, respectively, with 1:1 aqueous/organic volume flow rate and feed solution doped with 0.52 mol L-1 lactic acid. The highest didymium purity reached was 92.0 pct with 0.26 mol L-1 lactic acid concentration.

  9. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.

    PubMed

    Rout, Alok; Binnemans, Koen

    2014-02-28

    The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.

  10. Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography-mass spectrometry (MD-GC/MS).

    PubMed

    Cunha, S C; Fernandes, J O

    2010-11-15

    A novel method combining dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography coupled to mass spectrometry was developed for the determination of free and total bisphenol A (BPA) and bisphenol B (BPB) in human urine samples. The DLLME procedure combines extraction, derivatization and concentration of the analytes into one step. Several important variables influencing the extraction efficiency and selectivity such as nature and volume of extractive and dispersive solvents as well as the amount of acetylating reagent were investigated. The temperature and time to hydrolyze BPA and BPB conjugates with a β-glucuronidase and sulfatase enzyme preparation were also studied. Under the optimized conditions good efficiency extraction (71-93%) and acceptable total DLLME yields (56-77%) were obtained for both analytes. Matrix-matched calibration curves were linear with correlation coefficients higher than 0.996 in the range level 0.1-5 μg/l, and the relative standard deviations (%RSD) were lower than 20% (n=6). The limits of detection were 0.03 and 0.05 μg/l for BPA and BPB, respectively. The applicability of the proposed method for determining urinary free and total BPA and BPB was assessed by analyzing the human urine of a group of 20 volunteers. Free BPA was detected in 45% of the sample whereas total BPA was detected in 85% of the samples at concentrations ranging between 0.39 and 4.99 μg/l. BPB was detected in conjugated form in two samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Novel capsule phase microextraction in combination with liquid chromatography-tandem mass spectrometry for determining personal care products in environmental water.

    PubMed

    Lakade, Sameer S; Borrull, Francesc; Furton, Kenneth G; Kabir, Abuzar; Marcé, Rosa Maria; Fontanals, Núria

    2018-05-01

    A novel sample preparation technique named capsule phase microextraction (CPME) is presented here. The technique utilizes a miniaturized microextraction capsule (MEC) as the extraction medium. The MEC consists of two conjoined porous tubular polypropylene membranes, one of which encapsulates the sorbent through sol-gel technology, while the other encapsulates a magnetic metal rod. As such, MEC integrates both the extraction and stirring mechanisms into a single device. The aim of this article is to demonstrate the application potential of CPME as sample preparation technique for the extraction of a group of personal care products (PCPs) from water matrices. Among the different sol-gel sorbent materials (UCON ® , poly(caprolactone-dimethylsiloxane-caprolactone) (PCAP-DMS-CAP) and Carbowax 20M (CW-20M)) evaluated, CW-20M MEC demonstrated the best extraction performance for the selected PCPs. The extraction conditions for sol-gel CW-20M MEC were optimized, including sample pH, stirring speed, addition of salt, extraction time, sample volume, liquid desorption solvent, and time. Under the optimal conditions, sol-gel CW-20M MEC provided recoveries, ranging between 47 and 90% for all analytes, except for ethylparaben, which showed a recovery of 26%. The method based on CPME with sol-gel CW-20M followed by liquid chromatography-tandem mass spectrometry was developed and validated for the extraction of PCPs from river water and effluent wastewater samples. When analyzing different environmental samples, some analytes such as 2,4-dihydroxybenzophenone, 2,2-dihydroxy-4-4 methoxybenzophenone and 3-benzophenone were found at low ng L -1 .

  12. Recovering Bioactive Compounds from Olive Oil Filter Cake by Advanced Extraction Techniques

    PubMed Central

    Lozano-Sánchez, Jesús; Castro-Puyana, María; Mendiola, Jose A.; Segura-Carretero, Antonio; Cifuentes, Alejandro; Ibáñez, Elena

    2014-01-01

    The potential of by-products generated during extra-virgin olive oil (EVOO) filtration as a natural source of phenolic compounds (with demonstrated bioactivity) has been evaluated using pressurized liquid extraction (PLE) and considering mixtures of two GRAS (generally recognized as safe) solvents (ethanol and water) at temperatures ranging from 40 to 175 °C. The extracts were characterized by high-performance liquid chromatography (HPLC) coupled to diode array detection (DAD) and electrospray time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS) to determine the phenolic-composition of the filter cake. The best isolation procedure to extract the phenolic fraction from the filter cake was accomplished using ethanol and water (50:50, v/v) at 120 °C. The main phenolic compounds identified in the samples were characterized as phenolic alcohols or derivatives (hydroxytyrosol and its oxidation product), secoiridoids (decarboxymethylated and hydroxylated forms of oleuropein and ligstroside aglycones), flavones (luteolin and apigenin) and elenolic acid derivatives. The PLE extraction process can be applied to produce enriched extracts with applications as bioactive food ingredients, as well as nutraceuticals. PMID:25226536

  13. Selective pressurized liquid extraction of polychlorinated biphenyls from fat-containing food and feed samples influence of cell dimensions, solvent type, temperature and flush volume.

    PubMed

    Sporring, Sune; Björklund, Erland

    2004-06-25

    Sulphuric acid impregnated silica was used for the lipid free extraction of polychlorinated biphenyls from fat containing food and feed matrices using pressurized liquid extraction on a Dionex ASE300, with 34 mL cells. Data were compared to a previous publication where extractions had been performed on a Dionex ASE200, with 33 mL cells. Four different fat/fat retainer ratios (FFRs) were tested (0.100, 0.075, 0.050 and 0.025) at 50 and 100 degrees C using n-pentane, n-hexane or n-heptane as extraction solvent. The best results were obtained with a FFR of 0.025 when applying a temperature of 100 degrees C. Both n-pentane and n-heptane were capable of replacing n-hexane as extraction solvent. A flush volume of 60% was sufficient as suggested in US Environmental Protection Agency Method 3545. The applicability of the method was demonstrated for naturally contaminated fish meal as well as various spiked and certified materials.

  14. Ionic liquid-based microwave-assisted extraction for the determination of flavonoid glycosides in pigeon pea leaves by high-performance liquid chromatography-diode array detector with pentafluorophenyl column.

    PubMed

    Wei, Wei; Fu, Yu-jie; Zu, Yuan-gang; Wang, Wei; Luo, Meng; Zhao, Chun-jian; Li, Chun-ying; Zhang, Lin; Wei, Zuo-fu

    2012-11-01

    In this study, an ionic liquid-based microwave-assisted extraction (ILMAE) followed by high-performance liquid chromatography-diode array detector with a pentafluorophenyl column for the extraction and quantification of eight flavonoid glycosides in pigeon pea leaves is described. Compared with conventional extraction methods, ILMAE is a more effective and environment friendly method for the extraction of nature compounds from herbal plants. Nine different types of ionic liquids with different cations and anions were investigated. The results suggested that varying the anion and cation had significant effects on the extraction of flavonoid glycosides, and 1.0 M 1-butyl-3-methylimidazolium bromide ([C4MIM]Br) solution was selected as solvent. In addition, the extraction procedures were also optimized using a series of single-factor experiments. The optimum parameters were obtained as follows: extraction temperature 60°C, liquid-solid ratio 20:1 mL/g and extraction time 13 min. Moreover, an HPLC method using pentafluorophenyl column was established and validated. Good linearity was observed with the regression coefficients (r(2)) more than 0.999. The limit of detection (LODs) (S/N = 3) and limit of quantification (LOQs) (S/N = 10) for the components were less than 0.41 and 1.47 μg/mL, respectively. The inter- and intraday precisions that were used to evaluate the reproducibility and relative standard deviation (RSD) values were less than 4.57%. The recoveries were between 97.26 and 102.69%. The method was successfully used for the analysis of samples of pigeon pea leaves. In conclusion, the developed ILMAE-HPLC-diode array detector using pentafluorophenyl column method can be applied for quality control of pigeon pea leaves and related medicinal products. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Combination of dispersive liquid-liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples.

    PubMed

    Naseri, Mohammad Taghi; Hemmatkhah, Payam; Hosseini, Mohammad Reza Milani; Assadi, Yaghoub

    2008-03-03

    The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 microL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 microgL(-1) with a detection limit of 0.5 microgL(-1). The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 microgL(-1) of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 microgL(-1) ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.

  16. A highly selective dispersive liquid-liquid microextraction approach based on the unique fluorous affinity for the extraction and detection of per- and polyfluoroalkyl substances coupled with high performance liquid chromatography tandem-mass spectrometry.

    PubMed

    Wang, Juan; Shi, Yali; Cai, Yaqi

    2018-04-06

    In the present study, a highly selective fluorous affinity-based dispersive liquid-liquid microextraction (DLLME) technique was developed for the extraction and analysis of per- and polyfluoroalkyl substances (PFASs) followed by high performance liquid chromatography tandem-mass spectrometry. Perfluoro-tert-butanol with multiple C-F bonds was chosen as the extraction solvent, which was injected into the aqueous samples with a dispersive solvent (acetonitrile) in a 120:800 (μL, v/v) mixture for PFASs enrichment. The fluorous affinity-based extraction mechanism was confirmed by the significantly higher extraction recoveries for PFASs containing multiple fluorine atoms than those for compounds with fewer or no fluorine atoms. The extraction recoveries of medium and long-chain PFASs (CF 2  > 5) exceeded 70%, except perfluoroheptanoic acid, while those of short-chain PFASs were lower than 50%, implying that the proposed DLLME may not be suitable for their extraction due to weak fluorous affinity. This highly fluoroselective DLLME technique can greatly decrease the matrix effect that occurs in mass spectrometry detection when applied to the analysis of urine samples. Under the optimum conditions, the relative recoveries of PFASs with CF 2  > 5 ranged from 80.6-121.4% for tap water, river water and urine samples spiked with concentrations of 10, 50 and 100 ng/L. The method limits of quantification for PFASs in water and urine samples were in the range of 0.6-8.7 ng/L. Furthermore, comparable concentrations of PFASs were obtained via DLLME and solid-phase extraction, confirming that the developed DLLME technique is a promising method for the extraction of PFASs in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A simple liquid extraction protocol for overcoming the ion suppression of triacylglycerols by phospholipids in liquid chromatography mass spectrometry studies.

    PubMed

    Araujo, Pedro; Tilahun, Ephrem; Breivik, Joar Fjørtoft; Abdulkader, Bashir M; Frøyland, Livar; Zeng, Yingxu

    2016-02-01

    It is well-known that triacylglycerol (TAG) ions are suppressed by phospholipid (PL) ions in regiospecific analysis of TAG by mass spectrometry (MS). Hence, it is essential to remove the PL during sample preparation prior to MS analysis. The present article proposes a cost-effective liquid-liquid extraction (LLE) method to remove PL from TAG in different kinds of biological samples by using methanol, hexane and water. High performance thin layer chromatography confirmed the lack of PL in krill oil and salmon liver samples, submitted to the proposed LLE protocol, and liquid chromatography tandem MS confirmed that the identified TAG ions were highly enhanced after implementing the LLE procedure. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2002-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  19. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  20. Rapid determination of alkaloids in Macleaya cordata using ionic liquid extraction followed by multiple reaction monitoring UPLC-MS/MS analysis.

    PubMed

    Li, Linqiu; Huang, Mingyuan; Shao, Junli; Lin, Bokun; Shen, Qing

    2017-02-20

    The ultrasonic-assisted extraction (UAE) and ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) have been successfully applied in extracting of six alkaloids from M. cordata. 1-hexyl-3-methylimidazolium tetrafluoroborate ([C 6 MIM][BF 4 ]) aqueous solution was used as extraction solvent. The target analytes in raw material were deposited into a single drop of 1-hexyl-3-methylimidazolium hexafluorophosphate ([C 6 MIM][PF 6 ]), which was in situ formed by mixing [C 6 MIM][BF 4 ] and potassium hexafluorophosphate ([K][PF 6 ]. Afterwards, the extract was analyzed by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) in multiple-reaction monitoring (MRM) mode. The proposed method was fully validated in terms of linearity (0.9983-0.9992), LOD (0.080ngmL -1 ), LOQ (0.25ngmL -1 ), intra-day precision (<5.46%), inter-day precision (<6.36%), and recovery (86.42-112.48%). The results indicate that the approach of combining IL-DLLME with UPLC-MS/MS is powerful and practical for analyzing alkaloids in M. cordata., and it also has great potential for comprehensive quality control of other herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Group extraction of organic compounds present in liquid samples

    NASA Technical Reports Server (NTRS)

    Jahnsen, Vilhelm J. (Inventor)

    1976-01-01

    An extraction device is disclosed comprising a tube containing a substantially inert, chemically non-reactive packing material with a large surface area to volume ratio. A sample which consists of organic compounds dissolved in a liquid, is introduced into the tube. As the sample passes through the packing material it spreads over the material's large surface area to form a thin liquid film which is held on the packing material in a stationary state. A particular group or family of compounds is extractable from the sample by passing a particular solvent system consisting of a solvent and selected reagents through the packing material. The reagents cause optimum conditions to exist for the compounds of the particular family to pass through the phase boundary between the sample liquid and the solvent of the solvent system. Thus, the compounds of the particular family are separated from the sample liquid and become dissolved in the solvent of the solvent system. The particular family of compounds dissolved in the solvent, representing an extract, exits the tube together with the solvent through the tube's nozzle, while the rest of the sample remains on the packing material in a stationary state. Subsequently, a different solvent system may be passed through the packing material to extract another family of compounds from the remaining sample on the packing material.

  2. Skin whitening and anti-corrugation activities of glycoprotein fractions from liquid extracts of boiled sea cucumber.

    PubMed

    Kim, So Jung; Park, So Yun; Hong, Sun-Mee; Kwon, Eun-Hye; Lee, Taek-Kyun

    2016-10-01

    To determine skin whitening and wrinkle improvement efficacy, glycoprotein fractions were extracted from liquid extracts of boiled sea cucumber and their effects on tyrosine and elastase inhibitory activities were assayed. Fractions above and below 50 kDa (>50 kDa and <50 kDa) were extracted via a series of steps involving: boiling, filtering, desalting and freeze drying. Cytotoxicity, skin whitening and wrinkle-removing effects of boiled liquid were determined. Our MTT data showed that neither glycoprotein fraction of boiled liquid induces cellular cytotoxicity up to a concentration of 10 mg/mL treatment of the mouse melanoma cell line, B16F10, with 10 mg/mL >50 kDa enhanced tyrosinase and elastase inhibitory activities by 50.84% and 28.78%, respectively. Correlations of the >50 kDa concentration with tyrosinase inhibitory (R2 = 0.968) and elastase inhibitory (R2 = 0.983) efficacy were significant. >50 kDa glycoprotein fraction isolated from liquid extracts of boiled sea cucumber, which can serve as a functional cosmetic ingredient for whitening and wrinkle improvement of skin. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  3. Preparation of elastic diglycolamic-acid modified chitosan sponges and their application to recycling of rare-earth from waste phosphor powder.

    PubMed

    Bai, Ruixi; Yang, Fan; Zhang, Yang; Zhao, Zhigang; Liao, Qiuxia; Chen, Peng; Zhao, Panpan; Guo, Wanghuan; Cai, Chunqing

    2018-06-15

    Inspired by the phenomenon of sponges soaking up water, a novel syringe-like adsorption device used diglycolamic-acid modified chitosan sponges (CSs-DGAA) as adsorbents is reported for recycling of rare-earth elements (REEs) by Squeezing & Soaking (S&S) operation. Integrating the elasticity of sponges and selective extraction ability of diglycolamic acid groups, the new device can efficiently recycle REEs from aqueous solutions. This device only needs 10 min to achieve adsorption equilibrium; squeezing the water from the sponges achieves solid-liquid separation. This syringe-like adsorption method not only solves the pollution problem caused by the organic solvents used during liquidliquid extractions, but also improves the time needed to achieve adsorption equilibrium and uses significantly less energy than energy intensive solid-phase extractions of solid-liquid separations. Moreover, the environment-friendly adsorbents effectively recycle yttrium and europium from waste phosphor powders. These experimental results demonstrated that the S&S method based on polymeric sponges has potential application in hydrometallurgy and environmental remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Oxidative desulfurization of dibenzothiophene from model oil using ionic liquids as extracting agent

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Atikah, N.; Chong, F. K.; Shaharun, Maizatul S.

    2012-09-01

    The oxidative desulfurization of dibenzothiophene (DBT) from model oil (in n-dodecane) was carried out using ionic liquid as the extractant and catalyst, and hydrogen peroxide (H2O2) in combination with acetic acid (CH3COOH) and sulphuric acid (H2SO4) as the oxidant. The ionic liquids used were 1-butyl-3-methylimidazolium octyl sulphate ([Bmim][OcSO4]) and 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]). The effect of the amounts of H2O2 on oxidative desulphurization of model oil was first investigated without the usage of ionic liquids at room temperature. The results indicate that greater amount of H2O2 give higher desulfurization and the maximum desulfurization in this study, i.e. 34 %, was occurred when the molar ratio of H2O2 to sulfur was 5:1. With the usage of ionic liquid and the molar ratio of 5:1 (H2O2:sulfur), the efficiency of DBT removal from model oil was increased significantly in terms of percent removal and removal time. Ionic liquid of [Bmim][OcSO4] performed better than [Bmim][Ac] with 72 % DBT removal. When molar ratio of H2O2 to sulphur was 5:1, volume ratio of ionic liquid to model oil was 1:1 and mixing time was 60 min at room temperature. The results indicate the potential of ionic liquids as the extractant and catalyst for oxidative desulfurization of hydrocarbon fuels.

  5. Rapid determination of some psychotropic drugs in complex matrices by tandem dispersive liquid-liquid microextraction followed by high performance liquid chromatography.

    PubMed

    Asghari, Alireza; Fahimi, Ebrahim; Bazregar, Mohammad; Rajabi, Maryam; Boutorabi, Leila

    2017-05-01

    Simple and rapid determinations of some psychotropic drugs in some pharmaceutical wastewater and human plasma samples were successfully accomplished via the tandem dispersive liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection (TDLLME-HPLC-UV). TDLLME of the three psychotropic drugs clozapine, chlorpromazine, and thioridazine was easily performed through two consecutive dispersive liquid-liquid microextractions. By performing this convenient method, proper sample preconcentrations and clean-ups were achieved in just about 7min. In order to achieve the best extraction efficiency, the effective parameters involved were optimized. The optimal experimental conditions consisted of 100μL of CCl 4 (as the extraction organic solvent), and the pH values of 13 and 2 for the donor and acceptor phases, respectively. Under these optimum experimental conditions, the proposed TDLLME-HPLC-UV technique provided a good linearity in the range of 5-3000ngmL -1 for the three psychotropic drugs with the correlation of determinations (R 2 s) higher than 0.996. The limits of quantification (LOQs) and limits of detection (LODs) obtained were 5.0ngmL -1 and 1.0-1.5ngmL -1 , respectively. Also the proper enrichment factors (EFs) of 96, 99, and 88 for clozapine, chlorpromazine, and thioridazine, respectively, and good extraction repeatabilities (relative standard deviations below 9.3%, n=5) were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Analysis of flavor compounds by GC/MS after liquid-liquid extraction from fruit juices

    NASA Astrophysics Data System (ADS)

    Tuşa, F. D.; Moldovan, Z.; Schmutzer, G.; Magdaş, D. A.; Dehelean, A.; Vlassa, M.

    2012-02-01

    In this work we describe a rapid method for analysis of volatile profiles of several commercial fruit juices using GC/MS instrument after liquid-liquid extraction. Volatile flavor compounds have been identified based on mass spectrum obtained in EI mode. This method allows to analyses a wide range of flavor compounds (esters, aldehydes, alcohols, terpenoids) the procedure was rapid, simple and inexpensive. Moreover, by means of volatile compounds it could be possible to distinguish between juices of organic and conventional production and those with flavorings addition. More of 20 compounds were identified and quantified as relative chromatogram area taken on larges ion in mass spectrum.

  7. Determination of desipramine in biological samples using liquid-liquid-liquid microextraction combined with in-syringe derivatization, gas chromatography, and nitrogen/phosphorus detection.

    PubMed

    Saraji, Mohammad; Mehrafza, Narges; Bidgoli, Ali Akbar Hajialiakbari; Jafari, Mohammad Taghi

    2012-10-01

    A method was established for the determination of desipramine in biological samples using liquid-liquid-liquid microextraction followed by in-syringe derivatization and gas chromatography-nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n-Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2-20 μg/L (r(2) = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Flash-point prediction for binary partially miscible mixtures of flammable solvents.

    PubMed

    Liaw, Horng-Jang; Lu, Wen-Hung; Gerbaud, Vincent; Chen, Chan-Cheng

    2008-05-30

    Flash point is the most important variable used to characterize fire and explosion hazard of liquids. Herein, partially miscible mixtures are presented within the context of liquid-liquid extraction processes. This paper describes development of a model for predicting the flash point of binary partially miscible mixtures of flammable solvents. To confirm the predictive efficacy of the derived flash points, the model was verified by comparing the predicted values with the experimental data for the studied mixtures: methanol+octane; methanol+decane; acetone+decane; methanol+2,2,4-trimethylpentane; and, ethanol+tetradecane. Our results reveal that immiscibility in the two liquid phases should not be ignored in the prediction of flash point. Overall, the predictive results of this proposed model describe the experimental data well. Based on this evidence, therefore, it appears reasonable to suggest potential application for our model in assessment of fire and explosion hazards, and development of inherently safer designs for chemical processes containing binary partially miscible mixtures of flammable solvents.

  9. Dispersive liquid-liquid microextraction of lead(II) as 5-(4-dimethylaminobenzylidene) rhodanine chelates from food and water samples.

    PubMed

    Alothman, Zeid A; Al-Shaalan, Nora H; Habila, Mohamed A; Unsal, Yunus E; Tuzen, Mustafa; Soylak, Mustafa

    2015-02-01

    A dispersive liquid-liquid microextraction procedure for lead(II) as its 5-(4-dimethylaminobenzylidene) rhodanine complex has been established prior to its microsampling flame atomic absorption spectrometric determination. The influences of various analytical parameters including pH, solvent type and volume, dispersive solvent type and volume, 5-(4-dimethylaminobenzylidene) rhodanine amount, salt effect, and centrifugation time and speed were investigated. The effects of certain alkali, alkaline earth, and transition metal ions on the quantitative extraction of lead(II) were also studied. Quantitative recoveries were obtained at pH 6. The enrichment factor was calculated as 125. The detection limit for lead is 1.1 μg/L. The accuracy of the method was tested with the additions recovery test and analysis of the standard reference materials (SPS-WW2 waste water, NIST SRM 1515 apple leaves, and TMDA-51.3 fortified water). Applications of the present procedure were tested by analyzing water and food samples.

  10. Determination of the neuropharmacological drug nodakenin in rat plasma and brain tissues by liquid chromatography tandem mass spectrometry: Application to pharmacokinetic studies.

    PubMed

    Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi

    2017-09-01

    A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Alternative first-principles calculation of entropy for liquids

    DOE PAGES

    Meyer, Edmund R.; Ticknor, Christopher; Kress, Joel D.; ...

    2016-04-15

    Here, w present an alternative method for interpreting the velocity autocorrelation function (VACF) of a fluid with application to extracting the entropy in a manner similar to the methods developed by Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and improved upon by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. The liquid VACF is decomposed into two components, one gas and one solid, and each contribution's entropic portion is calculated. But, we fit both the gas and solid portions of the VACF in the time domain. This approach is applied to a single-component liquid (a two-phase model of liquidmore » Al at the melt line) and two different two-component systems: a superionic-to-superionic (bcc to fcc) phase transition in H 2 O at high temperatures and pressures and a metastable liquid state of MgO. Finally, for all three examples, comparisons to existing results in the literature demonstrate the validity of our alternative.« less

  12. Ultrasonic-assisted extraction of essential oil from Botryophora geniculate using different extracting solvents

    NASA Astrophysics Data System (ADS)

    Habibullah, Wilfred, Cecilia Devi

    2016-11-01

    This study compares the performance of ionic liquids to substitute conventional solvents (hexane, dichloromethane and methanol) to extract essential oil from Botryophora geniculate plant. Two different Ionic liquids ([C3MIM][Ac], [C4MIM][Ac]) with co-solvent diethyl ether were used in the ultrasonic-assisted extraction. The effect of various experimental conditions such as time, temperature and solvent were studied. Gas chromatography-mass spectroscopy (GC-MS) was used to analyze essential oils. The results showed that in ultrasonic-assisted extraction using ionic liquids as a solvent gave highest yield (9.5%) in 30 min at temperature 70°C. When using ultrasonic bath with hexane, dichloromethane and methanol, yields was (3.34%), (3.6%) and (3.81%) at 90 min, respectively were obtained. The ultrasonic-assisted extraction under optimal extraction conditions (time 30 min, temperature of 70°C) gave the best yield for the essential oil extraction.

  13. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection.

    PubMed

    Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen

    2015-09-01

    A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    For many years liquid scintillation cocktail (LSC) wastes have been generated and stored at Argonne National Laboratory (ANL). These wastes are stored in thousands of 10--20 m scintillation vials, many of which contain elements with Z > 88. Because storage space is limited, disposal of this waste is pressing. These wastes could be commercially incinerated if the radionuclides with Z>88 are reduced to sufficiently low levels. However, there is currently no deminimus level for these radionuclides, and separation techniques are still being tested. The University of Illinois is conducting experiments to separate radionuclides with Z > 88 from simulated LSCmore » wastes by using liquid-liquid extraction (LLX) and demulsification techniques. The actinide elements are removed from the LSC by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated and the organic phase, now free from radionuclides with Z > 88, can be sent to a commercial incineration facility. The aqueous phase may be treated and disposed of using existing techniques. The LLX separation techniques used solutions of sodium oxalate, aluminum nitrate, and tetrasodium EDTA at varying concentrations. These extractants were mixed with the simulated waste in a 1:1 volume ratio. Using 1.0M Na{sub 4} EDTA salt solutions, decontamination ratios as high as 230 were achieved.« less

  15. Noncircular orifice holes and advanced fabrication techniques for liquid rocket injectors. Phase 3: Analytical and cold-flow experimental evaluation of rectangular concentric tube injector elements for gas/liquid application. Phase 4: Analytical and experimental evaluation of noncircular injector elements for gas/liquid and liquid/liquid application

    NASA Technical Reports Server (NTRS)

    Mchale, R. M.

    1974-01-01

    Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.

  16. Determination of parabens in human milk and other food samples by capillary electrophoresis after dispersive liquid-liquid microextraction with back-extraction.

    PubMed

    Alshana, Usama; Ertaş, Nusret; Göğer, Nilgün G

    2015-08-15

    Dispersive liquid-liquid microextraction (DLLME) with back-extraction was used prior to capillary electrophoresis (CE) for the extraction of four parabens. Optimum extraction conditions were: 200 μL chloroform (extraction solvent), 1.0 mL acetonitrile (disperser solvent) and 1 min extraction time. Back-extraction of parabens from chloroform into a 50mM sodium hydroxide solution within 10s facilitated their direct injection into CE. The analytes were separated at 12°C and 25 kV with a background electrolyte of 25 mM borate buffer containing 5.0% (v/v) acetonitrile. Enrichment factors were in the range of 4.3-10.7 and limits of detection ranged from 0.1 to 0.2 μg mL(-1). Calibration graphs showed good linearity with coefficients of determination (R(2)) higher than 0.9957 and relative standard deviations (%RSDs) lower than 3.5%. DLLME-CE was demonstrated to be a simple and rapid method for the determination of parabens in human milk and food with relative recoveries in the range of 86.7-103.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ionic liquid-salt aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of sulfonamides in water and food.

    PubMed

    Han, Juan; Wang, Yun; Liu, Yan; Li, Yanfang; Lu, Yang; Yan, Yongsheng; Ni, Liang

    2013-02-01

    Ionic liquid-salt aqueous two-phase extraction coupled with high-performance liquid chromatography with ultraviolet detection was developed for the determination of sulfonamides in water and food samples. In the procedure, the analytes were extracted from the aqueous samples into the ionic liquid top phase in one step. Three sulfonamides, sulfamerazine, sulfamethoxazole, and sulfamethizole were selected here as model compounds for developing and evaluating the method. The effects of various experimental parameters in extraction step were studied using two optimization methods, one variable at a time and Box-Behnken design. The results showed that the amount of sulfonamides did not have effect on the extraction efficiency. Therefore, a three-level Box-Behnken experimental design with three factors, which combined the response surface modeling, was used to optimize sulfonamides extraction. Under the most favorable extraction parameters, the detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method for the target compounds were achieved within the range of 0.15-0.3 ng/mL and 0.5-1.0 ng/mL from spiked samples, respectively, which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Finally, the proposed method was successfully applied to the determination of sulfonamide compounds in different water and food samples and satisfactory recoveries of spiked target compounds in real samples were obtained.

  18. Preliminary extraction of tannins by 1-butyl-3-methylimidazole bromide and its subsequent removal from Galla chinensis extract using macroporous resins.

    PubMed

    Lu, Chunxia; Luo, Xiaoling; Lu, Liliang; Li, Hongmin; Chen, Xia; Ji, Yong

    2013-03-01

    In recent years, ionic liquids have become increasingly attractive as 'green solvents' used in the extraction of bioactive compounds from natural plant. However, the separation of ionic liquid from the target compounds was difficult, due to their low vapour pressure and high stabilities. In our study, ionic liquid-based ultrasonic and microwave-assisted extraction was used to obtain the crude tannins, then the macroporous resin adsorption technology was further employed to purify the tannins and remove the ionic liquid from crude extract. The results showed that XDA-6 had higher separation efficiency than other tested resins, and the equilibrium experimental data were well fitted to Langmuir isotherms. Dynamic adsorption and desorption were performed on XDA-6 packed in glass columns to optimise the separation process. The optimum conditions as follows: the ratio of column height to diameter bed was 1:8, flow rate 1 BV/h (bed volume per hour), 85% ethanol was used as eluant while the elution volume was 2 BV. Under the optimised conditions, the adsorption and desoption rate of tannins in XDA-6 were 94.81 and 91.63%, respectively. The content of tannins was increased from 70.24% in Galla chinensis extract to 85.12% with a recovery of 99.06%. The result of ultra-performance liquid chromatography (UPLC)-MS/MS analysis showed that [bmim]Br could be removed from extract. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Comparison of two extraction techniques, solid-phase microextraction versus continuous liquid-liquid extraction/solvent-assisted flavor evaporation, for the analysis of flavor compounds in gueuze lambic beer.

    PubMed

    Thompson-Witrick, Katherine A; Rouseff, Russell L; Cadawallader, Keith R; Duncan, Susan E; Eigel, William N; Tanko, James M; O'Keefe, Sean F

    2015-03-01

    Lambic is a beer style that undergoes spontaneous fermentation and is traditionally produced in the Payottenland region of Belgium, a valley on the Senne River west of Brussels. This region appears to have the perfect combination of airborne microorganisms required for lambic's spontaneous fermentation. Gueuze lambic is a substyle of lambic that is made by mixing young (approximately 1 year) and old (approximately 2 to 3 years) lambics with subsequent bottle conditioning. We compared 2 extraction techniques, solid-phase microextraction (SPME) and continuous liquid-liquid extraction/solvent-assisted flavor evaporation (CCLE/SAFE), for the isolation of volatile compounds in commercially produced gueuze lambic beer. Fifty-four volatile compounds were identified and could be divided into acids (14), alcohols (12), aldehydes (3), esters (20), phenols (3), and miscellaneous (2). SPME extracted a total of 40 volatile compounds, whereas CLLE/SAFE extracted 36 volatile compounds. CLLE/SAFE extracted a greater number of acids than SPME, whereas SPME was able to isolate a greater number of esters. Neither extraction technique proved to be clearly superior and both extraction methods can be utilized for the isolation of volatile compounds found in gueuze lambic beer. © 2015 Institute of Food Technologists®

  20. Detection of fullerenes (C60 and C70) in commercial cosmetics.

    PubMed

    Benn, Troy M; Westerhoff, Paul; Herckes, Pierre

    2011-05-01

    Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C60 and C70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C60. Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27-42%. C60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C60, demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

Top