Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.
1992-01-01
The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.
Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François
2017-10-19
Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.
NASA Astrophysics Data System (ADS)
Sakata, Masahiro; Kurata, Masaki; Hijikata, Takatoshi; Inoue, Tadashi
1991-11-01
Distribution experiments for several rare earth elements (La, Ce, Pr, Nd and Y) between molten KCl-LiCl eutectic salt and liquid Cd were carried out at 450, 500 and 600°C. The material balance of rare earth elements after reaching the equilibrium and their distribution and chemical states in a Cd sample frozen after the experiment were examined. The results suggested the formation of solid intermetallic compounds at the lower concentrations of rare earth metals dissolved in liquid Cd than those solubilities measured in the binary alloy system. The distribution coefficients of rare earth elements between two phases (mole fraction in the Cd phase divided by mole fraction in the salt phase) were determined at each temperature. These distribution coefficients were explained satisfactorily by using the activity coefficients of chlorides and metals in salt and Cd. Both the activity coefficients of metal and chloride caused a much smaller distribution coefficient of Y relative to those of other elements.
Ronco, Nicolás R; Menestrina, Fiorella; Romero, Lílian M; Castells, Cecilia B
2017-06-09
In this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.15K. The partition coefficients were calculated from the slopes of the linear regression between solute retention factors and the reciprocal of phase ratio at a given temperature according to the gas-liquid chromatographic theory. Gas-liquid interfacial adsorption was detected for a few solutes and it has been considered for the calculations of partition coefficient. Reliable solute's infinite dilution activity coefficients can be obtained when retention data are determined by a unique partitioning mechanism. The partial molar excess enthalpies at infinite dilution have been estimated from the dependence of experimental values of solute activity coefficients with the column temperature. A thorough discussion of the uncertainties of the experimental measurements and the main advantages of the use of capillary columns to acquire the aforementioned relevant thermodynamic information was performed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zuend, A.; Marcolli, C.; Peter, T.
2009-04-01
The chemical composition of organic-inorganic aerosols is linked to several processes and specific topics in the field of atmospheric aerosol science. Photochemical oxidation of organics in the gas phase lowers the volatility of semi-volatile compounds and contributes to the particulate matter by gas/particle partitioning. Heterogeneous chemistry and changes in the ambient relative humidity influence the aerosol composition as well. Molecular interactions between condensed phase species show typically non-ideal thermodynamic behavior. Liquid-liquid phase separations into a mainly polar, aqueous and a less polar, organic phase may considerably influence the gas/particle partitioning of semi-volatile organics and inorganics (Erdakos and Pankow, 2004; Chang and Pankow, 2006). Moreover, the phases present in the aerosol particles feed back on the heterogeneous, multi-phase chemistry, influence the scattering and absorption of radiation and affect the CCN ability of the particles. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy, enabling the calculation of activity coefficients. We use the group-contribution model AIOMFAC (Zuend et al., 2008) to calculate activity coefficients, chemical potentials and the total Gibbs energy of mixed organic-inorganic systems. This thermodynamic model was combined with a robust global optimization module to compute potential liquid-liquid (LLE) and vapor-liquid-liquid equilibria (VLLE) as a function of particle composition at room temperature. And related to that, the gas/particle partitioning of semi-volatile components. Furthermore, we compute the thermodynamic stability (spinodal limits) of single-phase solutions, which provides information on the process type and kinetics of a phase separation. References Chang, E. I. and Pankow, J. F.: Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water - Part 2: Consideration of phase separation effects by an XUNIFAC model, Atmos. Environ., 40, 6422-6436, 2006. Erdakos, G. B. and Pankow, J. F.: Gas/particle partitioning of neutral and ionizing compounds to single- and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar and low-polarity organic compounds, Atmos. Environ., 38, 1005-1013, 2004. Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559-4593, 2008.
Phase equilibrium measurements on twelve binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giles, N.F.; Wilson, H.L.; Wilding, W.V.
1996-11-01
Phase equilibrium measurements have been performed on twelve binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following binary systems at two temperatures each: ethanethiol + propylene; nitrobenzene + methanol; pyridine + ethyl acetate; octane + tert-amyl methyl ether; diisopropyl ether + butane; 1,3-dichloro-2-propanol + epichlorohydrin; 2,3-dichloro-1-propanol + epichlorohydrin; 2,3-epoxy-1-propanol + epichlorohydrin; 3-chloro-1,2-propanediol + epichlorohydrin; methanol + hydrogen cyanide. For these systems, equilibrium vapor and liquid phase compositions were derived from the PTx data using the Soave equation of state to represent the vapor phase and the Wilson, NRTL, or Redlich-Kister activity coefficient model tomore » represent the liquid phase. The infinite dilution activity coefficient of methylamine in N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone-rich half of the binary. Liquid-liquid equilibrium studies were made on the triethylene glycol + 1-pentene system at two temperatures by directly analyzing samples taken from each liquid phase.« less
Phase equilibrium measurements on nine binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilding, W.V.; Giles, N.F.; Wilson, L.C.
1996-11-01
Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region existsmore » in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.« less
1993-02-01
coefficient of water in the 3.2.3.2 Experimental Procedures and liquid phase Measurements Y2 activity coefficient of HC! In the liquid plhase (I) If one of...m 801.4499 + -109729.4/TI D - -296.8485 + 31565.01/1’ is the osmotic coefficient of KOH and The osmotic coefficient or KOH as a function or molarity...this area. optimized to fit the Perry’s Handbook data on HCI/H 2O binary equilibrium. 4-16 TAflLIA1 VAPOUR PRESSURE DATA ()F HCI/lIF/112 0 SOLUTIONS
Lipid diffusion in alcoholic environment.
Rifici, Simona; Corsaro, Carmelo; Crupi, Cristina; Nibali, Valeria Conti; Branca, Caterina; D'Angelo, Giovanna; Wanderlingh, Ulderico
2014-08-07
We have studied the effects of a high concentration of butanol and octanol on the phase behavior and on the lateral mobility of 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) by means of differential scanning calorimetry and pulsed-gradient stimulated-echo (PGSTE) NMR spectroscopy. A lowering of the lipid transition from the gel to the liquid-crystalline state for the membrane-alcohol systems has been observed. NMR measurements reveal three distinct diffusions in the DPPC-alcohol systems, characterized by a high, intermediate, and slow diffusivity, ascribed to the water, the alcohol, and the lipid, respectively. The lipid diffusion process is promoted in the liquid phase while it is hindered in the interdigitated phase due to the presence of alcohols. Furthermore, in the interdigitated phase, lipid lateral diffusion coefficients show a slight temperature dependence. To the best of our knowledge, this is the first time that lateral diffusion coefficients on alcohol with so a long chain, and at low temperatures, are reported. By the Arrhenius plots of the temperature dependence of the diffusion coefficients, we have evaluated the apparent activation energy in both the liquid and in the interdigitated phase. The presence of alcohol increases this value in both phases. An explanation in terms of a free volume model that takes into account also for energy factors is proposed.
Luis, Patricia; Wouters, Christine; Van der Bruggen, Bart; Sandler, Stanley I
2013-08-09
Head-space gas chromatography (HS-GC) is an applicable method to perform vapor-liquid equilibrium measurements and determine activity coefficients. However, the reproducibility of the data may be conditioned by the experimental procedure concerning to the automated pressure-balanced system. The study developed in this work shows that a minimum volume of liquid in the vial is necessary to ensure the reliability of the activity coefficients since it may become a parameter that influences the magnitude of the peak areas: the helium introduced during the pressurization step may produce significant variations of the results when too small volume of liquid is selected. The minimum volume required should thus be evaluated prior to obtain experimentally the concentration in the vapor phase and the activity coefficients. In this work, the mixture acetonitrile-toluene is taken as example, requiring a sample volume of more than 5mL (about more than 25% of the vial volume). The vapor-liquid equilibrium and activity coefficients of mixtures at different concentrations (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 molar fraction) and four temperatures (35, 45, 55 and 70°C) have been determined. Relative standard deviations (RSD) lower than 5% have been obtained, indicating the good reproducibility of the method when a sample volume larger than 5mL is used. Finally, a general procedure to measure activity coefficients by means of pressure-balanced head-space gas chromatography is proposed. Copyright © 2013 Elsevier B.V. All rights reserved.
Thermodynamic Modeling of Organic-Inorganic Aerosols with the Group-Contribution Model AIOMFAC
NASA Astrophysics Data System (ADS)
Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.
2009-04-01
Liquid aerosol particles are - from a physicochemical viewpoint - mixtures of inorganic salts, acids, water and a large variety of organic compounds (Rogge et al., 1993; Zhang et al., 2007). Molecular interactions between these aerosol components lead to deviations from ideal thermodynamic behavior. Strong non-ideality between organics and dissolved ions may influence the aerosol phases at equilibrium by means of liquid-liquid phase separations into a mainly polar (aqueous) and a less polar (organic) phase. A number of activity models exists to successfully describe the thermodynamic equilibrium of aqueous electrolyte solutions. However, the large number of different, often multi-functional, organic compounds in mixed organic-inorganic particles is a challenging problem for the development of thermodynamic models. The group-contribution concept as introduced in the UNIFAC model by Fredenslund et al. (1975), is a practical method to handle this difficulty and to add a certain predictability for unknown organic substances. We present the group-contribution model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients), which explicitly accounts for molecular interactions between solution constituents, both organic and inorganic, to calculate activities, chemical potentials and the total Gibbs energy of mixed systems (Zuend et al., 2008). This model enables the computation of vapor-liquid (VLE), liquid-liquid (LLE) and solid-liquid (SLE) equilibria within one framework. Focusing on atmospheric applications we considered eight different cations, five anions and a wide range of alcohols/polyols as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are very well represented up to high ionic strength. We show that the semi-empirical middle-range parametrization of direct organic-inorganic interactions in alcohol-water-salt solutions enables accurate computations of vapor-liquid and liquid-liquid equilibria. References Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures, AIChE J., 21, 1086-1099, 1975. Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., and Simoneit, B. R. T.: Quantification of Urban Organic Aerosols at a Molecular Level: Identification, Abundance and Seasonal Variation, Atmos. Environ., 27, 1309-1330, 1993. Zhang, Q. et al.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13 801, 2007. Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559-4593, 2008.
Water-enhanced solvation of organics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jane H.
1993-07-01
Water-enhanced solvation (WES) was explored for Lewis acid solutes in Lewis base organic solvents, to develop cheap extract regeneration processes. WES for solid solutes was determined from ratios of solubilities of solutes in water-sat. and low-water solvent; both were determined from solid-liquid equilibrium. Vapor-headspace analysis was used to determine solute activity coefficients as function of organic phase water concentration. WES magnitudes of volatile solutes were normalized, set equal to slope of log γ s vs x w/x s curve. From graph shape Δ(log γ s) represents relative change in solute activity coefficient. Solutes investigated by vapor-headspace analysis were acetic acid,more » propionic acid, ethanol, 1,2-propylene glycol, 2,3-butylene glycol. Monocarboxylic acids had largest decrease in activity coefficient with water addition followed by glycols and alcohols. Propionic acid in cyclohexanone showed greatest water-enhancement Δ(log γ acid)/Δ(x w/x acid) = -0.25. In methylcyclohexanone, the decrease of the activity coefficient of propionic acid was -0.19. Activity coefficient of propionic acid in methylcyclohexanone stopped decreasing once the water reached a 2:1 water to acid mole ratio, implying a stoichiometric relation between water, ketone, and acid. Except for 2,3-butanediol, activity coefficients of the solutes studied decreased monotonically with water content. Activity coefficient curves of ethanol, 1,2-propanediol and 2,3-butanediol did not level off at large water/solute mole ratio. Solutes investigated by solid-liquid equilibrium were citric acid, gallic acid, phenol, xylenols, 2-naphthol. Saturation concentration of citric acid in anhydrous butyl acetate increased from 0.0009 to 0.087 mol/L after 1.3 % (g/g) water co-dissolved into organic phase. Effect of water-enhanced solvation for citric acid is very large but very small for phenol and its derivatives.« less
Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre
2016-07-15
Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermophysical properties of tri-n-butylphosphate-ionic liquid mixture
NASA Astrophysics Data System (ADS)
Rout, Alok; Mishra, Satyabrata; Venkatesan, K. A.; Antony, M. P.; Pandey, N. K.
2018-04-01
Thermophysical properties such as viscosity, density, energy of activation and coefficient of thermal expansion were measured for the solvent phase composed of tri-n-butylphosphate (TBP), 1-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C4mim][NTf2]) and 1.1 M TBP/[C4mim][NTf2]. The results were compared with that of nitric acid equilibrated [C4mim][NTf2] and 1.1M TBP/[C4mim][NTf2]. Thermal stability of the ionic liquid phase was assessed by using differential scanning calorimetric (DSC) technique. Other important physical properties such as refractive index and surface tension of the ionic liquid phase composition were evaluated before and after acid saturation.
Liquid-vapor phase equilibria of three-component systems of propanol-2-propanoic acid esters
NASA Astrophysics Data System (ADS)
Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.
2017-12-01
The boiling points of solutions of three-component systems formed by propanol-2 and propanoic acid esters are measured at different pressures by means of ebulliometry. The coefficients of the activity of the solutions' components are measured using Wilson and nonrandom two-liquid (NRTL) equations. The results from calculations are in line with the experimental data.
Carvalho, Pedro J; Ventura, Sónia P M; Batista, Marta L S; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A P
2014-02-14
The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.
NASA Astrophysics Data System (ADS)
Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A. P.
2014-02-01
The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.
2014-03-27
Coefficient from Water into the Sorbent KOW Octanol-Water Partition Coefficient LF Low Flow LNAPL Light Non-aqueous Phase Liquid LTM Long-Term...Once in the vapor phase, the molecule can then diffuse through the mem- ERDC/CRREL TR-14-4 5 brane while liquid water is prevented from passing...remediation at this site was conducted in two phases. Phase I consisted of vertical contamina- tion profiling followed by the in situ injection of an
2014-03-01
Coefficient from Water into the Sorbent KOW Octanol-Water Partition Coefficient LF Low Flow LNAPL Light Non-aqueous Phase Liquid LTM Long-Term...Once in the vapor phase, the molecule can then diffuse through the mem- ERDC/CRREL TR-14-4 5 brane while liquid water is prevented from passing...remediation at this site was conducted in two phases. Phase I consisted of vertical contamina- tion profiling followed by the in situ injection of an
Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity
NASA Astrophysics Data System (ADS)
Kim, Y.; Sartelet, K.; Couvidat, F.
2014-12-01
Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.
NASA Astrophysics Data System (ADS)
Guz, A. N.; Bagno, A. M.
2017-07-01
The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.
Stein, Paul C; di Cagno, Massimiliano; Bauer-Brandl, Annette
2011-09-01
In this work a new, accurate and convenient technique for the measurement of distribution coefficients and membrane permeabilities based on nuclear magnetic resonance (NMR) is described. This method is a novel implementation of localized NMR spectroscopy and enables the simultaneous analysis of the drug content in the octanol and in the water phase without separation. For validation of the method, the distribution coefficients at pH = 7.4 of four active pharmaceutical ingredients (APIs), namely ibuprofen, ketoprofen, nadolol, and paracetamol (acetaminophen), were determined using a classical approach. These results were compared to the NMR experiments which are described in this work. For all substances, the respective distribution coefficients found with the two techniques coincided very well. Furthermore, the NMR experiments make it possible to follow the distribution of the drug between the phases as a function of position and time. Our results show that the technique, which is available on any modern NMR spectrometer, is well suited to the measurement of distribution coefficients. The experiments present also new insight into the dynamics of the water-octanol interface itself and permit measurement of the interface permeability.
NASA Astrophysics Data System (ADS)
Zheng, Donghong; Che, Defu
2007-08-01
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas-liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10-3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas-liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.
Evaluation of the pathways of tropospheric nitrophenol formation using a multiphase model
NASA Astrophysics Data System (ADS)
Harrison, M. A. J.; Heal, M. R.; Cape, J. N.
2005-03-01
Phenols are a major class of volatile organic compounds (VOC) whose reaction within, and partitioning between, the gas and liquid phases affects their lifetime within the atmosphere, the local oxidising capacity, and the extent of production of nitrophenols, which are toxic chemicals. In this work, a zero-dimension box model was constructed to quantify the relative nitration pathways, and partitioning into the liquid phase, of mono-aromatic compounds in order to help elucidate the formation pathways of 2- and 4-nitrophenol in the troposphere. The liquid phase contributed significantly to the production of nitrophenols for liquid water content (Lc) values exceeding 3×10-9, and for a range of assumed liquid droplet diameter, even though the resultant equilibrium partitioning to the liquid phase was much lower. For example, in a ''typical'' model scenario, with Lc=3×10-7, 58% of nitrophenol production occurred in the liquid phase but only 2% of nitrophenol remained there, i.e. a significant proportion of nitrophenol observed in the gas phase may actually be produced via the liquid phase. The importance of the liquid phase was enhanced at lower temperatures, by a factor ~1.5-2 at 278 K cf. 298 K. The model showed that nitrophenol production was particularly sensitive to the values of the rate coefficients for the liquid phase reactions between phenol and OH or NO3 reactions, but insensitive to the rate coefficient for the reaction between benzene and OH, thus identifying where further experimental data are required.
METHOD FOR MEASURING AIR-IMMISCIBLE LIQUID PARTITION COEFFICIENTS
The principal objective of this work was to measure nonaqueous phase liquid-air partition coefficients for various gas tracer compounds. Known amounts of trichloroethene (TCE) and tracer, as neat compounds, were introduced into glass vials and allowed to equilibrate. The TCE and ...
NASA Astrophysics Data System (ADS)
Harrison, M. A. J.; Heal, M. R.; Cape, J. N.
2005-07-01
Phenols are a major class of volatile organic compounds (VOC) whose reaction within, and partitioning between, the gas and liquid phases affects their lifetime within the atmosphere, the local oxidising capacity, and the extent of production of nitrophenols, which are toxic chemicals. In this work, a zero-dimension box model was constructed to quantify the relative importance of different nitration pathways, and partitioning into the liquid phase, of mono-aromatic compounds in order to help elucidate the formation pathways of 2- and 4-nitrophenol in the troposphere. The liquid phase contributed significantly to the production of nitrophenols for liquid water content (Lc) values exceeding 3x10-9, and for a range of assumed liquid droplet diameter, even though the resultant equilibrium partitioning to the liquid phase was much lower. For example, in a "typical" model scenario, with Lc=3x10-7, 58% of nitrophenol production occurred in the liquid phase but only 2% of nitrophenol remained there, i.e. a significant proportion of nitrophenol observed in the gas phase may actually be produced via the liquid phase. The importance of the liquid phase was enhanced at lower temperatures, by a factor ~1.5-2 at 278K c.f. 298K. The model showed that nitrophenol production was particularly sensitive to the values of the rate coefficients for the liquid phase reactions between phenol and OH or NO3 reactions, but insensitive to the rate coefficient for the reaction between benzene and OH, thus identifying where further experimental data are required.
Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen
NASA Technical Reports Server (NTRS)
Oliva, J.; Ashcroft, N. W.
1981-01-01
It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.
Partitioning of Aromatic Constituents into Water from Jet Fuels.
Tien, Chien-Jung; Shu, Youn-Yuen; Ciou, Shih-Rong; Chen, Colin S
2015-08-01
A comprehensive study of the most commonly used jet fuels (i.e., Jet A-1 and JP-8) was performed to properly assess potential contamination of the subsurface environment from a leaking underground storage tank occurred in an airport. The objectives of this study were to evaluate the concentration ranges of the major components in the water-soluble fraction of jet fuels and to estimate the jet fuel-water partition coefficients (K fw) for target compounds using partitioning experiments and a polyparameter linear free-energy relationship (PP-LFER) approach. The average molecular weight of Jet A-1 and JP-8 was estimated to be 161 and 147 g/mole, respectively. The density of Jet A-1 and JP-8 was measured to be 786 and 780 g/L, respectively. The distribution of nonpolar target compounds between the fuel and water phases was described using a two-phase liquid-liquid equilibrium model. Models were derived using Raoult's law convention for the activity coefficients and the liquid solubility. The observed inverse, log-log linear dependence of the K fw values on the aqueous solubility were well predicted by assuming jet fuel to be an ideal solvent mixture. The experimental partition coefficients were generally well reproduced by PP-LFER.
Determination of the mass-transfer coefficient in liquid phase in a stream-bubble contact device
NASA Astrophysics Data System (ADS)
Dmitriev, A. V.; Dmitrieva, O. S.; Madyshev, I. N.
2016-09-01
One of the most effective energy saving technologies is the improvement of existing heat and mass exchange units. A stream-bubble contact device is designed to enhance the operation efficiency of heat and mass exchange units. The stages of the stream-bubble units that are proposed by the authors for the decarbonization process comprise contact devices with equivalent sizes, whose number is determined by the required performance of a unit. This approach to the structural design eliminates the problems that arise upon the transition from laboratory samples to industrial facilities and makes it possible to design the units of any required performance without a decrease in the effectiveness of mass exchange. To choose the optimal design that provides the maximum effectiveness of the mass-exchange processes in units and their intensification, the change of the mass-transfer coefficient is analyzed with the assumption of a number of parameters. The results of the study of the effect of various structural parameters of a stream-bubble contact device on the mass-transfer coefficient in the liquid phase are given. It is proven that the mass-transfer coefficient increases in the liquid phase, in the first place, with the growth of the level of liquid in the contact element, because the rate of the liquid run-off grows in this case and, consequently, the time of surface renewal is reduced; in the second place, with an increase in the slot diameter in the downpipe, because the jet diameter and, accordingly, their section perimeter and the area of the surface that is immersed in liquid increase; and, in the third place, with an increase in the number of slots in the downpipe, because the area of the surface that is immersed in the liquid of the contact element increases. Thus, in order to increase the mass-transfer coefficient in the liquid phase, it is necessary to design the contact elements with a minimum width and a large number of slots and their increased diameter; in this case, the filling degree of contact elements by the liquid must be maximum.
Guo, Rongbo; Chen, Jiping; Zhang, Qing; Wu, Wenzhong; Liang, Xinmiao
2004-01-01
Using the methanol-water mixtures as mobile phases of soil column liquid chromatography (SCLC), prediction of soil adsorption coefficients (K(d)) by SCLC was validated in a wide range of soil types. The correlations between the retention factors measured by SCLC and soil adsorption coefficients measured by batch experiments were studied for five soils with different properties, i.e., Eurosoil 1#, 2#, 3#, 4# and 5#. The results show that good correlations existed between the retention factors and soil adsorption coefficients for Eurosoil 1#, 2#, 3# and 4#. For Eurosoil 5# which has a pH value of near 3, the correlation between retention factors and soil adsorption coefficients was unsatisfactory using methanol-water as mobile phase of SCLC. However, a good correlation was obtained using a methanol-buffer mixture with pH 3 as the mobile phase. This study proved that the SCLC is suitable for the prediction of soil adsorption coefficients.
A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants.
Bellur, K; Médici, E F; Kulshreshtha, M; Konduru, V; Tyrewala, D; Tamilarasan, A; McQuillen, J; Leao, J; Hussey, D S; Jacobson, D L; Scherschligt, J; Hermanson, J C; Choi, C K; Allen, J S
2016-03-01
Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide.
A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants
Bellur, K.; Médici, E. F.; Kulshreshtha, M.; Konduru, V.; Tyrewala, D.; Tamilarasan, A.; McQuillen, J.; Leao, J.; Hussey, D. S.; Jacobson, D. L.; Scherschligt, J.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.
2016-01-01
Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide. PMID:28154426
Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M
2009-01-01
Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement for application of these silicon membranes in electroanalytical chemistry.
NASA Astrophysics Data System (ADS)
Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi
2017-10-01
With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.
Xiang, T X; Anderson, B D
1997-01-01
Solubility-diffusion theory, which treats the lipid bilayer membrane as a bulk lipid solvent into which permeants must partition and diffuse across, fails to account for the effects of lipid bilayer chain order on the permeability coefficient of any given permeant. This study addresses the scaling factor that must be applied to predictions from solubility-diffusion theory to correct for chain ordering. The effects of bilayer chemical composition, temperature, and phase structure on the permeability coefficient (Pm) of acetic acid were investigated in large unilamellar vesicles by a combined method of NMR line broadening and dynamic light scattering. Permeability values were obtained in distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, and dilauroylphosphatidylcholine bilayers, and their mixtures with cholesterol, at various temperatures both above and below the gel-->liquid-crystalline phase transition temperatures (Tm). A new scaling factor, the permeability decrement f, is introduced to account for the decrease in permeability coefficient from that predicted by solubility-diffusion theory owing to chain ordering in lipid bilayers. Values of f were obtained by division of the observed Pm by the permeability coefficient predicted from a bulk solubility-diffusion model. In liquid-crystalline phases, a strong correlation (r = 0.94) between f and the normalized surface density sigma was obtained: in f = 5.3 - 10.6 sigma. Activation energies (Ea) for the permeability of acetic acid decreased with decreasing phospholipid chain length and correlated with the sensitivity of chain ordering to temperature, [symbol: see text] sigma/[symbol: see text](1/T), as chain length was varied. Pm values decreased abruptly at temperatures below the main phase transition temperatures in pure dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine bilayers (30-60-fold) and below the pretransition in dipalmitoylphosphatidylcholine bilayers (8-fold), and the linear relationship between in f and sigma established for liquid-crystalline bilayers was no longer followed. However, in both gel and liquid-crystalline phases in f was found to exhibit an inverse correlation with free surface area (in f = -0.31 - 29.1/af, where af is the average free area (in square angstroms) per lipid molecule). Thus, the lipid bilayer permeability of acetic acid can be predicted from the relevant chain-packing properties in the bilayer (free surface area), regardless of whether chain ordering is varied by changes in temperature, lipid chain length, cholesterol concentration, or bilayer phase structure, provided that temperature effects on permeant dehydration and diffusion and the chain-length effects on bilayer barrier thickness are properly taken into account. PMID:8994607
Thermodynamic properties of uranium in liquid gallium, indium and their alloys
NASA Astrophysics Data System (ADS)
Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Osipenko, A. G.
2015-09-01
Activity, activity coefficients and solubility of uranium was determined in gallium, indium and gallium-indium alloys containing 21.8 (eutectic), 40 and 70 wt.% In. Activity was measured at 573-1073 K employing the electromotive force method, and solubility between room temperature (or the alloy melting point) and 1073 K employing direct physical measurements. Activity coefficients were obtained from the difference of experimentally determined temperature dependencies of uranium activity and solubility. Intermetallic compounds formed in the respective alloys were characterized using X-ray diffraction. Partial and excess thermodynamic functions of uranium in the studied alloys were calculated. Liquidus lines in U-Ga and U-In phase diagrams from the side rich in gallium or indium are proposed.
Tascon, Marcos; Romero, Lílian M; Acquaviva, Agustín; Keunchkarian, Sonia; Castells, Cecilia
2013-06-14
This study focused on an investigation into the experimental quantities inherent in the determination of partition coefficients from gas-liquid chromatographic measurements through the use of capillary columns. We prepared several squalane - (2,6,10,15,19,23-hexamethyltetracosane) - containing columns with very precisely known phase ratios and determined solute retention and hold-up times at 30, 40, 50 and 60°C. We calculated infinite dilution partition coefficients from the slopes of the linear regression of retention factors as a function of the reciprocal of the phase ratio by means of fundamental chromatographic equations. In order to minimize gas-solid and liquid-solid interface contributions to retention, the surface of the capillary inner wall was pretreated to guarantee a uniform coat of stationary phase. The validity of the proposed approach was first tested by estimating the partition coefficients of n-alkanes between n-pentane and n-nonane, for which compounds data from the literature were available. Then partition coefficients of sixteen aliphatic alcohols in squalane were determined at those four temperatures. We deliberately chose these highly challenging systems: alcohols in the reference paraffinic stationary phase. These solutes exhibited adsorption in the gas-liquid interface that contributed to retention. The corresponding adsorption constant values were estimated. We fully discuss here the uncertainties associated with each experimental measurement and how these fundamental determinations can be performed precisely by circumventing the main drawbacks. The proposed strategy is reliable and much simpler than the classical chromatographic method employing packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.
Fixed Packed Bed Reactors in Reduced Gravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.
2004-01-01
We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.
Xu, Liyuan; Gao, Haoshi; Li, Liangxing; Li, Yinnong; Wang, Liuyun; Gao, Chongkai; Li, Ning
2016-12-23
The effective permeability coefficient is of theoretical and practical importance in evaluation of the bioavailability of drug candidates. However, most methods currently used to measure this coefficient are expensive and time-consuming. In this paper, we addressed these problems by proposing a new measurement method which is based on the microemulsion liquid chromatography. First, the parallel artificial membrane permeability assays model was used to determine the effective permeability of drug so that quantitative retention-activity relationships could be established, which were used to optimize the microemulsion liquid chromatography. The most effective microemulsion system used a mobile phase of 6.0% (w/w) Brij35, 6.6% (w/w) butanol, 0.8% (w/w) octanol, and 86.6% (w/w) phosphate buffer (pH 7.4). Next, support vector machine and back-propagation neural networks are employed to develop a quantitative retention-activity relationships model associated with the optimal microemulsion system, and used to improve the prediction ability. Finally, an adequate correlation between experimental value and predicted value is computed to verify the performance of the optimal model. The results indicate that the microemulsion liquid chromatography can serve as a possible alternative to the PAMPA method for determination of high-throughput permeability and simulation of biological processes. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Topping, David; Alibay, Irfan; Bane, Michael
2017-04-01
To predict the evolving concentration, chemical composition and ability of aerosol particles to act as cloud droplets, we rely on numerical modeling. Mechanistic models attempt to account for the movement of compounds between the gaseous and condensed phases at a molecular level. This 'bottom up' approach is designed to increase our fundamental understanding. However, such models rely on predicting the properties of molecules and subsequent mixtures. For partitioning between the gaseous and condensed phases this includes: saturation vapour pressures; Henrys law coefficients; activity coefficients; diffusion coefficients and reaction rates. Current gas phase chemical mechanisms predict the existence of potentially millions of individual species. Within a dynamic ensemble model, this can often be used as justification for neglecting computationally expensive process descriptions. Indeed, on whether we can quantify the true sensitivity to uncertainties in molecular properties, even at the single aerosol particle level it has been impossible to embed fully coupled representations of process level knowledge with all possible compounds, typically relying on heavily parameterised descriptions. Relying on emerging numerical frameworks, and designed for the changing landscape of high-performance computing (HPC), in this study we focus specifically on the ability to capture activity coefficients in liquid solutions using the UNIFAC method. Activity coefficients are often neglected with the largely untested hypothesis that they are simply too computationally expensive to include in dynamic frameworks. We present results demonstrating increased computational efficiency for a range of typical scenarios, including a profiling of the energy use resulting from reliance on such computations. As the landscape of HPC changes, the latter aspect is important to consider in future applications.
Study of Chromium Oxide Activities in EAF Slags
NASA Astrophysics Data System (ADS)
Yan, Baijun; Li, Fan; Wang, Hui; Sichen, Du
2016-02-01
The activity coefficients of chromium in Cu-Cr melts were determined by equilibrating liquid copper with solid Cr2O3 in CO-CO2 atmosphere. The temperature dependence of the activity coefficients of chromium in Cu-Cr melts could be expressed as lg γ_{Cr}(s)^{0} = { 3 2 5 9( ± 1 8 6} )/T - 0. 5 9( { ± 0. 1} ). Based on the above results, the activities of bivalent and trivalent chromium oxide in some slags at 1873 K (1600 °C) were measured. The slags were equilibrated with Cu-Cr melts under two oxygen partial pressures ( {p_{O}_{ 2} }} } = 6.9 × 10-4 and 1.8 × 10-6 Pa, respectively). The morphology of the quenched slags and the solubility of chromium oxide in the melts were investigated by EPMA, SEM, and XRD. Under both oxygen partial pressures, the slags were saturated by the solid solution MgAl2- x Cr x O4- δ . At the low oxygen partial pressure (1.8 × 10-6 Pa), the content of Cr in the liquid phase varied from 0.4 to 1.6 mass pct with the total Cr content in the slags increasing from 1.3 to 10.8 mass pct. At the high oxygen partial pressure (6.9 × 10-4 Pa), the content of Cr in the liquid phase decreased to the level of 0.2 to 0.6 mass pct. Both the activities of CrO and Cr2O3 in slag were found to increase approximately linearly with the increase of the total Cr content in slag. While the oxygen partial pressure had minor effect on the activity of Cr2O3 in the slag, it had significant effect on the activity of CrO.
Lin, Che-Yi; Fuh, Ming-Ren; Huang, Shang-Da
2011-02-01
A method termed liquid-liquid-liquid microextraction (LLLME) was utilized to extract 4-t-butylphenol, 4-t-octylphenol, 4-n-nonylphenol, and bisphenol-A from water. The extracted target analytes were separated and quantified by high-performance liquid chromatography using a fluorescence detector. In LLLME, the donor phase (i.e. water sample) was made weakly acidic by adding monobasic potassium phosphate (KH(2) PO(4)); the organic phase adopted was 4-chlorotoluene; the acceptor phase (i.e. enriched extract) was 0.2 M tetraethylammonium hydroxide dissolved in ethylene glycol. This study solves a problem associated with the surface activity of long-chain alkylphenolate ions, permitting LLLME to extract long-chain alkylphenols. Experimental conditions such as acceptor phase composition, organic phase identity, acceptor phase volume, sample agitation, extraction time, and salt addition were optimized. The relative standard deviation (RSD, 2.0-5.8%), coefficient of determination (r(2) 0.9977-0.9999), and detection limit (0.017-0.0048 ng/mL) of the proposed method were achieved under the selected optimized conditions. The method was successfully applied to analyses of lake and tap water samples, and the relative recoveries of target analytes from the spiked lake and tap water samples were 92.8-106.3 and 93.6-105.6%, respectively. The results obtained with the proposed method confirm this microextraction technique to be reliable for the monitoring of alkylphenols and bisphenol-A in water samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vapour phase motion in cryogenic systems containing superheated and subcooled liquids
NASA Astrophysics Data System (ADS)
Kirichenko, Yu. A.; Chernyakov, P. S.; Seregin, V. E.
The development of vent pipelines, and venting storage tanks for cryogenic liquids requires the knowledge of the law of motion as well as regularities of vapour content variation in the liquid and heat dissipation by the vapour phase. This is a theoretical study of the effect of superheating (subcooling) of the liquid, relative acceleration and reduced pressure upon the size and velocity of noninteracting vapour bubbles, moving in the liquid, and upon their resistance and heat transfer coefficients.
Fixed Packed Bed Reactors in Reduced Gravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.
2004-01-01
We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients k(L)a and k(G)a (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.
Depositing spacing layers on magnetic film with liquid phase epitaxy
NASA Technical Reports Server (NTRS)
Moody, J. W.; Shaw, R. W.; Sanfort, R. M.
1975-01-01
Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.
Determination of sorption of seventy-five pharmaceuticals in sewage sludge.
Hörsing, Maritha; Ledin, Anna; Grabic, Roman; Fick, Jerker; Tysklind, Mats; la Cour Jansen, Jes; Andersen, Henrik R
2011-10-01
Sorption of 75 active pharmaceutical ingredients (APIs) to three different types of sludge (primary sludge, secondary sludge with short and long sludge age respectively) were investigated. To obtain the sorption isotherms batch studies with the APIs mixture were performed in four nominal concentrations to water containing 1 g of sludge. The range of APIs concentrations was between ng L(-1) to μg L(-1) which are found in the wastewater effluents. Isotherms were obtained for approximately 45 of the APIs, providing distribution coefficients for linear (Kd), Freundlich (Kf) and Langmuir (KL) isotherms. Kd, Kf and KL ranging between 7.1×10(4) and 3.8×10(7), 1.1×10(-2) and 6.1×10(4) and 9.2×10(-3) and 1.1 L kg(-1), respectively. The obtained coefficients were applied to estimate the fraction of APIs in the water phase (see Abstract Graphic). For 37 of the 75 APIs, the predicted presence in the liquid phase was estimated to >80%. 24 APIs were estimated to be present in the liquid phase between 20 and 80%, and 14 APIs were found to have <20% presence in the liquid phase, i.e. high affinity towards sludge. Furthermore, the effect of pH at values 6, 7 and 8 was evaluated using one way ANOVA-test. A significant difference in Kds due to pH changes were found for 6 of the APIs (variation 10-20%). Copyright © 2011 Elsevier Ltd. All rights reserved.
The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...
Wilson, Walter B; Sander, Lane C; Oña-Ruales, Jorge O; Mössner, Stephanie G; Sidisky, Leonard M; Lee, Milton L; Wise, Stephen A
2017-02-10
Retention indices for 10 sets of alkyl-substituted polycyclic aromatic sulfur heterocycles (PASHs) isomers (total of 80 PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry [length-to-breadth (L/B) and thickness (T)] were investigated for the following PASHs: 4 methyl-substituted dibenzothiophenes (DBTs), 3 ethyl-substituted DBTs, 15 dimethyl-substituted DBTs, 8 trimethyl-substituted DBTs, 15 methyl-substituted naphthothiophenes, 30 methyl-substituted benzonaphthothiophenes, and 5 methyl-substituted tetrapheno[1,12-bcd]thiophene. Correlation coefficients for retention on the 50% phenyl phase vs L/B ranged from r=-0.28 (MeBbN23Ts) to r=0.92 (EtDBTs). Correlation coefficients for retention on the IL phase vs L/B ranged from r=0.13 (MeN12Ts) to r=0.83 (EtDBTs). Correlation coefficients for retention on the 50% LC-DMPS phase vs L/B ranged from r=0.22 (MeDBTs) to r=0.84 (TriMeDBTs). Published by Elsevier B.V.
Structure analysis of turbulent liquid phase by POD and LSE techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munir, S., E-mail: shahzad-munir@comsats.edu.pk; Muthuvalu, M. S.; Siddiqui, M. I.
2014-10-24
In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energymore » containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields.« less
Liquid-phase electroepitaxy - Dopant segregation
NASA Technical Reports Server (NTRS)
Lagowski, J.; Jastrzebski, L.; Gatos, H. C.
1980-01-01
A theoretical model is presented which accounts for the dopant segregation in liquid-phase electroepitaxy in terms of dopant transport in the liquid phase (by electromigration and diffusion), the growth velocity, and the Peltier effect at the substrate-solution interface. The contribution of dopant electromigration to the magnitude of the effective segregation coefficient is dominant in the absence of convection; the contribution of the Peltier effect becomes significant only in the presence of pronounced convection. Quantitative expressions which relate the segregation coefficient to the growth parameters also permit the determination of the diffusion constant and electromigration mobility of the dopant in the liquid phase. The model was found to be in good agreement with the measured segregation characteristics of Sn in the electroepitaxial growth of GaAs from Ga-As solutions. For Sn in Ga-As solution at 900 C the diffusion constant was found to be 4 x 10 to the -5 sq cm/s and the electromigration velocity (toward the substrate with a positive polarity 2 x 10 to the -5 cm/s current density of 10 A/sq cm.
Determination of the Accomodation Coefficient Using Vapor/Gas Bubble Dynamics in an Acoustic Field
NASA Technical Reports Server (NTRS)
Gumerov, Nail A.
1999-01-01
Non-equilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum, in processing of molten metals, and in vapor explosions. The rate at which such a phase transformation occurs, Xi, can be described by the Hertz-Knudsen-Langmuir formula. More than one century of the history of the accommodation coefficient measurements shows many problems with its determination. This coefficient depends on the temperature, is sensitive to the conditions at the interface, and is influenced by small amounts of impurities. Even recent measurements of the accommodation coefficient for water (Hagen et al, 1989) showed a huge variation in Beta from 1 for 1 micron droplets to 0.006 for 15 micron droplets. Moreover, existing measurement techniques for the accommodation coefficient are complex and expensive. Thus development of a relatively inexpensive and reliable technique for measurement of the accommodation coefficient for a wide range of substances and temperatures is of great practical importance.
Colloidal mode of transport in the Potomac River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, I.L.; Foster, G.D.
1995-12-31
Similarly to the particulate phase the colloidal phase may play an important role in the organic contaminant transport downstream the river. The colloidal phase consisting of microparticles and micromolecules which are small enough to be mobile and large enough to attract pollutants can absorb nonpolar organic compounds similarly as do soil and sediment particles. To test the hypothesis three river water samples have been analyzed for PAH content in the dissolved, the colloidal, and the particulate phase. The first sample was collected at the Blue Ridge province of Potomac River watershed, at Point of Rocks, the second one in themore » Pidmont province, at Riverbend Park, and the third sample at Coastal Plane, at Dyke Marsh (Belle Heven marina). In the laboratory environment each water sample was prefiltered to separate the particulate phase form the dissolved and colloidal phase. One part of the prefiltered water sample was ultrafiltered to separate colloids while the second part of the water was Goulden extracted. The separated colloidal phase was liquid-liquid extracted (LLE) while filters containing the suspended solids were Soxhlet extracted. The extracts of the particulate phase, the colloidal phase, and the dissolved plus colloidal phase were analyzed for selected PAHs via GC/MS. It is planned that concentrations of selected PAHs in three phases will be used for calculations of the partition coefficients, the colloid/dissolved partition coefficient and the particle/dissolved partition coefficient. Both partition coefficients will be compared to define the significance of organic contaminant transport by aquatic colloids.« less
NASA Astrophysics Data System (ADS)
Couvidat, F.; Sartelet, K.
2015-04-01
In this paper the Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model determines the partitioning of organic compounds between the gas and particle phases. It is designed to be modular with different user options depending on the computation time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption into the aqueous phase of particles, activity coefficients and phase separation). Each surrogate can be hydrophilic (condenses only into the aqueous phase of particles), hydrophobic (condenses only into the organic phases of particles) or both (condenses into both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC (UNIversal Functional group Activity Coefficient; Fredenslund et al., 1975) thermodynamic model for short-range interactions and with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) parameterization for medium- and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium representation and a dynamic representation of organic aerosols (OAs). In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol is not at equilibrium with the gas phase because the organic phases could be semi-solid (very viscous liquid phase). The condensation-evaporation of organic compounds could then be limited by the diffusion in the organic phases due to the high viscosity. An implicit dynamic representation of secondary organic aerosols (SOAs) is available in SOAP with OAs divided into layers, the first layer being at the center of the particle (slowly reaches equilibrium) and the final layer being near the interface with the gas phase (quickly reaches equilibrium). Although this dynamic implicit representation is a simplified approach to model condensation-evaporation with a low number of layers and short CPU (central processing unit) time, it shows good agreements with an explicit representation of condensation-evaporation (no significant differences after a few hours of condensation).
Atta, Khan Rashid; Gavril, Dimitrios; Loukopoulos, Vassilios; Karaiskakis, George
2004-01-16
The experimental technique of the reversed-flow version of inverse gas chromatography was applied for the study of effects of surfactants in reducing air-water exchange rates. The vinyl chloride (VC)-water system was used as a model, which is of great importance in environmental chemistry. Using suitable mathematical analysis, various physicochemical quantities were calculated, among which the most significant are: Partition coefficients of the VC gas between the surfactant interface and the carrier gas nitrogen, as well as between the bulk of the water + surfactant solution and the carrier gas nitrogen, overall mass transfer coefficients of VC in the liquid (water + surfactant) and the gas (nitrogen) phases, water and surfactant film transfer coefficients, nitrogen, water and surfactant phase resistances for the transfer of VC into the water solution, relative resistance of surfactant in the transfer of VC into the bulk of solution, exchange velocity of VC between nitrogen and the liquid solution, and finally the thickness of the surfactant stagnant film in the liquid phase, according to the three phase resistance model. From the variation of the above parameters with the surfactant's concentration, important conclusions concerning the effects of surfactants on the transfer of a gas at the air-liquid interface, as well as to the bulk of the liquid were extracted. An interesting finding of this work was also that by successive addition of surfactant, the critical micelle concentration of surfactant was obtained, after which follows a steady-state for the transfer of the gas into the water body, which could be attributed to the transition from mono- to multi-layer state.
Predicting phase equilibria in one-component systems
NASA Astrophysics Data System (ADS)
Korchuganova, M. R.; Esina, Z. N.
2015-07-01
It is shown that Simon equation coefficients for n-alkanes and n-alcohols can be modeled using critical and triple point parameters. Predictions of the phase liquid-vapor, solid-vapor, and liquid-solid equilibria in one-component systems are based on the Clausius-Clapeyron relation, Van der Waals and Simon equations, and the principle of thermodynamic similarity.
High Birefringence Liquid Crystals for Laser Hardening and IR Countermeasure
2004-09-24
A fast-switching and scattering-free phase modulator using polymer network liquid crystal ( PNLC ) is demonstrated at **=l.55 um for laser beam...steering application. The strong polymer network anchoring greatly reduces the visco-elastic coefficient of the liquid crystal. As a result, the PNLC
Cull, S G; Holbrey, J D; Vargas-Mora, V; Seddon, K R; Lye, G J
2000-07-20
Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimi- dazolium hexafluorophosphate, [bmim][PF(6)], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1, 3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF(6)] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF(6)] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF(6)] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF(6)] phase. It was also shown that the specific activity of the biocatalyst in the water-[bmim] [PF(6)] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst. Copyright 2000 John Wiley & Sons, Inc.
Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide.
Domańska, Urszula; Bogel-Łukasik, Rafał
2005-06-23
Quaternary ammonium salts, which are precursors of ionic liquids, have been prepared from N,N-dimethylethanolamine as a substrate. The paper includes specific basic characterization of synthesized compounds via the following procedures: nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectra, water content, mass spectroscopy (MS) spectra, temperatures of decompositions, basic thermodynamic properties of pure ionic liquids (the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, glass transition), and the difference in the solute heat capacity between the liquid and solid at the melting temperature determined by differential scanning calorimetry (DSC). The (solid + liquid) phase equilibria of binary mixtures containing (quaternary ammonium salt + water, or + 1-octanol) has been measured by a dynamic method over wide range of temperatures, from 230 K to 560 K. These data were correlated by means of the UNIQUAC ASM and modified nonrandom two-liquid NRTL1 equations utilizing parameters derived from the (solid + liquid) equilibrium. The partition coefficient of ionic liquid in the 1-octanol/water binary system has been calculated from the solubility results. Experimental partition coefficients (log P) were negative at three temperatures.
A comparative study of monoclonal antibodies. 1. Phase behavior and protein-protein interactions
Lewus, Rachael A.; Levy, Nicholas E.; Lenhoff, Abraham M.; Sandler, Stanley I.
2018-01-01
Protein phase behavior is involved in numerous aspects of downstream processing, either by design as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. This work explores the phase behavior of eight monoclonal antibodies (mAbs) that exhibit liquid-liquid separation, aggregation, gelation, and crystallization. The phase behavior has been studied systematically as a function of a number of factors, including solution composition and pH, in order to explore the degree of variability among different antibodies. Comparisons of the locations of phase boundaries show consistent trends as a function of solution composition; however, changing the solution pH has different effects on each of the antibodies studied. Furthermore, the types of dense phases formed varied among the antibodies. Protein-protein interactions, as reflected by values of the osmotic second virial coefficient, are used to correlate the phase behavior. The primary findings are that values of the osmotic second virial coefficient are useful for correlating phase boundary locations, though there is appreciable variability among the antibodies in the apparent strengths of the intrinsic protein-protein attraction manifested. However, the osmotic second virial coefficient does not provide a clear basis to predict the type of dense phase likely to result under a given set of solution conditions. PMID:25378269
Román, Iván P; Mastromichali, Anna; Tyrovola, Konstantina; Canals, Antonio; Psillakis, Elefteria
2014-02-21
Vortex-assisted liquid-liquid microextraction (VALLME) coupled with high-performance liquid chromatography (HPLC) is proposed here for the rapid determination of octanol-water partitioning coefficients (Kow). VALLME uses vortex agitation, a mild emulsification procedure, to disperse microvolumes of octanol in the aqueous phase thus increasing the interfacial contact area and ensuring faster partitioning rates. With VALLME, 2min were enough to achieve equilibrium conditions between the octanolic and aqueous phases. Upon equilibration, separation was achieved using centrifugation and the octanolic microdrop was collected and analyzed in a HPLC system. Six model compounds with logKow values ranging between ∼0.5 and 3.5 were used during the present investigations. The proposed method produced logKow values that were consistent with previously published values and the recorded uncertainty was well within the acceptable log unit range. Overall, the key features of the proposed Kow determination procedure comprised speed, reliability, simplicity, low cost and minimal solvent consumption. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Esrael, D.; Kacem, M.; Benadda, B.
2017-07-01
We investigate how the simulation of the venting/soil vapour extraction (SVE) process is affected by the mass transfer coefficient, using a model comprising five partial differential equations describing gas flow and mass conservation of phases and including an expression accounting for soil saturation conditions. In doing so, we test five previously reported quations for estimating the non-aqueous phase liquid (NAPL)/gas initial mass transfer coefficient and evaluate an expression that uses a reference NAPL saturation. Four venting/SVE experiments utilizing a sand column are performed with dry and non-saturated sand at low and high flow rates, and the obtained experimental results are subsequently simulated, revealing that hydrodynamic dispersion cannot be neglected in the estimation of the mass transfer coefficient, particularly in the case of low velocities. Among the tested models, only the analytical solution of a convection-dispersion equation and the equation proposed herein are suitable for correctly modelling the experimental results, with the developed model representing the best choice for correctly simulating the experimental results and the tailing part of the extracted gas concentration curve.
Wilson, Walter B.; Sander, Lane C.; Oña-Ruales, Jorge O.; Mössner, Stephanie G.; Sidisky, Leonard M.; Lee, Milton L.; Wise, Stephen A.
2017-01-01
Retention indices for 48 polycyclic aromatic sulfur heterocycles (PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry (L/B and T, i.e., length-to-breadth ratio and thickness, respectively) were investigated for the following four isomer sets: (1) 4 three-ring molecular mass (MM) 184 Da PASHs, (2) 13 four-ring MM 234 Da PASHs, (3) 10 five-ring MM 258 Da PASHs, and (4) 20 five-ring MM 284 Da PASHs. Correlation coefficients for retention on the 50% LC-DMPS vs L/B ranged from r = 0.50 (MM 284 Da) to r = 0.77 (MM 234 Da). Correlation coefficients for retention on the IL phase vs L/B ranged from r = 0.31 (MM 234 Da) to r = 0.54 (MM 284 Da). Correlation coefficients for retention on the 50% phenyl vs L/B ranged from r = 0.14 (MM 258 Da) to r = 0.59 (MM 284 Da). Several correlation trends are discussed in detail for the retention behavior of PASH on the three stationary phases. PMID:28089272
Wilson, Walter B; Sander, Lane C; Oña-Ruales, Jorge O; Mössner, Stephanie G; Sidisky, Leonard M; Lee, Milton L; Wise, Stephen A
2017-02-17
Retention indices for 48 polycyclic aromatic sulfur heterocycles (PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry (L/B and T, i.e., length-to-breadth ratio and thickness, respectively) were investigated for the following four isomer sets: (1) 4 three-ring molecular mass (MM) 184Da PASHs, (2) 13 four-ring MM 234Da PASHs, (3) 10 five-ring MM 258Da PASHs, and (4) 20 five-ring MM 284Da PASHs. Correlation coefficients for retention on the 50% LC-DMPS vs L/B ranged from r=0.50 (MM 284Da) to r=0.77 (MM 234Da). Correlation coefficients for retention on the IL phase vs L/B ranged from r=0.31 (MM 234Da) to r=0.54 (MM 284Da). Correlation coefficients for retention on the 50% phenyl vs L/B ranged from r=0.14 (MM 258Da) to r=0.59 (MM 284Da). Several correlation trends are discussed in detail for the retention behavior of PASH on the three stationary phases. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Garland, N. A.; Boyle, G. J.; Cocks, D. G.; White, R. D.
2018-02-01
This study reviews the neutral density dependence of electron transport in gases and liquids and develops a method to determine the nonlinear medium density dependence of electron transport coefficients and scattering rates required for modeling transport in the vicinity of gas-liquid interfaces. The method has its foundations in Blanc’s law for gas-mixtures and adapts the theory of Garland et al (2017 Plasma Sources Sci. Technol. 26) to extract electron transport data across the gas-liquid transition region using known data from the gas and liquid phases only. The method is systematically benchmarked against multi-term Boltzmann equation solutions for Percus-Yevick model liquids. Application to atomic liquids highlights the utility and accuracy of the derived method.
Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH
NASA Astrophysics Data System (ADS)
Zuend, A.; Seinfeld, J.
2011-12-01
Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal mixtures substantially overestimates the SOA mass, especially at high relative humidity.
Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions
NASA Astrophysics Data System (ADS)
Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong
2017-05-01
We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.
USDA-ARS?s Scientific Manuscript database
A rapid, effective technique applying vortex-assisted liquid–liquid microextraction (VALLME) prior to ultra high performance liquid chromatography-evaporating light scattering detectection/ mass spectroscopy (UHPLC-ELSD/MS) determination was developed for the analysis of four cucurbitane triterpenoi...
NASA Astrophysics Data System (ADS)
Kassemi, Mohammad; Kartuzova, Olga
2016-03-01
Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.
Khan, Imran; Kurnia, Kiki A; Mutelet, Fabrice; Pinho, Simão P; Coutinho, João A P
2014-02-20
For an adequate choice or design of ionic liquids, the knowledge of their interaction with other solutes and solvents is an essential feature for predicting the reactivity and selectivity of systems involving these compounds. In this work, the activity coefficient of water in several imidazolium-based ionic liquids with the common cation 1-butyl-3-methylimidazolium was measured at 298.2 K. To contribute to a deeper insight into the interaction between ionic liquids and water, COSMO-RS was used to predict the activity coefficient of water in the studied ionic liquids along with the excess enthalpies. The results showed good agreement between experimental and predicted activity coefficient of water in ionic liquids and that the interaction of water and ionic liquids was strongly influenced by the hydrogen bonding of the anion with water. Accordingly, the intensity of interaction of the anions with water can be ranked as the following: [CF3SO3](-) < [SCN](-) < [TFA](-) < Br(-) < [TOS](-) < Cl(-) < [CH3SO3](-) [DMP](-) < [Ac](-). In addition, fluorination and aromatization of anions are shown to reduce their interaction with water. The effect of temperature on the activity coefficient of water at infinite dilution was measured by inverse gas chromatography and predicted by COSMO-RS. Further analysis based on COSMO-RS provided information on the nature of hydrogen bonding between water and anion as well as the possibility of anion-water complex formation.
Effect of operating temperature on styrene mass transfer characteristics in a biotrickling filter.
Parnian, Parham; Zamir, Seyed Morteza; Shojaosadati, Seyed Abbas
2017-05-01
To study the effect of operating temperature on styrene mass transfer from gas to liquid phase in biotrickling filters (BTFs), overall mass transfer coefficient (K L a) was calculated through fitting test data to a general mass balance model under abiotic conditions. Styrene was used as the volatile organic compound and the BTF was packed with a mixture of pall rings and pumice. Operating temperature was set at 30°C and 50°C for mesophilic and thermophilic conditions, respectively. K L a values increased from 54 to 70 h -1 at 30°C and from 60 to 90 h -1 at 50°C, respectively, depending on the countercurrent gas to liquid flow ratio that varied in the range of 7.5-32. Evaluation of styrene mass transfer capacity (MTC) showed that liquid-phase mass transfer resistance decreased as the flow ratio increased at constant temperature. MTC also decreased with an increase in operating temperature. Both gas-liquid partition coefficient and K L a increased with increasing temperature; however the effect on gas-liquid partition coefficient was more significant and served to increase mass transfer limitations. Thermophilic biofiltration on the one hand increases mass transfer limitations, but on the other hand may enhance the biodegradation rate in favor of enhancing BTFs' performance.
Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL
2009-11-17
A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.
A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai
A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai
Experimental study of oblique impact between dry spheres and liquid layers
NASA Astrophysics Data System (ADS)
Ma, Jiliang; Liu, Daoyin; Chen, Xiaoping
2013-09-01
Liquid addition is common in industrial fluidization-based processes. A detailed understanding of collision mechanics of particles with liquid layers is helpful to optimize these processes. The normal impact with liquid has been studied extensively; however, the studies on oblique impact with liquid are scarce. In this work, experiments are conducted to trace Al2O3 spheres obliquely impacting on a surface covered by liquid layers, in which the free-fall spheres are disturbed initially by a horizontal gas flow. The oblique impact exhibits different rebound behaviors from normal collision due to the occurrence of strong rotation. The normal and tangential restitution coefficients (en and et) and liquid bridge rupture time (trup) are analyzed. With increase in liquid layer thickness and viscosity, en and et decline, and trup increases. With increase in tangential velocity, et decreases first and then increases, whereas en remains nearly unchanged, and trup decreases constantly. A modified Stokes number is proposed to further explore the relation between restitution coefficients and the impact parameters. Finally, an analysis of energy dissipation shows that the contact deformation and liquid phase are the two main sources of total energy dissipation. Unexpectedly, the dissipative energy caused by the liquid phase is independent of tangential velocity.
NASA Astrophysics Data System (ADS)
Odabasi, Mustafa; Cetin, Eylem; Sofuoglu, Aysun
Octanol-air partition coefficients ( KOA) for 14 polycyclic aromatic hydrocarbons (PAHs) were determined as a function of temperature using the gas chromatographic retention time method. log KOA values at 25° ranged over six orders of magnitude, between 6.34 (acenaphthylene) and 12.59 (dibenz[ a,h]anthracene). The determined KOA values were within factor of 0.7 (dibenz[ a,h]anthracene) to 15.1 (benz[ a]anthracene) of values calculated as the ratio of octanol-water partition coefficient to dimensionless Henry's law constant. Supercooled liquid vapor pressures ( PL) of 13 PAHs were also determined using the gas chromatographic retention time technique. Activity coefficients in octanol calculated using KOA and PL ranged between 3.2 and 6.2 indicating near-ideal solution behavior. Atmospheric concentrations measured in this study in Izmir, Turkey were used to investigate the partitioning of PAHs between particle and gas-phases. Experimental gas-particle partition coefficients ( Kp) were compared to the predictions of KOA absorption and KSA (soot-air partition coefficient) models. Octanol-based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. Ratios of measured/modeled partition coefficients ranged between 1.1 and 15.5 (4.5±6.0, average±SD) for KOA model. KSA model predictions were relatively better and measured to modeled ratios ranged between 0.6 and 5.6 (2.3±2.7, average±SD).
Kinetics of diffusional droplet growth in a liquid/liquid two-phase system
NASA Technical Reports Server (NTRS)
Baird, James K.; Cain, Judith B.
1993-01-01
This report contains experimental results for the interdiffusion coefficient of the system, succinonitrile plus water, at a number of compositions and temperatures in the single phase region of the phase diagram. The concentration and temperature dependence of the measured diffusion coefficient has been analyzed in terms of Landau - Ginzburg theory, which assumes that the Gibb free energy is an analytic function of its variables, and can be expanded in a Taylor series about any point in the phase diagram. At most points in the single phase region this is adequate. Near the consolute point (critical point of solution), however, the free energy is non-analytic, and the Landau - Ginzburg theory fails. The solution to this problem dictates that the Landau - Ginzburg form of the free energy be replaced by Widom scaling functions with irrational values for the scaling exponents. As our measurements of the diffusion coefficient near the critical point reflect this non-analytic character, we are preparing for publication in a refereed journal a separate analysis of some of the data contained herein as well as some additional measurements we have just completed. When published, reprints of this article will be furnished to NASA.
Liu; Wene
2000-09-01
An empirical model describing the relationship between the partition coefficients (K) of perfume materials in the solid-phase microextraction (SPME) fiber stationary phase and the Linearly Temperature Programmed Retention Index (LTPRI) is obtained. This is established using a mixture of eleven selected fragrance materials spiked in mineral oil at different concentration levels to simulate liquid laundry detergent matrices. Headspace concentrations of the materials are measured using both static headspace and SPME-gas chromatography analysis. The empirical model is tested by measuring the K values for fourteen perfume materials experimentally. Three of the calculated K values are within 2-19% of the measured K value, and the other eleven calculated K values are within 22-59%. This range of deviation is understandable because a diverse mixture was used to cover most chemical functionalities in order to make the model generally applicable. Better prediction accuracy is expected when a model is established using a specific category of compounds, such as hydrocarbons or aromatics. The use of this method to estimate distribution constants of fragrance materials in liquid matrices is demonstrated. The headspace SPME using the established relationship between the gas-liquid partition coefficient and the LTPRI is applied to measure the headspace concentration of fragrances. It is demonstrated that this approach can be used to monitor the headspace perfume profiles over consumer laundry and cleaning products. This method can provide high sample throughput, reproducibility, simplicity, and accuracy for many applications for screening major fragrance materials over consumer products. The approach demonstrated here can be used to translate headspace SPME results into true static headspace concentration profiles. This translation is critical for obtaining the gas-phase composition by correcting for the inherent differential partitioning of analytes into the fiber stationary phase.
Combined heat and mass transfer device for improving separation process
Tran, Thanh Nhon
1999-01-01
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.
Combined heat and mass transfer device for improving separation process
Tran, T.N.
1999-08-24
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.
Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua
2016-04-01
A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Margineanu, Anca; Hotta, Jun-ichi; Van der Auweraer, Mark; Ameloot, Marcel; Stefan, Alina; Beljonne, David; Engelborghs, Yves; Herrmann, Andreas; Müllen, Klaus; De Schryver, Frans C.; Hofkens, Johan
2007-01-01
A new membrane probe, based on the perylene imide chromophore, with excellent photophysical properties (high absorption coefficient, quantum yield (QY) ≈ 1, high photostability) and excited in the visible domain is proposed for the study of membrane rafts. Visualization of separation between the liquid-ordered (Lo) and the liquid-disordered (Ld) phases can be achieved in artificial membranes by fluorescence lifetime imaging due to the different decay times of the membrane probe in the two phases. Rafts on micrometer-scale in cell membranes due to cellular activation can also be observed by this method. The decay time of the dye in the Lo phase is higher than in organic solvents where its QY is 1. This allows proposing a (possible general) mechanism for the decay time increase in the Lo phase, based on the local field effects of the surrounding molecules. For other fluorophores with QY < 1, the suggested mechanism could also contribute, in addition to effects reducing the nonradiative decay pathways, to an increase of the fluorescence decay time in the Lo phase. PMID:17573424
Chan, W; Gerhardt, G C; Salisbury, C D
1994-01-01
A method for the simultaneous determination of tylosin and tilmicosin residues in animal tissues is reported. Solid-phase extraction columns are used to isolate the drugs from tissue extracts. Determination is accomplished by reversed-phase liquid chromatography with UV detection at 287 nm. Mean recoveries from spiked tissues were 79.9% (coefficient of variation [CV], 8.1%) for tylosin and 92.6% (CV, 8.7%) for tilmicosin. Detection limits for tylosin and tilmicosin were 0.020 and 0.010 ppm, respectively.
Balcom, B J; Petersen, N O
1993-01-01
We have systematically investigated the probe size and shape dependence of lateral diffusion in model dimyristoyl phosphatidylcholine membranes. Linear hydrophobic polymers, which differ in length by an order of magnitude, were used to explore the effect on the lateral diffusion coefficient of hydrodynamic restrictions in the bilayer interior. The polymers employed are isoprenoid alcohols--citronellol, solanesol, and dolichol. Tracer lateral diffusion coefficients were measured by fluorescence photobleaching recovery. Despite the large difference in lengths, the nitrobenzoxadiazole labelled alcohols all diffuse at the rate of lipid self-diffusion (5.0 x 10(-12) m2 s-1, 29 degrees C) in the liquid crystal phase. Companion measurements in isotropic polymer solution, in gel phase lipid membranes and with nonpolar fluorescent polyaromatic hydrocarbons, show a marked dependence of the lateral diffusion coefficient on the probe molecule size. Our results in the liquid crystal phase are in accord with free area theory which asserts that lateral diffusion in the membrane is restricted by the surface-free area. Probe molecules which are significantly longer than the host phospholipid, seven times longer in the case of dolichol, are still restricted in their lateral motion by the surface properties of the bilayer in the liquid crystal phase. Fluorescence quenching experiments indicate that the nitrobenzoxadiazole label does not reside at the aqueous interface, although it must reside in close proximity according to the diffusion measurements. PMID:8218892
A study of the liquid-vapor phase change of mercury based on irreversible thermodynamics.
NASA Technical Reports Server (NTRS)
Adt, R. R., Jr.; Hatsopoulos, G. N.; Bornhorst, W. J.
1972-01-01
The object of this work is to determine the transport coefficients which appear in linear irreversible-thermodynamic rate equations of a phase change. An experiment which involves the steady-state evaporation of mercury was performed to measure the principal transport coefficient appearing in the mass-rate equation and the coupling transport coefficient appearing in both the mass-rate equation and the energy-rate equation. The principal transport coefficient sigma, usually termed the 'condensation' or 'evaporation' coefficient, is found to be approximately 0.9, which is higher than that measured previously in condensation-of-mercury experiments. The experimental value of the coupling coefficient K does not agree with the value predicted from Schrage's kinetic analysis of the phase change. A modified kinetic analysis in which the Onsager reciprocal law and the conservation laws are invoked is presented which removes this discrepancy but which shows that the use of Schrage's equation for predicting mass rates of phase change is a good approximation.
Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.
Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha
2015-09-03
Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.
NASA Astrophysics Data System (ADS)
Huyakorn, P. S.; Panday, S.; Wu, Y. S.
1994-06-01
A three-dimensional, three-phase numerical model is presented for stimulating the movement on non-aqueous-phase liquids (NAPL's) through porous and fractured media. The model is designed for practical application to a wide variety of contamination and remediation scenarios involving light or dense NAPL's in heterogeneous subsurface systems. The model formulation is first derived for three-phase flow of water, NAPL and air (or vapor) in porous media. The formulation is then extended to handle fractured systems using the dual-porosity and discrete-fracture modeling approaches The model accommodates a wide variety of boundary conditions, including withdrawal and injection well conditions which are treated rigorously using fully implicit schemes. The three-phase of formulation collapses to its simpler forms when air-phase dynamics are neglected, capillary effects are neglected, or two-phase-air-liquid, liquid-liquid systems with one or two active phases are considered. A Galerkin procedure with upstream weighting of fluid mobilities, storage matrix lumping, and fully implicit treatment of nonlinear coefficients and well conditions is used. A variety of nodal connectivity schemes leading to finite-difference, finite-element and hybrid spatial approximations in three dimensions are incorporated in the formulation. Selection of primary variables and evaluation of the terms of the Jacobian matrix for the Newton-Raphson linearized equations is discussed. The various nodal lattice options, and their significance to the computational time and memory requirements with regards to the block-Orthomin solution scheme are noted. Aggressive time-stepping schemes and under-relaxation formulas implemented in the code further alleviate the computational burden.
Liquid-liquid critical point in a simple analytical model of water.
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
Liquid-liquid critical point in a simple analytical model of water
NASA Astrophysics Data System (ADS)
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
2006-06-01
increasing the heat and mass transfer coefficients between the liquid phase and gas phase, (b) the spread of the spray over a wider angle [5], and the...counting. The density of the sample liquid in the vibrating tube is obtained from the resonant frequency of the vibrating system relative to the resonant...preparation of test gas mixtures of liquid fuels. We have compared the predictions of several current kinetic mechanisms for jet fuel and used these
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.
1992-01-01
As part of a study to demonstrate the suitability of an X-ray or gamma ray probe for monitoring the quality and flow rate of slush hydrogen, mass attenuation coefficients for Cd-109 X- and gamma radiation in five chemical compounds were measured. The Ag-109 K rays were used for water and acetic acid, whereas E3 transition from the first excited state at 87.7 keV in Ag-109 provided the probe radiation for bromobenzene, alpha (exp 2) chloroisodurene, and cetyl bromide. Measurements were made for a single phase (gas, liquid, solid) as well as mixed phases (liquid plus solid) in all cases. It was shown that the mass attenuation coefficient for the selected radiations is independent of the phase of the test fluids or phase ratios in the case of mixed phase fluids. Described here are the procedure and the results for the five fluid systems investigated.
Gunter, W.D.; Chou, I.-Ming; Girsperger, Sven
1983-01-01
The solubility of halite can be expressed as a function of the mole-fractional-based activity of NaCl in the liquid phase (L) in temperature (T, °K) and pressure (P, bars) In Our liquidus data (based on 10 compositions) above 500 bars for these brines were combined with this equation to generate activity coefficients of NaCl which were fit within their experimental uncertainties to the following one parameter Margules equation In . Concentrated solutions of NaCl show negative deviations from ideality which rapidly increase in magnitude with decreasing XNaCl.
Ariyasena, Thiloka C; Poole, Colin F
2014-09-26
Retention factors on several columns and at various temperatures using gas chromatography and from reversed-phase liquid chromatography on a SunFire C18 column with various mobile phase compositions containing acetonitrile, methanol and tetrahydrofuran as strength adjusting solvents are combined with liquid-liquid partition coefficients in totally organic biphasic systems to calculate descriptors for 23 polycyclic aromatic hydrocarbons and eighteen related compounds of environmental interest. The use of a consistent protocol for the above measurements provides descriptors that are more self consistent for the estimation of physicochemical properties (octanol-water, air-octanol, air-water, aqueous solubility, and subcooled liquid vapor pressure). The descriptor in this report tend to have smaller values for the L and E descriptors and random differences in the B and S descriptors compared with literature sources. A simple atom fragment constant model is proposed for the estimation of descriptors from structure for polycyclic aromatic hydrocarbons. The new descriptors show no bias in the prediction of the air-water partition coefficient for polycyclic aromatic hydrocarbons unlike the literature values. Copyright © 2014 Elsevier B.V. All rights reserved.
Structure and reactions in some amphiphilic association systems
NASA Astrophysics Data System (ADS)
Guo, Rong
1999-06-01
The partial determinations of phase diagrams for some typical surfactants, such as SDS, CTAB and Triton X-100, give the basic aggregated states of the surfactant systems. In the micellar solutions, the diffusion coefficients of some surfactant association systems are determined by the cyclic voltammetry without any probe and used to describe the phase structure. (1) The first CMC, which represents the formation of spherical micelles, and the second CMC, which represents the transformation from spherical to rod-like micelles, are measured. The first and the second CMC are 8.0 x 10-3 mol. L -1 and 5.6 x 10-3 mol. L-1 for SDS, 8.9 x 10-4 mol. L-1 and 2.1 x 10-2 mol. L-1 for CTAB, and 3.2 x 10 -4 mol. L-1 and 1.3 x 10-3 mol. L-1 for Triton X-100, respectively. (2) The addition of polar additives, such as ethanol and benzyl alcohol (BA) in SDS micelles, or hexanol in Triton X-100 micelles, increases the diffusion coefficients and diffusion activation energy, decreases the micropolarity of the micelles with different shape, and causes the transformation from rod-like micelles to spherical ones or from spherical micelles to bicontinuous structure. (3) The isotropic region, which connects to the water comer in the phase diagram, is probably not an area of a single O/W structure, but an area with three different structures---the rod structure, spherical structure and the bicontinuous one. In the lyotropic liquid crystalline phase, the measurements of the small angle X-ray diffraction indicate that the structure parameters, such as interlayer spacing and water penetration, are related to the compositions of the surfactant association systems. The lamellar liquid crystal has a high water penetration but the hexagonal liquid crystal only has a water penetration about 0.05. Some surfactant association systems have been applied in the hydrotrope action of vitamin C (VC) and preparation of nanoparticles, respectively. Vitamin C (VC) can be used as hydrotrope agent in the cationic surfactant CTAB system with various co-surfactants: n-pentanol, n-octanol, n-valeric acid, and n-caproic acid, but not in SDS or Triton X-100 systems. Presence of VC stabilizes both W/O and O/W microemulsions but destabilizes the lamellar liquid crystalline phase. Hence, the "phase transition" from the lamellar liquid crystalline phase to the isotropic phase of O/W, W/O and bicontinuous structure phase occurs with the addition of VC. The hydrotropic action of VC has been used in sunscreens to increase the solubility of sunscreen E 557. The UV absorption spectra of E557 in various media surprisingly had a dependence on the colloid structure. A new method, the preparation of water-soluble nanoparticles, has been found by employing the effect of the penetration of solvent from water layer to amphiphilic layer in lamellar liquid crystals on the solubility of inorganic salts. Water-insoluble nanoparticles have been synthesized by the reaction of two water-soluble inorganic salts in the lamellar liquid crystal. The particle size is less than 10nm and can be controlled by the thickness of the solvent layer in the lamellar liquid crystal. The lamellar liquid crystalline phase of the Triton X-100/decanol/water system has been chosen as a medium because of its large lamellar liquid crystal region and its stability when inorganic salts are added.
Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.
Raut, Ashlesha S; Kalonia, Devendra S
2016-05-02
Opalescence in protein solutions reduces aesthetic appeal of a formulation and can be an indicator of the presence of aggregates or precursor to phase separation in solution signifying reduced product stability. Liquid-liquid phase separation of a protein solution into a protein-rich and a protein-poor phase has been well-documented for globular proteins and recently observed for monoclonal antibody solutions, resulting in physical instability of the formulation. The present review discusses opalescence and liquid-liquid phase separation (LLPS) for therapeutic protein formulations. A brief discussion on theoretical concepts based on thermodynamics, kinetics, and light scattering is presented. This review also discusses theoretical concepts behind intense light scattering in the vicinity of the critical point termed as "critical opalescence". Both opalescence and LLPS are affected by the formulation factors including pH, ionic strength, protein concentration, temperature, and excipients. Literature reports for the effect of these formulation factors on attractive protein-protein interactions in solution as assessed by the second virial coefficient (B2) and the cloud-point temperature (Tcloud) measurements are also presented. The review also highlights pharmaceutical implications of LLPS in protein solutions.
Jaiswal, Abhishek; Egami, Takeshi; Kelton, K F; Schweizer, Kenneth S; Zhang, Yang
2016-11-11
We report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θ_{A}=T_{A}/T_{g} in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θ_{A}≈2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θ_{A}≈1.4 and usually in their supercooled states. The θ_{A} values for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E_{∞} is universally found to be ∼11k_{B}T_{g} and uncorrelated with the fragility or the reduced crossover temperature θ_{A} for metallic and molecular liquids. These observations provide a way to estimate the low-temperature glassy characteristics (T_{g} and m) from the high-temperature liquid quantities (E_{∞} and θ_{A}).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaiswal, Abhishek; Egami, Takeshi; Kelton, K. F.
2016-11-10
In this paper, we report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θ A = T A/T g in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θ A ≈ 2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θ A ≈ 1.4 and usually in their supercooled states. The θ A valuesmore » for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E ∞ is universally found to be ~11k BT g and uncorrelated with the fragility or the reduced crossover temperature θ A for metallic and molecular liquids. Finally, these observations provide a way to estimate the low-temperature glassy characteristics (T g and m) from the high-temperature liquid quantities (E ∞ and θ A).« less
Manassra, Adnan; Khamis, Mustafa; El-Dakiky, Magdy; Abdel-Qader, Zuhair; Al-Rimawi, Fuad
2010-03-11
An HPLC method using UV detection is proposed for the simultaneous determination of pseudophedrine hydrochloride, codeine phosphate, and triprolidine hydrochloride in liquid formulation. C18 column (250mmx4.0mm) is used as the stationary phase with a mixture of methanol:acetate buffer:acetonitrile (85:5:10, v/v) as the mobile phase. The factors affecting column separation of the analytes were studied. The calibration graphs exhibited a linear concentration range of 0.06-1.0mg/ml for pseudophedrine hydrochloride, 0.02-1.0mg/ml for codeine phosphate, and 0.0025-1.0mg/ml for triprolidine hydrochloride for a sample size of 5microl with correlation coefficients of better than 0.999 for all active ingredients studied. The results demonstrate that this method is reliable, reproducible and suitable for routine use with analysis time of less than 4min. Copyright 2009 Elsevier B.V. All rights reserved.
Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks
Zhou, Wencai; Wöll, Christof; Heinke, Lars
2015-01-01
The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1), whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.
Estimation of thermodynamic acidity constants of some penicillinase-resistant penicillins.
Demiralay, Ebru Çubuk; Üstün, Zehra; Daldal, Y Doğan
2014-03-01
In this work, thermodynamic acidity constants (pssKa) of methicillin, oxacillin, nafcillin, cloxacilin, dicloxacillin were determined with reverse phase liquid chromatographic method (RPLC) by taking into account the effect of the activity coefficients in hydro-organic water-acetonitrile binary mixtures. From these values, thermodynamic aqueous acidity constants of these drugs were calculated by different approaches. The linear relationships established between retention factors of the species and the polarity parameter of the mobile phase (ET(N)) was proved to predict accurately retention in LC as a function of the acetonitrile content (38%, 40% and 42%, v/v). Copyright © 2013 Elsevier B.V. All rights reserved.
Sanagi, Mohd Marsin; Miskam, Mazidatulakmam; Wan Ibrahim, Wan Aini; Hermawan, Dadan; Aboul-Enein, Hassan Y
2010-07-01
A three-phase hollow fiber liquid-phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1-octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 microL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H(3)PO(4), pH 3.0; organic solvent, 1-octanol; acceptor solution, 40 microL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05-0.30 mg/L with r(2)>0.9900 and LODs were in the range of 0.01-0.04 mg/L with RSDs of 1.25-2.32%. Excellent enrichment factors of up to 398-folds were obtained. It was found that the partition coefficient (K(a/d)) values were high for 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,6-dinitrophenol and that the individual partition coefficients (K(org/d) and K(a/org)) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.
1989-03-15
3. F 2(g) -Li(L) 4. SF 6(g)-Li(L ) - vii - Several different modeling techniques are used to accurately estimate the activity coefficients of the...electrolytes with molecular species. The gas phase of the electrolytic solution is modeled using a pressure-explicit second order virial equation. The pure...calculated using the van Laar model . - viii - ACKNOWLEDGMENT This research was sponsored by the Office of Naval Research, Contract No. N00014-85--k
NASA Astrophysics Data System (ADS)
Blodgett, M. E.; Gangopadhyay, A. K.; Kelton, K. F.
2015-04-01
Thermal evaporation loss measurements made using the electrostatic levitation (ESL) technique for one binary Ti-Zr, two ternary Ti-Zr-Ni, and two glass-forming (Vit 106 and Vit 106a) alloy liquids are reported. The containerless environment enables measurements not only for the equilibrium liquids but also for the metastable supercooled liquids. The data follow the Langmuir equation when the activity coefficient of the solute atoms, a measure for the deviation from the ideal solution behavior, is taken into account. An estimate for the activity coefficient of Ni in the Ti-Zr liquid is made from these data, demonstrating the effectiveness of ESL for such measurements.
Lokajová, Jana; Railila, Annika; King, Alistair W T; Wiedmer, Susanne K
2013-09-20
The distribution constants of some analytes, closely connected to the petrochemical industry, between an aqueous phase and a phosphonium ionic liquid phase, were determined by ionic liquid micellar electrokinetic chromatography (MEKC). The phosphonium ionic liquids studied were the water-soluble tributyl(tetradecyl)phosphonium with chloride or acetate as the counter ion. The retention factors were calculated and used for determination of the distribution constants. For calculating the retention factors the electrophoretic mobilities of the ionic liquids were required, thus, we adopted the iterative process, based on a homologous series of alkyl benzoates. Calculation of the distribution constants required information on the phase-ratio of the systems. For this the critical micelle concentrations (CMC) of the ionic liquids were needed. The CMCs were calculated using a method based on PeakMaster simulations, using the electrophoretic mobilities of system peaks. The resulting distribution constants for the neutral analytes between the ionic liquid and the aqueous (buffer) phase were compared with octanol-water partitioning coefficients. The results indicate that there are other factors affecting the distribution of analytes between phases, than just simple hydrophobic interactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon
NASA Astrophysics Data System (ADS)
Ishiyama, Tatsuya; Fujikawa, Shigeo; Kurz, Thomas; Lauterborn, Werner
2013-10-01
A boundary condition for the Boltzmann equation (kinetic boundary condition, KBC) at the vapor-liquid interface of argon is constructed with the help of molecular dynamics (MD) simulations. The KBC is examined at a constant liquid temperature of 85 K in a wide range of nonequilibrium states of vapor. The present investigation is an extension of a previous one by Ishiyama, Yano, and Fujikawa [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.084504 95, 084504 (2005)] and provides a more complete form of the KBC. The present KBC includes a thermal accommodation coefficient in addition to evaporation and condensation coefficients, and these coefficients are determined in MD simulations uniquely. The thermal accommodation coefficient shows an anisotropic behavior at the interface for molecular velocities normal versus tangential to the interface. It is also found that the evaporation and condensation coefficients are almost constant in a fairly wide range of nonequilibrium states. The thermal accommodation coefficient of the normal velocity component is almost unity, while that of the tangential component shows a decreasing function of the density of vapor incident on the interface, indicating that the tangential velocity distribution of molecules leaving the interface into the vapor phase may deviate from the tangential parts of the Maxwell velocity distribution at the liquid temperature. A mechanism for the deviation of the KBC from the isotropic Maxwell KBC at the liquid temperature is discussed in terms of anisotropic energy relaxation at the interface. The liquid-temperature dependence of the present KBC is also discussed.
Wu, Jingming; Ee, Kim Huey; Lee, Hian Kee
2005-08-05
Automated dynamic liquid-liquid-liquid microextraction (D-LLLME) controlled by a programmable syringe pump and combined with HPLC-UV was investigated for the extraction and determination of 5 phenoxy acid herbicides in aqueous samples. In the extraction procedure, the acceptor phase was repeatedly withdrawn into and discharged from the hollow fiber by the syringe pump. The repetitive movement of acceptor phase into and out of the hollow fiber channel facilitated the transfer of analytes into donor phase, from the organic phase held in the pore of the fiber. Parameters such as the organic solvent, concentrations of the donor and acceptor phases, plunger movement pattern, speed of agitation and ionic strength of donor phase were evaluated. Good linearity of analytes was achieved in the range of 0.5-500 ng/ml with coefficients of determination, r2 > 0.9994. Good repeatabilities of extraction performance were obtained with relative standard deviations lower than 7.5%. The method provided up-to 490-fold enrichment within 13 min. In addition, the limits of detection (LODs) ranged from 0.1 to 0.4 ng/mL (S/N = 3). D-LLLME was successfully applied for the analysis of phenoxy acid herbicides from real environmental water samples.
Kinetics of diffusional droplet growth in a liquid/liquid two-phase system
NASA Technical Reports Server (NTRS)
Baird, James K.
1992-01-01
In the case of the diaphragm cell transport equation where the interdiffusion coefficient is a function of concentration, we have derived an integral of the form, t = B(sub 0) + B(sub L)ln(delta(c)) + B(sub 1)(delta(c)) + B(sub 2)(delta(c))(exp 2) +... where t is the time and (delta(c)) is the concentration difference across the frit. The coefficient, B(sub 0), is a constant of integration, while the coefficient, B(sub L), B(sub 1), B(sub 2), ..., depend in general upon the cell constant, the compartment volumes, the interdiffusion coefficient, and various of its concentration derivatives evaluated at the mean concentration for the cell. Explicit formulae for B(sub L), B(sub 1), B(sub 2), ... are given.
Tarnacka, M; Madejczyk, O; Adrjanowicz, K; Pionteck, J; Kaminska, E; Kamiński, K; Paluch, M
2015-06-14
Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT(g)/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT(n)/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ(α) = 10(-5) s. Furthermore, we plotted the obtained relaxation times as a function of T(-1)v(-γ), which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals' properties of itraconazole molecule.
NASA Astrophysics Data System (ADS)
Couvidat, F.; Sartelet, K.
2014-01-01
The Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model is designed to be modular with different user options depending on the computing time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption on the aqueous phase of particles, activity coefficients, phase separation). Each surrogate can be hydrophilic (condenses only on the aqueous phase of particles), hydrophobic (condenses only on the organic phase of particles) or both (condenses on both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC thermodynamic model for short-range interactions and with the AIOMFAC parameterization for medium and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium and a dynamic representation of the organic aerosol. In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol (OA) is not at equilibrium with the gas phase because the organic phase could be semi-solid (very viscous liquid phase). The condensation or evaporation of organic compounds could then be limited by the diffusion in the organic phase due to the high viscosity. A dynamic representation of secondary organic aerosols (SOA) is used with OA divided into layers, the first layer at the center of the particle (slowly reaches equilibrium) and the final layer near the interface with the gas phase (quickly reaches equilibrium).
Cavity ring-down spectroscopy in the liquid phase
NASA Astrophysics Data System (ADS)
Xu, Shucheng; Sha, Guohe; Xie, Jinchun
2002-02-01
A new application for cavity ring-down spectroscopic (CRDS) technique using a pulsed polarized light source has been developed in the absorption measurement of liquids for "colorless" organic compounds using both a single sample cell and double sample cells inserted in an optical cavity at Brewster angle. At present an experimental capability of measuring absorption coefficients as small as 2-5×10-7 cm-1 has been demonstrated by measurement of the absorption baselines. The first spectra for CRDS in the liquid phase, the C-H stretching fifth vibrational overtones of benzene in the pure liquid and hexane solution are obtained. The optical absorption length for liquids in both a single sample cell and double sample cells of 1 cm length is up to 900 cm due to multipass of light within an optical cavity. Compared to the thermal lens and optoacoustic spectroscopic techniques, the sensitivity for CRDS mainly depends on the optical absorption path of the sample (single passing path of the sample times multipass times), is not determined by the laser power and the length of the sample cell. The absolute absorption coefficient and band intensity for the sample are determined directly by the spectroscopy.
Raman bandshape analysis of the symmetric bending vibration in liquid chloroform
NASA Astrophysics Data System (ADS)
Yuan, P.; Schwartz, M.
In order to determine whether accurate rotational diffusion coefficients in liquids may be determined from the bandshapes of isotopically broadened vibrational peaks, we have investigated the isotropic and anisotropic Raman spectra of the ν 3( A1), CCl 3 symmetric bending, vibration in CHCl 3 as a function of temperature in the liquid phase. The spectral lineshapes were fitted by a model containing four Lorentzian/Gaussian summation bands with relative peak intensities equal to the relative abundances of the four isotopic combinations and frequency displacements constrained to values measured in the matrix infrared spectrum. The calculated room temperature perpendicular diffusion coefficient, D⊥ (25°C) = 8.310 10 s -1, was within the range of values reported from Raman measurements on the ν 1, symmetric carbon-hydrogen stretching, vibration, but was somewhat lower than published results from NMR relaxation time measurements, T1( 2D), on CDCl 3, and from dielectric relaxation. The activation energy, Ea( D⊥), determined from the ν 3 bandshape measurements was 30% higher than the average value from the NMR and dielectric studies. The deviation is believed to result from the sensitivity of this quantity to the fractional Lorentzian character of the fitting functions.
2013-08-06
of the problem studied Proton exchange membrane fuel cells ( PEMFCs ) are the most promising candidate systems for alternative electricity...characteristic. The limiting current can be used as a tool to study mass transport phenomena in PEMFC because it can provide experimental data for the...coefficient for PEMFCs under in situ conditions based on the galvanostatic discharge of a cell with an interrupted reactant supply. The results indicated
Multiphase, multicomponent phase behavior prediction
NASA Astrophysics Data System (ADS)
Dadmohammadi, Younas
Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using quantitative structure-property parameter generalizations (QSPR). For ternary systems, where all three constituent binary systems were available, the NRTL-QSPR, UNIQUAC-QSPR, and UNIFAC-6 models produce comparable accuracy. For systems where at least one constituent binary is missing, the UNIFAC-6 model produces larger errors than the QSPR generalized models. In general, the LLE characterization results indicate the accuracy of the modified models in reproducing the findings of the original NRTL model.
Solvation models, based on fundamental chemical structure theory, were developed in the SPARC mechanistic tool box to predict a large array of physical properties of organic compounds in water and in non-aqueous solvents strictly from molecular structure. The SPARC self-interact...
Poole, Colin F
2004-05-28
Room temperature ionic liquids are novel solvents with favorable environmental and technical features. Synthetic routes to over 200 room temperature ionic liquids are known but for most ionic liquids physicochemical data are generally lacking or incomplete. Chromatographic and spectroscopic methods afford suitable tools for the study of solvation properties under conditions that approximate infinite dilution. Gas-liquid chromatography is suitable for the determination of gas-liquid partition coefficients and activity coefficients as well as thermodynamic constants derived from either of these parameters and their variation with temperature. The solvation parameter model can be used to define the contribution from individual intermolecular interactions to the gas-liquid partition coefficient. Application of chemometric procedures to a large database of system constants for ionic liquids indicates their unique solvent properties: low cohesion for ionic liquids with weakly associated ions compared with non-ionic liquids of similar polarity; greater hydrogen-bond basicity than typical polar non-ionic solvents; and a range of dipolarity/polarizability that encompasses the same range as occupied by the most polar non-ionic liquids. These properties can be crudely related to ion structures but further work is required to develop a comprehensive approach for the design of ionic liquids for specific applications. Data for liquid-liquid partition coefficients is scarce by comparison with gas-liquid partition coefficients. Preliminary studies indicate the possibility of using the solvation parameter model for interpretation of liquid-liquid partition coefficients determined by shake-flask procedures as well as the feasibility of using liquid-liquid chromatography for the convenient and rapid determination of liquid-liquid partition coefficients. Spectroscopic measurements of solvatochromic and fluorescent probe molecules in room temperature ionic liquids provide insights into solvent intermolecular interactions although interpretation of the different and generally uncorrelated "polarity" scales is sometimes ambiguous. All evidence points to the ionic liquids as a unique class of polar solvents suitable for technical development. In terms of designer solvents, however, further work is needed to fill the gaps in our knowledge of the relationship between ion structures and physicochemical properties.
Heat and Mass Transfer of Ammonia Gas Absorption into Falling Liquid Film on a Horizontal Tube
NASA Astrophysics Data System (ADS)
Inoue, Norihiro; Yabuuchi, Hironori; Goto, Masao; Koyama, Shigeru
Heat and mass transfer coefficients during ammonia gas absorption into a falling liquid film formed by distilled water on a horizontal tube were obtained experimentally. The test absorber consists of 200 mm i.d., 600 mm long stainless steel shell, a 1 7.3 mm o.d., 14.9 mm i.d. stainless steel test tube with 600 mm working length mounted along the axis of shell, and a 12.7 mm o.d. pipe manifold of supplying the absorbent. In this paper, it was clear that heat and mass transfer coefficient could be enhanced by increasing the flow rate of absorbent and temperature difference between inlet absorbent and ammonia gas, also heat driven by the temperature difference have an effect on heat transfer of the fa1ling liquid film and mass transfer of vapor side. And the new correlation of heat transfer in dimensionless form was proposed by the temperature difference which was considered heat driven of vapor and liquid film side using a interface temperature of vapor and liquid phase. The new correlations of mass transfer on a interface of vapor and liquid phase in dimensionless form were proposed by using effect factors could be suppose from absorption phenomena.
Prediction of soil organic carbon partition coefficients by soil column liquid chromatography.
Guo, Rongbo; Liang, Xinmiao; Chen, Jiping; Wu, Wenzhong; Zhang, Qing; Martens, Dieter; Kettrup, Antonius
2004-04-30
To avoid the limitation of the widely used prediction methods of soil organic carbon partition coefficients (KOC) from hydrophobic parameters, e.g., the n-octanol/water partition coefficients (KOW) and the reversed phase high performance liquid chromatographic (RP-HPLC) retention factors, the soil column liquid chromatographic (SCLC) method was developed for KOC prediction. The real soils were used as the packing materials of RP-HPLC columns, and the correlations between the retention factors of organic compounds on soil columns (ksoil) and KOC measured by batch equilibrium method were studied. Good correlations were achieved between ksoil and KOC for three types of soils with different properties. All the square of the correlation coefficients (R2) of the linear regression between log ksoil and log KOC were higher than 0.89 with standard deviations of less than 0.21. In addition, the prediction of KOC from KOW and the RP-HPLC retention factors on cyanopropyl (CN) stationary phase (kCN) was comparatively evaluated for the three types of soils. The results show that the prediction of KOC from kCN and KOW is only applicable to some specific types of soils. The results obtained in the present study proved that the SCLC method is appropriate for the KOC prediction for different types of soils, however the applicability of using hydrophobic parameters to predict KOC largely depends on the properties of soil concerned.
Diffusion and mobility of atomic particles in a liquid
NASA Astrophysics Data System (ADS)
Smirnov, B. M.; Son, E. E.; Tereshonok, D. V.
2017-11-01
The diffusion coefficient of a test atom or molecule in a liquid is determined for the mechanism where the displacement of the test molecule results from the vibrations and motion of liquid molecules surrounding the test molecule and of the test particle itself. This leads to a random change in the coordinate of the test molecule, which eventually results in the diffusion motion of the test particle in space. Two models parameters of interaction of a particle and a liquid are used to find the activation energy of the diffusion process under consideration: the gas-kinetic cross section for scattering of test molecules in the parent gas and the Wigner-Seitz radius for test molecules. In the context of this approach, we have calculated the diffusion coefficient of atoms and molecules in water, where based on experimental data, we have constructed the dependence of the activation energy for the diffusion of test molecules in water on the interaction parameter and the temperature dependence for diffusion coefficient of atoms or molecules in water within the models considered. The statistically averaged difference of the activation energies for the diffusion coefficients of different test molecules in water that we have calculated based on each of the presented models does not exceed 10% of the diffusion coefficient itself. We have considered the diffusion of clusters in water and present the dependence of the diffusion coefficient on the cluster size. The accuracy of the presented formulas for the diffusion coefficient of atomic particles in water is estimated to be 50%.
Lomond, Jasmine S; Tong, Anthony Z
2011-01-01
Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.
Flow properties of liquid crystal phases of the Gay-Berne fluid
NASA Astrophysics Data System (ADS)
Sarman, Sten
1998-05-01
We have calculated the viscosities of a variant of the Gay-Berne fluid as a function of the temperature by performing molecular dynamics simulations. We have evaluated the Green-Kubo relations for the various viscosity coefficients. The results have been cross-checked by performing shear flow simulations. At high temperatures there is a nematic phase that is transformed to a smectic A phase as the temperature is decreased. The nematic phase is found to be flow stable. Close to the nematic-smectic transition point the liquid crystal model system becomes flow unstable. This is in agreement with the theoretical predictions by Jähnig and Brochard [F. Jähnig and F. Brochard, J. Phys. 35, 301 (1974)]. In a planar Couette flow one can define the three Miesowicz viscosities or effective viscosities η1, η2, and η3. The coefficient η1 is the viscosity when the director is parallel to the streamlines, η2 is the viscosity when the director is perpendicular to the shear plane, and η3 is the viscosity when the director is perpendicular to the vorticity plane. In the smectic phase η1 is undefined because the strain rate field is incommensurate with the smectic layer structure when the director is parallel to the streamlines. The viscosity η3 is found to be fairly independent of the temperature. The coefficient η2 increases with the temperature. This is unusual because the viscosity of most isotropic liquids decreases with the temperature. This anomaly is due to the smectic layer structure that is present at low temperatures. This lowers the friction because the layers can slide past each other fairly easily.
NASA Technical Reports Server (NTRS)
Irving, A. J.; Merrill, R. B.; Singleton, D. E.
1978-01-01
An experimental study was carried out to measure partition coefficients for two rare-earth elements (Sm and Tm) and Sc among armalcolite, ilmenite, olivine and liquid coexisting in a system modeled on high-Ti mare basalt 74275. This 'primitive' sample was chosen for study because its major and trace element chemistry as well as its equilibrium phase relations at atmospheric pressure are known from previous studies. Beta-track analytical techniques were used so that partition coefficients could be measured in an environment whose bulk trace element composition is similar to that of the natural basalt. Partition coefficients for Cr and Mn were determined in the same experiments by microprobe analysis. The only equilibrium partial melting model appears to be one in which ilmenite is initially present in the source region but is consumed by melting before segregation of the high-Ti mare basalt liquid from the residue.
Dissipative particle dynamics: Systematic parametrization using water-octanol partition coefficients
NASA Astrophysics Data System (ADS)
Anderson, Richard L.; Bray, David J.; Ferrante, Andrea S.; Noro, Massimo G.; Stott, Ian P.; Warren, Patrick B.
2017-09-01
We present a systematic, top-down, thermodynamic parametrization scheme for dissipative particle dynamics (DPD) using water-octanol partition coefficients, supplemented by water-octanol phase equilibria and pure liquid phase density data. We demonstrate the feasibility of computing the required partition coefficients in DPD using brute-force simulation, within an adaptive semi-automatic staged optimization scheme. We test the methodology by fitting to experimental partition coefficient data for twenty one small molecules in five classes comprising alcohols and poly-alcohols, amines, ethers and simple aromatics, and alkanes (i.e., hexane). Finally, we illustrate the transferability of a subset of the determined parameters by calculating the critical micelle concentrations and mean aggregation numbers of selected alkyl ethoxylate surfactants, in good agreement with reported experimental values.
Evaporation, diffusion and self-assembly at drying interfaces.
Roger, K; Sparr, E; Wennerström, H
2018-04-18
Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.
Permeability of cork for water and ethanol.
Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D
2013-10-09
Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.
Counter-current chromatography: simple process and confusing terminology.
Conway, Walter D
2011-09-09
The origin of counter-current chromatography is briefly stated, followed by a description of the mechanism of elution of solutes, which illustrates the elegance and simplicity of the technique. The CCC retention equation can be mentally derived from three facts; that a substance with a distribution coefficient of 0 elutes at the mobile phase solvent front (one mobile phase volume); and one with a distribution coefficient of 1 elutes at the column volume of mobile phase; and solutes with higher distribution coefficients elute at additional multiples of the stationary phase volume. The pattern corresponds to the classical solute retention equation for chromatography, V(R)=V(M)+K(C)V(S), K(C) not being limited to integer values. This allows the entire pattern of solute retention to be visualized on the chromatogram. The high volume fraction of stationary phase in CCC greatly enhances resolution. A survey of the names, symbols and definitions of several widely used chromatography and liquid-liquid distribution parameters in the IUPAC Gold Book and in a recent summary in LC-GC by Majors and Carr revealed numerous conflicts in both names and definitions. These will retard accurate dissemination of CCC research unless the discordance is resolved. It is proposed that the chromatography retention parameter, K(C), be called the distribution coefficient and that a new biphasic distribution parameter, K(Δ(A)), be defined for CCC and be called the species partition ratio. The definition of V(M) should be clarified. V(H) is suggested to represent the holdup volume and V(X) is suggested for the extra-column volume. H(V) and H(L) are suggested to represent the volume and length of a theoretical plate in CCC. Definitions of the phase ratio, β, conflict and should be clarified. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Higuchi, Saki; Kato, Daiki; Awaji, Daisuke; Kim, Kang
2018-03-01
We present a study using molecular dynamics simulations based on the Fermi-Jagla potential model, which is the continuous version of the mono-atomic core-softened Jagla model [J. Y. Abraham, S. V. Buldyrev, and N. Giovambattista, J. Phys. Chem. B 115, 14229 (2011)]. This model shows the water-like liquid-liquid phase transition between high-density and low-density liquids at the liquid-liquid critical point. In particular, the slope of the coexistence line becomes weakly negative, which is expected to represent one of the anomalies of liquid polyamorphism. In this study, we examined the density, dynamic, and thermodynamic anomalies in the vicinity of the liquid-liquid critical point. The boundaries of density, self-diffusion, shear viscosity, and excess entropy anomalies were characterized. Furthermore, these anomalies are connected according to Rosenfeld's scaling relationship between the excess entropy and the transport coefficients such as diffusion and viscosity. The results demonstrate the hierarchical and nested structures regarding the thermodynamic and dynamic anomalies of the Fermi-Jagla model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martz, W.L.; Burton, C.M.; Jacobi, A.M.
1996-11-01
The effect of a polyol ester lubricant on equilibrium pressure, liquid density, and viscosity is presented for R-22, R-125, and R-134a at varying temperatures and concentrations. Preliminary vapor-liquid equilibrium (VLE) data and miscibility observations are also presented for an R-32/R-125 blend (50%/50%) with the ISO 68 polyol ester (POE). Real-gas behavior is modeled using the vapor-phase fugacity, and vapor pressure effects on liquid fugacities are taken into account with the Poynting effect. Positive, negative, and mixed deviations form the Lewis-Randall rule are observed in the activity coefficient behavior. Departures from ideality are related to molecular size differences, intermolecular forces inmore » the mixture, and other factors. The data are discussed in the context of previous results for other refrigerants and thermodynamic modeling of refrigerant and oil mixtures.« less
NASA Astrophysics Data System (ADS)
Liang, Fachun; Zheng, Hongfeng; Yu, Hao; Sun, Yuan
2016-03-01
A novel ultrasonic pulse echo method is proposed for flow pattern identification in a horizontal pipe with gas-liquid two-phase flow. A trace of echoes reflected from the pipe’s internal wall rather than the gas-liquid interface is used for flow pattern identification. Experiments were conducted in a horizontal air-water two-phase flow loop. Two ultrasonic transducers with central frequency of 5 MHz were mounted at the top and bottom of the pipe respectively. The experimental results show that the ultrasonic reflection coefficient of the wall-gas interface is much larger than that of the wall-liquid interface due to the large difference in the acoustic impedance of gas and liquid. The stratified flow, annular flow and slug flow can be successfully recognized using the attenuation ratio of the echoes. Compared with the conventional ultrasonic echo measurement method, echoes reflected from the inner surface of a pipe wall are independent of gas-liquid interface fluctuation, sound speed, and gas and liquid superficial velocities, which makes the method presented a promising technique in field practice.
Gallium-rich Pd-Ga phases as supported liquid metal catalysts
NASA Astrophysics Data System (ADS)
Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.
2017-09-01
A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.
Talebpour, Zahra; Taraji, Maryam; Adib, Nuoshin
2012-05-04
This article presents a method employing stir bar coated with a film of poly (methyl methacrylate/ethyleneglycol dimethacrylate) (PA-EG) and polydimethylsiloxane (PDMS) in combination with liquid desorption (LD) using ionic liquid, followed by high performance liquid chromatography (HPLC) equipped with ultraviolet (UV) detection for the determination of carvedilol in human serum samples. Stir bar sorptive extraction (SBSE) variables, such as desorption and extraction time and temperature, desorption solvent and pH of the matrix were optimized, in order to achieve suitable analytical sensitivity in a short period of time. Also, the concentration effect of 1-methyl-3-octylimidazolium tetrafluoroborate [Omim][BF4] ionic liquid on the efficiency of LD was investigated. A comparison between PA-EG/SBSE and PDMS/SBSE was made by calculating the experimental recovery and partition coefficient (K), where PA-EG phase demonstrated to be an excellent alternative for the enrichment of the carvedilol from serum samples. The effect of [Omim][BF4] on carryover was studied and no carryover was observed. Under optimized experimental conditions, the analytical performance showed excellent linear dynamic range, with correlation coefficients higher than 0.999 and limits of detection and quantification of 0.3 and 1.0 ng mL(-1), respectively. Intra- and inter-day recovery ranged from 94 to 103% and the coefficients of variations were less than 3.2%. The proposed method was shown to be simple, highly sensitive and suitable for the measurement of trace concentration levels of carvedilol in biological fluid media. Copyright © 2012 Elsevier B.V. All rights reserved.
Yoshida, Terumitsu; Takahashi, Ryohei; Imai, Koichi; Uchida, Hiroshi; Arai, Yasutoshi; Oh-ishi, Tsutomu
2010-03-01
This study developed a simple and sensitive method using reversed-phase high-performance liquid chromatography (HPLC) for ganciclovir (GCV) plasma concentrations in cytomegalovirus infectious infants with hearing loss. The method involves a simple protein precipitation procedure that uses no solid-phase or liquid-liquid extraction. The HPLC separation was carried out on a Cadenza CD-C(18) column (3 microm, 4.6 mm x 150 mm) with phosphate buffer (pH 2.5, 25 mM) containing 1% methanol-acetonitrile mixture (4:3, v/v) as a mobile phase at a 0.7 mL/min flow rate. GCV was detected using a fluorescence detection (lambdaex/em: 265/380 nm). The quantification limit was 0.025 microg/mL for 100 microL of plasma sample at which good intra- and inter-assay coefficient of variation values (< 4.96%) and recoveries (94.9-96.5%) were established.
NASA Astrophysics Data System (ADS)
Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.
2018-06-01
The current paper seeks to demonstrate the general applicability of the authors' recently developed treatment of surface renewal during decarburization of Fe-C-S alloys and its effect on the mass transport of phosphorus in the metal phase. The proposed model employs a quantitative model of CO bubble nucleation in the metal to predict the rate of surface renewal, which can then in turn be used to predict the mass-transfer coefficient for phosphorus. A model of mixed transport control in the slag and metal phases was employed to investigate the dephosphorization kinetics between a liquid iron alloy and oxidizing slag. Based on previous studies of the mass-transfer coefficient of FeO in the slag, it was possible to separate the mass transfer coefficient of phosphorus in metal phase, km , from the overall mass-transfer coefficient k_{{o}} . Using this approach, km was investigated under a wide range of conditions and shown to be represented reasonably by the mechanism proposed. The mass-transfer model was tested against results from the literature over a wide range of conditions. The analysis showed that the FeO content in the slag, silicon in the metal and the experimental temperature have strong impact on, km , almost entirely because of their effect on decarburization behavior.
NASA Astrophysics Data System (ADS)
Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.
2018-02-01
The current paper seeks to demonstrate the general applicability of the authors' recently developed treatment of surface renewal during decarburization of Fe-C-S alloys and its effect on the mass transport of phosphorus in the metal phase. The proposed model employs a quantitative model of CO bubble nucleation in the metal to predict the rate of surface renewal, which can then in turn be used to predict the mass-transfer coefficient for phosphorus. A model of mixed transport control in the slag and metal phases was employed to investigate the dephosphorization kinetics between a liquid iron alloy and oxidizing slag. Based on previous studies of the mass-transfer coefficient of FeO in the slag, it was possible to separate the mass transfer coefficient of phosphorus in metal phase, km , from the overall mass-transfer coefficient k_{{o}} . Using this approach, km was investigated under a wide range of conditions and shown to be represented reasonably by the mechanism proposed. The mass-transfer model was tested against results from the literature over a wide range of conditions. The analysis showed that the FeO content in the slag, silicon in the metal and the experimental temperature have strong impact on, km , almost entirely because of their effect on decarburization behavior.
A model for the Pockels effect in distorted liquid crystal blue phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castles, F., E-mail: flynn.castles@materials.ox.ac.uk
2015-09-07
Recent experiments have found that a mechanically distorted blue phase can exhibit a primary linear electro-optic (Pockels) effect [F. Castles et al., Nat. Mater. 13, 817 (2014)]. Here, it is shown that flexoelectricity can account for the experimental results and a model, which is based on continuum theory but takes into account the sub-unit-cell structure, is proposed. The model provides a quantitative description of the effect accurate to the nearest order of magnitude and predicts that the Pockels coefficient(s) in an optimally distorted blue phase may be two orders of magnitude larger than in lithium niobate.
Meniscus formation in a capillary and the role of contact line friction.
Andrukh, Taras; Monaenkova, Daria; Rubin, Binyamin; Lee, Wah-Keat; Kornev, Konstantin G
2014-01-28
We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 μm to 350 μm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.
Wind tunnel investigations on the retention of carboxylic acids during riming
NASA Astrophysics Data System (ADS)
Jost, Alexander; Szakáll, Miklós; Diehl, Karoline; Mitra, Subir K.; Borrmann, Stephan
2015-04-01
In mid-latitudes, precipitation is mainly initiated via the ice phase in mixed phase clouds. In such clouds the ice particles grow to precipitation sizes at the expense of liquid drops through riming which means that supercooled droplets collide with ice particles and subsequently freeze. Water-soluble trace substances present in the liquid phase might remain only fractionally in the ice phase after freezing. This fractionation is called retention and is an important ratio which quantifies the partitioning of atmospheric trace substances between the phases. Laboratory experiments were carried out at the Mainz vertical wind tunnel to determine the retention of lower mono- and di-carboxylic acids during riming. Due to their low molecular weight and their polarity these acids are water-soluble. In the atmosphere formic acid and acetic acid are the most abundant mono-carboxylic acids in the gas and aqueous phase, thus, they represent the major fraction of carboxylic acids in cloud water. Oxalic and malonic acid are common coatings on aerosol particles because of their relatively low saturation vapor pressure. These di-carboxylic acids might therefore promote the aerosol particles to act as cloud condensation nuclei and additionally contribute to the aqueous phase chemistry in cloud droplets. The conditions during the riming experiments in the wind tunnel were similar to those in atmospheric mixed phase clouds, i.e. temperatures from -18°C to -6 °C, liquid water contents between 0.5 and 1.5 g/m3, and liquid drop radii between 10 and 20 μm. The liquid phase concentrations ranged from 3 to 5 mg/l (4.1 < pH < 4.5). As rime collectors captively floating ice particles and quasi-floating snowflakes with diameters between 0.6 and 1.5 cm were used. The wind speed in the vertical wind tunnel was very close to the terminal velocities of the rime collectors, thus, the ventilation during riming was in the same order of magnitude as under atmospheric riming conditions. After riming the collectors were removed from the wind tunnel, their melt water was analyzed by ion chromatography and the retention coefficients, i.e. the fractions of the species which remained in the ice phase were determined. Average retention coefficients of formic acid and acetic acid were 0.73 ± 0.07 and 0.62 ± 0.12, respectively; both oxalic and malonic acids had average retention coefficients of 0.98 ± 0.04. These variations can be explained by the fact that retention depends on the one hand on the dissociation state of the substance together with its solubility (described by the effective Henry's law constant) and on the other hand on the latent heat removal from the collector to the environment. This is affected by ventilation, shape of the rime collector, liquid water content, and droplet size.
NASA Astrophysics Data System (ADS)
Habershon, Scott; Manolopoulos, David E.
2009-12-01
The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.
Habershon, Scott; Manolopoulos, David E
2009-12-28
The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.
Loer, S A; Tarnow, J
2001-06-01
Hydrochloric acid aspiration increases pulmonary microvascular permeability. The authors tested the hypothesis that partial liquid ventilation has a beneficial effect on filtration coefficients in acute acid-induced lung injury. Isolated blood-perfused rabbit lungs were assigned randomly to one of four groups. Group 1 (n = 6) served as a control group without edema. In group 2 (n = 6), group 3 (n = 6), and group 4 (n = 6), pulmonary edema was induced by intratracheal instillation of hydrochloric acid (0.1 N, 2 ml/kg body weight). Filtration coefficients were determined 30 min after this injury (by measuring loss of perfusate after increase of left atrial pressure). Group 2 lungs were gas ventilated, and group 3 lungs received partial liquid ventilation (15 ml perfluorocarbon/kg body weight). In group 4 lungs, the authors studied the immediate effects of bronchial perfluorocarbon instillation on ongoing filtration. Intratracheal instillation of hydrochloric acid markedly increased filtration coefficients when compared with non-injured control lungs (2.3 +/- 0.7 vs. 0.31 +/- 0.08 ml.min(-1). mmHg(-1).100 g(-1) wet lung weight, P < 0.01). Partial liquid ventilation reduced filtration coefficients of the injured lungs (to 0.9 +/- 0.3 ml.min(-1).mmHg(-1).100 g(-1) wet lung weight, P = 0.022). Neither pulmonary artery nor capillary pressures (determined by simultaneous occlusion of inflow and outflow of the pulmonary circulation) were changed by hydrochloric acid instillation or by partial liquid ventilation. During ongoing filtration, bronchial perfluorocarbon instillation (5 ml/kg body weight) immediately reduced the amount of filtered fluid by approximately 50% (P = 0.027). In the acute phase after acid injury, partial liquid ventilation reduced pathologic fluid filtration. This effect started immediately after bronchial perfluorocarbon instillation and was not associated with changes in mean pulmonary artery, capillary, or airway pressures. The authors suggest that in the early phase of acid injury, reduction of fluid filtration contributes to the beneficial effects of partial liquid ventilation on gas exchange and lung mechanics.
Modified sedimentation-dispersion model for solids in a three-phase slurry column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.N.; Ruether, J.A.; Shah, Y.T.
1986-03-01
Solids distribution data for a three-phase, batch-fluidized slurry bubble column (SBC) are presented, using air as the gas phase, pure liquids and solutions as the liquid phase, and glass beads and carborundum catalyst powder as the solid phase. Solids distribution data for the three-phase SBC operated in a continuous mode of operation are also presented, using nitrogen as the gas phase, water as the liquid phase, and glass beads as the solid phase. A new model to provide a reasonable approach to predict solids concentration distributions for systems containing polydispersed solids is presented. The model is a modification of standardmore » sedimentation-dispersion model published earlier. Empirical correlations for prediction of hindered settling velocity and solids dispersion coefficient for systems containing polydispersed solids are presented. A new method of evaluating critical gas velocity (CGV) from concentrations of the sample withdrawn at the same port of the SBC is presented. Also presented is a new mapping for CGV which separates the two regimes in the SBC, namely, incomplete fluidization and complete fluidization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarnacka, M., E-mail: mtarnacka@us.edu.pl; Madejczyk, O.; Kamiński, K.
2015-06-14
Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT{sub g}/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT{sub n}/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition ismore » governed by the relaxation time since it occurred at constant τ {sub α} = 10{sup −5} s. Furthermore, we plotted the obtained relaxation times as a function of T{sup −1}v{sup −γ}, which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals’ properties of itraconazole molecule.« less
Characterization of Flow Dynamics and Reduced-Order Description of Experimental Two-Phase Pipe Flow
NASA Astrophysics Data System (ADS)
Viggiano, Bianca; SkjæRaasen, Olaf; Tutkun, Murat; Cal, Raul Bayoan
2017-11-01
Multiphase pipe flow is investigated using proper orthogonal decomposition for tomographic X-ray data, where holdup, cross sectional phase distributions and phase interface characteristics are obtained. Instantaneous phase fractions of dispersed flow and slug flow are analyzed and a reduced order dynamical description is generated. The dispersed flow displays coherent structures in the first few modes near the horizontal center of the pipe, representing the liquid-liquid interface location while the slug flow case shows coherent structures that correspond to the cyclical formation and breakup of the slug in the first 10 modes. The reconstruction of the fields indicate that main features are observed in the low order dynamical descriptions utilizing less than 1 % of the full order model. POD temporal coefficients a1, a2 and a3 show interdependence for the slug flow case. The coefficients also describe the phase fraction holdup as a function of time for both dispersed and slug flow. These flows are highly applicable to petroleum transport pipelines, hydroelectric power and heat exchanger tubes to name a few. The mathematical representations obtained via proper orthogonal decomposition will deepen the understanding of fundamental multiphase flow characteristics.
NASA Astrophysics Data System (ADS)
Glowacki, E.; Hunt, K.; Abud, D.; Marshall, K. L.
2010-08-01
Stimuli-responsive gas permeation membranes hold substantial potential for industrial processes as well as in analytical and screening applications. Such "smart" membrane systems, although prevalent in liquid mass-transfer manipulations, have yet to be realized for gas applications. We report our progress in developing gas permeation membranes in which liquid crystalline (LC) phases afford the active region of permeation. To achieve rapid and reversible switching between LC and isotropic permeation states, we harnessed the photomechanical action of mesogenic azobenzene dyes that can produce isothermal nematic-isotropic transitions. Both polymeric and low-molecular-weight LC materials were tested. Three different dye-doped LC mixtures with mesogenic azo dyes were infused into commercially available track-etched porous membranes with regular cylindrical pores (0.4 to 10.0 μm). Photoinduced isothermal phase changes in the imbibed material produced large and fully reversible changes in the permeability of the membrane to nitrogen with 5 s of irradiation at 2 mW/cm2. Using two measurement tools constructed in-house, the permeability of the photoswitched membranes was determined by both variable-pressure and variable-volume methods. Both the LC and photogenerated isotropic states demonstrate a linear permeability/pressure (ideal sorption) relationship, with up to a 16-fold difference in their permeability coefficients. Liquid crystal compositions can be chosen such that the LC phase is more permeable than the isotropic-or vice versa. This approach is the first system offering reversible tunable gas permeation membranes.
2017-01-01
Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs < 5%) and excellent recovery (>95%). For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE. PMID:28791049
NASA Astrophysics Data System (ADS)
Badgett, Majors J.; Boyes, Barry; Orlando, Ron
2017-05-01
Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications.
Badgett, Majors J; Boyes, Barry; Orlando, Ron
2017-05-01
Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications. Graphical Abstract ᅟ.
Liang, Chao; Qiao, Jun-Qin; Lian, Hong-Zhen
2017-12-15
Reversed-phase liquid chromatography (RPLC) based octanol-water partition coefficient (logP) or distribution coefficient (logD) determination methods were revisited and assessed comprehensively. Classic isocratic and some gradient RPLC methods were conducted and evaluated for neutral, weak acid and basic compounds. Different lipophilicity indexes in logP or logD determination were discussed in detail, including the retention factor logk w corresponding to neat water as mobile phase extrapolated via linear solvent strength (LSS) model from isocratic runs and calculated with software from gradient runs, the chromatographic hydrophobicity index (CHI), apparent gradient capacity factor (k g ') and gradient retention time (t g ). Among the lipophilicity indexes discussed, logk w from whether isocratic or gradient elution methods best correlated with logP or logD. Therefore logk w is recommended as the preferred lipophilicity index for logP or logD determination. logk w easily calculated from methanol gradient runs might be the main candidate to replace logk w calculated from classic isocratic run as the ideal lipophilicity index. These revisited RPLC methods were not applicable for strongly ionized compounds that are hardly ion-suppressed. A previously reported imperfect ion-pair RPLC method was attempted and further explored for studying distribution coefficients (logD) of sulfonic acids that totally ionized in the mobile phase. Notably, experimental logD values of sulfonic acids were given for the first time. The IP-RPLC method provided a distinct way to explore logD values of ionized compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Harrison, W. J.
1981-01-01
An experimental investigation of Ce, Sm and Tm rare earth element (REE) partition coefficients between coexisting garnets (both natural and synthetic) and hydrous liquids shows that Henry's Law may not be obeyed over a range of REE concentrations of geological relevance. Systematic differences between the three REE and the two garnet compositions may be explained in terms of the differences between REE ionic radii and those of the dodecahedral site into which they substitute, substantiating the Harrison and Wood (1980) model of altervalent substitution. Model calculations demonstrate that significant variation can occur in the rare earth contents of melts produced from a garnet lherzolite, if Henry's Law partition coefficients do not apply for the garnet phase.
Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium
NASA Technical Reports Server (NTRS)
Oliva, J.; Ashcroft, N. W.
1984-01-01
The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.
NASA Astrophysics Data System (ADS)
Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto
2016-02-01
The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.
Li, Guo Ping; Xue, Juan Qin; Yu, Li Hua; Liu, Ni Na
2015-01-01
A certain amount of cyanide is present in wastewater of various industrial processes, such as wet extraction of gold, coal processing, electroplating and other industries. In this work, an experimental study regarding transport of cyanide through a dispersion supported liquid membrane was performed. A model was established to describe the reaction and transport of CN(I) in the supported liquid membrane and the mass transfer kinetics equations were deduced. Through mass transfer kinetic equation it was derived that, when the carrier concentration was under certain conditions, there was a linear relationship between the reciprocal of the permeability coefficient of CN(I) (1/Pc) and n-th power of the concentration of H+ (cnH+), and the parameters Δa(δa/da) and Δo(δ0/d0) could be obtained from the slope and intercept of the straight line. Then the diffusion coefficient do and the diffusion layer thickness δo of the phase interface between the feed phase and membrane phase could be calculated. Factors affecting migration of CN(I) were analyzed, and the stable removal rate of CN(I) was more than 90% with carrier concentration (%TOA) of 2%, feed phase pH of 4, initial CN(I) concentration of 30 mg/L, stirring time of 1 hour, volume ratio of membrane solution to NaOH solution of 2:1, strip phase concentration of 2 mol/L. The results showed that the overall mass transfer rate increased first and then decreased with an increase of TOA concentration, organic-to-strip volume ratio, and strip concentration. Furthermore, the transport percentage of CN(I) was increased, the stability of membrane was enhanced, and the lifetime of the membrane was extended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velaga, A.
1986-01-01
Packed cross-flow internals consisting of four and ten stages including the samplers for liquid and vapor were fabricated to fit into the existing distillation column. Experiments were conducted using methanol-water, ethanol-water and hexane-heptane binary mixtures. The experimental data were collected for compositions of inlet and exist streams of cross-flow stages. The overall gas phase height transfer units (H/sub og/) were estimated using the experimental data. H/sub og/ values were compared to those of counter current conditions. The individual mass transfer coefficients in the liquid and vapor phases were estimated using the collected experimental data for degree of separation, flow ratesmore » and physical properties of the binary system used. The physical properties were estimated at an average temperature of the specific cross-flow stage. The mass transfer coefficients were evaluated using three different correlations proposed by Shulman. Onda and Hayashi respectively. The interfacial areas were estimated using the evaluated mass transfer coefficients and the experimental data at each stage of the column for different runs and compared.« less
Cooke, Cindy M; Shaw, George; Collins, Chris D
2004-12-01
Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14C-isoproturon and 14C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (Kd values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (Kd range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (Kd range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography.
Grant, Sharon; Schacht, Veronika J; Escher, Beate I; Hawker, Darryl W; Gaus, Caroline
2016-03-15
Freely dissolved aqueous concentration and chemical activity are important determinants of contaminant transport, fate, and toxic potential. Both parameters are commonly quantified using Solid Phase Micro-Extraction (SPME) based on a sorptive polymer such as polydimethylsiloxane (PDMS). This method requires the PDMS-water partition constants, KPDMSw, or activity coefficient to be known. For superhydrophobic contaminants (log KOW >6), application of existing methods to measure these parameters is challenging, and independent measures to validate KPDMSw values would be beneficial. We developed a simple, rapid method to directly measure PDMS solubilities of solid contaminants, SPDMS(S), which together with literature thermodynamic properties was then used to estimate KPDMSw and activity coefficients in PDMS. PDMS solubility for the test compounds (log KOW 7.2-8.3) ranged over 3 orders of magnitude (4.1-5700 μM), and was dependent on compound class. For polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs), solubility-derived KPDMSw increased linearly with hydrophobicity, consistent with trends previously reported for less chlorinated congeners. In contrast, subcooled liquid PDMS solubilities, SPDMS(L), were approximately constant within a compound class. SPDMS(S) and KPDMSw can therefore be predicted for a compound class with reasonable robustness based solely on the class-specific SPDMS(L) and a particular congener's entropy of fusion, melting point, and aqueous solubility.
Wang, Qing; Chen, Xianbo; Qiu, Bin; Zhou, Liang; Zhang, Hui; Xie, Juan; Luo, Yan; Wang, Bin
2016-04-01
In the present study, 11 4,4'-diaminostilbene-2,2'-disulfonic acid based fluorescent whitening agents with different numbers of sulfonic acid groups were separated by using an ionic liquid as a mobile phase additive in high-performance liquid chromatography with fluorescence detection. The effects of ionic liquid concentration, pH of mobile phase B, and composition of mobile phase A on the separation of fluorescent whitening agents were systematically investigated. The ionic liquid tetrabutylammonium tetrafluoroborate is superior to tetrabutylammomnium bromide for the separation of the fluorescent whitening agents. The optimal separation conditions were an ionic liquid concentration at 8 mM and the pH of mobile phase B at 8.5 with methanol as mobile phase A. The established method exhibited low limits of detection (0.04-0.07 ng/mL) and wide linearity ranges (0.30-20 ng/mL) with high linear correlation coefficients from 0.9994 to 0.9998. The optimized procedure was applied to analyze target analytes in paper samples with satisfactory results. Eleven target analytes were quantified, and the recoveries of spiked paper samples were in the range of 85-105% with the relative standard deviations from 2.1 to 5.1%. The obtained results indicated that the method was efficient for detection of 11 fluorescent whitening agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evidence for a jacketed nematic polymer
NASA Astrophysics Data System (ADS)
Hardouin, F.; Mery, S.; Achard, M. F.; Noirez, L.; Keller, P.
1991-05-01
The evidence for a “jacketed” structure at the scale of the chain dimensions in the nematic phase of a “side-on fixed” liquid crystal polysiloxane is reported by using small angle neutron scattering. We relate this anisotropy of chain conformation to the first measurements of the rotational viscosity coefficient in this new type of liquid crystal side-chain polymer. Par des mesures de diffusion des neutrons aux petits angles nous montrons l'existence, pour un polysiloxane “ en haltère ”, d'une structure “ chemisée ” à l'échelle de l'organisation global d'une chaîne en phase nématique. On constate que cette anisotropie de forme du polymère a des conséquences sur l'évolution du coefficient de viscosité de torsion mesuré pour la première fois dans ce nouveau type de polymère à chaînes latérales.
Fast response liquid crystal devices
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsun
Liquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. The response time of a LC device depends on the visco-elastic coefficient (gamma1/K11), LC cell gap (d), and applied voltage. Hence, low visco-elastic coefficient LC materials and thinner cell gap are favorable for reducing the response time. However, low visco-elastic coefficient LCs are usually associated with a low birefringence because of shorter molecular conjugation. For display applications, such as LCD TVs, low birefringence (Deltan<0.1) LCs are commonly used. However, for optical communications at 1550 nm, low birefringence requires to a thick cell gap which, in turn, increases the response time. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid crystals, polymer stabilized liquid crystals, and sheared polymer network liquid crystals. We discover a new class of material, denoted as sheared polymer network liquid crystal (SPNLC) which exhibits a submillisecond response time. Moreover, this response time is insensitive to the LC cell gap. This is the first LC device exhibiting such an interesting property. Chapters 1 and 2 describe the motivation and background of this dissertation. From chapter 3 to chapter 6, dual-frequency liquid crystals and polymer network methods are demonstrated as examples for the variable optical attenuators. Variable optical attenuator (VOA) is a key component in optical communications. Especially, the sheared PNLC VOA shows the best result; its dynamic range reaches 43 dB while the response time is in the submillisecond range at 1550 nm wavelength, which is 50 times faster than the commercial LC-based VOA. In Chapter 7, we report a new device called axially-symmetric sheared polymer network liquid crystals (AS-SPNLC) and use it as LC devices. Through analyzing the structure of this axially-symmetric SPNLC, we construct a 3-D model to explain the observed phenomena. An axially-symmetric sheared polymer network liquid crystal has several attractive features: (1) it is polarization independent, (2) it has gradient phase change, and (3) its response time is fast. It can be used for polarization converter and divergent LC lens. In addition, a new method for simultaneously measuring the phase retardation and optic axis of a compensation film is demonstrated using an axially-symmetric sheared polymer network liquid crystal. By overlaying a tested compensation film with a calibrated SPNLC cell between crossed polarizers, the optic axis and phase retardation value of the compensation film can be determined. This simple technique can be used for simultaneously measuring the optic axis and phase retardations of both A- and C-plates. These compensation films have been used extensively in wide-view LCD industry. Therefore, this method will make an important impact to the LCD industry.
Piskulich, Zeke A; Mesele, Oluwaseun O; Thompson, Ward H
2017-10-07
General approaches for directly calculating the temperature dependence of dynamical quantities from simulations at a single temperature are presented. The method is demonstrated for self-diffusion and OH reorientation in liquid water. For quantities which possess an activation energy, e.g., the diffusion coefficient and the reorientation time, the results from the direct calculation are in excellent agreement with those obtained from an Arrhenius plot. However, additional information is obtained, including the decomposition of the contributions to the activation energy. These results are discussed along with prospects for additional applications of the direct approach.
Berthod, Alain; Hassoun, Mahmoud
2006-05-26
The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.
Fluid transport in partially filled porous sol-gel silica glass
NASA Astrophysics Data System (ADS)
D'orazio, Franco; Bhattacharja, Sankar; Halperin, William P.; Gerhardt, Rosario
1990-10-01
Measurements of low-frequency ac electrical conductivity of a porous glass filled with different amounts of a saline solution are compared with the self-diffusion coefficient of water measured in the same sample, reported previously [F. D'Orazio et al., Phys. Rev. Lett. 63, 43 (1989)]. The two transport parameters are consistently related through the Einstein relation under saturation conditions. A more complex picture is revealed for the unsaturated sample, since the presence of a vapor phase enhances the self-diffusion coefficient. Conductivity experiments allow an independent assessment of the contribution to self-diffusion from the liquid phase. However, a comparison between the two experiments indicates that the role of the vapor phase is not well understood.
Membrane Bending Moduli of Coexisting Liquid Phases Containing Transmembrane Peptide.
Usery, Rebecca D; Enoki, Thais A; Wickramasinghe, Sanjula P; Nguyen, V P; Ackerman, David G; Greathouse, Denise V; Koeppe, Roger E; Barrera, Francisco N; Feigenson, Gerald W
2018-05-08
A number of highly curved membranes in vivo, such as epithelial cell microvilli, have the relatively high sphingolipid content associated with "raft-like" composition. Given the much lower bending energy measured for bilayers with "nonraft" low sphingomyelin and low cholesterol content, observing high curvature for presumably more rigid compositions seems counterintuitive. To understand this behavior, we measured membrane rigidity by fluctuation analysis of giant unilamellar vesicles. We found that including a transmembrane helical GWALP peptide increases the membrane bending modulus of the liquid-disordered (Ld) phase. We observed this increase at both low-cholesterol fraction and higher, more physiological cholesterol fraction. We find that simplified, commonly used Ld and liquid-ordered (Lo) phases are not representative of those that coexist. When Ld and Lo phases coexist, GWALP peptide favors the Ld phase with a partition coefficient of 3-10 depending on mixture composition. In model membranes at high cholesterol fractions, Ld phases with GWALP have greater bending moduli than the Lo phase that would coexist. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter
NASA Astrophysics Data System (ADS)
Zhou, Zhuangqi; Wang, Xiangru; Zhuo, Rusheng; He, Xiaoxian; Wu, Liang; Wang, Xiaolin; Tan, Qinggui; Qiu, Qi
2018-03-01
To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.
A numerical model for boiling heat transfer coefficient of zeotropic mixtures
NASA Astrophysics Data System (ADS)
Barraza Vicencio, Rodrigo; Caviedes Aedo, Eduardo
2017-12-01
Zeotropic mixtures never have the same liquid and vapor composition in the liquid-vapor equilibrium. Also, the bubble and the dew point are separated; this gap is called glide temperature (Tglide). Those characteristics have made these mixtures suitable for cryogenics Joule-Thomson (JT) refrigeration cycles. Zeotropic mixtures as working fluid in JT cycles improve their performance in an order of magnitude. Optimization of JT cycles have earned substantial importance for cryogenics applications (e.g, gas liquefaction, cryosurgery probes, cooling of infrared sensors, cryopreservation, and biomedical samples). Heat exchangers design on those cycles is a critical point; consequently, heat transfer coefficient and pressure drop of two-phase zeotropic mixtures are relevant. In this work, it will be applied a methodology in order to calculate the local convective heat transfer coefficients based on the law of the wall approach for turbulent flows. The flow and heat transfer characteristics of zeotropic mixtures in a heated horizontal tube are investigated numerically. The temperature profile and heat transfer coefficient for zeotropic mixtures of different bulk compositions are analysed. The numerical model has been developed and locally applied in a fully developed, constant temperature wall, and two-phase annular flow in a duct. Numerical results have been obtained using this model taking into account continuity, momentum, and energy equations. Local heat transfer coefficient results are compared with available experimental data published by Barraza et al. (2016), and they have shown good agreement.
Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling
2016-10-01
A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells.
Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel
2018-01-26
We study the exciton gas-liquid transition in GaAs/AlGaAs coupled quantum wells. Below a critical temperature, T_{C}=4.8 K, and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T≲1.1 K, similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1≲T<4.8 K. Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T
Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells
NASA Astrophysics Data System (ADS)
Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel
2018-01-01
We study the exciton gas-liquid transition in GaAs /AlGaAs coupled quantum wells. Below a critical temperature, TC=4.8 K , and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T ≲1.1 K , similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1 ≲T <4.8 K . Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T
Metallurgical technologies, energy conversion, and magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Branover, Herman; Unger, Yeshajahu
The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)
Determination of solute descriptors by chromatographic methods.
Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K
2009-10-12
The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.
NASA Astrophysics Data System (ADS)
Kong, Lingxin; Yang, Bin; Xu, Baoqiang; Li, Yifu
2014-09-01
Based on the molecular interaction volume model (MIVM), the activities of components of Sn-Sb, Sb-Bi, Sn-Zn, Sn-Cu, and Sn-Ag alloys were predicted. The predicted values are in good agreement with the experimental data, which indicate that the MIVM is of better stability and reliability due to its good physical basis. A significant advantage of the MIVM lies in its ability to predict the thermodynamic properties of liquid alloys using only two parameters. The phase equilibria of Sn-Sb and Sn-Bi alloys were calculated based on the properties of pure components and the activity coefficients, which indicates that Sn-Sb and Sn-Bi alloys can be separated thoroughly by vacuum distillation. This study extends previous investigations and provides an effective and convenient model on which to base refining simulations for Sn-based alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Z.; Anthony, R.G.; Miller, J.E.
1997-06-01
An equilibrium multicomponent ion exchange model is presented for the ion exchange of group I metals by TAM-5, a hydrous crystalline silicotitanate. On the basis of the data from ion exchange and structure studies, the solid phase is represented as Na{sub 3}X instead of the usual form of NaX. By using this solid phase representation, the solid can be considered as an ideal phase. A set of model ion exchange reactions is proposed for ion exchange between H{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, and Cs{sup +}. The equilibrium constants for these reactions were estimated from experiments with simplemore » ion exchange systems. Bromley`s model for activity coefficients of electrolytic solutions was used to account for liquid phase nonideality. Bromley`s model parameters for CsOH at high ionic strength and for NO{sub 2}{sup {minus}} and Al(OH){sub 4}{sup {minus}} were estimated in order to apply the model for complex waste simulants. The equilibrium compositions and distribution coefficients of counterions were calculated for complex simulants typical of DOE wastes by solving the equilibrium equations for the model reactions and material balance equations. The predictions match the experimental results within 10% for all of these solutions.« less
Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad
2015-01-01
This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.
NASA Astrophysics Data System (ADS)
Paramita, Vita; Yulianto, Mohammad Endy; Yohana, Eflita; Arifan, Fahmi; Hanifah, Amjad, Muhammad Taqiyuddin
2015-12-01
This research aims to develop the enzymatically of bay leaves phytochemical extraction process. The novelty and the main innovations of this research is the development of extraction process by using enzymatic extractor and isolate the enzymes from rumen liquid to shift the equilibrium phase, increase the extraction rate and increase the extraction yield. The activity of rumen liquid enzyme was represented by the activity of cellulase and protease. The analyze of total flavonoid content was performed by using UV-Vis Spectrofometry. The activity of immobilized enzyme of cellulase (0.08±0.00 U/ml) was lower than the un-immobilized one (0.23±0.00 U/ml). However, there was no difference activity of the immobilized (0.75±0.00 U/ml) and un-immobilized (0.76±0.01 U/ml) of protease. The model of mass transfer of un-immobilized enzyme can be fitted on the experimental data, however the model of mass transfer of immobilized enzyme did not match with the experimental data. The mass transfer coefficient of enzymatic extraction flavonoids bay leaf without immobilization was 0.17167 s-1 which greater than the reported value of obtained KLa from extraction by using electric heating.
Bolivar, Juan M; Krämer, Christina E M; Ungerböck, Birgit; Mayr, Torsten; Nidetzky, Bernd
2016-09-01
Microstructured flow reactors are powerful tools for the development of multiphase biocatalytic transformations. To expand their current application also to O2 -dependent enzymatic conversions, we have implemented a fully integrated falling film microreactor that provides controllable countercurrent gas-liquid phase contacting in a multi-channel microstructured reaction plate. Advanced non-invasive optical sensing is applied to measure liquid-phase oxygen concentrations in both in- and out-flow as well as directly in the microchannels (width: 600 μm; depth: 200 μm). Protein-surface interactions are designed for direct immobilization of catalyst on microchannel walls. Target enzyme (here: d-amino acid oxidase) is fused to the positively charged mini-protein Zbasic2 and the channel surface contains a negatively charged γ-Al2 O3 wash-coat layer. Non-covalent wall attachment of the chimeric Zbasic2 _oxidase resulted in fully reversible enzyme immobilization with fairly uniform surface coverage and near complete retention of biological activity. The falling film at different gas and liquid flow rates as well as reactor inclination angles was shown to be mostly wavy laminar. The calculated film thickness was in the range 0.5-1.3 × 10(-4) m. Direct O2 concentration measurements at the channel surface demonstrated that the liquid side mass transfer coefficient (KL ) for O2 governed the overall gas/liquid/solid mass transfer and that the O2 transfer rate (≥0.75 mM · s(-1) ) vastly exceeded the maximum enzymatic reaction rate in a wide range of conditions. A value of 7.5 (±0.5) s(-1) was determined for the overall mass transfer coefficient KL a, comprising a KL of about 7 × 10(-5) m · s(-1) and a specific surface area of up to 10(5) m(-1) . Biotechnol. Bioeng. 2016;113: 1862-1872. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Ozog, J. Z.; Morrison, J. A.
1983-01-01
Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)
Orientation dynamics in isotropic phases of model oligofluorenes: glass or liquid crystal.
Somma, E; Chi, C; Loppinet, B; Grinshtein, J; Graf, R; Fytas, G; Spiess, H W; Wegner, G
2006-05-28
Orientation molecular dynamics were investigated in a series of "defect-free" oligofluorenes by depolarized dynamic light scattering and dynamic NMR spectroscopy. Typical liquid crystalline pretransitional dynamics were observed upon cooling the isotropic phase to the liquid crystalline phase with strong increase of the scattered intensity and slowing down of the characteristic time of the probed collective relaxation. This is well accounted for by the Landau-de Gennes theory, however, with a strong temperature dependence of the viscosity coefficient, reflecting the proximity of the glass transition. For the trimer the two transitions almost overlap and the molecular orientation coincide with the alpha-relaxation associated with the glass transition. The NMR measurements confirm that the time scale of the dynamics is completely governed by the glass process, yet the geometry of the motion is anisotropic, yielding order parameters ranging from 0.15 to 0.25 for the long axis in the liquid crystalline phase. The glass transition is therefore geometrically restricted with poorly ordered mesophase which is consistent with the weak transverse phonons in the light scattering experiment down to Tg+20 K.
Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater.
Burmistrz, Piotr; Burmistrz, Michał
2013-01-01
The subject of examinations presented in this paper is the distribution of polycyclic aromatic hydrocarbons (PAHs) between solid and liquid phases in samples of raw wastewater and wastewater after treatment. The content of 16 PAHs according to the US EPA was determined in the samples of coke plant wastewater from the Zdzieszowice Coke Plant, Poland. The samples contained raw wastewater, wastewater after physico-chemical treatment as well as after biological treatment. The ΣPHA16 content varied between 255.050 μg L(-1) and 311.907 μg L(-1) in raw wastewater and between 0.940 and 4.465 μg L(-1) in wastewater after full treatment. Investigation of the distribution of PAHs showed that 71-84% of these compounds is adsorbed on the surface of suspended solids and 16-29% is dissolved in water. Distribution of individual PAHs and ΣPHA16 between solid phase and liquid phase was described with the use of statistically significant, linear equations. The calculated values of the partitioning coefficient Kp changed from 0.99 to 7.90 for naphthalene in samples containing mineral-organic suspension and acenaphthylene in samples with biological activated sludge, respectively.
Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A
2014-07-23
We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.
Evaporation of Lennard-Jones fluids.
Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S
2011-06-14
Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.
Crystallization and dynamical arrest of attractive hard spheres.
Babu, Sujin; Gimel, Jean-Christophe; Nicolai, Taco
2009-02-14
Crystallization of hard spheres interacting with a square well potential was investigated by numerical simulations using so-called Brownian cluster dynamics. The phase diagram was determined over a broad range of volume fractions. The crystallization rate was studied as a function of the interaction strength expressed in terms of the second virial coefficient. For volume fractions below about 0.3 the rate was found to increase abruptly with increasing attraction at the binodal of the metastable liquid-liquid phase separation. The rate increased until a maximum was reached after which it decreased with a power law dependence on the second virial coefficient. Above a critical percolation concentration, a transient system spanning network of connected particles was formed. Crystals were formed initially as part of the network, but eventually crystallization led to the breakup of the network. The lifetime of the transient gels increased very rapidly over a small range of interaction energies. Weak attraction destabilized the so-called repulsive crystals formed in pure hard sphere systems and shifted the coexistence line to higher volume fractions. Stronger attraction led to the formation of a denser, so-called attractive, crystalline phase. Nucleation of attractive crystals in the repulsive crystalline phase was observed close to the transition.
NASA Technical Reports Server (NTRS)
Swanson, T. D.; Mccabe, M. E., Jr.; Grote, M. G.
1987-01-01
The design, fabrication, and testing of full-scale prototype units of a two-phase mounting plate (TPMP), which will be used in a two-phase ammonia-based thermal control system for a large spacecraft, are described. The mounting plate uses an evaporator design in which liquid is mechanically pumped through porous feed tubes within the plate. The prototype TPMPs were tested with ammonia at heat loads over 3000 W (3.2 W/sq cm) and local heat fluxes of up to 4 W/sq cm. Calculated total heat transfer coefficients from these tests were between 0.8 and 1.0 W/sq cm per C. This represents a better than twenty-fold improvement over comparable single-phase heat transfer coefficients. Design diagrams are included.
Hydrodynamics, mass transfer, and yeast culture performance of a column bioreactor with ejector.
Prokop, A; Janík, P; Sobotka, M; Krumphanzl, V
1983-04-01
A bubble column fitted with an ejector has been tested for its physical and biological performance. The axial diffusion coefficient of the liquid phase in the presence of electrolytes and ethanol was measured by a stimulus-response technique with subsequent evaluation by means of a diffusion model. In contrast to ordinary bubble columns, the coefficient of axial mixing is inversely dependent on the superficial air velocity. The liquid velocity acts in an opposite direction to the backmixing flow in the column. The measurement of volumetric oxygen transfer coefficient in the presence of electrolytes and ethanol was performed using a dynamic gassing-in method adapted for a column. The data were correlated with the superficial air and liquid velocities, total power input, and power for aeration and mixing; the economy coefficient of oxygen transfer was used for finding an optimum ratio of power for aeration and pumping. Growth experiments with Candida utilis on ethanol confirmed some of the above results. Biomass productivity of 2.5 g L(-1) h(-1) testifies about a good transfer capability of the column. Columns fitted with pneumatic and/or hydraulic energy input may be promising for aerobic fermentations considering their mass transfer and mixing characteristics.
Heat storage in alloy transformations
NASA Technical Reports Server (NTRS)
Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.
1981-01-01
The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.
Vapor-Phase Infrared Absorptivity Coefficient of HN1
2013-08-01
the boil-off of a bulk liquid nitrogen tank, across an alumina Soxhlet thimble in a glass holder filled with the analyte. A vapor–liquid...with mass spectrometry (MS) yielded the results shown in Table 3. Table 3. Results from Analysis of HN1 Sample Used for Determination of...2 yields (3) Equation 3 can then be solved at each frequency using a least-squares approach. This was
NASA Astrophysics Data System (ADS)
Konno, R.; Hatayama, N.; Chaudhury, R.
2014-04-01
We investigated the pressure coefficients of the superconducting order parameters at the ground state of ferromagnetic superconductors based on the microscopic single band model by Linder et al. The superconducting gaps (i) similar to the ones seen in the thin film of A2 phase in liquid 3He and (ii) with the line node were used. This study shows that we would be able to estimate the pressure coefficients of the superconducting and magnetic order parameters at the ground state of ferromagnetic superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roper, V.P.; Kobayashi, R.
1988-02-01
Infinite-dilution fugacity coefficients were obtained for the system fluorene/phenanthrene at thirteen temperatures by fitting total pressure across the entire mole fraction range by a computer routine. A thermodynamically consistent routine, that allowed for both positive and negative pressure deviations from the ideal values, was used to correlate data over the full mole fraction range from 0 to 1. The four-suffix Margules activity coefficient model without modification essentially served this purpose since total pressures and total pressure derivatives with respect to mole fraction were negligible compared to pressure measurement precision. The water/ethanol system and binary systems comprised of aniline, chlorobenzene, acetonitrilemore » and other polar compounds were fit for total pressure across the entire mole fraction range for binary Vapor-Liquid-Equilbria (VLE) using the rigorous, thermodynamically consistent Gibbs-Duhem Relation derived by Ibl and Dodge. Data correlation was performed using a computer least squares procedure. Infinite-dilution fugacity coefficients were obtained using a modified Margules activity coefficient model.« less
Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior.
Fries, Madeleine R; Stopper, Daniel; Braun, Michal K; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M J; Skoda, Maximilian W A; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank
2017-12-01
Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration c_{s} is reflected in an intriguing way in the protein adsorption d(c_{s}) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.
Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior
NASA Astrophysics Data System (ADS)
Fries, Madeleine R.; Stopper, Daniel; Braun, Michal K.; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M. J.; Skoda, Maximilian W. A.; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank
2017-12-01
Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration cs is reflected in an intriguing way in the protein adsorption d (cs) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.
Verweij-van Wissen, C P W G M; Aarnoutse, R E; Burger, D M
2005-02-25
A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction with Oasis MAX cartridges from plasma, followed by high performance liquid chromatography with a SymmetryShield RP 18 column and ultraviolet detection set at a wavelength of 260 nm. The assay was validated over the concentration range of 0.015-5 mg/l for all five NRTIs. The average accuracies for the assay were 92-102%, inter- and intra-day coefficients of variation (CV) were <2.5% and extraction recoveries were higher than 97%. This method proved to be simple, accurate and precise, and is currently in use in our laboratory for the quantitative analysis of NRTIs in plasma.
Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming
2010-06-01
This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.
CFD analysis of laboratory scale phase equilibrium cell operation
NASA Astrophysics Data System (ADS)
Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville
2017-10-01
For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.
CFD analysis of laboratory scale phase equilibrium cell operation.
Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville
2017-10-01
For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.
Peng, Pei; Wang, Wei; Zhang, Li; Su, Shiguang; Wang, Jiahui
2013-12-04
The absorbance characteristics and influential factors on these characteristics for a liquid-phase gas sensor, which is based on gas-permeable liquid core waveguides (LCWs), are studied from theoretical and experimental viewpoints in this paper. According to theory, it is predicted that absorbance is proportional to the analyte concentration, sampling time, analyte diffusion coefficient, and geometric factor of this device when the depletion layer of the analyte is ignored. The experimental results are in agreement with the theoretical hypothesis. According to the experimental results, absorbance is time-dependent and increasing linearly over time after the requisite response time with a linear correlation coefficient r(2)>0.999. In the linear region, the rate of absorbance change (RAC) indicates improved linearity with sample concentration and a relative higher sensitivity than instantaneous absorbance does. By using a core liquid that is more affinitive to the analyte, reducing wall thickness and the inner diameter of the tubing, or increasing sample flow rate limitedly, the response time can be decreased and the sensitivity can be increased. However, increasing the LCW length can only enhance sensitivity and has no effect on response time. For liquid phase detection, there is a maximum flow rate, and the absorbance will decrease beyond the stated limit. Under experimental conditions, hexane as the LCW core solvent, a tubing wall thickness of 0.1 mm, a length of 10 cm, and a flow rate of 12 mL min(-1), the detection results for the aqueous benzene sample demonstrate a response time of 4 min. Additionally, the standard curve for the RAC versus concentration is RAC=0.0267c+0.0351 (AU min(-1)), with r(2)=0.9922 within concentrations of 0.5-3.0 mg L(-1). The relative error for 0.5 mg L(-1) benzene (n=6) is 7.4±3.7%, and the LOD is 0.04 mg L(-1). This research can provide theoretical and practical guides for liquid-phase gas sensor design and development based on a gas-permeable Teflon AF 2400 LCW. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin
2018-04-01
This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.
Yang, Zhi; Wu, Youqian; Wu, Shihua
2016-01-29
Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very efficient for the systematic extraction and isolation of biological active components from the complex biomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stirnweis, Lisa; Marcolli, Claudia; Dommen, Josef; Barmet, Peter; Frege, Carla; Platt, Stephen M.; Bruns, Emily A.; Krapf, Manuel; Slowik, Jay G.; Wolf, Robert; Prévôt, Andre S. H.; Baltensperger, Urs; El-Haddad, Imad
2017-04-01
Secondary organic aerosol (SOA) yields from the photo-oxidation of α-pinene were investigated in smog chamber (SC) experiments at low (23-29 %) and high (60-69 %) relative humidity (RH), various NOx / VOC ratios (0.04-3.8) and with different aerosol seed chemical compositions (acidic to neutralized sulfate-containing or hydrophobic organic). A combination of a scanning mobility particle sizer and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer was used to determine SOA mass concentration and chemical composition. We used a Monte Carlo approach to parameterize smog chamber SOA yields as a function of the condensed phase absorptive mass, which includes the sum of OA and the corresponding bound liquid water content. High RH increased SOA yields by up to 6 times (1.5-6.4) compared to low RH. The yields at low NOx / VOC ratios were in general higher compared to yields at high NOx / VOC ratios. This NOx dependence follows the same trend as seen in previous studies for α-pinene SOA. A novel approach of data evaluation using volatility distributions derived from experimental data served as the basis for thermodynamic phase partitioning calculations of model mixtures in this study. These calculations predict liquid-liquid phase separation into organic-rich and electrolyte phases. At low NOx conditions, equilibrium partitioning between the gas and liquid phases can explain most of the increase in SOA yields observed at high RH, when in addition to the α-pinene photo-oxidation products described in the literature, fragmentation products are added to the model mixtures. This increase is driven by both the increase in the absorptive mass and the solution non-ideality described by the compounds' activity coefficients. In contrast, at high NOx, equilibrium partitioning alone could not explain the strong increase in the yields with RH. This suggests that other processes, e.g. reactive uptake of semi-volatile species into the liquid phase, may occur and be enhanced at higher RH, especially for compounds formed under high NOx conditions, e.g. carbonyls.
Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza
2016-04-01
A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%. Copyright © 2015 Elsevier B.V. All rights reserved.
Nalin, Federica; Sander, Lane C; Wilson, Walter B; Wise, Stephen A
2018-01-01
Retention indices (I) for 45 polycyclic aromatic hydrocarbons (PAHs) and 63 methyl-substituted PAHs were determined by gas chromatography - mass spectrometry (GC-MS) using two different stationary phases: a Rxi-PAH phase (a "higher phenyl-content stationary phase") and a 50% (mole fraction) liquid crystalline dimethylpolysiloxane phase. Retention data were obtained for parent PAHs from molecular mass (MM) 128 g/mol (naphthalene) to 328 g/mol (benzo[c]picene) and for 12 sets of methyl-PAHs (methylfluorenes, methylanthracenes, methylphenanthrenes, methylfluoranthenes, methylpyrenes, methylbenz[a]anthracenes, methylbenzo[c]phenanthrenes, methylchrysenes, methyltriphenylenes, methylbenzo[a]pyrenes, methylperylenes, and methylpicenes). Molecular shape descriptors such as length-to-breath ratio (L/B) and thickness (T) were determined for all the PAHs studied. Correlation between I and L/B ratio was evaluated for both stationary phases with a better correlation observed for the 50% liquid crystalline phase (correlation coefficients ranging from 0.22 to 1.00). Graphical Abstract GC separation of six methylchrysene isomers (m/z 242) on two different stationary phases: 50 % phenyl-like methylpolysiloxane phase and 50 % liquid crystalline phase. Retention indices (I) are plotted as a function of L/B for both phases. The data marker numbers identify each isomer based on methyl-substitution position.
Correlations between chromatographic parameters and bioactivity predictors of potential herbicides.
Janicka, Małgorzata
2014-08-01
Different liquid chromatography techniques, including reversed-phase liquid chromatography on Purosphere RP-18e, IAM.PC.DD2 and Cosmosil Cholester columns and micellar liqud chromatography with a Purosphere RP-8e column and using buffered sodium dodecyl sulfate-acetonitrile as the mobile phase, were applied to study the lipophilic properties of 15 newly synthesized phenoxyacetic and carbamic acid derivatives, which are potential herbicides. Chromatographic lipophilicity descriptors were used to extrapolate log k parameters (log kw and log km) and log k values. Partitioning lipophilicity descriptors, i.e., log P coefficients in an n-octanol-water system, were computed from the molecular structures of the tested compounds. Bioactivity descriptors, including partition coefficients in a water-plant cuticle system and water-human serum albumin and coefficients for human skin partition and permeation were calculated in silico by ACD/ADME software using the linear solvation energy relationship of Abraham. Principal component analysis was applied to describe similarities between various chromatographic and partitioning lipophilicities. Highly significant, predictive linear relationships were found between chromatographic parameters and bioactivity descriptors. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Torres-Lapasió, J R; Ruiz-Angel, M J; García-Alvarez-Coque, M C
2007-09-28
Solvation parameter models relate linearly compound properties with five fundamental solute descriptors (excess molar refraction, dipolarity/polarizability, effective hydrogen-bond acidity and basicity, and McGowan volume). These models are widely used, due to the availability of protocols to obtain the descriptors, good performance, and general applicability. Several approaches to predict retention in reversed-phase liquid chromatography (RPLC) as a function of these descriptors and mobile phase composition are compared, assaying the performance with a set of 146 organic compounds of diverse nature, eluted with acetonitrile and methanol. The approaches are classified in two groups: those that only allow predictions of retention for the mobile phases used to build the models, and those valid at any other mobile phase composition. The first group includes the use of ratios between the regressed coefficients of the solvation models that are assumed to be characteristic for a column/solvent system, and the application of offsets to transfer the retention from a reference mobile phase to any other. Maximal accuracy in predictions corresponded, however, to the approaches in the second group, which were based on models that describe the retention as a function of mobile phase composition (expressed as the solvent volume fraction or a normalised polarity measurement), where the coefficients were made dependent on the solvent descriptors. The study revealed the properties that influence the retention and distinguish the particular behaviour of acetonitrile and methanol in RPLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto
The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlinesmore » and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.« less
NASA Astrophysics Data System (ADS)
Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan
2005-05-01
In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.
Metastable liquid-liquid transition in a molecular model of water
NASA Astrophysics Data System (ADS)
Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.
2014-06-01
Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.
Metastable liquid-liquid transition in a molecular model of water.
Palmer, Jeremy C; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G
2014-06-19
Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.
In Situ Activation of Microcapsules
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)
2000-01-01
Disclosed are microcapsules comprising a polymer shell enclosing two or more immiscible liquid phases in which a drug, or a prodrug and a drug activator are partitioned into separate phases. or prevented from diffusing out of the microcapsule by a liquid phase in which the drug is poorly soluble. Also disclosed are methods of using the microcapsules for in situ activation of drugs where upon exposure to an appropriate energy source the internal phases mix and the drug is activated in situ.
Atomistic simulations of carbon diffusion and segregation in liquid silicon
NASA Astrophysics Data System (ADS)
Luo, Jinping; Alateeqi, Abdullah; Liu, Lijun; Sinno, Talid
2017-12-01
The diffusivity of carbon atoms in liquid silicon and their equilibrium distribution between the silicon melt and crystal phases are key, but unfortunately not precisely known parameters for the global models of silicon solidification processes. In this study, we apply a suite of molecular simulation tools, driven by multiple empirical potential models, to compute diffusion and segregation coefficients of carbon at the silicon melting temperature. We generally find good consistency across the potential model predictions, although some exceptions are identified and discussed. We also find good agreement with the range of available experimental measurements of segregation coefficients. However, the carbon diffusion coefficients we compute are significantly lower than the values typically assumed in continuum models of impurity distribution. Overall, we show that currently available empirical potential models may be useful, at least semi-quantitatively, for studying carbon (and possibly other impurity) transport in silicon solidification, especially if a multi-model approach is taken.
Physicochemical application of capillary chromatography
NASA Astrophysics Data System (ADS)
Vasil'ev, A. V.; Aleksandrov, E. N.
1992-04-01
The application of capillary gas chromatography in the determination of the free energy, enthalpy, and entropy of sorption, the saturated vapour pressure and activity coefficients, the assessment of the lipophilicity of volatile compounds, and the study of the properties of polymers and liquid crystals is described. The use of reaction cappillary chromatography in kinetic studies of conformational conversions, thermal degradation, and photochemical reactions is examined. Studies on the use of capillary columns for determination of the second virial coefficients and viscosity of gases and the diffusion coefficients in gases, liquids, supercritical fluids, and polymers are analysed. The bibliography includes 114 references.
Study of Water Absorption in Raffia vinifera Fibres from Bandjoun, Cameroon
Sikame Tagne, N. R.; Njeugna, E.; Fogue, M.; Drean, J.-Y.; Nzeukou, A.; Fokwa, D.
2014-01-01
The study is focused on the water diffusion phenomenon through the Raffia vinifera fibre from the stem. The knowledge on the behavior of those fibres in presence of liquid during the realization of biocomposite, is necessary. The parameters like percentage of water gain at the point of saturation, modelling of the kinetic of water absorption, and the effective diffusion coefficient were the main objectives. Along a stem of raffia, twelve zones of sampling were defined. From Fick's 2nd law of diffusion, a new model was proposed and evaluated compared to four other models at a constant temperature of 23°C. From the proposed model, the effective diffusion coefficient was deduced. The percentage of water gain was in the range of 303–662%. The proposed model fitted better to the experimental data. The estimated diffusion coefficient was evaluated during the initial phase and at the final phase. In any cross section located along the stem of Raffia vinifera, it was found that the effective diffusion coefficient increases from the periphery to the centre during the initial and final phases. PMID:24592199
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya
2015-01-01
Laminar models agree closely with the pressure evolution and vapor phase temperature stratification but under-predict liquid temperatures. Turbulent SST k-w and k-e models under-predict the pressurization rate and extent of stratification in the vapor but represent liquid temperature distributions fairly well. These conclusions seem to equally apply to large cryogenic tank simulations as well as small scale simulant fluid pressurization cases. Appropriate turbulent models that represent both interfacial and bulk vapor phase turbulence with greater fidelity are needed. Application of LES models to the tank pressurization problem can serve as a starting point.
Hatami, Mehdi; Farhadi, Khalil
2012-07-01
A hollow fiber liquid-phase microextraction technique coupled with high-performance liquid chromatography with fluorescence detection was employed for determination and evaluation of the binding characteristics of drugs to bovine serum albumin (BSA). Enantiomers of guaifenesin (an expectorant drug) were investigated as a model system. After optimization of some influencing parameters on microextraction, the proposed method was used for calculation of the target drug distribution coefficient between n-octanol and the buffer solution as well as study of drug-BSA binding in physiological conditions. The developed method shows a new, improved and simple procedure for determination of free drug concentration in biological fluids and the extent of drug-protein binding. Copyright © 2011 John Wiley & Sons, Ltd.
Study on the Equilibrium Between Liquid Iron and Calcium Vapor
NASA Astrophysics Data System (ADS)
Berg, Martin; Lee, Jaewoo; Sichen, Du
2017-06-01
The solubility of calcium in liquid iron at 1823 K and 1873 K (1550 °C and 1600 °C) as a function of calcium potential was studied experimentally. The measurements were performed using a closed molybdenum holder in which liquid calcium and liquid iron were held at different temperatures. The results indicate a linear relationship between the activity of calcium, relative to pure liquid calcium, and the mole fraction of dissolved calcium in liquid iron, with a negligible temperature dependency in the ranges studied. The activity coefficient of calcium in liquid iron at infinite dilution, γ_{Ca(l0°, was calculated as 1551.
Liu, Wei; Kong, Yu; Zu, Yuangang; Fu, Yujie; Luo, Meng; Zhang, Lin; Li, Ji
2010-07-09
A novel method using liquid chromatography coupled to electrospray ionization mass spectrometry (LC-ESI-MS) has been optimized and established for the qualitative and quantitative analysis of ten active phenolic compounds originating from the pigeon pea leaves and a medicinal product thereof (Tongluo Shenggu capsules). In the present study, the chromatographic separation was achieved by means of a HiQ Sil C18V reversed-phase column with a mobile phase consisting of methanol and 0.1% formic acid aqueous solution. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) using the selected reaction monitoring (SRM) analysis was employed for the detection of ten analytes which included six flavonoids, two isoflavonoids and two stilbenes. All calibration curves showed excellent coefficients of determination (r(2) ≥ 0.9937) within the range of tested concentrations. The intra- and inter-day variations were below 5.36% in terms of relative standard deviation (RSD). The recoveries were 95.08-104.98% with RSDs of 2.06-4.26% for spiked samples of pigeon pea leaves. The method developed was a rapid, efficient and accurate LC-MS/MS method for the detection of phenolic compounds, which can be applied for quality control of pigeon pea leaves and related medicinal products.
NASA Astrophysics Data System (ADS)
Duan, Sheng-chao; Li, Chuang; Guo, Han-jie; Guo, Jing; Han, Shao-wei; Yang, Wen-sheng
2018-04-01
The demanganization reaction kinetics of carbon-saturated liquid iron with an eight-component slag consisting of CaO-SiO2-MgO-FeO-MnO-Al2O3-TiO2-CaF2 was investigated at 1553, 1623, and 1673 K in this study. The rate-controlling step (RCS) for the demanganization reaction with regard to the hot metal pretreatment conditions was studied via kinetics analysis based on the fundamental equation of heterogeneous reaction kinetics. From the temperature dependence of the mass transfer coefficient of a transition-metal oxide (MnO), the apparent activation energy of the demanganization reaction was estimated to be 189.46 kJ·mol-1 in the current study, which indicated that the mass transfer of MnO in the molten slag controlled the overall rate of the demanganization reaction. The calculated apparent activation energy was slightly lower than the values reported in the literature for mass transfer in a slag phase. This difference was attributed to an increase in the "specific reaction interface" (SRI) value, either as a result of turbulence at the reaction interface or a decrease of the absolute amount of slag phase during sampling, and to the addition of calcium fluoride to the slag.
Li, Jing; Roh, Si Hun; Shaodong, Jia; Hong, Ji Yeon; Lee, Dong-Kyu; Shin, Byong-Kyu; Park, Jeong Hill; Lee, Jeongmi; Kwon, Sung Won
2017-08-01
A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid-phase extraction assisted reversed-phase dispersive liquid-liquid microextraction based on solidification of floating organic droplet combined with ion-pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid-phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0-100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10-100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Corresponding-states laws for protein solutions.
Katsonis, Panagiotis; Brandon, Simon; Vekilov, Peter G
2006-09-07
The solvent around protein molecules in solutions is structured and this structuring introduces a repulsion in the intermolecular interaction potential at intermediate separations. We use Monte Carlo simulations with isotropic, pair-additive systems interacting with such potentials. We test if the liquid-liquid and liquid-solid phase lines in model protein solutions can be predicted from universal curves and a pair of experimentally determined parameters, as done for atomic and colloid materials using several laws of corresponding states. As predictors, we test three properties at the critical point for liquid-liquid separation: temperature, as in the original van der Waals law, the second virial coefficient, and a modified second virial coefficient, all paired with the critical volume fraction. We find that the van der Waals law is best obeyed and appears more general than its original formulation: A single universal curve describes all tested nonconformal isotropic pair-additive systems. Published experimental data for the liquid-liquid equilibrium for several proteins at various conditions follow a single van der Waals curve. For the solid-liquid equilibrium, we find that no single system property serves as its predictor. We go beyond corresponding-states correlations and put forth semiempirical laws, which allow prediction of the critical temperature and volume fraction solely based on the range of attraction of the intermolecular interaction potential.
Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator - 12193
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Robert; Seniow, Kendra
The Hanford Tank Waste Operations Simulator (HTWOS) is the current tool used by the Hanford Tank Operations Contractor for system planning and assessment of different operational strategies. Activities such as waste retrievals in the Hanford tank farms and washing and leaching of waste in the Waste Treatment and Immobilization Plant (WTP) are currently modeled in HTWOS. To predict phase compositions during these activities, HTWOS currently uses simple wash and leach factors that were developed many years ago. To improve these predictions, a rigorous thermodynamic framework has been developed based on the multi-component Pitzer ion interaction model for use with severalmore » important chemical species in Hanford tank waste. These chemical species are those with the greatest impact on high-level waste glass production in the WTP and whose solubility depends on the processing conditions. Starting with Pitzer parameter coefficients and species chemical potential coefficients collated from open literature sources, reconciliation with published experimental data led to a self-consistent set of coefficients known as the HTWOS Pitzer database. Using Gibbs energy minimization with the Pitzer ion interaction equations in Microsoft Excel,1 a number of successful predictions were made for the solubility of simple mixtures of the chosen species. Currently, this thermodynamic framework is being programmed into HTWOS as the mechanism for determining the solid-liquid phase distributions for the chosen species, replacing their simple wash and leach factors. Starting from a variety of open literature sources, a collection of Pitzer parameters and species chemical potentials, as functions of temperature, was tested for consistency and accuracy by comparison with available experimental thermodynamic data (e.g., osmotic coefficients and solubility). Reconciliation of the initial set of parameter coefficients with the experimental data led to the development of the self-consistent set known as the HTWOS Pitzer database. Using Microsoft Excel to formulate the Gibbs energy minimization method and the multi-component Pitzer ion interaction equations, several predictions of the solubility of solute mixtures at various temperatures were made using the HTWOS Pitzer database coefficients. Examples of these predictions are shown in Figure 3 and Figure 4. A listing of the entire HTWOS Pitzer database can be found in RPP-RPT-50703. Currently, work is underway to install the Pitzer ion interaction model in HTWOS as the mechanism for determining the solid-liquid phase distributions of select waste constituents during tank retrievals and subsequent washing and leaching of the waste. Validation of the Pitzer ion interaction model in HTWOS will be performed with analytical laboratory data of actual tank waste. This change in HTWOS is expected to elicit shifts in mission criteria, such as mission end date and quantity of high-level waste glass produced by WTP, as predicted by HTWOS. These improvements to the speciation calculations in HTWOS, however, will establish a better planning basis and facilitate more effective and efficient future operations of the WTP. (authors)« less
In-situ activation of CuO/ZnO/Al.sub.2 O.sub.3 catalysts in the liquid phase
Brown, Dennis M.; Hsiung, Thomas H.; Rao, Pradip; Roberts, George W.
1989-01-01
The present invention relates to a method of activation of a CuO/ZnO/Al.sub.2 O.sub.3 catalyst slurried in a chemically inert liquid. Successful activation of the catalyst requires the use of a process in which the temperature of the system at any time is not allowed to exceed a certain critical value, which is a function of the specific hydrogen uptake of the catalyst at that same time. This process is especially critical for activating highly concentrated catalyst slurries, typically 25 to 50 wt %. Activation of slurries of CuO/ZnO/Al.sub.2 O.sub.3 catalyst is useful in carrying out the liquid phase methanol or the liquid phase shift reactions.
2012-08-01
subsequent chemical analysis (into acetonitrile for high-performance liquid chromatography [ HPLC ] analysis or hexane for gas chromatography [GC... analysis ) is rapid and complete. In this work, PAHs were analyzed by Waters 2795 HPLC with fluorescent detection (USEPA Method 8310) and PCBs were...detection limits by direct water injection versus SPME with PDMS and coefficient of variation and correlation coefficient for SPME. Analysis by HPLC
NASA Astrophysics Data System (ADS)
Skresanov, Valery N.; Eremenko, Zoya E.; Glamazdin, Vladimir V.; Shubnyi, Alexander I.
2011-06-01
The differential dielectrometer was designed to measure small differences in complex permittivity (CP) of two high loss liquids at frequency 32.82 GHz. The measurements are fully computer-aided with the exception of liquids filling and draining in the measurement cells. The time of one measurement cycle does not exceed 3 min. The dielectrometer is easy-to-work and can be used under the conditions of scientific and industrial physical-chemical laboratories. The sensitivity of the difference in the phase coefficients of the electromagnetic waves propagated in the measurement cells is better than 0.05% and that of the attenuation coefficient is of the order of 0.2%. The dielectrometer contains two measurement cells that are dielectric quartz cylinders surrounded by high loss liquids. We developed the CP calculation algorithm using the known CP of the reference liquid and the difference coefficients of complex wave propagation in the cells. The origins of the measurement errors are studied in detail and recommendations were made to avoid some of them. The dielectrometer can be used to express the identification of wine and must authenticity by means of their CP values. The CP measurement results for solutions of some substances that make wine and must composition are obtained. The possibility of using the dielectrometer for the detection of added water in wines or musts is shown.
NASA Astrophysics Data System (ADS)
Abramo, M. C.; Caccamo, C.; Costa, D.; Munaò, G.
2014-09-01
We report an atomistic molecular dynamics determination of the phase diagram of a rigid-cage model of C36. We first show that free energies obtained via thermodynamic integrations along isotherms displaying "van der Waals loops," are fully reproduced by those obtained via isothermal-isochoric integration encompassing only stable states. We find that a similar result also holds for isochoric paths crossing van der Waals regions of the isotherms, and for integrations extending to rather high densities where liquid-solid coexistence can be expected to occur. On such a basis we are able to map the whole phase diagram of C36, with resulting triple point and critical temperatures about 1770 K and 2370 K, respectively. We thus predict a 600 K window of existence of a stable liquid phase. Also, at the triple point density, we find that the structural functions and the diffusion coefficient maintain a liquid-like character down to 1400-1300 K, this indicating a wide region of possible supercooling. We discuss why all these features might render possible the observation of the melting of C36 fullerite and of its liquid state, at variance with what previously experienced for C60.
Ernstgård, Lena; Lind, Birger; Andersen, Melvin E; Johanson, Gunnar
2010-01-01
Blood-air and tissue-blood coefficients (lambda) are essential to characterize the uptake and disposition of volatile substances, e.g. by physiologically based pharmacokinetic (PBPK) modelling. Highly volatile chemicals, including many hydrofluorocarbons (HFC) have low solubility in liquid media. These characteristics pose challenges for determining lambda values. A modified head-space vial equilibrium method was used to determine lambda values for five widely used HFCs. The method is based on automated head-space gas chromatography and injection of equal amount of chemical in two head-space vials with identical air phase volumes but different volumes of the liquid phase. The liquids used were water (physiological saline), fresh human blood, and olive oil. The average lambda values (n = 8) were as follows: 1,1-difluoroethane (HFC152a) - 1.08 (blood-air), 1.11 (water-air) and 5.6 (oil-air); 1,1,1-trifluoroethane (HFC143a) - 0.15, 0.15 and 1.90; 1,1,1,2-tetrafluoroethane (HFC134a) - 0.36, 0.35 and 3.5; 1,1,1,2,2-pentafluoroethane (HFC125) - 0.083, 0.074 and 1.71; and 1,1,1,3,3-pentafluoropropane (HFC245fa) - 0.62, 0.58 and 12.1. The lambda values appeared to be concentration-independent in the investigated range (2-200 ppm). In spite of the low lambda values, the method errors were modest, with coefficients of variation of 9, 11 and 10% for water, blood and oil, respectively.
Wei, Yun; Hu, Jia; Li, Hao; Liu, Jiangang
2011-12-01
Three active compounds, senkyunolide-I, senkyunolide-H and ferulic acid (FA), were successfully isolated and purified from the extracts of Rhizoma Chuanxiong by counter-current chromatography (CCC). Based on the principle of the partition coefficient values (k) for target compounds and the separation factor (α) between target compounds, the two-phase solvent system that contains n-hexane-ethyl acetate-methanol-water at an optimized volume ratio of 3:7:4:6 v/v was selected for the CCC separation, and the lower phase was employed as the mobile phase in the head-to-tail elution mode. In a single run, 400 mg of the crude extract yielded pure senkyunolide-I (6.4 mg), senkyunolide-H (1.7 mg) and FA (4.4 mg) with the purities of 98, 93 and 99%, respectively. The CCC fractions were analyzed by high-performance liquid chromatography, and the structures of the three active compounds were identified by MS and (1)H NMR. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gas-Liquid Flows and Phase Separation
NASA Technical Reports Server (NTRS)
McQuillen, John
2004-01-01
Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .
The Hildebrand solubility parameters of ionic liquids-part 2.
Marciniak, Andrzej
2011-01-01
The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods.
Contact line friction of electrowetting actuated viscous droplets
NASA Astrophysics Data System (ADS)
Vo, Quoc; Tran, Tuan
2018-06-01
We examine the contact line friction coefficient of viscous droplets spreading and retracting on solid surfaces immersed in ambient oil. By using the electrowetting effect, we generate a surface tension imbalance to drive the spreading and the retracting motion of the three-phase contact line (TCL). We show that neither the driving force intensity nor TCL direction significantly influences the friction coefficient. Instead, the friction coefficient depends equivalently on the viscosity of liquid droplets and the surrounding oil. We derive and experimentally verify a transient timescale that can be used to characterize both the spreading and retracting dynamics.
Study of two-phase flows in reduced gravity
NASA Astrophysics Data System (ADS)
Roy, Tirthankar
Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies have been done in the past to understand the global structure of gas-liquid two-phase flows under reduced gravity conditions, using experimental setups aboard drop towers or aircrafts flying parabolic flights, detailed data on local structure of such two-phase flows are extremely rare. Hence experiments were carried out in a 304 mm inner diameter (ID) test facility on earth. Keeping in mind the detailed experimental data base that needs to be generated to evaluate two-fluid model along with IATE, ground based simulations provide the only economic path. Here the reduced gravity condition is simulated using two-liquids of similar densities (water and Therminol 59 RTM in the present case). Only adiabatic two-phase flows were concentrated on at this initial stage. Such a large diameter test section was chosen to study the development of drops to their full extent (it is to be noted that under reduced gravity conditions the stable bubble size in gas-liquid two-phase flows is much larger than that at normal gravity conditions). Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using state-of-the art multi-sensor conductivity probes. The results are presented and discussed. Also one-group as well as two-group, steady state, one-dimensional IATE was evaluated against data obtained here and by other researchers, and the results presented and discussed.
NASA Technical Reports Server (NTRS)
Lehoczky, S. L.; Szofran, F. R.
1981-01-01
Differential thermal analysis data were obtained on mercury cadmium telluride alloys in order to establish the liquidus temperatures for the various alloy compositions. Preliminary theoretical analyses was performed to establish the ternary phase equilibrium parameters for the metal rich region of the phase diagram. Liquid-solid equilibrium parameters were determined for the pseudobinary alloy system. Phase equilibrium was calculated and Hg(l-x) Cd(x) Te alloys were directionally solidified from pseudobinary melts. Electrical resistivity and Hall coefficient measurements were obtained.
Ashoor, S H; Seperich, G J; Monte, W C; Welty, J
1983-05-01
A method was developed for determining caffeine in decaffeinated coffee, tea, and beverage products by high performance liquid chromatography (HPLC). The HPLC system consisted of a Bio-Sil ODS-5S C18 column, methanol-water (25 + 75) mobile phase at 1 mL/min, and a UV detector. The method is simple and specific. Caffeine recoveries were 93.8-98.3% and coefficients of variation were 0.90-2.25%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D.
Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar`s reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity co-efficient, {gamma}{sub 1}. The main objective of this project is to study the rotational viscosities of selected micellar nematicmore » systems and the effect of dissolved polymers in micellar and thermotropic liqud crystals. We used rotating magnetic field method which allows one to determine {gamma}{sub 1} and the anisotropic magnetic susceptibility, {chi}{sub a}. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest values {gamma}{sub 1} as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic N{sub c} phase. The pretransitional increase in {gamma}{sub 1} near the disk-like nematic to smectic-A phase transition of the pure CsPFO/H{sub 2}O systems are better understood with the help of mean-field models of W.L. McMillan. He predicted a critical exponent {nu} = {1/2} for the divergence of {gamma}{sub 1}. The polymer (PEO, molecular weight = 10{sup 5}) dissolved in CsPFO/H{sub 2}O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of {gamma}{sub 1} is observed, which agrees with Brochard theory.« less
NASA Astrophysics Data System (ADS)
Farges, Bérangère; Duchez, David; Dussap, Claude-Gilles; Cornet, Jean-François
2012-01-01
In microgravity, one of the major challenge encountered in biological life support systems (BLSS) is the gas-liquid transfer with, for instance, the necessity to provide CO2 (carbon source, pH control) and to recover the evolved O2 in photobioreactors used as atmosphere bioregenerative systems.This paper describes first the development of a system enabling the accurate characterization of the mass transfer limiting step for a PTFE membrane module used as a possible efficient solution to the microgravity gas-liquid transfer. This original technical apparatus, together with a technical assessment of membrane permeability to different gases, is associated with a balance model, determining thus completely the CO2 mass transfer problem between phases. First results are given and discussed for the CO2 mass transfer coefficient kLCO obtained in case of absorption experiments at pH 8 using the hollow fiber membrane module. The consistency of the proposed method, based on a gas and liquid phase balances verifying carbon conservation enables a very accurate determination of the kLCO value as a main limiting step of the whole process. Nevertheless, further experiments are still needed to demonstrate that the proposed method could serve in the future as reference method for mass transfer coefficient determination if using membrane modules for BLSS in reduced or microgravity conditions.
Entropy-scaling laws for diffusion coefficients in liquid metals under high pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Qi-Long, E-mail: qlcao@mail.ustc.edu.cn; Shao, Ju-Xiang; Wang, Fan-Hou, E-mail: eatonch@gmail.com
2015-04-07
Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D{sup *}=A exp(BS{sub ex}), proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship D{sub M}=D{sub M}{sup 0} exp(−E{sub M}/K{sub B}T), (M=un,R,D) and the activation energy E{sub M} increases with increasing pressure, the diffusion pre-exponential factors (D{sub R}{sup 0} and D{sub D}{sup 0}) are nearly independent of the pressure and element. Themore » pair correlation entropy, S{sub 2}, depends linearly on the reciprocal temperature S{sub 2}=−E{sub S}/T, and the activation energy, E{sub S}, increases with increasing pressure. In particular, the ratios of the activation energies (E{sub un}, E{sub R}, and E{sub D}) obtained from diffusion coefficients to the activation energy, E{sub S}, obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.« less
Activity coefficients from molecular simulations using the OPAS method
NASA Astrophysics Data System (ADS)
Kohns, Maximilian; Horsch, Martin; Hasse, Hans
2017-10-01
A method for determining activity coefficients by molecular dynamics simulations is presented. It is an extension of the OPAS (osmotic pressure for the activity of the solvent) method in previous work for studying the solvent activity in electrolyte solutions. That method is extended here to study activities of all components in mixtures of molecular species. As an example, activity coefficients in liquid mixtures of water and methanol are calculated for 298.15 K and 323.15 K at 1 bar using molecular models from the literature. These dense and strongly interacting mixtures pose a significant challenge to existing methods for determining activity coefficients by molecular simulation. It is shown that the new method yields accurate results for the activity coefficients which are in agreement with results obtained with a thermodynamic integration technique. As the partial molar volumes are needed in the proposed method, the molar excess volume of the system water + methanol is also investigated.
Jalan, Amrit; Alecu, Ionut M; Meana-Pañeda, Rubén; Aguilera-Iparraguirre, Jorge; Yang, Ke R; Merchant, Shamel S; Truhlar, Donald G; Green, William H
2013-07-31
We present new reaction pathways relevant to low-temperature oxidation in gaseous and condensed phases. The new pathways originate from γ-ketohydroperoxides (KHP), which are well-known products in low-temperature oxidation and are assumed to react only via homolytic O-O dissociation in existing kinetic models. Our ab initio calculations identify new exothermic reactions of KHP forming a cyclic peroxide isomer, which decomposes via novel concerted reactions into carbonyl and carboxylic acid products. Geometries and frequencies of all stationary points are obtained using the M06-2X/MG3S DFT model chemistry, and energies are refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. Thermal rate coefficients are computed using variational transition-state theory (VTST) calculations with multidimensional tunneling contributions based on small-curvature tunneling (SCT). These are combined with multistructural partition functions (Q(MS-T)) to obtain direct dynamics multipath (MP-VTST/SCT) gas-phase rate coefficients. For comparison with liquid-phase measurements, solvent effects are included using continuum dielectric solvation models. The predicted rate coefficients are found to be in excellent agreement with experiment when due consideration is made for acid-catalyzed isomerization. This work provides theoretical confirmation of the 30-year-old hypothesis of Korcek and co-workers that KHPs are precursors to carboxylic acid formation, resolving an open problem in the kinetics of liquid-phase autoxidation. The significance of the new pathways in atmospheric chemistry, low-temperature combustion, and oxidation of biological lipids are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalan, Amrit; Alecu, Ionut M.; Meana-Pañeda, Rubén
2013-07-31
We present new reaction pathways relevant to low-temperature oxidation in gaseous and condensed phases. The new pathways originate from γ-ketohydroperoxides (KHP), which are well-known products in low-temperature oxidation and are assumed to react only via homolytic O-O dissociation in existing kinetic models. Our ab initio calculations identify new exothermic reactions of KHP forming a cyclic peroxide isomer, which decomposes via novel concerted reactions into carbonyl and carboxylic acid products. Geometries and frequencies of all stationary points are obtained using the M06-2X/MG3S DFT model chemistry, and energies are refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. Thermal rate coefficients are computed using variational transition-statemore » theory (VTST) calculations with multidimensional tunneling contributions based on small-curvature tunneling (SCT). These are combined with multistructural partition functions (QMS-T) to obtain direct dynamics multipath (MP-VTST/ SCT) gas-phase rate coefficients. For comparison with liquid-phase measurements, solvent effects are included using continuum dielectric solvation models. The predicted rate coefficients are found to be in excellent agreement with experiment when due consideration is made for acid-catalyzed isomerization. This work provides theoretical confirmation of the 30-year-old hypothesis of Korcek and co-workers that KHPs are precursors to carboxylic acid formation, resolving an open problem in the kinetics of liquid-phase autoxidation. The significance of the new pathways in atmospheric chemistry, low-temperature combustion, and oxidation of biological lipids are discussed.« less
Thermophysical properties of simple liquid metals: A brief review of theory
NASA Technical Reports Server (NTRS)
Stroud, David
1993-01-01
In this paper, we review the current theory of the thermophysical properties of simple liquid metals. The emphasis is on thermodynamic properties, but we also briefly discuss the nonequilibrium properties of liquid metals. We begin by defining a 'simple liquid metal' as one in which the valence electrons interact only weakly with the ionic cores, so that the interaction can be treated by perturbation theory. We then write down the equilibrium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of electrons and ions. Since the electron-ion interaction can be treated by perturbation, the electronic part contributes in two ways to the Helmholtz free energy: it gives a density-dependent term which is independent of the arrangement of ions, and it acts to screen the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-dependent, in general. After sketching the form of a typical pair potential, we briefly enumerate some methods for calculating the ionic distribution function and hence the Helmholtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations, and thermodynamic perturbation theory. The final result is a general expression for the Helmholtz free energy of the liquid metal. It can be used to calculate a wide range of thermodynamic properties of simple metal liquids, which we enumerate. They include not only a range of thermodynamic coefficients of both metals and alloys, but also many aspects of the phase diagram, including freezing curves of pure elements and phase diagrams of liquid alloys (including liquidus and solidus curves). We briefly mention some key discoveries resulting from previous applications of this method, and point out that the same methods work for other materials not normally considered to be liquid metals (such as colloidal suspensions, in which the suspended microspheres behave like ions screened by the salt solution in which they are suspended). We conclude with a brief discussion of some non-equilibrium (i.e., transport) properties which can be treated by an extension of these methods. These include electrical resistivity, thermal conductivity, viscosity, atomic self-diffusion coefficients, concentration diffusion coefficients in alloys, surface tension and thermal emissivity. Finally, we briefly mention two methods by which the theory might be extended to non-simple liquid metals: these are empirical techniques (i.e., empirical two- and three-body potentials), and numerical many-body approaches. Both may be potentially applicable to extremely complex systems, such as nonstoichiometric liquid semiconductor alloys.
NASA Astrophysics Data System (ADS)
Jones, J. H.; Casanova, I.
1993-07-01
We have performed a series of experiments to evaluate the behaviors of As and Sb in metallic systems. Because of the reputed chalcophile nature of these elements, we wrongly anticipated that they would follow S and that, compared to the Fe-X systems [1], (solid metal/liquid metal) partition coefficients would be considerably lower in S-bearing systems. Experimental and Analytical: Experiments were performed in sealed silica tubes as in [2]. Starting materials were high-purity metals, natural pyrite, and natural stibnite. Charges were doped either with As or Sb. Experiments were held at either 950 degrees C for six days or 1250 degrees C for three days. Typical experimental assemblages consisted either of taenite and coexisting Fe-Ni-S-X liquid (1250 degrees and 950 degrees C) or an assemblage of troilite, schreibersite, and Fe-Ni-S-P-X liquid (950 degrees C). The schreibersite-bearing, As-doped charge also contained barringerite (Fe,Ni)2P. Charges were mounted in epoxy, polished, and analyzed using a Cameca SX-50 electron microprobe and standard techniques. Results: Phases appeared homogeneous. Our results, along with partition coefficients inferred for the S-free system, are given in Table 1. Table 1 appears here in the hard copy. Discussion: Our results indicate that As behaves as a siderophile element at low temperatures, very analogous to Au. While the siderophility of Sb increases with decreasing temperature, it remains incompatible in solid metal. In this regard Sb is unique. Both As and Sb are very incompatible in troilite. Arsenic is weakly incompatible in schreibersite and strongly compatible in barringerite. Nickel shows no preference for either phosphide. Nickel partition coefficients for metal and schreibersite are similar to those measured previously [3]. On a lnD vs. ln(1-2 alpha X(S)) diagram [4], the data for Sb and As subparallel each other, indicating similar dependencies on S, despite their very different partition coefficients. Arsenic behaves similarly to P. The As and Sb partition coefficients for the S-free system, inferred for kamacite (alpha-iron) from the Fe-As and Fe-Sb phase diagrams [1], are probably not applicable to taenite (gamma-iron). Extrapolation of our data to zero S indicates that the taenite partition coefficients for As and Sb are likely to be much lower than for kamacite. In discussing the fractional crystallization of iron meteorites, Scott [5] originally grouped Au, As, Sb, and Co and assigned them a (solid metal/liquid metal) partition coefficient of about 0.4. This distinguished them from P, which was given a partition coefficient of 0.2. Given the strong decoupling of As and Sb in our experiments, the general coherence of As and Sb in iron meteorites [5] is surprising. To explore this further, we have derived a new equation for the slopes of LogEl vs. LogNi diagrams, which takes into account changes in D. References: [1] Moffatt W. G. (1986) Handbook of Binary Phase Diagrams, Genium. [2] Jones J. H. and Drake M. J. (1983) GCA, 47, 1199. [3] Jones J. H. et al. (1993) GCA, 57, 453-460. [4] Jones J. H. and Malvin D. J. (1990) Metall. Trans., 21B, 697-706. [5] Scott E. R. D. (1972) GCA, 36, 1205.
Liang, Chao; Han, Shu-ying; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin
2014-11-01
A strategy to utilize neutral model compounds for lipophilicity measurement of ionizable basic compounds by reversed-phase high-performance liquid chromatography is proposed in this paper. The applicability of the novel protocol was justified by theoretical derivation. Meanwhile, the linear relationships between logarithm of apparent n-octanol/water partition coefficients (logKow '') and logarithm of retention factors corresponding to the 100% aqueous fraction of mobile phase (logkw ) were established for a basic training set, a neutral training set and a mixed training set of these two. As proved in theory, the good linearity and external validation results indicated that the logKow ''-logkw relationships obtained from a neutral model training set were always reliable regardless of mobile phase pH. Afterwards, the above relationships were adopted to determine the logKow of harmaline, a weakly dissociable alkaloid. As far as we know, this is the first report on experimental logKow data for harmaline (logKow = 2.28 ± 0.08). Introducing neutral compounds into a basic model training set or using neutral model compounds alone is recommended to measure the lipophilicity of weakly ionizable basic compounds especially those with high hydrophobicity for the advantages of more suitable model compound choices and convenient mobile phase pH control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kavner, A.
2017-12-01
In a multicomponent multiphase geochemical system undergoing a chemical reaction such as precipitation and/or dissolution, the partitioning of species between phases is determined by a combination of thermodynamic properties and transport processes. The interpretation of the observed distribution of trace elements requires models integrating coupled chemistry and mechanical transport. Here, a framework is presented that predicts the kinetic effects on the distribution of species between two reacting phases. Based on a perturbation theory combining Navier-Stokes fluid flow and chemical reactivity, the framework predicts rate-dependent partition coefficients in a variety of different systems. We present the theoretical framework, with applications to two systems: 1. species- and isotope-dependent Soret diffusion of species in a multicomponent silicate melt subjected to a temperature gradient, and 2. Elemental partitioning and isotope fractionation during precipitation of a multicomponent solid from a multicomponent liquid phase. Predictions will be compared with results from experimental studies. The approach has applications for understanding chemical exchange in at boundary layers such as the Earth's surface magmatic systems and at the core/mantle boundary.
Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali
2014-10-15
A novel approach, ultrasound-assisted reverse micelles dispersive liquid-liquid microextraction (USA-RM-DLLME) followed by high performance liquid chromatography (HPLC) was developed for selective determination of acetoin in butter. The melted butter sample was diluted and homogenised by n-hexane and Triton X-100, respectively. Subsequently, 400μL of distilled water was added and the microextraction was accelerated by 4min sonication. After 8.5min of centrifugation, sedimented phase (surfactant-rich phase) was withdrawn by microsyringe and injected into the HPLC system for analysis. The influence of effective variables was optimised using Box-Behnken design (BBD) combined with desirability function (DF). Under optimised experimental conditions, the calibration graph was linear over the range of 0.6-200mgL(-1). The detection limit of method was 0.2mgL(-1) and coefficient of determination was 0.9992. The relative standard deviations (RSDs) were less than 5% (n=5) while the recoveries were in the range of 93.9-107.8%. Copyright © 2014. Published by Elsevier Ltd.
Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L
2013-04-18
In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).
Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A
2014-11-12
Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.
Liquid crystal 'blue phases' with a wide temperature range.
Coles, Harry J; Pivnenko, Mikhail N
2005-08-18
Liquid crystal 'blue phases' are highly fluid self-assembled three-dimensional cubic defect structures that exist over narrow temperature ranges in highly chiral liquid crystals. The characteristic period of these defects is of the order of the wavelength of visible light, and they give rise to vivid specular reflections that are controllable with external fields. Blue phases may be considered as examples of tuneable photonic crystals with many potential applications. The disadvantage of these materials, as predicted theoretically and proved experimentally, is that they have limited thermal stability: they exist over a small temperature range (0.5-2 degrees C) between isotropic and chiral nematic (N*) thermotropic phases, which limits their practical applicability. Here we report a generic family of liquid crystals that demonstrate an unusually broad body-centred cubic phase (BP I*) from 60 degrees C down to 16 degrees C. We prove this with optical texture analysis, selective reflection spectroscopy, Kössel diagrams and differential scanning calorimetry, and show, using a simple polarizer-free electro-optic cell, that the reflected colour is switched reversibly in applied electric fields over a wide colour range in typically 10 ms. We propose that the unusual behaviour of these blue phase materials is due to their dimeric molecular structure and their very high flexoelectric coefficients. This in turn sets out new theoretical challenges and potentially opens up new photonic applications.
NASA Technical Reports Server (NTRS)
Santi, L. Michael; Helmicki, Arthur J.
1993-01-01
The objective of Phase I of this research effort was to develop an advanced mathematical-empirical model of SSME steady-state performance. Task 6 of Phase I is to develop component specific modification strategy for baseline case influence coefficient matrices. This report describes the background of SSME performance characteristics and provides a description of the control variable basis of three different gains models. The procedure used to establish influence coefficients for each of these three models is also described. Gains model analysis results are compared to Rocketdyne's power balance model (PBM).
Active two-phase cooling of an IR window for a hypersonic interceptor
NASA Astrophysics Data System (ADS)
Burzlaff, B. H.; Chivian, Jay S.; Cotten, W. D.; Hemphill, R. B.; Huhlein, Michael A.
1993-06-01
A novel actively cooled window for an IR sensor on a hypersonic interceptor is envisioned which achieves an IR window with high transmittance, low emittance, and low image distortion under high aerodynamic heat flux. The cooling concept employs two-phase convective boiling of liquid ammonia. Coolant is confined to narrow, parallel channels within the window to minimize obscuration of the aperture. The high latent heat of vaporization of ammonia minimizes coolant mass-flow requirements. Low boiling temperatures at projected operating pressures promote high thermal conductivity and low emissivity in the window. The concept was tested with thermal measurements on sub-mm width coolant channels in Si. High values for heat transfer coefficient and critical heat flux were obtained. Thermal gradients within the window can be controlled by the coolant channel configuration. Design options are investigated by predicting the effect of aerodynamic heat flux on the image produced by an IR sensor with a cooled window. Ammonia-cooled IR windows will function in the anticipated aerothermal environment.
Kowsari, M H; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan
2008-12-14
Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim](+) (alkyl = methyl, ethyl, propyl, and butyl) family with PF(6)(-), NO(3)(-), and Cl(-) counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO(3)](-) < [Cl](-) < [PF(6)](-). The trends in the diffusion coefficient in the series of cations with identical anions are [emim](+) > [pmim](+) > [bmim](+) and those for anions with identical cations are [NO(3)](-) > [PF(6)](-) > [Cl](-). The [dmim](+) has a relatively low diffusion coefficient due to its symmetric structure and good packing in the liquid phase. The major factor for determining the magnitude of the self-diffusion is the geometric shape of the anion of the ionic liquid. Other important factors are the ion size and the charge delocalization in the anion.
Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, V.; Occhipinti, J.; Shah, H.
2015-07-01
This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.
Evaluation of mercury in liquid waste processing facilities - Phase I report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, V.; Occhipinti, J. E.; Shah, H.
2015-07-01
This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.
Analysis and comparison of different phase shifters for Stirling pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Lei, Tian; Pfotenhauer, John M.; Zhou, Wenjie
2016-12-01
Investigations of phase shifters and power recovery mechanisms are of sustainable interest for developing Stirling pulse tube cryocoolers (SPTC) with higher power density, more compact design and higher efficiency. This paper investigates the phase shifting capacity and the applications of four different phase shifters, including conventional inertance tube, gas-liquid and spring-oscillator phase shifters, as well as a power recovery displacer. Distributed models based on the electro-acoustic analogy are developed to estimate the phase shifting capacity and the acoustic power dissipation of the three phase shifters without power recovery. The results show that both gas-liquid and spring-oscillator phase shifters have the distinctive capacity of phase shifting with a significant reduction in the inertial component length. Furthermore, full distributed models of SPTCs connected with different phase shifters are developed. The cooling performance of SPTCs using all four phase shifters are presented and typical phase relations are analyzed. The comparison reveals that the power recovery displacer with a more complicated configuration provides the highest efficiency. The gas-liquid and spring-oscillator phase shifters show equivalent efficiency compared with the inertance tube phase shifter. Approximately 10-20% of the acoustic power is dissipated by the phase shifters without power recovery, while 15-20% of the acoustic power can be recovered by the power recovery displacer, leading to a maximum coefficient of performance (COP) above 0.14 at 80 K. A merit analysis is also done by presenting the pros and cons of different phase shifters.
A three-dimensional phase field model for nanowire growth by the vapor-liquid-solid mechanism
NASA Astrophysics Data System (ADS)
Wang, Yanming; Ryu, Seunghwa; McIntyre, Paul C.; Cai, Wei
2014-07-01
We present a three-dimensional multi-phase field model for catalyzed nanowire (NW) growth by the vapor-liquid-solid (VLS) mechanism. The equation of motion contains both a Ginzburg-Landau term for deposition and a diffusion (Cahn-Hilliard) term for interface relaxation without deposition. Direct deposition from vapor to solid, which competes with NW crystal growth through the molten catalyst droplet, is suppressed by assigning a very small kinetic coefficient at the solid-vapor interface. The thermodynamic self-consistency of the model is demonstrated by its ability to reproduce the equilibrium contact angles at the VLS junction. The incorporation of orientation dependent gradient energy leads to faceting of the solid-liquid and solid-vapor interfaces. The model successfully captures the curved shape of the NW base and the Gibbs-Thomson effect on growth velocity.
González, F R; Pérez-Parajón, J; García-Domínguez, J A
2002-04-12
Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.
Wang, Z; Hennion, B; Urruty, L; Montury, M
2000-11-01
Solid-phase microextraction coupled with high performance liquid chromatography has been studied for the analysis of methiocarb, napropamide, fenoxycarb and bupirimate in strawberries. The strawberries were blended and centrifuged. Then, an aliquot of the resulting extracting solution was subjected to solid-phase microextraction (SPME) on a 60 microns polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 45 min at room temperature. The extracted pesticides on the SPME fibre were desorbed into SPME/high performance liquid chromatography (HPLC) interface for HPLC analysis with diode-array detection (DAD). The method is organic solvent-free for the whole extraction process and is simple and easy to manipulate. The detection limits were shown to be at low microgram kg-1 level and the linear response covered the range from 0.05 to 2 mg kg-1 of pesticides in strawberries with a regression coefficient larger than 0.99. A good repeatability with RSDs between 2.92 and 9.25% was obtained, depending on compounds.
NASA Astrophysics Data System (ADS)
Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.
2014-12-01
Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.
Patti, Alessandro; Cuetos, Alejandro
2012-07-01
We report on the diffusion of purely repulsive and freely rotating colloidal rods in the isotropic, nematic, and smectic liquid crystal phases to probe the agreement between Brownian and Monte Carlo dynamics under the most general conditions. By properly rescaling the Monte Carlo time step, being related to any elementary move via the corresponding self-diffusion coefficient, with the acceptance rate of simultaneous trial displacements and rotations, we demonstrate the existence of a unique Monte Carlo time scale that allows for a direct comparison between Monte Carlo and Brownian dynamics simulations. To estimate the validity of our theoretical approach, we compare the mean square displacement of rods, their orientational autocorrelation function, and the self-intermediate scattering function, as obtained from Brownian dynamics and Monte Carlo simulations. The agreement between the results of these two approaches, even under the condition of heterogeneous dynamics generally observed in liquid crystalline phases, is excellent.
Oppermann, Sebastian; Oppermann, Christina; Böhm, Miriam; Kühl, Toni; Imhof, Diana; Kragl, Udo
2018-04-25
Aqueous two-phase systems (ATPS) occur by the mixture of two polymers or a polymer and an inorganic salt in water. It was shown that not only polymers but also ionic liquids in combination with inorganic cosmotrophic salts are able to build ATPS. Suitable for the formation of ionic liquid-based ATPS systems are hydrophilic water miscible ionic liquids. To understand the driving force for amino acid and peptide distribution in IL-ATPS at different pH values, the ionic liquid Ammoeng 110™ and K 2 HPO 4 have been chosen as a test system. To quantify the concentration of amino acids and peptides in the different phases, liquid chromatography and mass spectrometry (LC-MS) technologies were used. Therefore the peptides and amino acids have been processed with EZ:faast™-Kit from Phenomenex for an easy and reliable quantification method even in complex sample matrices. Partitioning is a surface-dependent phenomenon, investigations were focused on surface-related amino acid respectively peptide properties such as charge and hydrophobicity. Only a very low dependence between the amino acids or peptides hydrophobicity and the partition coefficient was found. Nevertheless, the presented results show that electrostatic respectively ionic interactions between the ionic liquid and the amino acids or peptides have a strong impact on their partitioning behavior.
NASA Astrophysics Data System (ADS)
Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.
2018-01-01
In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.
NASA Astrophysics Data System (ADS)
Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.
2018-07-01
In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.
Ionic-liquid-induced ferroelectric polarization in poly(vinylidene fluoride) thin films
NASA Astrophysics Data System (ADS)
Wang, Feipeng; Lack, Alexander; Xie, Zailai; Frübing, Peter; Taubert, Andreas; Gerhard, Reimund
2012-02-01
Thin films of ferroelectric β-phase poly(vinylidene fluoride) (PVDF) were spin-coated from a solution that contained small amounts of the ionic liquid (IL) 1-ethyl-3-methylimidazolium nitrate. A remanent polarization of 60 mC/m2 and a quasi-static pyroelectric coefficient of 19 μC/m2K at 30 °C were observed in the films. It is suggested that the IL promotes the formation of the β phase through dipolar interactions between PVDF chain-molecules and the IL. The dipolar interactions are identified as Coulomb attraction between hydrogen atoms in PVDF chains and anions in IL. The strong crystallinity increase is probably caused by the same dipolar interaction as well.
Ming, Xin; Han, Shu-ying; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen
2009-08-15
Although simple acids, replacing buffers, have been widely applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography (RPLC), none of the previously reported works focused on the systematic studies about the retention behavior of the acidic solutes in this ion-suppression RPLC mode. The subject of this paper was therefore to investigate the retention behavior of monobasic weak acidic compounds using acetic, perchloric and phosphoric acids as the ion-suppressors. The apparent octanol-water partition coefficient (K" ow) was proposed to calibrate the octanol-water partition coefficient (K(ow)) of these weak acidic compounds, which resulted in a better linear correlation with log k(w), the logarithm of the hypothetical retention factor corresponding to neat aqueous fraction of hydroorganic mobile phase. This log K" ow-log k w linear correlation was successfully validated by the results of monocarboxylic acids and monohydrating phenols, and moreover by the results under diverse experimental conditions for the same solutes. This straightforward relationship not only can be used to effectively predict the retention values of weak acidic solutes combined with Snyder-Soczewinski equation, but also can offer a promising medium for directly measuring K(ow) data of these compounds via Collander equation. In addition, the influence of the different ion-suppressors on the retention of weak acidic compounds was also compared in this RPLC mode.
NASA Astrophysics Data System (ADS)
Kashevarov, Alexey V.; Miller, Alexey B.; Potapov, Yuriy F.; Stasenko, Albert L.; Zhbanov, Vladimir A.
2018-05-01
An experimental facility for modeling of icing processes in various conditions (supercooled droplets, ice crystals and mixed-phase) is described and experimental results are presented. Some methods of icing processes characterization with non-dimensional coefficients are suggested. Theoretical model of a liquid film dynamics, mass and heat transfer during its movement on the model surface is presented. The numerical calculations of liquid film freezing and run-back ice evolution on the surface are performed.
Pseudo-transient heat transfer in vertical Bridgman crystal growth of semi-transparent materials
NASA Astrophysics Data System (ADS)
Barvinschi, F.; Nicoara, I.; Santailler, J. L.; Duffar, T.
1998-11-01
The temperature distribution and the solid-liquid interface shape during semi-transparent crystal growth have been studied by modelling a vertical Bridgman technique, using a pseudo-transient approximation in an ideal configuration. The heat transfer equation and the boundary conditions have been solved by the finite-element method. It has been pointed out that the optical absorption coefficients of the liquid and solid phases have a major effect on the thermal field, especially on the shape and location of the crystallization interface.
Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator.
Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo
2009-06-22
Liquid crystal on Silicon (LCOS) spatial phase modulators offer enhanced possibilities for adaptive optics applications in terms of response velocity and fidelity. Unlike deformable mirrors, they present a capability for reproducing discontinuous phase profiles. This ability also allows an increase in the effective stroke of the device by means of phase wrapping. The latter is only limited by the diffraction related effects that become noticeable as the number of phase cycles increase. In this work we estimated the ranges of generation of the Zernike polynomials as a means for characterizing the performance of the device. Sets of images systematically degraded with the different Zernike polynomials generated using a LCOS phase modulator have been recorded and compared with their theoretical digital counterparts. For each Zernike mode, we have found that image degradation reaches a limit for a certain coefficient value; further increase in the aberration amount has no additional effect in image quality. This behavior is attributed to the intensification of the 0-order diffraction. These results have allowed determining the usable limits of the phase modulator virtually free from diffraction artifacts. The results are particularly important for visual simulation and ophthalmic testing applications, although they are equally interesting for any adaptive optics application with liquid crystal based devices.
Godayol, Anna; Alonso, Mònica; Sanchez, Juan M; Anticó, Enriqueta
2013-03-01
A quantification method based on solid-phase microextraction followed by GC coupled to MS was developed for the determination of gas-liquid partition coefficients and for the air monitoring of a group of odour-causing compounds that had previously been found in wastewater samples including dimethyl disulphide, phenol, indole, skatole, octanal, nonanal, benzothiazole and some terpenes. Using a divinylbenzene/carboxen/polydimethylsiloxane fibre, adsorption kinetics have been studied to define an extraction time that would avoid coating saturation. It was found that for an extraction time of 10 min, external calibration could be performed in the range of 0.4-100 μg/m(3), with detection limits between 0.1 and 20 μg/m(3). Inter-day precision of the developed method was evaluated (n = 5) and RSD values between 12 and 24% were obtained for all compounds. The proposed method has been applied to the analysis of air samples surrounding a wastewater treatment plant in Catalonia (Spain). In all air samples evaluated, dimethyl disulphide, limonene and phenol were detected, and the first two were the compounds that showed the highest partition coefficients. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure
NASA Technical Reports Server (NTRS)
Oeftering, Richard C. (Inventor)
2000-01-01
A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.
Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.
Berthod, A; Faure, K
2015-04-17
A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.
Chao, Yu-Ying; Jian, Zhi-Xuan; Tu, Yi-Ming; Wang, Hsaio-Wen; Huang, Yeou-Lih
2013-06-07
In this study, we employed a novel on-line method, push/pull perfusion hollow-fiber liquid-phase microextraction (PPP-HF-LPME), to extract 4-tert-butylphenol, 2,4-di-tert-butylphenol, 4-n-nonylphenol, and 4-n-octylphenol from river and tap water samples; we then separated and quantified the extracted analytes through high-performance liquid chromatography (HPLC). Using this approach, we overcame the problem of fluid loss across the porous HF membrane to the donor phase, permitting on-line coupling of HF-LPME to HPLC. In our PPP-HF-LPME system, we used a push/pull syringe pump as the driving source to perfuse the acceptor phase, while employing a heating mantle and an ultrasonic probe to accelerate mass transfer. We optimized the experimental conditions such as the nature of the HF supported intermediary phase and the acceptor phase, the composition of the donor and acceptor phases, the sample temperature, and the sonication conditions. Our proposed method provided relative standard deviations of 3.1-6.2%, coefficients of determination (r(2)) of 0.9989-0.9998, and limits of detection of 0.03-0.2 ng mL(-1) for the analytes under the optimized conditions. When we applied this method to analyses of river and tap water samples, our results confirmed that this microextraction technique allows reliable monitoring of alkylphenols in water samples.
Adsorption of organic chemicals in soils.
Calvet, R
1989-01-01
This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described. PMID:2695323
Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps
NASA Technical Reports Server (NTRS)
Arauz, Grigory L.; SanAndres, Luis
1996-01-01
Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass content of vapor. Under these conditions, an increase on direct stiffness and reduction of whirl frequency ratio are shown to occur. Prediction of such important effects will motivate experimental studies as well as a more judicious selection of the operating conditions for seals used in cryogenic turbomachinery.
Use of limonene in countercurrent chromatography: a green alkane substitute.
Faure, Karine; Bouju, Elodie; Suchet, Pauline; Berthod, Alain
2013-05-07
Counter-current chromatography (CCC) is a preparative separation technique working with the two liquid phases of a biphasic liquid system. One phase is used as the mobile phase when the other, the stationary phase, is held in place by centrifugal fields. Limonene is a biorenewable cycloterpene solvent coming from orange peel waste. It was evaluated as a possible substitute for heptane in CCC separations. The limonene/methanol/water and heptane/methanol/water phase diagrams are very similar at room temperature. The double bonds of the limonene molecule allows for possible π-π interactions with solutes rendering limonene slightly more polar than heptane giving small differences in solute partition coefficients in the two systems. The 24% higher limonene density is a difference with heptane that has major consequences in CCC. The polar and apolar phases of the limonene/methanol/water 10/9/1 v/v have -0.025 g/cm(3) density difference (lower limonene phase) compared to +0.132 g/cm(3) with heptane (upper heptane phase). This precludes the use of this limonene system with hydrodynamic CCC columns that need significant density difference to retain a liquid stationary phase. It is an advantage with hydrostatic CCC columns because density difference is related to the working pressure drop: limonene allows one to work with high centrifugal fields and moderate pressure drop. Limonene has the capability to be a "green" alternative to petroleum-based solvents in CCC applications.
Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture
NASA Astrophysics Data System (ADS)
Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori
This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.
NASA Astrophysics Data System (ADS)
Bretin, Elie; Danescu, Alexandre; Penuelas, José; Masnou, Simon
2018-07-01
The structure of many multiphase systems is governed by an energy that penalizes the area of interfaces between phases weighted by surface tension coefficients. However, interface evolution laws depend also on interface mobility coefficients. Having in mind some applications where highly contrasted or even degenerate mobilities are involved, for which classical phase field models are inapplicable, we propose a new effective phase field approach to approximate multiphase mean curvature flows with mobilities. The key aspect of our model is to incorporate the mobilities not in the phase field energy (which is conventionally the case) but in the metric which determines the gradient flow. We show the consistency of such an approach by a formal analysis of the sharp interface limit. We also propose an efficient numerical scheme which allows us to illustrate the advantages of the model on various examples, as the wetting of droplets on solid surfaces or the simulation of nanowires growth generated by the so-called vapor-liquid-solid method.
The Solubility Parameters of Ionic Liquids
Marciniak, Andrzej
2010-01-01
The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495
Density, Molar Volume, and Surface Tension of Liquid Al-Ti
NASA Astrophysics Data System (ADS)
Wessing, Johanna Jeanette; Brillo, Jürgen
2017-02-01
Al-Ti-based alloys are of enormous technical relevance due to their specific properties. For studies in atomic dynamics, surface physics and industrial processing the precise knowledge of the thermophysical properties of the liquid phase is crucial. In the present work, we systematically measure mass density, ρ (g cm-3), and the surface tension, γ (N m-1), as functions of temperature, T, and compositions of binary Al-Ti melts. Electromagnetic levitation in combination with the optical dilatometry method is used for density measurements and the oscillating drop method for surface tension measurements. It is found that, for all compositions, density and surface tension increase linearly upon decreasing temperature in the liquid phase. Within the Al-Ti system, we find the largest values for pure titanium and the smallest for pure aluminum, which amount to ρ(L,Ti) = 4.12 ± 0.04 g cm-3 and γ(L,Ti) = 1.56 ± 0.02 N m-1; and ρ(L,Al) = 2.09 ± 0.01 g cm-3 and γ(L,Al) = 0.87 ± 0.06 N m-1, respectively. The data are analyzed concerning the temperature coefficients, ρ T and γ T, excess molar volume, V E, excess surface tension, γ E, and surface segregation of the surface active component, Al. The results are compared with thermodynamic models. Generally, it is found that Al-Ti is a highly nonideal system.
Coupling of Plasmas and Liquids
NASA Astrophysics Data System (ADS)
Lindsay, Alexander David
Plasma-liquids have exciting applications to several important socioeconomic areas, including agriculture, water treatment, and medicine. To realize their application potential, the basic physical and chemical phenomena of plasma-liquid systems must be better understood. Additionally, system designs must be optimized in order to maximize fluxes of critical plasma species to the liquid phase. With objectives to increase understanding of these systems and optimize their applications, we have performed both comprehensive modeling and experimental work. To date, models of plasma-liquids have focused on configurations where diffusion is the dominant transport process in both gas and liquid phases. However, convection plays a key role in many popular plasma source designs, including jets, corona discharges, and torches. In this dissertation, we model momentum, heat, and neutral species mass transfer in a convection-dominated system based on a corona discharge. We show that evaporative cooling produced by gas-phase convection can lead to a significant difference between gas and liquid phase bulk temperatures. Additionally, convection induced in the liquid phase by the gas phase flow substantially increases interfacial mass transfer of hydrophobic species like NO and NO2. Finally, liquid kinetic modeling suggests that concentrations of highly reactive species like OH and ONOOH are several orders of magnitude higher at the interface than in the solution bulk. Subsequent modeling has focused on coupling discharge physics with species transport at and through the interface. An assumption commonly seen in the literature is that interfacial loss coefficients of charged species like electrons are equal to unity. However, there is no experimental evidence to either deny or support this assumption. Without knowing the true interfacial behavior of electrons, we have explored the effects on key plasma-liquid variables of varying interfacial parameters like the electron and energy surface loss coefficients. Within a reasonable range for these parameters, we have demonstrated that the electron density on the gas phase side of the interface can vary by orders of magnitude. Significant effects can also be seen on the gas phase interfacial electron energy. Electron density and energy will play important roles in determining gas phase chemistry in more complex future models; this will in turn feed back into the liquid phase chemistry. To remove this uncertainty in interfacial behavior, we recommend finer scale atomistic or molecular dynamics simulations. Efficient coupling of the highly non-linear discharge physics equations to liquid transport required creation of a new simulation code named Zapdos, built on top of the MOOSE framework. The operation and capabilities of the code are described in this work. Moreover, changes made to the MOOSE framework allowing coupling of physics across subdomain boundaries, necessary for plasma-liquid coupling, are also detailed. In the latter half of this work, we investigate experimental optimization and characterization of plasma-liquid interactions surrounding a unique very high frequency (VHF) plasma discharge. Several geometric configurations are considered. In the most promising set-up, the discharge is pointed upwards and water is pumped through the source's inner conductor until it forms a milimeter thick water layer on top of the powered electrode. This maximizes the amount of charged and neutral species flux received by the aqueous phase as well as the amount of water vapor created in the gas phase. Additionally, the configuration eliminates electrode damage by providing an infinitely renewable liquid surface layer. The presence of large amounts of water vapor and OH radicals is confirmed by optical emission and broadband absorption spectroscopy. Characterization of liquid phase species like NO-3 , NO-2 , and H2O2 is carried out through ion chromatography (IC) and colorimetric measurements. After detailing the design and characterization of our plasma-liquid systems, we illustrate their applications to plant fertilization and wastewater disinfection. In a four-week collaborative experiment with the NCSU greenhouse, plants that received plasma-treated water grew significantly larger than plants that received tap water. This is directly attributable to the approximately hundred mg/L of NO-3 dissolved into solution by the plasma. The VHF source also proved effective at removing several aqueous contaminants designated harmful to humans by the EPA. Air plasma treatment of solutions contaminated with 1,4-dioxane showed log reduction times competitive with other advanced oxidative processes (AOP). Argon treatment of dixoane was an order of magnitude more effective in terms of log reduction time, although the associated costs are significantly higher. Perfluorooctanesulfonic acid (PFOS) proved resistant to several VHF design iterations. However, the water electrode design introduced in the passage above achieved a log reduction in low level PFOS concentrations over the course of twenty five minutes, suggesting that it may be viable as an advanced technology for degradation of persistent perfluorinated compounds. (Abstract shortened by ProQuest.).
Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation.
Persad, Aaron H; Ward, Charles A
2016-07-27
Although the Hertz-Knudsen (HK) relation is often used to correlate evaporation data, the relation contains two empirical parameters (the evaporation and condensation coefficients) that have inexplicably been found to span 3 orders of magnitude. Explicit expressions for these coefficients have yet to be determined. This review will examine sources of error in the HK relation that have led to the coefficients' scatter. Through an examination of theoretical, experimental, and molecular dynamics simulation studies of evaporation, this review will show that the HK relation is incomplete, since it is missing an important physical concept: the coupling between the vapor and liquid phases during evaporation. The review also examines a modified HK relation, obtained from the quantum-mechanically based statistical rate theory (SRT) expression for the evaporation flux and applying a limit to it in which the thermal energy is dominant. Explicit expressions for the evaporation and condensation coefficients are defined in this limit, with the surprising result that the coefficients are not bounded by unity. An examination is made with 127 reported evaporation experiments of water and of ethanol, leading to a new physical interpretation of the coefficients. The review concludes by showing how seemingly small simplifications, such as assuming thermal equilibrium across the liquid-vapor interface during evaporation, can lead to the erroneous predictions from the HK relation that have been reported in the literature.
Saponification reaction system: a detailed mass transfer coefficient determination.
Pečar, Darja; Goršek, Andreja
2015-01-01
The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.
Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber
NASA Astrophysics Data System (ADS)
Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji
2017-04-01
This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.
Uptake, biotransformation, and elimination of rotenone by bluegills (Lepomis macrochirus )
Gingerich, W.H.; Rach, J.J.
1985-01-01
Yearling bluegills (Lepomis macrochirus) were exposed to sublethal concentrations of [14C]rotenone (5.2 μg/l) for 30 days in a continuous flow exposure system and then transferred to clean, flowing water for an additional 21-day depuration period. Rates of uptake and elimination and profile of the rotenoid metabolites in head, viscera, and carcass components were evaluated by 14C counting and by high performance liquid chromatography. Total [14C]rotenone derived activity was relatively uniform in all body components within 3 days after initial exposure and remained constant during the ensuing 27 days of exposure. Initial uptake rate coefficients were highest in viscera (Ku = 80· h -1) and were nearly identical for head (Ku = 14 · h) and carcass (Ku = 10 · h-1). Analyses of tissue extracts by high performance liquid chromatography confirmed the presence of at least six biotransformation products of rotenone. More than 60% of the activity extracted from viscera was present as a single peak which represented a compound that was extremely soluble in water. Rotenone composed only 0.3% of the extractable activity in viscera taken from fish exposed to rotenone for 30 days; however, rotenone accounted for 15.4% of extractable activity in the head and 20.1% in the carcass components. Rotenolone and 6',7'-dihydro-6'-,7'--dihydroxyrotenolone were tentatively identified as oxidation products in all tissue extracts. Elimination of 14C activity from all body components was biphasic; both phases followed first-order kinetics. The rate of elimination was nearly equal for all body components during the initial phase but was most rapid from viscera during the second phase of elimination. Bioconcentration factors for the head, viscera, and carcass were 165, 3,550, and 125, respectively, when calculated on the basis of total 14C activity but only 25.4, 11, and 26 when calculated as the concentration of parent material.
Fiore, D; Auger, F A; Drusano, G L; Dandu, V R; Lesko, L J
1984-01-01
A rapid, sensitive, and specific method of analysis for mezlocillin in serum and urine by high-pressure liquid chromatography is described. A solid-phase extraction column was used to remove interfering substances from samples before chromatography. Quantitation included the use of an internal standard, nafcillin. Mezlocillin was chromatographed with a phosphate buffer-acetonitrile (73:27) mobile phase and a C-18 reverse-phase column and detected at a wavelength of 220 nm. The assay had a sensitivity of 1.6 micrograms/ml and a linearity of up to 600 micrograms/ml and 16 mg/ml in serum and urine, respectively, with only 0.1 ml of sample. The interday and intraday coefficients of variation for replicate analyses of spiked serum and urine specimens were less than 6.5%. PMID:6517560
[Lateral diffusion of saturated phosphatidylcholines in cholesterol-containing bilayers].
Filippov, A V; Rudakova, M A; Oradd, G; Lindblom, J
2007-01-01
Lateral diffusion in oriented bilayers of saturated cholesterol-containing phosphatidylcholines, dipalmitoylphosphatidylcholine and dimyrilstoylphosphatidylcholine upon their limiting hydration has been studied by NMR with impulse gradient of magnetic field. For both systems, similar dependences of the coefficient of lateral diffusion on temperature and cholesterol concentration were observed, which agree with the phase diagram showing the presence of regions of ordered and unordered liquid-crystalline phases and a two-phase region. Under similar conditions, the coefficient of lateral diffusion for dipalmytoylphosphatidylcholine has lower values, which is in qualitative agreement with its greater molecular mass. A comparison of data for dipalmytoylphosphatidylcholine with the results obtained earlier for dipalmytoylsphyngomyelin/cholesterol under the same conditions shows, despite a similarity in phase diagrams, greater (two- to threefold) differences in the values of the coefficient of lateral diffusion and a different mode of dependence of the coefficient on cholesterol concentration. A comparison of data for dimyrilstoylphosphatidylcholine with the results obtained previously shows that the values of the coefficient of lateral diffusion and the mode of its dependence on cholesterol concentration coincide in the region of higher concentrations (more than 15 mole %) and differ in the region of lower concentrations (below 15 mole %). The discrepancies may be explained by different contents of water in the systems during the measurements. At a limiting hydration (more than 35%) of water, the coefficient of lateral diffusion decreases with increasing cholesterol concentration. If the content of water is about 25% (as a result of equilibrium hydration from vapors), the coefficient of lateral diffusion of phosphatidylcholine is probably independent of cholesterol concentration. This results from a denser packing of molecules in the bilayer at a lower water concentration, an effect that competes with the ordering effect of cholesterol.
Chemistry of riming: the retention of organic and inorganic atmospheric trace constituents
NASA Astrophysics Data System (ADS)
Jost, Alexander; Szakáll, Miklós; Diehl, Karoline; Mitra, Subir K.; Borrmann, Stephan
2017-08-01
During free fall in clouds, ice hydrometeors such as snowflakes and ice particles grow effectively by riming, i.e., the accretion of supercooled droplets. Volatile atmospheric trace constituents dissolved in the supercooled droplets may remain in ice during freezing or may be released back to the gas phase. This process is quantified by retention coefficients. Once in the ice phase the trace constituents may be vertically redistributed by scavenging and subsequent precipitation or by evaporation of these ice hydrometeors at high altitudes. Retention coefficients of the most dominant carboxylic acids and aldehydes found in cloud water were investigated in the Mainz vertical wind tunnel under dry-growth (surface temperature less than 0 °C) riming conditions which are typically prevailing in the mixed-phase zone of convective clouds (i.e., temperatures from -16 to -7 °C and a liquid water content (LWC) of 0. 9 ± 0. 2 g m-3). The mean retention coefficients of formic and acetic acids are found to be 0. 68 ± 0. 09 and 0. 63 ± 0. 19. Oxalic and malonic acids as well as formaldehyde show mean retention coefficients of 0. 97 ± 0. 06, 0. 98 ± 0. 08, and 0. 97 ± 0. 11, respectively. Application of a semi-empirical model on the present and earlier wind tunnel measurements reveals that retention coefficients can be well interpreted by the effective Henry's law constant accounting for solubility and dissociation. A parameterization for the retention coefficients has been derived for substances whose aqueous-phase kinetics are fast compared to mass transport timescales. For other cases, the semi-empirical model in combination with a kinetic approach is suited to determine the retention coefficients. These may be implemented in high-resolution cloud models.
Measuring experimental cyclohexane-water distribution coefficients for the SAMPL5 challenge
NASA Astrophysics Data System (ADS)
Rustenburg, Ariën S.; Dancer, Justin; Lin, Baiwei; Feng, Jianwen A.; Ortwine, Daniel F.; Mobley, David L.; Chodera, John D.
2016-11-01
Small molecule distribution coefficients between immiscible nonaqueuous and aqueous phases—such as cyclohexane and water—measure the degree to which small molecules prefer one phase over another at a given pH. As distribution coefficients capture both thermodynamic effects (the free energy of transfer between phases) and chemical effects (protonation state and tautomer effects in aqueous solution), they provide an exacting test of the thermodynamic and chemical accuracy of physical models without the long correlation times inherent to the prediction of more complex properties of relevance to drug discovery, such as protein-ligand binding affinities. For the SAMPL5 challenge, we carried out a blind prediction exercise in which participants were tasked with the prediction of distribution coefficients to assess its potential as a new route for the evaluation and systematic improvement of predictive physical models. These measurements are typically performed for octanol-water, but we opted to utilize cyclohexane for the nonpolar phase. Cyclohexane was suggested to avoid issues with the high water content and persistent heterogeneous structure of water-saturated octanol phases, since it has greatly reduced water content and a homogeneous liquid structure. Using a modified shake-flask LC-MS/MS protocol, we collected cyclohexane/water distribution coefficients for a set of 53 druglike compounds at pH 7.4. These measurements were used as the basis for the SAMPL5 Distribution Coefficient Challenge, where 18 research groups predicted these measurements before the experimental values reported here were released. In this work, we describe the experimental protocol we utilized for measurement of cyclohexane-water distribution coefficients, report the measured data, propose a new bootstrap-based data analysis procedure to incorporate multiple sources of experimental error, and provide insights to help guide future iterations of this valuable exercise in predictive modeling.
NASA Astrophysics Data System (ADS)
Tong, F.; Niemi, A. P.; Yang, Z.; Fagerlund, F.; Licha, T.; Sauter, M.
2011-12-01
This paper presents a new finite element method (FEM) code for modeling tracer transport in a non-isothermal two-phase flow system. The main intended application is simulation of the movement of so-called novel tracers for the purpose of characterization of geologically stored CO2 and its phase partitioning and migration in deep saline formations. The governing equations are based on the conservation of mass and energy. Among the phenomena accounted for are liquid-phase flow, gas flow, heat transport and the movement of the novel tracers. The movement of tracers includes diffusion and the advection associated with the gas and liquid flow. The temperature, gas pressure, suction, concentration of tracer in liquid phase and concentration of tracer in gas phase are chosen as the five primary variables. Parameters such as the density, viscosity, thermal expansion coefficient are expressed in terms of the primary variables. The governing equations are discretized in space using the Galerkin finite element formulation, and are discretized in time by one-dimensional finite difference scheme. This leads to an ill-conditioned FEM equation that has many small entries along the diagonal of the non-symmetric coefficient matrix. In order to deal with the problem of non-symmetric ill-conditioned matrix equation, special techniques are introduced . Firstly, only nonzero elements of the matrix need to be stored. Secondly, it is avoided to directly solve the whole large matrix. Thirdly, a strategy has been used to keep the diversity of solution methods in the calculation process. Additionally, an efficient adaptive mesh technique is included in the code in order to track the wetting front. The code has been validated against several classical analytical solutions, and will be applied for simulating the CO2 injection experiment to be carried out at the Heletz site, Israel, as part of the EU FP7 project MUSTANG.
Ab initio interatomic potentials and the thermodynamic properties of fluids
NASA Astrophysics Data System (ADS)
Vlasiuk, Maryna; Sadus, Richard J.
2017-07-01
Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.
Ab initio interatomic potentials and the thermodynamic properties of fluids.
Vlasiuk, Maryna; Sadus, Richard J
2017-07-14
Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.
Dillard, L.A.; Essaid, H.I.; Blunt, M.J.
2001-01-01
A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai. Kdissai was computed as a function of modified Peclet number (Pe???) for various NAPL saturations (SN) and ai during drainage and imbibition and during dissolution without displacement. The largest contributor to ai was the interfacial area in the water-filled corners of chambers and tubes containing NAPL. When Kdissai was divided by ai, the resulting curves of dissolution coefficient, Kdiss versus Pe??? suggested that an approximate value of Kdiss could be obtained as a weak function of hysteresis or SN. Spatially and temporally variable maps of Kdissai calculated using the network model were used in field-scale simulations of NAPL dissolution. These simulations were compared to simulations using a constant value of Kdissai and the empirical correlation of Powers et al. [Water Resour. Res. 30(2) (1994b) 321]. Overall, a methodology was developed for incorporating pore-scale processes into field-scale prediction of NAPL dissolution. Copyright ?? 2001 .
Risk of hydrocyanic acid release in the electroplating industry.
Piccinini, N; Ruggiero, G N; Baldi, G; Robotto, A
2000-01-07
This paper suggests assessing the consequences of hydrocyanic acid (HCN) release into the air by aqueous cyanide solutions in abnormal situations such as the accidental introduction of an acid, or the insertion of a cyanide in a pickling bath. It provides a well-defined source model and its resolution by methods peculiar to mass transport phenomena. The procedure consists of four stages: calculation of the liquid phase concentration, estimate of the HCN liquid-vapour equilibrium, determination of the mass transfer coefficient at the liquid-vapour interface, evaluation of the air concentration of HCN and of the damage distances. The results show that small baths operating at high temperatures are the major sources of risk. The building up of lethal air concentrations, on the other hand, is governed by the values of the mass transfer coefficient, which is itself determined by the flow dynamics and bath geometry. Concerning the magnitude of the risk, the fallout for external emergency planning is slight in all the cases investigated.
Description of Adsorption in Liquid Chromatography under Nonideal Conditions.
Ortner, Franziska; Ruppli, Chantal; Mazzotti, Marco
2018-05-15
A thermodynamically consistent description of binary adsorption in reversed-phase chromatography is presented, accounting for thermodynamic nonidealities in the liquid and adsorbed phases. The investigated system involves the adsorbent Zorbax 300SB-C18, as well as phenetole and 4- tert-butylphenol as solutes and methanol and water as inert components forming the eluent. The description is based on adsorption isotherms, which are a function of the liquid-phase activities, to account for nonidealities in the liquid phase. Liquid-phase activities are calculated with a UNIQUAC model established in this work, based on experimental phase equilibrium data. The binary interaction in the adsorbed phase is described by the adsorbed solution theory, assuming an ideal (ideal adsorbed solution theory) or real (real adsorbed solution theory) adsorbed phase. Implementation of the established adsorption model in a chromatographic code achieves a quantitative description of experimental elution profiles, with feed compositions exploiting the entire miscible region, and involving a broad range of different eluent compositions (methanol/water). The quantitative agreement of the model and experimental data serves as a confirmation of the underlying physical (thermodynamic) concepts and of their applicability to a broad range of operating conditions.
Use of Hansen Solubility Parameters in Fuel Treatment Processes
2014-03-17
Clearance # Considerations for Rocket Fuel Objective: Utilize liquid/liquid extraction process to improve performance, increase availability, and...1/4)(H1 - H0)2 - (D2 – D0)2 - (1/4) (P2 - P0)2 - (1/4)(H2 - H0)2 ] + RT ln (V1/ V2 ) K = C0,2 / CO,1 Partition coefficient RT ln K = V0( D1...02 – D2-02 ) + RT ln (V1/ V2 ) Di-0 is the distance in “solubility parameter space” between liquid i and impurity 0. For reference, phase 1 = fuel
1991-10-01
concentrations in the liquid phase. The role of the distribution coefficient in mitigating chemical migration is given in an approximation of nonuniform ...0.110 USA 60.0 12r- 990 1.11111 1219CN 0.230 USA 70.0 12-nor-199 Lull 12E1CM 0.240 UsA 80.0 12-spr-1990 LAIR 121PCN 0.260 USA 35.0 ?2-spr-I99 LOSl 121Cm
The Effect of Dissolved Air on the Cooling Performance of a Partially Confined FC-72 Spray
2008-07-01
95 iv LIST OF FIGURES Figure 1: Heat transfer coefficients: various processes and coolants ( Mudawar , 2001) .....1 Figure 2...various processes and coolants ( Mudawar , 2001). 2 In two-phase cooling a phase change of liquid to vapor, or boiling, occurs. The boiling...possible in flow boiling is also affected by the velocity of the flow and the amount of subcooling of the fluid ( Mudawar and Maddox, 1989). One highly
Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy
NASA Astrophysics Data System (ADS)
Wang, W. L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.
2015-11-01
The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.
Interdiffusion and Intrinsic Diffusion in the Mg-Al System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho
2012-01-01
Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electronmore » microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al3Mg2 phase.« less
Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid.
Struchtrup, Henning; Kjelstrup, Signe; Bedeaux, Dick
2012-06-01
Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given.
Impact of medium-range order on the glass transition in liquid Ni-Si alloys
NASA Astrophysics Data System (ADS)
Lü, Y. J.; Entel, P.
2011-09-01
We study the thermophysical properties and structure of liquid Ni-Si alloys using molecular dynamics simulations. The liquid Ni-5% and 10%Si alloys crystallize to form the face-centered cubic (Ni) at 900 and 850 K, respectively, and the glass transitions take place in Ni-20% and 25%Si alloys at about 700 K. The temperature-dependent self-diffusion coefficients and viscosities exhibit more pronounced non-Arrhenius behavior with the increase of Si content before phase transitions, indicating the enhanced glass-forming ability. These appearances of thermodynamic properties and phase transitions are found to closely relate to the medium-range order clusters with the defective face-centered cubic structure characterized by both local translational and orientational order. This locally ordered structure tends to be destroyed by the addition of more Si atoms, resulting in a delay of nucleation and even glass transition instead.
NASA Astrophysics Data System (ADS)
Bekhterev, V. N.
2016-10-01
It is established that the efficiency of the freezing-out extraction of monocarboxylic acids C3-C;8 and sorbic acid from water into acetonitrile increases under the action of centrifugal forces. The linear growth of the partition coefficient in the homologous series of C2-C8 acids with an increase in molecule length, and the difference between the efficiency of extracting sorbic and hexanoic acid, are discussed using a theoretical model proposed earlier and based on the adsorption-desorption equilibrium of the partition of dissolved organic compounds between the resulting surface of ice and the liquid phase of the extract. The advantages of the proposed technique with respect to the degree of concentration over the method of low-temperature liquid-liquid extraction are explained in light of the phase diagram for the water-acetonitrile mixture.
Melting properties of Pt and its transport coefficients in liquid states under high pressures
NASA Astrophysics Data System (ADS)
Wang, Pan-Pan; Shao, Ju-Xiang; Cao, Qi-Long
2016-11-01
Molecular dynamics (MD) simulations of the melting and transport properties in liquid states of platinum for the pressure range (50-200 GPa) are reported. The melting curve of platinum is consistent with previous ab initio MD simulation results and the first-principles melting curve. Calculated results for the pressure dependence of fusion entropy and fusion volume show that the fusion entropy and the fusion volume decrease with increasing pressure, and the ratio of the fusion volume to fusion entropy roughly reproduces the melting slope, which has a moderate decrease along the melting line. The Arrhenius law well describes the temperature dependence of self-diffusion coefficients and viscosity under high pressure, and the diffusion activation energy decreases with increasing pressure, while the viscosity activation energy increases with increasing pressure. In addition, the entropy-scaling law, proposed by Rosenfeld under ambient pressure, still holds well for liquid Pt under high pressure conditions.
Thermodynamic properties and diffusion of water + methane binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au
2014-03-14
Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less
NASA Technical Reports Server (NTRS)
Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette
2005-01-01
Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.
NASA Astrophysics Data System (ADS)
Torres, Juan F.; Komiya, Atsuki; Henry, Daniel; Maruyama, Shigenao
2013-08-01
We have developed a method to measure thermodiffusion and Fickian diffusion in transparent binary solutions. The measuring instrument consists of two orthogonally aligned phase-shifting interferometers coupled with a single rotating polarizer. This high-resolution interferometer, initially developed to measure isothermal diffusion coefficients in liquid systems [J. F. Torres, A. Komiya, E. Shoji, J. Okajima, and S. Maruyama, Opt. Lasers Eng. 50, 1287 (2012)], was modified to measure transient concentration profiles in binary solutions subject to a linear temperature gradient. A convectionless thermodiffusion field was created in a binary solution sample that is placed inside a Soret cell. This cell consists of a parallelepiped cavity with a horizontal cross-section area of 10 × 20 mm2, a variable height of 1-2 mm, and transparent lateral walls. The small height of the cell reduces the volume of the sample, shortens the measurement time, and increases the hydrodynamic stability of the system. An additional free diffusion experiment with the same optical apparatus provides the so-called contrast factors that relate the unwrapped phase and concentration gradients, i.e., the measurement technique is independent and robust. The Soret coefficient is determined from the concentration and temperature differences between the upper and lower boundaries measured by the interferometer and thermocouples, respectively. The Fickian diffusion coefficient is obtained by fitting a numerical solution to the experimental concentration profile. The method is validated through the measurement of thermodiffusion in the well-known liquid pairs of ethanol-water (ethanol 39.12 wt.%) and isobutylbenzene-dodecane (50.0 wt.%). The obtained coefficients agree with the literature values within 5.0%. Finally, the developed technique is applied to visualize biomolecular thermophoresis. Two protein aqueous solutions at 3 mg/ml were used as samples: aprotinin (6.5 kDa)-water and lysozyme (14.3 kDa)-water. It was found that the former protein molecules are thermophilic and the latter thermophobic. In contrast to previously reported methods, this technique is suitable for both short time and negative Soret coefficient measurements.
Xie, Kaizhou; Jia, Longfei; Yao, Yilin; Xu, Dong; Chen, Shuqing; Xie, Xing; Pei, Yan; Bao, Wenbin; Dai, Guojun; Wang, Jinyu; Liu, Zongping
2011-08-01
A specific, sensitive and widely applicable reversed-phase high-performance liquid chromatography with fluorescence detection (RP-HPLC-FLD) method was developed for the simultaneous determination of thiamphenicol (TAP), florfenicol (FF) and florfenicol amine (FFA) in eggs. Samples were extracted with ethyl acetate-acetonitrile-ammonium hydroxide (49:49:2, v/v), defatted with hexane, followed by RP-HPLC-FLD determination. Liquid chromatography was performed on a 5 μm LiChrospher C(18) column using a mobile phase composed of acetonitrile (A), 0.01 M sodium dihydrogen phosphate containing 0.005 M sodium dodecyl sulfate and 0.1% triethylamine, adjusted to pH 4.8 by 85% phosphoric acid (B) (A:B, 35:65 v/v), at a flow rate of 1.0 mL/min. The fluorescence detector of HPLC was set at 224 nm for excitation wavelength and 290 nm for emission wavelength. Limits of detection (LODs) were 1.5 μg/kg for TAP and FF, 0.5 μg/kg for FFA in eggs; limits of quantitation (LOQs) were 5 μg/kg for TAP and FF, 2 μg/kg for FFA in eggs. Linear calibration curves were obtained over concentration ranges of 0.025-5.0 μg/mL for TAP with determination coefficients of 0.9997, 0.01-10.0 μg/mL for FF with determination coefficients of 0.9997 and 0.0025-2.50 μg/mL for FFA with determination coefficients of 0.9998, respectively. The recovery values ranged from 86.4% to 93.8% for TAP, 87.4% to 92.3% for FF and from 89.0% to 95.2% for FFA. The corresponding intra-day and inter-day variation (relative standard deviation, R.S.D.) found to be less than 6.7% and 10.8%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Jing; Pan, Hefang; Liu, Zhengzheng; Ge, Fei
2009-03-20
A novel method has been developed for the determination of alkylphenols in soil by ultra-high-pressure liquid chromatography employing small particle sizes, combined with tandem mass spectrometry. Soil samples were extracted with pressurized liquid extraction (PLE) and then cleaned with solid-phase extraction (SPE). The extracts were separated on C18 column (1.7 microm, 50 mm x 2.1mm) with a gradient elution and a mobile phase consisting of water and acetonitrile, and then detected by an electrospray ionization tandem mass spectrometry in negative ion mode with multiple reaction monitoring (MRM). Compared with traditional liquid chromatography, it took ultra-high-pressure liquid chromatography much less time to analyze alkylphenols. Additionally, the ultra-high-pressure liquid chromatography/tandem mass spectrometry method produces satisfactory reliability, sensitivity, and accuracy. The average recoveries of the three target analytes were 74.0-103.4%, with the RSD<15%. The calibration curves for alkylphenols were linear within the range of 0.01-0.4 microg/ml, with the correlation coefficients greater than 0.99. When 10 g soil sample was used for analysis, the limits of quantification (LOQs) of the three alkylphenols were all 1.0 microg/kg.
Numerical analysis method for linear induction machines.
NASA Technical Reports Server (NTRS)
Elliott, D. G.
1972-01-01
A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.
Rathbun, R.E.; Tai, D.Y.
1988-01-01
The two-film model is often used to describe the volatilization of organic substances from water. This model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the films, commonly called film coefficients, are related through the Henry's law constant and the model equation to the overall mass-transfer coefficient for volatilization. The films are modeled as two resistances in series, resulting in additive resistances. The two-film model and the concept of additivity of resistances were applied to experimental data for acetone and t-butyl alcohol. Overall mass-transfer coefficients for the volatilization of acetone and t-butyl alcohol from water were measured in the laboratory in a stirred constant-temperature bath. Measurements were completed for six water temperatures, each at three water mixing conditions. Wind-speed was constant at about 0.1 meter per second for all experiments. Oxygen absorption coefficients were measured simultaneously with the measurement of the acetone and t-butyl alcohol mass-transfer coefficients. Gas-film coefficients for acetone, t-butyl alcohol, and water were determined by measuring the volatilization fluxes of the pure substances over a range of temperatures. Henry's law constants were estimated from data from the literature. The combination of high resistance in the gas film for solutes with low values of the Henry's law constants has not been studied previously. Calculation of the liquid-film coefficients for acetone and t-butyl alcohol from measured overall mass-transfer and gas-film coefficients, estimated Henry's law constants, and the two-film model equation resulted in physically unrealistic, negative liquid-film coefficients for most of the experiments at the medium and high water mixing conditions. An analysis of the two-film model equation showed that when the percentage resistance in the gas film is large and the gas-film resistance approaches the overall resistance in value, the calculated liquid-film coefficient becomes extremely sensitive to errors in the Henry's law constant. The negative coefficients were attributed to this sensitivity and to errors in the estimated Henry's law constants. Liquid-film coefficients for the absorption of oxygen were correlated with the stirrer Reynolds number and the Schmidt number. Application of this correlation with the experimental conditions and a molecular-diffusion coefficient adjustment resulted in values of the liquid-film coefficients for both acetone and t-butyl alcohol within the range expected for all three mixing conditions. Comparison of Henry's law constants calculated from these film coefficients and the experimental data with the constants calculated from literature data showed that the differences were small relative to the errors reported in the literature as typical for the measurement or estimation of Henry's law constants for hydrophilic compounds such as ketones and alcohols. Temperature dependence of the mass-transfer coefficients was expressed in two forms. The first, based on thermodynamics, assumed the coefficients varied as the exponential of the reciprocal absolute temperature. The second empirical approach assumed the coefficients varied as the exponential of the absolute temperature. Both of these forms predicted the temperature dependence of the experimental mass-transfer coefficients with little error for most of the water temperature range likely to be found in streams and rivers. Liquid-film and gas-film coefficients for acetone and t-butyl alcohol were similar in value. However, depending on water mixing conditions, overall mass-transfer coefficients for acetone were from two to four times larger than the coefficients for t-butyl alcohol. This difference in behavior of the coefficients resulted because the Henry's law constant for acetone was about three times larger than that of
Equilibrium properties and phase diagram of two-dimensional Yukawa systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, P.; Donko, Z.; Kutasi, K.
Properties of two-dimensional strongly coupled Yukawa systems are explored through molecular dynamics simulations. An effective coupling coefficient {gamma}{sup *} for the liquid phase is introduced on the basis of the constancy of the first peak amplitude of the pair-correlation functions. Thermodynamic quantities are calculated from the pair-correlation function. The solid-liquid transition of the system is investigated through the analysis of the bond-angular order parameter. The static structure function satisfies consistency relation, attesting to the reliability of the computational method. The response is shown to be governed by the correlational part of the inverse compressibility. An analysis of the velocity autocorrelationmore » demonstrates that this latter also exhibits a universal behavior.« less
Rozio, M; Fracasso, C; Riva, A; Morazzoni, P; Caccia, S
2005-02-25
A reverse-phase high-performance liquid chromatography method was developed for the determination of hyperforin and its reduced derivatives octahydrohyperforin and tetrahydrohyperforin in rodent plasma. The procedure includes solid-phase extraction from plasma using the Baker 3cc C8 cartridge, resolution on the Symmetry Shield RP8 column (150 mm x 4.6 mm, i.d. 3.5 microm) and UV absorbance detection at 300 nm. The assay was linear over a wide range, with an overall coefficient of variation less than 10% for all compounds. The precision and accuracy were within acceptable limits and the limit of quantitation was sufficient for studies preliminarily assessing the disposition of tetrahydrohyperforin and octahydrohyperforin in the mouse and rat.
Neng, N R; Mestre, A S; Carvalho, A P; Nogueira, J M F
2011-02-15
Bar adsorptive micro-extraction using three powdered activated carbons (ACs) as adsorbent phases followed by liquid desorption and high performance liquid chromatography with diode array detection (BAμE(ACs)-LD/HPLC-DAD), was developed to monitor triazinic herbicides (atrazine, simazine and terbutylazine) in environmental water matrices. ACs used present apparent surface areas around 1000 m(2) g(-1) with an important mesoporous volume and distinct surface chemistry characteristics (pH(PZC) ranging from 6.5 to 10.4). The textural and surface chemistry properties of the ACs adsorbent phases were correlated with the analytical data for a better understanding of the overall enrichment process. Assays performed on 10 mL water samples spiked at the 10.0 μg L(-1) levels under optimized experimental conditions yielded recoveries around 100% for the three herbicides under study. The analytical performance showed good precision (RSD<15.0%), convenient detection limits (≈0.1 μg L(-1)) and suitable linearity (1.0-12.0 μg L(-1)) with good correlation coefficients (r(2)>0.9914). By using the standard addition method, the application of the present method on real water matrices, such as surface water and wastewater, allowed very good performances at the trace level. The proposed methodology proved to be a suitable sorptive extraction alternative for the analysis of priority pollutants with polar characteristics, showing to be easy to implement, reliable, sensitive and requiring a low sample volume to monitor triazinic compounds in water matrices. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Garmroodi Asil, A.; Nakhaei Pour, A.; Mirzaei, Sh.
2018-04-01
In the present article, generalization performances of regularization network (RN) and optimize adaptive neuro-fuzzy inference system (ANFIS) are compared with a conventional software for prediction of heat transfer coefficient (HTC) as a function of superficial gas velocity (5-25 cm/s) and solid fraction (0-40 wt%) at different axial and radial locations. The networks were trained by resorting several sets of experimental data collected from a specific system of air/hydrocarbon liquid phase/silica particle in a slurry bubble column reactor (SBCR). A special convection HTC measurement probe was manufactured and positioned in an axial distance of 40 and 130 cm above the sparger at center and near the wall of SBCR. The simulation results show that both in-house RN and optimized ANFIS due to powerful noise filtering capabilities provide superior performances compared to the conventional software of MATLAB ANFIS and ANN toolbox. For the case of 40 and 130 cm axial distance from center of sparger, at constant superficial gas velocity of 25 cm/s, adding 40 wt% silica particles to liquid phase leads to about 66% and 69% increasing in HTC respectively. The HTC in the column center for all the cases studied are about 9-14% larger than those near the wall region.
NASA Astrophysics Data System (ADS)
Guo, Lei; Jury, William A.; Wagenet, Robert J.; Flury, Markus
2000-04-01
The effect of sorption on degradation of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in a soil amended with various amounts of activated carbon (AC). The relationship between sorption and decay of 2,4-D was analyzed using analytical solutions for equilibrium sorption and to a two-site nonequilibrium adsorption model coupled with two first-order degradation terms for the dissolved and sorbed pesticide, respectively. The sorption parameters in the latter model were determined based on data obtained from batch sorption experiments, while those for degradation were obtained from incubation experiments. The adsorption coefficients, ranging from 0.811 to >315 ml g -1, increased at higher AC, and were negatively related to degradation as measured by the first-order rate constant, implying that degradation is faster from the liquid phase than from the sorbed phase. A nonlinear fit of the decay curves to the nonequilibrium model revealed that degradation rate constants were 0.157 and 0.00243 day -1 for the liquid and sorbed phases, respectively, differing by a factor of 65. Similar results were also obtained using the equilibrium model. A parameter sensitivity analysis of the nonequilibrium model indicates that nonequilibrium sorption will initially favor degradation; however, over the long term, will decrease degradation when desorption kinetics becomes the limiting factor in the degradation process. In the presence of a lag phase that allows appreciable amounts of chemical to diffuse into kinetic sorption sites, nonequilibrium sorption will only impede degradation.
Ma, Shuping; Yuan, Xucan; Zhao, Pengfei; Sun, Hong; Ye, Xiu; Liang, Ning; Zhao, Longshan
2017-08-01
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction before ultra-high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid-phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid-liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0-400 (tebuconazole, diniconazole, and hexaconazole) and 4.0-800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5-1.1 and 1.8-4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-phase flow? Consider helical-coil heat exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraburda, S.S.
1995-07-01
In recent years, chemical process plants are increasingly encountering processes that require heat exchange in three-phase fluids. A typical application, for example, is heating liquids containing solid catalyst particles and non-condensable gases. Heat exchangers designed for three-phase flow generally have tubes with large diameters (typically greater than two inches), because solids can build-up inside the tube and lead to plugging. At the same time, in order to keep heat-transfer coefficients high, the velocity of the process fluid within the tube should also be high. As a result, heat exchangers for three-phase flow may require less than five tubes -- eachmore » having a required linear length that could exceed several hundred feet. Given these limitations, it is obvious that a basic shell-and-tube heat exchanger is not the most practical solution for this purpose. An alternative for three-phase flow is a helical-coil heat exchanger. The helical-coil units offer a number of advantages, including perpendicular, counter-current flow and flexible overall dimensions for the exchanger itself. The paper presents equations for: calculating the tube-side heat-transfer coefficient; calculating the shell-side heat-transfer coefficient; calculating the heat-exchanger size; calculating the tube-side pressure drop; and calculating shell-side pressure-drop.« less
Laboratory Experiments and Modeling of Pooled NAPL Dissolution in Porous Media
NASA Astrophysics Data System (ADS)
Copty, N. K.; Sarikurt, D. A.; Gokdemir, C.
2017-12-01
The dissolution of non-aqueous phase liquids (NAPLs) entrapped in porous media is commonly modeled at the continuum scale as the product of a chemical potential and an interphase mass transfer coefficient, the latter expressed in terms of Sherwood correlations that are related to flow and porous media properties. Because of the lack of precise estimates of the interface area separating the NAPL and aqueous phase, numerous studies have lumped the interfacial area into the interphase mass transfer coefficient. In this paper controlled dissolution experiments from a pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two types of porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution was developed. The well-defined geometry of the NAPL-water interface and the observed effluent concentrations were used to compute best-fit mass transfer coefficients and non-lumped Sherwood correlations. Comparing the concentrations predicted with the pore network model to simple previously used one-dimensional analytic solutions indicates that the analytic model which ignores the transverse dispersion can lead to over-estimation of the mass transfer coefficient. The predicted Sherwood correlations are also compared to previously published data and implications on NAPL remediation strategies are discussed.
Strutwolf, Jörg; Arrigan, Damien W M
2010-10-01
Micropore membranes have been used to form arrays of microinterfaces between immiscible electrolyte solutions (µITIES) as a basis for the sensing of non-redox-active ions. Implementation of stripping voltammetry as a sensing method at these arrays of µITIES was applied recently to detect drugs and biomolecules at low concentrations. The present study uses computational simulation to investigate the optimum conditions for stripping voltammetric sensing at the µITIES array. In this scenario, the diffusion of ions in both the aqueous and the organic phases contributes to the sensing response. The influence of the preconcentration time, the micropore aspect ratio, the location of the microinterface within the pore, the ratio of the diffusion coefficients of the analyte ion in the organic and aqueous phases, and the pore wall angle were investigated. The simulations reveal that the accessibility of the microinterfaces during the preconcentration period should not be hampered by a recessed interface and that diffusional transport in the phase where the analyte ions are preconcentrated should be minimized. This will ensure that the ions are accumulated within the micropores close to the interface and thus be readily available for back transfer during the stripping process. On the basis of the results, an optimal combination of the examined parameters is proposed, which together improve the stripping voltammetric signal and provide an improvement in the detection limit.
Gupta, Shweta; Kesarla, Rajesh; Chotai, Narendra; Omri, Abdelwahab
2017-01-01
Efavirenz is an anti-viral agent of non-nucleoside reverse transcriptase inhibitor category used as a part of highly active retroviral therapy for the treatment of infections of human immune deficiency virus type-1. A simple, sensitive and rapid reversed-phase high performance liquid chromatographic gradient method was developed and validated for the determination of efavirenz in plasma. The method was developed with high performance liquid chromatography using Waters X-Terra Shield, RP18 50 x 4.6 mm, 3.5 μm column and a mobile phase consisting of phosphate buffer pH 3.5 and Acetonitrile. The elute was monitored with the UV-Visible detector at 260 nm with a flow rate of 1.5 mL/min. Tenofovir disoproxil fumarate was used as internal standard. The method was validated for linearity, precision, accuracy, specificity, robustness and data obtained were statistically analyzed. Calibration curve was found to be linear over the concentration range of 1-300 μg/mL. The retention times of efavirenz and tenofovir disoproxil fumarate (internal standard) were 5.941 min and 4.356 min respectively. The regression coefficient value was found to be 0.999. The limit of detection and the limit of quantification obtained were 0.03 and 0.1 μg/mL respectively. The developed HPLC method can be useful for quantitative pharmacokinetic parameters determination of efavirenz in plasma.
Radiation damage of gallium arsenide production cells
NASA Technical Reports Server (NTRS)
Mardesich, N.; Garlick, G. F. J.
1987-01-01
High-efficiency gallium arsenide cells, made by the liquid epitaxy method (LPE), have been irradiated with 1-MeV electrons up to fluences of 10 to the 16th e/sq cm. Measurements have been made of cell spectral response and dark and light-excited current-voltage characteristics and analyzed using computer-based models to determine underlying parameters such as damage coefficients. It is possible to use spectral response to sort out damage effects in the different cell component layers. Damage coefficients are similar to other reported in the literature for the emitter and buffer (base). However, there is also a damage effect in the window layer and possibly at the window emitter interface similar to that found for proton-irradiated liquid-phase epitaxy-grown cells. Depletion layer recombination is found to be less than theoretically expected at high fluence.
Equilibrium polymerization models of re-entrant self-assembly
NASA Astrophysics Data System (ADS)
Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.
2009-04-01
As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.
NASA Astrophysics Data System (ADS)
Zajacz, Zoltán; Candela, Philip A.; Piccoli, Philip M.
2017-06-01
The partition coefficients of Cu, Au and Mo between liquid and vapor were determined at P = 130 MPa and T = 900 °C, and P = 90 MPa and T = 650 °C and redox conditions favoring the dominance of reduced S species in the fluid. The experiments at 900 °C were conducted in rapid-quench Molybdenum-Hafnium Carbide externally-heated pressure vessel assemblies, whereas those at 650 °C were run in René41 pressure vessels. The fluids were sampled at run conditions using the synthetic fluid inclusion technique. The host quartz was fractured in situ during the experiments ensuring the entrapment of equilibrium fluids. A new method was developed to quantify the composition of the vapor inclusions from LA-ICPMS analyses relying on the use of boron as an internal standard, an element that fractionates between vapor and liquid to a very small degree. The bulk starting fluid compositions closely represented those expected to exsolve from felsic silicate melts in upper crustal magma reservoirs (0.64 m NaCl, 0.32 m KCl, ±0.2 m HCl and/or 4 wt% S). The experiments were conducted in Au97Cu3 alloy capsules allowing the simultaneous determination of apparent Au and Cu solubilities in the liquid and the vapor phase. Though the apparent metal solubilities were strongly affected by the addition of HCl and S in both phases, all three elements were found to preferentially partition to a liquid phase at all studied conditions with an increasing degree of preference for the liquid in the following order Au < Cu < Mo. The presence of HCl and S did not have a significant effect on the liquid/vapor partition coefficients of either Au or Cu, whereas the presence of HCl slightly shifted the partitioning of Mo in favor of the vapor. Ore metal partition coefficients normalized to that of Na (Ki-Naliq/ vap =Diliq/vap /DNaliq/vap) fall in the following ranges respectively for each studied metal: KAu-Naliq / vap = 0.20 ± 0.07-0.50 ± 0.19 (1σ); KCu-Naliq / vap = 0.36 ± 0.12-0.76 ± 0.22; KMo-Naliq/ vap = 0.67 ± 0.15-2.5 ± 0.8. Decreasing T from 900 °C to 650 °C slightly shifted KAu-Naliq / vap and KCu-Naliq / vap to the lower end of the reported ranges. A consequence of KAu-Naliq / vap and KCu-Naliq / vap being significantly smaller than 1 is that much of the Au and a significant fraction of Cu may be carried to shallower levels of magmatic-hydrothermal systems by residual vapors despite potentially extensive brine condensation.
NASA Astrophysics Data System (ADS)
Konovalov, V. V.; Lyubimov, D. V.; Lyubimova, T. P.
2017-06-01
This study is concerned with the linear stability of the horizontal interface between thick layers of a viscous heat-conducting liquid and its vapor in a gravitational field subject to phase transition. We consider the case when the hydrostatic base state is consistent with a balanced heat flux at the liquid-vapor interface. The corrections to the growth rate of the most dangerous perturbations and cutoff wave number, characterizing the influence of phase transition on the Rayleigh-Taylor instability, are found to be different from the data in the literature. Most of the previous results were obtained in the framework of a quasiequilibrium approximation, which had been shown to conform to the limit of thin media layers under equality of the interface temperature to a saturation temperature. The main difference from the results obtained with the quasiequilibrium approach is new values of the proportionality coefficients that correlate our corrections with the intensity of weak heating. Moreover, at large values of the heat flux rate, when deviations from the approximate linear law are important, the effect of phase transition is limited and does not exceed the size of the vapor viscosity effect.
NASA Astrophysics Data System (ADS)
Green, Robert O.; Painter, Thomas H.; Roberts, Dar A.; Dozier, Jeff
2006-10-01
From imaging spectrometer data, we simultaneously estimate the abundance of the three phases of water in an environment that includes melting snow, basing the analysis on the spectral shift in the absorption coefficient between water vapor, liquid water, and ice at 940, 980, and 1030 nm respectively. We apply a spectral fitting algorithm that measures the expressed abundance of the three phases of water to a data set acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Mount Rainier, Washington, on 14 June 1996. Precipitable water vapor varies from 1 mm over the summit of Mount Rainier to 10 mm over the lower valleys to the northwest. Equivalent path absorption of liquid water varies from 0 to 13 mm, with the zero values over rocky areas and high-elevation snow and the high values associated with liquid water held in vegetation canopies and in melting snow. Ice abundance varies from 0 to 30 mm equivalent path absorption in the snow- and glacier-covered portions of Mount Rainier. The water and ice abundances are related to the amount of liquid water and the sizes of the ice grains in the near-surface layer. Precision of the estimates, calculated over locally homogeneous areas, indicates an uncertainty of better than 1.5% for all three phases, except for liquid water in vegetation, where an optimally homogeneous site was not found. The analysis supports new strategies for hydrological research and applications as imaging spectrometers become more available.
High Performance Brittle Matrices and Brittle Matrix Composites. Book 1
1989-12-31
Intermetallic Alloys II, p . 27- 38, Stoloft, Koch, Liu, and Izumi (Eds.), MRS, 1986. [6] Cahn, R.W., Siemers, P.A., Geiger, J.E., Bardhan , P ., as-reported in ref...diagram were also useful in determining the interdiffusion coefficients of Ta and Al in the P phase. This information has been used for the studies on...from supercooling of the liquid droplets. This hypothesis was supported by the cross- over of the calculated T0 curves for the a, p and y phases in the
Liu, Qingtao; Hu, Jinming; Whittaker, Michael R; Davis, Thomas P; Boyd, Ben J
2017-12-15
Herein we report on the development of a nitric oxide-sensing lipid-based liquid crystalline (LLC) system specifically designed to release encapsulated drugs on exposure to NO through a stimulated phase change. A series of nitric oxide (NO)-sensing lipids compatible with phytantriol and GMO cubic phases were designed and synthesized, and utilized in enabling nitric oxide-sensing LLC systems. The nitric oxide (NO)-sensing lipids react with nitric oxide, resulting in hydrolysis of these lipids and phase transition of the LLC system. Specifically, the N-3-aminopyridinyl myristylamine (NAPyM)+phytantriol mixture formed a lamellar phase in excess aqueous environment. The NAPyM+phytantriol LLC responded to the nitric oxide gas as a chemical stimulus which triggers a phase transition from lamellar phase to inverse cubic and hexagonal phase. The nitric oxide-triggered phase transition of the LLC accelerated the release of encapsulated model drug from the LLC bulk phase, resulting in a 15-fold increase in the diffusion coefficient compared to the starting lamellar structure. The nitric oxide-sensing LLC system has potential application in the development of smart medicines to treat nitric oxide implicated diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Moskovets, Eugene; Goloborodko, Anton A; Gorshkov, Alexander V; Gorshkov, Mikhail V
2012-07-01
A two-dimensional (2-D) liquid chromatography (LC) separation of complex peptide mixtures that combines a normal phase utilizing hydrophilic interactions and a reversed phase offers reportedly the highest level of 2-D LC orthogonality by providing an even spread of peptides across multiple LC fractions. Matching experimental peptide retention times to those predicted by empirical models describing chromatographic separation in each LC dimension leads to a significant reduction in a database search space. In this work, we calculated the retention times of tryptic peptides separated in the C18 reversed phase at different separation conditions (pH 2 and pH 10) and in TSK gel Amide-80 normal phase. We show that retention times calculated for different 2-D LC separation schemes utilizing these phases start to correlate once the mass range of peptides under analysis becomes progressively narrow. This effect is explained by high degree of correlation between retention coefficients in the considered phases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1986-02-01
determined by refractometry using a Bausch and Lomb Refractometer (Abbe 3-L). Refractive index calibrations for the binary mixtures examined are given in...mixture sample was taken and analyzed by refractometry . b. Results The results of the vapor pressure experiments and the Redlich- Kister coefficients
1987-12-01
have claimed an advantage to deter- mining values of k’ in 100% aqueous mobile phases by extrapolation of linear plots of log k’ vs. percent organic...im parti- cle size chemically bonded octadecylsilane (ODS) packing ( Alltech Econo- sphere). As required, this column was saturated with I-octanol by in
Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien
2014-01-01
In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m · K for 50 vol% diamond/Cu-0.6 at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained.
Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien
2014-01-01
In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m·K for 50 vol% diamond/Cu-0.6 at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained. PMID:24715816
Xuan, Xueyi; Xu, Liyuan; Li, Liangxing; Gao, Chongkai; Li, Ning
2015-07-25
A new biomembrane-mimetic liquid chromatographic method using a C8 stationary phase and phosphatidylcholine-modified (PC-modified) microemulsion mobile phase was used to estimate unionized and ionized drugs lipophilicity expressed as an n-octanol/water partition coefficient (logP and logD). The introduction of PC into sodium dodecyl sulfate (SDS) microemulsion yielded a good correlation between logk and logD (R(2)=0.8). The optimal composition of the PC-modified microemulsion liquid chromatography (PC-modified MELC) mobile phase was 0.2% PC-3.0% SDS-6.0% n-butanol-0.8% ethyl acetate-90.0% water (pH 7.0) for neutral and ionized molecules. The interactions between the analytes and system described by this chromatographic method is more similar to biological membrane than the n-octanol/water partition system. The result in this paper suggests that PC-modified MELC can serve as a possible alternative to the shake-flask method for high-throughput unionized and ionized drugs lipophilicity determination and simulation of biological processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Heterogeneous Mixtures as NLO Christiansen Filters for Optical Limiting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.
Mixtures of two non-absorbing and index-matched materials with contrasting nonlinear optical response have been shown to optically limit above a critical fluence of pulsed nanosecond laser light. Under these conditions, index mismatch is induced between the disparate phases leading to strong Tyndall scattering. The effect has been demonstrated previously by the authors in both solid-liquid mixtures (hexadecane and calcium fluoride), and surfactant-stabilized liquid-liquid emulsions consisting of dichloroethane as the organic phase and a concentrated aqueous phase of sodium thiocyanate (NaSCN). Materials used in these studies exhibit low absorption coefficients over extended wavelength regions allowing for a broadband response of themore » limiter. Recently, limiting has been observed at 532 nm in a polymer composite consisting of barium fluoride and poly-(n-butyl acrylate). A modified open-aperture z-scan method was used to quantify optical limiter performance in this system. Modeling studies provide the basis for designing optical limiters based upon this light scattering mechanism and show the importance of size resonance and constituent optical properties on limiter performance.« less
Numerical study of the effect of the shape of the phase diagram on the eutectic freezing temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ode, M.; Shimono, M.; Sasajima, N.
2013-09-11
To evaluate the reliability of metal-carbon eutectic systems as fixed points for the next generation of high-temperature standards the effect of thermodynamic properties related to the shape of eutectic phase diagram on the freezing temperature is investigated within the context of the numerical multi-phase-field model. The partition coefficient and liquidus slopes of the two solids involved in the eutectic reaction are varied deliberately and independently. The difference between the eutectic temperature and the freezing temperature is determined in dependence of the solid/liquid (s/l) interface shape and concentration. Where appropriate reference is made to the Jackson-Hunt analytical theory. It is shownmore » that there are mainly two typical conditions to decrease the undercooling: 1) a small liquidus slope and 2) the associated difference between the eutectic composition and the liquid composition during solidification.« less
Sorption of 4-ethylphenol and 4-ethylguaiacol by suberin from cork.
Gallardo-Chacón, Joan-Josep; Karbowiak, Thomas
2015-08-15
Cork shows an active role in the sorption of volatile phenols from wine. The sorption properties of 4-ethylphenol and 4-ethylguaiacol phenols in hydro-alcoholic medium placed in contact with suberin extracted from cork were especially investigated. To that purpose, suberin was immersed in model wine solutions containing several concentrations of each phenol and the amount of the compound remaining in the liquid phase was determined by SPME-GC-MS. Sorption isotherms of 4-ethylguaiacol and 4-ethylphenol by suberin followed the Henry's model. The solid/liquid partition coefficients (KSL) between the suberin and the model wine were also determined for several other volatile phenols. Suberin displayed rather high sorption capacity, which was positively correlated to the hydrophobicity of the volatile. Finally, the capacity of suberin to decrease the concentration of 4-ethylphenol and 4-ethylguaiacol was also tested in real wines affected by a Brettanomyces character. It also lead to a significant reduction of their concentration in wine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of mercury in the liquid waste processing facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.
2015-08-13
This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.
Riisager, Anders; Jørgensen, Betina; Wasserscheid, Peter; Fehrmann, Rasmus
2006-03-07
A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)2I2]-[BMIM]I-SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation.
Thermodynamic properties derived from the free volume model of liquids
NASA Technical Reports Server (NTRS)
Miller, R. I.
1974-01-01
An equation of state and expressions for the isothermal compressibility, thermal expansion coefficient, heat capacity, and entropy of liquids have been derived from the free volume model partition function suggested by Turnbull. The simple definition of the free volume is used, and it is assumed that the specific volume is directly related to the cube of the intermolecular separation by a proportionality factor which is found to be a function of temperature and pressure as well as specific volume. When values of the proportionality factor are calculated from experimental data for real liquids, it is found to be approximately constant over ranges of temperature and pressure which correspond to the dense liquid phase. This result provides a single-parameter method for calculating dense liquid thermodynamic properties and is consistent with the fact that the free volume model is designed to describe liquids near the solidification point.
Theoretical Studies of Nonuniform Orientational Order in Liquid Crystals and Active Particles
NASA Astrophysics Data System (ADS)
Duzgun, Ayhan
I investigate three systems that exhibit complex patterns in orientational order, which are controlled by geometry interacting with the dynamics of phase transitions, metastability, and activity. 1. Liquid Crystal Elastomers: Liquid-crystal elastomers are remarkable materials that combine the elastic properties of cross-linked polymer networks with the anisotropy of liquid crystals. Any distortion of the polymer network affects the nematic order of the liquid crystal, and, likewise, any change in the magnitude or direction of the nematic order influences the shape of the elastomer. When elastomers are prepared without any alignment, they develop disordered polydomain structures as they are cooled into the nematic phase. To model these polydomain structures, I develop a dynamic theory for the isotropic-nematic transition in elastomers. 2. Active Brownian Particles: Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. I perform Langevin dynamics simulations and analytic calculations to explore how systems cross over from equilibrium to active behavior as the activity is increased. Based on these results, I calculate how the pressure depends on wall curvature, and hence make analytic predictions for the motion of curved tracers and other effects of confinement in active matter systems. 3. Skyrmions in Liquid Crystals: Skyrmions are localized topological defects in the orientation of an order parameter field, without a singularity in the magnitude of the field. For many years, such defects have been studied in the context of chiral liquid crystals--for example, as bubbles in a confined cholesteric phase or as double-twist tubes in a blue phase. More recently, skyrmions have been investigated extensively in the context of chiral magnets. In this project, I compare skyrmions in chiral liquid crystals with the analogous magnetic defects. Through simulations based on the nematic order tensor, I model both isolated skyrmions and periodic defect lattices.
Liquid-liquid equilibria for 2,3-butanediol + water + organic solvents at 303. 15 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S.; Pandya, G.; Chakrabarti, T.
1994-10-01
2, 3-Butanediol, an important industrial chemical, is of interest because of its application as a solvent and liquid fuel additive. Liquid-liquid equilibria at 303.15 [+-] 0.5 K were measured for water + 2, 3-butanediol + butan-1-ol, + 3-methyl-1-butanol, + 4-methyl-2-pentanone, + tributyl phosphate, and + butyl acetate. Complete phase diagrams were obtained by evaluating the solubility and tie-line results for each ternary mixture. The consistency of the tie-line results was ascertained using an Othmer-Tobias plot. The distribution coefficient and separation factors were evaluated over the immiscibility region. Among the solvents studied, butan-1-ol is the most effective one though tributyl phosphatemore » and 3-methyl-1-butanol may be preferred because of their low solubility and high selectivity.« less
Hwang, I Y; Reardon, K F; Tessari, J D; Yang, R S
1996-04-01
A gas-liquid system was developed for enzyme kinetic study with volatile organic chemicals (VOCs) by modification of the gas uptake method for the in vivo physiologically based pharmacokinetic experiment. This gas-liquid system, designed in our laboratory, is composed of: 1) a diffusion chamber for adjusting initial vapor concentration by mixing ambient air and the VOCs; 2) a condenser for maintaining the liquid level in the incubation chamber; 3) a stainless-steel metal bellows pump for recirculating vapor in this system; 4) a gas chromatograph equipped with an autosampler and a flame ionization detector; and 5) a computer for controlling automation and data processing. Trichloroethylene (TCE) was used as a model chemical, and enzyme kinetics were studied by measuring the depletion of TCE in the gas phase of the system. TCE-at initial concentrations of 56, 620, and 1240 ppm-was incubated with rat liver microsomes and a NADPH regenerating system in a 100-ml round-bottom flask. Based on parallel enzyme assays using p-nitrophenol as a substrate, cytochrome P450IIE1, activity remained stable up to 3 hr under the incubation conditions (37 degrees C and pH 7.4) whereas addition of glutathione into the incubation mixture did not affect TCE metabolism. Kinetic constants were analyzed using a two-compartment pharmacokinetic model and the computer software SimuSolv. Statistical optimization using the maximum-likelihood method produced apparent in vitro Vmax and KM values of 0.55 nmol/mg protein/min and 0.9 microM, respectively. In addition, this newly developed methodology has a number of advantages over those reported in the literature, including the potential utility of determining tissue partition coefficients of VOCs for physiologically based pharmacokinetic modeling. We conclude that this gas-liquid system is suitable for determination of kinetic constants near realistic environmental concentrations of VOCs including TCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshii, Taiki; Niibori, Yuichi; Mimura, Hitoshi
The apparent dissolution rates of gas phase in the co-presence of solid phase were examined by in-room experiments in this study. The apparent dissolution rate of gas phase q (mol/m{sup 3}.s) was generally defined by q=aK{sub L}(γP{sub g}-c), where a (1/m) is specific surface area of the interface between gas and liquid phases, K{sub L} (m/s) is overall mass transfer coefficient, γ (mol/(Pa.m{sup 3})) is reciprocal number of Henry constant, P{sub g} (Pa) is partial pressure of gas phase, and c (mol/m{sup 3}) is the concentration of gas component in liquid phase. As a model gas, CO{sub 2} gas wasmore » used. For evaluating the values of K{sub L}, this study monitored pH or the migration rate of the interface between water/gas phases, using some experiments such as the packed beds and the micro channel consisting of granite chip and rubber sheet including a slit. In the results, the values of K{sub L} were distributed in the range from 5.0x10{sup -6} m/s to 5.0x10{sup -7} m/s. These values were small, in comparison with that (7.8x10{sup -4} m/s) obtained from the bubbling test where gas phase was continually injected into deionized water without solid phase. This means that the solid phase limits the local mixing of water phase near gas-liquid interfaces. (authors)« less
Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.
Pino, Verónica; Afonso, Ana M
2012-02-10
Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.
Pfeifer, O; Lohmann, U; Ballschmiter, K
2001-11-01
Halogenated methyl-phenyl ethers (methoxybenzenes, anisoles) are ubiquitous organics in the environment although they are not produced in industrial quantities. Modelling the fate of organic pollutants such as halogenated anisoles requires a knowledge of the fundamental physico-chemical properties of these compounds. The isomer-specific separation and detection of 60 of the 134 possible congeners allowing an environmental fingerprinting are reported in this study. The vapor pressure p0(L) of more than 60 and further physico-chemical properties of 26 available congeners are given. Vapor pressures p0(L), water solubilities S(L)W, and n-octanol/water partition coefficients Kow were determined by capillary HR-GC (High Resolution Gas Chromatography) on a non-polar phase and by RP-HPLC (Reversed Phase High Performance Liquid Chromatography) on a C18 phase with chlorobenzenes as reference standards. From these experimental data the Henry's law constants H, and the gas/water Kgw and gas/n-octanol Kgo partition coefficients were calculated. We found that vapor pressures, water solubilities, and n-octanol/water partition coefficients of the halogenated anisoles are close to those of the chlorobenzenes. A similar environmental fate of both groups can, therefore, be predicted.
Drop mass transfer in a microfluidic chip compared to a centrifugal contactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemer, Martin B.; Roberts, Christine C.; Hughes, Lindsey G.
2014-06-13
A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively inmore » both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.« less
Miyata, Tomohiro; Uesugi, Fumihiko; Mizoguchi, Teruyasu
2017-12-01
Investigation of the local dynamic behavior of atoms and molecules in liquids is crucial for revealing the origin of macroscopic liquid properties. Therefore, direct imaging of single atoms to understand their motions in liquids is desirable. Ionic liquids have been studied for various applications, in which they are used as electrolytes or solvents. However, atomic-scale diffusion and relaxation processes in ionic liquids have never been observed experimentally. We directly observe the motion of individual monatomic ions in an ionic liquid using scanning transmission electron microscopy (STEM) and reveal that the ions diffuse by a cage-jump mechanism. Moreover, we estimate the diffusion coefficient and activation energy for the diffusive jumps from the STEM images, which connect the atomic-scale dynamics to macroscopic liquid properties. Our method is the only available means to observe the motion, reactions, and energy barriers of atoms/molecules in liquids.
Peng, Xiaojun; Pang, Jinshan; Deng, Aihua
2011-12-01
A novel method for the simultaneous determination of seven phenoxyacid herbicides such as dicamba, fluroxypyr, 4-chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB) and 4-(2-methyl-4-chlorophenoxy) butyric acid (MCPB) in environmental water by three phase hollow fiber liquid phase microextraction (HF-LPME) coupled with high performance liquid chromatography (HPLC) was developed. In order to optimize the experimental conditions, the orthogonal test has been used. The effects of extraction solvent, pH of the donor phase and acceptor phase, extraction time, stirring speed and salt concentration on the detection were investigated. The optimal experimental conditions were as follows: octanol as organic solvent, pH 3 of donor phase, pH 12 of acceptor phase, extraction time of 30 min, stirring speed of 400 r/min. The results showed that the proposed method provided a wide linear range for 7 phenoxyacid herbicides with correlation coefficients of 0.995 3 - 0.998 8. The detection limits ranged from 0.2 to 1.0 microg/L. The enrichment factors were in the range of 76.7 - 121. The recoveries were in the range of 68% - 104% and the relative standard deviations (RSDs) were less than 8.1% for the environmental water samples. The method has the advantages of sensitivity, simplicity, fastness and the use of very small amounts of organic solvent. The method can meet the requirements of the determination of trace phenoxyacid herbicides in the environmental water samples, and the study provided a useful method for the analysis of trace substances in water samples.
Orosz, Kristina S; Jones, Ian W; Keogh, John P; Smith, Christopher M; Griffin, Kaitlyn R; Xu, Juhua; Comi, Troy J; Hall, H K; Saavedra, S Scott
2016-02-16
Polymerization of substrate-supported bilayers composed of dienoylphosphatidylcholine (PC) lipids is known to greatly enhance their chemical and mechanical stability; however, the effects of polymerization on membrane fluidity have not been investigated. Here planar supported lipid bilayers (PSLBs) composed of dienoyl PCs on glass substrates were examined to assess the degree to which UV-initiated polymerization affects lateral lipid mobility. Fluorescence recovery after photobleaching (FRAP) was used to measure the diffusion coefficients (D) and mobile fractions of rhodamine-DOPE in unpolymerized and polymerized PSLBs composed of bis-sorbyl phosphatidylcholine (bis-SorbPC), mono-sorbyl-phosphatidylcholine (mono-SorbPC), bis-dienoyl-phosphatidylcholine (bis-DenPC), and mono-dienoyl phosphatidylcholine (mono-DenPC). Polymerization was performed in both the Lα and Lβ phase for each lipid. In all cases, polymerization reduced membrane fluidity; however, measurable lateral diffusion was retained which is attributed to a low degree of polymerization. The D values for sorbyl lipids were less than those of the denoyl lipids; this may be a consequence of the distal location of polymerizable group in the sorbyl lipids which may facilitate interleaflet bonding. The D values measured after polymerization were 0.1-0.8 of those measured before polymerization, a range that corresponds to fluidity intermediate between that of a Lα phase and a Lβ phase. This D range is comparable to ratios of D values reported for liquid-disordered (Ld) and liquid-ordered (Lo) lipid phases and indicates that the effect of UV polymerization on lateral diffusion in a dienoyl PSLB is similar to the transition from a Ld phase to a Lo phase. The partial retention of fluidity in UV-polymerized PSLBs, their enhanced stability, and the activity of incorporated transmembrane proteins and peptides is discussed.
Orosz, Kristina S.; Jones, Ian W.; Keogh, John P.; Smith, Christopher M.; Griffin, Kaitlyn R.; Xu, Juhua; Comi, Troy J.; Hall, H. K.
2016-01-01
Polymerization of substrate-supported bilayers composed of dienoyl phosphatidylcholine (PC) lipids is known to greatly enhance their chemical and mechanical stability, however the effects of polymerization on membrane fluidity have not been investigated. Here planar supported lipid bilayers (PSLBs) composed of dienoyl PCs on glass substrates were examined to assess the degree to which UV-initiated polymerization affects lateral lipid mobility. Fluorescence recovery after photobleaching (FRAP) was used to measure the diffusion coefficients (D) and mobile fractions of rhodamine-DOPE in unpolymerized and polymerized PSLBs composed of bis-sorbyl phosphatidylcholine (bis-SorbPC), mono-sorbyl phosphatidylcholine (mono-SorbPC), bis-dienoyl phosphatidylcholine (bis-DenPC) and mono-dienoyl phosphatidylcholine (mono-DenPC). Polymerization was performed in both the Lα and Lβ phase for each lipid. In all cases, polymerization reduced membrane fluidity, however measurable lateral diffusion was retained which is attributed to a low degree of polymerization. The D values for sorbyl lipids were less than those of the denoyl lipids; this may be a consequence of the distal location of polymerizable group in the sorbyl lipids which may facilitate inter-leaflet bonding. The D values measured after polymerization were 0.1 to 0.8 of those measured before polymerization, a range that corresponds to fluidity intermediate between that of a Lα phase and a Lβ phase. This D range is comparable to ratios of D values reported for liquid-disordered (Ld) and liquid-ordered (Lo) lipid phases, and indicates that the effect of UV polymerization on lateral diffusion in a dienoyl PSLB is similar to the transition from a Ld phase to a Lo phase. The partial retention of fluidity in UV polymerized PSLBs, their enhanced stability, and the activity of incorporated transmembrane proteins and peptides is discussed. PMID:26794208
Liu, Hongjiao; Lei, Ming; Liang, Xiao; Jiang, Zhen; Guo, Xingjie
2014-02-01
In this paper, a three-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with high-performance liquid chromatography (HPLC) was developed for the determination of hypoxanthine (HX), xanthine (Xan) and adenine (A) and then for the first time successfully applied to the analysis of HX, Xan and A in Alysicarpus vaginalis (L.) DC. medicinal materials. Different factors affecting the HF-LPME procedure were investigated and optimized. Under optimal extraction conditions (1-octanol as organic solvent, pH of the donor and acceptor phase 10.0 and 3.5, respectively, extraction time 40 min, stirring rate 800 rpm and salt addition 10%, w/v), HX, Xan and A could be determined within the test ranges with a good correlation coefficient (r(2) > 0.9992). The limit of detection for HX, Xan and A was 153, 173 and 97 ng/mL, respectively, and the intra- and inter-day relative standard deviations were no more than 9.8%. The content of HX, Xan and A in Alysicarpus vaginalis (L.) DC. medicinal materials was 120.40, 18.37 and 62.75 µg/g, respectively. This procedure afforded a convenient, sensitive, accurate and inexpensive method with a high extraction efficiency for determination of HX, Xan and A. Copyright © 2013 John Wiley & Sons, Ltd.
Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases.
Poole, Colin F; Lenca, Nicole
2014-08-29
Ionic liquids have moved from novel to practical stationary phases for gas chromatography with an increasing portfolio of applications. Ionic liquids complement conventional stationary phases because of a combination of thermophysical and solvation properties that only exist for ionic solvents. Their high thermal stability and low vapor pressure makes them suitable as polar stationary phases for separations requiring high temperatures. Ionic liquids are good solvents and can be used to expand the chemical space for separations. They are the only stationary phases with significant hydrogen-bond acidity in common use; they extend the hydrogen-bond basicity of conventional stationary phases; they are as dipolar/polarizable as the most polar conventional stationary phases; and some ionic liquids are significantly less cohesive than conventional polar stationary phases. Problems in column coating techniques and related low column performance, column activity, and stationary phase reactivity require further exploration as the reasons for these features are poorly understood at present. Copyright © 2014 Elsevier B.V. All rights reserved.
Expanding the calculation of activation volumes: Self-diffusion in liquid water
NASA Astrophysics Data System (ADS)
Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.
2018-04-01
A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.
Pecher, Daniel; Dokupilová, Svetlana; Zelinková, Zuzana; Peppelenbosch, Maikel; Mikušová, Veronika; Mikuš, Peter
2017-08-05
Thiopurine S-methyltransferase (TPMT) plays an important role in the metabolism of thiopurines used in the therapy of inflammatory bowel diseases (IBD). In this work a new progressive method for the determination of TPMT activity in red blood cells lysates was developed. Analysis was carried out by means of hydrophilic interaction liquid chromatography (HILIC) hyphenated with mass spectrometry (MS). In comparison with reversed-phase high-performance liquid chromatography (RP-HPLC), that has been typically applied in determination of TPMT activity, the HILIC significantly improved the analytical signal provided by MS, shortened analysis time, and improved chromatographic resolution. The HILIC-HPLC-MS method was optimized and validated, providing favorable parameters of detection and quantitation limits (5.5 and 16.5pmol/mL, respectively), linearity (coefficient of determination 0.9999 in the range of 0.01-1.0nmol/mL), recovery and precision (93.25-100.37% with RSD 1.06-1.32% in the whole concentration range of QC samples). Moreover, in contrast to the conventional RP-HPLC-UV approach, the complex phenotype TPMT profiles can be reliably and without interferences monitored using the HILIC-HPLC-MS method. Such advanced monitoring can provide valuable detail information on the thiopurines (e.g. evaluating ratio of methylated and non-methylated 6-mercaptopurine) and, by that, TPMT action in biological systems before and during the therapy of IBD. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermal effects in two-phase flow through face seals. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Basu, Prithwish
1988-01-01
When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description.
Effect of pressure on viscosity of liquid Fe-alloys up to 16 GPa
NASA Astrophysics Data System (ADS)
Terasaki, H.; Ohtani, E.; Suzuki, A.; Nishida, K.; Sakamaki, T.; Shindo, S.; Funakoshi, K.
2005-12-01
Viscosity of liquid Fe-alloy is closely related to a convection behavior of the Earth's liquid outer core and also time scale of planetary core formation. In previous studies, viscosity of liquid Fe-S has been measured up to 7 GPa using X-ray radiography falling sphere method [Terasaki et al. 2001]. However, some technical problems, such as chemical reaction between the metal marker sphere and the Fe-alloy sample and insufficient image recording time for less viscous material, have been suggested. In this study, we have measured the viscosity of Fe-S and Fe-C liquids without those problems by using novel techniques combined with in situ X-ray radiography falling sphere method and extended the pressure range to 16 GPa. Falling sphere viscometry was carried out under high pressure and temperature using high speed CCD camera with 1500 ton Kawai-type multi-anvil device at BL04B1, SPring-8 in Japan. Starting compositions of Fe-alloy were Fe78S22 and Fe86C14 which correspond to near eutectic compositions at the experimental pressures. Viscosity marker sphere, which was made of Re or Pt, was coated by alumina in order to prevent the reaction between the sphere and the Fe-alloy sample. Falling sphere images were obtained with recording rate of 50 - 125 frame/second. Viscosity of liquid Fe-S was measured up to 16.1 GPa and 1763 K. Measured viscosity coefficients were in the range of 8.8 - 9.2 mPa-s which indicates that the activation volume of viscous flow is approximately a half of the previous estimations (1.5 cm3/mol). Viscosity of liquid Fe-C was measured up to 5 GPa and 1843 K. Viscosity coefficients are 4.7 - 4.9 mPa-s. Activation volume of Fe-C liquid is estimated to be 0.8 cm3/mol. This pressure dependence is consistent with the result of Lucas (1964) measured at ambient pressure. Consequently, viscosity of Fe-alloy liquids are likely to stay small in the Earth's interior and there is no large difference in viscosity coefficient and activation volume between Fe-S and Fe-C eutectic liquids in the range of measurements.
Liquid-Phase Adsorption Fundamentals.
ERIC Educational Resources Information Center
Cooney, David O.
1987-01-01
Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)
Novel Diffusivity Measurement Technique
NASA Technical Reports Server (NTRS)
Rashidnia, Nasser
2001-01-01
A common-path interferometer (CPI) system was developed to measure the diffusivity of liquid pairs. The CPI is an optical technique that can be used to measure changes in the gradient of the refraction index of transparent materials. This system uses a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. Hence, the molecular diffusion coefficient of liquids can be determined using the physical relations between changes in the optical path length and the liquid phase properties. The data obtained with this interferometer were compared with similar results from other techniques and demonstrated that the instrument is superior in measuring the diffusivity of miscible liquids while keeping the system very compact and robust. CPI can also be used for studies in interface dynamics and other diffusion-dominated-process applications.
Qu, Yanfei; Ma, Yongwen; Wan, Jinquan; Wang, Yan
2018-06-01
The silicon oil-air partition coefficients (K SiO/A ) of hydrophobic compounds are vital parameters for applying silicone oil as non-aqueous-phase liquid in partitioning bioreactors. Due to the limited number of K SiO/A values determined by experiment for hydrophobic compounds, there is an urgent need to model the K SiO/A values for unknown chemicals. In the present study, we developed a universal quantitative structure-activity relationship (QSAR) model using a sequential approach with macro-constitutional and micromolecular descriptors for silicone oil-air partition coefficients (K SiO/A ) of hydrophobic compounds with large structural variance. The geometry optimization and vibrational frequencies of each chemical were calculated using the hybrid density functional theory at the B3LYP/6-311G** level. Several quantum chemical parameters that reflect various intermolecular interactions as well as hydrophobicity were selected to develop QSAR model. The result indicates that a regression model derived from logK SiO/A , the number of non-hydrogen atoms (#nonHatoms) and energy gap of E LUMO and E HOMO (E LUMO -E HOMO ) could explain the partitioning mechanism of hydrophobic compounds between silicone oil and air. The correlation coefficient R 2 of the model is 0.922, and the internal and external validation coefficient, Q 2 LOO and Q 2 ext , are 0.91 and 0.89 respectively, implying that the model has satisfactory goodness-of-fit, robustness, and predictive ability and thus provides a robust predictive tool to estimate the logK SiO/A values for chemicals in application domain. The applicability domain of the model was visualized by the Williams plot.
Zeeb, Mohsen; Farahani, Hadi; Papan, Mohammad Kazem
2016-06-01
An efficient analytical method called ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography was developed for the determination of atenolol in human plasma. A hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by the addition of a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) to a sample solution containing an ion-pairing agent during microextraction. The analyte was extracted into the ionic liquid phase while the microextraction solvent was dispersed throughout the sample by utilizing ultrasound. The sample was then centrifuged, and the extracting phase retracted into the microsyringe and injected to liquid chromatography. After optimization, the calibration curve showed linearity in the range of 2-750 ng/mL with the regression coefficient corresponding to 0.998. The limits of detection (S/N = 3) and quantification (S/N = 10) were 0.5 and 2 ng/mL, respectively. A reasonable relative recovery range of 90-96.7% and satisfactory intra-assay (4.8-5.1%, n = 6) and interassay (5.0-5.6%, n = 9) precision along with a substantial sample clean-up demonstrated good performance of the procedure. It was applied for the determination of atenolol in human plasma after oral administration and some pharmacokinetic data were obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Varelis, P; Jeskelis, R
2008-10-01
For the determination of melamine and cyanuric acid the labelled internal standards [(13)C(3)]-melamine and [(13)C(3)]-cyanuric acid were synthesized using the common substrate [(13)C(3)]-cyanuric chloride by reaction with ammonia and acidified water, respectively. Standards with excellent isotopic and chemical purities were obtained in acceptable yields. These compounds were used to develop an isotope dilution liquid chromatography/mass spectrometry (LC/MS) method to determine melamine and cyanuric acid in catfish, pork, chicken, and pet food. The method involved extraction into aqueous methanol, liquid-liquid extraction and ion exchange solid phase clean-up, with normal phase high-performance liquid chromatography (HPLC) in the so-called hydrophilic interaction mode. The method had a limit of detection (LOD) of 10 microg kg(-1) for both melamine and cyanuric acid in the four foods with a percentage coefficient of variation (CV) of less than 10%. The recovery of the method at this level was in the range of 87-110% and 96-110% for melamine and cyanuric acid, respectively.
Optical properties of spin-on deposited low temperature titanium oxide thin films
NASA Astrophysics Data System (ADS)
Rantala, J. T.; Kärkkäinen, A. H. O.
2003-06-01
This letter presents a method to fabricate high quality, high refractive index titanium oxide thin films by applying liquid phase spin-on deposition combined with low temperature annealing. The synthesis of the liquid form titanium oxide material is carried out using a sol-gel synthesis technique. The material can be annealed at low temperature (150 C°) to achieve relatively high refractive index of 1.94 at 632.8 nm wavelength, whereas annealing at 350 C° results in index of 2.03 at 632.8 nm. Film depositions are demonstrated on silicon substrates with 0.5% uniformity in thickness. Refractive indices and extinction coefficients are characterized over a broad wavelength range to demonstrate the optical performance of this novel aqueous phase spin-on deposited hybrid titanium oxide material.
The SPARC vapor pressure and activity coefficient models were coupled to estimate Henry’s Law Constant (HLC) in water and in hexadecane for a wide range of non-polar and polar solute organic compounds without modification to/or additional parameterization of the vapor pressure or...
NASA Astrophysics Data System (ADS)
Outcalt, Stephanie L.; McLinden, Mark O.
1996-03-01
A modified Benedict-Webb-Rubin (MBWR) equation of state has been developed for R152a (1,1-difluoroethane). The correlation is based on a selection of available experimental thermodynamic property data. Single-phase pressure-volume-temperature (PVT), heat capacity, and sound speed data, as well as second virial coefficient, vapor pressure, and saturated liquid and saturated vapor density data, were used with multi-property linear least-squares fitting to determine the 32 adjustable coefficients of the MBWR equation. Ancillary equations representing the vapor pressure, saturated liquid and saturated vapor densities, and the ideal gas heat capacity were determined. Coefficients for the equation of state and the ancillary equations are given. Experimental data used in this work covered temperatures from 162 K to 453 K and pressures to 35 MPa. The MBWR equation established in this work may be used to predict thermodynamic properties of R152a from the triple-point temperature of 154.56 K to 500 K and for pressures up to 60 MPa except in the immediate vicinity of the critical point.
Pelinger, Judith A.; Eisenreich, Steven J.; Capel, Paul D.
1993-01-01
The sorption of hydrophobic organic chemicals (HOCs) to ??-Al2O3 was investigated with a headspace analysis method. The semiautomated headspace analyzer gave rapid, precise, and accurate results for a homologous series alkylbenzenes even at low percentages of solute mass sorbed (3-50%). Sorption experiments carried out with benzene alone indicated weak interactions with well-characterized aluminum oxide, and a solids concentration effect was observed. When the sorption coefficients for benzene alone obtained by headspace analysis were extrapolated up to the solids concentrations typically used in batch sorption experiments, the measured sorption coefficients agreed with reported sorption coefficients for HOCs and sediments of low fractional organic carbon content. Sorbed concentrations increased exponentially with aqueous concentration in isotherms with mixtures of alkylbenzenes, indicating solute-solute interactions at the mineral surface. Sorption was, however, greater than predicted for partitioning of a solute between its pure liquid phase and water, indicating additional influences of the surface and/or the structured liquid near the mineral surface. ?? 1993 American Chemical Society.
NASA Astrophysics Data System (ADS)
Shekaari, Hemayat; Mousavi, Sedighehnaz S.; Mansoori, Yagoub
2009-04-01
Osmotic coefficients, {φ}, electrical conductance data, Λ, and refractive indices, n D, of aqueous solutions of the ionic liquid, 1-pentyl-3-methylimidazolium chloride [PnMIm]Cl have been measured at T = (298.15, 308.15, 318.15, and 328.15) K. Measurements of osmotic coefficients were carried out by the vapor-pressure osmometry method (VPO). Osmotic coefficient values show that ion-solvent interactions are stronger at lower temperature. The osmotic coefficients were correlated to the Pitzer-ion interaction and modified NRTL (MNRTL) models. From these data, mean molal activity coefficients, γ±, and excess Gibbs free energies, G E, have been calculated. Electrical conductance data have been applied for determination of association constants, K a, and limiting molar conductances, Λ 0, using the low concentration chemical model (lcCM). Calculated ion-association constant, K a, values show that ion-association effects increase at high temperatures which is in agreement with osmotic coefficient results. Experimental results of refractive indices for the binary system are reported, and have been fitted by a polynomial expansion.
Patsahan, O
2014-06-01
We study the effects of an interaction range on the gas-liquid phase diagram and the crossover behavior of a simple model of ionic fluids: an equimolar binary mixture of equisized hard spheres interacting through screened Coulomb potentials which are repulsive between particles of the same species and attractive between particles of different species. Using the collective variables theory, we find explicit expressions for the relevant coefficients of the effective φ{4} Ginzburg-Landau Hamiltonian in a one-loop approximation. Within the framework of this approximation, we calculate the critical parameters and gas-liquid phase diagrams for varying inverse screening length z. Both the critical temperature scaled by the Yukawa potential contact value and the critical density rapidly decrease with an increase of the interaction range (a decrease of z) and then for z<0.05 they slowly approach the values found for a restricted primitive model (RPM). We find that gas-liquid coexistence region reduces with an increase of z and completely vanishes at z≃2.78. Our results clearly show that an increase in the interaction range leads to a decrease of the crossover temperature. For z≃0.01, the crossover temperature is the same as for the RPM.
Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils
NASA Astrophysics Data System (ADS)
Izza, H.; Ben Abdessalam, S.; Korichi, M.
2018-03-01
Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.
Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop
2017-09-01
A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characteristics of fundamental acoustic wave modes in thin piezoelectric plates.
Joshi, S G; Zaitsev, B D; Kuznetsova, I E; Teplykh, A A; Pasachhe, A
2006-12-22
The characteristics of the three lowest order plate waves (A(0), S(0), and SH(0)) propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength lambda are theoretically analyzed. It is found that these waves can provide much higher values of electromechanical coupling coefficient K(2) and lower values of temperature coefficient of delay (TCD) than is possible with surface acoustic waves (SAWs). For example, in 30Y-X lithium niobate, the SH(0) mode has K(2)=0.46 and TCD=55 ppm/degrees C. The corresponding values for SAW in the widely used, strong coupling material of 128Y-X lithium niobate are K(2)=0.053 and TCD=75 ppm/degrees C. Another important advantage of plate waves is that, unlike the case of SAWs, they can operate satisfactorily in contact with a liquid medium, thus making possible their use in liquid phase sensors.
JAGUAR Procedures for Detonation Behavior of Silicon Containing Explosives
NASA Astrophysics Data System (ADS)
Stiel, Leonard; Baker, Ernest; Capellos, Christos; Poulos, William; Pincay, Jack
2007-06-01
Improved relationships for the thermodynamic properties of solid and liquid silicon and silicon oxide for use with JAGUAR thermo-chemical equation of state routines were developed in this study. Analyses of experimental melting temperature curves for silicon and silicon oxide indicated complex phase behavior and that improved coefficients were required for solid and liquid thermodynamic properties. Advanced optimization routines were utilized in conjunction with the experimental melting point data to establish volumetric coefficients for these substances. The new property libraries resulted in agreement with available experimental values, including Hugoniot data at elevated pressures. Detonation properties were calculated with JAGUAR using the revised property libraries for silicon containing explosives. Constants of the JWLB equation of state were established for varying extent of silicon reaction. Supporting thermal heat transfer analyses were conducted for varying silicon particle sizes to establish characteristic times for melting and silicon reaction.
2006-11-28
nonuniform permeability fields using the University of Texas Chemical Flooding Simulator ( UTCHEM 9.0) [Center for Petroleum and Geosystems Engineering...Engineering (2000), UTCHEM , Ver- sion 9.0 technical documentation, Univ. of Tex. at Austin, Austin. Chambers, J. E., M. H. Loke, R. D. Ogilvy, and P. I
Kinetic modelling of a diesel-polluted clayey soil bioremediation process.
Fernández, Engracia Lacasa; Merlo, Elena Moliterni; Mayor, Lourdes Rodríguez; Camacho, José Villaseñor
2016-07-01
A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Svanidze, E.; Amon, A.; Prots, Yu.; Leithe-Jasper, A.; Grin, Yu.
2018-03-01
In the antiferromagnetic heavy-fermion compound U2Zn17 , the Sommerfeld coefficient γ can be enhanced if all Zn atoms are replaced by a combination of Cu and Al or Cu and Ga. In the former ternary phase, glassy behavior was observed, while for the latter, conflicting ground-state reports suggest material quality issues. In this work, we investigate the U2Cu17 -xGax substitutional series for 4.5 ≤x ≤9.5 . In the homogeneity range of the phase with the Th2Zn17 -type of crystal structure, all samples exhibit glassy behavior with 0.6 K ≤Tf≤1.8 K . The value of the electronic specific heat coefficient γ in this system exceeds 900 mJ/molUK2. Such a drastic effective-mass enhancement can possibly be attributed to the effects of structural disorder, since the role of electron concentration and lattice compression is likely minimal. Crystallographic disorder is also responsible for the emergence of non-Fermi-liquid behavior in these spin-glass materials, as evidenced by logarithmic divergence of magnetic susceptibility, specific heat, and electrical resistivity.
Galvanic Liquid Applied Coating Development for Protection of Steel in Concrete
NASA Technical Reports Server (NTRS)
Curran, Joseph John; Curran, Jerry; MacDowell, Louis
2004-01-01
Corrosion of reinforcing steel in concrete is a major problem affecting NASA facilities at Kennedy Space Center (KSC), other government agencies, and the general public. Problems include damage to KSC launch support structures, transportation and marine infrastructures, as well as building structures. A galvanic liquid applied coating was developed at KSC in order to address this problem. The coating is a non-epoxy metal rich ethyl silicate liquid coating. The coating is applied as a liquid from initial stage to final stage. Preliminary data shows that this coating system exceeds the NACE 100 millivolt shift criterion. The remainder of the paper details the development of the coating system through the following phases: Phase I: Development of multiple formulations of the coating to achieve easy application characteristics, predictable galvanic activity, long-term protection, and minimum environmental impact. Phase II: Improvement of the formulations tested in Phase I including optimization of metallic loading as well as incorporation of humectants for continuous activation. Phase III: Application and testing of improved formulations on the test blocks. Phase IV: Incorporation of the final formulation upgrades onto large instrumented structures (slabs).
The Hildebrand Solubility Parameters of Ionic Liquids—Part 2
Marciniak, Andrzej
2011-01-01
The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods. PMID:21747694
NASA Technical Reports Server (NTRS)
Mckay, G. A.; Weill, D. F.
1975-01-01
Solid/liquid distribution coefficients (weight basis) were experimentally determined for a number of trace elements for olivine, orthopyroxene, plagioclase and ilmenite. Values of distribution coefficients were measured at 1200 C and a f sub O2 of 10 to the -13.0 power for liquids similar in composition to the olivine-opx-plagioclase peritectic in the pseudoternary system (Fe,Mg)2SiO4-CaAl2Si2O8-SiO2. Values were also measured at 1140 C and a f sub O2 of 10 to the -12.8 power for liquids similar in composition to high-Ti mare basalts. Major and trace element partitioning and relevant phase equilibria were used to investigate possible parent-daughter relationships between a number of highland samples and highly evolved KREEP-rich materials. Out of about 80 highlands samples tested, 33 were found to be possible parents to the KREEP-rich materials. The average composition of these samples is very similar to that of the Low-K Fra Mauro basalt (LKFM). A model is proposed to explain the production of LKFM-type material and more evolved members of the KREEP suite.
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.
2017-01-01
Earth's core contains approximately 10% of a light element that is likely a combination of S, C, Si, and O, with Si possibly being the most abundant light element. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of Pt (with Re and Ru in progress or planned) between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle Pt concentrations.
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.
2016-01-01
Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.
Reactive uptake of NO3 by liquid and frozen organics
NASA Astrophysics Data System (ADS)
Moise, T.; Talukdar, R. K.; Frost, G. J.; Fox, R. W.; Rudich, Y.
2002-01-01
The reactive uptake of the NO3 radical by liquid and frozen organics was studied in a rotating wall flow tube coupled to a White cell. The organic liquids used included alkanes, alkenes, an alcohol, and carboxylic acids with conjugated and nonconjugated unsaturated bonds.. The reactive uptake coefficients, γ, of NO3 on n-hexadecane, 1-octadecene, 1-hexadecene, cis + trans 7-tetradecene, n-octanoic acid, 2,2,4,4,6,8,8 heptamethyl nonane, 1-octanol, cis, trans 9,11 and 10,12 octadecadienoic acid, cis-9, cis-12 octadecadienoic acid were determined. The reactive uptake coefficients measured with the organic liquids varied from 1.4 × 10-3 to 1.5 × 10-2. The uptake coefficients of NO3 by n-hexadecane and n-octanoic acid decreased by a factor of ~5 upon freezing. This behavior is explained by reaction occurring in the bulk of the organic liquid as well as on the surface. For the rest of the compounds the change in values of γ upon freezing of the liquids was within the experimental uncertainty. This is attributed to predominant uptake of NO3 by the top few molecular surface layers of the organic substrate and continuous replenishment of the surface layer by evaporation and/or mobility of the surface. These conclusions are corroborated by estimation of the diffuso-reactive length and solubility constant of NO3 in these liquids. The reactivity of NO3 with the organic surfaces is shown to correlate well with the known gas-phase chemistry of NO3. The effect on the atmospheric chemistry of the NO3 radical due to its interaction with organic aerosols is studied using an atmospheric box model applying realistic atmospheric scenarios. The inclusion of NO3 uptake on organic aerosol can decrease the NO3 lifetime by 10% or more.
Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée
2005-08-24
Translational diffusion coefficients (D(12)) of volatile compounds were measured in model media with the profile concentration method. The influence of sample temperature (from 25 to -10 degrees C) was studied on translational diffusion in sucrose or maltodextrin solutions at various concentrations. Results show that diffusivity of volatile compounds in sucrose solutions is controlled by temperature, molecule size, and the viscosity of the liquid phase as expected with the Stokes-Einstein equation; moreover, physicochemical interactions between volatile compounds and the medium are determinant for diffusion estimation. At negative temperature, the winding path induced by an ice crystal content of >70% lowered volatile compound diffusion. On the contrary, no influence on translational diffusion coefficients was observed for lower ice content.
Measuring the Coefficient of Friction of a Small Floating Liquid Marble
Ooi, Chin Hong; Nguyen, Anh Van; Evans, Geoffrey M.; Dao, Dzung Viet; Nguyen, Nam-Trung
2016-01-01
This paper investigates the friction coefficient of a moving liquid marble, a small liquid droplet coated with hydrophobic powder and floating on another liquid surface. A floating marble can easily move across water surface due to the low friction, allowing for the transport of aqueous solutions with minimal energy input. However, the motion of a floating marble has yet to be systematically characterised due to the lack of insight into key parameters such as the coefficient of friction between the floating marble and the carrier liquid. We measured the coefficient of friction of a small floating marble using a novel experimental setup that exploits the non-wetting properties of a liquid marble. A floating liquid marble pair containing a minute amount magnetite particles were immobilised and then released in a controlled manner using permanent magnets. The capillarity-driven motion was analysed to determine the coefficient of friction of the liquid marbles. The “capillary charge” model was used to fit the experimental results. We varied the marble content and carrier liquid to establish a relationship between the friction correction factor and the meniscus angle. PMID:27910916
NASA Technical Reports Server (NTRS)
Murrell, M. T.; Burnett, D. S.
1986-01-01
Experimental partitioning studies are reported of K, U, and Th between silicate and FeFeS liquids designed to test the proposal that actinide partitioning into sulfide liquids is more important then K partitioning in the radioactive heating of planetary cores. For a basaltic liquid at 1450 C and 1.5 GPa, U partitioning into FeFeS liquids is five times greater than K partitioning. A typical value for the liquid partition coefficient for U from a granitic silicate liquid at one atmosphere at 1150 C and low fO2 is about 0.02; the coefficient for Th is similar. At low fO2 and higher temperature, experiments with basaltic liquids produce strong Ca and U partitioning into the sulfide liquid with U coefficient greater than one. The Th coefficient is less strongly affected.
Sherwood correlation for dissolution of pooled NAPL in porous media
NASA Astrophysics Data System (ADS)
Aydin Sarikurt, Derya; Gokdemir, Cagri; Copty, Nadim K.
2017-11-01
The rate of interphase mass transfer from non-aqueous phase liquids (NAPLs) entrapped in the subsurface into the surrounding mobile aqueous phase is commonly expressed in terms of Sherwood (Sh) correlations that are expressed as a function of flow and porous media properties. Because of the lack of precise methods for the estimation of the interfacial area separating the NAPL and aqueous phases, most studies have opted to use modified Sherwood expressions that lump the interfacial area into the interphase mass transfer coefficient. To date, there are only two studies in the literature that have developed non-lumped Sherwood correlations; however, these correlations have undergone limited validation. In this paper controlled dissolution experiments from pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing horizontally on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two different porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution kinetics and aqueous phase transport was developed. The observed effluent concentrations were then used to compute best-fit mass transfer coefficients. Comparison of the effluent concentrations computed with the two-dimensional pore network model to those estimated with one-dimensional analytical solutions indicates that the analytical model which ignores the transport in the lateral direction can lead to under-estimation of the mass transfer coefficient. Based on system parameters and the estimated mass transfer coefficients, non-lumped Sherwood correlations were developed and compared to previously published data. The developed correlations, which are a significant improvement over currently available correlations that are associated with large uncertainties, can be incorporated into future modeling studies requiring non-lumped Sh expressions.
NMR spin-rotation relaxation and diffusion of methane
NASA Astrophysics Data System (ADS)
Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.
2018-05-01
The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.
Joshi, HR; Patel, AH; Captain, AD
2010-01-01
Two methods are described for determination of Doxophylline in a solid dosage form. The first method was based on ultraviolet (UV)-spectrophotometric determination of the drug. It involves absorbance measurement at 274 nm (λmax of Doxophylline) in 0.1 N hydrochloric acid. The calibration curve was linear, with the correlation coefficient between 0.99 and 1.0 over a concentration range of 0.20–30 mg/ml for the drug. The second method was based on high-performance liquid chromatography (HPLC) separation of the drug in reverse-phase mode using the Hypersil ODS C18 column (250 × 4.6 mm, 5 mm). The mobile phase constituted of buffer acetonitrile (80:20) and pH adjusted to 3.0, with dilute orthophosphoric acid delivered at a flow rate 1.0 ml/min. Detection was performed at 210 nm. Separation was completed within 7 min. The calibration curve was linear, with the correlation coefficient between 0.99 and 1.0 over a concentration range of 0.165–30 mg/ml for the drug. The relative standard deviation was found to be <2.0% for the UV-spectrophotometry and HPLC methods. Both these methods have been successively applied to the solid dosage pharmaceutical formulation, and were fully validated according to ICH guidelines. PMID:21042488
Melt inclusions in veins: linking magmas and porphyry Cu deposits.
Harris, Anthony C; Kamenetsky, Vadim S; White, Noel C; van Achterbergh, Esmé; Ryan, Chris G
2003-12-19
At a porphyry copper-gold deposit in Bajo de la Alumbrera, Argentina, silicate-melt inclusions coexist with hypersaline liquid- and vapor-rich inclusions in the earliest magmatic-hydrothermal quartz veins. Copper concentrations of the hypersaline liquid and vapor inclusions reached maxima of 10.0 weight % (wt %) and 4.5 wt %, respectively. These unusually copper-rich inclusions are considered to be the most primitive ore fluid found thus far. Their preservation with coexisting melt allows for the direct quantification of important oreforming processes, including determination of bulk partition coefficients of metals from magma into ore-forming magmatic volatile phases.
Energy conservation and H theorem for the Enskog-Vlasov equation
NASA Astrophysics Data System (ADS)
Benilov, E. S.; Benilov, M. S.
2018-06-01
The Enskog-Vlasov (EV) equation is a widely used semiphenomenological model of gas-liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications.
Fast-response IR spatial light modulators with a polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Peng, Fenglin; Chen, Haiwei; Tripathi, Suvagata; Twieg, Robert J.; Wu, Shin-Tson
2015-03-01
Liquid crystals (LC) have widespread applications for amplitude modulation (e.g. flat panel displays) and phase modulation (e.g. beam steering). For phase modulation, a 2π phase modulo is required. To extend the electro-optic application into infrared region (MWIR and LWIR), several key technical challenges have to be overcome: 1. low absorption loss, 2. high birefringence, 3. low operation voltage, and 4. fast response time. After three decades of extensive development, an increasing number of IR devices adopting LC technology have been demonstrated, such as liquid crystal waveguide, laser beam steering at 1.55μm and 10.6 μm, spatial light modulator in the MWIR (3~5μm) band, dynamic scene projectors for infrared seekers in the LWIR (8~12μm) band. However, several fundamental molecular vibration bands and overtones exist in the MWIR and LWIR regions, which contribute to high absorption coefficient and hinder its widespread application. Therefore, the inherent absorption loss becomes a major concern for IR devices. To suppress IR absorption, several approaches have been investigated: 1) Employing thin cell gap by choosing a high birefringence liquid crystal mixture; 2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination and chlorination; 3) Reducing the overlap vibration bands by using shorter alkyl chain compounds. In this paper, we report some chlorinated LC compounds and mixtures with a low absorption loss in the near infrared and MWIR regions. To achieve fast response time, we have demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms.
Detection of Xeljanz enantiomers in diethyl amine active pharmaceutical ingredients and tablets.
Wang, Na-Na; Zhang, Dao-Lin; Jiang, Xin-Hui
2015-03-01
A high-performance liquid chromatography (HPLC) method was established to detect Xeljanz enantiomers in active pharmaceutical ingredients (APIs) and tablets. The separation was achieved on a Chiralpak IC column using a mobile phase of hexane-ethanol-diethylamine (65:35:0.1, v/v). The detection wavelength was 289 nm. The peak areas and the enantiomer concentrations in the range of 0.15-2.25 μg•mL(-1) were in high linearity, with correlation coefficients higher than 0.999. The recoveries were 86.44% at the concentrations of 7.5, 18.75, and 37.5 μg•mL(-1) . The limit of detection (LOD) and limit of quantification (LOQ) were 0.042 and 0.14 μg•mL(-1) , respectively. This HPLC method is suitable for detecting the enantiomers of Xeljanz in its APIs and tablets. © 2014 Wiley Periodicals, Inc.
Determination of emamectin benzoate in medicated fish feed.
Farer, L J; Hayes, J; Rosen, J; Knight, P
1999-01-01
A method was developed to quantitate emamectin benzoate in fish feed at levels between 5 and 15 ppm. The active ingredient is extracted from 20 g medicated feed into aqueous-methanolic solvent by overnight shaking. A solid-phase extraction procedure using a 2 g C18 cartridge is then used to concentrate the active residue and remove interfering matrix components. The extracted drug and internal standard are eluted from the cartridge, evaporated to dryness, and reconstituted in methanol. A control feed sample and fortified control working standard are simultaneously prepared. Remaining interferences and sample analysis are further separated on a gradient liquid chromatographic system. Recovery of emamectin benzoate from fortified feeds ranged from 97 to 100%, with a coefficient of variation (CV) of 1.2%. Determination of emamectin benzoate in medicated feeds resulted in CVs ranging from 2.3 to 4.2% and recoveries of 88 to 98% of label claim.
Styszko, Katarzyna; Kupiec, Krzysztof
2016-10-01
In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recursion equations in predicting band width under gradient elution.
Liang, Heng; Liu, Ying
2004-06-18
The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.
NASA Astrophysics Data System (ADS)
Qi, Wenyuan; Zhang, Yuyin
2018-04-01
A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.
NASA Astrophysics Data System (ADS)
Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi
2018-03-01
Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.
Renbaum-Wolff, Lindsay; Song, Mijung; Marcolli, Claudia; ...
2016-07-01
Particles consisting of secondary organic material (SOM) are abundant in the atmosphere. In order to predict the role of these particles in climate, visibility and atmospheric chemistry, information on particle phase state (i.e., single liquid, two liquids and solid) is needed. Our paper focuses on the phase state of SOM particles free of inorganic salts produced by the ozonolysis of α-pinene. Phase transitions were investigated in the laboratory using optical microscopy and theoretically using a thermodynamic model at 290 K and for relative humidities ranging from < 0.5 to 100%. In the laboratory studies, a single phase was observed frommore » 0 to 95% relative humidity (RH) while two liquid phases were observed above 95% RH. For increasing RH, the mechanism of liquid–liquid phase separation (LLPS) was spinodal decomposition. The RH range over which two liquid phases were observed did not depend on the direction of RH change. In the modeling studies, the SOM took up very little water and was a single organic-rich phase at low RH values. At high RH, the SOM underwent LLPS to form an organic-rich phase and a water-rich phase, consistent with the laboratory studies. The presence of LLPS at high RH values can have consequences for the cloud condensation nuclei (CCN) activity of SOM particles. In the simulated Köhler curves for SOM particles, two local maxima were observed. Depending on the composition of the SOM, the first or second maximum can determine the critical supersaturation for activation. Recently researchers have observed inconsistencies between measured CCN properties of SOM particles and hygroscopic growth measured below water saturation (i.e., hygroscopic parameters measured below water saturation were inconsistent with hygroscopic parameters measured above water saturation). Furthermore, the work presented here illustrates that such inconsistencies are expected for systems with LLPS when the water uptake at subsaturated conditions represents the hygroscopicity of an organic-rich phase while the barrier for CCN activation can be determined by the second maximum in the Köhler curve when the particles are water rich.« less
Enhanced two phase flow in heat transfer systems
Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D
2013-12-03
A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.
NASA Astrophysics Data System (ADS)
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; Fattebert, Jean-Luc; McKeown, Joseph T.
2018-01-01
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu-Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid-liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu-Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying from ˜0.1 to ˜0.6 m s-1. After an ‘incubation’ time, the velocity of the planar solid-liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Finally, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid-liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu–Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid–liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu–Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying frommore » ~0.1 to ~0.6 m s –1. After an 'incubation' time, the velocity of the planar solid–liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Lastly, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid–liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).« less
Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; ...
2017-12-05
A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu–Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid–liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu–Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying frommore » ~0.1 to ~0.6 m s –1. After an 'incubation' time, the velocity of the planar solid–liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Lastly, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid–liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).« less
Equilibrium gas-oil ratio measurements using a microfluidic technique.
Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid
2013-07-07
A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.
Tribological properties of the babbit B83-based composite materials fabricated by powder metallurgy
NASA Astrophysics Data System (ADS)
Kalashnikov, I. E.; Bolotova, L. K.; Bykov, P. A.; Kobeleva, L. I.; Katin, I. V.; Mikheev, R. S.; Kobernik, N. V.
2016-07-01
Technological processes are developed to fabricate composite materials based on B83 babbit using hot pressing of a mixture of powders in the presence of a liquid phase. As a result, the structure of the matrix B83 alloy is dispersed, the morphology of intermetallic phases is changed, and reinforcing micro- and nanosized fillers are introduced and uniformly distributed in the matrix. The tribological properties of the synthesized materials are studied. The friction of the B83 babbit + 0.5 wt % MSR + 3 wt % SiC (MSR is modified schungite rock) composite material at high loads is characterized by an increase in the stability coefficient, and the wear resistance of the material increases by a factor of 1.8 as compared to the as-cast alloy at comparable friction coefficients.
Jakomin, L M; Marbán, L; Grondona, S; Glok Galli, M; Martínez, D E
2015-09-01
The prediction about metals behaviour in soil requires knowledge on their solid-liquid partitioning. Usually it is expressed with an empirical distribution coefficient or Kd, which gives the ratio of the metal concentration in the solid phase to that in the solution. Kd values have been determined for Zn, Pb and Cd from samples representing the two most exploited aquifers in Argentina, Pampeano and Puelche, at three different locations in the province of Buenos Aires. The Pampeano aquifer presented higher Kd values than the Puelche aquifer. Comparing Kd values, different relationships could be observed: (a) Pampeano aquifer: Pb > Zn > Cd, and (b) Puelche aquifer: Pb > Cd > Zn. Kd for Cd seems to be linked to cationic exchange capacity, but solid phases precipitation can be more determining for Pb and Zn.
Sanabria Arenas, Beatriz Eugenia; Schiavi, Luca; Russo, Valeria; Pedeferri, MariaPia
2018-01-01
The availability of immobilized nanostructured photocatalysts is of great importance in the purification of both polluted air and liquids (e.g., industrial wastewaters). Metal-supported titanium dioxide films with nanotubular morphology and good photocatalytic efficiency in both environments can be produced by anodic oxidation, which avoids release of nanoscale materials in the environment. Here we evaluate the effect of different anodizing procedures on the photocatalytic activity of TiO2 nanostructures in gas and liquid phases, in order to identify the most efficient and robust technique for the production of TiO2 layers with different morphologies and high photocatalytic activity in both phases. Rhodamine B and toluene were used as model pollutants in the two media, respectively. It was found that the role of the anodizing electrolyte is particularly crucial, as it provides substantial differences in the oxide specific surface area: nanotubular structures show remarkably different activities, especially in gas phase degradation reactions, and within nanotubular structures, those produced by organic electrolytes lead to better photocatalytic activity in both conditions tested. PMID:29587360
NASA Astrophysics Data System (ADS)
Seyedabbasi, M.; Pirestani, K.; Holland, S. B.; Imhoff, P. T.
2005-12-01
Two major processes influencing the elution of solutes from porous media contaminated with nonaqueous phase liquids (NAPLs) are external mass transfer between the NAPL and groundwater and internal diffusion through NAPL ganglia and pools. There is a relatively large body of literature on the dissolution of single-species NAPLs. Less is known about the rates of elution of compounds dissolving from multicomponent NAPLs. We examined the mass transfer of one solute, 2,3-dimethyl-2-butanol (DMB) - a partitioning tracer, between groundwater and a dense NAPL - trichloroethylene (TCE). Diffusion cell experiments were used to measure the molecular diffusion coefficient of DMB in pure TCE and in porous media contaminated with a TCE pool. Measured diffusion coefficients were compared with empirical correlations (pure TCE) and a parallel resistance model (TCE pool). Based on the results from these analyses, a dimensionless Biot number was derived to express the ratio of the external rate of mass transfer from a NAPL pool to the internal rate of diffusion within the pool, which varies with NAPL saturation and NAPL-water partition coefficient. Biot numbers were then estimated for several laboratory scale experiments involving DMB transport between NAPL pools and groundwater. The estimated Biot numbers were in good agreement with experimental results. The expression for the Biot number developed here may be used to assess the processes controlling the elution of solutes from NAPL pools, which has implications on long-term predictions of solute dissolution from NAPLs in the field.
Aerosol partitioning in natural mixed-phase clouds
NASA Astrophysics Data System (ADS)
Henning, S.; Bojinski, S.; Diehl, K.; Ghan, S.; Nyeki, S.; Weingartner, E.; Wurzler, S.; Baltensperger, U.
2004-03-01
In situ aerosol and cloud drop microphysical measurements at a high-alpine site are used to investigate aerosol partitioning between cloud and interstitial phases in natural, mid-latitude, mixed-phase clouds. Measurements indicate a decrease in the activated aerosol fraction (FN) for particle diameters dP > 100 nm with cloud temperature from FN ~ 0.54 in summer liquid-phase clouds to FN ~ 0.08 in winter mixed-phase clouds. The latter may be attributed to the Bergeron-Findeisen mechanism whereby ice crystals grow at the expense of liquid water drops, releasing formerly activated aerosols back into the interstitial phase. This provides a means to distinguish the indirect effects of aerosols on drops and ice crystals.
NASA Astrophysics Data System (ADS)
Afsar, M. F.; Rafiq, M. A.; Siddique, Fizza; Saira, F.; Chaudhary, M. M.; Hasan, M. M.; Tok, A. I. Y.
2018-05-01
Molybdenum disulphide (MoS2) nanoflakes were prepared through liquid-solid phase reaction technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM) analysis revealed the formation of pure, polycrystalline, hexagonal phase of MoS2 nanoflakes. The texture coefficient (T{c}hkl) analysis showed that (100) plane was preferentially oriented. The specific surface area of the nanoflakes was 21 m2 g‑1 as determined using Brunaure-Emmett-Teller (BET) technique. A band gap of ∼2.05 eV for MoS2 nanoflakes was estimated from UV-visible spectrum. Regenerative photocatalytic activity of MoS2 nanoflakes was assessed by degrading methylene blue (MB) and safranin-o (SO) dyes under UV-visible light irradiation. Under light irradiation, degradation efficiency for MB was ∼99.58% in 100 min while for SO it was ∼99.89% in 70 min. The MoS2 nanoflakes exhibited excellent photocatalytic performance and good stability in a wide pH range (3–11). MoS2 nanoflakes showed a high reaction rate constant (k app ) for SO ∼ 0.104 49 min‑1 and MB ∼ 0.092 18 min‑1 as compared to other MoS2 nanostructures. The obtained exceptional photocatalytic performance of MoS2 nanoflakes offers potential applications for the treatment of polluted water as well as in other correlated fields.
Hyeon-Deuk, Kim; Ando, Koji
2014-05-07
Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.
Wu, Feng-Chin; Wu, Pin-Hsueh; Tseng, Ru-Ling; Juang, Ruey-Shin
2010-05-01
In this work, unburnt coal (UC) in bottom ash from coal-fired power plants was soaked in KOH solution and activated for 1 h at 780 degrees C. The yield of activated carbons varied from 47.8 to 54.8% when the KOH/UC weight ratio changed from 2 to 4. Pore properties of these activated carbons including the BET surface area, pore volume, pore size distribution, and pore diameter were characterized based on N(2) adsorption isotherms. It was shown that the isotherms for the adsorption of methylene blue, acid blue 74, and 4-chlorophenol from aqueous solutions on these activated carbons at 30 degrees C were well fitted by the Langmuir equation (correlation coefficient r(2) > 0.9968). The adsorption capacities of methylene blue, acid blue 74, and 4-chlorophenol were obtained to be 2.40-2.88, 0.57-1.29, and 2.34-5.62 mmol/g, respectively. Moreover, the adsorption kinetics could be suitably described by the Elovich equation. Copyright 2010. Published by Elsevier Ltd.
Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A
2018-02-01
Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.
Singh, Jasmeet; Lai, Amy Jo; Alaee, Yasmin; Ranganathan, Radha
2014-01-01
Distributions of lysopalmitoylphosphatidylcholine (LPPC), palmitic acid (PA) and their 1:1 mixtures between water and dipalmitoylphosphatidylcholine (DPPC) bilayer were determined using a fluorescence probe that selectively detects only the solutes in water. Water solute concentrations were obtained at each of several lipid concentrations. Dynamic Light Scattering experiments confirmed that the lipid/solute aggregates were vesicles in the concentration range investigated. Lipid concentration dependence of the solute component in water was fit to a thermodynamic model of solute distribution between two coexisting solvents. Water/bilayer partition coefficient and the free energy of transfer, for each of these solutes were determined from the fit. Main findings are: (1) Water/bilayer partition coefficient of solute is greater for 2 to 10% solute mole fraction than for 0 to 2%, signaling solute induced bilayer perturbation that increases bilayer solubility, beginning at 2% solute mole fraction. (2) Partition coefficients are in the order LPPC
Singh, Jasmeet; Lai, Amy Jo; Alaee, Yasmin; Ranganathan, Radha
2013-01-01
Distribution of lysopalmitoylphosphatidylcholine (LPPC), Palmitic acid (PA) and their 1:1 mixtures between water and dipalmitoylphosphatidylcholine (DPPC) bilayer were determined using a fluorescence probe that selectively detects only the solutes in water. Water solute concentrations were obtained at each of several lipid concentrations. Dynamic Light Scattering experiments confirmed that the lipid/solute aggregates were vesicles in the concentration range investigated. Lipid concentration dependence of the solute component in water was fit to a thermodynamic model of solute distribution between two coexisting solvents. Water/bilayer partition coefficient and the free energy of transfer, for each of these solutes were determined from the fit. Main findings are: (1) Water/bilayer partition coefficient of solute is greater for 2 to 10 % solute mole fraction than for 0 to 2 %, signaling solute induced bilayer perturbation that increases bilayer solubility, beginning at 2 % solute mole fraction. (2) Partition coefficients are in the order LPPC
Extraction of anthocyanins from red cabbage using high pressure CO2.
Xu, Zhenzhen; Wu, Jihong; Zhang, Yan; Hu, Xiaosong; Liao, Xiaojun; Wang, Zhengfu
2010-09-01
The extraction kinetics of anthocyanins from red cabbage using high pressure CO(2) (HPCD) against conventional acidified water (CAW) was investigated. The HPCD time, temperature, pressure and volume ratio of solid-liquid mixture vs. pressurized CO(2) (R((S+L)/G)) exhibited important roles on the extraction kinetics of anthocyanins. The extraction kinetics showed two phases, the yield increased with increasing the time in the first phase, the yield defined as steady-state yield (y(*)) was constant in the second phase. The y(*) of anthocyanins using HPCD increased with higher temperature, higher pressure and lower R((S+L)/G). The general mass transfer model with higher regression coefficients (R(2)>0.97) fitted the kinetic data better than the Fick's second law diffusion model. As compared with CAW, the time (t(*)) to reach the y(*) of anthocyanins using HPCD was reduced by half while its corresponding overall volumetric mass transfer coefficients k(L)xa from the general mass transfer model increased by two folds. Copyright 2010 Elsevier Ltd. All rights reserved.
Results of the Fluid Merging Viscosity Measurement International Space Station Experiment
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Kaukler, William; Antar, Basil
2009-01-01
The purpose of FMVM is to measure the rate of coalescence of two highly viscous liquid drops and correlate the results with the liquid viscosity and surface tension. The experiment takes advantage of the low gravitational free floating conditions in space to permit the unconstrained coalescence of two nearly spherical drops. The merging of the drops is accomplished by deploying them from a syringe and suspending them on Nomex threads followed by the astronaut s manipulation of one of the drops toward a stationary droplet till contact is achieved. Coalescence and merging occurs due to shape relaxation and reduction of surface energy, being resisted by the viscous drag within the liquid. Experiments were conducted onboard the International Space Station in July of 2004 and subsequently in May of 2005. The coalescence was recorded on video and down-linked near real-time. When the coefficient of surface tension for the liquid is known, the increase in contact radius can be used to determine the coefficient of viscosity for that liquid. The viscosity is determined by fitting the experimental speed to theoretically calculated contact radius speed for the same experimental parameters. Recent fluid dynamical numerical simulations of the coalescence process will be presented. The results are important for a better understanding of the coalescence process. The experiment is also relevant to liquid phase sintering, free form in-situ fabrication, and as a potential new method for measuring the viscosity of viscous glass formers at low shear rates.
NASA Astrophysics Data System (ADS)
Tao, R.; Fei, Y.
2017-12-01
Planetary cooling leads to solidification of any initially molten metallic core. Some terrestrial cores (e.g. Mercury) are formed and differentiated under relatively reduced conditions, and they are thought to be composed of Fe-S-Si. However, there are limited understanding of the phase relations in the Fe-S-Si system at high pressure and temperature. In this study, we conducted high-pressure experiments to investigate the phase relations in the Fe-S-Si system up to 25 GPa. Experimental results show that the liquidus and solidus in this study are slightly lower than those in the Fe-S binary system for the same S concentration in liquid at same pressure. The Fe3S, which is supposed to be the stable sub-solidus S-bearing phase in the Fe-S binary system above 17 GPa, is not observed in the Fe-S-Si system at 21 GPa. Almost all S prefers to partition into liquid, while the distribution of Si between solid and liquid depends on experimental P and T conditions. We obtained the partition coefficient log(KDSi) by fitting the experimental data as a function of P, T and S concentration in liquid. At a constant pressure, the log(KDSi) linearly decreases with 1/T(K). With increase of pressure, the slopes of linear correlation between log(KDSi) and 1/T(K) decreases, indicating that more Si partitions into solid at higher pressure. In order to interpolate and extrapolate the phase relations over a wide pressure and temperature range, we established a comprehensive thermodynamic model in the Fe-S-Si system. The results will be used to constrain the distribution of S and Si between solid inner core and liquid outer core for a range of planet sizes. A Si-rich solid inner core and a S-rich liquid outer core are suggested for an iron-rich core.
The Noble-Abel Stiffened-Gas equation of state
NASA Astrophysics Data System (ADS)
Le Métayer, Olivier; Saurel, Richard
2016-04-01
Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.
Designing lipids for selective partitioning into liquid ordered membrane domains.
Momin, Noor; Lee, Stacey; Gadok, Avinash K; Busch, David J; Bachand, George D; Hayden, Carl C; Stachowiak, Jeanne C; Sasaki, Darryl Y
2015-04-28
Self-organization of lipid molecules into specific membrane phases is key to the development of hierarchical molecular assemblies that mimic cellular structures. While the packing interaction of the lipid tails should provide the major driving force to direct lipid partitioning to ordered or disordered membrane domains, numerous examples show that the headgroup and spacer play important but undefined roles. We report here the development of several new biotinylated lipids that examine the role of spacer chemistry and structure on membrane phase partitioning. The new lipids were prepared with varying lengths of low molecular weight polyethylene glycol (EGn) spacers to examine how spacer hydrophilicity and length influence their partitioning behavior following binding with FITC-labeled streptavidin in liquid ordered (Lo) and liquid disordered (Ld) phase coexisting membranes. Partitioning coefficients (Kp Lo/Ld) of the biotinylated lipids were determined using fluorescence measurements in studies with giant unilamellar vesicles (GUVs). Compared against DPPE-biotin, DPPE-cap-biotin, and DSPE-PEG2000-biotin lipids, the new dipalmityl-EGn-biotin lipids exhibited markedly enhanced partitioning into liquid ordered domains, achieving Kp of up to 7.3 with a decaethylene glycol spacer (DP-EG10-biotin). We further demonstrated biological relevance of the lipids with selective partitioning to lipid raft-like domains observed in giant plasma membrane vesicles (GPMVs) derived from mammalian cells. Our results found that the spacer group not only plays a pivotal role for designing lipids with phase selectivity but may also influence the structural order of the domain assemblies.
Zhang, Liuyang; Luo, Jinju; Shen, Xinyu; Li, Chunya; Wang, Xian; Nie, Bei; Fang, Huaifang
2018-05-10
Direct detecting of trace amount Al(III) in aqueous solution by stripping voltammetry is often frustrated by its irreversible reduction, resided at −1.75 V (vs. Ag/AgCl reference), which is in a proximal potential of proton reduction. Here, we described an electroanalytical approach, combined with liquid phase microextraction (LPME) using ionic liquid (IL), to quantitatively assess trace amount aluminum in environmental samples. The Al(III) was caged by 8-hydroxyquinoline, forming a superb hydrophobic metal⁻chelate, which sequentially transfers and concentrates in the bottom layer of IL-phase during LPME. The preconcentrated Al(III) was further analyzed by a square-wave anodic stripping voltammetry (SW-ASV). The resulting Al-deposited electrodes were characterized by scanning electron microscopy and powder X-ray diffraction, showing the intriguing amorphous nanostructures. The method developed provides a linear calibration ranging from 0.1 to 1.2 ng L −1 with a correlation coefficient of 0.9978. The LOD attains as low as 1 pmol L −1 , which reaches the lowest report for Al(III) detection using electroanalytical techniques. The applicable methodology was implemented for monitoring Al(III) in commercial distilled water.
Electrically Driven Liquid Film Boiling Experiment
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2016-01-01
This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.
Feng, Yuanyuan; Zhao, Faqiong; Zeng, Baizhao
2015-05-01
A polycarbazole film was electrodeposited on a stainless-steel wire from a solution of N,N-dimethylformamide/propylene carbonate (1:9 v/v) containing 0.10 M carbazole and 0.10 M tetrabutylammonium perchlorate. The obtained polycarbazole fiber was immersed into an ionic liquid (1-hydroxyethyl-3-methyl imidazolium bis[(trifluoromethyl)sulfonyl]imide) solution (in dimethylsulfoxide) for 30 min, followed by drying under an infrared lamp. The resulting polycarbazole/ionic liquid fiber was applied to the headspace solid-phase microextraction and determination of aromatic esters by coupling with gas chromatography and flame ionization detection. Under the optimized conditions, the limits of detection were below 61 ng/L (S/N = 3) and the linear ranges were 0.061-500 μg/L with correlation coefficients above 0.9876. The relative standard deviations were below 4.8% (n = 5) for a single fiber, and below 9.9% for multi-fiber (n = 4). This fiber also exhibited good stability. It could be used for more than 160 times of headspace solid-phase microextraction and could withstand a high temperature up to 350°C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Prata, Ademir A.; Lucernoni, Federico; Santos, Jane M.; Capelli, Laura; Sironi, Selena; Le-Minh, Nhat; Stuetz, Richard M.
2018-04-01
This study assesses the mass transfer of compounds inside the US EPA flux hood, one of the enclosure devices most commonly employed for the direct measurement of atmospheric emissions from liquid surfaces in wastewater treatment plants (WWTPs). Experiments comprised the evaporation of water and the volatilisation of a range of volatile organic compounds (VOCs). Special attention was given to the evaluation of the mass transfer coefficients in the microenvironment created by the flux hood and the effects of concentration build up in the hood's headspace. The VOCs emission rates and the water evaporation rates generally increased with the sweep air flow rate, as did the mass transfer coefficients for all compounds. The emission of compounds whose volatilisation is significantly influenced by the gas phase was greatly affected by concentration build up, whereas this effect was not significant for liquid phase-controlled compounds. The gas-film mass transfer coefficient (kG) estimated inside the US EPA flux hood was of the same order as the respective kG reported in the literature for wind tunnel-type devices, but the emission rates measured by the flux hood can be expected to be lower, due to the concentration build-up. Compared against an emission model for the passive surfaces in WWTPs, the mass transfer of acetic acid (representing a gas phase-dominated compound) inside the US EPA flux hood was equivalent to conditions of wind speeds at 10 m height (U10) of 0.27, 0.51 and 0.99 m s-1, respectively, for sweep air flow rates of 2, 5 and 10 L min-1. On the other hand, for higher wind speeds, the emission rates of gas phase-controlled compounds obtained with the flux hood can be considerably underestimated: for instance, at U10 = 5 m s-1, the emission rates of acetic acid inside the flux hood would be approximately 23, 12 and 6 times lower than the emission rates in the field, for sweep air flow rates of 2, 5 and 10 L min-1, respectively. A procedure is presented in order to scale the emission rates of these compounds measured with the flux hood to field conditions of higher winds.
Zero-field quantum critical point in Ce0.91Yb0.09CoIn5
NASA Astrophysics Data System (ADS)
Singh, Y. P.; Adhikari, R. B.; Haney, D. J.; White, B. D.; Maple, M. B.; Dzero, M.; Almasan, C. C.
2018-05-01
We present results of specific heat, electrical resistance, and magnetoresistivity measurements on single crystals of the heavy-fermion superconducting alloy Ce0.91Yb0.09CoIn5 . Non-Fermi-liquid to Fermi-liquid crossovers are clearly observed in the temperature dependence of the Sommerfeld coefficient γ and resistivity data. Furthermore, we show that the Yb-doped sample with x =0.09 exhibits universality due to an underlying quantum phase transition without an applied magnetic field by utilizing the scaling analysis of γ . Fitting of the heat capacity and resistivity data based on existing theoretical models indicates that the zero-field quantum critical point is of antiferromagnetic origin. Finally, we found that at zero magnetic field the system undergoes a third-order phase transition at the temperature Tc 3≈7 K.
NASA Astrophysics Data System (ADS)
Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.
2015-03-01
Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.
Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Verheggen, Bart; Cozic, Julie; Weingartner, Ernest; Bower, Keith; Mertes, Stephan; Connolly, Paul; Gallagher, Martin; Flynn, Michael; Choularton, Tom; Baltensperger, Urs
2007-12-01
The partitioning of aerosol particles between the cloud and the interstitial phase (i.e., unactivated aerosol) has been investigated during several Cloud and Aerosol Characterization Experiments (CLACE-3, CLACE-3? and CLACE-4) conducted in winter and summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m altitude, Switzerland). Ambient air was sampled using different inlets in order to determine the activated fraction of aerosol particles, FN, defined as the fraction of the total aerosol number concentration (with particle diameter dp > 100 nm) that has been incorporated into cloud particles. The liquid and ice water content of mixed-phase clouds were characterized by analyzing multiple cloud probes. The dependence of the activated fraction on several environmental factors is discussed on the basis of more than 900 h of in-cloud observations and parameterizations for key variables are given. FN is found to increase with increasing liquid water content and to decrease with increasing particle number concentration in liquid clouds. FN also decreases with increasing cloud ice mass fraction and with decreasing temperature from 0 to -25°C. The Wegener-Bergeron-Findeisen process probably contributed to this trend, since the presence of ice crystals causes liquid droplets to evaporate, thus releasing the formerly activated particles back into the interstitial phase. Ice nucleation could also have prevented additional cloud condensation nuclei from activating. The observed activation behavior has significant implications for our understanding of the indirect effect of aerosols on climate.
Jiang, R; Roberts, M S; Prankerd, R J; Benson, H A
1997-07-01
This study provides an investigation of the availability of octyl salicylate (OS), a common sunscreen agent, from liquid paraffin and the effect of OS on skin permeability. A model membrane system to isolate the vehicle effect from membrane permeability has been developed. Partitioning of OS between liquid paraffin and aqueous receptor phases was conducted. Partition coefficients increased with increase in OS concentration. A range of OS concentrations in liquid paraffin was diffused across human epidermis and synthetic membranes into 4% bovine serum albumin in phosphate-buffered saline and 50% ethanol. Absorption profiles of OS obtained from silicone and low-density polyethylene (LDPE) membranes were similar to each other but higher than for the high-density polyethylene [HDPE (3 times)] membrane and human epidermis (15 times). The steady state fluxes and apparent permeability coefficients (Kp') obtained from the diffusion studies showed the same trends with all membranes, except for the HDPE membrane which showed greater increase in flux and Kp' at concentrations above 30%. IR spectra showed that several bands of OS were shifted with concentrations, and the molecular models further suggested that the main contribution to the self-association is from non-1,4 van der Waals interactions.
Wang, Xuchun; Li, Guangyong; Hong, Guo; Guo, Qiang; Zhang, Xuetong
2017-11-29
Phase change materials, changing from solid to liquid and vice versa, are capable of storing and releasing a large amount of thermal energy during the phase change, and thus hold promise for numerous applications including thermal protection of electronic devices. Shaping these materials into microspheres for additional fascinating properties is efficient but challenging. In this regard, a novel phase change microsphere with the design for electrical-regulation and thermal storage/release properties was fabricated via the combination of monodispersed graphene aerogel microsphere (GAM) and phase change paraffin. A programmable method, i.e., coupling ink jetting-liquid marbling-supercritical drying (ILS) techniques, was demonstrated to produce monodispersed graphene aerogel microspheres (GAMs) with precise size-control. The resulting GAMs showed ultralow density, low electrical resistance, and high specific surface area with only ca. 5% diameter variation coefficient, and exhibited promising performance in smart switches. The phase change microspheres were obtained by capillary filling of phase change paraffin inside the GAMs and exhibited excellent properties, such as low electrical resistance, high latent heat, well sphericity, and thermal buffering. Assembling the phase change microsphere into the microcircuit, we found that this tiny device was quite sensitive and could respond to heat as low as 0.027 J.
Analysis of Complex Valve and Feed Systems
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford
2007-01-01
A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.
Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai
2017-01-01
In this paper, by coupling reversed phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), a two-dimensional liquid chromatography system was developed for separation and identification of the active ingredients in Gardenia jasminoides Ellis (GJE). By applying the semi-preparative C18 column as the first dimension and the core-shell column as the second dimension, a total of 896 peaks of GJE were separated. Among the 896 peaks, 16 active ingredients including geniposide, gardenoside, gardoside, etc. were identified by mass spectrometry analysis. The results indicated that the proposed two-dimensional RPLC/HILIC system was an effective method for the analysis of GJE and might hold a high potential to become a useful tool for analysis of other complex mixtures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dissolution of multi-component LNAPL gasolines: The effects of weathering and composition
NASA Astrophysics Data System (ADS)
Lekmine, Greg; Bastow, Trevor P.; Johnston, Colin D.; Davis, Greg B.
2014-05-01
The composition of light non-aqueous phase liquid (LNAPL) gasoline and other petroleum products changes profoundly over their life once released into aquifers. However limited attention has been given to how such changes affect key parameters such as the activity coefficients which control partitioning of components of petroleum fuel into groundwater and are used to predict long-term risk from fuel releases. Laboratory experiments were conducted on a range of fresh, weathered and synthetic gasoline mixtures designed to mimic the expected changes in composition in an aquifer. Weathered gasoline created under controlled evaporation and water washing, and naturally weathered gasoline, were investigated. Equilibrium concentrations in water and molar fractions in the gasoline mixtures were compared with equilibrium concentrations predicted by Raoult's law assuming ideal behaviour of the solutions. The experiments carried out allowed the relative sensitivity of the activity coefficients of key risk drivers such as benzene, toluene, ethylbenzene and xylene (BTEX) compounds to be quantified with respect to the presence of other types of compounds and where the source LNAPL had undergone different types of weathering. Results differed for the mixtures examined but in some cases higher than predicted dissolved equilibrium concentrations showed non-ideal behaviour for toluene, benzene and xylenes. Comparison of the activity coefficients showed that the naturally weathered gasoline and a 50% evaporated unleaded gasoline present a similar range of values varying between 1.0 and 1.2, suggesting close to ideal partitioning between the LNAPL and water. The fresh and water-washed gasoline had higher values for the activity coefficient, from 1.2 to 1.4, indicating non-ideal partitioning. Results from synthetic mixtures demonstrated that these differences could be due to the different molar fractions of the nC5 and nC6 aliphatic hydrocarbons acting on the molecular interactions, while differences in molar volumes seemed to have less of an influence on ideality.
Lu, Dan; Xu, Xiao; Li, Chunlei; Wang, Sicen
2018-01-01
A rapid and precise liquid chromatography coupled with hybrid ion trap/time-of-flight mass spectrometry method to detect and quantify caulophine and its possible active metabolites in rat plasma and urine was developed. Samples were prepared by plasma protein precipitation combined with a liquid-liquid extraction method. The separation was carried out on an InertSustain® C18 column with a mobile phase comprising methanol and 0.1% aqueous formic acid solution. The analysis was complete in 20 min with a flow rate of 0.4 mL/min. Taspine was used as the internal standard. Mass spectrometric detection was conducted with hybrid ion trap/time-of-flight equipped with electrospray ionization in the positive ion mode. The calibration curves of caulophine were linear over the concentration ranges of 0.002-0.20 μg/mL for plasma and 0.005-0.50 μg/mL for urine with the correlation coefficients greater than 0.998 in both cases. The method was successfully used to investigate the pharmacokinetics and bioavailability in rat plasma and urine samples after intragastric and intraperitoneal administration of caulophine sodium salt. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lloyd, T L; Perschy, T B; Gooding, A E; Tomlinson, J J
1992-01-01
A fully automated assay for the analysis of ranitidine in serum and plasma, with and without an internal standard, was validated. It utilizes robotic solid phase extraction with on-line high performance liquid chromatographic (HPLC) analysis. The ruggedness of the assay was demonstrated over a three-year period. A Zymark Py Technology II robotic system was used for serial processing from initial aspiration of samples from original collection containers, to final direct injection onto the on-line HPLC system. Automated serial processing with on-line analysis provided uniform sample history and increased productivity by freeing the chemist to analyse data and perform other tasks. The solid phase extraction efficiency was 94% throughout the assay range of 10-250 ng/mL. The coefficients of variation for within- and between-day quality control samples ranged from 1 to 6% and 1 to 5%, respectively. Mean accuracy for between-day standards and quality control results ranged from 97 to 102% of the respective theoretical concentrations.
Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K
2016-09-10
Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from the secondary metabolism of Cannabis sativa L. catalyzes the oxidative formation of an intramolecular CC bond in cannabigerolic acid (CBGA) to synthesize Δ(9)-tetrahydrocannabinolic acid (THCA), which is the direct precursor of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Aiming on a biotechnological production of cannabinoids, we investigated the potential of the heterologously produced plant oxidase in a cell-free system on preparative scale. THCAS was characterized in an aqueous/organic two-liquid phase setup in order to solubilize the hydrophobic substrate and to allow in situ product removal. Compared to the single phase aqueous setup the specific activity decreased by a factor of approximately 2 pointing to a substrate limitation of CBGA in the two-liquid phase system. However, the specific activity remained stable for at least 3h illustrating the benefit of the two-liquid phase setup. In a repeated-batch setup, THCAS showed only a minor loss of specific activity in the third batch pointing to a high intrinsic stability and high solvent tolerance of the enzyme. Maximal space-time-yields of 0.121gL(-1)h(-1) were reached proving the two-liquid phase concept suitable for biotechnological production of cannabinoids. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.
2015-01-01
Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid-phase systems provide similar estimates of electrochemical window, while Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems. Pure and hybrid functionals systematically provide an upper and lower bound, respectively, to the experimental electrochemical window for the systems studied here.
Yang, Hongpeng; Chen, Li; Zhou, Cunshan; Yu, Xiaojie; Yagoub, Abu ElGasim A; Ma, Haile
2018-04-15
Polyethylene glycol (PEG) is widely used in the polymer-salt systems. However, the low polarity of the PEG-rich phase limits the application of aqueous biphasic systems (ABS). To overcome this disadvantage, a small quantity of ionic liquid (IL) was used as an adjuvant in ABS to enlarge the polarity range. Therefore, an innovative study involving addition of 4wt% imidazolium-based ILs to the PEG 600/NaH 2 PO 4 ABS, aiming at controlling the phase behavior and extraction ability, was carried out. The phase diagrams, the tie-lines and the partitioning behavior of l-phenylalanine and ILs were studied in these systems. The results reveal that l-phenylalanine preferentially partitions for the PEG-rich phase. The addition of 4wt% IL to ABS controls the partitioning behavior of l-phenylalanine, which depends on the type of IL employed. Moreover, it is verified that increasing temperature lead to a decrease in the partition coefficient of l-phenylalanine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pantano, Flaminia; Brauneis, Stefano; Forneris, Alexandre; Pacifici, Roberta; Marinelli, Enrico; Kyriakou, Chrystalla; Pichini, Simona; Busardò, Francesco Paolo
2017-08-28
Oxycodone is a narcotic drug widely used to alleviate moderate and severe acute and chronic pain. Variability in analgesic efficacy could be explained by inter-subject variations in plasma concentrations of parent drug and its active metabolite, oxymorphone. To evaluate patient compliance and to set up therapeutic drug monitoring (TDM), an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) assay was developed and validated for the parent drug and its major metabolites noroxycodone and oxymorphone. Extraction of analytes from plasma and urine samples was obtained by simple liquid-liquid extraction. The chromatographic separation was achieved with a reversed phase column using a linear gradient elution with two solvents: acetic acid 1% in water and methanol. The separated analytes were detected with a triple quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode via positive electrospray ionization (ESI). Separation of analytes was obtained in less than 5 min. Linear calibration curves for all the analytes under investigation in urine and plasma samples showed determination coefficients (r2) equal or higher than 0.990. Mean absolute analytical recoveries were always above 86%. Intra- and inter-assay precision (measured as coefficient of variation, CV%) and accuracy (measured as % error) values were always better than 13%. Limit of detection at 0.06 and 0.15 ng/mL and limit of quantification at 0.2 and 0.5 ng/mL for plasma and urine samples, respectively, were adequate for the purpose of the present study. Rapid extraction, identification and quantification of oxycodone and its metabolites both in urine and plasma by UHPLC-MS/MS assay was tested for its feasibility in clinical samples and provided excellent results for rapid and effective drug testing in patients under oxycodone treatment.
Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen.
Santos, M Victoria; Sansinena, M; Chirife, J; Zaritzky, N
2014-12-01
The knowledge of the thermodynamic process during the cooling of reproductive biological systems is important to assess and optimize the cryopreservation procedures. The time-temperature curve of a sample immersed in liquid nitrogen enables the calculation of cooling rates and helps to determine whether it is vitrified or undergoes phase change transition. When dealing with cryogenic liquids, the temperature difference between the solid and the sample is high enough to cause boiling of the liquid, and the sample can undergo different regimes such as film and/or nucleate pool boiling. In the present work, the surface heat transfer coefficients (h) for plastic French straws plunged in liquid nitrogen were determined using the measurement of time-temperature curves. When straws filled with ice were used the cooling curve showed an abrupt slope change which was attributed to the transition of film into nucleate pool boiling regime. The h value that fitted each stage of the cooling process was calculated using a numerical finite element program that solves the heat transfer partial differential equation under transient conditions. In the cooling process corresponding to film boiling regime, the h that best fitted experimental results was h=148.12±5.4 W/m(2) K and for nucleate-boiling h=1355±51 W/m(2) K. These values were further validated by predicting the time-temperature curve for French straws filled with a biological fluid system (bovine semen-extender) which undergoes freezing. Good agreement was obtained between the experimental and predicted temperature profiles, further confirming the accuracy of the h values previously determined for the ice-filled straw. These coefficients were corroborated using literature correlations. The determination of the boiling regimes that govern the cooling process when plunging straws in liquid nitrogen constitutes an important issue when trying to optimize cryopreservation procedures. Furthermore, this information can lead to improvements in the design of cooling devices in the cryobiology field. Copyright © 2014 Elsevier Inc. All rights reserved.
Shan, Yi-chu; Zhang, Yu-kui; Zhao, Rui-huan
2002-07-01
In high performance liquid chromatography, it is necessary to apply multi-composition gradient elution for the separation of complex samples such as environmental and biological samples. Multivariate stepwise gradient elution is one of the most efficient elution modes, because it combines the high selectivity of multi-composition mobile phase and shorter analysis time of gradient elution. In practical separations, the separation selectivity of samples can be effectively adjusted by using ternary mobile phase. For the optimization of these parameters, the retention equation of samples must be obtained at first. Traditionally, several isocratic experiments are used to get the retention equation of solute. However, it is time consuming especially for the separation of complex samples with a wide range of polarity. A new method for the fast optimization of ternary stepwise gradient elution was proposed based on the migration rule of solute in column. First, the coefficients of retention equation of solute are obtained by running several linear gradient experiments, then the optimal separation conditions are searched according to the hierarchical chromatography response function which acts as the optimization criterion. For each kind of organic modifier, two initial linear gradient experiments are used to obtain the primary coefficients of retention equation of each solute. For ternary mobile phase, only four linear gradient runs are needed to get the coefficients of retention equation. Then the retention times of solutes under arbitrary mobile phase composition can be predicted. The initial optimal mobile phase composition is obtained by resolution mapping for all of the solutes. A hierarchical chromatography response function is used to evaluate the separation efficiencies and search the optimal elution conditions. In subsequent optimization, the migrating distance of solute in the column is considered to decide the mobile phase composition and sustaining time of the latter steps until all the solutes are eluted out. Thus the first stepwise gradient elution conditions are predicted. If the resolution of samples under the predicted optimal separation conditions is satisfactory, the optimization procedure is stopped; otherwise, the coefficients of retention equation are adjusted according to the experimental results under the previously predicted elution conditions. Then the new stepwise gradient elution conditions are predicted repeatedly until satisfactory resolution is obtained. Normally, the satisfactory separation conditions can be found only after six experiments by using the proposed method. In comparison with the traditional optimization method, the time needed to finish the optimization procedure can be greatly reduced. The method has been validated by its application to the separation of several samples such as amino acid derivatives, aromatic amines, in which satisfactory separations were obtained with predicted resolution.
NASA Astrophysics Data System (ADS)
Kuo, Ching Yi; Pan, Chin
2010-09-01
This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.
High-temperature phase relations and thermodynamics in the iron-lead-sulfur system
NASA Astrophysics Data System (ADS)
Eric, R. Hurman; Ozok, Hakan
1994-01-01
The PbS activities in FeS-PbS liquid mattes were obtained at 1100 °C and 1200 °C by the dew-point method. Negative deviations were observed, and the liquid-matte solutions were modeled by the Krupkowski formalism. The liquid boundaries of the FeS-PbS phase diagram were derived from the model equations yielding a eutectic temperature of 842 °C at X Pbs = 0.46. A phase diagram of the pseudobinary FeS-PbS was also verified experimentally by quenching samples equilibrated in evacuated and sealed silica capsules. No terminal solid solution ranges could be found. Within the Fe-Pb-S ternary system, the boundaries of the immiscibility region together with the tie-line distributions were established at 1200 °C. Activities of Pb were measured by the dew-point technique along the metal-rich boundary of the miscibility gap. Activities of Fe, Pb, and S, along the miscibility gap were also calculated by utilizing the bounding binary thermodynamics, phase equilibria, and tie-lines.
NASA Technical Reports Server (NTRS)
Schmidt, George R.
1994-01-01
The steady motion, thermal and free surface behavior of a volatile, wetting liquid in microgravity are studied using scaling and numerical techniques. The objective is to determine whether the thermocapillary and two-phase convection arising from thermodynamic nonequilibrium along the porous surfaces of spacecraft liquid acquisition devices could cause the retention failures observed with liquid hydrogen and heated vapor pressurant. Why these devices seem immune to retention loss when pressurized with heated helium or heated directly through the porous structure was also examined. Results show that highly wetting fluids exhibit large negative and positive dynamic pressure gradients towards the meniscus interline when superheated and subcooled, respectively. With superheating, the pressure variation and recoil force arising from liquid/vapor phase change exert the same influence on surface morphology and promote retention. With subcooling, however, the pressure distribution produces a suction that degrades mechanical equilibrium of the surface. This result indicates that thermocapillary-induced deformation arising from subcooling and condensation is the likely cause for retention loss. In addition, increasing the level of nonequilibrium by reducing accommodation coefficient suppresses deformation and explains why this failure mode does not occur in instances of direct screen heating or pressurization with a heated inert gas.
Hydrodynamic effects on phase transition in active matter
NASA Astrophysics Data System (ADS)
Gidituri, Harinadha; Akella, V. S.; Panchagnula, Mahesh; Vedantam, Srikanth; Multiphase flow physics lab Team
2017-11-01
Organized motion of active (self-propelled) objects are ubiquitous in nature. The objective of this study to investigate the effect of hydrodynamics on the coherent structures in active and passive particle mixtures. We use a mesoscopic method Dissipative Particle Dynamics (DPD). The system shows three different states viz. meso-turbulent (disordered state), polar flock and vortical (ordered state) for different values of activity and volume fraction of active particles. From our numerical simulations we construct a phase diagram between activity co-efficient, volume fraction and viscosity of the passive fluid. Transition from vortical to polar is triggered by increasing the viscosity of passive fluid which causes strong short-range hydrodynamic interactions. However, as the viscosity of the fluid decreases, both vortical and meso-turbulent states transition to polar flock phase. We also calculated the diffusion co-efficients via mean square displacement (MSD) for passive and active particles. We observe ballistic and diffusive regimes in the present system.
Krzemińska, Sylwia; Nazimek, Teresa
2004-01-01
The paper presents the results of studies on selecting a solid sorption material for absorbing liquid crop protection agents which permeate samples of protective clothing fabrics. The sorption materials were investigated and selected with an assumption that they should have a high recovery coefficient for biologically active substances, used as active ingredients in crop protection agents, at a presumed, acceptably high level. The selected substances were determined with a gas chromatograph equipped with an electron capture detector (dichlorvos, cypermethrin and 2,4-D) and a nitrogen-phosphorus detector (carbofuran). The tests demonstrated that polypropylene melt-blown type unwoven cloth had high recovery coefficients for all 4 active ingredients proposed for the study. The highest recovery coefficient, -.97, was obtained for carbofuran. The recovery coefficients obtained for the 3 remaining substances were lower: .89 for cypermethrin and 2,4-D, and .84 for dichlorvos.
Asadi, Mohammad; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh
2016-06-01
A novel, simple, and rapid vortex-assisted hollow-fiber liquid-phase microextraction method was developed for the simultaneous extraction of albendazole and triclabendazole from various matrices before their determination by high-performance liquid chromatography with fluorescence detection. Several factors influencing the microextraction efficiency including sample pH, nature and volume of extraction solvent, ionic strength, vortex time, and sample volume were investigated and optimized. Under the optimal conditions, the limits of detection were 0.08 and 0.12 μg/L for albendazole and triclabendazole, respectively. The calibration curves were linear in the concentration ranges of 0.3-50.0 and 0.4-50.0 μg/L with the coefficients of determination of 0.9999 and 0.9995 for albendazole and triclabendazole, respectively. The interday and intraday relative standard deviations for albendazole and triclabendazole at three concentration levels (1.0, 10.0, and 30.0 μg/L) were in the range of 6.0-11.0 and 5.0-7.9%, respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, milk, honey, and urine samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Musmade, Kranti P.; Trilok, M.; Dengale, Swapnil J.; Bhat, Krishnamurthy; Reddy, M. S.; Musmade, Prashant B.; Udupa, N.
2014-01-01
A simple, precise, accurate, rapid, and sensitive reverse phase high performance liquid chromatography (RP-HPLC) method with UV detection has been developed and validated for quantification of naringin (NAR) in novel pharmaceutical formulation. NAR is a polyphenolic flavonoid present in most of the citrus plants having variety of pharmacological activities. Method optimization was carried out by considering the various parameters such as effect of pH and column. The analyte was separated by employing a C18 (250.0 × 4.6 mm, 5 μm) column at ambient temperature in isocratic conditions using phosphate buffer pH 3.5: acetonitrile (75 : 25% v/v) as mobile phase pumped at a flow rate of 1.0 mL/min. UV detection was carried out at 282 nm. The developed method was validated according to ICH guidelines Q2(R1). The method was found to be precise and accurate on statistical evaluation with a linearity range of 0.1 to 20.0 μg/mL for NAR. The intra- and interday precision studies showed good reproducibility with coefficients of variation (CV) less than 1.0%. The mean recovery of NAR was found to be 99.33 ± 0.16%. The proposed method was found to be highly accurate, sensitive, and robust. The proposed liquid chromatographic method was successfully employed for the routine analysis of said compound in developed novel nanopharmaceuticals. The presence of excipients did not show any interference on the determination of NAR, indicating method specificity. PMID:26556205
Active background suppression with the liquid argon scintillation veto of GERDA Phase II
NASA Astrophysics Data System (ADS)
Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.
2017-09-01
The observation of neutrinoless double beta decay would allow to shed light onto the particle nature of neutrinos. Gerda is aiming to perform a background-free search for this process using high purity germanium detectors enriched in 76Ge operated in liquid argon. This goal relies on the application of active background suppression techniques. A low background light instrumentation has been installed for Phase II to detect events with coincident energy deposition in the nearby liquid argon. The intended background index of ˜10-3 cts/(keV·ky·yr) has been confirmed.
Absorption coefficients of solid NH3 from 50 to 7000 per cm
NASA Technical Reports Server (NTRS)
Sill, G.; Fink, U.; Ferraro, J. R.
1980-01-01
Thin-film spectra of solid NH3 at a resolution of 1 per cm were used to determine its absorption coefficient over the range 50-7000 per cm. The thin films were formed inside a liquid N2 cooled dewar using a variety of substrates and dewar windows. The spectra were recorded with two Fourier spectrometers, one covering the range from 1 to 4 microns and the other from 2.6 to 200 microns. The thickness of the films was measured with a laser interference technique. The absorption coefficients were determined by application of Lambert's law and by a fitting procedure to the observed spectra using thin-film theory. Good agreement was found with the absorption coefficients recently determined by other investigators over a more restricted wavelength range. A metastable phase was observed near a temperature of 90 K and its absorption coefficient is reported. No other major spectral changes with temperature were noted for the range 88-120 K.
Determining the Drag Coefficient of Rotational Symmetric Objects Falling through Liquids
ERIC Educational Resources Information Center
Houari, Ahmed
2012-01-01
I will propose here a kinematic approach for measuring the drag coefficient of rotational symmetric objects falling through liquids. For this, I will show that one can obtain a measurement of the drag coefficient of a rotational symmetric object by numerically solving the equation of motion describing its fall through a known liquid contained in a…
Diffusion and the Thermal Stability of Amorphous Copper-Zirconium
NASA Astrophysics Data System (ADS)
Stelter, Eric Carl
Measurements have been made of diffusion and thermal relaxation in amorphous Cu(,50)Zr(,50). Samples were prepared by melt-spinning under vacuum. Diffusion measurements were made over the temperature range from 317 to 385 C, using Ag and Au as substitutional impurities, by means of Auger electron spectrometry (AES) and Rutherford backscattering spectrometry (RBS). Thermal measurements were made by differential scanning calorimetry (DSC) up to 550 C. The diffusion coefficients of Ag and Au in amorphous Cu(,50)Zr(,50) are found to be somewhat higher than, but very close in magnitude to the coefficient of self-diffusion in crystalline Cu at the same temperatures. The activation energies for diffusion in the amorphous alloy are 0.72 to 1.55 eV/atom, much closer to the activation energy for self-diffusion in liquid Cu, 0.42 eV/atom, than that for the crystalline solid, 2.19 eV/atom. The mechanism for diffusion in the amorphous metal is presumably quite different from the monovacancy mechanism dominant in the crystalline solid. The pre-exponential terms are found to be extremely small, on the order of 10('-10) to 10('-11) cm('2)/sec for Ag diffusion. This indicates that diffusion in amorphous Cu(,50)Zr(,50) may involve an extended defect of 10 or more atoms. Analysis of the data in terms of the free -volume model also lends strength to this conclusion and indicates that the glass is composed of liquid-like clusters of 15 to 20 atoms. The initial stage of relaxation in amorphous CuZr occurs with a spectrum of activation energies. The lowest activation energy involved, 0.78 eV/atom, is almost identical to the average activation energy of Ag diffusion in the glass, 0.77 eV/atom, indicating that relaxation occurs primarily through diffusion. The activation energy of crystallization, determined by Kissinger's method, is 3.10 eV/atom. The large difference, on the order of 2.3 eV/atom, between the activation energies of crystallization and diffusion is attributed to the energy required to nucleate the crystalline phase.
Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems
Chen, Yulin; Ma, Ping; Gui, Shuangying
2014-01-01
Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330
Shammugasamy, Balakrishnan; Ramakrishnan, Yogeshini; Ghazali, Hasanah M; Muhammad, Kharidah
2013-07-26
A simple sample preparation technique coupled with reversed-phase high-performance liquid chromatography was developed for the determination of tocopherols and tocotrienols in cereals. The sample preparation procedure involved a small-scale hydrolysis of 0.5g cereal sample by saponification, followed by the extraction and concentration of tocopherols and tocotrienols from saponified extract using dispersive liquid-liquid microextraction (DLLME). Parameters affecting the DLLME performance were optimized to achieve the highest extraction efficiency and the performance of the developed DLLME method was evaluated. Good linearity was observed over the range assayed (0.031-4.0μg/mL) with regression coefficients greater than 0.9989 for all tocopherols and tocotrienols. Limits of detection and enrichment factors ranged from 0.01 to 0.11μg/mL and 50 to 73, respectively. Intra- and inter-day precision were lower than 8.9% and the recoveries were around 85.5-116.6% for all tocopherols and tocotrienols. The developed DLLME method was successfully applied to cereals: rice, barley, oat, wheat, corn and millet. This new sample preparation approach represents an inexpensive, rapid, simple and precise sample cleanup and concentration method for the determination of tocopherols and tocotrienols in cereals. Copyright © 2013 Elsevier B.V. All rights reserved.
Saien, Javad; Daneshamoz, Sana
2018-03-01
The influence of ultrasonic waves on liquid-liquid extraction of circulating drops and in the presence of magnetite nanoparticles was investigated. Experiments were conducted in a column equipped with an ultrasound transducer. The frequency and intensity of received waves, measured by the hydrophone standard method, were 35.40 kHz and 0.37 mW/cm 2 , respectively. The recommended chemical system of cumene-isobutyric acid-water was used in which mass transfer resistance lies in the aqueous phase. Nanoparticles, within concentration range of (0.0003-0.0030) wt%, were added to the aqueous continuous phase. The presence of nanoparticles and ultrasonic waves provided no sensible change in drop size (within 2.49-4.17 mm) and measured terminal velocities were close to Grace model. However, presence of nanoparticles, caused mass transfer to decrease. This undesired effect was significantly diminished by using ultrasonic waves so that mass transfer coefficient increased from (73.0-178.2) to (130.2-240.2) µm/s, providing a 55.6% average enhancement. It is presumably due to disturbing the accumulated nanoparticles around the drops. The current innovative study highlights the fact that using ultrasonic waves is an interesting way to improve liquid-liquid extraction in the presence and absence of nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Inaba, Hideo; Morita, Shin-Ichi
This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.
NASA Astrophysics Data System (ADS)
Bertie, John E.; Michaelian, Kirk H.
1998-10-01
This paper is concerned with the peak wave number of very strong absorption bands in infrared spectra of molecular liquids. It is well known that the peak wave number can differ depending on how the spectrum is measured. It can be different, for example, in a transmission spectrum and in an attenuated total reflection spectrum. This difference can be removed by transforming both spectra to the real, n, and imaginary, k, refractive index spectra, because both spectra yield the same k spectrum. However, the n and k spectra can be transformed to spectra of any other intensity quantity, and the peak wave numbers of strong bands may differ by up to 6 cm-1 in the spectra of the different quantities. The question which then arises is "which infrared peak wave number is the correct one to use in the comparison of infrared wave numbers of molecular liquids with wave numbers in other spectra?" For example, infrared wave numbers in the gas and liquid phase are compared to observe differences between the two phases. Of equal importance, the wave numbers of peaks in infrared and Raman spectra of liquids are compared to determine whether the infrared-active and Raman-active vibrations coincide, and thus are likely to be the same, or are distinct. This question is explored in this paper by presenting the experimental facts for different intensity quantities. The intensity quantities described are macroscopic properties of the liquid, specifically the absorbance, attenuated total reflectance, imaginary refractive index, k, imaginary dielectric constant, ɛ″, and molar absorption coefficient, Em, and one microscopic property of a molecule in the liquid, specifically the imaginary molar polarizability, αm″, which is calculated under the approximation of the Lorentz local field. The main experimental observations are presented for the strongest band in the infrared spectrum of each of the liquids methanol, chlorobenzene, dichloromethane, and acetone. Particular care was paid to wave number calibration of both infrared and Raman spectra. Theoretical arguments indicate that the peak wave number in the αm″ spectrum is the correct one to use, because it is the only one that reflects the properties of molecules in their local environment in the liquid free from predictable long-range resonant dielectric effects. However, it is found that the comparison with Raman wave numbers is confused when the anisotropic local intermolecular forces and configuration in the liquid are significant. In these cases, the well known noncoincidence of the isotropic and anisotropic Raman scattering is observed, and the same factors lead to noncoincidence of the infrared and Raman bands.
NASA Astrophysics Data System (ADS)
Tafwidli, Fahmi; Choi, Moo-Eob; Yi, Sang-Ho; Kang, Youn-Bae
2018-02-01
Evaporation of Cu or Sn from liquid iron alloys containing C and S was experimentally investigated. The initial C concentration, [pct C]0, in the liquid alloy was varied from zero to C saturation, and the evaporation temperature was varied from 1513 K to 1773 K (1240 °C to 1500 °C). Along with the report by one of the present authors, the evaporation mechanism of Cu and Sn from liquid Fe-C-S alloy is proposed, after a modification from the previous mechanism. It was proposed that Cu and Sn evaporate as Cu(g) and Sn(g) and also evaporate as CuS(g) and SnS(g), which are more volatile species. Therefore, availability of S in the alloy affects the overall evaporation rate of Cu and Sn. At the same time, C in the alloy also forms volatile carbosulfides CS(g) and CS2(g), thereby competing with Cu and Sn. Moreover, C increases the activity coefficients of Cu, Sn, and S. This increases the thermodynamic driving force for the formation of CuS(g) and SnS(g). Therefore, increasing [pct C] partly accelerates the evaporation rate of Cu and Sn by increasing the activity coefficient but partly decelerates the evaporation rate by lowering the available S content. S partly accelerates the evaporation rate by increasing the available S for the sulfide gas species but partly decelerates the evaporation rate due to the surface poisoning effect. Increasing the reaction temperature increases the overall evaporation rate. All these facts were taken into account in order to develop an evaporation rate model. This model was extended from the present authors' previous one by taking into account (1) CS(g), S(g), and CS2(g) (therefore, the following species were considered as dominant evaporating species: Cu(g), CuS(g), Sn(g), SnS(g), S(g), CS(g), and CS2(g)); (2) the effect of C and temperature on the activity coefficients of Cu, Sn, and S; (3) the effect of C and temperature on the density of the liquid alloy; and (4) the effect of temperature on the S adsorption coefficient. This revised evaporation model was used in order to explain the experimental data, and it showed good agreement. In particular, it was found that the temperature showed a significant effect on the evaporation rate, and the effect of temperature and C content on the activity coefficients of Cu, Sn, and S also significantly affected the evaporation rate. The chemical reaction rate constant of the individual evaporation reaction ( kiR ) and residual rate constant ( kir ) could be obtained as a function of temperature. The activation energy of each evaporation reaction was derived and discussed. The evaporation rate model can be applied in order to predict the content of Cu and Sn remaining in liquid iron under various conditions of temperature and [pct C].
NASA Astrophysics Data System (ADS)
Tafwidli, Fahmi; Choi, Moo-Eob; Yi, Sang-Ho; Kang, Youn-Bae
2018-06-01
Evaporation of Cu or Sn from liquid iron alloys containing C and S was experimentally investigated. The initial C concentration, [pct C]0, in the liquid alloy was varied from zero to C saturation, and the evaporation temperature was varied from 1513 K to 1773 K (1240 °C to 1500 °C). Along with the report by one of the present authors, the evaporation mechanism of Cu and Sn from liquid Fe-C-S alloy is proposed, after a modification from the previous mechanism. It was proposed that Cu and Sn evaporate as Cu(g) and Sn(g) and also evaporate as CuS(g) and SnS(g), which are more volatile species. Therefore, availability of S in the alloy affects the overall evaporation rate of Cu and Sn. At the same time, C in the alloy also forms volatile carbosulfides CS(g) and CS2(g), thereby competing with Cu and Sn. Moreover, C increases the activity coefficients of Cu, Sn, and S. This increases the thermodynamic driving force for the formation of CuS(g) and SnS(g). Therefore, increasing [pct C] partly accelerates the evaporation rate of Cu and Sn by increasing the activity coefficient but partly decelerates the evaporation rate by lowering the available S content. S partly accelerates the evaporation rate by increasing the available S for the sulfide gas species but partly decelerates the evaporation rate due to the surface poisoning effect. Increasing the reaction temperature increases the overall evaporation rate. All these facts were taken into account in order to develop an evaporation rate model. This model was extended from the present authors' previous one by taking into account (1) CS(g), S(g), and CS2(g) (therefore, the following species were considered as dominant evaporating species: Cu(g), CuS(g), Sn(g), SnS(g), S(g), CS(g), and CS2(g)); (2) the effect of C and temperature on the activity coefficients of Cu, Sn, and S; (3) the effect of C and temperature on the density of the liquid alloy; and (4) the effect of temperature on the S adsorption coefficient. This revised evaporation model was used in order to explain the experimental data, and it showed good agreement. In particular, it was found that the temperature showed a significant effect on the evaporation rate, and the effect of temperature and C content on the activity coefficients of Cu, Sn, and S also significantly affected the evaporation rate. The chemical reaction rate constant of the individual evaporation reaction ( kiR ) and residual rate constant ( kir ) could be obtained as a function of temperature. The activation energy of each evaporation reaction was derived and discussed. The evaporation rate model can be applied in order to predict the content of Cu and Sn remaining in liquid iron under various conditions of temperature and [pct C].
Chromium Distribution between Liquid Slag and Matte Phases
NASA Astrophysics Data System (ADS)
Eric, R. Hurman
The distribution of chromium between liquid silicate slags and copper-iron-nickel matte phases encountered in electric smelting of PGM containing South African sulphide concentrates were experimentally studied under controlled partial pressures of oxygen and sulphur. The reported experiments were conducted under silica saturation through the use of silica crucibles. Seven representative slag compositions were equilibrated with a typical sulphur deficient matte containing 18% Ni, 11% Cu, 42% Fe and 29% S. The slag constituents varied in the following ranges: SiO2: 42-58%, Al2O3: 3.5-9.0%, Fe2O3: 13-21%, MgO: 15.6-25%, CaO: 2-15%, Cr2O3: 0.2-3.5%. The slag and matte samples were synthetically prepared from pure components. The chromium content of the two phases was analysed chemically. According to the present available results of this ongoing research it was found that the partition of chromium to the matte phase decreased with an increase in the partial pressures of both oxygen and sulphur where the value of the distribution coefficient of chromium between the matte and the slag phase varied from as low as 0.07 to as high as 5.5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Xu, Zhijie; Lai, Canhai
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO2) capture to predict the CO2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive and reactive massmore » transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
Wang, Chao; Xu, Zhijie; Lai, Canhai; ...
2018-03-27
The standard two-film theory (STFT) is a diffusion-based mechanism that can be used to describe gas mass transfer across liquid film. Fundamental assumptions of the STFT impose serious limitations on its ability to predict mass transfer coefficients. To better understand gas absorption across liquid film in practical situations, a multiphase computational fluid dynamics (CFD) model fully equipped with mass transport and chemistry capabilities has been developed for solvent-based carbon dioxide (CO 2) capture to predict the CO 2 mass transfer coefficient in a wetted wall column. The hydrodynamics is modeled using a volume of fluid method, and the diffusive andmore » reactive mass transfer between the two phases is modeled by adopting a one-fluid formulation. We demonstrate that the proposed CFD model can naturally account for the influence of many important factors on the overall mass transfer that cannot be quantitatively explained by the STFT, such as the local variation in fluid velocities and properties, flow instabilities, and complex geometries. The CFD model also can predict the local mass transfer coefficient variation along the column height, which the STFT typically does not consider.« less
2010-01-01
Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus) essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita) and eucalyptus (Eucalyptus globulus) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%). Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious morphological changes in cellular structures and cell surface alterations. PMID:21067604
Detection of Ionic liquid using terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin
2018-01-01
Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyeon-Deuk, Kim, E-mail: kim@kuchem.kyoto-u.ac.jp; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012; Ando, Koji
2014-05-07
Liquid para-hydrogen (p-H{sub 2}) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H{sub 2}. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computationalmore » cost, by which basic experimental properties of p-H{sub 2} liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, D.; Rovere, M.; Gallo, P., E-mail: gallop@fis.uniroma3.it
2015-09-21
In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show howmore » different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.« less
Determination of teicoplanin concentrations in serum by high-pressure liquid chromatography.
Joos, B; Lüthy, R
1987-01-01
An isocratic reversed-phase high-pressure liquid chromatographic method for the determination of six components of the teicoplanin complex in biological fluid was developed. By using fluorescence detection after precolumn derivatization with fluorescamine, the assay is specific and highly sensitive, with reproducibility studies yielding coefficients of variation ranging from 1.5 to 8.5% (at 5 to 80 micrograms/ml). Response was linear from 2.5 to 80 micrograms/ml (r = 0.999); the recovery from spiked human serum was 76%. An external quality control was performed to compare this high-pressure liquid chromatographic method (H) with a standard microbiological assay (M); no significant deviation from slope = 1 and intercept = 0 was found by regression analysis (H = 1.03M - 0.45; n = 15). PMID:2957953
Integral Equation Study of Molecular Fluids and Liquid Crystals in Two Dimensions
NASA Astrophysics Data System (ADS)
Ward, David Atlee
The Ornstein-Zernike (OZ) equation is solved with a Percus-Yevick (PY) closure for the hard ellipse and hard planar dumbell fluids in two dimensions. The correlation functions, including the orientation correlation function, are expanded in a set of orthogonal functions and the coefficients are solved for using an iterative algorithm developed by Lado. The pressure, compressibility, and orientation coefficients are computed for a variety of densities and molecular elongations. The hard planar dumbell fluid shows no orientational ordering. The PY values for the pressure differ from the corresponding Monte Carlo (MC) values by as much as 8% for the cases studied. The hard ellipse fluid exhibits some orientational ordering. Ordering is much more pronounced for ellipses with an axis ratio larger than 2.0. Pressure values computed for the hard ellipse fluid from the PY theory differ from the corresponding MC values by as much as 11% for the cases studied. As the PY solutions do exhibit a nematic character in the hard ellipse fluid, we find it to be a viable reference system for further studies of the nematic liquid crystal phase, though the isotropic-nematic (I-N) phase transition found by Vieillard-Baron was not observed in the PY solutions. The Maier-Saupe theory was reformulated based on the density functional formalism of Sluckin and Shukla. Using PY data of the hard ellipse as input for the direct correlation function in the isotropic phase, the orientational distribution was calculated. The values obtained showed only extremely weak nematic behavior.
NASA Astrophysics Data System (ADS)
Beckett, John R.
2002-01-01
Activity coefficients of oxide components in the system CaO-MgO-Al2O3-SiO2 (CMAS) were calculated with the model of Berman (Berman R. G., ;A thermodynamic model for multicomponent melts with application to the system CaO-MgO-Al2O3-SiO2,; Ph.D. dissertation, University of British Columbia, 1983) and used to explore large-scale relationships among these variables and between them and the liquid composition. On the basis of Berman's model, the natural logarithm of the activity coefficient of MgO, ln(γMgOLiq), and ln(γMgOLiq/γSiO2Liq) are nearly linear functions of ln(γCaOLiq). All three of these variables are simple functions of the optical basicity Λ with which they display minima near Λ ∼ 0.54 that are generated by liquids with low ratios of nonbridging to tetrahedral oxygens (NBO/T) (<0.3) and a mole fraction ratio, XSiO2Liq/XAl2O3Liq, in the range 4 to 20. Variations in ln(γCaOLiq) at constant Λ near the minimum are due mostly to liquids with (XCaOLiq + XMgOLiq)/XAl2O3Liq < 1. The correlations with optical basicity imply that the electron donor power is an important factor in determining the thermodynamic properties of aluminosilicate liquids. For a constant NBO/T, ln(γCaOLiq/γAl2O3Liq) and ln(γMgOLiqγAl2O3Liq) form curves in terms of XSiO2Liq/XAl2O3Liq. The same liquids that generate minima in the Λ plots are also associated with minima in ln(γCaOLiqγAl2O3Liq) and ln(γMgOLiqγAl2O3Liq) as a function of XSiO2Liq/XAl2O3Liq. In addition, there are maxima or sharp changes in slope for NBO/T > 0.3, which occur for XSiO2Liq/XAl2O3Liq ranging from ∼0 to ∼6 and increase with increasing NBO/T. The systematic variations in activity coefficients as a function of composition and optical basicity reflect underlying shifts in speciation as the composition of the liquid is changed. On the basis of correlations among the activity coefficients, it is likely that the use of CaO, an exchange component such as SiMg-1 and two of MgO, CaAl2O4, or MgAl2O4 would yield significant savings in the number of parameters required to model the excess free energy surface of liquids over large portions of CMAS relative to the use of oxide end members. Systematic behavior of thermodynamic properties extends to small amounts of other elements dissolved in otherwise CMAS liquids. For example, ln(XFe2+Liq/XFe3+Liq) at constant oxygen fugacity is linearly correlated with ln(γCaOLiq). Similarly, ln(CS), where CS is the sulfide capacity is linearly correlated at constant temperature with each of the optical basicity, ln(aCaOLiq) and ln(γCaOLiq), although the correlation for the latter breaks down for low values of Λ. The well-known systematic behavior of sulfide capacity as a function of optical basicity for systems inside as well as outside CMAS suggests that ln(γCaSLiq) is also a simple function of optical basicity and that the relationships observed among the activity coefficients in CMAS may hold for more complex systems.
Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop
2014-10-01
This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612. Copyright © 2014 Elsevier Ltd. All rights reserved.
Onset of Cooperative Dynamics in an Equilibrium Glass-Forming Metallic Liquid
Jaiswal, Abhishek; O’Keeffe, Stephanie; Mills, Rebecca; ...
2016-01-22
Onset of cooperative dynamics has been observed in many molecular liquids, colloids, and granular materials in the metastable regime on approaching their respective glass or jamming transition points, and is considered to play a significant role in the emergence of the slow dynamics. However, the nature of such dynamical cooperativity remains elusive in multicomponent metallic liquids characterized by complex many-body interactions and high mixing entropy. Herein, we report evidence of onset of cooperative dynamics in an equilibrium glass-forming metallic liquid (LM601: Zr 51Cu 36Ni 4Al 9). This is revealed by deviation of the mean effective diffusion coefficient from its high-temperaturemore » Arrhenius behavior below T A ≈ 1300 K, i.e., a crossover from uncorrelated dynamics above T A to landscape-influenced correlated dynamics below T A. Moreover, the onset/ crossover temperature T A in such a multicomponent bulk metallic glass-forming liquid is observed at approximately twice of its calorimetric glass transition temperature (T g ≈ 697 K) and in its stable liquid phase, unlike many molecular liquids.« less
Cao, Xiaoji; Shen, Lingxiao; Ye, Xuemin; Zhang, Feifei; Chen, Jiaoyu; Mo, Weimin
2014-04-21
An ultrasound-assisted magnetic solid-phase extraction procedure with the [C7MIM][PF6] ionic liquid-coated Fe3O4-grafted graphene nanocomposite as the magnetic adsorbent has been developed for the determination of five nitrobenzene compounds (NBs) in environmental water samples, in combination with high performance liquid chromatography-photodiode array detector (HPLC-PDA). Several significant factors that affect the extraction efficiency, such as the types of magnetic nanoparticle and ionic liquid, the volume of ionic liquid and the amount of magnetic nanoparticles, extraction time, ionic strength, and solution pH, were investigated. With the assistance of ultrasound, adsorbing nitrobenzene compounds by ionic liquid and self-aggregating ionic liquid onto the surface of the Fe3O4-grafted graphene proceeded synchronously, which made the extraction achieved the maximum within 20 min using only 144 μL [C7MIM][PF6] and 3 mg Fe3O4-grafted graphene. Under the optimized conditions, satisfactory linearities were obtained for all NBs with correlation coefficients larger than 0.9990. The mean recoveries at two spiked levels ranged from 80.35 to 102.77%. Attributed to the convenient magnetic separation, the Fe3O4-grafted graphene could be recycled many times. The proposed method was demonstrated to be feasible, simple, solvent-saving and easy to operate for the trace analysis of NBs in environmental water samples.
Polishuk, Ilya
2013-03-14
This study is the first comparative investigation of predicting the isochoric and the isobaric heat capacities, the isothermal and the isentropic compressibilities, the isobaric thermal expansibilities, the thermal pressure coefficients, and the sound velocities of ionic liquids by statistical associating fluid theory (SAFT) equation of state (EoS) models and cubic-plus-association (CPA). It is demonstrated that, taking into account the high uncertainty of the literature data (excluding sound velocities), the generalized for heavy compounds version of SAFT+Cubic (GSAFT+Cubic) appears as a robust estimator of the auxiliary thermodynamic properties under consideration. In the case of the ionic liquids the performance of PC-SAFT seems to be less accurate in comparison to ordinary compounds. In particular, PC-SAFT substantially overestimates heat capacities and underestimates the temperature and pressure dependencies of sound velocities and compressibilities. An undesired phenomenon of predicting high fictitious critical temperatures of ionic liquids by PC-SAFT should be noticed as well. CPA is the less accurate estimator of the liquid phase properties, but it is advantageous in modeling vapor pressures and vaporization enthalpies of ionic liquids. At the same time, the preliminary results indicate that the inaccuracies in predicting the deep vacuum vapor pressures of ionic liquids do not influence modeling of phase equilibria in their mixtures at much higher pressures.
Steam tables for pure water as an ActiveX component in Visual Basic 6.0
NASA Astrophysics Data System (ADS)
Verma, Mahendra P.
2003-11-01
The IAPWS-95 formulation for the thermodynamic properties of pure water was implemented as an ActiveX component ( SteamTables) in Visual Basic 6.0. For input parameters as temperature ( T=190-2000 K) and pressure ( P=3.23×10 -8-10,000 MPa) the program SteamTables calculates the following properties: volume ( V), density ( D), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( Cp), heat capacity at constant volume ( Cv), coefficient of thermal expansion ( CTE), isothermal compressibility ( Ziso), velocity of sound ( VelS), partial derivative of P with T at constant V (d Pd T), partial derivative of T with V at constant P (d Td V), partial derivative of V with P at constant T (d Vd P), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons) for the liquid and vapor phases of pure water. It also calculates T as a function of P (or P as a function of T) along the sublimation, saturation and critical isochor curves, depending on the values of P (or T). The SteamTables can be incorporated in a program in any computer language, which supports object link embedding (OLE) in the Windows environment. An application of SteamTables is illustrated in a program in Visual Basic 6.0 to tabulate the values of the thermodynamic properties of water and vapor. Similarly, four functions, Temperature(Press), Pressure(Temp), State(Temp, Press) and WtrStmTbls(Temp, Press, Nphs, Nprop), where Temp, Press, Nphs and Nprop are temperature, pressure, phase number and property number, respectively, are written in Visual Basic for Applications (VBA) to use the SteamTables in a workbook in MS-Excel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salud, J.; Lopez, D.O.; Barrio, M.
The experimental two-component phase diagram between the orientationally disordered crystals 2-amino-2-methyl-1,3-propanediol (AMP) and 1,1,1-tris(hydroxymethyl)propane (PG) has been established from room temperature to the liquid state using thermal analysis and X-ray powder diffraction techniques. The intermolecular interactions in the orientationally disordered mixed crystals of the mentioned system and other related two-component systems are discussed by analyzing the evolution of the packing coefficient as a function of the composition. A thermodynamic analysis of the presented phase diagram and the redetermined AMP/NPG (2,2-dimethyl-1,3-propanediol) is reported on the basis of the enthalpy-entropy compensation theory.
Takahasi Nearest-Neighbour Gas Revisited II: Morse Gases
NASA Astrophysics Data System (ADS)
Matsumoto, Akira
2011-12-01
Some thermodynamic quantities for the Morse potential are analytically evaluated at an isobaric process. The parameters of Morse gases for 21 substances are obtained by the second virial coefficient data and the spectroscopic data of diatomic molecules. Also some thermodynamic quantities for water are calculated numerically and drawn graphically. The inflexion point of the length L which depends on temperature T and pressure P corresponds physically to a boiling point. L indicates the liquid phase from lower temperature to the inflexion point and the gaseous phase from the inflexion point to higher temperature. The boiling temperatures indicate reasonable values compared with experimental data. The behaviour of L suggests a chance of a first-order phase transition in one dimension.
Self-diffusion of Si and O in diopside-anorthite melt at high pressures
NASA Astrophysics Data System (ADS)
Tinker, David; Lesher, Charles E.; Hutcheon, Ian D.
2003-01-01
Self-diffusion coefficients for Si and O in Di 58An 42 liquid were measured from 1 to 4 GPa and temperatures from 1510 to 1764°C. Glass starting powders enriched in 18O and 28Si were mated to isotopically normal glass powders to form simple diffusion couples, and self-diffusion experiments were conducted in the piston cylinder device (1 and 2 GPa) and in the multianvil apparatus (3.5 and 4 GPa). Profiles of 18O/ 16O and 29,30Si/ 28Si were measured using secondary ion mass spectrometry. Self-diffusion coefficients for O (D(O)) are slightly greater than self-diffusion coefficients for Si (D(Si)) and are often the same within error. For example, D(O) = 4.20 ± 0.42 × 10 -11 m 2/s and D(Si) = 3.65 ± 0.37 × 10 -11 m 2/s at 1 GPa and 1662°C. Activation energies for self-diffusion are 215 ± 13 kJ/mol for O and 227 ± 13 kJ/mol for Si. Activation volumes for self-diffusion are -2.1 ± 0.4 cm 3/mol and -2.3 ± 0.4 cm 3/mol for O and Si, respectively. The similar self-diffusion coefficients for Si and O, similar activation energies, and small, negative activation volumes are consistent with Si and O transport by a cooperative diffusion mechanism, most likely involving the formation and disassociation of a high-coordinated intermediate species. The small absolute magnitudes of the activation volumes imply that Di 58An 42 liquid is close to a transition from negative to positive activation volume, and Adam-Gibbs theory suggests that this transition is linked to the existence of a critical fraction (˜0.6) of bridging oxygen.
NASA Astrophysics Data System (ADS)
Kolacz, Jakub
We first explore the topology of liquid crystals and look at the fundamental limitations of liquid crystals in confined geometries. The properties of liquid crystal droplets are studied both theoretically and through simulations. We then demonstrate a method of chemically patterning surfaces that allows us to generate periodic arrays of micron-sized liquid crystal droplets and compare them to our simulation results. The parallelizable method of self-localizing liquid crystals using 2D chemical patterning developed here has applications in liquid crystal biosensors and lens arrays. We also present the first work looking at colloidal liquid crystals under the guise of thermophoresis. We observe that strong negative thermophoresis occurs in these systems and develop a theory based on elastic energy minimization. We also calculate a Soret coefficient two orders of magnitude larger than those present in the literature. This large Soret coefficient has considerable potential for improving thermophoretic sorting mechanisms such as Thermal-Field Flow Fractionation and MicroScale Thermophoresis. The final piece of this work demonstrates a method of using projection lithography to polymerize liquid crystal colloids with a defined internal director. While still a work in progress, there is potential for generating systems of active colloids that can change shape upon external stimulus and in the generation of self-folding shapes by selective polymerization and director predetermination in the vain of micro-kirigami.
NASA Astrophysics Data System (ADS)
Lee, Seunghyun
Future manned space endeavors will require a new class of vehicles, capable of conducting different types of missions and enduring varying gravitational and temperature environments. Thermal management will play a vital role in these new vehicles, and is complicated by the need to tackle both low and high heat sink temperatures. The present study assesses the feasibility of hybrid thermal control system by thermodynamic analysis and investigates the heat transfer mechanisms in two large micro-channel heat exchangers in vapor compression mode and two-phase mode. Unlike prior published two-phase micro-channel studies that concern mostly miniature heat sinks, this study addresses transport characteristics of a heat sink containing large length-to-diameter ratio, up to 609.6 to 1,micro-channels. In the thermodynamic analysis, four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the H-TCS. The experimental flow boiling investigation consists of exploring the steady-state and the transient two-phase heat transfer characteristics of two large micro-channel heat exchangers that serve as evaporators in the vapor compression loop using R134a as refrigerant. Both heat exchangers feature parallel micro-channels with identical 1x1-mm2 cross-sections. The evaporators are connected in series, with the smaller 152.4-mm long heat exchanger situated upstream of the larger 609.6-mm long heat exchanger. In the steady-state characteristics part, it is shown low qualities are associated with slug flow and dominated by nucleate boiling, and high qualities with annular flow and convective boiling. Important transition points between the different heat transfer regimes are identified as (1) intermittent dryout, resulting from vapor blanket formation in liquid slugs and/or partial dryout in the liquid film surrounding elongated bubbles, (2) incipient dryout, resulting from dry patch formation in the annular film, and (3) complete dryout, following which the wall has to rely entirely on the mild cooling provided by droplets deposited from the vapor core. In the transient characteristics part, heat transfer measurement and high speed video are used to investigate variations of heat transfer coefficient with quality for different mass velocities and heat fluxes, as well as transient fluid flow and heat transfer behavior. An important transient phenomenon that influences both fluid flow and heat transfer is a liquid wave composed of remnants of liquid slugs from the slug flow regime. The liquid wave serves to replenish dry wall patches in the slug flow regime and to a lesser extent the annular regime. Unlike small heat sinks employed in the electronics industry, TCS heat sinks are characterized by large length-to-diameter ratio, for which limited information is presently available. The large length-to-diameter ratio of 609.6 is especially instrumental to capturing detailed axial variations of flow pattern and corresponding variations in local heat transfer coefficient. High-speed video analysis of the inlet plenum shows appreciable vapor backflow under certain operating conditions, which is also reflected in periodic oscillations in the measured pressure drop. In fact, the backflow frequency captured by video matches closely the frequency obtained from Fourier analysis of the pressure drop signal. It is shown the periodic oscillations and vapor backflow are responsible for initiating intermittent dryout and appreciable drop in local heat transfer coefficient in the downstream regions of the channels. A parametric study of oscillation frequency shows a dependence on four dimensionless parameters that account for amount of vapor generation, subcooling, and upstream liquid length, in addition to Weber number. A new correlation for oscillation frequency is constructed that captures the frequency variations relative to these individual parameters. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Zaller, Michelle; Anderson, Robert C.; Hicks, Yolanda R.; Locke, Randy J.
1999-01-01
In aviation gas turbine combustors, many factors, such as the degree and extent of fuel/air mixing and fuel vaporization achieved prior to combustion, influence the formation of undesirable pollutants. To assist in analyzing the extent of fuel/air mixing, flow visualization techniques have been used to interrogate the fuel distributions during subcomponent tests of lean-burning fuel injectors. Discrimination between liquid and vapor phases of the fuel was determined by comparing planar laser-induced fluorescence (PLIF) images, elastically-scattered light images, and phase/Doppler interferometer measurements. Estimates of Sauter mean diameters are made by ratioing PLIF and Mie scattered intensities for various sprays, and factors affecting the accuracy of these estimates are discussed. Mie calculations of absorption coefficients indicate that the fluorescence intensities of individual droplets are proportional to their surface areas, instead of their volumes, due to the high absorbance of the liquid fuel for the selected excitation wavelengths.
Sergi, Manuel; Compagnone, Dario; Curini, Roberta; D'Ascenzo, Giuseppe; Del Carlo, Michele; Napoletano, Sabino; Risoluti, Roberta
2010-08-24
A confirmatory method for the determination of illicit drugs based on micro-solid phase extraction with modified tips, made of a functionalized fiberglass with apolar chains of octadecylsilane into monolithic structure, has been developed in this study. Drugs belonging to different chemical classes, such as amphetamine, methamphetamine, methylenedioxyamphetamine, methylenedioxyethylamphetamine, methylenedioxymethylamphetamine, cocaine, benzoylecgonine, ketamine, mescaline, phencyclidine and psilocybine were analyzed. The quantitation was performed by liquid chromatography-tandem mass spectrometry and the analytes were detected in positive ionization by means of an electrospray source. The limits of quantification ranged between 0.3 ng mL(-1) for cocaine and 4.9 ng mL(-1) for psilocybine, with coefficients of determination (r(2)) >0.99 for all the analytes as recommended in the guidelines of Society of Forensic Toxicologists-American Association Forensic Sciences. 2010 Elsevier B.V. All rights reserved.
Li, Zhipeng; Liu, Feng; You, Hong; Ding, Yi; Yao, Jie; Jin, Chao
2018-04-01
This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al 2 O 3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al 2 O 3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnO X /activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.
Cryogenic coefficient of thermal expansion measurements of type 440 and 630 stainless steel
NASA Astrophysics Data System (ADS)
Cease, H.; Alvarez, M.; Flaugher, B.; Montes, J.
2014-01-01
The Dark Energy Camera is now installed on the Blanco 4m telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is cooled to 170K using a closed loop two-phase liquid nitrogen system. A submerged centrifugal pump is used to circulate the liquid from the base of the telescope to the camera in the prime focus cage. As part of the pump maintenance schedule, the rotor shaft bearings are periodically replaced. Common bearing and shaft materials are type 440 and 630 (17-4 PH) stainless steel. The coefficient of thermal expansion of the materials used is needed to predict the shaft and bearing housing dimensional changes at the 77K pump operating temperature. The thermal expansion from room temperature to 77K of type 440 and 630 stainless steel is presented . Measurements are performed using the ASTM E228 standard with a quartz push-rod dilatometer test stand. Aluminum 6061-T6 is used to calibrate the test stand.
Enhancing thermoelectric properties of organic composites through hierarchical nanostructures
Zhang, Kun; Zhang, Yue; Wang, Shiren
2013-01-01
Organic thermoelectric (TE) materials are very attractive due to easy processing, material abundance, and environmentally-benign characteristics, but their potential is significantly restricted by the inferior thermoelectric properties. In this work, noncovalently functionalized graphene with fullerene by π-π stacking in a liquid-liquid interface was integrated into poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). Graphene helps to improve electrical conductivity while fullerene enhances the Seebeck coefficient and hinders thermal conductivity, resulting in the synergistic effect on enhancing thermoelectric properties. With the integration of nanohybrids, the electrical conductivity increased from ~10000 to ~70000 S/m, the thermal conductivity changed from 0.2 to 2 W·K−1m−1 while the Seebeck coefficient was enhanced by around 4-fold. As a result, nanohybrids-based polymer composites demonstrated the figure of merit (ZT) as high as 6.7 × 10−2, indicating an enhancement of more than one order of magnitude in comparison to single-phase filler-based polymer composites with ZT at the level of 10−3. PMID:24336319
Dragging a floating horizontal cylinder
NASA Astrophysics Data System (ADS)
Lee, Duck-Gyu; Kim, Ho-Young
2010-11-01
A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.
Zhang, Renduo; Wood, A Lynn; Enfield, Carl G; Jeong, Seung-Woo
2003-01-01
Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.
Water-enhanced solvation of organic solutes in ketone and ester solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.H.; Brunt, V. van; King, C.J.
1994-05-01
Previous research has shown that the solubilities of dicarboxylic acids in certain electron-donor solvents are substantially increased in the presence of water. Information on solubilities, liquid-liquid equilibria and maximum-boiling ternary azeotropes was screened so as to identify other systems where codissolved water appears to enhance solvation of organic solutes in solvents. Several carboxylic acids, an alcohol, diols, and phenols were selected for examination as solutes in ketone and ester solvents. Effects of water upon solute solubilities and volatilities were measured. Results showed that water-enhanced solvation is greatest for carboxylic acids. Solute activity coefficients decreased by factors of 2--3, 6--8, andmore » 7--10 due to the presence of water for mono-, di and tricarboxylic acids, respectively. Activity coefficients decreased by a factor of about 1.5 for ethanol and 1,2-propanediol as solutes. Water-enhanced solvation of phenols is small, when existent.« less
Park, Ji-Yeon; Choi, Jeong-Heui; Abd El-Aty, A M; Kim, Bo Mi; Park, Jong-Hyouk; Choi, Woo Jung; Shim, Jae-Han
2011-09-01
The acidic herbicides are an important class of chemical compounds that are used to control a variety of weeds that threaten many crops. Owing to their low microbial activity levels, the acidic herbicides exhibit a residual activity remaining for periods of up to several months in soils and water. The principal objective of this study was to develop an analytical method based on liquid-liquid and solid-phase extraction followed by HPLC, for the determination of 2,4-D in paddy field water. The residues were verified via tandem mass spectrometry (MS/MS) in negative-ion electrospray ionization (ESI) mode. Linearity was good over a concentration range of 1-100 µg/L with a correlation coefficient (r(2) ) of 0.999. The mean recovery rates of triplicate results ranged from 85.2 to 90.85%. The limits of detection and quantitation were 0.4 and 1.0 µg/L, respectively. The method proposed herein was applied to field samples acquired from Hampyung and Sunchang counties, Republic of Korea. The analyte was detected at a concentration range of 6.8-12.8 and 3.55-24.0 µg/L, respectively. Copyright © 2010 John Wiley & Sons, Ltd.
Apparent contact angle and contact angle hysteresis on liquid infused surfaces.
Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim
2016-12-21
We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.
Dewetting of low-viscosity films at solid/liquid interfaces.
Péron, Nicolas; Brochard-Wyart, Françoise; Duval, Hervé
2012-11-13
We report new experimental results on the dewetting of a mercury film (A) intercalated between a glass slab and an external nonmiscible liquid phase (B) under conditions of a large equilibrium contact angle. The viscosity of the external phase, ηB, was varied over 7 orders of magnitude. We observe a transition between two regimes of dewetting at a threshold viscosity of η(B)* ≈ (ρ(A)e|S̃|)(1/2), where ρ(A) is the mercury density, e is the film thickness, and |S̃| is the effective spreading coefficient. For η(B) < η(B)*, the regime is inertial. The velocity of dewetting is constant and ruled by Culick’s law, V ≈ (|S̃|/(ρ(A)e))(1/2). Capillary waves were observed at high dewetting velocities: they are a signature of hydraulic shock. For η(B) > η(B)*, the regime is viscous. The dewetting velocity is constant and scales as V ≈ |S̃|/η(B) in the limit of large η(B). We interpret this regime by a balance between the surface energy released during dewetting and the viscous dissipation in the surrounding liquid.
Wong, Siu-Kay
2010-01-01
An interlaboratory study was conducted to evaluate a method for the determination of 3 Aconitum alkaloids, viz., aconitine, mesaconitine, and hypaconitine, in raw botanical material and dietary supplements. The alkaloids were extracted with diethyl ether in the presence of ammonia. After cleanup by solid-phase extraction to remove matrix interferences, the alkaloids were determined by reversed-phase liquid chromatography (LC)/UV detection at 235 nm with confirmation by LC/tandem mass spectrometry (MS/MS). A total of 14 blind duplicates were successfully analyzed by 12 collaborators. For repeatability, the relative standard deviation (RSDr) values ranged from 1.9 to 16.7%, and for reproducibility, the RSDR values ranged from 6.5 to 33%. The HorRat values were all <2 with only one exception at 2.3. All collaborating laboratories had calibration curves with correlation coefficients of >0.998. In addition, 6 collaborators performed the confirmation and were able to verify the identities of the alkaloids by using LC/MS/MS. PMID:19382567
Polymeric ionic liquid bucky gels as sorbent coatings for solid-phase microextraction.
Zhang, Cheng; Anderson, Jared L
2014-05-30
Novel cross-linked polymeric ionic liquid (PIL) bucky gels were formed by free-radical polymerization of polymerizable ionic liquids gelled with multi-walled carbon nanotubes (MWCNT) and used as sorbent coatings for solid-phase microextraction (SPME). The combination of PIL with MWCNTs significantly enhanced the π-π interaction between the sorbent coatings and the aromatic analytes. Compared to the neat PIL-based sorbent coating, the PIL bucky gel sorbent coatings demonstrated higher extraction efficiency for the extraction of polycyclic aromatic hydrocarbons (PAHs). A partitioning extraction mechanism was observed for the PIL/MWCNT-based sorbent coatings indicating that the addition of MWCNTs did not seem to affect the extraction mechanism of the sorbent coating. The analyte-to-coating partition coefficients (logKfs) were estimated and the limits of detection (LOD) for selected PIL bucky gel sorbent coating were determined to be in the range of 1-2.5 ng L(-1). Recovery studies were also performed for PAHs in river and tap water to validate the applicability of the developed method. Copyright © 2014 Elsevier B.V. All rights reserved.
Jain, Archana; Gupta, Manju; Verma, Krishna K
2015-11-27
A new method for determining biogenic amines in fruit juices and alcoholic beverages is described involving reaction of biogenic amines with 1-naphthylisothiocyanate followed by extraction of 1-naphthylthiourea derivatives with water-miscible organic solvent acetonitrile when solvents phase separation occurred using ammonium sulphate, a process called salting-out assisted liquid-liquid extraction. The extract was analyzed by high-performance liquid chromatography with UV detection at 254nm. The new reagent avoided many of the inconveniences as observed with existing derivatizing agents, such as dansyl chloride and benzoyl chloride, in regard to their inselectivity, instability, adverse effect of excess reagent, and necessity to remove excess reagent. The procedure has been optimized with respect to reaction time and temperature, water-miscible extraction solvent, and salt for solvents phase separation. Use of reagent as dispersed phase in aqueous medium produced derivatives in high yield. A linear calibration was obtained between the amount of biogenic amines in range 1-1000μgL(-1) and peak areas of corresponding thioureas formed; the correlation coefficient was 0.9965, and the limit of detection and limit of quantification found were 1.1μgL(-1) and 3.2μgL(-1), respectively. The pre-concentration method gave an average enrichment factor of 94. The application of the method has been demonstrated in the determination of biogenic amines in commercial samples of fruit juices and alcoholic beverages. In spiking experiments to real samples, the average recovery found by the present method was 94.5% that agreed well with 95.8% obtained by established comparison methods. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatsumi, Hironori; Liu, Fudong; Han, Hui-Ling
Platinum nanoparticles size range from 1 to 8 nm deposited on mesoporous silica MCF-17 catalyzed alcohol oxidations were studied in the gas and liquid phases. Among methanol, ethanol, 2- propanol and 2-butanol reactions, the turnover frequency increased with Pt nanoparticle size for all the alcohols utilized. The activation energies for the oxidations were almost same among all alcohol species, but higher in the gas phase than those in the liquid phase. Water coadsorption poisoned the reaction in the gas phase, while it increased the reaction turnover rates in the liquid phase. Sum frequency generation (SFG) vibrational spectroscopy studies and DFTmore » calculations revealed that the alcohol molecules pack horizontally on the metal surface in low concentrations and stand up in high concentrations, which affect the dissociation of β-hydrogen of the alcohols as the critical step in alcohol oxidations.« less
Tatsumi, Hironori; Liu, Fudong; Han, Hui-Ling; ...
2017-03-21
Platinum nanoparticles size range from 1 to 8 nm deposited on mesoporous silica MCF-17 catalyzed alcohol oxidations were studied in the gas and liquid phases. Among methanol, ethanol, 2- propanol and 2-butanol reactions, the turnover frequency increased with Pt nanoparticle size for all the alcohols utilized. The activation energies for the oxidations were almost same among all alcohol species, but higher in the gas phase than those in the liquid phase. Water coadsorption poisoned the reaction in the gas phase, while it increased the reaction turnover rates in the liquid phase. Sum frequency generation (SFG) vibrational spectroscopy studies and DFTmore » calculations revealed that the alcohol molecules pack horizontally on the metal surface in low concentrations and stand up in high concentrations, which affect the dissociation of β-hydrogen of the alcohols as the critical step in alcohol oxidations.« less
Stenzel, Angelika; Goss, Kai-Uwe; Endo, Satoshi
2013-02-05
Polyparameter linear free energy relationships (pp-LFERs) can predict partition coefficients for a multitude of environmental and biological phases with high accuracy. In this work, the pp-LFER substance descriptors of 40 established and alternative flame retardants (e.g., polybrominated diphenyl ethers, hexabromocyclododecane, bromobenzenes, trialkyl phosphates) were determined experimentally. In total, 251 data for gas-chromatographic (GC) retention times and liquid/liquid partition coefficients (K) were measured and used to calibrate the pp-LFER substance descriptors. Substance descriptors were validated through a comparison between predicted and experimental log K for the systems octanol/water (K(ow)), water/air (K(wa)), organic carbon/water (K(oc)) and liposome/water (K(lipw)), revealing a high reliability of pp-LFER predictions based on our descriptors. For instance, the difference between predicted and experimental log K(ow) was <0.3 log units for 17 out of 21 compounds for which experimental values were available. Moreover, we found an indication that the H-bond acceptor value (B) depends on the solvent for some compounds. Thus, for predicting environmentally relevant partition coefficients it is important to determine B values using measurements in aqueous systems. The pp-LFER descriptors calibrated in this study can be used to predict partition coefficients for which experimental data are unavailable, and the predicted values can serve as references for further experimental measurements.
Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.
Volatilization of ethylene dibromide from water
Rathbun, R.E.; Tai, D.Y.
1987-01-01
Overall mass-transfer coefficients for the volatilization of ethylene dibromide from water were measured simultaneously with the oxygen absorption coefficient in a laboratory stirred tank. Coefficients were measured as a function of mixing conditions in the water for two windspeeds. The ethylene dibromide mass-transfer coefficient depended on windspeed; the ethylene dibromide liquid-film coefficient did not, in agreement with theory. A constant relation existed between the liquid-film coefficients for ethylene dibromide and oxygen.
Kinetics of styrene biodegradation by Pseudomonas sp. E-93486.
Gąszczak, Agnieszka; Bartelmus, Grażyna; Greń, Izabela
2012-01-01
The research into kinetics of styrene biodegradation by bacterial strain Pseudomonas sp. E-93486 coming from VTT Culture Collection (Finland) was presented in this work. Microbial growth tests in the presence of styrene as the sole carbon and energy source were performed both in batch and continuous cultures. Batch experiments were conducted for initial concentration of styrene in the liquid phase changed in the range of 5-90 g m(-3). The Haldane model was found to be the best to fit the kinetic data, and the estimated constants of the equation were: μ (m) = 0.1188 h(-1), K(S) = 5.984 mg l(-1), and K (i) = 156.6 mg l(-1). The yield coefficient mean value [Formula in text] for the batch culture was 0.72 g(dry cells weight) (g(substrate))(-1). The experiments conducted in a chemostat at various dilution rates (D = 0.035-0.1 h(-1)) made it possible to determine the value of the coefficient for maintenance metabolism m (d) = 0.0165 h(-1) and the maximum yield coefficient value [Formula in text]. Chemostat experiments confirmed the high value of yield coefficient [Formula in text] observed in the batch culture. The conducted experiments showed high activity of the examined strain in the styrene biodegradation process and a relatively low sensitivity to inhibition of its growth at higher concentrations of styrene in the solution. Such exceptional features of Pseudomonas sp. E-93486 make this bacterial strain the perfect candidate for technical applications.
NASA Technical Reports Server (NTRS)
Newsom, H. E.; Drake, M. J.
1983-01-01
An experimental study is reported of the partitioning of Phosphorus between solid metal and basaltic silicate liquid as a function of temperature and oxygen fugacity and of the implications for the earth, moon and eucrite parent body (EPB). The relationship established between the partition coefficient and the fugacity is given at 1190 C by log D(P) = -1.12 log fO2 - 15.95 and by log D(P) = -1.53 log fO2 17.73 at 1300 C. The partition coefficient D(P) was determined, and it is found to be consistent with a valence state of 5 for P in the molten silicate. Using the determined coefficient the low P/La ratios of the earth, moon, and eucrites relative to C1 chondrites can be explained. The lowering of the P/La ratio in the eucrites relative to Cl chondrite by a factor of 40 can be explained by partitioning P into 20-25 wt% sulfur-bearing metallic liquid corresponding to 5-25% of the total metal plus silicate system. The low P/La and W/La ratios in the moon may be explained by the partitioning of P and W into metal during formation of a small core by separation of liquid metal from silicate at low degrees of partial melting of the silicates. These observations are consistent with independent formation of the moon and the earth.
NASA Astrophysics Data System (ADS)
Pederzoli, Marek; Pittner, Jiří
2017-03-01
We present surface hopping dynamics on potential energy surfaces resulting from the spin-orbit splitting, i.e., surfaces corresponding to the eigenstates of the total electronic Hamiltonian including the spin-orbit coupling. In this approach, difficulties arise because of random phases of degenerate eigenvectors and possibility of crossings of the resulting mixed states. Our implementation solves these problems and allows propagation of the coefficients both in the representation of the spin free Hamiltonian and directly in the "diagonal representation" of the mixed states. We also provide a detailed discussion of the state crossing and point out several peculiarities that were not mentioned in the previous literature. We also incorporate the effect of the environment via the quantum mechanics/molecular mechanics approach. As a test case, we apply our methodology to deactivation of thiophene and selenophene in the gas phase, ethanol solution, and bulk liquid phase. First, 100 trajectories without spin-orbit coupling have been calculated for thiophene starting both in S1 and S2 states. A subset of 32 initial conditions starting in the S2 state was then used for gas phase simulations with spin-orbit coupling utilizing the 3-step integrator of SHARC, our implementation of the 3-step propagator in Newton-X and two new "one-step" approaches. Subsequently, we carried out simulations in ethanol solution and bulk liquid phase for both thiophene and selenophene. For both molecules, the deactivation of the S2 state proceeds via the ring opening pathway. The total population of triplet states reaches around 15% and 40% after 80 fs for thiophene and selenophene, respectively. However, it only begins growing after the ring opening is initiated; hence, the triplet states do not directly contribute to the deactivation mechanism. For thiophene, the resulting deactivation lifetime of the S2 state was 68 fs in the gas phase, 76 fs in ethanol solution, and 78 fs in the liquid phase, in a good agreement with the experimental value of 80 fs (liquid phase). For selenophene, the obtained S2 lifetime was 60 fs in the gas phase and 62 fs for both ethanol solution and liquid phase. The higher rate of intersystem crossing to the triplet states in selenophene is likely the reason for the lower fluorescence observed in selenium containing polymer compounds.
The Noble-Abel Stiffened-Gas equation of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Métayer, Olivier, E-mail: olivier.lemetayer@univ-amu.fr; Saurel, Richard, E-mail: richard.saurel@univ-amu.fr; RS2N, 371 Chemin de Gaumin, 83640 Saint-Zacharie
2016-04-15
Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOSmore » named “Noble Abel stiffened gas,” this formulation being a significant improvement of the popular “Stiffened Gas (SG)” EOS. It is a combination of the so-called “Noble-Abel” and “stiffened gas” equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renbaum-Wolff, Lindsay; Song, Mijung; Marcolli, Claudia
Particles consisting of secondary organic material (SOM) are abundant in the atmosphere. In order to predict the role of these particles in climate, visibility and atmospheric chemistry, information on particle phase state (i.e., single liquid, two liquids and solid) is needed. Our paper focuses on the phase state of SOM particles free of inorganic salts produced by the ozonolysis of α-pinene. Phase transitions were investigated in the laboratory using optical microscopy and theoretically using a thermodynamic model at 290 K and for relative humidities ranging from < 0.5 to 100%. In the laboratory studies, a single phase was observed frommore » 0 to 95% relative humidity (RH) while two liquid phases were observed above 95% RH. For increasing RH, the mechanism of liquid–liquid phase separation (LLPS) was spinodal decomposition. The RH range over which two liquid phases were observed did not depend on the direction of RH change. In the modeling studies, the SOM took up very little water and was a single organic-rich phase at low RH values. At high RH, the SOM underwent LLPS to form an organic-rich phase and a water-rich phase, consistent with the laboratory studies. The presence of LLPS at high RH values can have consequences for the cloud condensation nuclei (CCN) activity of SOM particles. In the simulated Köhler curves for SOM particles, two local maxima were observed. Depending on the composition of the SOM, the first or second maximum can determine the critical supersaturation for activation. Recently researchers have observed inconsistencies between measured CCN properties of SOM particles and hygroscopic growth measured below water saturation (i.e., hygroscopic parameters measured below water saturation were inconsistent with hygroscopic parameters measured above water saturation). Furthermore, the work presented here illustrates that such inconsistencies are expected for systems with LLPS when the water uptake at subsaturated conditions represents the hygroscopicity of an organic-rich phase while the barrier for CCN activation can be determined by the second maximum in the Köhler curve when the particles are water rich.« less
Raja, Suresh; Valsaraj, Kalliat T
2004-12-01
Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) by typical micrometer-sized fog-water droplets was studied using a falling droplet reactor at temperatures between 296 and 316 K. Uptake of phenanthrene vapor greater than that predicted by bulk (air-water)-phase equilibrium was observed for diameters less than 200 microm, and this was attributed to surface adsorption. The experimental values of the droplet-vapor partition constant were used to obtain the overall mass transfer coefficient and the mass accommodation coefficient for both benzene and phenanthrene. Mass transfer of phenanthrene was dependent only on gas-phase diffusion and mass accommodation at the interface. However, for benzene, the mass transfer was limited by liquid-phase diffusion and mass accommodation. A large value of the mass accommodation coefficient, alpha = (1.4 +/- 0.4) x 10(-2) was observed for the highly surface-active (hydrophobic) phenanthrene, whereas a small alpha = (9.7 +/- 1.8) x 10(-5) was observed for the less hydrophobic benzene. Critical cluster numbers ranging from 2 for benzene to 5.7 for phenanthrene were deduced using the critical cluster nucleation theory for mass accommodation. The enthalpy of mass accommodation was more negative for phenanthrene than it was for benzene. Consequently, the temperature effect was more pronounced for phenanthrene. A linear correlation was observed for the enthalpy of accommodation with the excess enthalpy of solution. A natural organic carbon surrogate (Suwannee Fulvic acid) in the water droplet increased the uptake for phenanthrene and benzene, the effect being more marked for phenanthrene. A characteristic time constant analysis showed that uptake and droplet scavenging would compete for the fog deposition of phenanthrene, whereas deposition would be unimpeded by the uptake rate for benzene vapor. For both compounds, the characteristic atmospheric reaction times were much larger and would not impact fog deposition.
Modeling of turbulence effects on the heat and mass transfer of evaporating sprays
NASA Astrophysics Data System (ADS)
Madhanabharatam, Balasubramanyam
A large diversity of two-phase gas-liquid flows of both scientific and practical interest involves the evaporation of near spherical liquid droplets in high temperature turbulent environments. Current numerical modeling approaches are predominantly focused towards the effects of continuous phase (gas phase) turbulence on the evaporation rates of liquid fuel sprays during the evaporation process, failing to account for the inherent turbulence present in the dispersed phase (liquid phase), due to the injection of sprays at high velocities. Existing models accounting for internal turbulence effects use Direct Numerical Simulations and Large Eddy Simulations that are computationally intensive. This research provides an alternative phenomenological approach of modeling droplet internal turbulence effects through the mass and heat transfer between the droplet surface and the external gas phase within a thin film inside the droplet. This finite conductivity (F-C) model was based on the two-temperature film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal diffusivity (alphaeff) within the droplet phase. The alphaeff is estimated from the physical properties of the flow within the droplet rather than from a 'curve-fit' as done conventionally. The results of the one-way coupled study indicated that the equilibrium drop temperature predictions were higher than calculations by the infinite conductivity (I-C) model. The liquid internal turbulence has a considerable effect on the diffusivity in the primary atomization regime. The thermal boundary layer was found to be substantially thick initially, decreasing quickly to a small value, exhibiting a reasonable physical trend. The two-way coupled studies (CFD) indicated that the F-C model, slowed down the evaporation process, produced larger droplets and longer tip penetration lengths during the initial stages of injection. For a jet in a supersonic cross-flow, results indicated that jet penetration increased rapidly in the vicinity of the injector exit and then gradually increased due to increase in the drag of the air stream. A modified drag coefficient was incorporated to improve model accuracy in predictions. Overall the results obtained from the numerical calculations during this study were reasonably comparable to measured data and showed more accurate comparisons to that of the I-C model.
Liao, Keren; Mei, Meng; Li, Haonan; Huang, Xiaojia; Wu, Cuiqin
2016-02-01
The development of a simple and sensitive analytical approach that combines multiple monolithic fiber solid-phase microextraction with liquid desorption followed by high-performance liquid chromatography with diode array detection is proposed for the determination of trace levels of seven steroid sex hormones (estriol, 17β-estradiol, testosterone, ethinylestradiol, estrone, progesterone and mestranol) in water and urine matrices. To extract the target analytes effectively, multiple monolithic fiber solid-phase microextraction based on a polymeric ionic liquid was used to concentrate hormones. Several key extraction parameters including desorption solvent, extraction and desorption time, pH value and ionic strength in sample matrix were investigated in detail. Under the optimal experimental conditions, the limits of detection were found to be in the range of 0.027-0.12 μg/L. The linear range was 0.10-200 μg/L for 17β-estradiol, 0.25-200 μg/L estriol, ethinylestradiol and estrone, and 0.50-200 μg/L for the other hormones. Satisfactory linearities were achieved for analytes with the correlation coefficients above 0.99. Acceptable method reproducibility was achieved by evaluating the repeatability and intermediate precision with relative standard deviations of both less than 8%. The enrichment factors ranged from 54- to 74-fold. Finally, the proposed method was successfully applied to the analysis of steroid sex hormones in environmental water samples and human urines with spiking recoveries ranged from 75.6 to 116%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A latchable thermally activated phase change actuator for microfluidic systems
NASA Astrophysics Data System (ADS)
Richter, Christiane; Sachsenheimer, Kai; Rapp, Bastian E.
2016-03-01
Complex microfluidic systems often require a high number of individually controllable active components like valves and pumps. In this paper we present the development and optimization of a latchable thermally controlled phase change actuator which uses a solid/liquid phase transition of a phase change medium and the displacement of the liquid phase change medium to change and stabilize the two states of the actuator. Because the phase change is triggered by heat produced with ohmic resistors the used control signal is an electrical signal. In contrast to pneumatically activated membrane valves this concept allows the individual control of several dozen actuators with only two external pressure lines. Within this paper we show the general working principle of the actuator and demonstrate its general function and the scalability of the concept at an example of four actuators. Additionally we present the complete results of our studies to optimize the response behavior of the actuator - the influence of the heating power as well as the used phase change medium on melting and solidifying times.
Method Of Characterizing An Electrode Binder
Cocciantelli, Jean-Michel; Coco, Isabelle; Villenave, Jean-Jacques
1999-05-11
In a method of characterizing a polymer binder for cell electrodes in contact with an electrolyte and including a current collector and a paste containing an electrochemically active material and said binder, a spreading coefficient of the binder on the active material is calculated from the measured angle of contact between standard liquids and the active material and the binder, respectively. An interaction energy of the binder with the electrolyte is calculated from the measured angle of contact between the electrolyte and the binder. The binder is selected such that the spreading coefficient is less than zero and the interaction energy is at least 60 mJ/m.sup.2.
Liquid chromatographic determination of sennosides in Cassia angustifolia leaves.
Srivastava, Alpuna; Pandey, Richa; Verma, Ram K; Gupta, Madan M
2006-01-01
A simple liquid chromatographic method was developed for the determination of sennosides B and A in leaves of Cassia angustifolia. These compounds were extracted from leaves with a mixture of methanol-water (70 + 30, v/v) after defatting with hexane. Analyte separation and quantitation were achieved by gradient reversed-phase liquid chromatography and UV absorbance at 270 nm using a photodiode array detector. The method involves the use of an RP-18 Lichrocart reversed-phase column (5 microm, 125 x 4.0 mm id) and a binary gradient mobile-phase profile. The various other aspects of analysis, namely, peak purity, similarity, recovery, repeatability, and robustness, were validated. Average recoveries of 98.5 and 98.6%, with a coefficient of variation of 0.8 and 0.3%, were obtained by spiking sample solution with 3 different concentration solutions of standards (60, 100, and 200 microg/mL). Detection limits were 10 microg/mL for sennoside B and 35 microg/mL for sennoside A, present in the sample solution. The quantitation limits were 28 and 100 microg/mL. The analytical method was applied to a large number of senna leaf samples. The new method provides a reliable tool for rapid screening of C. angustifolia samples in large numbers, which is needed in breeding/genetic engineering and genetic mapping experiments.
Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing.
Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu
2014-05-21
We show by using molecular dynamics simulations that a water overlayer on charged graphene experiences first-order ice-to-liquid (electromelting), and then liquid-to-ice (electrofreezing) phase transitions with the increase of the charge value. Corresponding to the ice-liquid-ice transition, the variations of the order parameters indicate an order-disorder-order transition. The key to this novel phenomenon is the surface charge induced change of the orientations of water dipoles, which leads to the change of the water-water interactions from being attractive to repulsive at a critical charge value qc. To further uncover how the orientations of water dipoles influence the interaction strength between water molecules, a theoretical model considering both the Coulomb and van der Waals interactions is established. The results show that with the increase of the charge value, the interaction strength between water molecules decreases below qc, then increases above qc. These two inverse processes lead to electromelting and electrofreezing, respectively. Combining this model with the Eyring equation, the diffusion coefficient is obtained, the variation of which is in qualitative agreement with the simulation results. Our findings not only expand our knowledge of the graphene-water interface, but related analyses could also help recognize the controversial role of the surface charge or electric field in promoting phase transitions of water.
Pan, Xun; Qiang, Zhimin; Ben, Weiwei; Chen, Meixue
2011-01-01
This work describes a systematic approach to the development of a method for simultaneous determination of three classes of veterinary antibiotics in the suspended solids (SS) of swine wastewater, including five sulfonamides, three tetracyclines and one macrolide (tiamulin). The entire procedures for sample pretreatment, ultrasonic extraction (USE), solid-phase extraction (SPE), and liquid chromatography-mass spectrometry (LC-MS) quantification were examined and optimized. The recovery efficiencies were found to be 76%-104% for sulfonamides, 81%-112% for tetracyclines, and 51%-64% for tiamulin at three spiking levels. The intra-day and inter-day precisions, as expressed by the relative standard deviation (RSD), were below 17%. The method detection limits (MDLs) were between 0.14 and 7.14 microg/kg, depending on a specific antibiotic studied. The developed method was applied to field samples collected from three concentrated swine feeding plants located in Beijing, Shanghai and Shandong province of China. All the investigated antibiotics were detected in both SS and liquid phase of swine wastewater, with partition coefficients (logK(d)) ranging from 0.49 to 2.30. This study demonstrates that the SS can not be ignored when determining the concentrations of antibiotics in swine wastewater.
NASA Astrophysics Data System (ADS)
Nyoka, M.; Akdogan, G.; Eric, R. H.; Sutcliffe, N.
2003-12-01
The process of mixing and solid-liquid mass transfer in a one-fifth scale water model of a 100-ton Creusot-Loire Uddeholm (CLU) converter was investigated. The modified Froude number was used to relate gas flow rates between the model and its protoype. The influences of gas flow rate between 0.010 and 0.018 m3/s and bath height from 0.50 to 0.70 m on mixing time were examined. The results indicated that mixing time decreased with increasing gas flow rate and increased with increasing bath height. The mixing time results were evaluated in terms of specific energy input and the following correlation was proposed for estimating mixing times in the model CLU converter: T mix=1.08Q -1.05 W 0.35, where Q (m3/s) is the gas flow rate and W (tons) is the model bath weight. Solid-liquid mass-transfer rates from benzoic acid specimens immersed in the gas-agitated liquid phase were assessed by a weight loss measurement technique. The calculated mass-transfer coefficients were highest at the bath surface reaching a value of 6.40 × 10-5 m/s in the sprout region. Mass-transfer coefficients and turbulence parameters decreased with depth, reaching minimum values at the bottom of the vessel.