Science.gov

Sample records for liquid-phase activity coefficients

  1. Electrical activity, mode of incorporation and distribution coefficient of group V elements in Hg1-xCdxTe grown from tellurium rich liquid phase epitxial growth solutions

    NASA Astrophysics Data System (ADS)

    Vydyanath, H. R.; Ellsworth, J. A.; Devaney, C. M.

    1987-01-01

    Hg1-xCdxTe films were grown liquid phase epitaxially from tellurium rich solutions containing up to 10 at. % of the group V elements P, As, Sb, and Bi. Chemical analysis of the Te growth solutions and the films was carried out in conjunction with extensive Hall effect measurements on the films subsequent to various annealing treatments under Hg rich and Te rich conditions. Despite the presence of a large concentration of the group V elements in the Te source solution, the maximum concentration of these elements incorporated into the liquid phase epitaxially grown Hg1-xCdxTe appears to vary from <1015cm-3 for Bi up to 1017cm-3 for phosphorus and As implying a distribution coefficient varying from <10-5 for Bi up to 10-3 for P at growth temperature of ˜500° C. This low value of the distribution coefficient for group V elements for growths from Te rich solutions contrasts with the moderately high values reported in the literature to date for growth from Hg rich solutions as well as pseudobinary solutions (Bridgman growth). The widely differing distribution coefficients and hence the solubility of the group V elements for Hg rich and Te rich liquid phase epitaxial solutions is explained on the basis that the activity coefficient of the group V elements in Te rich solutions is probably orders of magnitude lower than it is in Hg rich solutions. Finally, the results of the anneals at 200° C under Hg saturated conditions with and without a 500° C Hg saturated preanneal have indicated n to p conversion in many of the films attesting to the amphoteric behavior of the group V elements in LPE grown Hg1-xCdxTe(s) similar to the previously reported behavior of P in bulk grown Hg0.8Cd0.2Te.

  2. Determination of the mass-transfer coefficient in liquid phase in a stream-bubble contact device

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Dmitrieva, O. S.; Madyshev, I. N.

    2016-09-01

    One of the most effective energy saving technologies is the improvement of existing heat and mass exchange units. A stream-bubble contact device is designed to enhance the operation efficiency of heat and mass exchange units. The stages of the stream-bubble units that are proposed by the authors for the decarbonization process comprise contact devices with equivalent sizes, whose number is determined by the required performance of a unit. This approach to the structural design eliminates the problems that arise upon the transition from laboratory samples to industrial facilities and makes it possible to design the units of any required performance without a decrease in the effectiveness of mass exchange. To choose the optimal design that provides the maximum effectiveness of the mass-exchange processes in units and their intensification, the change of the mass-transfer coefficient is analyzed with the assumption of a number of parameters. The results of the study of the effect of various structural parameters of a stream-bubble contact device on the mass-transfer coefficient in the liquid phase are given. It is proven that the mass-transfer coefficient increases in the liquid phase, in the first place, with the growth of the level of liquid in the contact element, because the rate of the liquid run-off grows in this case and, consequently, the time of surface renewal is reduced; in the second place, with an increase in the slot diameter in the downpipe, because the jet diameter and, accordingly, their section perimeter and the area of the surface that is immersed in liquid increase; and, in the third place, with an increase in the number of slots in the downpipe, because the area of the surface that is immersed in the liquid of the contact element increases. Thus, in order to increase the mass-transfer coefficient in the liquid phase, it is necessary to design the contact elements with a minimum width and a large number of slots and their increased diameter; in

  3. Active role of the liquid phase of developer in revealing surface flaws by capillary methods

    SciTech Connect

    Prokhorenko, P.P.; Dezhkunov, N.V.; Stoicheva, I.V.

    1988-08-01

    The article investigates the interaction of two chemically nonreacting liquids after they have been brought into contact with each other in a capillary. It is established that the liquid phase of the developer is not only a passive carrier of the developing component but also exerts an active influence on the process of development, and consequently, on the detectability of flaws.

  4. Determination of partition coefficient and analysis of nitrophenols by three-phase liquid-phase microextraction coupled with capillary electrophoresis.

    PubMed

    Sanagi, Mohd Marsin; Miskam, Mazidatulakmam; Wan Ibrahim, Wan Aini; Hermawan, Dadan; Aboul-Enein, Hassan Y

    2010-07-01

    A three-phase hollow fiber liquid-phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1-octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 microL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H(3)PO(4), pH 3.0; organic solvent, 1-octanol; acceptor solution, 40 microL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05-0.30 mg/L with r(2)>0.9900 and LODs were in the range of 0.01-0.04 mg/L with RSDs of 1.25-2.32%. Excellent enrichment factors of up to 398-folds were obtained. It was found that the partition coefficient (K(a/d)) values were high for 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,6-dinitrophenol and that the individual partition coefficients (K(org/d) and K(a/org)) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.

  5. Vapour and Liquid-Phase Artemisia annua Essential Oil Activities against Several Clinical Strains of Candida.

    PubMed

    Santomauro, Francesca; Donato, Rosa; Sacco, Cristiana; Pini, Gabriella; Flamini, Guido; Bilia, Anna Rita

    2016-07-01

    Candida spp. are often the cause of infection in immune-compromised individuals. They are characterized by a strong resistance to antimicrobial drugs and disinfectants. The activity of Artemisia annua essential oil against Candida spp. was determined by vapour contact and microdilution assay. The oil was characterized by the presence of oxygenated monoterpenes (more than 75 % of the constituents), mainly represented by the irregular monoterpene artemisia ketone (ca. 22 %), and the widespread monoterpenes 1,8 cineole (ca. 19 %) and camphor (ca. 17 %). Other representative constituents were artemisia alcohol (5.9 %), α-pinene (5.7 %), and pinocarvone (3.0 %). Thujone, a typical toxic constituent of the Artemisia species, was not detected. The results are reported as minimum inhibitory concentration, minimum fungicidal concentration, and diameter of inhibition zone obtained by the vapour diffusion assay. We tested 10 clinical Candida strains, coming from both clinical samples and international collections. The results show that the antifungal activity of A. annua is influenced by the type of method adopted. The inhibitory action of the essential oil was, in fact, higher in the vapour than in the liquid phase. Our results show an average minimum inhibitory concentration in the liquid phase of 11.88 µL/mL, while in the vapour phase, the growth of all Candida strains tested at a concentration of 2.13 µL/cm(3) was inhibited. A strain of Candida glabrata was found to be less susceptible to the liquid medium than the vapour assay (50 µL/mL vs. 0.64 µL/cm(3), respectively). Candida albicans and Candida dubliniensis were the most susceptible to the vapour test, while Candida parapsilosis was the most resistant.

  6. Liquid phase adsorption behavior of inulin-type fructan onto activated charcoal.

    PubMed

    Li, Kecheng; Liu, Song; Xing, Ronge; Yu, Huahua; Qin, Yukun; Li, Pengcheng

    2015-05-20

    This study describes liquid phase adsorption characteristics of inulin-type fructan onto activated charcoal. Batch mode experiments were conducted to study the effects of pH, contact time, temperature and initial concentration of inulin. Nearly neutral solution (pH 6-8) was favorable to the adsorption and the equilibrium was attained after 40 min with the maximum adsorption Qmax 0.182 g/g (adsorbate/adsorbent) at 298 K. The experimental data analysis indicated that the adsorption process fitted well with the pseudo-second-order kinetic model (R(2) = 1) and Langmuir isotherms model (R(2) > 0.99). Thermodynamic parameters revealed that the adsorption process was spontaneous and exothermic with a physical nature. Inulin desorption could reach 95.9% using 50% ethanol solution and activated charcoal could be reused without significant losses in adsorption capacity. These results are of practical significance for the application of activated charcoal in the production and purification of inulin-type fructan.

  7. A liquid phase based C. elegans behavioral analysis system identifies motor activity loss in a nematode Parkinson's disease model.

    PubMed

    Zheng, Maohua; Gorelenkova, Olga; Yang, Jiong; Feng, Zhaoyang

    2012-03-15

    Motor activity of Caenorhabditis elegans is widely used to study the mechanisms ranging from basic neuronal functions to human neurodegenerative diseases. It may also serve as a paradigm to screen for potential therapeutic reagents treating these diseases. Here, we developed an automated, 96-well plate and liquid phase based system that quantifies nematode motor activity in real time. Using this system, we identified an adult-onset, ageing-associated motor activity loss in a transgenic nematode line expressing human pathogenic G2019S mutant LRRK2 (leucine-rich repeat kinase 2), the leading genetic cause of Parkinson's disease characterized by dopaminergic neurodegeneration associated motor deficient mainly in elder citizens. Thus, our system may be used as a platform to screen for potential therapeutic drugs treating Parkinson's disease. It can also be used to monitor motor activity of nematodes in liquid phase at similar scenario.

  8. Catalyst activity maintenance study for the liquid phase dimethyl ether process

    SciTech Connect

    Peng, X.D.; Toseland, B.A.; Underwood, R.P.

    1995-12-31

    The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizes a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.

  9. Synthetic polymers blend used in the production of high activated carbon for pesticides removals from liquid phase.

    PubMed

    Belo, Cristóvão Ramiro; Cansado, Isabel Pestana da Paixão; Mourão, Paulo Alexandre Mira

    2017-02-01

    For the activated carbon (AC) production, we used the most common industrial and consumer solid waste, namely polyethyleneterephthalate (PET), alone or blended with other synthetic polymer such polyacrylonitrile (PAN). By mixing PET, with PAN, an improvement in the yield of the AC production was found and the basic character and some textural and chemical properties were enhanced. The PET-PAN mixture was subjected to carbonisation, with a pyrolysis yield of 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The AC revealed a high surface area (1400, 1230 and 1117 m(2) g(-1)) and pore volume (0.46, 0.56 and 0.50 cm(3) g(-1)), respectively, for PET, PAN and PET-PAN precursors. Selected ACs were successfully tested for 4-chloro-2-methylphenoxyacetic acid (MCPA) and diuron removal from the liquid phase, showing a higher adsorption capacity (1.7 and 1.2 mmol g(-1), respectively, for MCPA and diuron) and good fits with the Langmuir (PET) and Freundlich equation (PAN and PET-PAN blend). With MCPA, the controlling factor to the adsorption capacity was the porous volume and the average pore size. Concerning diuron, the adsorption was controlled essentially by the external diffusion. A remarkable result is the use of different synthetic polymers wastes, as precursors for the production of carbon materials, with high potential application on the pesticides removals from the liquid phase.

  10. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  11. Laser-activated gold catalysts for liquid-phase growth of cadmium selenide nanowires.

    PubMed

    Huang, C; Mao, J; Chen, X M; Yang, J; Du, X W

    2015-02-07

    A laser-activated-catalyst (LAC) technique was developed to grow CdSe nanowires in liquid medium at room temperature. The gold catalysts dispersed in the precursor solution were activated by a pulsed laser so as to decompose the precursor and catalyse the nanowire growth simultaneously. The LAC technique can achieve accurate positioning of nanowires, which is beneficial for device fabrication.

  12. Approach to In- Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Liao, Xianjin; Chen, Bo; Zhang, Linjie; Zhang, Jianxun

    2015-06-01

    To optimize the braze composition design route for aluminum matrix composite, the feasibility of in situ producing reinforcing phase within the transient liquid phase bond seam matrix, by adding active melting point increaser (MPI, e.g., Ti) together with general melting point depressant (MPD, e.g., Cu) into the interlayer, was demonstrated. For SiC p /A356 composite, by comparing the wettability, joint microstructure, joint shear strength, and fracture path for the developed Al-19Cu-1Ti, Al-19Cu, Al-33Cu-1Ti, Al-33Cu (wt pct), and commercial Cu foils as interlayer, the feasibility of in situ producing reinforcing phase within the bond seam by adding Ti was demonstrated. Especially for Al-19Cu-1Ti active braze, small and dispersed ternary aluminide of Al-Si-Ti phase was obtained within the bond seam as in situ reinforcement, leading to a favorable fracture path within SiC p /A356, not along the initial interface or within the bond seam. For the formation mechanism of the in situ reinforcing phase of MPI-containing intermetallic compound within the bond seam, a model of repeating concentration-precipitation-termination-engulfment during isothermal solidification is proposed.

  13. Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree.

    PubMed

    Senthilkumaar, S; Kalaamani, P; Subburaam, C V

    2006-08-25

    Adsorption of Crystal violet, a basic dye onto phosphoric and sulphuric acid activated carbons (PAAC and SAAC), prepared from male flowers coconut tree has been investigated. Equilibrium data were successfully applied to study the kinetics and mechanism of adsorption of dye onto both the carbons. The kinetics of adsorption was found to be pseudo second order with regard to intraparticle diffusion. The pseudo second order is further supported by the Elovich model, which in turn intensifies the fact of chemisorption of dye onto both the carbons. Quantitative removal of dye at higher initial pH of dye solution reveals the basic nature of the Crystal violet and acidic nature of the activated carbons. Influence of temperature on the removal of dye from aqueous solution shows the feasibility of adsorption and its endothermic nature. Mass transfer studies were also carried out. The adsorption capacities of both the carbons were found to be 60.42 and 85.84 mg/g for PAAC and SAAC, respectively. Langmuir's isotherm data were used to design single-stage batch adsorption model.

  14. Kinetic studies of the liquid-phase adsorption of a reactive dye onto activated lignite

    SciTech Connect

    Petrolekas, P.D.; Maggenakis, G.

    2007-02-14

    The kinetics of batch adsorption of a commercial reactive dye onto activated lignite has been investigated at temperatures of 26, 40, and 55{sup o}C, using aqueous solutions with initial dye concentrations in the range of 15-60 mg/L. An empirical single parameter relationship of the adsorbent loading versus the square root of contact time was proposed, which was determined to provide a very good description of the batch adsorption transients up to equilibrium. The data were also examined by means of the Elovich equation. The effect of the temperature and the initial dye concentration on the adsorption kinetics was analyzed, and the results were discussed by considering that intraparticle diffusion is the dominant mechanism.

  15. Liquid-phase adsorption and desorption of phenol onto activated carbons with ultrasound.

    PubMed

    Juang, Ruey-Shin; Lin, Su-Hsia; Cheng, Ching-Hsien

    2006-04-01

    The effect of 48-kHz ultrasound on the adsorption and desorption of phenol from aqueous solutions onto coconut shell-based granular activated carbons was studied at 25 degrees C. Experiments were performed at different carbon particle sizes (1.15, 2.5, 4.0 mm), initial phenol concentrations (1.06-10.6 mol/m3), and ultrasonic powers (46-133 W). Regardless of the absence and presence of ultrasound, the adsorption isotherms were well obeyed by the Langmuir equation. When ultrasound was applied in the whole adsorption process, the adsorption capacity decreased but the Langmuir constant increased with increasing ultrasonic power. According to the analysis of kinetic data by the Elovich equation, it was shown that the initial rate of adsorption was enhanced after sonication and the number of sites available for adsorption was reduced. The effect of ultrasonic intensity on the initial rate and final amount of desorption of phenol from the loaded carbons using 0.1 mol/dm3 of NaOH were also evaluated and compared.

  16. In-situ activation of CuO/ZnO/Al.sub.2 O.sub.3 catalysts in the liquid phase

    DOEpatents

    Brown, Dennis M.; Hsiung, Thomas H.; Rao, Pradip; Roberts, George W.

    1989-01-01

    The present invention relates to a method of activation of a CuO/ZnO/Al.sub.2 O.sub.3 catalyst slurried in a chemically inert liquid. Successful activation of the catalyst requires the use of a process in which the temperature of the system at any time is not allowed to exceed a certain critical value, which is a function of the specific hydrogen uptake of the catalyst at that same time. This process is especially critical for activating highly concentrated catalyst slurries, typically 25 to 50 wt %. Activation of slurries of CuO/ZnO/Al.sub.2 O.sub.3 catalyst is useful in carrying out the liquid phase methanol or the liquid phase shift reactions.

  17. Sliding Luttinger liquid phases

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ranjan; Kane, C. L.; Lubensky, T. C.

    2001-07-01

    We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without disorder. It is shown that the coupling can stabilize a Luttinger liquid phase in the presence of disorder. We then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi-liquid state: the crossed sliding Luttinger liquid phase. In this phase the system exhibits a finite-temperature, long-wavelength, isotropic electric conductivity that diverges as a power law in temperature T as T-->0. This two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane conductivity than the conductivity in a perpendicular direction.

  18. Liquid-phase chlorination of perchloroethylene

    SciTech Connect

    Levanova, S.V.; Evstigneev, O.V.; Rodova, R.M.; Berlin, E.R.; Ul'yanov, A.A.

    1988-06-01

    The relationships in the liquid-phase chlorination of perchloroethylene to hexachlorethane in a thermal process and in the presence of an initiator have been studied. The rate constants and the activation parameters of the process have been determined.

  19. Extensive database of liquid phase diffusion coefficients of some frequently used test molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography.

    PubMed

    Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre

    2016-07-15

    Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective.

  20. CATALYST ACTIVITY MAINTENANCE FOR THE LIQUID PHASE SYNTHESIS GAS-TO-DIMETHYL ETHER PROCESS PART II: DEVELOPMENT OF ALUMINUM PHOSPHATE AS THE DEHYDRATION CATALYST FOR THE SINGLE-STEP LIQUID PHASE SYNGAS-TO-DME PROCESS

    SciTech Connect

    Xiang-Dong Peng

    2002-05-01

    At the heart of the single-step liquid phase syngas-to-DME process (LPDME{trademark}) is a catalyst system that can be active as well as stable. In the Alternative Fuels I program, a dual-catalyst system containing a Cu-based commercial methanol synthesis catalyst (BASF S3-86) and a commercial dehydration material ({gamma}-alumina) was demonstrated. It provided the productivity and selectivity expected from the LPDME process. However, the catalyst system deactivated too rapidly to warrant a viable commercial process [1]. The mechanistic investigation in the early part of the DOE's Alternative Fuels II program revealed that the accelerated catalyst deactivation under LPDME conditions is due to detrimental interaction between the methanol synthesis catalyst and methanol dehydration catalyst [2,3]. The interaction was attributed to migration of Cu- and/or Zn-containing species from the synthesis catalyst to the dehydration catalyst. Identification of a dehydration catalyst that did not lead to this detrimental interaction while retaining adequate dehydration activity was elusive. Twenty-nine different dehydration materials were tested, but none showed the desired performance [2]. The search came to a turning point when aluminum phosphate was tested. This amorphous material is prepared by precipitating a solution containing Al(NO{sub 3}){sub 3} and H{sub 3}PO{sub 4} with NH{sub 4}OH, followed by washing, drying and calcination. The aluminum phosphate catalyst has adequate dehydration activity and good stability. It can co-exist with the Cu-based methanol synthesis catalyst without negatively affecting the latter catalyst's stability. This report documents the details of the development of this catalyst. These include initial leads, efforts in improving activity and stability, investigation and development of the best preparation parameters and procedures, mechanistic understanding and resulting preparation guidelines, and the accomplishments of this work.

  1. Hydrogenation of nitriles on a well-characterized nickel surface: From surface science studies to liquid phase catalytic activity measurements

    SciTech Connect

    Gardin, Denis Emmanuel

    1993-12-01

    Nitrile hydrogenation is the most commonly used method for preparing diverse amines. This thesis is aimed at the mechanism and factors affecting the performance of Ni-based catalysts in nitrile hydrogenations. Surface science techniques are used to study bonding of nitriles and amines to a Ni(111) surface and to identify surface intermediates. Liquid-phase hydrogenations of cyclohexene and 1-hexene on a Pt foil were carried out successfully. Finally, knowledge about the surface structure, surface chemical bond, dynamics of surface atoms (diffusion, growth), and reactivity of metal surfaces from solid-gas interface studies, is discussed.

  2. Separation of cucurbitane triterpenoids from bitter melon drinks and determination of partition coefficients using vortex-assisted dispersive liquid-phase microextraction followed by UHPLC analysis.

    PubMed

    Hu, Shuang; Wang, Yan-Hong; Avula, Bharathi; Wang, Mei; Khan, Ikhlas A

    2017-03-31

    A rapid, effective method applying vortex-assisted liquid-liquid microextraction before ultra high performance liquid chromatography with mass spectrometry and evaporative light scattering detection was developed for the analysis of four cucurbitane triterpenoids (momordicoside L, momordicoside K, momordicoside F2 , and 3β,7β,25-trihydroxy cucurbita-5,23(E)-dien-19-al) in bitter melon juices. Variables affecting the extraction efficiency including different extraction solvents, volume of extraction solvent, salt amount, acid condition, vortex speed and time were optimized thoroughly. Under the optimum conditions, precision was determined by the intra- and inter-day tests in a range of 1.1-5.7% and 2.9-4.0% (RSD), respectively, with recoveries between 95.7 and 106.1%. The calibration curves showed good linearity with square correlation coefficient of 0.9936-0.9991 (evaporative light scattering detection) and 0.9858-0.9989 (MS). The detection limits ranged from 0.8-1.9 ng/mL (MS) to 3-10 ng/mL(evaporative light scattering detection) for these compounds. Enrichment factors of four target compounds were between 27 and 63 times. The proposed method was also used to determine the apparent solvent/water partition coefficients of analytes within the range of 53-120. The developed method can effectively enrich and quantify cucurbitane triterpenoids from bitter melon drinks. This article is protected by copyright. All rights reserved.

  3. Liquid Phase Sintering

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Industry spends billions of dollars each year on machine tools to manufacture products out of metal. This includes tools for cutting every kind of metal part from engine blocks to Shuttle main engine components. Cutting tool tips often break because of weak spots or defects in their composition. Based on a new concept called defect trapping, space offers a novel environment to study defect formation in molten metal materials as they solidify. After the return of these materials from space, researchers can evaluate the source of the defect and seek ways to eliminate them in products prepared on Earth. A widely used process for cutting tip manufacturing is liquid phase sintering. Compared to Earth-sintered samples which slump due to buoyancy induced by gravity, space samples are uniformly shaped and defects remain where they are formed. By studying metals sintered in space the US tool industry can potentially enhance its worldwide competitiveness. The Consortium for Materials Development in Space along with Wyle Labs, Teledyne Advanced Materials, and McDornell Douglas have conducted experiments in space.

  4. Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity.

    PubMed

    Wang, Yixian; Zhang, Xiao; Luo, Zhimin; Huang, Xiao; Tan, Chaoliang; Li, Hai; Zheng, Bing; Li, Bing; Huang, Ying; Yang, Jian; Zong, Yun; Ying, Yibin; Zhang, Hua

    2014-11-07

    A facile method for the synthesis of metal nanostructure-decorated two-dimensional (2D) semiconductor nanosheets was developed. The solution-processable molybdenum trioxide (MoO3) nanosheet was used as a template for direct liquid-phase growth of platinum nanoparticles (Pt NPs) under ambient conditions. Results show that the Pt NPs with sizes of 1-3 nm were uniformly grown on the MoO3 surface. Importantly, the Pt-MoO3 hybrid nanomaterial exhibits an enhanced peroxidase-like catalytic activity compared to the MoO3 nanosheet, Pt NPs, and their physical mixture under the same conditions. As a proof-of-concept application, the Pt-MoO3 hybrid nanomaterial was used as a high-efficiency peroxidase-mimic for ultrasensitive colorimetric detection of glucose in serum samples. This work provides a promising strategy for design and development of biomimetic catalysts by smart assembly of different dimensional nanomaterials.

  5. Liquid-phase electroepitaxy - Dopant segregation

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Jastrzebski, L.; Gatos, H. C.

    1980-01-01

    A theoretical model is presented which accounts for the dopant segregation in liquid-phase electroepitaxy in terms of dopant transport in the liquid phase (by electromigration and diffusion), the growth velocity, and the Peltier effect at the substrate-solution interface. The contribution of dopant electromigration to the magnitude of the effective segregation coefficient is dominant in the absence of convection; the contribution of the Peltier effect becomes significant only in the presence of pronounced convection. Quantitative expressions which relate the segregation coefficient to the growth parameters also permit the determination of the diffusion constant and electromigration mobility of the dopant in the liquid phase. The model was found to be in good agreement with the measured segregation characteristics of Sn in the electroepitaxial growth of GaAs from Ga-As solutions. For Sn in Ga-As solution at 900 C the diffusion constant was found to be 4 x 10 to the -5 sq cm/s and the electromigration velocity (toward the substrate with a positive polarity 2 x 10 to the -5 cm/s current density of 10 A/sq cm.

  6. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon

    NASA Astrophysics Data System (ADS)

    Ojedokun, Adedamola Titi; Bello, Olugbenga Solomon

    2016-02-01

    Guava leaf, a waste material, was treated and activated to prepare adsorbent. The adsorbent was characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR) and Energy-Dispersive X-ray (EDX) techniques. The carbonaceous adsorbent prepared from guava leaf had appreciable carbon content (86.84 %). The adsorption of Congo red dye onto guava leaf-based activated carbon (GLAC) was studied in this research. Experimental data were analyzed by four different model equations: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms and it was found to fit Freundlich equation most. Adsorption rate constants were determined using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model equations. The results clearly showed that the adsorption of CR dye onto GLAC followed pseudo-second-order kinetic model. Intraparticle diffusion was involved in the adsorption process. The mean energy of adsorption calculated from D-R isotherm confirmed the involvement of physical adsorption. Thermodynamic parameters were obtained and it was found that the adsorption of CR dye onto GLAC was an exothermic and spontaneous process at the temperatures under investigation. The maximum adsorption of CR dye by GLAC was found to be 47.62 mg/g. The study shows that GLAC is an effective adsorbent for the adsorption of CR dye from aqueous solution.

  7. Effect of Polarity of Activated Carbon Surface, Solvent and Adsorbate on Adsorption of Aromatic Compounds from Liquid Phase.

    PubMed

    Goto, Tatsuru; Amano, Yoshimasa; Machida, Motoi; Imazeki, Fumio

    2015-01-01

    In this study, introduction of acidic functional groups onto a carbon surface and their removal were carried out through two oxidation methods and outgassing to investigate the adsorption mechanism of aromatic compounds which have different polarity (benzene and nitrobenzene). Adsorption experiments for these aromatics in aqueous solution and n-hexane solution were conducted in order to obtain the adsorption isotherms for commercial activated carbon (BAC) as a starting material, its two types of oxidized BAC samples (OXs), and their outgassed samples at 900 °C (OGs). Adsorption and desorption kinetics of nitrobenzene for the BAC, OXs and OGs in aqueous solution were also examined. The results showed that the adsorption of benzene molecules was significantly hindered by abundant acidic functional groups in aqueous solution, whereas the adsorbed amount of nitrobenzene on OXs gradually increased as the solution concentration increased, indicating that nitrobenzene can adsorb favourably on a hydrophilic surface due to its high dipole moment, in contrast to benzene. In n-hexane solution, it was difficult for benzene to adsorb on any sample owing to the high affinity between benzene and n-hexane solvent. On the other hand, adsorbed amounts of nitrobenzene on OXs were larger than those of OGs in n-hexane solution, implying that nitrobenzene can adsorb two adsorption sites, graphene layers and surface acidic functional groups. The observed adsorption and desorption rate constants of nitrobenzene on the OXs were lower than those on the BAC due to disturbance of diffusion by the acidic functional groups.

  8. Activity coefficient of aqueous sodium bicarbonate

    SciTech Connect

    Pitzer, Kenneth S.; Peiper, J. Christopher

    1980-09-01

    The determination of the activity coefficient and related properties of sodium bicarbonate presents special problems because of the appreciable vapor pressure of CO2 above such solutions. With the development of reliable equations for the thermodynamic properties of mixed electrolytes, it is possible to determine the parameters for NaHCO3 from cell measurements or NaCl-NaHCO3 mixtures. Literature data are analyzed to illustrate the method and provide interim values, hoever it is noted that further measurements over a wider range of concentrations would yield more definitive results. Lastly, an estimate is also given for the activity coefficient of KHCO3.

  9. Depositing spacing layers on magnetic film with liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sanfort, R. M.

    1975-01-01

    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.

  10. Vapors-liquid phase separator

    NASA Astrophysics Data System (ADS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-10-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  11. Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sartelet, K.; Couvidat, F.

    2014-12-01

    Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.

  12. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, T.

    2008-08-01

    Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH+4, Mg2+, Ca2+, Cl-, Br-, NO-3, HSO-4, and SO2-4 as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol+water+salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

  13. A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Marcolli, C.; Luo, B. P.; Peter, Th.

    2008-03-01

    Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42- as cations and anions and a wide range of alcohols/polyols composed of the functional groups CHn and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol + water + salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

  14. Liquid phase chromatography on microchips.

    PubMed

    Kutter, Jörg P

    2012-01-20

    Over the past twenty years, the field of microfluidics has emerged providing one of the main enabling technologies to realize miniaturized chemical analysis systems, often referred to as micro-Total Analysis Systems (uTAS), or, more generally, Lab-on-a-Chip Systems (LOC) [1,2]. While microfluidics was driven forward a lot from the engineering side, especially with respect to ink jet and dispensing technology, the initial push and interest from the analytical chemistry community was through the desire to develop miniaturized sensors, detectors, and, very early on, separation systems. The initial almost explosive development of, in particular, chromatographic separation systems on microchips, has, however, slowed down in recent years. This review takes a closer, critical look at how liquid phase chromatography has been implemented in miniaturized formats over the past several years, what is important to keep in mind when developing or working with separations in a miniaturized format, and what challenges and pitfalls remain.

  15. Liquid-Phase Beam Pen Lithography.

    PubMed

    He, Shu; Xie, Zhuang; Park, Daniel J; Liao, Xing; Brown, Keith A; Chen, Peng-Cheng; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2016-02-24

    Beam pen lithography (BPL) in the liquid phase is evaluated. The effect of tip-substrate gap and aperture size on patterning performance is systematically investigated. As a proof-of-concept experiment, nanoarrays of nucleotides are synthesized using BPL in an organic medium, pointing toward the potential of using liquid phase BPL to perform localized photochemical reactions that require a liquid medium.

  16. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    EPA Science Inventory

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...

  17. Transient liquid phase ceramic bonding

    DOEpatents

    Glaeser, Andreas M.

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  18. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  19. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.

    1983-01-01

    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  20. Application of dynamic liquid-phase microextraction and injection port derivatization combined with gas chromatography-mass spectrometry to the determination of acidic pharmaceutically active compounds in water samples.

    PubMed

    Zhang, Jie; Lee, Hian Kee

    2009-10-30

    A method has been established for the determination of four pharmaceutically active compounds (ibuprofen, ketoprofen, naproxen and clofibric acid) in water samples using dynamic hollow fiber liquid-phase microextraction (HF/LPME) followed by gas chromatography (GC) injection port derivatization and GC-mass spectrometric (MS) determination. Dynamic HF/LPME is a novel approach to microextraction that involves the use of a programmable syringe pump to move the liquid phases participating in the extraction so as to facilitate the process. Trimethylanilinium hydroxide (TMAH) was used as derivatization reagent for the analytes to increase their volatility and improve chromatographic separation. Parameters that affect extraction efficiency (selection of organic solvent, volume of organic solvent, agitation in the donor phase, plunger movement and extraction time) were investigated. Under optimal conditions, the proposed method provided good enrichment factors up to 251, reproducibility ranging from 3.26% to 10.61%, and good linearity from 0.2 to 50 microg/L. The limits of detection ranged between 0.01 and 0.05 microg/L (S/N=3) using selective ion monitoring. This method was applied to the determination of the four pharmaceutically active compounds in tap water and wastewater collected from a drain in the vicinity of a hospital.

  1. Preparation and Characterization of Low Molecular Weight Heparin by Liquid Phase Plasma Method.

    PubMed

    Lee, Do-Jin; Kim, Hangun; Kim, Byung Hoon; Park, Young-Kwon; Lee, Heon; Park, Sung Hoon; Jung, Sang-Chul

    2015-08-01

    An liquid phase plasma process system was applied to the production of low molecular weight heparin. The molecular weight of produed heparin decreased with increasing liquid phase plasma treatment time. The abscission of the chemical bonds between the constituents of heparin by liquid phase plasma reaction did not alter the characteristics of heparin. Formation of any by-products due to side reaction was not observed. It is suggested that heparin was depolymerized by active oxygen radicals produced during the liquid phase plasma reaction.

  2. Liquid phase sintering of silicon carbide

    DOEpatents

    Cutler, R.A.; Virkar, A.V.; Hurford, A.C.

    1989-05-09

    Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1,600 C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase. 4 figs.

  3. Liquid phase sintering of silicon carbide

    DOEpatents

    Cutler, Raymond A.; Virkar, Anil V.; Hurford, Andrew C.

    1989-01-01

    Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1600.degree. C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase.

  4. Solid-liquid phase transition in argon

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1978-01-01

    Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent condition. With the inclusion of cell-size variations, the transition temperature, the solid and liquid densities, and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.

  5. Liquid phase sintered compacts in space

    NASA Technical Reports Server (NTRS)

    Mookherji, T. K.; Mcanelly, W. B.

    1974-01-01

    A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.

  6. Improved Boat For Liquid-Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Connolly, John C.

    1991-01-01

    Liquid-phase epitaxial (LPE) growth boat redesigned. Still fabricated from ultra-high-purity graphite, but modified to permit easy disassembly and cleaning, along with improved wiping action for more complete removal of melt to reduce carry-over of gallium. Larger substrates and more uniform composition obtained.

  7. Binary Solid-Liquid Phase Equilibria

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    1978-01-01

    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  8. Gravitational Role in Liquid Phase Sintering

    NASA Technical Reports Server (NTRS)

    Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.

    1998-01-01

    To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.

  9. Activity coefficients of chlorophenols in water at infinite dilution

    SciTech Connect

    Tabai, S.; Rogalski, M.; Solimando, R.; Malanowski, S.K.

    1997-11-01

    The total pressure of aqueous solutions of chlorophenols was determined by a ebulliometric total pressure method for the aqueous solutions of phenol, 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol in the temperature range from 40 to 90 C. The activity coefficients at infinite dilution and the Henry constants were derived.

  10. Novel mode of liquid-phase microextraction: A magnetic stirrer as the extractant phase holder.

    PubMed

    Luo, Zhi-Yuan; Liu, Hai-Yan; Shi, Zhi-Guo

    2016-01-01

    In the present study, a novel configuration of liquid-phase microextraction was proposed, in which a magnetic stirrer with a groove was used as the extractant phase holder. It was termed as magnetic stirrer liquid-phase microextraction. In this way, the stability of the organic solvent was much improved under high stirring speed; the extraction efficiency was enhanced due to the enormously enlarged contact area between the organic solvent and aqueous phase. The extraction performance of the magnetic stirrer liquid-phase microextraction was studied using chlorobenzenes as the probe analytes. A wide linearity range (20 pg/mL to 200 ng/mL) with a satisfactory linearity coefficient (r(2) > 0.998) was obtained. Limits of detection ranged from 9.0 to 12.0 pg/mL. Good reproducibility was achieved with intra- and inter-day relative standard deviations <4.8%. The proposed magnetic stirrer liquid-phase microextraction was simple, environmentally friendly and efficient; compared to single-drop microextraction, it had obvious advantages in terms of reproducibility and extraction efficiency. It is a promising miniaturized liquid-phase technology for real applications.

  11. The gravitational effects on liquid phase sintering

    NASA Technical Reports Server (NTRS)

    Kipphut, C. M.; German, Randall M.; Bose, A.; Kishi, T.

    1989-01-01

    The liquid-phase sintering of heavy-metal PM alloys containing 78, 83, 88, 93, or 98 wt pct W plus Ni and Fe in a 7:3 ratio is investigated experimentally. The focus is on the potential role of gravity in phenomena such as specimen slumping and distortion, liquid migration, and microstructural coarsening. The results are presented in extensive graphs and micrographs and discussed in detail, and a preliminary grain-growth model is developed which accounts for the effects of contiguity and the volume fraction of solid.

  12. Infinite dilution activity coefficients from ab initio solvation calculations

    SciTech Connect

    Lin, S.T.; Sandler, S.I.

    1999-12-01

    A Group Contribution Solvation (GCS) model was developed to calculate infinite dilution activity coefficients ({gamma}{sup {chi}}) based on modern computational chemistry. The GCS model results in an average error of 7% in {gamma}{sup {chi}} for the limited number of data points among water, n-hexane, acetonitrile and n-octanol, whereas the errors are 47% and 52% with the UNIFAC model and the modified UNIFAC model, respectively. GCS was also used to calculate infinite dilution partition coefficients, which can be used to determine how a dilute solute partitions between two solvents. Solutes were examined in three different liquid-liquid systems: water/n-hexane, water/acetonitrile, and water/n-octanol. With GCS, the average errors are 22% (for 18 solutes), 18% (for 14 solutes) and 14% (for 15 solutes) for these solvent systems, while comparable errors are 237%, 286% and 226% with UNIFAC; and 342%, 414% and 306% with modified UNIFAC. The GCS model is a powerful new tool to predict the octanol-water partition coefficients.

  13. On liquid phases in cometary nuclei

    NASA Astrophysics Data System (ADS)

    Miles, Richard; Faillace, George A.

    2012-06-01

    In this paper we review the relevant literature and investigate conditions likely to lead to melting of H2O ice, methanol (CH3OH) ice, ethane (C2H6) ice and other volatile ices in cometary nuclei. On the basis of a heat balance model which takes account of volatiles loss, we predict the formation of occasional aqueous and hydrocarbon liquid phases in subsurface regions at heliocentric distances, rh of 1-3 AU, and 5-12 AU, respectively. Low triple-point temperatures and low vapour pressures of C2H6, C3H8, and some higher-order alkanes and alkenes, favour liquid phase formation in cometary bodies at high rh. Microporosity and the formation of a stabilization crust occluding the escape of volatiles facilitate liquid-phase formation. Characteristics of the near-surface which favour subsurface melting include; low effective surface emissivity (at low rh), high amorphous carbon content, average pore sizes of ˜10 μm or less, presence of solutes (e.g. CH3OH), mixtures of C2-C6 hydrocarbons (for melting at high rh), diurnal thermal cycling, and slow rotation rate. Applying the principles of soil mechanics, capillary forces are shown to initiate pre-melting phenomena and subsequent melting, which is expected to impart considerable strength of ˜104 Pa in partially saturated layers, reducing porosity and permeability, enhancing thermal conductivity and heat transfer. Diurnal thermal cycling is expected to have a marked effect on the composition and distribution of H2O ice in the near-surface leading to frost heave-type phenomena even where little if any true melting occurs. Where melting does take place, capillary suction in the wetted zone has the potential to enhance heat transfer via capillary wetting in a low-gravity environment, and to modify surface topography creating relatively smooth flat-bottomed features, which have a tendency to be located within small depressions. An important aspect of the "wetted layer" model is the prediction that diurnal melt-freeze cycles

  14. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect

    1997-06-30

    The Liquid Phase Methanol (LPMEOHTM) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOIYM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, comments from the DOE on the Topical Report "Economic Analysis - LPMEOHTM Process as an Add-on to IGCC for Coproduction" were received. A recommendation to continue with design verification testing for the coproduction of dimethyl ether (DIME) and methanol was made. DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stability is being developed. A recommendation document summarizing catalyst targets, experimental results, and the corresponding economics for a commercially successful LPDME catalyst was issued on 30 June 1997. The off-site, product-use test plan was updated in June of 1997. During this quarter, Acurex Environmental Corporation and Air Products screened proposals for this task by the likelihood of the projects to proceed and the timing for the initial methanol requirement. Eight sites from the list have met these criteria. The formal submission of the eight projects for review and concurrence by the DOE will be made during the next reporting period. The site paving and final painting were completed in May of 1997. Start-up activities were completed during the reporting period, and the initial methanol production from the demonstration unit occurred on 02 April 1997. The first extended stable operation at the nameplate capacity of 80,000 gallons per day (260 tons

  15. Vapor-liquid activity coefficients for methanol and ethanol from heat of solution data: application to steam-methane reforming.

    PubMed

    Kunz, R G; Baade, W F

    2001-11-16

    This paper presents equations and curves to calculate vapor-liquid phase equilibria for methanol and ethanol in dilute aqueous solution as a function of temperature, using activity coefficients at infinite dilution. These thermodynamic functions were originally derived to assess the distribution of by-product contaminants in the process condensate and the steam-system deaerator of a hydrogen plant [Paper ENV-00-171 presented at the NPRA 2000 Environmental Conference, San Antonio, TX, 10-12 September 2000], but have general applicability to other systems as well. The functions and calculation method described here are a necessary piece of an overall prediction technique to estimate atmospheric emissions from the deaerator-vent when the process condensate is recycled as boiler feed water (BFW) make-up. Having such an estimation technique is of particular significance at this time because deaerator-vent emissions are already coming under regulatory scrutiny in California [Emissions from Hydrogen Plant Process Vents, Adopted 21 January 2000] followed closely elsewhere in the US, and eventually worldwide. The overall technique will enable a permit applicant to estimate environmental emissions to comply with upcoming regulations, and a regulatory agency to evaluate those estimates. It may also be useful to process engineers as a tool to estimate contaminant concentrations and flow rates in internal process streams such as the steam-generating system. Metallurgists and corrosion engineers might be able to use the results for materials selection.

  16. A Crossed Sliding Luttinger Liquid phase

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ranjan; Kane, C. L.; Lubensky, T. C.

    2001-03-01

    It was recently demonstrated [1] that a stack of weakly coupled 2D planar XY-models can exhibit a sliding phase characterized by correlations that die off as a power-law with distance within a plane and exponentially with distance in the perpendicular direction. In this talk we investigate how these ideas can be extended to two-dimensional arrays of coupled quantam wires. In particular, we will focus on a crossed array of wires and demonstrate the existence of the so-called "crossed sliding Luttinger liquid" phase [2]. This phase is characterized by power-law correlations, and a two-dimensional isotropic in-plane conductivity that diverges as a power-law in temperature T as T goes to 0. It thus represents a nearly isotropic non-Fermi liquid state in two dimensions. 1. C.S. O'Hern, T.C. Lubensky, and J.Toner, Phys. Rev. Lett. 83, 2745 (1999). 2. Ranjan Mukhopadhyay, C.L. Kane, and T.C. Lubensky, condmat/0007039.

  17. Ultrasonic atomization: effect of liquid phase properties.

    PubMed

    Avvaru, Balasubrahmanyam; Patil, Mohan N; Gogate, Parag R; Pandit, Aniruddha B

    2006-02-01

    Experiments have been conducted to understand the mechanism by which the ultrasonic vibration at the gas liquid interface causes the atomization of liquid. For this purpose, aqueous solutions having different viscosities and liquids showing Newtonian (aqueous solution of glycerin) and non-Newtonian behavior (aqueous solution of sodium salt of carboxy methyl cellulose) were employed. It has been found that the average droplet size produced by the pseudo-plastic liquid is less than that produced by the viscous Newtonian liquid having viscosity equal to zero-shear rate viscosity of the shear thinning liquid. The droplet size was found to increase initially with an increase in the viscosity up to a certain threshold viscosity after which the droplet size was found to decrease again. Also droplet size distribution is found to be more compact (uniform sizes) with an increasing viscosity of the atomizing liquid. The presence of the cavitation and its effect on the atomization has been semi quantitatively confirmed using energy balance and by the measurement of the droplet ejection velocities and validated on the basis of the decomposition of the aqueous KI solution. A correlation has been proposed for the prediction of droplet size for aqueous Newtonian fluids and fluids showing non-Newtonian behavior based on the dimensionless numbers incorporating the operating parameters of the ultrasonic atomizer and the liquid phase physico-chemical properties.

  18. Determination of infinite dilution activity coefficients and 1-octanol/water partition coefficients of volatile organic pollutants

    SciTech Connect

    Tse, G.; Sandler, S.I. . Dept. of Chemical Engineering)

    1994-04-01

    The characterization of pollutants is of growing interest as concerns about the environment increase. One parameter useful in predicting the fate of a chemical in the environment, the infinite dilution activity coefficient, has been determined here for several EPA priority pollutants in 1-octanol at 25 C using a relative gas-liquid chromatographic measurement technique. A simple correlation has been developed relating the limiting activity coefficients of a species in pure water and in pure 1-octanol to its octanol/water partition coefficient. Agreement between the experimental results and published values is very good. The method developed here of computing the octanol/water partition coefficient from gas chromatographic measurements of its infinite dilution activity coefficients is an improvement over traditional partition coefficient determination methods in that it is easier and quicker, without a loss of accuracy. Furthermore, the authors show that this method is applicable to chemicals covering a large range of hydrophobicities (1.0 < log K[sub OW] < 5.0).

  19. Ferrofluid-based liquid-phase microextraction.

    PubMed

    Shi, Zhi-Guo; Zhang, Yufeng; Lee, Hian Kee

    2010-11-19

    A new mode of liquid-phase microextraction based on a ferrofluid has been developed. The ferrofluid was composed of silica-coated magnetic particles and 1-octanol as the extractant solvent. The 1-octanol was firmly confined within the silica-coated particles, preventing it from being lost during extraction. Sixteen polycyclic aromatic hydrocarbons (PAHs) were used as model compounds in the development and evaluation of the extraction procedure in combination with gas chromatography-mass spectrometry. Parameters affecting the extraction efficiency were investigated in detail. The optimal conditions were as follows: 20mL sample volume, 10mg of the silica-coated magnetic particles (28mg of ferrofluid), agitation at 20Hz, 20min extraction time, and 2min by sonication with 100μL acetonitrile as the final extraction solvent. Under optimal extraction conditions, enrichment factors ranging from 102- to 173-fold were obtained for the analytes. The limits of detection and the limits of quantification were in the range of 16.8 and 56.7pgmL(-1) and 0.06 and 0.19ngmL(-1), respectively. The linearities were between 0.5-100 and 1-100ngmL(-1) for different PAHs. As the ferrofluid can respond to and be attracted by a magnet, the extraction can be easily achieved by reciprocating movement of an external magnet that served to agitate the sample. No other devices were needed in this new approach of extraction. This new technique is affordable, efficient and convenient for microextraction, and offers portability for potential onsite extraction.

  20. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect

    Not Available

    1991-02-02

    This report consists of Detailed Data Acquisition Sheets for Runs E-6 and E-7 for Task 2.2 of the Modification, Operation, and Support Studies of the Liquid Phase Methanol Laporte Process Development Unit. (Task 2.2: Alternate Catalyst Run E-6 and Catalyst Activity Maintenance Run E-7).

  1. Transient liquid phase bonding of intermetallics

    NASA Astrophysics Data System (ADS)

    Guan, Yimin

    The present work was undertaken to examine the applicability of transient liquid phase bonding to structural intermetallics. This research was based on an investigation of the mechanisms governing microstructural development in the joint and adjacent substrates during the joining process. The bonding systems investigated included polycrystalline NiAl/Cu/Ni, polycrystalline NiAl/Cu/superalloys (Martin-Marietta (MM)-247, Inconel (IN) 718 and Nimonic 90), single-crystal NiAl (with 1.5 at % Hf) joined to MM-247 using different filler metals (Cu foil, powder filler metal and electro-plated thin Cu film), and martensitic NiAl joined with martensitic NiTi using Cu foil and specially designed powder filler metals. In polycrystalline NiAl/Cu/Ni bonds, the mechanism of isothermal solidification is considered. Changes in the microstructure of the bond centerline due to element redistribution are discussed. The precipitation of both L1sb2 type gammasp' and B2 type beta phase at the joint centerline is investigated. The formation of martensitic L1sb0 type NiAl is also examined. The mechanical properties of the joints are investigated using shear strength and microhardness tests. In TLP bonding of polycrystalline NiAl with MM-247, both the epitaxial growth of the beta phase NiAl into the joint and the formation of non-epitaxial beta-phase layers are considered. The formation of second-phases, including the gammasp' phase, carbides, and sigma-phase intermetallics is also examined. Bond-line and adjacent substrate microstructures for the NiAl/Cu/MM-247 bonds are correlated with joint mechanical properties determined by room temperature shear testing. Single-crystal NiAl (1.5 at % Hf)/Cu/MM-247 joints are examined and compared with polycrystalline NiAl/Cu/MM247 joints. The effect of Hf on the microstructure of joints is investigated. The influence of different filler metals (i.e., wide-gap powder filler metal and electro-plated thin film filler metal) on the joining process is also

  2. Transfer having a coupling coefficient higher than its active material

    NASA Technical Reports Server (NTRS)

    Lesieutre, George A. (Inventor); Davis, Christopher L. (Inventor)

    2001-01-01

    A coupling coefficient is a measure of the effectiveness with which a shape-changing material (or a device employing such a material) converts the energy in an imposed signal to useful mechanical energy. Device coupling coefficients are properties of the device and, although related to the material coupling coefficients, are generally different from them. This invention describes a class of devices wherein the apparent coupling coefficient can, in principle, approach 1.0, corresponding to perfect electromechanical energy conversion. The key feature of this class of devices is the use of destabilizing mechanical pre-loads to counter inherent stiffness. The approach is illustrated for piezoelectric and thermoelectrically actuated devices. The invention provides a way to simultaneously increase both displacement and force, distinguishing it from alternatives such as motion amplification, and allows transducer designers to achieve substantial performance gains for actuator and sensor devices.

  3. Mixed Stationary Liquid Phases for Gas-Liquid Chromatography.

    ERIC Educational Resources Information Center

    Koury, Albert M.; Parcher, Jon F.

    1979-01-01

    Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)

  4. Modeling of the primary rearrangement stage of liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Malik Tahir, Abdul; Malik, Amer; Amberg, Gustav

    2016-10-01

    The dimensional variations during the rearrangement stage of liquid phase sintering could have a detrimental effect on the dimensional tolerances of the sintered product. A numerical approach to model the liquid phase penetration into interparticle boundaries and the accompanied dimensional variations during the primary rearrangement stage of liquid phase sintering is presented. The coupled system of the Cahn-Hilliard and the Navier-Stokes equations is used to model the penetration of the liquid phase, whereas the rearrangement of the solid particles due to capillary forces is modeled using the equilibrium equation for a linear elastic material. The simulations are performed using realistic physical properties of the phases involved and the effect of green density, wettability and amount of liquid phase is also incorporated in the model. In the first step, the kinetics of the liquid phase penetration and the rearrangement of solid particles connected by a liquid bridge is modeled. The predicted and the calculated (analytical) results are compared in order to validate the numerical model. The numerical model is then extended to simulate the dimensional changes during primary rearrangement stage and a qualitative match with the published experimental data is achieved.

  5. Graphene via sonication assisted liquid-phase exfoliation.

    PubMed

    Ciesielski, Artur; Samorì, Paolo

    2014-01-07

    Graphene, the 2D form of carbon based material existing as a single layer of atoms arranged in a honeycomb lattice, has set the science and technology sectors alight with interest in the last decade in view of its astounding electrical and thermal properties, combined with its mechanical stiffness, strength and elasticity. Two distinct strategies have been undertaken for graphene production, i.e. the bottom-up and the top-down. The former relies on the generation of graphene from suitably designed molecular building blocks undergoing chemical reaction to form covalently linked 2D networks. The latter occurs via exfoliation of graphite into graphene. Bottom-up techniques, based on the organic syntheses starting from small molecular modules, when performed in liquid media, are both size limited, because macromolecules become more and more insoluble with increasing size, and suffer from the occurrence of side reactions with increasing molecular weight. Because of these reasons such a synthesis has been performed more and more on a solid (ideally catalytically active) surface. Substrate-based growth of single layers can be done also by chemical vapor deposition (CVD) or via reduction of silicon carbide, which unfortunately relies on the ability to follow a narrow thermodynamic path. Top-down approaches can be accomplished under different environmental conditions. Alongside the mechanical cleavage based on the scotch tape approach, liquid-phase exfoliation (LPE) methods are becoming more and more interesting because they are extremely versatile, potentially up-scalable, and can be used to deposit graphene in a variety of environments and on different substrates not available using mechanical cleavage or growth methods. Interestingly, LPE can be applied to produce different layered systems exhibiting different compositions such as BN, MoS2, WS2, NbSe2, and TaS2, thereby enabling the tuning of numerous physico-chemical properties of the material. Furthermore, LPE can be

  6. Homogeneous Liquid Phase Transfer of Graphene Oxide into Epoxy Resins.

    PubMed

    Amirova, Lyaysan; Surnova, Albina; Balkaev, Dinar; Musin, Delus; Amirov, Rustem; Dimiev, Ayrat M

    2017-04-05

    The quality of polymer composite materials depends on the distribution of the filler in the polymer matrix. Due to the presence of the oxygen functional groups, graphene oxide (GO) has a strong affinity to epoxy resins, providing potential opportunity for the uniform distribution of GO sheets in the matrix. Another advantage of GO over its nonoxidized counterpart is its ability to exfoliate to single-atomic-layer sheets in water and in some organic solvents. However, these advantages of GO have not yet been fully realized due to the lack of the methods efficiently introducing GO into the epoxy resin. Here we develop a novel homogeneous liquid phase transfer method that affords uniform distribution, and fully exfoliated condition of GO in the polymer matrix. The most pronounced alteration of properties of the cured composites is registered at the 0.10%-0.15% GO content. Addition of as little as 0.10% GO leads to the increase of the Young's modulus by 48%. Moreover, we demonstrate successful introduction of GO into the epoxy matrix containing an active diluent-modifier; this opens new venues for fabrication of improved GO-epoxy-modifier composites with a broad range of predesigned properties. The experiments done on reproducing the two literature methods, using alternative GO introduction techniques, lead to either decrease or insignificant increase of the Young's modulus of the resulting GO-epoxy composites.

  7. Measurement of gas/water uptake coefficients for trace gases active in the marine environment

    SciTech Connect

    Davidovits, P. . Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. . Center for Chemical and Environmental Physics)

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  8. Liquid-Phase Processing of Barium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Harris, David Thomas

    . Our system exhibits flux-film-substrate interactions that can lead to dramatic changes to the microstructure. This effect is especially pronounced onc -sapphire, with Al diffusion from the substrate leading to formation of an epitaxial BaAl2O4 second phase at the substrate-film interface. The formation of this second phase in the presence of a liquid phase seeds {111} twins that drive abnormal grain growth. The orientation of the sapphire substrate determines the BaAl2O 4 morphology, enabling control the abnormal grain growth behavior. CuO additions leads to significant grain growth at 900 °C, with average grain size approaching 500 nm. The orthorhombic-tetragonal phase transition is clearly observable in temperature dependent measurements and both linear and nonlinear dielectric properties are improved. All films containing CuO are susceptible to aging. A number of other systems were investigated for efficacy at temperatures below 900 °C. Pulsed laser deposition was used to study flux + BaTiO 3 targets, layered flux films, and in situ liquids. RF-magnetron sputtering using a dual-gun approach was used to explore integration on flexible foils with Ba1-xSrxTiO3. Many of these systems were based on the BaO-B2O3 system, which has proven effective in thin films, multilayer ceramic capacitors, and bulk ceramics. Modifiers allow tailoring of the microstructure at 900 °C, however no compositions were found, and no reports exist in the open literature, that provide significant grain growth or densification below 900 °C. Liquid phase fluxes offer a promising path forward for low temperature processing of barium titanate, with the ultimate goal of integration with metalized silicon substrates. This work demonstrates significant improvements to dielectric properties and the necessity of understanding interactions in the film-flux-substrate system.

  9. Application of ionic liquid in liquid phase microextraction technology.

    PubMed

    Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho

    2012-11-01

    Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction.

  10. Green aspects, developments and perspectives of liquid phase microextraction techniques.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2014-02-01

    Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented.

  11. In situ monitoring of liquid phase electroepitaxial growth

    NASA Technical Reports Server (NTRS)

    Okamoto, A.; Isozumi, S.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    In situ monitoring of the layer thickness during liquid phase electroepitaxy (LPEE) was achieved with a submicron resolution through precise resistance measurements. The new approach to the study and control of LPEE was applied to growth of undoped and Ge-doped GaAs layers. The in situ determined growth kinetics was found to be in excellent agreement with theory.

  12. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    PubMed Central

    Wang, W .L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-01-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate. PMID:26552711

  13. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy.

    PubMed

    Wang, W L; Wu, Y H; Li, L H; Zhai, W; Zhang, X M; Wei, B

    2015-11-10

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.

  14. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect

    Davis, W. Jr. ); Cochran, H.D. )

    1990-02-01

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  15. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect

    1997-09-30

    The Liquid Phase Methanol (LPMEOH) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Ak Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOITM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this reporting period, DOE accepted the recommendation to continue with dimethyl ether (DME) design verification testing (DVT). DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stzibility is being developed. Planning for a proof-of-concept test run at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended. DOE issued a letter dated 31 July 1997 accepting the recommendation to continue design verification testing. In order to allow for scale-up of the manufacturing technique for the dehydration catalyst from the pilot plant to the commercial scale, the time required to produce the catalyst to the AFDU has slipped. The new estimated delivery date is 01 June 1998.

  16. Thickness Mismatch of Coexisting Liquid Phases in Non-Canonical Lipid Bilayers

    PubMed Central

    Bleecker, Joan V.; Cox, Phillip A.; Foster, Rami N.; Litz, Jonathan P.; Blosser, Matthew C.; Castner, David G.; Keller, Sarah L.

    2016-01-01

    Lipid composition dictates membrane thickness, which in turn can influence membrane protein activity. Lipid composition also determines whether a membrane demixes into coexisting liquid-crystalline phases. Previous direct measurements of demixed lipid membranes have always found a liquid-ordered phase that is thicker than the liquid-disordered phase. Here we investigated non-canonical ternary lipid mixtures designed to produce bilayers with thicker disordered phases than ordered phases. The membranes were comprised of short, saturated (ordered) lipids; long, unsaturated (disordered) lipids; and cholesterol. We found that few of these systems yield coexisting liquid phases above 10 °C. For membranes that do demix into two liquid phases, we measured the thickness mismatch between the phases by atomic force microscopy and found that not one of the systems yields thicker disordered than ordered phases under standard experimental conditions. We found no monotonic relationship between demixing temperatures of these ternary systems and either estimated thickness mismatches between the liquid phases or the physical parameters of single-component membranes comprised of the individual lipids. These results highlight the robustness of a membrane’s liquid-ordered phase to be thicker than the liquid-disordered phase, regardless of the membrane’s lipid composition. PMID:26890258

  17. Microstructure evolution and densification of alumina in liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Dong, Weimin

    The microstructure evolution and densification of alumina during liquid phase sintering were quantified. Quantification included the evolution of pore-size distribution, the redistribution of liquid phase, the densification kinetics, and the fraction of closed and open pores. The results revealed that the small and large pores were filled simultaneously. This is inconsistent with Shaw's model in which liquid fills preferentially the smaller low-coordination-number pores in order to reach a low-energy configuration. The results also recommended that the pressure build-up of the trapped gases in pores due to the closure of open pores might have a significantly negative contribution to the driving force, and consequently cause the termination of the densification of alumina. To demonstrate whether the trapped gases played an important role in the microstructure evolution and the densification of alumina during liquid phase sintering, the following two experiments have been conducted. First, alumina preforms containing artificial pores were penetrated by glass. The results indicated that the trapped gases in pores had a considerable influence on the pore filling process, and ultimately caused the termination of the densification of the alumina preforms. Second, alumina compacts containing different amount of glass were sintered in vacuum. The alumina compact containing 20 vol. % reached full density during vacuum sintering, indicating that the pressure build-up of the trapped gases in pores was the main factor causing the termination of the densification of alumina in the final stage of liquid phase sintering. The limiting relative densities of compacts were calculated theoretically on the basis of a comprehensive analysis of the variation of the capillary pressure and gas pressure in pores with pore size and pore number. The capillary pressure and gas pressure in alumina compact during liquid phase sintering were analyzed on the basis of the above theoretical models

  18. Liquid phase oxidation chemistry in continuous-flow microreactors.

    PubMed

    Gemoets, Hannes P L; Su, Yuanhai; Shang, Minjing; Hessel, Volker; Luque, Rafael; Noël, Timothy

    2016-01-07

    Continuous-flow liquid phase oxidation chemistry in microreactors receives a lot of attention as the reactor provides enhanced heat and mass transfer characteristics, safe use of hazardous oxidants, high interfacial areas, and scale-up potential. In this review, an up-to-date overview of both technological and chemical aspects of liquid phase oxidation chemistry in continuous-flow microreactors is given. A description of mass and heat transfer phenomena is provided and fundamental principles are deduced which can be used to make a judicious choice for a suitable reactor. In addition, the safety aspects of continuous-flow technology are discussed. Next, oxidation chemistry in flow is discussed, including the use of oxygen, hydrogen peroxide, ozone and other oxidants in flow. Finally, the scale-up potential for continuous-flow reactors is described.

  19. Liquid-phase sintering of iron aluminide-bonded ceramics

    SciTech Connect

    Schneibel, J.H.; Carmichael, C.A.

    1995-12-31

    Iron aluminide intermetallics exhibit excellent oxidation and sulfidation resistance and are therefore considered as the matrix in metal matrix composites, or the binder in hard metals or cermets. In this paper the authors discuss the processing and properties of liquid-phase sintered iron aluminide-bonded ceramics. It is found that ceramics such as TiB{sub 2}, ZrB{sub 2}, TiC, and WC may all be liquid phase-sintered. nearly complete densification is achieved for ceramic volume fractions ranging up to 60%. Depending on the composition, room temperature three point-bend strengths and fracture toughnesses reaching 1,500 MPa and 30 MPa m{sup 1/2}, respectively, have been found. Since the processing was carried out in a very simple manner, optimized processing is likely to result in further improvements.

  20. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  1. Densification and shape distortion in liquid-phase sintering

    SciTech Connect

    Liu, J.; German, R.M.

    1999-12-01

    Densification and dimensional control are important aspects of liquid-phase sintering. The capillary force and the solid bonding affect both densification and shape preservation. Capillarity, which is orientated isotropically, causes uniform shrinkage and holds grains together to preserve the component shape in the early stage of sintering. On the other hand, solid bonding resists viscous flow and inhibits densification and shape distortion. The capillary force decreases with densification and approaches zero as pores are eliminated. Thus, shape retention eventually requires solid-grain bonding. The solid-grain bonding provides compact rigidity, which is represented by compact strength. Shape distortion occurs when the compact loses its strength. For every situation, there is a critical compact strength above which no shape distortion occurs. Distortion in liquid-phase sintering indicates that the compact strength passed below a critical level.

  2. Containerless Liquid-Phase Processing of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard (Principal Investigator); Nordine, Paul C.

    1996-01-01

    The present project builds on the results of research supported under a previous NASA grant to investigate containerless liquid-phase processing of molten ceramic materials. The research used an aero-acoustic levitator in combination with cw CO2 laser beam heating to achieve containerless melting, superheating, undercooling, and solidification of poorly-conducting solids and liquids. Experiments were performed on aluminum oxide, binary aluminum oxide-silicon dioxide materials, and oxide superconductors.

  3. New topic of supercritical fluids: Local activity coefficients of supercritical solvent and cosolvent around solute

    NASA Astrophysics Data System (ADS)

    Hou, Minqiang; Zhang, Xiaogang; Han, Buxing; Song, Jiyuan; Liu, Gang; Zhang, Zhaofu; Zhang, Jianling

    2008-03-01

    The study of inhomogeneity in supercritical fluids (SCFs) is of great importance. In this work, we propose the concept of local activity coefficients in supercritical (SC) solutions, which link thermodynamics and inhomogeneity in SC systems. The local activity coefficients of CO2+acetonitrile+phenol blue and CO2+aceticacid+phenol blue systems are investigated at 308.15K in critical region and outside critical region. To do this, the local compositions of CO2+acetonitrile and CO2+acetic acid mixed solvents around phenol blue are first estimated using UV-visible spectroscopy. Then it is considered that there exist bulk phase and local phase around phenol blue in the systems. The activity coefficients of CO2 and the cosolvents (acetonitrile or acetic acid) in bulk phase are calculated using Peng-Robinson equation of state. The local activity coefficients of CO2 and the cosolvents are then calculated on the basis of thermodynamic principles. It is demonstrated that in the critical region the local activity coefficients differ from bulk activity coefficients significantly and are sensitive to pressure. This can explain many unusual phenomena in SC systems in critical region thermodynamically.

  4. New topic of supercritical fluids: local activity coefficients of supercritical solvent and cosolvent around solute.

    PubMed

    Hou, Minqiang; Zhang, Xiaogang; Han, Buxing; Song, Jiyuan; Liu, Gang; Zhang, Zhaofu; Zhang, Jianling

    2008-03-14

    The study of inhomogeneity in supercritical fluids (SCFs) is of great importance. In this work, we propose the concept of local activity coefficients in supercritical (SC) solutions, which link thermodynamics and inhomogeneity in SC systems. The local activity coefficients of CO(2)+acetonitrile+phenol blue and CO(2)+acetic acid+phenol blue systems are investigated at 308.15 K in critical region and outside critical region. To do this, the local compositions of CO(2)+acetonitrile and CO(2)+acetic acid mixed solvents around phenol blue are first estimated using UV-visible spectroscopy. Then it is considered that there exist bulk phase and local phase around phenol blue in the systems. The activity coefficients of CO(2) and the cosolvents (acetonitrile or acetic acid) in bulk phase are calculated using Peng-Robinson equation of state. The local activity coefficients of CO(2) and the cosolvents are then calculated on the basis of thermodynamic principles. It is demonstrated that in the critical region the local activity coefficients differ from bulk activity coefficients significantly and are sensitive to pressure. This can explain many unusual phenomena in SC systems in critical region thermodynamically.

  5. Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering

    SciTech Connect

    Dr. Paul A. Lessing

    2012-03-01

    Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

  6. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 2: Consideration of phase separation effects by an X-UNIFAC model

    NASA Astrophysics Data System (ADS)

    Chang, Elsa I.; Pankow, James F.

    A thermodynamic model is presented for predicting the formation of particulate matter (PM) within an aerosol that contains organic compounds, inorganic salts, and water. Neutral components are allowed to partition from the gas phase to the PM, with the latter potentially composed of both a primarily aqueous ( α) liquid phase and a primarily organic ( β) liquid phase. Partitioning is allowed to occur without any artificial restraints: when both α and β PM phases are present, ionic constituents are allowed to partition to both. X-UNIFAC.2, an extended UNIFAC method based on Yan et al. (1999. Prediction of vapor-liquid equilibria in mixed-solvent electrolyte systems using the group contribution concept. Fluid Phase Equilibria 162, 97-113), was developed for activity coefficient estimation. X-UNIFAC.2 utilizes the standard UNIFAC terms, a Debye-Hückel term, and a virial equation term that represents the middle-range (MR) contribution to activity coefficient effects. A large number (234) of MR parameters are already available from Yan et al. (1999). Six additional MR parameters were optimized here to enable X-UNIFAC.2 to account for interactions between the carboxylic acid group and Na +, Cl -, and Ca 2+. Predictions of PM formation were made for a hypothetical sabinene/O 3 system with varying amounts of NaCl in the PM. Predictions were also made for the chamber experiments with α-pinene/O 3 (and CaCl 2 seed) carried out by Cocker et al. (2001. The effect of water on gas-particle partitioning of secondary organic aerosol. Part I. α-pinene/ozone system. Atmospheric Environment 35, 6049-6072); good agreement between the predicted and chamber-measured PM mass concentrations was achieved.

  7. Cobalt pivalate complex as a catalyst for liquid phase oxidation of n-hexane

    NASA Astrophysics Data System (ADS)

    Moskovskaya, I. F.; Maerle, A. A.; Shvydkiy, N. V.; Romanovsky, B. V.; Ivanova, I. I.

    2015-09-01

    Catalytic properties of cobalt(II) pivalate complex as both individual and supported on mesoporous molecular sieves Si-KIT-6, Al-KIT-6, and Ce-KIT-6 were investigated in liquid-phase oxidation of n-hexane with molecular oxygen. This complex was shown to be an active and selective catalyst for the oxidation of n-C6H14 into C1-C4 carboxylic acids. The activity of Co(II) pivalate remains practically unchanged on heterogenizing the complex on molecular sieve supports. At the same time, its selectivity and resistance towards an oxidative degradation are slightly increased.

  8. Study of enrichment factors for six β-blockers in aliphatic alcohols by hollow-fiber liquid-phase microextraction.

    PubMed

    Li, Qing-Lian; Jing, Shao-Jun; Zhang, Jin-Feng; Zhang, Lin; Ran, Cong-Cong; Du, Chao-Hui; Jiang, Ye

    2015-10-01

    The selectivity of a suitable organic solvent is key for extraction in liquid-phase microextraction experiments. Nevertheless, the screening process remains a daunting task. Our research aimed to study the relationship between extraction efficiency and extraction solvents, analytes, and finally select the appropriate extraction solvent. In the present article, β-blockers and six extraction solvents were chosen as the models and hollow-fiber liquid-phase microextraction was conducted. The relationship was built by statistical analysis on the data. Factors affecting extraction efficiency including the logarithms of the octanol/water partition coefficient (logPo/w ) of analytes, acid dissociation constants, the logarithms of the octanol/water partition coefficient of solvents and pH of the sample solution were investigated. The results showed that a low water solubility of extraction solvent is the foundation to ensure higher extraction efficiency. Moreover, when ΔlogPo/w > 0, a higher extraction efficiency is observed at lower ΔlogPo/w , on the contrary, when ΔlogPo/w < 0, extraction efficiency is higher as the absolute value of ΔlogPo/w becomes greater. Finally, the relationship between enrichment factor and extraction solvents, analytes was established and a helpful guidance was provided for the selection of an optimal solvent to obtain the best extraction efficiency by liquid-phase microextraction.

  9. Modified phase-field-crystal model for solid-liquid phase transitions

    NASA Astrophysics Data System (ADS)

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k =km will enhance the stability of the ordered phase, while the increase of peak height at k =0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k =km will decrease the interface width and the velocity coefficient C , but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  10. Gas-liquid phase coexistence and crossover behavior of binary ionic fluids with screened Coulomb interactions.

    PubMed

    Patsahan, O

    2014-06-01

    We study the effects of an interaction range on the gas-liquid phase diagram and the crossover behavior of a simple model of ionic fluids: an equimolar binary mixture of equisized hard spheres interacting through screened Coulomb potentials which are repulsive between particles of the same species and attractive between particles of different species. Using the collective variables theory, we find explicit expressions for the relevant coefficients of the effective φ{4} Ginzburg-Landau Hamiltonian in a one-loop approximation. Within the framework of this approximation, we calculate the critical parameters and gas-liquid phase diagrams for varying inverse screening length z. Both the critical temperature scaled by the Yukawa potential contact value and the critical density rapidly decrease with an increase of the interaction range (a decrease of z) and then for z<0.05 they slowly approach the values found for a restricted primitive model (RPM). We find that gas-liquid coexistence region reduces with an increase of z and completely vanishes at z≃2.78. Our results clearly show that an increase in the interaction range leads to a decrease of the crossover temperature. For z≃0.01, the crossover temperature is the same as for the RPM.

  11. Modified phase-field-crystal model for solid-liquid phase transitions.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k=k(m) will enhance the stability of the ordered phase, while the increase of peak height at k=0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k=k(m) will decrease the interface width and the velocity coefficient C, but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  12. Activity Coefficient Derivatives of Ternary Systems Based on Scatchard's Neutral Electrolyte description

    SciTech Connect

    Miller, D G

    2007-05-16

    Activity coefficient derivatives with respect to molality are presented for the Scatchard Neutral Electrolyte description of a ternary common-ion electrolyte system. These quantities are needed for the calculation of 'diffusion Onsager coefficients' and in turn for tests of the Onsager Reciprocal Relations in diffusion. The usually-omitted b{sub 23} term is included. The direct SNE binary approximations and a further approximation are discussed. Binary evaluation strategies other than constant ionic strength are considered.

  13. Evaluated activity and osmotic coefficients for aqueous solutions: thirty-six uni-bivalent electrolytes

    NASA Astrophysics Data System (ADS)

    Goldberg, R. N.

    1981-07-01

    A critical evaluation of the mean acivity and osmotic coefficients in aqueous solutions of thirty-five uni-bivalent electrolytes at 298.15 K is presented. The systems which have been treated are ammonium orthophosphate, guanadinium carbonate, 1,2-ethane disulfonic acid, m-benzene disulfonic acid, ammonium decahydroborate, and the unibivalent compounds of lithium, sodium, potasium, rubidium, and cesium. Osmotic coefficients were calculated from direct vapor pressure measurements, from isopiestic measurements and from freezing-point depression measurements. Activity coefficients were calculated from electromotive force measurements on galvanic cells without transference and from diffusion measurements. Given are empirical coefficients for three different correlating equations, obtained by a weighted least squares fit to the experimental data, and tables consisting of the activity coefficients of the compounds, the osmotic coefficients and activity of water, and the excess Gibbs energy of the solution as functions of the molality for each electrolyte system. The literature coverage is through the computerized version of Chemical Abstracts of September 1979.

  14. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    SciTech Connect

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-01-28

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictions also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.

  15. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas. Final technical report

    SciTech Connect

    Not Available

    1993-02-01

    Through the mid-1980s, Air Products has brought the liquid phase approach to a number of other synthesis gas reactions where effective heat management is a key issue. In 1989, in response to DOE`s PRDA No. DE-RA22-88PC88805, Air Products proposed a research and development program entitled ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal Derived Syngas.`` The proposal aimed at extending the LPMEOH experience to convert coal-derived synthesis gas to other useful fuels and chemicals. The work proposed included development of a novel one-step synthesis of dimethyl ether (DME) from syngas, and exploration of other liquid phase synthesis of alternative fuel directly from syngas. The one-step DME process, conceived in 1986 at Air Products as a means of increasing syngas conversion to liquid products, envisioned the concept of converting product methanol in situ to DME in a single reactor. The slurry reactor based liquid phase technology is ideally suited for such an application, since the second reaction (methanol to DME) can be accomplished by adding a second catalyst with dehydration activity to the methanol producing reactor. An area of exploration for other alternative fuels directly from syngas was single-step slurry phase synthesis of hydrocarbons via methanol and DME as intermediates. Other possibilities included the direct synthesis of mixed alcohols and mixed ethers in a slurry reactor.

  16. Two Spin Liquid phases in the anisotropic triangular Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sorella, Sandro

    2005-03-01

    Recently there have been rather clean experimental realizations of the quantum spin 1/2 Heisenberg Hamiltonian on a 2D triangular lattice geometry in systems like Cs2Cu Cl4 and organic compounds like k-(ET)2Cu2(CN)3. These materials are nearly two dimensional and are characterized by an anisotropic antiferromagnetic superexchange. The strength of the spatial anisotropy can increase quantum fluctuations and can destabilize the magnetically ordered state leading to non conventional spin liquid phases. In order to understand these interesting phenomena we have studied, by Quantum Monte Carlo methods, the triangular lattice Heisenberg model as a function of the strength of this anisotropy, represented by the ratio r between the intra-chain nearest neighbor coupling J' and the inter-chain one J. We have found evidence of two spin liquid regions, well represented by projected BCS wave functions[1,2] of the type proposed by P. W. Anderson at the early stages of High temperature superconductivity [3]. The first spin liquid phase is stable for small values of the coupling r 0.6 and appears gapless and fractionalized, whereas the second one is a more conventional spin liquid, very similar to the one realized in the quantum dimer model in the triangular lattice[4]. It is characterized by a spin gap and a finite correlation length, and appears energetically favored in the region 0.6 r 0.9. The various phases are in good agreement with the experimental findings and supports the existence of spin liquid phases in 2D quantum spin-half systems. %%%%%%%%%%%%%%%%%% 1cm *[1] L. Capriotti F. Becca A. Parola and S. Sorella , Phys. Rev. Letters 87, 097201 (2001). *[2] S. Yunoki and S. Sorella Phys. Rev. Letters 92, 15003 (2004). *[3] P. W. Anderson, Science 235, 1186 (1987). *[4] P. Fendley, R. Moessner, and S. L. Sondhi Phys. Rev. B 66, 214513 (2002).

  17. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  18. Modeling liquid-liquid phase transitions and quasicrystal formation

    NASA Astrophysics Data System (ADS)

    Skibinsky, Anna

    In this thesis, studies which concern two different subjects related to phase transitions in fluids and crystalline solids are presented. Condensed matter formation, structure, and phase transitions are modeled using molecular dynamics simulations of simple discontinuous potentials with attractive and repulsive interactions. Novel phase diagrams are proposed for quasicrystals, crystals, and liquids. In the first part of the thesis, the formation of a quasicrystal in a two dimensional monodisperse system is investigated using molecular dynamics simulations of hard sphere particles interacting via a two-dimensional square-well potential. It is found that for certain values of the square-well parameters more than one stable crystalline phase can form. By quenching the liquid phase at a very low temperature, an amorphous phase is obtained. When this the amorphous phase is heated, a quasicrystalline structure with five-fold symmetry forms. From estimations of the Helmholtz potentials of the stable crystalline phases and of the quasicrystal, it is concluded that within a specific temperature range, the observed quasicrystal phase can be the stable phase. The second part of the thesis concerns a study of the liquid-liquid phase transition for a single-component system in three dimensions, interacting via an isotropic potential with a repulsive soft-core shoulder at short distance and an attractive well at an intermediate distance. The potential is similar to potentials used to describe such liquid systems as colloids, protein solutions, or liquid metals. It is shown that the phase diagram for such a potential can have two lines of first-order fluid-fluid phase transitions: one separating a gas and a low-density liquid (LDL), and another between the LDL and a high-density liquid (HDL). Both phase transition lines end in a critical point, a gas-LDL critical point and, depending on the potential parameters, either a gas-HDL critical point or a LDL-HDL critical point. A

  19. Liquid phase synthesis of copper indium diselenide nanoparticles

    SciTech Connect

    Jakhmola, Priyanka; Agarwal, Garima; Jha, Prafulla K.; Bhatnagar, S. P.

    2014-04-24

    Nanoparticles of Copper Indium diselenide (CuInSe{sub 2}), belongs to I-III-VI{sub 2} family has been synthesized via liquid phase route using ethylenediamine as a solvent. Characterization of as-grown particles is done by XRD, HRTEM, DLS, optical microscopy and UV-Vis spectroscopy. X-ray diffraction pattern confirmed that the CuInSe2 nanoparticles obtained reveals chalcopyrite structure. Particle size evaluated from dynamic light scattering of as grown particle possessing radius of 90 nm. The bandgap of 1.05eV is obtained from UV-Vis spectrum which will applicable to the solar cell devices.

  20. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    SciTech Connect

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  1. Investigating materials formation with liquid-phase and cryogenic TEM

    NASA Astrophysics Data System (ADS)

    de Yoreo, J. J.; N. A. J. M., Sommerdijk

    2016-08-01

    The recent advent of liquid-phase transmission electron microscopy (TEM) and advances in cryogenic TEM are transforming our understanding of the physical and chemical mechanisms underlying the formation of materials in synthetic, biological and geochemical systems. These techniques have been applied to study the dynamic processes of nucleation, self-assembly, crystal growth and coarsening for metallic and semiconductor nanoparticles, (bio)minerals, electrochemical systems, macromolecular complexes, and organic and inorganic self-assembling systems. New instrumentation and methodologies that are currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  2. Containerless liquid-phase processing of ceramic materials

    NASA Technical Reports Server (NTRS)

    Weber, J. K. R.; Nordine, P. C.

    1994-01-01

    Containerless melting and solidification provides a powerful tool for investigation and synthesis of ceramic and glass materials. The work described in this article explored and extended the limits of ground-based experimentation by using aero-acoustic and aerodynamic levitation in combination with laser beam heating and melting to investigate ceramic and glass processing. Results of liquid-phase processing experiments on calcia-gallia and calcia-gallia-silica glass-forming mixtures, aluminum oxide, and ceramic superconductors are summarized. The work is discussed in the context of low gravity experimental and materials synthesis requirements and opportunities.

  3. Surface activity coefficients of spread monolayers of behenic acid salts at air-water interface.

    PubMed

    Chattoraj, D K; Halder, E; Das, K P; Mitra, A

    2006-11-16

    The pressure-area isotherms of ionized monolayers of behenic acid at air-water interface at pH 12.0 have been obtained from the Langmuir film balance experiments under various physico-chemical conditions. The value of the measured surface pressure at a given area per molecule is equal to the sum of the ideal pressure, cohesive pressure and electrical pressure. The electrical pressure term is regarded as the sum of the pressure originating from the Gouy-Chapman double layer including discrete ion effect, ion binding and monolayer hydration effect. At a given area, the deviation of the measured surface pressure from its ideal value has been calculated in terms of the apparent surface compressibility coefficients, surface fugacity coefficients for gaseous monolayer and surface activity coefficients of solute forming two-dimensional solutions in the monolayer phase respectively. Values of all these coefficients have been calculated for different compositions of the monolayer using non-ideal gas model and Raoult's and Henry's laws modified for two-dimensional non-ideal solutions respectively. Values of these coefficients may be higher or lower than unity depending upon ionic strengths and nature of inorganic salts present in the sub-phase. Using these values of surface activity coefficients, the standard free energies of formation, of spread monolayers of salts of behenic acid have been calculated at different standard states of reference.

  4. Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Zuend, A.; Marcolli, C.; Peter, T.

    2014-06-01

    This study presents a new, improved parameterisation of the temperature dependence of activity coefficients in the AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) model applicable for aqueous as well as water-free organic solutions. For electrolyte-free organic and organic-water mixtures the AIOMFAC model uses a group-contribution approach based on UNIFAC (UNIversal quasi-chemical Functional-group Activity Coefficients). This group-contribution approach explicitly accounts for interactions among organic functional groups and between organic functional groups and water. The previous AIOMFAC version uses a simple parameterisation of the temperature dependence of activity coefficients, aimed to be applicable in the temperature range from ~275 to ~400 K. With the goal to improve the description of a wide variety of organic compounds found in atmospheric aerosols, we extend the AIOMFAC parameterisation for the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon to atmospherically relevant low temperatures with the introduction of a new temperature dependence parameterisation. The improved temperature dependence parameterisation is derived from classical thermodynamic theory by describing effects from changes in molar enthalpy and heat capacity of a multicomponent system. Thermodynamic equilibrium data of aqueous organic and water-free organic mixtures from the literature are carefully assessed and complemented with new measurements to establish a comprehensive database, covering a wide temperature range (~190 to ~440 K) for many of the functional group combinations considered. Different experimental data types and their processing for the estimation of AIOMFAC model parameters are discussed. The new AIOMFAC parameterisation for the temperature dependence of activity coefficients from low to high temperatures shows an overall improvement of 25% in comparison to

  5. Activity coefficients of microquantities of lanthanides and actinides in nitric acid solutions

    SciTech Connect

    Vlasov, V.S.; Rozen, A.M.

    1988-09-01

    We carried out calculations on the basis of the Zdanovskii-Mikulin rule. The radii of the ions of the actinides americium and curium(III) (0.099 nm) are closest to the radius of the neodymium ion (0.0995 nm), and the radius of the californium ion (0.0976 nm) is closest to the radius of the promethium ion (0.0979 nm). It may accordingly be assumed that the activity coefficients of americium and curium are approximately equal to the activity coefficients of neodymium and that the values for californium are approximately equal to the values for promethium.

  6. Models for a liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Buldyrev, S. V.; Franzese, G.; Giovambattista, N.; Malescio, G.; Sadr-Lahijany, M. R.; Scala, A.; Skibinsky, A.; Stanley, H. E.

    2002-02-01

    We use molecular dynamics simulations to study two- and three-dimensional models with the isotropic double-step potential which in addition to the hard core has a repulsive soft core of larger radius. Our results indicate that the presence of two characteristic repulsive distances (hard core and soft core) is sufficient to explain liquid anomalies and a liquid-liquid phase transition, but these two phenomena may occur independently. Thus liquid-liquid transitions may exist in systems like liquid metals, regardless of the presence of the density anomaly. For 2D, we propose a model with a specific set of hard core and soft core parameters, that qualitatively reproduces the phase diagram and anomalies of liquid water. We identify two solid phases: a square crystal (high density phase), and a triangular crystal (low density phase) and discuss the relation between the anomalies of liquid and the polymorphism of the solid. Similarly to real water, our 2D system may have the second critical point in the metastable liquid phase beyond the freezing line. In 3D, we find several sets of parameters for which two fluid-fluid phase transition lines exist: the first line between gas and liquid and the second line between high-density liquid (HDL) and low-density liquid (LDL). In all cases, the LDL phase shows no density anomaly in 3D. We relate the absence of the density anomaly with the positive slope of the LDL-HDL phase transition line.

  7. Effect of Foam on Liquid Phase Mobility in Porous Media

    PubMed Central

    Eftekhari, A. A.; Farajzadeh, R.

    2017-01-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge. PMID:28262795

  8. Effect of Foam on Liquid Phase Mobility in Porous Media

    NASA Astrophysics Data System (ADS)

    Eftekhari, A. A.; Farajzadeh, R.

    2017-03-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge.

  9. Dynamic headspace time-extended helix liquid-phase microextraction.

    PubMed

    Huang, Shih-Pin; Chen, Pai-Shan; Huang, Shang-Da

    2009-05-15

    Liquid-phase microextraction (LPME) has been proved to be a fast, inexpensive and effective sample pre-treatment technique for the analyses of pesticides and many other compounds. In this investigation, a new headspace microextraction technique, dynamic headspace time-extended helix liquid-phase microextraction (DHS-TEH-LPME), is presented. In this work, use of a solvent cooling system, permits the temperature of the extraction solvent to be lowered. Lowering the temperature of the extraction solvent not only reduces solvent loss but also extends the feasible extraction time, thereby improving extraction efficiency. Use of a larger volume of the solvent not only extends the feasible extraction time but also, after extraction, leaves a larger volume to be directly injected into the gas chromatography (GC) to increase extraction efficiency and instrument signal. The DHS-TEH-LPME technique was used to extract six organochlorine pesticides (OCPs) from 110ml water samples that had been spiked with the analytes at ng/l levels, and stirred for 60min. The proposed method attained enrichments up to 2121 fold. The effects of extraction solvent identity, sample agitation, extraction time, extraction temperature, and salt concentration on extraction performance were also investigated. The method detection limits (MDLs) varied from 0.2 to 25ng/l. The calibration curves were linear for at least 2 orders of magnitude with R(2)>==0.996. Relative recoveries in river water were more than 86%.

  10. Modeling the solid-liquid phase transition in saturated triglycerides

    NASA Astrophysics Data System (ADS)

    Pink, David A.; Hanna, Charles B.; Sandt, Christophe; MacDonald, Adam J.; MacEachern, Ronald; Corkery, Robert; Rousseau, Dérick

    2010-02-01

    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)], in which the average state of each TL molecule in the liquid phase is a discotic "Y" conformer whose three chains are dynamically twisted, with an average angle of ˜120° between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h∗-conformer whose three chains are in a modified "chair" conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or "h") conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h∗ conformation in the liquid state at temperatures higher than the phase-transition temperature, T∗=319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)], and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy ΔH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of ΔH in reasonable agreement with the experiment. We then defined an alternative h-h∗ model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h∗ model gave a value of ΔH that was too small by a factor of ˜3-4. We also predicted the temperature dependence of the 1132 cm-1 Raman band for both models, and performed measurements of the ratios of three TL Raman

  11. Temperature dependence of infinite dilution activity coefficients in octanol and octanol/water partition coefficients of some volatile halogenated organic compounds

    SciTech Connect

    Bhatai, S.R.; Sandler, S.I.

    1995-11-01

    The study of the fate and transport of volatile halogenated organic compounds in the environment is of interest as these chemicals, many of which have been classified as pollutants, are widely used as industrial solvents and are now appearing in water supplies. Infinite dilution activity coefficients and Henry`s law coefficients have been measured for 11 halogenated C{sub 1} to C{sub 3} compounds in 1-octanol above room temperature using a gas-liquid chromatographic measurement method. Then, using their earlier data for these substances in water and a correlation relating the limiting activity coefficients of a substance in pure water and in pure 1-octanol to their octanol/water partition coefficients, these latter quantities have been computed. One conclusion from these measurements is that the limiting activity coefficients in octanol and the octanol/water partition coefficients of the halogenated compounds studied are only weakly dependent on temperature over the range from 25 to 50 C. Also, from these and their earlier data, have estimated the infinite dilution partial molar excess enthalpies and excess entropies of these compounds in both 1-octanol and water.

  12. Molecular interactions in 1-butanol + IL solutions by measuring and modeling activity coefficients.

    PubMed

    Nann, Alexander; Mündges, Jan; Held, Christoph; Verevkin, Sergey P; Sadowski, Gabriele

    2013-03-21

    Molecular interactions in 1-butanol + ionic liquid (IL) solutions have been investigated by measuring and modeling activity-coefficient data. The activity coefficients in binary solutions containing 1-butanol and an IL were determined experimentally: the ILs studied were 1-decyl-3-methyl-imidazolium tetracyanoborate ([Im10.1](+)[tcb](-)), 4-decyl-4-methyl-morpholinium tetracyanoborate ([Mo10.1](+)[tcb](-)), 1-decyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([Im10.1](+)[ntf2](-)), and 4-decyl-4-methyl-morpholinium bis(trifluoromethylsulfonyl)imide ([Mo10.1](+)[ntf2](-)). The methods used to determine the activity coefficients included vapor-pressure osmometry, headspace-gas chromatography, and gas-liquid chromatography. The results from all of these techniques were combined to obtain activity-coefficient data over the entire IL concentration range, and the ion-specific interactions of the ILs investigated were identified with 1-butanol. The highest (1-butanol)-IL interactions of the ILs considered in this work were found for [Im10.1](+)[tcb](-); thus, [Im10.1](+)[tcb](-) showed the highest affinity for 1-butanol in a binary mixture. The experimental data were modeled with the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). PC-SAFT was able to accurately describe the pure IL and (1-butanol)-IL data. Moreover, the model was shown to be predictive and extrapolative with respect to concentration and temperature.

  13. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  14. A single-stage synthesis of dimethyl ether in liquid phase

    SciTech Connect

    Tartamella, T.L.; Lee, S.; Kulik, C.J.

    1994-12-31

    A novel, single-stage process for the synthesis of dimethyl ether (DME) has been developed using CO rich syngas in the liquid phase (LPDME). This process utilizes a three-phase, mechanically agitated slurry reactor and makes use of a dual catalyst system consisting of Cu/ZnO/Al{sub 2}O{sub 3} as the methanol synthesis catalyst and {gamma}-Al{sub 2}O{sub 3} for the subsequent conversion to DME. The catalyst is slurried in an inert mineral oil which facilitates effective heat removal. The process involves the synthesis of methanol as an inter-mediate in the production of DME. In doing so, there is a reduction of the chemical equilibrium limitations previously encountered in methanol synthesis alone. As a result, enhanced catalyst activity, per-pass conversion and reactor productivity over methanol synthesis is observed. The process excels over its liquid phase methanol counterpart (LPMeOH{trademark}) in many areas. Specifically, a increase in reactor productivity as high as 95% is attained in the production of DME over LPMeOH{trademark}. Also, a 60% increase in syngas conversion is attained over the production of methanol alone. Experimental studies compare reactor productivities for methanol vs. DME synthesis for several slurry ratios. Also, the effect of temperature and pressure on synthesis rates for methanol and DME are also examined.

  15. Espresso coffee foam delays cooling of the liquid phase.

    PubMed

    Arii, Yasuhiro; Nishizawa, Kaho

    2017-04-01

    Espresso coffee foam, called crema, is known to be a marker of the quality of espresso coffee extraction. However, the role of foam in coffee temperature has not been quantitatively clarified. In this study, we used an automatic machine for espresso coffee extraction. We evaluated whether the foam prepared using the machine was suitable for foam analysis. After extraction, the percentage and consistency of the foam were measured using various techniques, and changes in the foam volume were tracked over time. Our extraction method, therefore, allowed consistent preparation of high-quality foam. We also quantitatively determined that the foam phase slowed cooling of the liquid phase after extraction. High-quality foam plays an important role in delaying the cooling of espresso coffee.

  16. Fluoride waveguide lasers grown by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Starecki, Florent; Bolaños, Western; Brasse, Gurvan; Benayad, Abdelmjid; Doualan, Jean-Louis; Braud, Alain; Moncorgé, Richard; Camy, Patrice

    2013-03-01

    High optical quality rare-earth-doped LiYF4 (YLF) epitaxial layers were grown on pure YLF substrates by liquid phase epitaxy (LPE). Thulium, praseodymium and ytterbium YLF crystalline waveguides co-doped with gadolinium and/or lutetium were obtained. Spectroscopic and optical characterization of these rare-earth doped waveguides are reported. Internal propagation losses as low as 0.11 dB/cm were measured on the Tm:YLF waveguide and the overall spectroscopic characteristics of the epitaxial layers were found to be comparable to bulk crystals. Laser operation was achieved at 1.87 μm in the Tm3+ doped YLF planar waveguide with a very good efficiency of 76% with respect to the pump power. Lasing was also demonstrated in a Pr3+ doped YLF waveguide in the red and orange regions and in a Yb3+:YLF planar waveguide at 1020 nm and 994 nm.

  17. Liquid-phase oxidation of cyclohexanone over cerium oxide catalyst

    SciTech Connect

    Shen, H.C. ); Weng, H.S. )

    1990-05-01

    Catalytic oxidation of cyclohexanone in the liquid phase with glacial acetic acid as the solvent over cerium oxide was studied between 5 and 15 atm and 98 and 118 {degrees} C in a batch reactor. The products were adipic acid, glutaric acid, succinic acid, caprolactone, carbon oxides, etc. The reaction undergoes a short induction period prior to a rapid reaction regime. In both regimes, the reaction is independent of oxygen pressure when the system pressure is above 10 atm. The induction period is inversely proportional to both of the catalyst weight and cyclohexanone concentration.During the rapid reaction regime, the reaction rate was found to be proportional to the 0.5 power of the catalyst weight and to the 1.5 power of the cyclohexanone concentration. Reaction mechanisms and rate expressions are proposed. The carbon oxides produced in this study were much lower than those previously reported. The cerium oxide catalyst is stable during the reaction.

  18. Supersolidus Liquid Phase Sintering Modeling of Inconel 718 Superalloy

    NASA Astrophysics Data System (ADS)

    Levasseur, David; Brochu, Mathieu

    2016-02-01

    Powder metallurgy of Inconel 718 superalloy is advantageous as a near-net shape process for complex parts to reduce the buy-to-fly ratio and machining cost. However, sintering Inconel 718 requires the assistance of supersolidus liquid formation to achieve near full density and involves the risk of distortion at high temperatures. The present work is focused on modeling the onset of sintering and distortion as a function of temperature, grain size, and part geometry for Inconel 718. Using experimental sintering results and data available in the literature, the supersolidus liquid phase sintering of Inconel 718 was modeled. The model was used to define a processing window where part distortion would be avoided.

  19. Transient liquid-phase bonding of ODS steels

    NASA Astrophysics Data System (ADS)

    Noto, H.; Ukai, S.; Hayashi, S.

    2011-10-01

    The use of transient liquid-phase bonding of 9CrODS steels using Fe-3B-2Si-0.5C filler was investigated for bonding temperature of 1180 °C and hold times of 0.5-4.0 h. The sequential process, consisting of isothermal melting, solidification and homogenization, was confirmed for bonding the 9CrODS steel. The precipitation of chromium boride found in 19CrODS steel is avoided in 9CrODS steel due to the lower Cr content. Silicon tends to be slightly enriched inside the bonding zone. Agglomeration and coarsening of Y 2O 3 particles in 9CrODS steel lead to softening inside the bonding zone formed by incipient melting of the foil bonding alloy, and in a diffusion affected zone (DAZ) adjacent to the bonding zone.

  20. Transient liquid-phase bonding using coated metal powders

    SciTech Connect

    Zhuang, W.D.; Eagar, T.W.

    1997-04-01

    Powder particles coated with a small amount of melting point depressant (MPD) reveal different sintering behavior in comparison to an uncoated powder mixture of the same composition. Interlayers consisting of the coated powder particles were used in the transient liquid-phase (TLP) bonding process. The coating material and the thickness of the deposit are important parameters that influence shrinkage. The amount of MPD was controlled such that the volume fraction of the liquid was very small but existed at all contacts, thus improving densification of the interlayer. Ni-20Cr and 304L stainless steel powders coated with Ni-10P were applied to join 304 stainless steels. Fully dense joints with mechanical properties comparable to those of the base metals were obtained with Ni-20Cr powder interlayers, whereas joints with 304L stainless steel powder interlayers showed inferior mechanical properties due to residual porosity in the joints.

  1. Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase.

    PubMed

    Amaral, Priscilla F F; Freire, Mara G; Rocha-Leão, Maria Helena M; Marrucho, Isabel M; Coutinho, João A P; Coelho, Maria Alice Z

    2008-02-15

    Oxygenation is an important parameter involved in the design and operation of mixing-sparging bioreactors and it can be analyzed by means of the oxygen mass transfer coefficient (k(L)a). The operational conditions of a stirred, submerged aerated 2-L bioreactor have been optimized by studying the influence of a second liquid phase with higher oxygen affinity (perfluorodecalin or olive oil) in the k(L)a. Using k(L)a measurements, the influence of the following parameters on the oxygen transfer rate was evaluated: the volume of working medium, the type of impellers and their position, the organic phase concentration, the aqueous phase composition, and the concentration of inactive biomass. This study shows that the best experimental conditions were achieved with a perfluorodecalin volume fraction of 0.20, mixing using two Rushton turbines with six vertical blades and in the presence of YPD medium as the aqueous phase, with a k(L)a value of 64.6 h(-1). The addition of 20% of perfluorodecalin in these conditions provided a k(L)a enhancement of 25% when pure water was the aqueous phase and a 230% enhancement when YPD medium was used in comparison to their respective controls (no perfluorodecalin). Furthermore it is shown that the presence of olive oil as a second liquid phase is not beneficial to the oxygen transfer rate enhancement, leading to a decrease in the k(L)a values for all the concentrations studied. It was also observed that the magnitude of the enhancement of the k(L)a values by perfluorodecalin depends on the biomass concentration present.

  2. Comparison of activity coefficient models for atmospheric aerosols containing mixtures of electrolytes, organics, and water

    NASA Astrophysics Data System (ADS)

    Tong, Chinghang; Clegg, Simon L.; Seinfeld, John H.

    Atmospheric aerosols generally comprise a mixture of electrolytes, organic compounds, and water. Determining the gas-particle distribution of volatile compounds, including water, requires equilibrium or mass transfer calculations, at the heart of which are models for the activity coefficients of the particle-phase components. We evaluate here the performance of four recent activity coefficient models developed for electrolyte/organic/water mixtures typical of atmospheric aerosols. Two of the models, the CSB model [Clegg, S.L., Seinfeld, J.H., Brimblecombe, P., 2001. Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. Journal of Aerosol Science 32, 713-738] and the aerosol diameter dependent equilibrium model (ADDEM) [Topping, D.O., McFiggans, G.B., Coe, H., 2005. A curved multi-component aerosol hygroscopicity model framework: part 2—including organic compounds. Atmospheric Chemistry and Physics 5, 1223-1242] treat ion-water and organic-water interactions but do not include ion-organic interactions; these can be referred to as "decoupled" models. The other two models, reparameterized Ming and Russell model 2005 [Raatikainen, T., Laaksonen, A., 2005. Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest. Atmospheric Chemistry and Physics 5, 2475-2495] and X-UNIFAC.3 [Erdakos, G.B., Change, E.I., Pandow, J.F., Seinfeld, J.H., 2006. Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 3: Organic compounds, water, and ionic constituents by consideration of short-, mid-, and long-range effects using X-UNIFAC.3. Atmospheric Environment 40, 6437-6452], include ion-organic interactions; these are referred to as "coupled" models. We address the question—Does the inclusion of a treatment of ion-organic interactions substantially improve the performance of the coupled models over

  3. Molecular radiotherapy: The NUKFIT software for calculating the time-integrated activity coefficient

    SciTech Connect

    Kletting, P.; Schimmel, S.; Luster, M.; Kestler, H. A.; Hänscheid, H.; Fernández, M.; Lassmann, M.; Bröer, J. H.; Nosske, D.; Glatting, G.

    2013-10-15

    Purpose: Calculation of the time-integrated activity coefficient (residence time) is a crucial step in dosimetry for molecular radiotherapy. However, available software is deficient in that it is either not tailored for the use in molecular radiotherapy and/or does not include all required estimation methods. The aim of this work was therefore the development and programming of an algorithm which allows for an objective and reproducible determination of the time-integrated activity coefficient and its standard error.Methods: The algorithm includes the selection of a set of fitting functions from predefined sums of exponentials and the choice of an error model for the used data. To estimate the values of the adjustable parameters an objective function, depending on the data, the parameters of the error model, the fitting function and (if required and available) Bayesian information, is minimized. To increase reproducibility and user-friendliness the starting values are automatically determined using a combination of curve stripping and random search. Visual inspection, the coefficient of determination, the standard error of the fitted parameters, and the correlation matrix are provided to evaluate the quality of the fit. The functions which are most supported by the data are determined using the corrected Akaike information criterion. The time-integrated activity coefficient is estimated by analytically integrating the fitted functions. Its standard error is determined assuming Gaussian error propagation. The software was implemented using MATLAB.Results: To validate the proper implementation of the objective function and the fit functions, the results of NUKFIT and SAAM numerical, a commercially available software tool, were compared. The automatic search for starting values was successfully tested for reproducibility. The quality criteria applied in conjunction with the Akaike information criterion allowed the selection of suitable functions. Function fit

  4. Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report

    SciTech Connect

    Davidovits, P.; Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E.

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean`s surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry`s law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  5. Determination of the activity coefficient of Am in liquid Al by electrochemical methods

    NASA Astrophysics Data System (ADS)

    De Córdoba, G.; Laplace, A.; Conocar, O.; Lacquement, J.

    2009-09-01

    The activity coefficient of americium in liquid aluminium has been determined by electrochemical methods. To the author's knowledge, this is the first time this value is published in the open literature. For radiation safety reasons only 100 mg of this highly radioactive element were permitted to be manipulated inside the glove-box. Hence an "ad hoc" experimental set-up, which allows working with small amounts of solvent, has been designed. The Am(III) solution has been prepared by direct AmO 2 dissolution into CaCl 2-NaCl; the conversion into its chloride form has been achieved by carbochlorination (Cl 2 + C) at 600 °C. Cyclic voltammetry technique, performed in the obtained CaCl 2-NaCl-AmCl 3 solution, has allowed a first estimation for the logarithm of the activity coefficient, being equal to logγ=-6.7±1 at 700 °C.

  6. High-temperature compressive creep of liquid phase sintered silicon carbide

    SciTech Connect

    Gallardo-Lopez, A.; Munoz, A.; Martinez-Fernandez, J.; Dominguez-Rodriguez, A.

    1999-05-28

    Creep of liquid phase sintered SiC has been studied at temperatures between 1,575 and 1,700 C in argon under nominal stresses from 90 to 500 MPa. Creep rates ranged from 3 {times} 10{sup {minus}8} to 10{sup {minus}6}/s, with an activation energy of 840 {+-} 100 kJ/mol (corresponding to carbon and silicon self-diffusion), and a stress exponent of 1.6 {+-} 0.2. The crept samples showed the presence of dislocation activity, generally forming glide bands and tangles. Degradation of the mechanical properties due to cavitation or reaction of the additives was not detected. SEM and TEM microstructural characterization and analysis of the creep parameters leads to the conclusion that the creep mechanisms operating are grain boundary sliding accommodated by lattice diffusion and climb-controlled dislocation glide operating in parallel. Other possible operating mechanisms are discussed and the data are compared with published data.

  7. High temperature creep of SiC densified using a transient liquid phase

    SciTech Connect

    Jou, Z.C.; Virkar, A.V. ); Cutler, R.A. )

    1991-09-01

    Silicon carbide-based ceramics can be rapidly densified above approximately 1850 {degree}C due to a transient liquid phase resulting from the reaction between alumina and aluminum oxycarbides. The resulting ceramics are fine-grained, dense, and exhibit high strength at room temperature. SiC hot pressed at 1875 {degree}C for 10 min in Ar was subjected to creep deformation in bending at elevated temperatures between 1500 and 1650 {degree}C in Ar. Creep was thermally activated with an activation energy of 743 kJ/mol. Creep rates at 1575 {degree}C were between 10{sup {minus}9}/s and 10{sup {minus}7}/s at an applied stress between 38 and 200 MPa, respectively, resulting in a stress exponent of {approx}1.7.

  8. Kinetic and thermodynamic study of the liquid-phase etherification of isoamylenes with methanol

    SciTech Connect

    Piccoli, R.L. ); Lovisi, H.R. )

    1995-02-01

    The kinetics and thermodynamics of liquid-phase etherification of isoamylenes with methanol on ion exchange catalyst (Amberlyst 15) were studied. Thermodynamic properties and rate data were obtained in a batch reactor operating under 1,013 kPa and 323--353 K. The kinetic equation was modeled following the Langmuir-Hinshelwood-Hougen-Watson formalism according to a proposed surface mechanism where the rate-controlling step is the surface reaction. According to the experimental results, methanol adsorbs very strongly on the active sites, covering them completely, and thus the reaction follows an apparent first-order behavior. The isoamylenes, according to the proposed mechanism, adsorb simultaneously on the same single active center already occupied by methanol, migrating through the liquid layer formed by the alcohol around the catalyst to react in the acidic site. From the proposed mechanism a model was suggested and the kinetic and thermodynamic parameters were obtained using nonlinear estimation methods.

  9. Correlation and prediction of partition coefficient using nonrandom two-liquid segment activity coefficient model for solvent system selection in counter-current chromatography separation.

    PubMed

    Ren, Da-Bing; Yang, Zhao-Hui; Liang, Yi-Zeng; Ding, Qiong; Chen, Chen; Ouyang, Mei-Lan

    2013-08-02

    Selection of a suitable solvent system is the first and foremost step for a successful counter-current chromatography (CCC) separation. In this paper, a thermodynamic model, nonrandom two-liquid segment activity coefficient model (NRTL-SAC) which uses four types of conceptual segments to describe the effective surface interactions for each solvent and solute molecule, was employed to correlate and predict the partition coefficients (K) of a given compound in a specific solvent system. Then a suitable solvent system was selected according to the predicted partition coefficients. Three solvent system families, heptane/methanol/water, heptane/ethyl acetate/methanol/water (Arizona) and hexane/ethyl acetate/methanol/water, and several solutes were selected to investigate the effectiveness of the NRTL-SAC model for predicting the partition coefficients. Comparison between experimental results and predicted results showed that the NRTL-SAC model is of potential for estimating the K value of a given compound. Also a practical separation case on magnolol and honokiol suggests the NRTL-SAC model is effective, reliable and practical for the purpose of predicting partition coefficients and selecting a suitable solvent system for CCC separation.

  10. Glass and liquid phase diagram of a polyamorphic monatomic system

    NASA Astrophysics Data System (ADS)

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-01

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, PLDA-HDA(T) and PHDA-LDA(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, PLPC-HDA(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)], 10.1103/PhysRevE.48.4605 simulations suggest that the PLDA-HDA(T) and PHDA-LDA(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the PLPC-HDA(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the PLDA-HDA(T), PHDA-LDA(T), PLPC-HDA(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the

  11. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process

    SciTech Connect

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per

  12. Electrical properties of antimony-doped p-type Hg 0.78Cd 0.22Te liquid-phase-epitaxy films

    NASA Astrophysics Data System (ADS)

    Chen, M. C.; Dodge, J. A.

    1986-08-01

    Hall measurements have been performed on antimony-doped p-type Hg 0.78Cd 0.22Te LPE (Liquid-Phase-Epitaxy) films between 20 and 150 K. The ionization energy of isolated shallow acceptors was estimated to be about 11 meV. From the analysis of the Hall coefficient and the hole mobility data, we found that compensation in the films is not enough to explain the typically low hole mobility at low temperatures.

  13. Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Zuend, A.; Marcolli, C.; Peter, T.

    2015-01-01

    This study presents a new, improved parameterisation of the temperature dependence of activity coefficients in the AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) model applicable for aqueous as well as water-free organic solutions. For electrolyte-free organic and organic-water mixtures the AIOMFAC model uses a group-contribution approach based on UNIFAC (UNIversal quasi-chemical Functional-group Activity Coefficients). This group-contribution approach explicitly accounts for interactions among organic functional groups and between organic functional groups and water. The previous AIOMFAC version uses a simple parameterisation of the temperature dependence of activity coefficients, aimed to be applicable in the temperature range from ~ 275 to ~ 400 K. With the goal to improve the description of a wide variety of organic compounds found in atmospheric aerosols, we extend the AIOMFAC parameterisation for the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon to atmospherically relevant low temperatures. To this end we introduce a new parameterisation for the temperature dependence. The improved temperature dependence parameterisation is derived from classical thermodynamic theory by describing effects from changes in molar enthalpy and heat capacity of a multi-component system. Thermodynamic equilibrium data of aqueous organic and water-free organic mixtures from the literature are carefully assessed and complemented with new measurements to establish a comprehensive database, covering a wide temperature range (~ 190 to ~ 440 K) for many of the functional group combinations considered. Different experimental data types and their processing for the estimation of AIOMFAC model parameters are discussed. The new AIOMFAC parameterisation for the temperature dependence of activity coefficients from low to high temperatures shows an overall improvement of 28% in

  14. Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity coefficients

    SciTech Connect

    Banerjee, S.; Howard, P.H.

    1988-07-01

    Octanol-water partition coefficients (K/sub ow/) of 75 compounds ranging over 9 orders of magnitude are correlated by log K/sub ow/ = -0.40 + 0.73 log (..gamma../sub W/)/sub U/ -0.39 log (..gamma../sub 0/)/sub U/ (r = 0.98), where (..gamma..//sub W/)/sub U/ and (..gamma../sub 0/)/sub U/ are UNIFAC-derived activity coefficients in water and octanol, respectively. The constants 0.73 and -0.39 are obtained empirically and are intended to compensate for group nonadditivity. Correction factors of similar magnitude are obtained in independent correlations of water solubility with (..gamma../sub W/)/sub U/ and of octanol solubility with (..gamma../sub 0/)/sub U/, thereby confirming the validity of the approach.

  15. Liquid-phase syntheses of cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Sinkó, Katalin; Manek, Enikő; Meiszterics, Anikó; Havancsák, Károly; Vainio, Ulla; Peterlik, Herwig

    2012-06-01

    The aim of the present study was to synthesize cobalt-ferrite (CoFe2O4) nanoparticles using various liquid phase methods; sol-gel route, co-precipitation process, and microemulsion technique. The effects of experimental parameters on the particle size, size distribution, morphology, and chemical composition have been studied. The anions of precursors (chloride and nitrate), the solvents (water, n-propanol, ethanol, and benzyl alcohol), the precipitating agent (ammonia, sodium carbonate, and oxalic acid), the surfactants (polydimethylsiloxane, ethyl acetate, citric acid, cethyltrimethylammonium bromide, and sodium dodecil sulfate), their concentrations, and heat treatments were varied in the experiments. The smallest particles (around 40 nm) with narrow polydispersity and spherical shape could be achieved by a simple, fast sol-gel technique in the medium of propanol and ethyl acetate. The size characterization methods have also been investigated. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and scanning electron microscopy (SEM) provide the comparison of methods. The SAXS data correspond with the sizes detected by SEM and differ from DLS data. The crystalline phases, morphology, and chemical composition of the particles with different shapes have been analyzed by X-ray diffraction, SEM, and energy dispersive X-ray spectrometer.

  16. Effect of dimensionality on vapor-liquid phase transition

    SciTech Connect

    Singh, Sudhir Kumar

    2014-04-24

    Dimensionality play significant role on ‘phase transitions’. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions ‘phase transition’ properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor–liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  17. Thermal conductivity of alternative refrigerants in the liquid phase

    SciTech Connect

    Yata, J.; Hori, M.; Kobayashi, K.; Minamiyama, T.

    1996-05-01

    Measurements of the thermal conductivity of five alternative refrigerants, namely, difluoromethane (HFC-32), pentafluoroethane (HFC-125), 1,1,1-trifluorethane (HFC-143a), and dichloropentafluoropropanes (HCFC-225ca and HCFC-225cb), are carried out in the liquid phase. The range of temperature is 253-324 K for HFC-32, 257-305 K for HFC-125, 268-314 K for HFC-134a, 267-325 K for HCF-225ca, and 286-345 K for HCFC-225cb. The pressure range is from saturation to 30 MPa. The reproducibility of the data is better than 0.5%, and the accuracy of the data is estimated to be of the order of 1%. The experimental results for the thermal conductivity of each substance are correlated by an equation which is a function of temperature and pressure. A short discussion is given to the comparison of the present results with literature values for HFC-125. The saturated liquid thermal conductivity values of HFC-32, HFC-125, and HFC-143a are compared with those of chlorodifluoromethane (HCFC-22) and tetrafluoroethane (HFC-134a) and it is shown that the value of HFC-32 is highest, while that of HFC-125 is lowest, among these substances. The dependence of thermal conductivity on number of fluorine atoms among the refrigerants with the same number of carbon and hydrogen atoms is discussed.

  18. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite.

    PubMed

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-05-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box-Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process.

  19. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

    PubMed Central

    Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M.

    2015-01-01

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability. PMID:25660096

  20. Dynamic headspace liquid-phase microextraction of alcohols.

    PubMed

    Saraji, Mohammad

    2005-01-07

    A method was developed using dynamic headspace liquid-phase microextraction and gas chromatography-mass spectrometry for extraction and determination of 9 alcohols from water samples. Four different solvents, hexyl acetate, n-octanol, o-xylene and n-decane were studied as extractants. The analytes were extracted using 0.8 microl of n-octanol from the headspace of a 2 ml sample solution. The effect of sampling volume, solvent volume, sample temperature, syringe plunger withdrawal rate and ionic strength of the solution on the extraction performance were studied. A semiautomated system including a variable speed stirring motor was used to ensure a uniform movement of syringe plunger through the barrel. The method provided a fairly good precision for all compounds (5.5-9.3%), except methanol (16.4%). Detection limits were found to be between 1 and 97 microg/l within an extraction time of approximately 9.5 min under GC-MS in full scan mode.

  1. Impedance Spectroscopy of Liquid-Phase Sintered Silicon Carbide

    SciTech Connect

    McLachlan, D.S.; Sauti, G.; Vorster, A.; Hermann, M.

    2004-02-26

    Liquid-Phase Sintered Silicon Carbide (LPSSiC) materials were produced with different Y2O3: Al2O3 and Y2O3: SiO2 sintering additive ratios. Densification was achieved by hot pressing (HP). The ratio of the polytypes and the amount and crystalline composition of the grain boundary phases was determined using Rietveld analysis. Microstructures of the materials were related to the mechanical properties (hardness, fracture toughness and strength), which are not presented. The impedance Spectroscopy measurements were made at temperatures between 100 deg. C and 400 deg. C and analyzed using Effective Media Theories and the Brick Layer Model. In some cases, in order to correctly fit the results, it was necessary to use or model the frequency dependence of the conductivity or dielectric constant of the SiC grains using various theoretical models. The impedance arcs for the SiC grains in the different samples varied widely, probably more due to the 'semiconductor' doping of the grains or nonstoichiometry, than the SiC polytypes in the grains. The SiC grains all showed an Arrhenius behavior with energy gaps in the range 0.3 to 0.5eV.

  2. Liquid phase epitaxial growth of bismuth based superconductors

    NASA Astrophysics Data System (ADS)

    Takemoto, J.; Miyashita, S.; Inoue, T.; Komatsu, H.

    1996-05-01

    The liquid phase epitaxial growth of superconducting films of Bi 2Sr 2CaCu 2O y (2212 phase) and Bi 2Sr 2CuO z (2201 phase) were carried out on three types of substrates; SrTiO 3, LaAlO 3 and NdGaO 3. Twinning structures of the 2212 phase were observed in the films grown on the SrTiO 3 (100) and LaAlO 3 (100) substrates which belong to the cubic crystal system, while nearly twin-free structures were obtained when the film was grown on the NdGaO 3 (001) substrate (orthorhombic system). Atomic force microscopy revealed a 2201 phase film with a reasonably flat area (several μm 2) grown on the LaAlO 3 (100) substrate. It was observed that the 2212 phase nucleated on the substrate following the Volmer-Weber type mechanism (three-dimensional island growth mode). The enlarging processes of the island layers were discussed.

  3. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite

    PubMed Central

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-01-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box–Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process. PMID:27222748

  4. Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films

    SciTech Connect

    Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki; Mizuhata, Minoru

    2009-09-15

    Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectra showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted

  5. Liquid-phase synthesis of cobalt oxide nanoparticles.

    PubMed

    Sinkó, Katalin; Szabó, Géza; Zrínyi, Miklós

    2011-05-01

    Various liquid-phase syntheses of CoO and Co3O4 nanoparticles have been studied. The experiments focus on two synthesis routes: the coprecipitation and the sol-gel methods combined with thermal decomposition. The effect of synthesis route, the type of precursors (cobalt nitrate/chloride) and precipitation agent (carbonate, hydroxide, oxalic acid, and ammonia), the chemical compositions, pH, application of surfactants (PDMS, Triton X-100, NaDS, NaDBS, TTAB, ethyl acetate, citric acid), and the heat treatments on the properties of particles were investigated. The particle size and distribution have been determined by dynamic light scattering (DLS). The phases and the morphology of products have been analysed by XRD and SEM. The coprecipitation technique is less able to shape the particles than sol-gel technique. PDMS can be applied efficiently as surfactant in preparation methods. The finest particles (around 85 nm) with narrow polydispersity (70-100 nm) and spherical shape could be achieved by using sol-gel technique in medium of 1-propanol and ethyl acetate.

  6. A Fiber Optic Colorimeter For Liquid Phase Chromatography Of Aminoacids

    NASA Astrophysics Data System (ADS)

    Donati, S.; Tambosso, T.

    1989-01-01

    Liquid phase chromatography is a well known technique routinely used in analytical chemistry for assays and measurements of aminoacids 1,2. Basically, the solution is pumped at high pressure in a long capillary tube (the chromatographic column) to fraction out the constituents, is mixed to a suitable reactant (usually ninhydrine) so as to develop a spectral absorbance, and is finally analyzed in a flow cell by a colorimeter. With ninhydrine, the reaction product is DIDA (diketo-hydrindilidene-diketolhydrin diamine) which exhibits absorbance peaks at 440 nm (blue) and 570 nm (yellow) in a proportion dependent on the specific aminoacid (Fig. 1), while the amplitude of peaks is proportional to the aminoacid concentration in view of Lambert-Beer law. Besides the two measurement channels of absorbance, either of which or the sum of which is taken as the output signal, a third channel at the wavelength 690 nm at which DIDA is transparent (Ar = 0), is used internally as the reference to the first two. Thus, the colorimeter is actually a spectrophotometer with two fixed-wavelength channels, each referenced in wavelength. In this paper, we report on the design and engineering of a colorimeter aimed to medium/high performances, high reliability and low cost. Use of fiber optics as the beamsplitter of the optical channels is shown to give substantial advantages.

  7. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy.

    PubMed

    Zhou, Shengqiang; Liu, Fang; Prucnal, S; Gao, Kun; Khalid, M; Baehtz, C; Posselt, M; Skorupa, W; Helm, M

    2015-02-09

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.

  8. Liquid-Liquid Phase Separation of Oil Bodies from Seeds.

    PubMed

    Nykiforuk, Cory L

    2016-01-01

    Fundamentally, oil bodies are discrete storage organelles found in oilseeds, comprising a hydrophobic triacylglycerol core surrounded by a half-unit phospholipid membrane and an outer shell of specialized proteins known as oleosins. Oil bodies possess a number of attributes that were exploited by SemBioSys Genetics to isolate highly enriched fractions of oil bodies through liquid-liquid phase separation for a number of commercial applications. The current chapter provides a general guide for the isolation of oil bodies from Arabidopsis and/or safflower seed, from which protocols can be refined for different oilseed sources. For SemBioSys Genetic's recombinant technology, therapeutic proteins were covalently attached to oleosins or fused in-frame with ligands which bound oil bodies, facilitating their recovery to high levels of purity during "upstream processing" of transformed seed. Core to this technology was oil body isolation consisting of simple manipulation including homogenization of seeds to free the oil bodies, followed by the removal of insoluble fractions, and phase separation to recover the oil bodies. During oil body enrichment (an increase in oil body content concomitant with removal of impurities), a number of options and tips are provided to aid researchers in the manipulation and monitoring of these robust organelles.

  9. Grain growth kinetics in liquid-phase-sintered zinc oxide-barium oxide ceramics

    NASA Technical Reports Server (NTRS)

    Yang, Sung-Chul; German, Randall M.

    1991-01-01

    Grain growth of ZnO in the presence of a liquid phase of the ZnO-BaO system has been studied for temperatures from 1300 to 1400 C. The specimens were treated in boiling water and the grains were separated by dissolving the matrix phase in an ultrasonic bath. As a consequence 3D grain size measurements were possible. Microstructural examination shows some grain coalescence with a wide range of neck size ratios and corresponding dihedral angles, however, most grains are isolated. Lognormal grain size distributions show similar shapes, indicating that the growth mechanism is invariant over this time and temperature. All regressions between G exp n and time for n = 2 and 3 proved statistically significant. The rate constants calculated with the growth exponent set to n = 3 are on the same order of magnitude as in metallic systems. The apparent activation energy for growth is estimated between 355 and 458 kJ/mol.

  10. Solubility parameter and activity coefficient of HDEHP dimer in select organic diluents by vapor pressure osmometry

    SciTech Connect

    Gray, M.; Nilsson, M.; Zalupski, P.

    2013-07-01

    A thorough understanding of the non-ideal behavior of the chemical components utilized in solvent extraction contributes to the success of any large-scale spent nuclear fuel treatment. To address this, our current work uses vapor pressure osmometry to characterize the non-ideal behavior of the solvent extraction agent di-(2-ethylhexyl) phosphoric acid (HDEHP), a common extractant in proposed separation schemes. Solubility parameters were fit to data on HDEHP at four temperatures using models based on Scatchard Hildebrand regular solution theory with Flory Huggins entropic corrections. The results are comparable but not identical to the activity coefficients from prior slope analysis in the literature. (authors)

  11. Direct-write liquid phase transformations with a scanning transmission electron microscope

    DOE PAGES

    Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; ...

    2016-08-03

    The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H2PdCl4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less

  12. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    NASA Astrophysics Data System (ADS)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  13. Direct-write liquid phase transformations with a scanning transmission electron microscope

    SciTech Connect

    Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; Cullen, David A.; Kalinin, Sergei V.; Jesse, Stephen

    2016-08-03

    The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coils of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H2PdCl4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.

  14. Liquid phase microextraction and ultratrace determination of cadmium by modified graphite furnace atomic absorption spectrometry.

    PubMed

    Nazari, Saeid

    2009-06-15

    A powerful microextraction technique was used for determination of cadmium in water samples using liquid phase microextraction (LPME) followed by graphite furnace atomic absorption spectrometry (GF-AAS). In a preconcentration step, cadmium was extracted from a 2 ml of its aqueous sample in the pH 7 as 5,7-dibromoquinoline-8-ol (DBQ) complex into a 4 microl drop of benzyl alcohol. After extraction, the micro drop was retracted and directly transferred into a graphite tube modified by [W.Rh.Pd](c). Some effective parameters on extraction and complex formation, such as type and volume of organic solvent, pH, concentration of chelating agent, extraction time and stirring rate were optimized. Under the optimum conditions, the enrichment factor and recovery were 450% and 90%, respectively. The calibration graph was linear in the range of 0.008-1 microg L(-1) with correlation coefficient of 0.9961 under the optimum conditions of the recommended procedure. The detection limit based on the 3Sb criterion was 0.0035 microg L(-1) and relative standard deviation (RSD) for eight replicate measurement of 0.1 microg L(-1) and 0.4 microg L(-1) cadmium was 5.2% and 4.5%, respectively. The characteristic concentration was 0.0032 microg L(-1) equivalent to a characteristic mass of 12.8 fg. In order to evaluate the accuracy and recovery of the presented method the procedure was applied to the analysis of reference materials and seawater.

  15. Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid.

    PubMed

    Zohrabi, Parvin; Shamsipur, Mojtaba; Hashemi, Mahdi; Hashemi, Beshare

    2016-11-01

    A liquid-phase microextraction based on application of supramolecular solvent as a carrier for ferrofluid has been developed for the extraction and determination of three organophosphorus pesticides (OPPs). The ferrofluid was produced from combination of oleic acid coated magnetic particles and supramolecular solvent as the extractant solvent. Ferrofluid can be attracted by a magnet, and no centrifugation step was needed for phase separation. A response surface methodology (RSM) based on central composite design (CCD) was used for efficient optimization of the main variables in the extraction procedure. Under the optimum experimental conditions, the calibration curves found to be linear in the range of 0.5-400µgL(-1) with correlation coefficients ranging from 0.9967 to 0.9984. The intra-day and inter-day precision (RSD %) for 100 and 200µgL(-1) of each pesticides were in the range of 2.0-5.3% and 2.6-5.7%, respectively. The limit of detection (S/N=3), ranged from 0.1 to 0.35μgL(-1). The proposed method was successfully applied to the extraction and determination of organophosphorus pesticide residues in water and fruit juice samples.

  16. Transition metal doping of GaSe implemented with low temperature liquid phase growth

    NASA Astrophysics Data System (ADS)

    Lei, Nuo; Sato, Youhei; Tanabe, Tadao; Maeda, Kensaku; Oyama, Yutaka

    2017-02-01

    Our group works on improving the conversion efficiencies of terahertz (THz) wave generation using GaSe crystals. The operating principle is based on difference frequency generation (DFG) which has the advantages such as high output power, a single tunable frequency, and room temperature operation. In this study, GaSe crystals were grown by the temperature difference method under controlled vapor pressure (TDM-CVP). It is a liquid phase growth method with temperature 300 °C lower than that of the Bridgman method. Using this method, the point defects concentration is decreased and the polytype can be controlled. The transition metal Ti was used to dope the GaSe in order to suppress free carrier absorption in the low frequency THz region. As a result, a deep acceptor level of 38 meV was confirmed as being formed in GaSe with 1.4 at% Ti doping. Compared with undoped GaSe, a decrease in carrier concentration ( 1014 cm-3) at room temperature was also confirmed. THz wave transmittance measurements reveal the tendency for the absorption coefficient to increase as the amount of dopant is increased. It is expected that there is an optimum amount of dopant.

  17. Liquid Phase Sintering and Microwave Dielectric Properties of NdAlO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Huang, Cheng-Liang; Chen, Yao-Chung

    2002-03-01

    The effects of CuO addition on the microstructures and microwave dielectric properties of NdAlO3 ceramics were investigated. CuO was selected as a liquid-phase-sintering aid to lower the sintering temperature of NdAlO3 ceramics. With CuO addition, the sintering temperature of NdAlO3 can be effectively reduced from 1650°C to 1410-1430°C. The crystalline phase exhibited no phase differences at a low addition level while Nd4Al2O9 and NdAl11O18 were presented as second phases at the addition level higher than 0.5 wt%. The quality factors Q× f were strongly dependent upon the CuO concentration. The Q× f value of 63000 GHz was obtained at 1410-1430°C with 0.25 wt% CuO. For all levels of CuO concentration, the relative dielectric constants were not significantly different and ranged from 21.5 to 22.6. The temperature coefficients varied from -30 ppm/°C to -45 ppm/°C. Results of X-ray diffraction analysis and scanning electron microscopy are also presented.

  18. Supercritical phenomenon of hydrogen beyond the liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Li, Renzhong; Chen, Ji; Li, Xinzheng; Wang, Enge; Xu, Limei

    2015-06-01

    Using ab initio molecular dynamics simulation, we investigate the supercritical phenomenon associated with the liquid-liquid phase transition of hydrogen by studying the isothermal response functions, such as electric conductivity, molecular dissociation coefficient and isothermal compressibility, with respect to pressure. We find that, along each isotherm in the supercritical region, each of these response functions shows a maximum, the location of which is different for different response functions. As temperature decreases, the loci of these maxima asymptotically converge to a line of zero ordering field, known as the Widom line along which the magnitude of the response function maxima becomes larger and larger until it diverges as the critical point is approached. Thus, our study provides a possible way to locate the liquid-liquid critical point of hydrogen from the supercritical region at lower pressures. It also indicates that the supercritical phonomenon near the critical point of hydrogen is a rather general feature of second-order phase transition, it is not only true for classical systems with weak interactions but also true for highly condensed system with strong inter-atomic interactions.

  19. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  20. Magnetic field effects on liquid-phase reactive sintering of MnBi

    NASA Astrophysics Data System (ADS)

    Mitsui, Yoshifuru; Abematsu, Ken-ichi; Umetsu, Rie Y.; Takahashi, Kohki; Koyama, Keiichi

    2016-02-01

    Magnetic fields effects on liquid-phase reaction sintering on MnBi were investigated. The liquid-phase reaction was so fast even in a zero field that the fraction of in-field sintered ferromagnetic MnBi phase was independent of the external magnetic field. However, the ferromagnetic MnBi crystals in the in-field sintered sample were oriented along the external magnetic field direction. The Lotgering factor of the in-field sintered sample was 0.99. This result indicated that almost completely anisotropic MnBi phase could be obtained by in-field liquid phase reactive sintering.

  1. External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean.

    PubMed

    Schüürmann, Gerrit; Ebert, Ralf-Uwe; Chen, Jingwen; Wang, Bin; Kühne, Ralph

    2008-11-01

    The external prediction capability of quantitative structure-activity relationship (QSAR) models is often quantified using the predictive squared correlation coefficient, q (2). This index relates the predictive residual sum of squares, PRESS, to the activity sum of squares, SS, without postprocessing of the model output, the latter of which is automatically done when calculating the conventional squared correlation coefficient, r (2). According to the current OECD guidelines, q (2) for external validation should be calculated with SS referring to the training set activity mean. Our present findings including a mathematical proof demonstrate that this approach yields a systematic overestimation of the prediction capability that is triggered by the difference between the training and test set activity means. Example calculations with three regression models and data sets taken from literature show further that for external test sets, q (2) based on the training set activity mean may become even larger than r (2). As a consequence, we suggest to always use the test set activity mean when quantifying the external prediction capability through q (2) and to revise the respective OECD guidance document accordingly. The discussion includes a comparison between r (2) and q (2) value ranges and the q (2) statistics for cross-validation.

  2. Thermal Soret Diffusion in the Liquid Phase Epitaxial Growth of Binary Iii-V Compounds

    NASA Astrophysics Data System (ADS)

    Chien, Chung-Ping

    The conditions necessary for stable nucleation and growth in the liquid phase epitaxial growth of GaAs and InP are analytically established and, in the former, experimentally confirmed in this research. A transient thermodynamic transport treatment of supersaturated to undersaturated melts, which includes the coupling between solute and heat transport(thermal Soret diffusion), has been solved in closed form. The thermal Soret diffusion effect has been found to be a very important factor for the stabilization of solute transport. For steady-state LPE growth, the thermal Soret diffusion will give rise to a separation effect that forces the steady -state solute concentration to exceed the equilibrium liquidus concentration at a noninteracting interface. This increased concentration, near the growth interface, can cause localized nonuniformities in the melt which leads to terrace, miniscus -line and/or hillock growth morphologies. When nucleation and growth are initiated at near equilibrium liquidus conditions, at the substrate interface with a temperature gradient, meltback and spontaneous nucleation are minimized. To enhance stable uniform growth, the substrate should be brought into contact with the melt at a very critical time, during melt saturation, when the equilibrium liquidus concentration is reached at the noninteracting interface of the slider. The critical melt saturation time for the transient concentration to reach the liquidus concentration at this interface has been analytically determined and experimentally confirmed. In this analysis, the Soret thermal diffusion coefficient has also been evaluated in terms of the solute and solvent masses and the temperature dependence of the solute diffusion coefficient. The critical time determined in this analysis appears to be in close agreement with the experimental results for LPE GaAs. When near steady-state solute transport is achieved at the initiation of growth on the substrate, i.e., the liquidus solute

  3. Limiting activity coefficients of some aromatic and aliphatic nitro compounds in water

    SciTech Connect

    Benes, M.; Dohnal, V.

    1999-09-01

    Limiting activity coefficients of nine nitroaromatic compounds and four nitroalkanes in water were determined in the range of environmentally related temperatures by measuring suitable phase equilibria. For liquid and solid nitroaromatics (nitrobenzene, 2-nitrotoluene, 3-nitrotoluene, 4-nitrotoluene, 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 1-chloro-2-nitrobenzene, and 1-chloro-4-nitrobenzene) the aqueous solubilities were measured by a conventional batch contacting method with UV spectrophotometric analysis, while for nitroalkanes (nitromethane, nitroethane, 1-nitropropane, and 2-nitropropane) the air-water partitioning (Henry`s law constant H{sub 12} or air-water partition coefficient K{sub aw}) was determined by the inert gas stripping method employing gas chromatography. Whenever possible, results were compared to literature values. Calculation of H{sub 12} or K{sub aw} for nitroaromatics from the measured solubilities is hindered by the lack of reliable vapor pressure data. On the basis of the temperature dependences of the solubilities measured, the enthalpies of solution at infinite dilution for the nitroaromatics in water were evaluated.

  4. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOEpatents

    Raj, Rishi; Baik, Sunggi

    1985-11-12

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  5. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOEpatents

    Raj, R.; Baik, S.

    1985-11-12

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  6. Flatness-based active disturbance rejection control for linear systems with unknown time-varying coefficients

    NASA Astrophysics Data System (ADS)

    Huang, Congzhi; Sira-Ramírez, Hebertt

    2015-12-01

    A flatness-based active disturbance rejection control approach is proposed to deal with the linear systems with unknown time-varying coefficients and external disturbances. By selecting appropriate nominal values for the parameters of the system, all the deviation between the nominal and actual dynamics of the controlled process, as well as all the external disturbances can be viewed as a total disturbance. Based on the accurately estimated total disturbance with the aid of the proposed extended state observer, a linear proportional derivative feedback control law taking into account the derivatives of the desired output is designed to eliminate the effect of the total disturbance on the system performance. Finally, the load frequency control problem of a single-area power system with non-reheated unit is employed as an illustrative example to demonstrate the effectiveness of the proposed approach.

  7. Ultrasound promoted catalytic liquid-phase dehydrogenation of isopropanol for Isopropanol-Acetone-Hydrogen chemical heat pump.

    PubMed

    Xu, Min; Xin, Fang; Li, Xunfeng; Huai, Xiulan; Liu, Hui

    2015-03-01

    The apparent kinetic of the ultrasound assisted liquid-phase dehydrogenation of isopropanol over Raney nickel catalyst was determined in the temperature range of 346-353 K. Comparison of the effects of ultrasound and mechanical agitation on the isopropanol dehydrogenation was investigated. The ultrasound assisted dehydrogenation rate was significantly improved when relatively high power density was used. Moreover, the Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP) with ultrasound irradiation, in which the endothermic reaction is exposure to ultrasound, was proposed. A mathematical model was established to evaluate its energy performance in term of the coefficient of performance (COP) and the exergy efficiency, into which the apparent kinetic obtained in this work was incorporated. The operating performances between IAH-CHP with ultrasound and mechanical agitation were compared. The results indicated that the superiority of the IAH-CHP system with ultrasound was present even if more than 50% of the power of the ultrasound equipment was lost.

  8. Activity coefficients and free energies of nonionic mixed surfactant solutions from vapor-pressure and freezing-point osmometry.

    PubMed

    MacNeil, Jennifer A; Ray, Gargi Basu; Leaist, Derek G

    2011-05-19

    The thermodynamic properties of mixed surfactant solutions are widely investigated, prompted by numerous practical applications of these systems and by interest in molecular association and self-organization. General techniques for measuring thermodynamic activities, such as isopiestic equilibration, are well-established for multicomponent solutions. Surprisingly, these techniques have not yet been applied to mixed surfactant solutions, despite the importance of the free energy for micelle stability. In this study, equations are developed for the osmotic coefficients of solutions of nonionic surfactant A + nonionic surfactant B. A mass-action model is used, with virial equations for the activity coefficients of the micelles and free surfactant monomer species. The equations are fitted to osmotic coefficients of aqueous decylsulfobetaine + dodecylsulfobetaine solutions measured by vapor-pressure and freezing-point osmometry. Equilibrium constants for mixed-micelle formation are calculated from the free monomer concentrations at the critical micelle concentrations. The derived activity coefficients of the micelles and free monomers indicate large departures from ideal solution behavior, even for dilute solutions of the surfactants. Stoichiometric activity coefficients of the total surfactant components are evaluated by Gibbs-Duhem integration of the osmotic coefficients. Relatively simple colligative property measurements hold considerable promise for free energy studies of multicomponent surfactant solutions.

  9. Development of refractory armored silicon carbide by infrared transient liquid phase processing

    NASA Astrophysics Data System (ADS)

    Hinoki, Tatsuya; Snead, Lance L.; Blue, Craig A.

    2005-12-01

    Tungsten (W) and molybdenum (Mo) were coated on silicon carbide (SiC) for use as a refractory armor using a high power plasma arc lamp at powers up to 23.5 MW/m 2 in an argon flow environment. Both tungsten powder and molybdenum powder melted and formed coating layers on silicon carbide within a few seconds. The effect of substrate pre-treatment (vapor deposition of titanium (Ti) and tungsten, and annealing) and sample heating conditions on microstructure of the coating and coating/substrate interface were investigated. The microstructure was observed by scanning electron microscopy (SEM) and optical microscopy (OM). The mechanical properties of the coated materials were evaluated by four-point flexural tests. A strong tungsten coating was successfully applied to the silicon carbide substrate. Tungsten vapor deposition and pre-heating at 5.2 MW/m 2 made for a refractory layer containing no cracks propagating into the silicon carbide substrate. The tungsten coating was formed without the thick reaction layer. For this study, small tungsten carbide grains were observed adjacent to the interface in all conditions. In addition, relatively large, widely scattered tungsten carbide grains and a eutectic structure of tungsten and silicon were observed through the thickness in the coatings formed at lower powers and longer heating times. The strength of the silicon carbide substrate was somewhat decreased as a result of the processing. Vapor deposition of tungsten prior to powder coating helped prevent this degradation. In contrast, molybdenum coating was more challenging than tungsten coating due to the larger coefficient of thermal expansion (CTE) mismatch as compared to tungsten and silicon carbide. From this work it is concluded that refractory armoring of silicon carbide by Infrared Transient Liquid Phase Processing is possible. The tungsten armored silicon carbide samples proved uniform, strong, and capable of withstanding thermal fatigue testing.

  10. Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines.

    PubMed

    Rezaei, Fatemeh; Yamini, Yadollah; Moradi, Morteza; Daraei, Bahram

    2013-12-04

    A new, efficient, and environmental friendly hollow fiber liquid phase microextraction (HF-LPME) method based on supramolecular solvents was developed for extraction of five benzodiazepine drugs. The supramolecular solvent was produced from coacervation of decanoic acid aqueous vesicles in the presence of tetrabutylammonium (Bu4N(+)). In this work, benzodiazepines were extracted from aqueous samples into a supramolecular solvent impregnated in the wall pores and also filled inside the porous polypropylene hollow fiber membrane. The driving forces for the extraction were hydrophobic, hydrogen bonding, and π-cation interactions between the analytes and the vesicular aggregates. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) was applied for separation and determination of the drugs. Several parameters affecting the extraction efficiency including pH, hollow fiber length, ionic strength, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, the preconcentration factors were obtained in the range of 112-198. Linearity of the method was determined to be in the range of 1.0-200.0 μg L(-1) for diazepam and 2.0-200.0 μg L(-1) for other analytes with coefficient of determination (R(2)) ranging from 0.9954 to 0.9993. The limits of detection for the target benzodiazepines were in the range of 0.5-0.7 μg L(-1). The method was successfully applied for extraction and determination of the drugs in water, fruit juice, plasma and urine samples and relative recoveries of the compounds studied were in the range of 90.0-98.8%.

  11. Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Fan, Yu-Chi; Huang, Her-Yueh; Cai, Wen-Zhang

    2015-11-01

    Liquid phase sintering is an effective method to improve the densification of powder metallurgy materials. Boron is an excellent alloying element for liquid phase sintering of Fe-based materials. However, the roles of chromium and carbon, and particularly that of the former, on liquid phase sintering are still undetermined. This study demonstrated the effects of chromium and carbon on the microstructure, elemental distribution, boride structure, liquid formation, and densification of Fe-B-Cr and Fe-B-Cr-C steels during liquid phase sintering. The results showed that steels with 0.5 wt pct C densify faster than those without 0.5 wt pct C. Moreover, although only one liquid phase forms in Fe-B-Cr steel, adding 0.5 wt pct C reduces the formation temperature of the liquid phase by about 50 K (°C) and facilitates the formation of an additional liquid, resulting in better densification at 1473 K (1200 °C). In both Fe-B-Cr and Fe-B-Cr-C steels, increasing the chromium content from 1.5 to 3 wt pct raises the temperature of liquid formation by about 10 K (°C). Thermodynamic simulations and experimental results demonstrated that carbon atoms dissolved in austenite facilitate the eutectic reaction and reduce the formation temperature of the liquid phase. In contrast, both chromium and molybdenum atoms dissolved in austenite delay the eutectic reaction. Furthermore, the 3Cr-0.5Mo additive in the Fe-0.4B steel does not change the typical boride structure of M2B. With the addition of 0.5 wt pct C, the crystal structure is completely transformed from M2B boride to M3(B,C) boro-carbide.

  12. Trace determination of triclosan and triclocarban in environmental water samples with ionic liquid dispersive liquid-phase microextraction prior to HPLC-ESI-MS-MS.

    PubMed

    Zhao, Ru-Song; Wang, Xia; Sun, Jing; Wang, Shan-Shan; Yuan, Jin-Peng; Wang, Xi-Kui

    2010-06-01

    A novel and environmentally friendly microextraction method, termed ionic liquid dispersive liquid-phase microextraction (IL-DLPME), has been developed for rapid enrichment of triclosan and triclocarban before analysis by high-performance liquid phase chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS-MS). Instead of using toxic organic solvents, an ionic liquid was used as a green extraction solvent. This also avoided the instability of the suspending drop in single-drop liquid-phase microextraction, and the heating and cooling step in temperature-controlled ionic liquid dispersive liquid phase microextraction. Factors that may affect the enrichment efficiency, for example volume of ionic liquid, type and volume of dispersive solvent, pH, extraction time, and NaCl content were investigated in detail and optimized. Under optimum conditions, linearity of the method was observed over the range 0.2-12 microg L(-1) for triclocarban and 1-60 microg L(-1) for triclosan with correlation coefficients ranging from 0.9980 to 0.9990, respectively. The sensitivity of the proposed method was found to be excellent, with limits of detection in the range 0.040-0.58 microg L(-1) and precision in the range 7.0-8.8% (RSD, n = 5). This method has been successfully used to analyze real environmental water samples and satisfactory results were achieved. Average recoveries of spiked compounds were in the range 70.0-103.5%. All these results indicated that the developed method would be a green method for rapid determination of triclosan and triclocarban at trace levels in environmental water samples.

  13. Lab-scale experimental strategy for determining micropollutant partition coefficient and biodegradation constants in activated sludge.

    PubMed

    Pomiès, M; Choubert, J M; Wisniewski, C; Miège, C; Budzinski, H; Coquery, M

    2015-03-01

    The nitrifying/denitrifying activated sludge process removes several micropollutants from wastewater by sorption onto sludge and/or biodegradation. The objective of this paper is to propose and evaluate a lab-scale experimental strategy for the determination of partition coefficient and biodegradation constant for micropollutant with an objective of modelling their removal. Four pharmaceutical compounds (ibuprofen, atenolol, diclofenac and fluoxetine) covering a wide hydrophobicity range (log Kow from 0.16 to 4.51) were chosen. Dissolved and particulate concentrations were monitored for 4 days, inside two reactors working under aerobic and anoxic conditions, and under different substrate feed conditions (biodegradable carbon and nitrogen). We determined the mechanisms responsible for the removal of the target compounds: (i) ibuprofen was biodegraded, mainly under aerobic conditions by cometabolism with biodegradable carbon, whereas anoxic conditions suppressed biodegradation; (ii) atenolol was biodegraded under both aerobic and anoxic conditions (with a higher biodegradation rate under aerobic conditions), and cometabolism with biodegradable carbon was the main mechanism; (iii) diclofenac and fluoxetine were removed by sorption only. Finally, the abilities of our strategy were evaluated by testing the suitability of the parameters for simulating effluent concentrations and removal efficiency at a full-scale plant.

  14. Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge-Evaluation of biokinetic coefficients

    SciTech Connect

    Sahinkaya, Erkan; Dilek, Filiz B. . E-mail: fdilek@metu.edu.tr

    2005-10-01

    Unacclimated and acclimated activated sludges were examined for their ability to degrade 4-CP (4-chlorophenol) in the presence and absence of a readily growing substrate using aerobic batch reactors. The effects of 4-CP on the {mu} (specific growth rate), COD removal efficiency, Y (yield coefficient), and q (specific substrate utilization rate) were investigated. It was observed that the toxicity of 4-CP on the culture decreased remarkably after acclimation. For example, the IC{sub 50} value on the basis of {mu} was found to increase from 130 to 218mg/L with the acclimation of the culture. Although an increase in 4-CP concentration up to 300mg/L has no adverse effect on the COD removal efficiency of the acclimated culture, a considerable decrease was observed in the case of an unacclimated culture. Although 4-CP removal was not observed with an unacclimated culture, almost complete removal was achieved with the acclimated culture, up to 300mg/L. The Haldane kinetic model adequately predicted the biodegradation of 4-CP and the kinetic constants obtained were q{sub m}=41.17mg/(gMLVSSh), K{sub s}=1.104mg/L, and K{sub i}=194.4mg/L. The degradation of 4-CP led to formation of 5-chloro-2-hydroxymuconic semialdehyde, which was further metabolized, indicating complete degradation of 4-CP via a meta-cleavage pathway.

  15. Mini-pilot plant research and demonstration on liquid phase methanol and dimethyl ether synthesis

    SciTech Connect

    Vijayaraghavan, P.; Lee, S.; Kulik, C.J.

    1994-12-31

    A laboratory scale mini-pilot plant was designed, built, and operated to study the liquid phase methanol synthesis (LPMeOH{trademark}) process and the liquid phase dimethyl ether (LPDME) process in a mechanically agitated slurry reactor system, where syngas reacts in the presence of the catalyst-oil slurry which is being agitated by an impeller. A liquid phase process for the synthesis of methanol from syngas over a catalyst (Cu/ZnO/Al{sub 2}O{sub 3}), has been developed. Process feasibility, kinetics, mass transfer, and thermodynamics of the LPMeOH process were investigated. The liquid phase methanol synthesis is a chemical equilibrium limited process. The productivity of methanol can be increased by successfully alleviating this chemical equilibrium limitation. A dual catalytic liquid phase process was developed, which coproduces dimethyl ether with methanol from syngas, over a hybrid catalytic system comprising of the methanol synthesis catalyst and the methanol dehydration catalyst ({gamma}-alumina). The process feasibility analysis that proves the alleviation of the equilibrium limitation will be presented. Comparisons between the hydrogenation extent, reactor productivity and syngas conversions, which are all higher in the LPDME process than in the LPMeOH process, will be presented.

  16. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.

    PubMed

    Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2016-11-01

    Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management.

  17. Characterization of liquid phase epitaxial GaAs forblocked-impurity-band far-infrared detectors

    SciTech Connect

    Cardozo, B.L.; Reichertz, L.A.; Beeman, J.W.; Haller, E.E.

    2004-04-07

    GaAs Blocked-Impurity-Band (BIB) photoconductor detectors have the potential to become the most sensitive, low noise detectors in the far-infrared below 45.5 cm{sup -1} (220 {micro}m). We have studied the characteristics of liquid phase epitaxial GaAs films relevant to BIB production, including impurity band formation and the infrared absorption of the active section of the device. Knowledge of the far-infrared absorption spectrum as a function of donor concentration combined with variable temperature Hall effect and resistivity studies leads us to conclude that the optimal concentration for the absorbing layer of a GaAs BIB detector lies between 1 x 10{sup 15} and 6.7 x 10{sup 15} cm{sup -3}. At these concentrations there is significant wavefunction overlap which in turn leads to absorption beyond the 1s ground to 2p bound excited state transition of 35.5 cm{sup -1} (282 {micro}m). There still remains a gap between the upper edge of the donor band and the bottom of the conduction band, a necessity for proper BIB detector operation.

  18. Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit

    SciTech Connect

    Bharat L. Bhatt

    1997-05-01

    A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of the velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.

  19. Water Detritiation: Better SCK-CEN Catalysts for Liquid Phase Catalytic Exchange

    SciTech Connect

    Bruggeman, Aime; Braet, Johan; Vanderbiesen, Sven

    2005-07-15

    A technically and economically sound technology for water detritiation is mandatory for the future of fusion. This technology is expected to be based on water electrolysis and Liquid Phase Catalytic Exchange (LPCE). LPCE requires an efficient hydrophobic catalyst. SCK-CEN invented and developed such a catalyst in the past, which is prepared by depositing platinum on an activated charcoal carrier and mixing it with polytetrafluorethylene as a hydrophobic material. In combination with an appropriate wettable packing, different batches of this catalyst performed very well during years of extensive testing, allowing us to develop the ELEX process for water detritiation at inland reprocessing plants. Recently we succeeded in reproducing this catalyst and preparing a slightly different but clearly ameliorated type. By extrapolation these new results would allow us to obtain, at 40 deg. C and under typical but conservative operating conditions, a decontamination factor of 10000 with a column of less than 3 meters long. Such performances would make this catalyst an excellent candidate for application at JET or ITER. To confirm the performances of our improved catalyst for a longer period of time and in a longer column, we are now starting experiments in a newly built installation and we are collaborating with ICSI, Romania.

  20. Characterization of Bimetallic Fe-Ru Oxide Nanoparticles Prepared by Liquid-Phase Plasma Method

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Jin; Lee, Heon; Jeon, Ki-Joon; Park, Hyunwoong; Park, Young-Kwon; Jung, Sang-Chul

    2016-07-01

    The bimetallic Fe-Ru oxide nanoparticles were synthesized in the liquid-phase plasma (LPP) method which employed iron chloride and ruthenium chloride as precursors. The active species (OH·, Hα, Hβ, and OI) and the iron and ruthenium ions were observed in the plasma field created by the LPP process. The spherical-shaped bimetallic Fe-Ru oxide nanoparticles were synthesized by the LPP reaction, and the size of the particles was growing along with the progression of the LPP reaction. The synthesized bimetallic Fe-Ru oxide nanoparticles were comprised of Fe2O3, Fe3O4, RuO, and RuO2. Ruthenium had a higher reduction potential than iron and resulted in higher ruthenium composition in the synthesized bimetallic nanoparticles. The control of the molar ratio of the precursors in the reactant solution was found to be employed as a means to control the composition of the elements in bimetallic nanoparticles.

  1. Measurement and Modeling of Mean Activity Coefficients of NaCl in an Aqueous Mixed Electrolyte Solution Containing Glycine

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Paniz; Dehghani, M. R.; Safahieh, Tina

    2016-08-01

    An electrochemical cell with two ion-selective electrodes (Na+ glass) and (Cl- solid state) was used to measure the mean ionic activity coefficient of NaCl in an aqueous mixture containing NaCl, glycine, and NaNO3 at 308.15 K. The experiments were conducted at fixed molality of NaNO3 (0.1 m) and various molalities of glycine (0-1 m) and NaCl (up to 0.8 m). The experimental data were modeled using a modified version of the Pitzer equation. Finally the activity coefficient ratio of glycine was determined based on the Maxwell equation.

  2. Applications of liquid-phase microextraction techniques in natural product analysis: a review.

    PubMed

    Yan, Yunyan; Chen, Xuan; Hu, Shuang; Bai, Xiaohong

    2014-11-14

    Over the last years, liquid-phase microextraction (LPME) as a simple, rapid, practical and effective sample-preparation technique, coupled with various instrumental analytical methods, has been increasingly and widely used to research and determine trace or ultra-micro-levels of both inorganic and organic analytes from different matrix-complex samples. In this review, different kinds of LPMEs such as single drop liquid-phase microextraction, dispersive liquid-liquid microextraction, and hollow fibre liquid-phase microextraction are summarized and recent applications of LPMEs in trace compounds in vivo and in vitro from different natural product matrice analysis such as tea, vegetables, seeds, herbs, and galenical are also discussed. Finally, future developments and applications of LPMEs in complex sample analysis are prospected.

  3. Dynamic evolution of liquid–liquid phase separation during continuous cooling

    DOE PAGES

    Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; ...

    2015-01-06

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al90In10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due to a hydrodynamicmore » instability caused by the large density difference between the dispersed and matrix liquid phases.« less

  4. Dynamic evolution of liquid–liquid phase separation during continuous cooling

    SciTech Connect

    Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; Ott, Thomas J.; Patterson, Brian M.; Lee, Wah-Keat; Fezzaa, Kamel; Cooley, Jason C.; Clarke, Amy J.

    2015-01-06

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al90In10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due to a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.

  5. Images reveal that atmospheric particles can undergo liquid-liquid phase separations

    NASA Astrophysics Data System (ADS)

    Bertram, A. K.; You, Y.; Renbaum-Wolff, L.; Carreras-Sospedra, M.; Hiranuma, N.; Smith, M.; Zhang, X.; Weber, R.; Shilling, J. E.; Dabdub, D.; Martin, S. T.

    2012-12-01

    A large fraction of submicron atmospheric particles contain both organic material and inorganic salts. As the relative humidity cycles in the atmosphere, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semi-volatile organic compounds, the scattering and absorption of solar radiation, and the uptake of reactive gas species on atmospheric particles may be affected. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two non-crystalline phases in particles generated from samples collected on multiple days in Atlanta, Georgia, and in particles generated in the laboratory using simulated atmospheric conditions. These results show that atmospheric particles can undergo liquid-liquid phase separations.

  6. Empty liquid phase of colloidal ellipsoids: the role of shape and interaction anisotropy.

    PubMed

    Varga, Szabolcs; Meneses-Júarez, Efrain; Odriozola, Gerardo

    2014-04-07

    We study the effect of anisotropic excluded volume and attractive interactions on the vapor-liquid phase transition of colloidal ellipsoids. In our model, the hard ellipsoid is embedded into an ellipsoidal well, where both the shape of the hard ellipsoid and that of the added enclosing ellipsoidal well can be varied independently. The bulk properties of these particles are examined by means of a van der Waals type perturbation theory and validated with replica exchange Monte Carlo simulations. It is shown that both the critical volume fraction (ηc) and the critical temperature (Tc) of the vapor-liquid phase transition vanish with increasing shape anisotropy for oblate shapes, while ηc → 0 and Tc ≠ 0 are obtained for very elongated prolate shapes. These results suggest that the chance to stabilize empty liquids (a liquid phase with vanishing density) is higher in suspensions of rod-like colloidal ellipsoids than in those of plate-like ones.

  7. Liquid phase esterification of acetic acid over WO3 promoted β-SiC in a solvent free system.

    PubMed

    Mishra, Gopa; Behera, Gobinda C; Singh, S K; Parida, K M

    2012-12-21

    A series of tungstate promoted β-SiC catalysts was synthesized by a wetness impregnation method. The as synthesized catalysts were unambiguously characterized by XRD, Raman, FTIR, XPS, UV-Vis DRS, TEM, BET surface areas and FE-SEM, and simultaneously the total amount of the acidity of the catalysts was estimated by NH(3)-TPD. The catalytic activities of the synthesized materials were tested in the liquid phase esterification of acetic acid with n-butanol in a solvent free medium. The reaction parameters were optimized to a temperature of 120 °C, molar ratio of butanol and acetic acid of 1:2 and a reaction time of 6 h after performing a number of experiments. Under the optimum conditions, the catalytic esterification revealed a significant effect of 88% conversion with 100% selectivity to butyl acetate in 20 wt% WO(3)/β-SiC. This is the first report on the effective utilization of β-SiC as a catalyst support for liquid phase esterification of acetic acid.

  8. Highly flexible TiO2-coated stainless steel fabric electrode prepared by liquid-phase deposition

    NASA Astrophysics Data System (ADS)

    Hwang, Hong Seo; Lee, Jeong Beom; Jung, Jiwon; Lee, Seyoung; Ryu, Ji Heon; Oh, Seung M.

    2016-10-01

    In order to construct flexible lithium-ion batteries, stainless steel (SUS) fabric is used as a current collector for the negative electrode of lithium-ion batteries. TiO2 is coated onto the SUS fabric by liquid-phase deposition to construct an electrode consisting of an SUS wire core and a TiO2 shell. A folding test is then conducted to assess the robustness of TiO2-coated SUS fabric, during which no detachment of TiO2 particles from the SUS current collector is observed; the negative electrode shows a consistent electrochemical cycle performance even under severe physical duress. The TiO2-SUS fabric integration shows excellent flexibility without loss of electrochemical efficacy under mechanical stress, which occurs owing to three main factors. First, the mechanical stress imposed by folding is effectively dissipated by the 3-dimensional structure of the SUS fabric. Secondly, the TiO2 electrode itself is free from mechanical stress owing to negligible volume change during electrochemical cycling. Thirdly, the high interfacial adhesion strength between TiO2 and SUS fabric due to covalent bond formation during liquid-phase deposition prevents the loss of active material from the negative electrode during the folding tests.

  9. Pressureless Reaction Sintering of AlON using Aluminum Orthophosphate as a Transient Liquid Phase

    SciTech Connect

    Michael Bakas; Henry Chu

    2009-01-01

    Use of aluminum oxynitride (AlON) in transparent armor systems has been difficult due to the expense and limitations of the processing methods currently necessary to achieve transparency. Development of a pressureless processing method based on direct reaction sintering of alumina and aluminum nitride powders would reduce costs and provide a more flexible and practical manufacturing method. It may be possible to develop such a processing method using liquid phase sintering; as long as the liquid phase does not remain in the final sample. AlPO4 forms a liquid phase with Al2O3 and AlN at the temperatures required to sinter AlON, and slowly decomposes into P2O5 and alumina. Therefore, it was investigated as a possible transient liquid phase for reaction-sintered AlON. Small compacts of alumina and aluminum nitride with up to of 15wt% AlPO4 additive were pressed and sintered. It was found that AlPO4 formed the requisite transient liquid phase, and it was possible to adjust the process to produce AlON samples with good transmission and densities of 3.66-3.67 g/cc. XRD confirmed the samples formed were AlON, with no trace of any remaining phosphate phases or excess alumina or aluminum nitride. Based on the results, it was concluded that AlPO4 could be utilized as a transient liquid phase to improve the density and transmission of AlON produced by pressureless reaction sintering.

  10. Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: intraparticle diffusion coefficients.

    PubMed

    Valderrama, C; Gamisans, X; de las Heras, X; Farrán, A; Cortina, J L

    2008-09-15

    Granular activated carbon (GAC) was evaluated as a suitable sorbent for polycyclic aromatic hydrocarbons (PAHs) removal from aqueous solutions. For this purpose, kinetic measurements on the extraction of a family of six PAHs were taken. A morphology study was performed by means of a scanning electron microscopy (SEM) analysis of GAC samples. Analyses of the batch rate data for each PAH were carried out using two kinetic models: the homogenous particle diffusion model (HPDM) and the shell progressive model (SPM). The process was controlled by diffusion rate the solutes (PAHs) that penetrated the reacted layer at PAH concentrations in the range of 0.2-10 mg L(-1). The effective particle diffusion coefficients (D(eff)) derived from the two models were determined from the batch rate data. The Weber and Morris intraparticle diffusion model made a double contribution to the surface and pore diffusivities in the sorption process. The D(eff) values derived from both the HPMD and SPM equations varied from 1.1 x 10(-13) to 6.0 x 10(-14) m(2) s(-1). The simplest model, the pore diffusion model, was applied first for data analysis. The model of the next level of complexity, the surface diffusion model, was applied in order to gain a deeper understanding of the diffusion process. This model is able to explain the data, and the apparent surface diffusivities are in the same order of magnitude as the values for the sorption of functionalized aromatic hydrocarbons (phenols and sulphonates) that are described in the literature.

  11. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    PubMed

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.

  12. Chemical studies of elements with Z ≥ 104 in liquid phase

    NASA Astrophysics Data System (ADS)

    Nagame, Yuichiro; Kratz, Jens Volker; Schädel, Matthias

    2015-12-01

    Recent studies of the chemical separation and characterization experiments of the first three transactinide elements, rutherfordium (Rf), dubnium (Db), and seaborgium (Sg), conducted atom-at-a-time in liquid phases, are reviewed. A short description on experimental techniques based on partition methods, specifically automated rapid chemical separation systems, is also given. A newly developed experimental approach to investigate single atoms of the heaviest elements with an electrochemical method is introduced. Perspectives for liquid-phase chemistry experiments on heavier elements are briefly discussed.

  13. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    PubMed Central

    Xu, Limei; Buldyrev, Sergey V.; Giovambattista, Nicolas; Stanley, H. Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses. PMID:21614201

  14. Photoluminescence at room temperature of liquid-phase crystallized silicon on glass

    NASA Astrophysics Data System (ADS)

    Vetter, Michael; Schwuchow, Anka; Andrä, Gudrun

    2016-12-01

    The room temperature photoluminescence (PL) spectrum due band-to-band recombination in an only 8 μm thick liquid-phase crystallized silicon on glass solar cell absorber is measured over 3 orders of magnitude with a thin 400 μm thick optical fiber directly coupled to the spectrometer. High PL signal is achieved by the possibility to capture the PL spectrum very near to the silicon surface. The spectra measured within microcrystals of the absorber present the same features as spectra of crystalline silicon wafers without showing defect luminescence indicating the high electronic material quality of the liquid-phase multi-crystalline layer after hydrogen plasma treatment.

  15. Kinetics and mechanism of the liquid-phase oxidation of cyclohexene. V. Oxidation of cyclohexene in the presence of bimetallic catalysts

    SciTech Connect

    Baevskii, M.Yu.; Litvintsev, I.Yu.; Sapunov, V.N.

    1988-11-01

    The kinetics of the liquid-phase oxidation of cyclohexene in the presence of homogeneous bimetallic catalysts Co-V, Pb-V, Pb-Mo was investigated. It was shown that the activity of the bimetallic catalyst found is determined to a large degree by the nature of the epoxiding metal. A general model is proposed for the oxidation of cyclohexene in the presence of bimetallic catalysts.

  16. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

    SciTech Connect

    1998-12-21

    he Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOEP Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. The LPMEOHW Demonstration Facility completed its first year of operation on 02 April 1998. The LPMEOW Demonstration Facility also completed the longest continuous operating run (65 days) on 21 April 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laboratory autoclave), was monitored throughout the reporting period. During a six-week test at a reactor temperature of 225oC and Balanced Gas flowrate of 700 KSCFH, the rate of decline in catalyst activity was steady at 0.29-0.36% per day. During a second one-month test at a reactor temperature of 220oC and a Balanced Gas flowrate of 550-600 KSCFH, the rate of decline in catalyst activity was 0.4% per day, which matched the pefiorrnance at 225"C, as well as the 4-month proof-of-concept run at the LaPorte AFDU in 1988/89. Beginning on 08 May 1998, the LPMEOW Reactor temperature was increased to 235oC, which was the operating temperature tier the December 1997 restart with the fresh charge of catalyst (50'Yo of design loading). The flowrate of the primary syngas feed stream (Balanced Gas) was also increased to 700-750 KSCFH. During two stable operating periods between 08 May and 09 June 1998, the average catalyst deactivation rate was 0.8% per day. Due to the scatter of the statistical analysis of the results, this test was extended to better quanti

  17. Catalytic evaluation on liquid phase oxidation of vanillyl alcohol using air and H2O2 over mesoporous Cu-Ti composite oxide

    NASA Astrophysics Data System (ADS)

    Saha, Subrata; Hamid, Sharifah Bee Abd; Ali, Tammar Hussein

    2017-02-01

    A mesoporous, highly crystalline Cu-Ti composite oxide catalyst was prepared via facile, simple and modified solution method varying Cu and Ti ratio for selective liquid phase oxidation of vanillyl alcohol. Various spectroscopic procedures were employed to systematically characterize the catalyst structural and physicochemical properties. The defect chemistry of the catalyst was confirmed from the presence of surface defects revealed through HRTEM imagery between the TiO2 (101) and Cu3TiO4 (012) planes, complemented by the XRD profiling. Further, presence of oxygen vacancy evidenced by O 1s XPS spectra were observed on the catalyst surface. Moreover, the stoichiometry of Cu and Ti in the catalyst synthesis protocol was notably found to be the vital determinant to alter the redox properties of Cu-Ti composite oxide catalyst supported by H2-TPR. O2-TPD analysis. Moreover, a rational investigation was done using different oxidants such as air and H2O2 with variables reaction conditions. The catalyst was active for liquid phase oxidation of vanillyl alcohol to vanillin with performance of 66% conversion and 71% selectivity using H2O2 in base free condition. And also, catalytic activity was significantly improved by 94% conversion with 86% selectivity to vanillin in liquid phase aerobic oxidation at the optimum reaction conditions. To expand the superiority of the catalyst, three times reusability study was also examined with appreciable catalytic activity.

  18. COMPUTATIONAL CHEMISTRY METHOD FOR PREDICTING VAPOR PRESSURES AND ACTIVITY COEFFICIENTS OF POLAR ORGANIC OXYGENATES IN PM2.5

    EPA Science Inventory

    Parameterizations of interactions of polar multifunctional organic oxygenates in PM2.5 must be included in aerosol chemistry models for evaluating control strategies for reducing ambient concentrations of PM2.5 compounds. Vapor pressures and activity coefficients of these compo...

  19. Bimetallic Au-decorated Pd catalyst for the liquid phase hydrodechlorination of 2,4-dichlorophenol

    NASA Astrophysics Data System (ADS)

    Zhou, Juan; Chen, Huan; Chen, Quanyuan; Huang, Zhaolu

    2016-11-01

    Monometallic and bimetallic Pd-Au catalysts supported on multi-walled carbon nanotubes (CNTs) with varied Au cooperation amounts were prepared using the complexing-reduction method in the presence of tetrahydrofuran (THF). The liquid phase catalytic hydrodechlorination (HDC) of 2,4-dichlorophenol (2,4-DCP) was investigated over these bimetallic catalysts. The catalysts were characterized by N2 adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2 chemisorption. Characterization results showed that the co-reduction of Pd and Au mainly formed alloy-like structure. The bimetallic catalysts had smaller metal particles and larger numbers of exposed active site than that of monometallic catalysts. In addition, compared with Pd(1.7)/CNTs and Au(0.4)/CNTs, the binding energies of Pd 3d5/2 shifted to higher positions while that of Au 4f7/2 had negative shifts in the Pd-Au bimetallic catalysts, which can be ascribed to the electrons transferred from metal Pd to Au and the cationization of Pd particles was enhanced. Accordingly, the bimetallic Pd-Au particles with different Au contents in the catalysts exhibited varied synergistic effects for the catalytic HDC of 2,4-DCP, with Pd(1.8)Au(0.4)/CNTs having the highest catalytic activity. For the bimetallic catalysts, a disproportional increase of turnover frequency (TOF) was observed with increasing Au content due to the enhanced cationization of Pd particles. Moreover, the dechlorination of 2,4-DCP over the supported monometallic and bimetallic catalysts proceeded via both the stepwise and concerted pathway, and the concerted pathway became predominant with Au decoration amount in the catalyst.

  20. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

    SciTech Connect

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOW Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, initial planning and procurement work began on the seven project sites which have been accepted for participation in the off-site, methanol product-use test plan. Two of the projects have begun pre-testing of equipment and three other projects have commenced with equipment procurement, Methanol produced from carbon monoxide (CO)- rich syngas at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX has been shipped to four of the project sites in anticipation of the start of testing during the first quarter of calendar year 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for a freshly reduced catalyst (as determined in the laboratory autoclave), continued to decline more rapidly than expected. In response to concentrations of arsenic and sulfbr detected on catalyst samples from the LPMEOW Reactor, Eastman replaced both the arsine- and sulfiwremoval material in the Eastman guard bed which treats the primary syngas feed stream (&danced Gas) prior to its introduction into both the Eastman fixed-bed methanol plant and the LPMEOWM Demonstration Unit. After restarting the demonstration unit, the catalyst deactivation rate remained essentially unchanged. Parallel testing in the laboratory using arsine-doped, and subsequently arsine- and SuIfi-doped syngas, ako ftiIed to prove that arsine was responsible for the higher-than-expected rate of

  1. Liquid Phase Sintering of Carbides Using a Nickel-Molybdenum Alloy

    DTIC Science & Technology

    1988-07-01

    AD TECHNICAL REPORT ARCCB-TR-88031 LIQUID PHASE SINTERING OF CARBIDES USING A NICKEL-MOL YBDENUM ALL 0 Y co J. M. BARRANCO mS R. A. WARENCHAK...ORG. REPORT NUMBER 7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER,) J. M. Barranco and R. A. Warenchak 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10

  2. Fabrication of Janus droplets by evaporation driven liquid-liquid phase separation.

    PubMed

    Zhang, Qingquan; Xu, Meng; Liu, Xiaojun; Zhao, Wenfeng; Zong, Chenghua; Yu, Yang; Wang, Qi; Gai, Hongwei

    2016-04-11

    We present a universal and scalable method to fabricate Janus droplets based on evaporation driven liquid-liquid phase separation. In this work, the morphologies and chemical properties of separate parts of the Janus droplets can be flexibly regulated, and more complex Janus droplets (such as core-shell Janus droplets, ternary Janus droplets, and multiple Janus droplets) can be constructed easily.

  3. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  4. Heterogeneity of the Liquid Phase, and Vapor Separation in Los Azufres (Mexico) Geothermal Reservoir

    SciTech Connect

    Nieva, D.; Quijano, L.; Garfias, A.; Barragan, R.M.; Laredo, F.

    1983-12-15

    Data of chemical and isotopic composition of fluids from Los Azufres geothermal wells is interpreted in order to characterize the composition of the liquid phase, and to define the relation between this phase and fluids from steam-producing wells. Chemical and specific enthalpy data show that most wells considered are fed a mixture of steam and liquid. Thus, flashing occurs in the formation. This poses a problem on the interpretation of isotopic data, because the composition of the feeding mixture need not be representative of the composition of the liquid phase in the reservoir. Two extreme alternatives for the interpretation of isotopic data are considered. In the first alternative the composition of the total discharge is considered to be the same as that of the liquid in the reservoir. In the second alternative the feeding fluid is considered to be a mixture of the liquid phase in the reservoir and the calculated fraction of steam. In addition, this steam is assumed to separate from a much larger mass of that liquid phase at the downhole temperature. The contribution of steam is then subtracted from the total discharge to yield the composition of the liquid phase. Using data for silica concentration in total discharge and separated water, the chloride concentration in the reservoir liquid is calculated. This result is used to calculate the fraction of steam in the feeding mixture of each well. The isotopic data is then corrected as proposed for the second alternative, to yield the composition of the liquid phase. Comparison of the corrected and uncorrected isotopic values shows that the correction has an important effect only when the steam mass fraction in the feeding mixture is large (> 20%). The correction tends to reduce the dispersion of data points in a {delta} D vs {delta}{sup 18}O diagram. Points representing composition of liquid phase show an approximately linear distribution, suggesting a process of mixing of two fluids. Available data appears to

  5. Ecotoxicology of heavy metals: Liquid-phase extraction by nanosorbents

    NASA Astrophysics Data System (ADS)

    Burakov, A.; Romantsova, I.; Babkin, A.; Neskoromnaya, E.; Kucherova, A.; Kashevich, Z.

    2015-11-01

    The paper considers the problem of extreme toxicity heavy metal compounds dissolved in wastewater and liquid emissions of industrial enterprises to living organisms and environment as a whole. The possibility of increasing extraction efficiency of heavy metal ions by sorption materials was demonstrated. The porous space of the latter was modified by carbon nanotubes (CNTs) during process of the chemical vapour deposition (CVD) of carbon on metal oxide catalysts. The increasing of the sorption capacity (10-30%) and the sorption rate of nanomodified activated carbons in comparison with standard materials in the example of absorption of Co2+ and Ni2+ ions from aqueous solutions was proven.

  6. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect

    Not Available

    1991-01-02

    Liquid-entrained operations at the LaPorte Liquid Phase Methanol (LPMEOH) Process Development Unit (PDU) continued during June and July 1988 under Tasks 2.1 and 2.2 of Contract No. DE-AC22-87PC90005 for the US Department of Energy. The primary focus of this PDU operating program was to prepare for a confident move to the next scale of operation with an optimized and simplified process. Several new design options had been identified and thoroughly evaluated in a detailed process engineering study completed under the LPMEOH Part-2 contract (DE-AC22-85PC80007), which then became the basis for the current PDU modification/operating program. The focus of the Process Engineering Design was to optimize and simplifications focused on the slurry loop, which consists of the reactor, vapor/liquid separator, slurry heat exchanger, and slurry circulation pump. Two-Phase Gas Holdup tests began at LaPorte in June 1988 with nitrogen/oil and CO- rich gas/oil systems. The purpose of these tests was to study the hydrodynamics of the reactor, detect metal carbonyl catalyst poisons, and train operating personnel. Any effect of the new gas sparger and the internal heat exchanger would be revealed by comparing the hydrodynamic data with previous PDU hydrodynamic data. The Equipment Evaluation'' Run E-5 was conducted at the LaPorte LPMEOH PDU in July 1988. The objective of Run E-5 was to systematically evaluate each new piece of equipment (sparger, internal heat exchanger, V/L disengagement zone, demister, and cyclone) which had been added to the system, and attempt to run the reactor in an internal-only mode. In addition, a successful catalyst activation with a concentrated (45 wt % oxide) slurry was sought. 9 refs., 26 figs., 15 tabs.

  7. Liquid phase epitaxial growth of GaAs

    SciTech Connect

    Wynne, Danielle Ivy

    1997-10-01

    Research into new semiconductor materials for measurement of electromagnetic radiation over a wide range of energies has been an active field for several decades. There is a strong desire to identify and develop new materials which can lead to improved detectors. Such devices are expected to solve problems that cannot be solved using the semiconductor materials and device structures which have been traditionally used for radiation detection. In order for a detector which is subjected to some type of irradiation to respond, the radiation must undergo an interaction with the detector. The net result of the radiation interaction in a broad category of detectors is the generation of mobile electric charge carriers (electrons and/or holes) within the detector active volume. This charge is collected at the detector contacts and it forms the basic electrical signal. Typically, the collection of the charge is accomplished through the imposition of an electric field within the detector which causes the positive and/or negative charges created by the radiation to flow in opposite directions to the contacts. For the material to serve as a good radiation detector, a large fraction (preferably 100%) of all carriers created by the interacting incident radiation must be collected. Charge trapping by deep level impurities and structural defects can seriously degrade detector performance. The focus of this thesis is on far infrared and X-ray detection. In X-ray detector applications of p-I-n diodes, the object is to measure accurately the energy distribution of the incident radiation quanta. One important property of such detectors is their ability to measure the energy of individual incident photons with high energy resolution.

  8. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  9. Second virial coefficients of dipolar hard spheres.

    PubMed

    Philipse, Albert P; Kuipers, Bonny W M

    2010-08-18

    An asymptotic formula is reported for the second virial coefficient B(2) of a dipolar hard-sphere (DHS) fluid, in zero external field, for strongly coupled dipolar interactions. This simple formula, together with the one for the weak-coupling B(2), provides an accurate prediction of the second virial coefficient for a wide range of dipole moments, including those that are experimentally accessible in magnetite ferrofluids. The weak-coupling B(2) also yields an estimate of the magnetic moment minimally needed for isotropic gas-liquid phase-separation, if any, in the DHS fluid.

  10. Can we better use existing and emerging computing hardware to embed activity coefficient predictions in complex atmospheric aerosol models?

    NASA Astrophysics Data System (ADS)

    Topping, David; Alibay, Irfan; Ruske, Simon; Hindriksen, Vincent; Noisternig, Michael

    2016-04-01

    To predict the evolving concentration, chemical composition and ability of aerosol particles to act as cloud droplets, we rely on numerical modeling. Mechanistic models attempt to account for the movement of compounds between the gaseous and condensed phases at a molecular level. This 'bottom up' approach is designed to increase our fundamental understanding. However, such models rely on predicting the properties of molecules and subsequent mixtures. For partitioning between the gaseous and condensed phases this includes: saturation vapour pressures; Henrys law coefficients; activity coefficients; diffusion coefficients and reaction rates. Current gas phase chemical mechanisms predict the existence of potentially millions of individual species. Within a dynamic ensemble model, this can often be used as justification for neglecting computationally expensive process descriptions. Indeed, on whether we can quantify the true sensitivity to uncertainties in molecular properties, even at the single aerosol particle level it has been impossible to embed fully coupled representations of process level knowledge with all possible compounds, typically relying on heavily parameterised descriptions. Relying on emerging numerical frameworks, and designed for the changing landscape of high-performance computing (HPC), in this study we show that comprehensive microphysical models from single particle to larger scales can be developed to encompass a complete state-of-the-art knowledge of aerosol chemical and process diversity. We focus specifically on the ability to capture activity coefficients in liquid solutions using the UNIFAC method, profiling traditional coding strategies and those that exploit emerging hardware.

  11. Correlation of three-liquid-phase equilibria involving ionic liquids.

    PubMed

    Rodríguez-Escontrela, I; Arce, A; Soto, A; Marcilla, A; Olaya, M M; Reyes-Labarta, J A

    2016-08-03

    The difficulty in achieving a good thermodynamic description of phase equilibria is finding a model that can be extended to a large variety of chemical families and conditions. This problem worsens in the case of systems containing more than two phases or involving complex compounds such as ionic liquids. However, there are interesting applications that involve multiphasic systems, and the promising features of ionic liquids suggest that they will play an important role in many future processes. In this work, for the first time, the simultaneous correlation of liquid-liquid and liquid-liquid-liquid equilibrium data for ternary systems involving ionic liquids has been carried out. To that end, the phase diagram of the water + [P6 6 6 14][DCA] + hexane system has been determined at 298.15 K and 323.15 K and atmospheric pressure. The importance of this system lies in the possibility of using the surface active ionic liquid to improve surfactant enhanced oil recovery methods. With those and previous measurements, thirteen sets of equilibrium data for water + ionic liquid + oil ternary systems have been correlated. The isoactivity equilibrium condition, using the NRTL model, and some pivotal strategies are proposed to correlate these complex systems. Good agreement has been found between experimental and calculated data in all the regions (one triphasic and two biphasic) of the diagrams. The geometric aspects related to the Gibbs energy of mixing function obtained using the model, together with the minor common tangent plane equilibrium condition, are valuable tools to check the consistency of the obtained correlation results.

  12. Hybrid biofilm-membrane bioreactor (Bf-MBR) for minimization of bulk liquid-phase organic substances and its positive effect on membrane permeability.

    PubMed

    Sun, F Y; Li, P; Li, J; Li, H J; Ou, Q M; Sun, T T; Dong, Z J

    2015-12-01

    Four biofilm membrane bioreactors (Bf-MBRs) with various fixed carrier volumes (C:M) were operated in parallel to investigate the effect of attached-growth mode biomass involvement to the change of liquid-phase organics characteristics and membrane permeability, by comparing with conventional MBR. The experiments displayed that C:M and co-existence of biofilm with suspended solids in Bf-MBRs resulted in slight difference in pollutants removal effectiveness, and in rather distinct biomass properties and bacterial activities. The membrane permeability and specific resistance of bulk suspension of Bf-MBRs related closely with the liquid-phase organic substance, including soluble microbial products (SMP) and biopolymer cluster (BPC). Compared with conventional MBR, Bf-MBR with proper C:M had a low total biomass content and food-chain, where biofilm formation and its dominance affected liquid-phase organics, especially through reducing their content and minimizing strongly and weakly hydrophobic components with small molecular weight, and thus to mitigate membrane fouling significantly.

  13. Properties of undoped and manganese-doped InGaAsP grown by liquid phase electroepitaxy

    NASA Technical Reports Server (NTRS)

    Iyer, Shanthi N.; Abul-Fadl, Ali; Collis, Ward J.; Khorrami, Mohammad N.

    1988-01-01

    Undoped and manganese-doped InGaAsP epilayers lattice matched to InP substrate have been grown by the liquid phase electroepitaxy technique. The dependence of growth velocity on current density for both undoped and doped layers has been studied. Layers of good surface morphology with hole concentrations in the range from 8 x 10 to the 16th to 4 x 10 to the 18th/cu cm have been achieved. The activation energy of the manganese acceptor level was estimated to vary from 57 to 32 meV with increasing hole concentration. The temperature dependence of carrier mobility data was analyzed in terms of different scattering mechanisms and the values of acceptor and donor densities determined were compared with those obtained from the temperature variation of Hall concentration data. Dependences of photoluminescence peak energy and intensity on the temperature and incident excitation levels have been investigated.

  14. Oxidative homocoupling of alkynes using supported ionic liquid phase (SILP) catalysts--systematic investigation of the support influence.

    PubMed

    Szesni, Normen; Kaiser, Melanie; Putzien, Sophie; Fischer, Richard W

    2012-02-01

    Supported Ionic Liquid Phase (SILP) catalysts have been prepared by effective immobilization of [Cu(TMEDA)(OH)]Cl in a nano-metric film of an ionic liquid on various oxidic support materials. The catalysts were tested for the oxidative homocoupling of 1-alkynes to the corresponding diynes in in a combined high throughput and conventional batch reaction approach. Among the screened support materials silica based materials performed best. The results indicate that for the specific reaction the thickness of the ionic liquids layer and therefore the mobility of the homogeneous copper complex within the ionic liquid layer as deduced from solid state nmr measurements have major impact on the catalytic performance. The optimized catalysts could be recycled up to four times without any loss of activity.

  15. Preparation of anatase nanocrystallines from low concentration precursor solution via a microwave assisted liquid phase deposition (MW-LPD) process

    SciTech Connect

    Zhang Liuxue; Liu Peng; Su Zhixing . E-mail: suzx@lzu.edu.cn

    2006-09-14

    Nanocrystalline titanium dioxide in the anatase phase was successfully prepared via a facile microwave assisted liquid phase deposition (MW-LPD) process with hexafluorotitanate ammonium (NH{sub 4}){sub 2}TiF{sub 6} as precursor. Compared with the conventional LPD processes, the MW-LPD technique could provide quickly high yield and crystallinity in a diluted precursor solution at low temperature because the high-frequency microwaves penetrated into the bulk of the material and the volumetric interaction of the electromagnetic fields with the material results in dielectric (volumetric) heating. This led to higher heating efficiency with faster processing. The X-ray diffraction (XRD) and selected-area electron diffraction (SAED) studies on these powders indicated that the powders obtained with MV irradiation have much higher crystallinity with a single phase anatase. Their photocatalytic activities were also investigated by the photodegradation of methylene blue (MB) as a model molecule.

  16. Activity coefficients at infinite dilution of organic compounds in 1-(meth)acryloyloxyalkyl-3-methylimidazolium bromide using inverse gas chromatography.

    PubMed

    Mutelet, Fabrice; Jaubert, Jean-Noël; Rogalski, Marek; Harmand, Julie; Sindt, Michèle; Mieloszynski, Jean-Luc

    2008-03-27

    Activity coefficients at infinite dilution, gammainfinity, of organic compounds in two new room-temperature ionic liquids (n-methacryloyloxyhexyl-N-methylimidazolium bromide (C10H17O2MIM)(Br) at 313.15 and 323.15 K and n-acryloyloxypropyl-N-methylimidazolium bromide(C6H11O2MIM)(Br)) were determined using inverse gas chromatography. Phase loading studies of the net retention volume per gram of packing as a function of the percent phase loading were used to estimate the influence of concurrent retention mechanisms on the accuracy of activity coefficients at infinite dilution of solutes in both ionic liquids. It was found that most of the solutes were retained largely by partition with a small contribution from adsorption and that n-alkanes were retained predominantly by interfacial adsorption on ionic liquids studied in this work. The solvation characteristics of the two ionic liquids were evaluated using the Abraham solvation parameter model.

  17. Modeling of complex antibody elution behavior under high protein load densities in ion exchange chromatography using an asymmetric activity coefficient.

    PubMed

    Huuk, Thiemo C; Hahn, Tobias; Doninger, Katharina; Griesbach, Jan; Hepbildikler, Stefan; Hubbuch, Jürgen

    2017-03-01

    A main requirement for the implementation of model-based process development in industry is the capability of the model to predict high protein load densities. The frequently used steric mass action isotherm assumes a thermodynamically ideal system and, hence constant activity coefficients. In this manuscript, an industrial antibody purification problem under high load conditions is considered where this assumption does not hold. The high protein load densities, as commonly applied in industrial downstream processing, may lead to complex elution peak shapes. Using Mollerup's generalized ion-exchange isotherm (GIEX), the observed elution peak shapes could be modeled. To this end, the GIEX isotherm introduced two additional parameters to approximate the asymmetric activity coefficient. The effects of these two parameters on the curvature of the adsorption isotherm and the resulting chromatogram are investigated. It could be shown that they can be determined by inverse peak fitting and conform with the mechanistic demands of model-based process development.

  18. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions

    SciTech Connect

    Valiskó, Mónika; Boda, Dezső

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.

  19. Gas chromatographic measurements of activity coefficients at infinite dilution for refrigerants with a polyol ester oil as a stationary phase

    SciTech Connect

    Stryjek, R.; Bobbo, S.; Camporese, R.; Zilio, C.

    1999-05-01

    Activity coefficients at infinite dilution have been measured by gas chromatography for 14 refrigerants (R12, R22, R32, R124, R125, R134a, R142b, R143a, RE170, R236ea, R290, R600, R600a, and R236fa) as solutes, using a polyol ester oil (POE), EMKARATE by ICI, as a stationary phase (solvent). Instrumental analysis (NMR, IR) showed that the main components of the oil are pentaerithritol esters of carboxylic acids, and electrospray ionization spectrometry revealed an average molecular mass of the POE of 618 g/mol. The measurements were performed within a temperature range of 244 K to 313 K, but a specific temperature range for each refrigerant was adopted depending on its retention data. The experimental findings are well-represented by the equation: ln {gamma}{sub i}{sup {infinity}} = a{sub i} {minus} b{sub i}/T. Some refrigerants, i.e., R22, R124, R125, R236ea, and R236fa, show quite a considerable positive temperature dependence of their activity coefficients at infinite dilution, which can be attributed to hydrogen bonding with the POE, unlike other refrigerants that show a small, either positive or negative temperature dependence. To the authors` knowledge, there are no data in the literature on activity coefficients at infinite dilution for refrigerant and oil (lubricant) systems, and details on the solubility of refrigerants in oils are also extremely scarce.

  20. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source.

    PubMed

    Panin, V Y; Aykac, M; Casey, M E

    2013-06-07

    The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction.

  1. Evaluated activity and osmotic coefficients for aqueous solutions: Bi-univalent compounds of zinc, cadmium, and ethylene bis(trimethylammonium) chloride and iodide

    NASA Astrophysics Data System (ADS)

    Goldberg, R. N.

    1981-01-01

    A critical evaluation of the mean activity and osmotic coefficients in aqueous solutions of eleven bi-univalent compounds of zinc and cadmium and ethylene bis(trimethylammonium) chloride and iodide at 298.15 K is presented. Osmotic coefficients were calculated from direct vapor pressure measurements, from isopiestic measurements and from freezing point depression measurements. Activity coefficients were calculated from electromotive force measurements on galvanic cells with and without transference. Given are empirical coefficients for three different correlating equations, obtained by a weighted least squares fit of the experimental data, and tables consisting of the activity coefficients of the compounds, the osmotic coefficients and activity of water, and the excess Gibbs energy of the solution as functions of the molality for each electrolyte system. The literature coverage is through the computerized version of Chemical Abstracts of September 1979.

  2. Computation of solid/liquid phase change including free convection - Comparison with data

    NASA Technical Reports Server (NTRS)

    Schneider, G. E.

    1990-01-01

    A computational model is presented for solid/liquid phase-change energy transport including free convection fluid flow in the liquid phase. The computational model considers the velocity components of all nonliquid control volumes to be zero but fully solves the coupled mass-momentum problem within the liquid. The thermal energy model includes the entire domain and employs an enthalpy-like model and a recently developed method for handling the phase-change interface nonlinearity. Convergence studies are performed and comparisons made with experimental data for two different problems. Grid independence is achieved, and the comparison with experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualitative data are also provided as velocity vector and isotherm plots. The computational costs incurred are quite low by comparison with other models.

  3. Dynamic evolution of liquid-liquid phase separation during continuous cooling

    SciTech Connect

    Imhoff, S. D.; Gibbs, P. J.; Katz, M. R.; Ott, T. J.; Patterson, B. M.; Lee, W. -K.; Fezzaa, K.; Cooley, J. C.; Clarke, A. J.

    2015-03-01

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography has been used to observe liquideliquid phase separation in Al90In10 prior to solidification. Quantitative image analysis has been used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due to a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.

  4. Liquid phase migration in the extrusion and squeezing of microcrystalline cellulose pastes.

    PubMed

    Mascia, S; Patel, M J; Rough, S L; Martin, P J; Wilson, D I

    2006-09-01

    Extensive movement of the liquid phase relative to the solids in solid-liquid pastes during extrusion forming is an undesirable process phenomenon. The impact of formulation and flow pattern on liquid phase migration (LPM) during extrusion of model pharmaceutical pastes (40-50 wt% microcrystalline cellulose/water) has been investigated by ram extrusion through square-entry and 45 degrees conical-entry dies, and by lubricated squeeze flow (extensional flow). Threshold velocities for LPM were observed in both configurations. Squeeze flow testing showed that dilation during extension can cause LPM, while ram extrusion featured both dilation effects and drainage due to compaction. The threshold velocities observed in the two configurations agreed when presented as characteristic shear rates. The threshold velocity increased with paste solids content.

  5. Performance of Liquid Phase Exfoliated Graphene As Electrochemical Double Layer Capacitors Electrodes

    NASA Astrophysics Data System (ADS)

    Huffstutler, Jacob; Wasala, Milinda; Richie, Julianna; Winchester, Andrew; Ghosh, Sujoy; Kar, Swastik; Talapatra, Saikat

    2014-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using liquid-phase exfoliated graphene. Several electrolytes, such as aqueous potassium hydroxide KOH (6M), ionic 1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and ionic 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate[BMP][FAP] were used. These EDLC's show good performance compared to other carbon nanomaterials based EDLC's devices. We found that the liquid phase exfoliated graphene based devices possess specific capacitance values as high as 262 F/g, when used with ionic liquid electrolyte[BMP][FAP], with power densities (~ 454 W/kg) and energy densities (~ 0.38Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. A detailed electrochemical impedance spectroscopy analysis in order to understand the phenomenon of charge storage in these materials will be presented.

  6. Solid-liquid phase epitaxial growth of Li4Ti5O12 thin film

    NASA Astrophysics Data System (ADS)

    Li, Ning; Katase, Takayoshi; Zhu, Yanbei; Matsumoto, Takao; Umemura, Tomonari; Ikuhara, Yuichi; Ohta, Hiromichi

    2016-12-01

    A thin film of Li4Ti5O12, a candidate anode material for solid-state Li-ion batteries, was heteroepitaxially grown on a (001) SrTiO3 substrate using solid-liquid phase epitaxy. An amorphous Li4Ti5O12 film deposited at room temperature was first heated with LiNO3 powder in air and then washed with distilled water. The Li4Ti5O12 epitaxial film was obtained by heating with molten LiNO3 at 600 °C the liquid LiNO3 completely covered the film, suppressing the formation of Li deficiencies and enhancing the low-temperature crystal growth. Solid-liquid phase epitaxy is a powerful approach to grow Li-containing-oxide films, which are difficult to fabricate because of the loss of Li species at high temperature.

  7. Three-body interactions and solid-liquid phase equilibria: application of a molecular dynamics algorithm.

    PubMed

    Wang, Liping; Sadus, Richard J

    2006-09-01

    The effect of three-body interactions on the solid-liquid phase boundaries of argon, krypton, and xenon is investigated via a novel technique that combines both nonequilibrium and equilibrium molecular dynamics. The simulations involve the evaluation of two- and three-body forces using accurate two-body and three-body intermolecular potentials. The effect of three-body interactions is to substantially increase the coexistence pressure and to lower the densities of liquid and solid phases. Comparison with experiment indicates that three-body interactions are required to accurately determine the total pressure. In contrast to vapor-liquid phase equilibria, the relative contribution of three-body interactions to the freezing pressure exceeds the contribution of two-body interactions at all temperatures.

  8. Solid-liquid phase equilibria of the Gaussian core model fluid.

    PubMed

    Mausbach, Peter; Ahmed, Alauddin; Sadus, Richard J

    2009-11-14

    The solid-liquid phase equilibria of the Gaussian core model are determined using the GWTS [J. Ge, G.-W. Wu, B. D. Todd, and R. J. Sadus, J. Chem. Phys. 119, 11017 (2003)] algorithm, which combines equilibrium and nonequilibrium molecular dynamics simulations. This is the first reported use of the GWTS algorithm for a fluid system displaying a reentrant melting scenario. Using the GWTS algorithm, the phase envelope of the Gaussian core model can be calculated more precisely than previously possible. The results for the low-density and the high-density (reentrant melting) sides of the solid state are in good agreement with those obtained by Monte Carlo simulations in conjunction with calculations of the solid free energies. The common point on the Gaussian core envelope, where equal-density solid and liquid phases are in coexistence, could be determined with high precision.

  9. Methods and apparatus for using gas and liquid phase cathodic depolarizers

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)

    1998-01-01

    The invention provides methods for using gas and liquid phase cathodic depolarizers in an electrochemical cell having a cation exchange membrane in intimate contact with the anode and cathode. The electrochemical conversion of cathodic depolarizers at the cathode lowers the cell potential necessary to achieve a desired electrochemical conversion, such as ozone evolution, at the anode. When gaseous cathodic depolarizers, such as oxygen, are used, a gas diffusion cathode having the cation exchange membrane bonded thereto is preferred. When liquid phase cathodic depolarizers are used, the cathode may be a flow-by electrode, flow-through electrode, packed-bed electrode or a fluidized-bed electrode in intimate contact with the cation exchange membrane.

  10. Effervescence assisted on-site liquid phase microextraction for the determination of five triazine herbicides in water.

    PubMed

    Liu, Xueke; Shen, Zhigang; Wang, Peng; Liu, Chang; Zhou, Zhiqiang; Liu, Donghui

    2014-12-05

    A novel effervescence assisted on-site liquid phase microextraction has been developed for the determination of five triazine herbicides in water. The use of an effervescent tablet composed of citric acid, sodium bicarbonate and 1-undecanol (extraction solvent) was the core of the method. The triazine herbicides in water were extracted by 1-undecanol released from tablet under effervescence and determined by ultra-high pressure liquid chromatography tandem mass spectrometer. The experimental variables, including NaCl concentration, temperature, weight of effervescent tablet, volume of extraction solvent and pH value, were screened by a Plackett-Burman design and optimized by a Box-Behnken design. Under the optimized conditions, good linearity was obtained in the range of 0.05-10 μg L(-1) with correlation coefficients ranging from 0.9936 to 0.9988. The limits of quantification were between 7.6 and 26.4 ng L(-1), and the recoveries were in 71.4-93.2% with relative standard deviations of 2.5-10.9%. This method, which does not require centrifugation and any special apparatus, was successfully applied to determine triazine herbicides in real waters, promising to be a way to speed field sampling procedures for the organic pollutants monitoring in water.

  11. Laser-induced chemical liquid phase deposition of copper from aqueous solutions without reducing agents

    SciTech Connect

    Kochemirovsky, V A; Tumkin, I I; Logunov, L S; Safonov, S V; Menchikov, Leonid G

    2012-08-31

    Laser-induced chemical liquid phase deposition of copper without a traditional reducing agent has been used for the first time to obtain conductive patterns on a dielectric surface having a reducing ability. It is shown that phenol-formaldehyde binder of the dielectric (glass fibre) can successfully play the role of a reducing agent in this process. The resulting copper sediments have low electrical resistance and good topology. (interaction of laser radiation with matter. laser plasmas)

  12. V-structures of ethylene glycol and monoethanolamine in the temperature range of the liquid phase

    NASA Astrophysics Data System (ADS)

    Balabaev, N. K.; Rodnikova, M. N.; Solonina, I. A.; Shirokova, E. V.; Sirotkin, D. A.

    2017-01-01

    Vibration-averaged V-structures for liquid ethylene glycol (EG) and monoethanolamine (MEA) are found in the temperature range of the solvents' liquid phase by means of molecular dynamics. The obtained V-structures' characteristics are compared to X-ray diffraction data on the crystalline phases of these compounds. Good agreement between theoretical and experimental data is observed. The V-structures are compared to that of water.

  13. Liquid-phase ozonization of concentrates of the petrographic components of isometamorphic coals

    SciTech Connect

    S.A. Semenova; Yu.F. Patrakov

    2008-02-15

    The fractionated ozonization products of the vitrain and fusain lithotypes of isometamorphic coals of the middle stage of metamorphism from the Kuznetsk Basin in glacial acetic acid were characterized using IR spectroscopy, thermogravimetry, and chromatography-mass spectrometry. Fusainized coal components exhibited higher reactivity toward ozone. Water-soluble low-molecular-weight compounds were predominant among the products of the liquid-phase ozonization of the lithotypes. 11 refs., 4 figs., 3 tabs.

  14. High dielectric constant nickel-doped titanium oxide films prepared by liquid-phase deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Yen, Chih-Feng; Fan, Cho-Han

    2014-09-01

    The electrical characteristics of nickel-doped titanium oxide films prepared by liquid-phase deposition on p-type (100) silicon substrate were investigated. The aqueous solutions of ammonium hexafluorotitanate and boric acid were used as precursors for the growth of titanium oxide films and the dielectric constant is 29. The dielectric constant can be improved to 94 by nickel doping at the thermal annealing at 700 °C in nitrous oxide.

  15. Microgravity Studies of Liquid-Liquid Phase Transitions in Alumina-Yttria Melts

    NASA Technical Reports Server (NTRS)

    Guynes, Buddy (Technical Monitor); Weber, Richard; Nordine, Paul

    2004-01-01

    The scientific objective of this research is to increase the fundamental knowledge base for liquid- phase processing of technologically important oxide materials. The experimental objective is to define conditions and hardware requirements for microgravity flight experiments to test and expand the experimental hypotheses that: 1. Liquid phase transitions can occur in undercooled melts by a diffusionless process. 2. Onset of the liquid phase transition is accompanied by a large change in the temperature dependence of melt viscosity. Experiments on undercooled YAG (Y3A15012)- and rare earth oxide aluminate composition liquids demonstrated a large departure from an Arrhenian temperature dependence of viscosity. Liquid YAG is nearly inviscid at its 2240 K melting point. Glass fibers were pulled from melts undercooled by ca. 600 K indicating that the viscosity is on the order of 100 Pans (1000 Poise) at 1600 K. This value of viscosity is 500 times greater than that obtained by extrapolation of data for temperatures above the melting point of YAG. These results show that the liquids are extremely fragile and that the onset of the highly non-Arrhenian viscosity-temperature relationship occurs at a temperature considerably below the equilibrium melting point of the solid phases. Further results on undercooled alumina-yttria melts containing 23-42 mole % yttrium oxide indicate that a congruent liquid-liquid phase transition occurs in the undercooled liquids. The rates of transition are inconsistent with a diffusion-limited process. This research is directed to investigation of the scientifically interesting phenomena of polyamorphism and fragility in undercooled rare earth oxide aluminum oxide liquids. The results bear on the technologically important problem of producing high value rare earth-based optical materials.

  16. The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons.

    PubMed

    Beye, Martin; Sorgenfrei, Florian; Schlotter, William F; Wurth, Wilfried; Föhlisch, Alexander

    2010-09-28

    The basis for the anomalies of water is still mysterious. Quite generally tetrahedrally coordinated systems, also silicon, show similar thermodynamic behavior but lack--like water--a thorough explanation. Proposed models--controversially discussed--explain the anomalies as a remainder of a first-order phase transition between high and low density liquid phases, buried deeply in the "no man's land"--a part of the supercooled liquid region where rapid crystallization prohibits any experimental access. Other explanations doubt the existence of the phase transition and its first-order nature. Here, we provide experimental evidence for the first-order-phase transition in silicon. With ultrashort optical pulses of femtosecond duration we instantaneously heat the electronic system of silicon while the atomic structure as defined by the much heavier nuclear system remains initially unchanged. Only on a picosecond time scale the energy is transferred into the atomic lattice providing the energy to drive the phase transitions. With femtosecond X-ray pulses from FLASH, the free-electron laser at Hamburg, we follow the evolution of the valence electronic structure during this process. As the relevant phases are easily distinguishable in their electronic structure, we track how silicon melts into the low-density-liquid phase while a second phase transition into the high-density-liquid phase only occurs after the latent heat for the first-order phase transition has been transferred to the atomic structure. Proving the existence of the liquid-liquid phase transition in silicon, the hypothesized liquid-liquid scenario for water is strongly supported.

  17. Liquid phase epitaxial growth and characterization of germanium far infrared blocked impurity band detectors

    SciTech Connect

    Bandaru, Jordana

    2001-01-01

    Germanium Blocked Impurity Band (BIB) detectors require a high purity blocking layer (< 1013 cm-3) approximately 1 mm thick grown on a heavily doped active layer (~ 1016cm-3) approximately 20 mm thick. Epilayers were grown using liquid phase epitaxy (LPE) of germanium out of lead solution. The effects of the crystallographic orientation of the germanium substrate on LPE growth modes were explored. Growth was studied on substrates oriented by Laue x-ray diffraction between 0.02° and 10° from the {111} toward the {100}. Terrace growth was observed, with increasing terrace height for larger misorientation angles. It was found that the purity of the blocking layer was limited by the presence of phosphorus in the lead solvent. Unintentionally doped Ge layers contained ~1015 cm-3 phosphorus as determined by Hall effect measurements and Photothermal Ionization Spectroscopy (PTIS). Lead purification by vacuum distillation and dilution reduced the phosphorus concentration in the layers to ~ 1014 cm-3 but further reduction was not observed with successive distillation runs. The graphite distillation and growth components as an additional phosphorus source cannot be ruled out. Antimony (~1016 cm-3) was used as a dopant for the active BIB layer. A reduction in the donor binding energy due to impurity banding was observed by variable temperature Hall effect measurements. A BIB detector fabricated from an Sb-doped Ge layer grown on a pure substrate showed a low energy photoconductive onset (~6 meV). Spreading resistance measurements on doped layers revealed a nonuniform dopant distribution with Sb pile-up at the layer surface, which must be removed by chemomechanical polishing. Sb diffusion into the pure substrate was observed by Secondary Ion Mass Spectroscopy (SIMS) for epilayers grown at 650 C. The Sb concentration at the interface dropped by an order of magnitude

  18. Predicted vs. Actual Resting Energy Expenditure and Activity Coefficients: Post-Gastric Bypass, Lean and Obese Women

    PubMed Central

    Ramirez-Marrero, Farah A.; Edens, Kim L.; Joyner, Michael J.; Curry, Timothy B.

    2015-01-01

    Total Energy Expenditure (TEE) and energy requirements are commonly estimated from equations predicting Resting Energy Expenditure (REE) multiplied by a Physical Activity (PA) coefficient that accounts for both PA energy expenditure and the thermogenic effect of food. PA coefficients based on PA self-reports are a potential source of error that has not been evaluated. Therefore, in this study we compared: 1) the Harris-Benedict (HB), Mifflin-St. Jeor (MSJ), and the Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU) REE equations with REE measured (REE-m) with indirect calorimetry; 2) PA coefficients determined with PA self-reports vs. objectively assessed PA; and 3) TEE estimates in post-Gastric Bypass (GB = 13), lean (LE = 7), and obese (OB = 12) women. REE was measured in the morning after an overnight fast with participants resting supine for 30 min. Self-reported PA was evaluated with a questionnaire and objectively measured with accelerometers worn for 5-7 days. Nutritional intake was evaluated with a food frequency questionnaire. Anthropometry included DEXA, and abdominal CT scans. Eligible GB had surgery ≥ 12 months before the study, and had ≥ 10 kg of body weight loss. All participants were 18-45 years of age, able to engage in ambulatory activities, and not taking part in exercise training programs. One-way ANOVA was used to detect differences in REE and TEE. Accuracy of REE prediction equations were determined by cases within 10% of REE-m, and agreement analyses. REE predictions were not different than REE-m, but agreements were better with HB and MSJ, particularly in the GB and LE groups. Discrepancies in the PA coefficients determined with self-report vs. objectively assessed PA resulted in TEE overestimates (approximately 200-300 Kcal/day) using HB and MSJ equations. FAO/WHO/UNU overestimated TEE in all groups regardless of the PA assessment method (approximately 300-900 kcal/day). These results

  19. An active-set equality constrained Newton solver with feasibility restoration for inverse coefficient problems in elliptic variational inequalities

    NASA Astrophysics Data System (ADS)

    Hintermüller, M.

    2008-06-01

    An output-least-squares formulation for a class of parameter identification problems for elliptic variational inequalities is considered. Based on the concept of C-stationarity an active set type solver with feasibility restoration is introduced. It is shown that the new method relates to the so-called implicit programming techniques in the context of mathematical programs with equilibrium constraints. In the discrete setting, in order to overcome the ill-posedness of the problem, the parameter of interest is discretized on a coarser mesh than the state of the system. In addition, if the parameter corresponds to the coefficient in the bilinear form of the underlying differential operator, an interior-point treatment is employed to maintain the coercivity of the elliptic operator. Moreover, the computational domain for the coefficient depends on the measurement data. The paper ends with a report on numerical tests including an application to a simplified lubrication problem in a rolling element device.

  20. Atomic structures of a liquid-phase bonded metal/nitride heterointerface

    PubMed Central

    Kumamoto, Akihito; Shibata, Naoya; Nayuki, Kei-ichiro; Tohei, Tetsuya; Terasaki, Nobuyuki; Nagatomo, Yoshiyuki; Nagase, Toshiyuki; Akiyama, Kazuhiro; Kuromitsu, Yoshirou; Ikuhara, Yuichi

    2016-01-01

    Liquid-phase bonding is a technologically important method to fabricate high-performance metal/ceramic heterostructures used for power electronic devices. However, the atomic-scale mechanisms of how these two dissimilar crystals specifically bond at the interfaces are still not well understood. Here we analyse the atomically-resolved structure of a liquid-phase bonded heterointerface between Al alloy and AlN single crystal using aberration corrected scanning transmission electron microscopy (STEM). In addition, energy-dispersive X-ray microanalysis, using dual silicon drift X-ray detectors in STEM, was performed to analyze the local chemistry of the interface. We find that a monolayer of MgO is spontaneously formed on the AlN substrate surface and that a polarity-inverted monolayer of AlN is grown on top of it. Thus, the Al alloy is bonded with the polarity-inverted AlN monolayer, creating a complex atomic-scale layered structure, facilitating the bonding between the two dissimilar crystals during liquid-phase bonding processes. Density-functional-theory calculations confirm that the bonding stability is strongly dependent on the polarity and stacking of AlN and MgO monolayers. Understanding the spontaneous formation of layered transition structures at the heterointerface will be key in fabricating very stable Al alloy/AlN heterointerface required for high reliability power electronic devices. PMID:26961157

  1. Solvent-impregnated agarose gel liquid phase microextraction of polycyclic aromatic hydrocarbons in water.

    PubMed

    Loh, Saw Hong; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Hasan, Mohamed Noor

    2013-08-09

    A new microextraction procedure termed agarose gel liquid phase microextraction (AG-LPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in water. The technique utilized an agarose gel disc impregnated with the acceptor phase (1-octanol). The extraction procedure was performed by allowing the solvent-impregnated agarose gel disc to tumble freely in the stirred sample solution. After extraction, the agarose gel disc was removed and subjected to centrifugation to disrupt its framework and to release the impregnated solvent, which was subsequently withdrawn and injected into the GC-MS for analysis. Under optimized extraction conditions, the new method offered high enrichment factors (89-177), trace level LODs (9-14ngL(-1)) and efficient extraction with good relative recoveries in the range of 93.3-108.2% for spiked drinking water samples. AG-LPME did not exhibit any problems related to solvent dissolution, and it provided high extraction efficiencies that were comparable to those of hollow fiber liquid phase microextraction (HF-LPME) and significantly higher than those of agarose film liquid phase microextraction (AF-LPME). This technique employed a microextraction format and utilized an environmentally compatible solvent holder that supported the green chemistry concept.

  2. Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells

    SciTech Connect

    Preidel, V. Amkreutz, D.; Haschke, J.; Wollgarten, M.; Rech, B.; Becker, C.

    2015-06-14

    Liquid phase crystallized Si thin-film solar cells on nanoimprint textured glass substrates exhibiting two characteristic, but distinct different surface structures are presented. The impact of the substrate texture on light absorption, the structural Si material properties, and the resulting solar cell performance is analyzed. A pronounced periodic substrate texture with a vertical feature size of about 1 μm enables excellent light scattering and light trapping. However, it also gives rise to an enhanced Si crystal defect formation deteriorating the solar cell performance. In contrast, a random pattern with a low surface roughness of 45 nm allows for the growth of Si thin films being comparable to Si layers on planar reference substrates. Amorphous Si/crystalline Si heterojunction solar cells fabricated on the low-roughness texture exhibit a maximum open circuit voltage of 616 mV and internal quantum efficiency peak values exceeding 90%, resulting in an efficiency potential of 13.2%. This demonstrates that high quality crystalline Si thin films can be realized on nanoimprint patterned glass substrates by liquid phase crystallization inspiring the implementation of tailor-made nanophotonic light harvesting concepts into future liquid phase crystallized Si thin film solar cells on glass.

  3. Atomic structures of a liquid-phase bonded metal/nitride heterointerface.

    PubMed

    Kumamoto, Akihito; Shibata, Naoya; Nayuki, Kei-Ichiro; Tohei, Tetsuya; Terasaki, Nobuyuki; Nagatomo, Yoshiyuki; Nagase, Toshiyuki; Akiyama, Kazuhiro; Kuromitsu, Yoshirou; Ikuhara, Yuichi

    2016-03-10

    Liquid-phase bonding is a technologically important method to fabricate high-performance metal/ceramic heterostructures used for power electronic devices. However, the atomic-scale mechanisms of how these two dissimilar crystals specifically bond at the interfaces are still not well understood. Here we analyse the atomically-resolved structure of a liquid-phase bonded heterointerface between Al alloy and AlN single crystal using aberration corrected scanning transmission electron microscopy (STEM). In addition, energy-dispersive X-ray microanalysis, using dual silicon drift X-ray detectors in STEM, was performed to analyze the local chemistry of the interface. We find that a monolayer of MgO is spontaneously formed on the AlN substrate surface and that a polarity-inverted monolayer of AlN is grown on top of it. Thus, the Al alloy is bonded with the polarity-inverted AlN monolayer, creating a complex atomic-scale layered structure, facilitating the bonding between the two dissimilar crystals during liquid-phase bonding processes. Density-functional-theory calculations confirm that the bonding stability is strongly dependent on the polarity and stacking of AlN and MgO monolayers. Understanding the spontaneous formation of layered transition structures at the heterointerface will be key in fabricating very stable Al alloy/AlN heterointerface required for high reliability power electronic devices.

  4. Liquid-Phase Deposition of CIS Thin Layers: Final Report, February 2003--July 2005

    SciTech Connect

    Ernst, F.; Pirouz, P.

    2006-02-01

    The goal of this project was to fabricate single-phase CIS (a-Cu-In-Se, stoichiometric composition: CuInSe2) thin films for photovoltaic applications from a liquid phase - a Cu-In-Se melt of appropriate composition. This approach of liquid-phase deposition (LPD) is based on the new phase diagram we have established for Cu-In-Se, the first complete equilibrium phase diagram of this system. The liquidus projection exhibits four composition fields in which the primary solid phase, i.e., the first solid material that forms on cooling down from an entirely liquid state, is a-CuInSe2. Remarkably, none of the four composition fields is anywhere near the stoichiometric composition (CuInSe2) of a-CuInSe2. The results demonstrate that the proposed technique is indeed capable of producing films with a particularly large grain size and a correspondingly low density of grain boundaries. To obtain films sufficiently thin for solar cell applications and with a sufficiently smooth surface, it is advantageous to employ a sliding boat mechanism. Future work on liquid-phase deposition of CIS should focus on the interaction between the melt and the substrate surface, the resulting CIS interfaces, the surface morphology of the LPD-grown films, and, of course, the electronic properties of the material.

  5. Two-liquid phase partitioning biotrickling filters for methane abatement: exploring the potential of hydrophobic methanotrophs.

    PubMed

    Lebrero, Raquel; Hernández, Laura; Pérez, Rebeca; Estrada, José M; Muñoz, Raúl

    2015-03-15

    The potential of two-liquid phase biotrickling filters (BTFs) to overcome mass transfer limitations derived from the poor aqueous solubility of CH4 has been scarcely investigated to date. In this context, the abatement of diluted methane emissions in two-liquid phase BTFs was evaluated using two different inocula: a type II methanotrophs culture in BTF 1 and a hydrophobic microbial consortium capable of growing inside silicone oil in BTF 2. Both BTFs supported stable elimination capacities above 45 g m(-3) h(-1) regardless of the inoculum, whereas no improvement derived from the presence of hydrophobic microorganisms compared to the type II metanotrophs culture was observed. Interestingly, the addition of silicone oil mediated a reduced metabolites concentration in the recycling aqueous phase, thus decreasing the needs for mineral medium renewal. Moreover, a 78% similarity was recorded between the microbial communities enriched in both BTFs at the end of the experimental period in spite of the differences in the initial inoculum structure. The results obtained confirmed the superior performance of two-liquid phase BTFs for CH4 abatement compared with conventional biotrickling filters.

  6. Atomic structures of a liquid-phase bonded metal/nitride heterointerface

    NASA Astrophysics Data System (ADS)

    Kumamoto, Akihito; Shibata, Naoya; Nayuki, Kei-Ichiro; Tohei, Tetsuya; Terasaki, Nobuyuki; Nagatomo, Yoshiyuki; Nagase, Toshiyuki; Akiyama, Kazuhiro; Kuromitsu, Yoshirou; Ikuhara, Yuichi

    2016-03-01

    Liquid-phase bonding is a technologically important method to fabricate high-performance metal/ceramic heterostructures used for power electronic devices. However, the atomic-scale mechanisms of how these two dissimilar crystals specifically bond at the interfaces are still not well understood. Here we analyse the atomically-resolved structure of a liquid-phase bonded heterointerface between Al alloy and AlN single crystal using aberration corrected scanning transmission electron microscopy (STEM). In addition, energy-dispersive X-ray microanalysis, using dual silicon drift X-ray detectors in STEM, was performed to analyze the local chemistry of the interface. We find that a monolayer of MgO is spontaneously formed on the AlN substrate surface and that a polarity-inverted monolayer of AlN is grown on top of it. Thus, the Al alloy is bonded with the polarity-inverted AlN monolayer, creating a complex atomic-scale layered structure, facilitating the bonding between the two dissimilar crystals during liquid-phase bonding processes. Density-functional-theory calculations confirm that the bonding stability is strongly dependent on the polarity and stacking of AlN and MgO monolayers. Understanding the spontaneous formation of layered transition structures at the heterointerface will be key in fabricating very stable Al alloy/AlN heterointerface required for high reliability power electronic devices.

  7. Effect of titanium addition on the thermal properties of diamond/cu-ti composites fabricated by pressureless liquid-phase sintering technique.

    PubMed

    Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien

    2014-01-01

    In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m · K for 50 vol% diamond/Cu-0.6 at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained.

  8. Effect of Titanium Addition on the Thermal Properties of Diamond/Cu-Ti Composites Fabricated by Pressureless Liquid-Phase Sintering Technique

    PubMed Central

    Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien

    2014-01-01

    In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m·K for 50 vol% diamond/Cu-0.6  at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained. PMID:24715816

  9. On Implicit Active Constraints in Linear Semi-Infinite Programs with Unbounded Coefficients

    SciTech Connect

    Goberna, M. A.; Lancho, G. A.; Todorov, M. I.; Vera de Serio, V. N.

    2011-04-15

    The concept of implicit active constraints at a given point provides useful local information about the solution set of linear semi-infinite systems and about the optimal set in linear semi-infinite programming provided the set of gradient vectors of the constraints is bounded, commonly under the additional assumption that there exists some strong Slater point. This paper shows that the mentioned global boundedness condition can be replaced by a weaker local condition (LUB) based on locally active constraints (active in a ball of small radius whose center is some nominal point), providing geometric information about the solution set and Karush-Kuhn-Tucker type conditions for the optimal solution to be strongly unique. The maintaining of the latter property under sufficiently small perturbations of all the data is also analyzed, giving a characterization of its stability with respect to these perturbations in terms of the strong Slater condition, the so-called Extended-Nuernberger condition, and the LUB condition.

  10. Iron(III) chloride supported on MCM-41 molecular sieve as a catalyst for the liquid-phase oxidation of phenol

    NASA Astrophysics Data System (ADS)

    Sirotin, S. V.; Moskovskaya, I. F.; Kolyagin, Yu. G.; Yatsenko, A. V.; Romanovsky, B. V.

    2011-03-01

    FeCl3 was supported on MCM-41 mesoporous molecular sieve via adsorption or coordination bonding and by embedding as an anionic constituent of covalently immobilized imidazolium ionic liquid (IL). The synthesized materials were characterized by N2-BET, SEM, TEM, FT-IR, 1H, 13C, and 29Si NMR, and DSC-TG. All of the catalysts were shown to be active for the liquid-phase oxidation of phenol by hydrogen peroxide. Supported FeCl3 species present as tetrachloroferrate counterions of immobilized IL are the most resistant to iron leaching.

  11. A microstructure-based model for shape distortion during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Anish

    Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under

  12. Detection and Quantification of Antibodies to Newcastle Disease Virus in Ostrich and Rhea Sera Using a Liquid Phase Blocking Enzyme-Linked Immunosorbent Assay

    PubMed Central

    de Sousa, Ricardo Luiz Moro; Montassier, Helio José; Pinto, Aramis Augusto

    2000-01-01

    A liquid phase blocking ELISA (LPB-ELISA) was adapted for the detection and quantification of antibodies to Newcastle disease virus. Sera from vaccinated and unvaccinated commercial flocks of ostriches (Struthio camelus) and rheas (Rhea americana) were tested. The purified and nonpurified virus used as the antigen and the capture and detector antibodies were prepared and standardized for this purpose. The hemagglutination-inhibition (HI) test was regarded as the reference method. The cutoff point for the LPB-ELISA was determined by a two-graph receiver operating characteristic analysis. The LPB-ELISA titers regressed significantly (P < 0.0001) on the HI titers with a high correlation coefficient (r = 0.875). The two tests showed good agreement (κ = 0.82; P < 0.0001), relative sensitivity (90.91%) and specificity (91.18%), and accuracy (91.02%), suggesting that they are interchangeable. PMID:11063502

  13. Commercial-Scale Demonstration of the Liquid Phase methanol (LPMEOH) Process A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2003-10-27

    The U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Program seeks to offer the energy marketplace more efficient and environmentally benign coal utilization technology options by demonstrating them in industrial settings. This document is a DOE post-project assessment (PPA) of one of the projects selected in Round III of the CCT Program, the commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process, initially described in a Report to Congress by DOE in 1992. Methanol is an important, large-volume chemical with many uses. The desire to demonstrate a new process for the production of methanol from coal, prompted Air Products and Chemicals, Inc. (Air Products) to submit a proposal to DOE. In October 1992, DOE awarded a cooperative agreement to Air Products to conduct this project. In March 1995, this cooperative agreement was transferred to Air Products Liquid Phase Conversion Company, L.P. (the Partnership), a partnership between Air Products and Eastman Chemical Company (Eastman). DOE provided 43 percent of the total project funding of $213.7 million. Operation of the LPMEOH Demonstration Unit, which is sited at Eastman's chemicals-from-coal complex in Kingsport, Tennessee, commenced in April 1997. Although operation of the CCT project was completed in December 2002, Eastman continues to operate the LPMEOH Demonstration Unit for the production of methanol. The independent evaluation contained herein is based primarily on information from Volume 2 of the project's Final Report (Air Products Liquid Phase Conversion Co., L.P. 2003), as well as other references cited.

  14. Cathodoluminescence of Al/x/Ga/1-x/As grown by liquid-phase epitaxy

    NASA Technical Reports Server (NTRS)

    Levin, E. R.; Ladany, I.

    1978-01-01

    Small-area contrast fluctuations observed in cathodoluminescence-mode SEM images of thin Al(x)Ga(1-x)As layers grown by liquid-phase epitaxy on GaAs:Cr substrates are attributed to local variations in alloy composition. Quantitative estimates of the composition excursions are obtained from the variations in CL intensity by calibration against compositions known from electron-probe microanalysis. In a typical sample, the CL variations are shown to correspond to peak-to-peak fluctuations of about 1 at. % of Al and occur over irregular regions generally in the range 6-20 microns in diameter.

  15. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    SciTech Connect

    Kemp, P.B.; German, R.M.

    1995-08-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. Swaging a 93W-5Ni-2Fe alloy with 15 to 20 pct area reduction gives a 1000 to 1200 MPa tensile strength, 70 HRA hardness, and 15 to 20 pct fracture elongation.

  16. Programmed functionalization of SURMOFs via liquid phase heteroepitaxial growth and post-synthetic modification.

    PubMed

    Tu, Min; Wannapaiboon, Suttipong; Fischer, Roland A

    2013-12-07

    Heterostructured surface mounted metal-organic frameworks (SURMOFs) [Cu2(NH2-bdc)2(dabco)] (B) on top of [Cu2(bdc)2(dabco)] (A) were deposited on pyridyl-terminated Au covered QCM substrate using a step-by-step liquid phase epitaxial growth method. Sequentially, the pore size of the top layer [Cu2(NH2-bdc)2(dabco)] (B) was modified by targeting the installed amino moiety with tert-butyl isothiocyanate (tBITC). The adsorption properties of the programmed functionalized SURMOFs studied using an environment controlled quartz crystal microbalance (QCM) instrument exhibited the possibility to achieve high selectivity and capacity by heteroepitaxial growth and post-synthetic modification.

  17. Liquid-Liquid Phase Transformation in Silicon: Evidence from First-Principles Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2007-11-01

    We report results of first principles molecular dynamics simulations that confirm early speculations on the presence of liquid-liquid phase transition in undercooled silicon. However, we find that structural and electronic properties of both low-density liquid (LDL) and high-density liquid (HDL) phases are quite different from those obtained by empirical calculations, the difference being more pronounced for the HDL phase. The discrepancy between quantum and classical simulations is attributed to the inability of empirical potentials to describe changes in chemical bonds induced by density and temperature variations.

  18. Mechanism of phase transition, from vapor to solid: Transient liquid phase is between the two

    NASA Astrophysics Data System (ADS)

    Mahapatra, A. K.; Wang, Junyong; Zhang, Hongwei; Han, Min

    2016-08-01

    The mechanism of phase transition, from vapor to solid, is studied by producing non-stoichiometric ZnO and CdS nanoclusters (NCs) by low-energy cluster beam deposition technique, and examining their morphological and compositional evolution over a long span of time. It is concluded that the transition of vapor to solid goes through a transient liquid phase: coagulation of a large number of atomic clusters first forms liquid NCs which then solidify. The nature of the material and the experimental conditions determine crystallinity and shape of the NCs during the solidification process.

  19. Liquid phase epitaxy growth of GaAs/GaAlAs multi-quantum well structures

    NASA Technical Reports Server (NTRS)

    Cser, J.; Katz, J.; Hwang, D. M.

    1987-01-01

    Experiments in liquid phase epitaxial fabrication of thin GaAs/GaAlAs layers over a planar substrates have been carried out. Layer thicknesses smaller than 300 A were routinely obtained, with the best result being 120 A. Interface sharpness between the layers is approximately 10 A, which is comparable to OMCVD results, but the layers' thicknesses are usually not uniform. Of the experimental parameters, the growth time and the cooling rate seem to have the largest effect on the obtained layer thickness, while the growth temperature and the substrate crystallographic orientation produce less noticeable effects. Quantum effects in the grown layers were observed by photoluminescence measurements.

  20. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    PubMed

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity.

  1. Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping

    2015-02-01

    Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL).

  2. The Biological Sensor for Detection of Bacterial Cells in Liquid Phase Based on Plate Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Borodina, Irina; Zaitsev, Boris; Shikhabudinov, Alexander; Guliy, Olga; Ignatov, Oleg; Teplykh, Andrey

    The interactions "bacterial cells - bacteriophages", "bacterial cells - antibodies" and "bacterial cells - mini- antibodies" directly in liquid phase were experimentally investigated with a help of acoustic sensor. The acoustic sensor under study represents two-channel delay line based on the plate of Y-X lithium niobate. One channel of delay line was electrically shorted, the second channel was electrically open. The liquid container was glued on plate surface between transducers of delay line. The dependencies of the change in phase and insertion loss on concentration of bacteriophages, antibodies, and mini- antibodies were obtained for both channels of delay line.

  3. Enhanced Corrosion Resistance of a Transient Liquid Phase Bonded Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Adebajo, O. J.; Ojo, O. A.

    2017-01-01

    Electrochemical analysis of corrosion performance of a transient liquid phase (TLP) bonded nickel-based superalloy was performed. The TLP bonding process resulted in significant reduction in corrosion resistance due to the formation of non-equilibrium solidification reaction micro-constituents within the joint region. The corrosion resistance degradation is completely eliminated through a new application of composite interlayer that had been previously considered unusable for joining single-crystal superalloys. The effectiveness of the new approach becomes more pronounced as the severity of environment increases.

  4. Investigating Processes of Materials Formation via Liquid Phase and Cryogenic TEM

    SciTech Connect

    De Yoreo, James J.; Sommerdijk, Nico

    2016-06-14

    The formation of materials in solutions is a widespread phenomenon in synthetic, biological and geochemical systems, occurring through dynamic processes of nucleation, self-assembly, crystal growth, and coarsening. The recent advent of liquid phase TEM and advances in cryogenic TEM are transforming our understanding of these phenomena by providing new insights into the underlying physical and chemical mechanisms. The techniques have been applied to metallic and semiconductor nanoparticles, geochemical and biological minerals, electrochemical systems, macromolecular complexes, and selfassembling systems, both organic and inorganic. New instrumentation and methodologies currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  5. Thermochemical study of the liquid phase equilibrium reaction of dihalomethanes by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dávalos, J. Z.; Lago, A. F.; Baer, Tomas

    2005-06-01

    The liquid phase equilibrium reaction of dihalomethanes (2CH 2BrI ⇄ CH 2Br 2 + CH 2I 2) has been investigated by NMR spectroscopy, as a function of the temperature and initial concentration of the reactants. The equilibrium constants have been experimentally determined for this reaction from the profile of the NMR spectra. Heat capacity measurements were carried out in the temperature range from 293.15 to 353.15 K by differential scanning calorimetry. The results relate the heats of formation of the three compounds and confirm the recently determined heat of formation of CH 2I 2 of 107.5 kJ mol -1.

  6. Transient-Liquid-Phase and Liquid-Film-Assisted Joining ofCeramics

    SciTech Connect

    Sugar, Joshua D.; McKeown, Joseph T.; Akashi, Takaya; Hong, SungM.; Nakashima, Kunihiko; Glaeser, Andreas M.

    2005-02-09

    Two joining methods, transient-liquid-phase (TLP) joining and liquid-film-assisted joining (LFAJ), have been used to bond alumina ceramics. Both methods rely on multilayer metallic interlayers designed to form thin liquid films at reduced temperatures. The liquid films either disappear by interdiffusion (TLP) or promote ceramic/metal interface formation and concurrent dewetting of the liquid film (LFAJ). Progress on extending the TLP method to lower temperatures by combining low-melting-point (<450 C) liquids and commercial reactive-metal brazes is described. Recent LFAJ work on joining alumina to niobium using copper films is presented.

  7. Mössbauer characterization of joints of steel pieces in transient liquid phase bonding experiences

    NASA Astrophysics Data System (ADS)

    di Luozzo, N.; Martínez Stenger, P. F.; Canal, J. P.; Fontana, M. R.; Arcondo, B.

    2011-11-01

    Joining of seamless, low carbon, steel tubes were performed by means of Transient Liquid Phase Bonding process employing a foil of Fe-Si-B metallic glass as filler material. The influence of the main parameters of the process was evaluated: temperature, holding time, pressure and post weld heat treatment. Powder samples were obtained from the joint of tubes and characterized employing Mössbauer Spectroscopy in transmission geometry. The sampling was performed both in tubes successfully welded and in those which show joint defects. The results obtained are correlated with the obtained microstructure and the diffusion of Si and B during the process.

  8. Liquid phase methanol reactor staging process for the production of methanol

    SciTech Connect

    Bonnell, Leo W.; Perka, Alan T.; Roberts, George W.

    1988-01-01

    The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

  9. Joining of Ion Transport Membranes Using a Novel Transient Liquid Phase Process

    SciTech Connect

    Darryl P. Butt

    2006-08-30

    The feasibility of a novel transient liquid phase (TLP) joining method has been demonstrated in joining La{sub 0.9}Ca{sub 0.1}FeO{sub 3} materials. Metal oxide powders were processed to form the TLP compositions which were used in the joining process. The method has been successful in producing joint interfaces that effectively disappear, as they are the same material and have the same properties as the joined parts. The feasibility of the method has been demonstrated for a single system, but many systems where the method can potentially be applied have been identified.

  10. Importance of extracting solvent vapor pressure in headspace liquid-phase microextraction.

    PubMed

    Yan, Xue; Yang, Cui; Ren, Chunyan; Li, Donghao

    2008-09-26

    Of the many parameters that affect the enrichment factors in headspace liquid-phase microextraction, in this study, we systematically investigated the influence of the vapor pressure of the extracting solvent. Seven extracting solvents with different vapor pressures were selected and tested. It was found that the vapor pressure of the extracting solvent dramatically affects the enrichment factor and the factor was increasing by decreasing the extracting solvent vapor pressure under given experimental conditions. The result was validated for volatile organic compounds such as polynuclear aromatic hydrocarbons, organochlorine pesticides and polychlorinated biphenyls.

  11. Numerical simulation of liquid phase electro-epitaxial selective area growth

    NASA Astrophysics Data System (ADS)

    Khenner, M.; Braun, R. J.

    2005-05-01

    A computational model for semiconductor crystal growth on a partially masked substrate under simplified liquid phase electroepitaxy conditions is developed. The model assumes isothermal diffusional growth, which is enhanced by applied DC current through crystal-solution interface. A finite-difference, front-tracking method is used to numerically evolve the interface. Computed examples show strong influence of the electromigration on growth rates in vertical and lateral directions and the dependence of growth on electrical resistance of mask material, and on the wetting contact angle.

  12. Cluster Monte Carlo and numerical mean field analysis for the water liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Mazza, Marco G.; Stokely, Kevin; Strekalova, Elena G.; Stanley, H. Eugene; Franzese, Giancarlo

    2009-04-01

    Using Wolff's cluster Monte Carlo simulations and numerical minimization within a mean field approach, we study the low temperature phase diagram of water, adopting a cell model that reproduces the known properties of water in its fluid phases. Both methods allow us to study the thermodynamic behavior of water at temperatures, where other numerical approaches - both Monte Carlo and molecular dynamics - are seriously hampered by the large increase of the correlation times. The cluster algorithm also allows us to emphasize that the liquid-liquid phase transition corresponds to the percolation transition of tetrahedrally ordered water molecules.

  13. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methyl-imidazolium nitrate.

    PubMed

    Sobota, Marek; Dohnal, Vladimír; Vrbka, Pavel

    2009-04-02

    Infinite dilution activity coefficients gamma(1)(infinity) and gas-liquid partition coefficients K(L) of 30 selected hydrocarbons, alcohols, ketones, ethers, esters, haloalkanes, nitrogen- and sulfur-containing compounds in the ionic liquid (IL) 1-ethyl-3-methylimidazolium nitrate [EMIM][NO(3)] were determined by gas-liquid chromatography at five temperatures in the range from 318.15 to 353.15 K. Relative contribution of adsorption at gas-liquid interphase to the overall solute retention, as examined by varying sample size and IL loading in the column, was found negligible. Partial molar excess enthalpies and entropies at infinite dilution were derived from the temperature dependence of the gamma(1)(infinity) values. The linear free energy relationship (LFER) solvation model was used to correlate successfully the KL values. The LFER correlation parameters and excess thermodynamic functions were analyzed to disclose molecular interactions operating between the IL and the individual solutes. In addition, the promising potential of [EMIM][NO(3)] for applications in solvent-aided separation processes was identified, the selectivities of [EMIM][NO(3)] for separation of aromatic hydrocarbons and thiophene from saturated hydrocarbons ranking among the highest ever observed with ILs or molecular solvents.

  14. Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Park, Hanbit; Reddy, D. Amaranatha; Kim, Yujin; Lee, Seunghee; Ma, Rory; Lim, Manho; Kim, Tae Kyu

    2017-04-01

    Ultra-dispersed bimetallic nanomaterials have attracted much attention in the hydrogenation of highly toxic aromatic nitro compounds to aromatic amines owing to their high stability, superior activity, reusability, and unique optical and electronic properties, as compared to monometalic nanocrystals. However, the lack of facile and economically controllable strategies of producing highly pure ultra-dispersed bimetallic nanocatalysts limits their practical industrial applications. Considering the above obstacles, we present a simple and effective strategy for the formation of bimetallic (PdCu) nanocrystals by liquid phase pulsed laser ablation using a bulk Pd metal plate submerged in CuCl2 solutions with different concentrations, in contrast to the complex and costly experimental methods used previously. The microstructural and optical properties of the synthesized nanocrystals indicate that the obtained bimetallic nanostructures are highly pure and monodispersed. Moreover, bimetallic PdCu nanostructures show a higher catalytic activity than monometallic Pd nanocrystals for the hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature, also exhibiting high stability for up to four recycles. The mechanism of the enhanced catalytic activity and stability of bimetallic nanocrystals is discussed in detail. Finally, we believe that the presented design strategy and utilization of bimetallic nanocrystals for catalytic applications enables the development of novel bimetallic nanostructures by liquid phase pulsed laser ablation and their catalytic application for environmental remediation.

  15. Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors.

    PubMed

    Srivastava, Smita; Srivastava, Ashok K

    2013-11-01

    Batch cultivation of Azadirachta indica hairy roots was carried out in different liquid-phase bioreactor configurations (stirred-tank, bubble column, bubble column with polypropylene basket, and polyurethane foam disc as root supports) to investigate possible scale-up of the A. indica hairy root culture for in vitro production of the biopesticide azadirachtin. The hairy roots failed to grow in the conventional bioreactor designs (stirred tank and bubble column). However, modified bubble column reactor (with polyurethane foam as root support) configuration facilitated high-density culture of A. indica hairy roots with a biomass production of 9.2 g l(-1)dry weight and azadirachtin yield of 3.2 mg g(-1) leading to a volumetric productivity of azadirachtin as 1.14 mg l(-1) day(-1). The antifeedant activity in the hairy roots was also evaluated by no choice feeding tests with known concentrations of the hairy root powder and its solvent extract separately on the desert locust Schistocerca gregaria. The hairy root powder and its solvent extract demonstrated a high level of antifeedant activity (with an antifeedant index of 97 % at a concentration of 2 % w/v and 83 % at a concentration of 0.05 % (w/v), respectively, in ethanol).

  16. Determination of selected pesticides in environmental water by employing liquid-phase microextraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Trtić-Petrović, Tatjana; Dordević, Jelena; Dujaković, Nikolina; Kumrić, Ksenija; Vasiljević, Tatjana; Lausević, Mila

    2010-07-01

    An optimised extraction and cleanup method for the analysis of pesticide in natural water samples is presented. Sixteen pesticides of different polarity and from the different chemical classes (organophosphates, triazines, benzimidazoles, carbamates, carbamides, neonicotinoides, methylureas, phenylureas and benzohydrazides), most frequently used in Serbia, were selected for the analysis. Liquid-phase microextraction in a single hollow fibre (HF-LPME) has been applied for sample preparation. The concentrations of pesticides were determined using HPLC-MS/MS method with electrospray ionisation. The extraction behaviour and selection of the experimental conditions was predicted based on log D and pK(a) values of targeted pesticides, which were calculated applying the computer software ACD/Labs PhysChem Suite v12. The influence of the donor pH and concentration of pesticides, organic phase composition as well as the extraction time on the extraction efficiency was investigated. Optimum extraction conditions were evaluated with respect to the investigated parameters of the extraction. The extraction method was validated for 10 out of 16 studied pesticides. Linear range of the pesticides was 0.1-5 microg L(-1) with the correlation coefficient from 0.991 to 0.9998, and the relative standard deviation for three standard measurements was between 0.2 and 11.8%. The limits of detections ranged from 0.026 to 0.237 microg L(-1) and the limits of quantifications from 0.094 to 0.793 microg L(-1). The optimised two-phase HF-LPME method was successfully applied for determination of moderately polar as well low-polar pesticides in the environmental water samples.

  17. Relationship between the liquid liquid phase transition and dynamic behaviour in the Jagla model

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Ehrenberg, Isaac; Buldyrev, Sergey V.; Stanley, H. Eugene

    2006-09-01

    Using molecular dynamics simulations, we study a spherically symmetric 'two-scale' Jagla potential with both repulsive and attractive ramps. This potential displays a liquid-liquid phase transition with a positively sloped coexistence line ending at a critical point well above the equilibrium melting line. We study the dynamic behaviour in the vicinity of this liquid-liquid critical point. Below the critical point, we find that the dynamics in the more ordered high density liquid (HDL) are much slower then the dynamics in the less ordered low density liquid (LDL). Moreover, the behaviour of the diffusion constant and relaxation time in the HDL phase follows approximately an Arrhenius law, while in the LDL phase the slope of the Arrhenius fit increases upon cooling. Above the critical pressure, as we cool the system at constant pressure, the behaviour of the dynamics smoothly changes with temperature. It resembles the behaviour of the LDL at high temperatures and resembles the behaviour of the HDL at low temperatures. This dynamic crossover happens in the vicinity of the Widom line (the extension of the coexistence line into the one-phase region) which also has a positive slope. Our work suggests a possible general relation between a liquid-liquid phase transition and the change in dynamics.

  18. Vapour-liquid phase diagram for an ionic fluid in a random porous medium.

    PubMed

    Holovko, M F; Patsahan, O; Patsahan, T

    2016-10-19

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  19. Characterization of Liquid Phase Sitered sic and Sic/sic Composite Materials

    NASA Astrophysics Data System (ADS)

    Lee, Moon Hee; Lee, Sang Pill; Hur, Kwan Do

    The characterization of liquid phase sintered(LPS) SiC based materials has been investigated with the analysis of microstructure and flexural strength. Especially, LPS-SiC materials were examined for the variation of test temperature and composition ratios (Al2O3,/Y2O3) of sintering additives. LPS-SiC based materials were fabricated by hot pressing(HP) associated with the liquid phase formation of sintering additives(Al2O3,Y2O3). LPS-SiCf/SiC composites were also fabricated with plane-woven(PW) Tyranno-SA fibers without an interfacial layer. LPS-SiC materials showed a dense morphology with the creation of the secondary phase like YAG. The composition ratio of sintering additives led to the variation of sintered density and flexural strength. The flexural strength of LPS-SiC materials was greatly decreased at the temperature higher than 1000°C. LPS-SiCf/SiC composites represented an average flexural strength of about 260 MPa, accompanying the catastrophic fracture behavior without any full-out phenomena.

  20. Liquid phase microextraction for the analysis of trace elements and their speciation

    NASA Astrophysics Data System (ADS)

    Hu, Bin; He, Man; Chen, Beibei; Xia, Linbo

    2013-08-01

    Trace/ultra-trace elements and their speciation analysis in complex matrices usually require sample preparation procedures to achieve sample clean-up and analyte preconcentration. Sample preparation is often the bottleneck in trace elements and their speciation analysis which has a direct impact on accuracy, precision and limits of detection and is often the rate-determining step of the analytical process. Recent trends in sample preparation include miniaturization, automation, high-throughput performance and reduction in solvent/sample consumption and operation time. Liquid-phase microextraction (LPME) technique as a novel and promising alternative in sample preparation can meet these requirements and has become a very efficient sample preparation technique. This review updates the state of art of LPME for trace elements and their speciation analysis and discusses its promising prospects. The major thrust of the article highlights the applications of LPME including single-drop microextraction (SDME), hollow fiber-liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME) and solidified floating organic drop microextraction (SFODME) to the fields of elemental and their speciation analysis by atomic spectrometry-based methods, especially inductively coupled plasma mass spectrometry. General and specific concepts, different extraction formats and characteristics of LPME are described and compared, along with examples of recent innovations and applications presented to demonstrate its potential for trace elements and their speciation analysis in biological and environmental fields. Moreover, the application potential and an outlook on the combination of LPME and atomic spectrometry-based techniques for inorganic analysis are commentated.

  1. Liquid phase preparation and fluorescence of flake-liked NdF{sub 3} nanomaterials

    SciTech Connect

    Tian, Li; Lian, Peili; Sun, Qiliang; Long, Peng; Xiang, Shaobin; Zhu, Guangshan

    2013-01-15

    Graphical abstract: Room-temperature emission spectra of NdF{sub 3} nanoflakes exhibit a strong luminescence emission peak at 402 nm when irradiated by an excitation wavelength of 250 nm. Display Omitted Highlights: ► NdF{sub 3} nanoflakes have been successfully prepared by a facile and repeatable liquid phase preparation. ► The action of oxalic acid in the reaction process was studied, showing important in the morphology of neodymium fluorides. ► The study on the fluorescent properties of flake-like NdF{sub 3} nanomaterials shows a strong emission peak at 402 nm by the excitation wavelength of 250 nm. -- Abstract: Neodymium fluoride nanoflakes were successfully prepared by a facile liquid phase preparation with Nd(NO{sub 3}){sub 3} and NaF as raw materials. In the process, oxalic acid acting as template agent was found to play important roles in the morphology of neodymium fluorides. The as-synthesized NdF{sub 3} nanoflakes were characterized by various techniques of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectrometer instrument (EDS). The fluorescent properties of neodymium fluoride nanoflakes were investigated, showing a strong luminescence emission peak at 402 nm by the excitation wavelength of 250 nm.

  2. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    USGS Publications Warehouse

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  3. Liquid phase sintered ceramic bone scaffolds by combined laser and furnace.

    PubMed

    Feng, Pei; Deng, Youwen; Duan, Songlin; Gao, Chengde; Shuai, Cijun; Peng, Shuping

    2014-08-21

    Fabrication of mechanically competent bioactive scaffolds is a great challenge in bone tissue engineering. In this paper, β-tricalcium phosphate (β-TCP) scaffolds were successfully fabricated by selective laser sintering combined with furnace sintering. Bioglass 45S5 was introduced in the process as liquid phase in order to improve the mechanical and biological properties. The results showed that sintering of β-TCP with the bioglass revealed some features of liquid phase sintering. The optimum amount of 45S5 was 5 wt %. At this point, the scaffolds were densified without defects. The fracture toughness, compressive strength and stiffness were 1.67 MPam1/2, 21.32 MPa and 264.32 MPa, respectively. Bone like apatite layer was formed and the stimulation for apatite formation was increased with increase in 45S5 content after soaking in simulated body fluid, which indicated that 45S5 could improve the bioactivity. Furthermore, MG-63 cells adhered and spread well, and proliferated with increase in the culture time.

  4. Investigation of the growth of garnet films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sandfort, R. M.

    1974-01-01

    Liquid phase expitaxy was investigated to determine its applicability to fabricating magnetic rare earth garnet films for spacecraft data recording systems. Two mixed garnet systems were investigated in detail: (1) Gd-Y and (2) Eu-Yb-Y. All films were deposited on Gd3Ga5012 substrates. The uniaxial anisotropy of the Gd-Y garnets is primarily stress-induced. These garnets are characterized by high-domain wall mobility, low coercivity and modest anisotropy. Characteristic length was found to be relatively sensitive to temperature. The Eu-Yb-Y garnets exhibit acceptable mobilities, good temperature stability and reasonable quality factors. The uniaxial anisotropy of these garnets is primarily growth-induced. The system is well suited for compositional "tailoring" to optimize specific desirable properties. Liquid phase epitaxy can be used to deposit Gd3Ga5012 spacing layers on magnetic garnet films and this arrangement possesses certain advantages over more conventional magnetic filmspacing layer combinations. However, it cannot be used if the magnetic film is to be ion implanted.

  5. In-situ Liquid Phase Epitaxy: Another Strategy to Synthesize Heterostructured Core-shell Composites

    PubMed Central

    Wen, Zhongsheng; Wang, Guanqin

    2016-01-01

    Core-shell Nb2O5/TiO2 composite with hierarchical heterostructure is successfully synthesized In-situ by a facile template-free and acid-free solvothermal method based on the mechanism of liquid phase epitaxy. The chemical circumstance change induced by the alcoholysis of NbCl5 is utilized tactically to trigger core-shell assembling In-situ. The tentative mechanism for the self-assembling of core-shell structure and hierarchical structure is explored. The microstructure and morphology changes during synthesis process are investigated systematically by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The dramatic alcoholysis of NbCl5 has been demonstrated to be the fundamental factor for the formation of the spherical core, which changes the acid circumstance of the solution and induces the co-precipitation of TiO2. The homogeneous co-existence of Nb2O5/TiO2 in the core and the co-existence of Nb/Ti ions in the reaction solution facilitate the In-situ nucleation and epitaxial growth of the crystalline shell with the same composition as the core. In-situ liquid phase epitaxy can offer a different strategy for the core-shell assembling for oxide materials. PMID:27121200

  6. Vapour-liquid phase diagram for an ionic fluid in a random porous medium

    NASA Astrophysics Data System (ADS)

    Holovko, M. F.; Patsahan, O.; Patsahan, T.

    2016-10-01

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  7. Confinement effect on the adsorption from a binary liquid system near liquid/liquid phase separation

    NASA Astrophysics Data System (ADS)

    Rother, Gernot; Woywod, Dirk; Schoen, Martin; Findenegg, Gerhard H.

    2004-06-01

    The preferential adsorption of one component of a binary system at the inner surfaces of mesoporous silica glasses was studied in a wide composition range at temperatures close to liquid/liquid phase separation. Confinement effects on the adsorption were investigated by using three controlled-pore glass (CPG-10) materials of different mean pore size (10 to 50 nm). For the experimental system (2-butoxyethanol+water), which exhibits an upper miscibility gap, strong preferential adsorption of water occurs, as the coexistence curve is approached at bulk compositions, at which water is the minority component. In this strong adsorption regime the area-related surface excess amount of adsorbed water decreases with decreasing pore width, while the shift in the volume-related mean composition of the pore liquid shows an opposite trend, i.e., greatest deviation from bulk composition occurring in the most narrow pores. A simple mean-field lattice model of a liquid mixture confined by parallel walls is adopted to rationalize these experimental findings. This model reproduces the main findings of the confinement effect on the adsorption near liquid/liquid phase separation.

  8. The Effect of Rapid Liquid-Phase Reactions on Injector Design and Combustion in Rocket Motors

    NASA Technical Reports Server (NTRS)

    Elverum, Gerard W., Jr.; Staudhammer, Peter

    1959-01-01

    Data are presented indicating the rates and magnitudes of energy released by the liquid-phase reactions of various propellant combinations. The data show that this energy release can contribute significantly to the rate of vaporization of the incoming propellants and thus aid the combustion process. Nevertheless, very low performances were obtained in rocket motors with conventional impinging-jet injectors when highly reactive systems such as N104-N2H4, were employed. A possible explanation for this low performance is that the initial reactions of such systems are so rapid that liquid-phase mixing is inhibited. Evidence for such an effect is presented in a series of color photographs of open flames using various injector elements. Based on these studies, some requirements are suggested for injector elements using highly reactive propellants. Experimental results are presented of motor tests using injector elements in which some of these requirements are met through the use of a set of concentric tubes. These tests, carried out at thrust levels of 40 to 800 lb per element, demonstrated combustion efficiencies of up to 98% based on equilibrium characteristic velocity values. Results are also presented for tests made with impinging-jet and splash-plate injectors for comparison.

  9. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    PubMed

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo.

  10. Liquid-Liquid Phase Separation of a Monoclonal Antibody and Nonmonotonic Influence of Hofmeister Anions

    PubMed Central

    Mason, Bruce D.; Zhang-van Enk, Jian; Zhang, Le; Remmele, Richard L.; Zhang, Jifeng

    2010-01-01

    Liquid-liquid phase separation was studied for a monoclonal antibody in the monovalent salt solutions of KF, KCl, and KSCN under different pH conditions. A modified Carnahan-Starling hard-sphere model was utilized to fit the experimental data, establish the liquid-liquid coexistence curve, and determine antibody-antibody interactions in the form of Tc (critical temperature) under the different solution conditions. The liquid-liquid phase separation revealed the complex relationships between antibody-antibody interactions and different solution conditions, such as pH, ionic strength, and the type of anion. At pH 7.1, close to the pI of the antibody, a decrease of Tc versus ionic strength was observed at low salt conditions, suggesting that the protein-protein interactions became less attractive. At a pH value below the pI of the antibody, a nonmonotonic relationship of Tc versus ionic strength was apparent: initially as the ionic strength increased, protein-protein interactions became more attractive with the effectiveness of the anions following the inverse Hofmeister series; then the interactions became less attractive following the direct Hofmeister series. This nonmonotonic relationship may be explained by combining the charge neutralization by the anions, perhaps with the ion-correlation force for polarizable anions, and their preferential interactions with the antibody. PMID:21112304

  11. Liquid-liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization

    NASA Astrophysics Data System (ADS)

    Muschol, Martin; Rosenberger, Franz

    1997-08-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (w/v) NaCl at pH=4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  12. Liquid-Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization

    NASA Technical Reports Server (NTRS)

    Muschol, Martin; Rosenberger, Franz

    1997-01-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (wlv) NaCl at pH= 4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  13. Liquid Phase Sintered Ceramic Bone Scaffolds by Combined Laser and Furnace

    PubMed Central

    Feng, Pei; Deng, Youwen; Duan, Songlin; Gao, Chengde; Shuai, Cijun; Peng, Shuping

    2014-01-01

    Fabrication of mechanically competent bioactive scaffolds is a great challenge in bone tissue engineering. In this paper, β-tricalcium phosphate (β-TCP) scaffolds were successfully fabricated by selective laser sintering combined with furnace sintering. Bioglass 45S5 was introduced in the process as liquid phase in order to improve the mechanical and biological properties. The results showed that sintering of β-TCP with the bioglass revealed some features of liquid phase sintering. The optimum amount of 45S5 was 5 wt %. At this point, the scaffolds were densified without defects. The fracture toughness, compressive strength and stiffness were 1.67 MPam1/2, 21.32 MPa and 264.32 MPa, respectively. Bone like apatite layer was formed and the stimulation for apatite formation was increased with increase in 45S5 content after soaking in simulated body fluid, which indicated that 45S5 could improve the bioactivity. Furthermore, MG-63 cells adhered and spread well, and proliferated with increase in the culture time. PMID:25196598

  14. Boson peak, Ioffe-Regel Crossover, and Liquid-Liquid phase transition in Supercooled Water

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep

    We have investigated the onset of Boson peak in a model of liquid water which exhibits a clear first-order phase transition between a low-density liquid phase and a high-density liquid phase of water at low temperature and high pressure. We find that the at low pressures, the onset of Boson peak coincides with the Widom-line of the system. At high pressures, the onset occurs at the transition temperature between the two liquids. Furthermore, we show that at both low and high pressure, the frequency of the Boson peak coincides with the Ioffe-Regel crossover of the transverse phonons, suggesting that the breakdown of Debye behavior is a general feature of Ioffe-Regel limit crossover in supercooled water. The frequency of the Boson peak is weakly pressure dependent and decreases with increasing pressure. Our work bridges gap between the experimental results on the Boson peak nanoconfined water and the behavior that one would expect from a bulk system.

  15. Effect of Silicon on Activity Coefficients of Platinum in Liquid Fe-Si, With Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.

    2017-01-01

    Earth's core contains approximately 10% of a light element that is likely a combination of S, C, Si, and O, with Si possibly being the most abundant light element. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of Pt (with Re and Ru in progress or planned) between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle Pt concentrations.

  16. Determination of Activity Coefficients of di-(2-ethylhexyl) Phosphoric Acid Dimer in Select Organic Solvents Using Vapor Phase Osmometry

    SciTech Connect

    Michael F. Gray; Peter Zalupski; Mikael Nilsson

    2013-08-01

    Effective models for solvent extraction require accurate characterization of the nonideality effects for each component, including the extractants. In this study, the nonideal behavior of the industrial extractant di(2-ethylhexyl) phosphoric acid has been investigated using vapor pressure osmometry (VPO). From the osmometry data, activity coefficients for the HDEHP dimer were obtained based on a formulation of the regular solution theory of Scatchard and Hildebrand, and the Margules two- and three-suffix equations. The results show similarity with a slope-analysis based relation from previous literature, although important differences are highlighted. The work points towards VPO as a useful technique for this type of study, but care must be taken with the choice of standard and method of analysis.

  17. Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: Pore-scale processes near vaporization surface

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Lehmann, P.; Or, D.

    2010-04-01

    Evaporation from porous media involves complex pore scale transport processes affecting liquid phase distribution and fluxes. Often, the initial evaporation rate is nearly constant and supplied by capillary flow from wetted zones below to the surface. Sustaining constant flow against gravity hinges on an upward capillary gradient and on liquid phase continuity with hydraulic conductivity sufficient for supplying evaporative flux. The pore scale liquid phase adjustments during evaporative displacement necessary for maintaining a constant flux have been postulated but rarely measured. In this study we employed detailed imaging using x-ray synchrotron radiation to study liquid phase distribution and dynamics at the most sensitive domain just below the surface of evaporating sand columns. Three-dimensional images at a resolution of 7 microns were obtained from sand column (mean particle size 0.6 mm) initially saturated with calcium iodide solution (4% by mass) to enhance image contrast. Detailed imaging of near-surface liquid phase distribution during evaporation confirmed phase continuity at micrometric scale and provided quantitative estimates of liquid conductance in agreement with values required to supply evaporative flux. Temporal variations in bulk salt concentrations determined from x-ray attenuation were proportional to evaporative water mass loss. Highly resolved salt concentration images revealed existence of evaporating chimneys that supply the bulk of evaporative demand. Delineated mass loss dynamics and salt distribution measured by the x-ray attenuation were in reasonable agreement with a simplified analytical convection-diffusion model for salt dynamics during evaporation from porous media.

  18. Liquid-liquid phase equilibrium and core-shell structure formation in immiscible Al-Bi-Sn alloys

    NASA Astrophysics Data System (ADS)

    Li, Mingyang; Jia, Peng; Sun, Xiaofei; Geng, Haoran; Zuo, Min; Zhao, Degang

    2016-04-01

    In this paper, the liquid-phase separation of ternary immiscible Al45Bi19.8Sn35.2 and Al60Bi14.4Sn25.6 melts was studied with resistivity and thermal analysis methods at different temperature. The resistivity-temperature curves appear abrupt and anomalously change with rising temperature, corresponding to the anomalous and low peak of melting process in DSC curves, indicative of the occurrence of the liquid-phase separation. The anomalous behavior of the resistivity temperature dependence is attributable to concentration-concentration fluctuations. The effect of composition and melt temperature on the liquid-phase separation and core-shell structure formation in immiscible Al-Bi-Sn alloys was studied. The liquid-phase separation and formation of the core-shell structure in immiscible Al-Bi-Sn alloys are readily acquired when the alloy compositions fall into liquid miscibility gap. What's more, the cross-sectional structure changes from irregular, dispersed to core-type shapes under the actions of Marangoni motion with increasing melt temperature. This study provides some clues for the preparation of core-shell microspheres of immiscible Al-Bi-Sn alloys via liquid-phase separation.

  19. Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    van Gils, C. A. J.; Hofmann, S.; Boekema, B. K. H. L.; Brandenburg, R.; Bruggeman, P. J.

    2013-05-01

    A radio-frequency atmospheric pressure argon plasma jet is used for the inactivation of bacteria (Pseudomonas aeruginosa) in solutions. The source is characterized by measurements of power dissipation, gas temperature, absolute UV irradiance as well as mass spectrometry measurements of emitted ions. The plasma-induced liquid chemistry is studied by performing liquid ion chromatography and hydrogen peroxide concentration measurements on treated distilled water samples. Additionally, a quantitative estimation of an extensive liquid chemistry induced by the plasma is made by solution kinetics calculations. The role of the different active components of the plasma is evaluated based on either measurements, as mentioned above, or estimations based on published data of measurements of those components. For the experimental conditions being considered in this work, it is shown that the bactericidal effect can be solely ascribed to plasma-induced liquid chemistry, leading to the production of stable and transient chemical species. It is shown that HNO2, ONOO- and H2O2 are present in the liquid phase in similar quantities to concentrations which are reported in the literature to cause bacterial inactivation. The importance of plasma-induced chemistry at the gas-liquid interface is illustrated and discussed in detail.

  20. Nickel-Aluminum Layered Double Hydroxide Coating on the Surface of Conductive Substrates by Liquid Phase Deposition.

    PubMed

    Maki, Hideshi; Takigawa, Masashi; Mizuhata, Minoru

    2015-08-12

    The direct synthesis of the adhered Ni-Al LDH thin film onto the surface of electrically conductive substrates by the liquid phase deposition (LPD) reaction is carried out for the development of the positive electrode. The complexation and solution equilibria of the dissolved species in the LPD reaction have been clarified by a theoretical approach, and the LPD reaction conditions for the Ni-Al LDH depositions are shown to be optimized by controlling the fluoride ion concentration and the pH of the LPD reaction solutions. The yields of metal oxides and hydroxides by the LPD method are very sensitive to the supersaturation state of the hydroxide in the reaction solution. The surfaces of conductive substrates are completely covered by the minute mesh-like Ni-Al LDH thin film; furthermore, there is no gap between the surfaces of conductive substrates and the deposited Ni-Al LDH thin film. The active material layer thickness was able to be controlled within the range from 100 nm to 1 μm by the LPD reaction time. The high-crystallinity and the arbitrary-thickness thin films on the conductive substrate surface will be beneficial for the interface control of charge transfer reaction fields and the internal resistance reduction of various secondary batteries.

  1. The effect of urine storage on antiviral and antibiotic compounds in the liquid phase of source-separated urine.

    PubMed

    Jaatinen, Sanna T; Palmroth, Marja R T; Rintala, Jukka A; Tuhkanen, Tuula A

    2016-09-01

    The behaviour of pharmaceuticals related to the human immunodeficiency virus treatment was studied in the liquid phase of source-separated urine during six-month storage at 20°C. Six months is the recommended time for hygienization and use of urine as fertilizer. Compounds were spiked in urine as concentrations calculated to appear in urine. Assays were performed with separate compounds and as therapeutic groups of antivirals, antibiotics and anti-tuberculotics. In addition, urine was amended either with faeces or urease inhibitor. The pharmaceutical concentrations were monitored from filtered samples with solid phase extraction and liquid chromatography. The concentration reductions of the studied compounds as such or with amendments ranged from less than 1% to more than 99% after six-month storage. The reductions without amendments were 41.9-99% for anti-tuberculotics; <52% for antivirals (except with 3TC 75.6%) and <50% for antibiotics. In assays with amendments, the reductions were all <50%. Faeces amendment resulted in similar or lower reduction than without it even though bacterial activity should have increased. The urease inhibitor prevented ureolysis and pH rise but did not affect pharmaceutical removal. In conclusion, removal during storage might not be enough to reduce risks associated with the studied pharmaceuticals, in which case other feasible treatment practises or urine utilization means should be considered.

  2. Transient liquid phase bonding of titanium-, iron- and nickel-based alloys

    NASA Astrophysics Data System (ADS)

    Rahman, A. H. M. Esfakur

    The operating temperature of land-based gas turbines and jet engines are ever-increasing to increase the efficiency, decrease the emissions and minimize the cost. Within the engines, complex-shaped parts experience extreme temperature, fatigue and corrosion conditions. Ti-based, Ni-based and Fe-based alloys are commonly used in gas turbines and jet engines depending on the temperatures of different sections. Although those alloys have superior mechanical, high temperature and corrosion properties, severe operating conditions cause fast degradation and failure of the components. Repair of these components could reduce lifecycle costs. Unfortunately, conventional fusion welding is not very attractive, because Ti reacts very easily with oxygen and nitrogen at high temperatures, Ni-based superalloys show heat affected zone (HAZ) cracking, and stainless steels show intergranular corrosion and knife-line attack. On the other hand, transient liquid phase (TLP) bonding method has been considered as preferred joining method for those types of alloys. During the initial phase of the current work commercially pure Ti, Fe and Ni were diffusion bonded using commercially available interlayer materials. Commercially pure Ti (Ti-grade 2) has been diffusion bonded using silver and copper interlayers and without any interlayer. With a silver (Ag) interlayer, different intermetallics (AgTi, AgTi2) appeared in the joint centerline microstructure. While with a Cu interlayer eutectic mixtures and Ti-Cu solid solutions appeared in the joint centerline. The maximum tensile strengths achieved were 160 MPa, 502 MPa, and 382 MPa when Ag, Cu and no interlayers were used, respectively. Commercially pure Fe (cp-Fe) was diffusion bonded using Cu (25 m) and Au-12Ge eutectic interlayer (100 microm). Cu diffused predominantly along austenite grain boundaries in all bonding conditions. Residual interlayers appeared at lower bonding temperature and time, however, voids were observed in the joint

  3. The Diet Quality of Competitive Adolescent Male Rugby Union Players with Energy Balance Estimated Using Different Physical Activity Coefficients

    PubMed Central

    Burrows, Tracy; Harries, Simon K.; Williams, Rebecca L.; Lum, Cheryl; Callister, Robin

    2016-01-01

    Objectives: The aims of the current study were to comprehensively assess the dietary intakes and diet quality of a sample of Australian competitive adolescent rugby union players and compare these intakes with National and Sports Dietitians Association (SDA) Recommendations for adolescent athletes. A secondary aim investigated applying different physical activity level (PAL) coefficients to determine total energy expenditure (TEE) in order to more effectively evaluate the adequacy of energy intakes. Design: Cross-sectional. Methods: Anthropometrics and dietary intakes were assessed in 25 competitive adolescent male rugby union players (14 to 18 years old). Diet was assessed using the validated Australian Eating Survey (AES) food frequency questionnaire and diet quality was assessed through the Australian Recommended Food Score. Results: The median dietary intakes of participants met national recommendations for percent energy (% E) from carbohydrate, protein and total fat, but not carbohydrate intake when evaluated as g/day as proposed in SDA guidelines. Median intakes of fibre and micronutrients including calcium and iron also met national recommendations. Overall diet quality was classified as ‘good’ with a median diet quality score of 34 (out of a possible 73); however, there was a lack of variety within key food groups including carbohydrates and proteins. Non-core food consumption exceeded recommended levels at 38% of the daily total energy intake, with substantial contributions from takeaway foods and sweetened beverages. A PAL coefficient of 1.2–1.4 was found to best balance the energy intakes of these players in their pre-season. Conclusions: Adolescent rugby players met the percent energy recommendations for macronutrients and attained an overall ‘good’ diet quality score. However, it was identified that when compared to specific recommendations for athletes, carbohydrate intakes were below recommendations and these players in their pre

  4. Template-assisted mineral formation via an amorphous liquid phase precursor route

    NASA Astrophysics Data System (ADS)

    Amos, Fairland F.

    The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was

  5. COMMERCIAL-SCALE DEMONSTRATION OF THE LIQUID PHASE METHANOL (LPMEOH) PROCESS

    SciTech Connect

    E.C. Heydorn; B.W. Diamond; R.D. Lilly

    2003-06-01

    This project, which was sponsored by the U.S. Department of Energy (DOE) under the Clean Coal Technology Program to demonstrate the production of methanol from coal-derived synthesis gas (syngas), has completed the 69-month operating phase of the program. The purpose of this Final Report for the ''Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process'' is to provide the public with details on the performance and economics of the technology. The LPMEOH{trademark} Demonstration Project was a $213.7 million cooperative agreement between the DOE and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The DOE's cost share was $92,708,370 with the remaining funds coming from the Partnership. The LPMEOH{trademark} demonstration unit is located at the Eastman Chemical Company (Eastman) chemicals-from-coal complex in Kingsport, Tennessee. The technology was the product of a cooperative development effort by Air Products and Chemicals, Inc. (Air Products) and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} Process is ideally suited for directly processing gases produced by modern coal gasifiers. Originally tested at the Alternative Fuels Development Unit (AFDU), a small, DOE-owned process development facility in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the methanol synthesis reaction to proceed at higher rates. The LPMEOH{trademark} Demonstration Project accomplished the objectives set out in the Cooperative Agreement with DOE for this Clean Coal Technology project

  6. Research on Si-Al based catalysts prepared by complete liquid-phase method for DME synthesis in a slurry reactor

    NASA Astrophysics Data System (ADS)

    Li, Zhihong; Zuo, Zhijun; Huang, Wei; Xie, Kechang

    2011-01-01

    A series of Si-Al based DME synthesis catalysts were prepared by complete liquid-phase method and characterized by in situ XPS, XRD, N 2 adsorption and NH 3-TPD analyses. Based on the results, the addition of Si could adjust the pore structure and surface acidity of catalyst, exhibiting a strong promoting effect on the CO conversion and DME selectivity. However, when Si/Al ratio is higher, Si would cover active sites and increase the amount of strong acidity sites, causing the reduction in catalytic activity. It was found from in situ XPS characterization that Cu 0 is the active center of methanol synthesis in DME production, and the addition of Si changes the chemical surroundings of active components and weaken the interaction between Cu, Zn and Al, which maybe give rise to the decrease in catalyst stability.

  7. Study on anisotropy of effective diffusion coefficient and activation energy for deuterated water in compacted sodium bentonite.

    PubMed

    Suzuki, Satoru; Sato, Haruo; Ishidera, Takamitsu; Fujii, Naoki

    2004-01-01

    To quantify the effects of temperature on the diffusivity of deuterated water (HDO) in compacted sodium bentonite, through-diffusion experiments were conducted at elevated temperatures ranging from 298 to 333 K. Kunipia F (Na-montmorillonite content>98 wt.%; Kunimine Industries) was compacted to a dry density of 0.9 or 1.35 Mg/m(3). As montmorillonite particles were oriented perpendicular to the direction of compaction, the anisotropy of diffusivity was investigated both parallel and normal to the preferred orientation of the montmorillonite. The effective diffusion coefficient D(e) of HDO was larger when the diffusional direction was parallel as opposed to normal to the preferred orientation for both dry densities. The magnitude of D(e) and the anisotropy for HDO were in good accordance with previously reported results for tritiated water at room temperature. Activation energies of D(e) were isotropic and increased with increasing dry density over the range of 19-25 kJ/mol. This relationship was considered to be due to both pore structure development and the high activation energy of water near the montmorillonite surface.

  8. Anomalous vortex motion in the quantum-liquid phase of amorphous MoxSi1-x films.

    PubMed

    Okuma, S; Kobayashi, M; Kamada, M

    2005-02-04

    We measure, in real time (t), the fluctuating component of the flux-flow voltage V(t), deltaV(t) identical withV(t)-V0, about the average V0 in the vortex-liquid phase of amorphous MoxSi1-x films. For the thick film, deltaV(t) originating from the vortex motion is clearly visible in the quantum-liquid phase, where the distribution of deltaV(t) is asymmetric, indicative of large velocity and/or number fluctuations of driven vortices. For the thin film the similar anomalous vortex motion is observed in nearly the same (reduced-)temperature regime. These results suggest that vortex dynamics in the low-temperature liquid phase of thick and thin films is dominated by common physical mechanisms, presumably related to quantum effects.

  9. Liquid-liquid phase separation of a monoclonal antibody at low ionic strength: Influence of anion charge and concentration.

    PubMed

    Reiche, Katharina; Hartl, Josef; Blume, Alfred; Garidel, Patrick

    2017-01-01

    Liquid-liquid phase separation (LLPS) of a monoclonal antibody solution was investigated at low ionic strength in the presence of oligovalent anions, such as citrate, trimellitate, pyromellitate and mellitate. Phase separation was observed at the isoelectric point of the antibody at pH8.7 as well as in more acidic pH regions in the presence of the tested oligovalent ions. This can be attributed to charge neutralization via binding of the oligovalent anions to the positively charged antibody. The influence of the anion concentration on liquid-liquid phase separation with respect to the net charge of the antibody was examined. Similarities to the formation of a complex coacervate were shown to apply. These findings enable us to understand the usage of excipients to rationally induce or avoid liquid-liquid phase separation at low ionic strength. Furthermore we present a method to directly examine the competition of different ions for the solvation shell, called buffer equilibration.

  10. Separation of selected stable isotopes by liquid-phase thermal diffusion and by chemical exchange

    NASA Astrophysics Data System (ADS)

    Rutherford, W. M.; Jepson, B. E.; Michaels, E. D.

    Useful applications of enriched stable nuclides are unduly restricted by high cost and limited availability. Recent research on liquid phase thermal diffusion (LTD) has resulted in practical processes for separating S34, CL35, and CL37 in significant quantities (100 to 500 g/yr) at costs much lower than those associated with the electromagnetic (Calutron) process. The separation of the isotopes of bromine by LTD is now in progress and BR79 is being produced in relatively simple equivalent at a rate on the order of 0.5 g/day. The results of recent measurements show that the isotopes of Zn can be separated by LTD of zinc alkyls. The isotopes of calcium can be separated by LTD and by chemical exchange. The LTD process is based on the use of aqueous Ca(NO3)2 as a working fluid.

  11. Removal of Multiple Contaminants from Water by Polyoxometalate Supported Ionic Liquid Phases (POM-SILPs).

    PubMed

    Herrmann, Sven; De Matteis, Laura; de la Fuente, Jesús M; Mitchell, Scott G; Streb, Carsten

    2017-02-01

    The simultaneous removal of organic, inorganic, and microbial contaminants from water by one material offers significant advantages when fast, facile, and robust water purification is required. Herein, we present a supported ionic liquid phase (SILP) composite where each component targets a specific type of water contaminant: a polyoxometalate-ionic liquid (POM-IL) is immobilized on porous silica, giving the heterogeneous SILP. The water-insoluble POM-IL is composed of antimicrobial alkylammonium cations and lacunary polyoxometalate anions with heavy-metal binding sites. The lipophilicity of the POM-IL enables adsorption of organic contaminants. The silica support can bind radionuclides. Using the POM-SILP in filtration columns enables one-step multi-contaminant water purification. The results show how multi-functional POM-SILPs can be designed for advanced purification applications.

  12. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    PubMed

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  13. Fast liquefaction of bamboo shoot shell with liquid-phase microplasma assisted technology.

    PubMed

    Zhou, Rusen; Zhou, Renwu; Wang, Shuai; Lan, Zhou; Zhang, Xianhui; Yin, Yingwu; Tu, Song; Yang, Size; Ye, Liyi

    2016-10-01

    In this study, liquid-phase microplasma technology (LPMPT) was employed to facilitate the liquefaction of bamboo shoot shell (BSS) in polyethylene glycol 400 (PEG 400) and ethylene glycol (EG) mixture. Effects of liquefaction conditions such as liquefaction time, catalyst percentage, solvent/BSS mass ratio, PEG/EG volume ratio on liquefaction were investigated experimentally. The results showed that the introduction of LPMPT significantly shortened the liquefaction time to 3min without extra heating. The liquefaction yield reached 96.73% under the optimal conditions. The formation of massive reactive species and instantaneous heat accumulation both contributed to the rapid liquefaction of BSS. Thus, LPMPT could be considered as a simple and efficient method for the assistance of biomass fast liquefaction.

  14. Supercritical supersaturations and ultrafast cooling of the growth solution in liquid-phase epitaxy of semiconductors

    NASA Astrophysics Data System (ADS)

    Abramov, A. V.; Deryagin, N. G.; Tret'yakov, D. N.

    1996-04-01

    A method for accomplishing ultrafast cooling is proposed which makes possible supercritical supersaturations of the growth solution in liquid-phase epitaxy. Growth boat designs providing cooling rates as high as 0268-1242/11/4/025/img1 are considered. The temperatures of contact, 0268-1242/11/4/025/img2, of a GaAs substrate with a Ga-based solution and of a Si substrate with a Sn-based growth solution, calculated for various substrate 0268-1242/11/4/025/img3 and solution temperatures 0268-1242/11/4/025/img4, are in good agreement with experimental values. The maximum attainable supercooling is markedly increased to as high as 0268-1242/11/4/025/img5 for the Ga - As system, when the growth solution is subjected to ultrafast cooling. The prospects of using the method for fabricating heterostructures with a large lattice mismatch are discussed.

  15. Method for forming single phase, single crystalline 2122 BCSCO superconductor thin films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal (Inventor); Solayappan, Narayanan (Inventor)

    1994-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83 K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  16. Headspace liquid phase microextraction for quantitation of hexanal in potato crisps by gas chromatography.

    PubMed

    Kaykhaii, Massoud; Rahmani, Mashaallah

    2007-03-01

    A simple and rapid method using headspace liquid-phase microextraction (HS-LPME) was developed for the determination of hexanal at low levels in potato crisp samples. Parameters such as extraction solvent, agitation of the sample, salt addition, organic drop volume, exposure time, and extraction time were controlled and optimised. The developed protocol was found to yield a linear calibration curve in the concentration range from 0.001 to 2 mg/L and a limit of detection of 0.1 microg/L with a good enrichment factor of > 107 for the analyte. The repeatability of the method was satisfactory (4%). The results demonstrate that HS-LPME is a rapid, accurate, and effective preparation method and could be successfully used for the determination of hexanal in potato crisp samples.

  17. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.

    PubMed

    Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi

    2014-01-01

    We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.

  18. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James R

    2014-11-04

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  19. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  20. Pseudohomogeneous kinetic study on a two-liquid-phase fermentation process.

    PubMed

    Li, Y; Cao, Z; Yuan, N

    1994-01-01

    The fermentation process for producing undecane dicarboxylic acid from tridecane, which includes gas-oil-water-cell four phases (two-liquid-phase), was studied. The metabolic characters of the cell growth phase and the production phase of the process were analyzed. It was proposed that cell growth can be identified by the carbon dioxide production rate (CPR) before the production phase. The kinetic models of both the cell growth phase and the production phase were established, respectively. The parameters of the models have been estimated by regression. The calculated curves fit the experimental data very well. The average deviation between those over the cell growth phase and the production phase are 2.4% and 3.6%, respectively.

  1. Liquid-phase dispersion during injection into vapor-dominated reservoirs

    SciTech Connect

    Pruess, K.

    1994-01-01

    The behavior of water injection plumes in vapor-dominated reservoirs is examined. Stressing the similarity to water infiltration in heterogeneous soils, we suggest that ever-present heterogeneities in individual fractures and fracture networks will cause a lateral broadening of descending injection plumes. The process of lateral spreading of liquid phase is viewed in analogy to transverse dispersion in miscible displacement. To account for the postulated ``phase dispersion`` the conventional two-phase immiscible flow theory is extended by adding a Fickian-type dispersive term. The validity of the proposed phase dispersion model is explored by means of simulations with detailed resolution of small-scale heterogeneity. We also present an illustrative application to injection into a depleted vapor zone. It is concluded that phase dispersion effects will broaden descending injection plumes, with important consequences for pressure support and potential water breakthrough at neighboring production wells.

  2. Quasi-ductile mechanisms in porous liquid-phase sintered alumina induced by Hertzian contact

    NASA Astrophysics Data System (ADS)

    Digiovanni, Anthony Albert

    Hertzian indentation has been effective in evaluating material response and deformation behavior through single and repeated contacts of a hard sphere into a representative bulk sample in laboratory conditions. Using this technique, the macroscopic and microscopic deformation characteristics of a commercial alumina substrate were evaluated. Significant 'quasi-ductile' behavior was observed, not unlike that observed for other advanced ceramic systems with heterogeneous microstructures. In pure dense alumina, quasi-ductility is controlled by twin fault formation where a transition from a fine grained to a coarse grained microstructure corresponds to a change from classical cone-crack behavior to a purely quasi-ductile indentation response. The quasi-ductility in the commercial alumina was unexpected because the average grain size was very small---well below the size where one should expect any contribution from a twin faulting mechanism. Subsequent work focused on reproducing the commercial microstructures and then altering the grain size, porosity, and presence of the glassy (liquid) phase. Macroscopic indentation revealed a quasi-ductile residual impression formed prior to the observation of ring crack formation in the porous liquid phase sintered materials. Furthermore, the glass containing samples produced a deeper residual impression for an equivalent load and porosity level. Fully dense samples with or without a glass phase remained completely brittle. Subsurface images corresponded to the macroscopic observations; porous liquid phase materials with a 5 mum grain size revealed greater microstructural damage with increasing loads over that of the pure material. A 2D theoretical treatment of the problem used finite element modeling and periodic boundary conditions to understand the magnifying effect of multiple pores on the stress around a given pore in a biaxial compressive stress state linked to the Hertzian stress at yield. A periodic pore structure was

  3. Spectroscopic-ellipsometric study of native oxide removal by liquid phase HF process

    PubMed Central

    Kurhekar, Anil Sudhakar; Apte, Prakash R

    2014-01-01

    Ex situ spectroscopic ellipsometry (SE) measurements have been employed to investigate the effect of liquid-phase hydrofluoric acid (HF) cleaning on Si<100> surfaces for microelectromechanical systems application. The hydrogen terminated (H-terminated) Si surface was realized as an equivalent dielectric layer, and SE measurements are performed. The SE analyses indicate that after a 20-s 100:5 HF dip with rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed and analyzed by the ex-situ SE. Evidence for desorption of the H-terminated Si surface layer is studied using Fourier transform infrared spectroscopy and ellipsometry, and discussed. This piece of work explains the usage of an ex situ, non-destructive technique capable of showing state of passivation, the H-termination of Si<100> surfaces. PMID:24619506

  4. Multi-Scale Modeling of Liquid Phase Sintering Affected by Gravity: Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Olevsky, Eugene; German, Randall M.

    2012-01-01

    A multi-scale simulation concept taking into account impact of gravity on liquid phase sintering is described. The gravity influence can be included at both the micro- and macro-scales. At the micro-scale, the diffusion mass-transport is directionally modified in the framework of kinetic Monte-Carlo simulations to include the impact of gravity. The micro-scale simulations can provide the values of the constitutive parameters for macroscopic sintering simulations. At the macro-scale, we are attempting to embed a continuum model of sintering into a finite-element framework that includes the gravity forces and substrate friction. If successful, the finite elements analysis will enable predictions relevant to space-based processing, including size and shape and property predictions. Model experiments are underway to support the models via extraction of viscosity moduli versus composition, particle size, heating rate, temperature and time.

  5. Nature of the first-order liquid-liquid phase transition in supercooled silicon

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Yu, Y. J.; Tan, X. M.

    2015-08-01

    The first-order liquid-liquid phase transition in supercooled Si is revisited by long-time first-principle molecular dynamics simulations. As the focus of the present paper, its nature is revealed by analyzing the inherent structures of low-density liquid (LDL) and high-density liquid (HDL). Our results show that it is a transition between a sp3-hybridization LDL and a white-tin-like HDL. This uncovers the origin of the semimetal-metal transition accompanying it and also proves that HDL is the metastable extension of high temperature equilibrium liquid into the supercooled regime. The pressure-temperature diagram of supercooled Si thus can be regarded in some respects as shifted reflection of its crystalline phase diagram.

  6. An overview of liquid phase microextraction approaches combined with UV-Vis spectrophotometry.

    PubMed

    Dehghani Mohammad Abadi, Malihe; Ashraf, Narges; Chamsaz, Mahmoud; Shemirani, Farzaneh

    2012-09-15

    Ultraviolet and visible spectrophotometer has become a popular analytical instrument in the modern day laboratories. However, the low concentrations of many analytes in samples make it difficult to directly measure them by UV-Vis spectrophotometry. This overview focuses on the combinations of microvolume UV-Vis spectrophotometry with miniaturized approaches to sample preparation, namely, single drop microextraction (SDME), dispersive liquid-liquid microextraction (DLLME), cold induced aggregation microextraction (CIAME), in situ solvent formation microextraction (ISSFME), ultrasound assisted emulsification microextraction (USAEME), solidified floating organic drop microextraction (SFODME), and hollow fiber based liquid phase microextraction (HF-LPME) to improve both the selectivity and sensitivity. Integration of these techniques provides unique advantages which include availability, simplicity of operation, low cost, speed, precision and accuracy; hence making them a powerful tool in chemical analysis.

  7. Spectroscopic-ellipsometric study of native oxide removal by liquid phase HF process

    NASA Astrophysics Data System (ADS)

    Kurhekar, Anil Sudhakar; Apte, Prakash R.

    2013-02-01

    Ex situ spectroscopic ellipsometry (SE) measurements have been employed to investigate the effect of liquid-phase hydrofluoric acid (HF) cleaning on Si<100> surfaces for microelectromechanical systems application. The hydrogen terminated (H-terminated) Si surface was realized as an equivalent dielectric layer, and SE measurements are performed. The SE analyses indicate that after a 20-s 100:5 HF dip with rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed and analyzed by the ex-situ SE. Evidence for desorption of the H-terminated Si surface layer is studied using Fourier transform infrared spectroscopy and ellipsometry, and discussed. This piece of work explains the usage of an ex situ, non-destructive technique capable of showing state of passivation, the H-termination of Si<100> surfaces.

  8. Fraction transfer process in on-line comprehensive two-dimensional liquid-phase separations.

    PubMed

    Česla, Petr; Křenková, Jana

    2017-01-01

    Two-dimensional liquid-phase separations have gained increasing attention for their ability to separate complex sample mixtures. Among the experimental setups used, an on-line approach is preferred to reduce the probability of sample contamination, for easier automation and high-sample throughput. The interfacing of the separation techniques in the on-line mode brings additional demands on proper optimization of the two-dimensional system. In this review, the possibilities of the on-line coupling of liquid chromatography and liquid chromatography with capillary electrophoresis in two-dimensional systems are discussed. Special attention is paid to the fraction transfer process, which includes an overview of interfaces and experimental setups applied, the compatibility issues of separation systems, and instrumental parameters. The benefits and drawbacks of using electromigration separations in combination with liquid chromatography are presented as well.

  9. Liquid-phase-deposited siloxane-based capping layers for silicon solar cells

    SciTech Connect

    Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja; Chen, Ning; Hadzic, Admir; Williams, Paul; Leivo, Jarkko; Karkkainen, Ari; Schmidt, Jan

    2015-02-02

    We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies of up to 19.8% on p-type Czochralski silicon.

  10. Liquid-phase-deposited siloxane-based capping layers for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja; Chen, Ning; Hadzic, Admir; Williams, Paul; Leivo, Jarkko; Karkkainen, Ari; Schmidt, Jan

    2015-02-01

    We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlOx) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlOx/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies of up to 19.8% on p-type Czochralski silicon.

  11. Micromechanics of deformation in porous liquid phase sintered alumina under hertzian contact

    SciTech Connect

    DIGIOVANNI,ANTHONY A.; CHAN,HELEN M.; HARMER,MARTIN P.; NIED,HERMAN F.

    2000-05-15

    A series of fine-grained porous alumina samples, with and without a liquid phase, were fabricated in compositions matched closely to commercially available alumina used as a microelectronic substrates. Hertzian indentation on monolithic specimens of the glass-containing samples produced a greater quasi-ductile stress-strain response compared to that observed in the pure alumina. Maximum residual indentation depths, determined from surface profilometry, correlated with the stress-strain results. Moreover, microstructural observations from bonded interface specimens revealed significantly more damage in the form of microcracking and under extreme loading, pore collapse, in the glass-containing specimens. The absence of the typical twin faulting mechanism observed for larger-grained alumina suggests that the damage mechanism for quasi-ductility in these fine-grained porous alumina derived from the pores acting as a stress concentrator and the grain boundary glass phase providing a weak path for short crack propagation.

  12. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included.

  13. Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension.

    PubMed

    Fortini, Andrea; Hynninen, Antti-Pekka; Dijkstra, Marjolein

    2006-09-07

    We study the phase behavior and the interfacial tension of the screened Coulomb (Yukawa) restricted primitive model (YRPM) of oppositely charged hard spheres with diameter sigma using Monte Carlo simulations. We determine the gas-liquid and gas-solid phase transitions using free energy calculations and grand-canonical Monte Carlo simulations for varying inverse Debye screening length kappa. We find that the gas-liquid phase separation is stable for kappasigma

  14. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    SciTech Connect

    Busigin, A.

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  15. Surface Specularity as an Indicator of Shock-Induced Solid-Liquid Phase Transitions

    SciTech Connect

    Gerald Stevens, Stephen Lutz, William Turley, Lynn Veeser

    2007-06-29

    When highly polished metal surfaces melt upon release after shock loading, they exhibit a number of features that suggest that significant surface changes accompany the phase transition. The reflection of light from such surfaces changes from specular (pre-shock) to diffuse upon melting. A familiar manifestation of this phenomenon is the loss of signal light in velocimetric measurements typically observed above pressures high enough to melt the free-surface. Unlike many other potential material phase-sensitive diagnostics (e.g., reflectometery, conductivity), changes in the specularity of reflection provide a dramatic, sensitive indicator of the solid-liquid phase transition. Data will be presented from multiple diagnostics that support the hypothesis that specularity changes indicate melt. These diagnostics include shadowgraphy, infrared imagery, high-magnification surface images, interferometric velocimetry, and most recently scattering angle measurements.

  16. Surface Specularity as an Indicator of Shock-induced Solid-liquid Phase Transitions in Tin

    SciTech Connect

    G. D. Stevens, S. S. Lutz, B. R. Marshall, W.D. Turley, et al.

    2007-12-01

    When highly polished metal surfaces melt upon release after shock loading, they exhibit features that suggest significant surface changes accompany the phase transition. The reflection of light from such surfaces changes from specular (pre-shock) to diffuse upon melting. Typical of this phenomenon is the loss of signal light in velocity interferometer system for any reflector (VISAR) measurements, which usually occurs at pressures high enough to melt the free surface. Unlike many other potential material phase-sensitive diagnostics (e.g., reflectometry, conductivity), that show relatively small (1%-10%) changes, the specularity of reflection provides a more sensitive and definitive (>10x) indication of the solid-liquid phase transition. Data will be presented that support the hypothesis that specularity changes indicate melt in a way that can be measured easily and unambiguously.

  17. Single-drop liquid phase microextraction accelerated by surface acoustic wave.

    PubMed

    Zhang, Anliang; Zha, Yan

    2013-03-01

    A single-drop liquid phase microextraction method is presented, in which surface acoustic wave (SAW) is used for accelerating extraction speed. A pair of interdigital transducers with 27.5 MHz center frequency is fabricated on a 128° yx-LiNbO3 substrate. A radio frequency signal is applied to one of interdigital transducers to excite SAW. Plastic straw is filled with PDMS, leaving 1 mL for holding sample solution. Plastic straw with sample solution droplet is then dipping into extractant, into which SAW is radiated. Mass transportation from sample solution to extractant drop is accelerated due to acoustic streaming, and extraction time is decreased. An ionic liquid and an acid green-25 solution are used for extraction experiments. Results show that the extraction process is almost finished within 2 min, and extraction speed is increased with radio frequency signal power.

  18. A binary phase field crystal study for liquid phase heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Peng, Yingying; Chen, Zheng

    2016-09-01

    The liquid phase heteroepitaxial growth on predefined crystalline substrate is studied with binary phase field crystal (PFC) model. The purpose of this paper focuses on changes of the morphology of epitaxial films, influences of substrate vicinal angles on epitaxial growth, characteristics of islands growth on both sides of the substrate as well. It is found that the morphology of epitaxial films undergoes the following transitions: layer-by-layer growth, islands formation, mismatch dislocations nucleation and climb towards the film-substrate interface. Meanwhile, the density of steps and islands has obviously direct ratio relations with the vicinal angles. Also, preferential regions are found when islands grow on both sides of the substrate. For thinner substrate, the arrangement of islands is more orderly and the appearance of preferential growth is more obvious than that of thicker substrate. Also, the existing of preferential regions is much more valid for small substrate vicinal angles in contrast for big substrate vicinal angles.

  19. Solid-liquid phase coexistence of alkali nitrates from molecular dynamics simulations.

    SciTech Connect

    Jayaraman, Saivenkataraman

    2010-03-01

    Alkali nitrate eutectic mixtures are finding application as industrial heat transfer fluids in concentrated solar power generation systems. An important property for such applications is the melting point, or phase coexistence temperature. We have computed melting points for lithium, sodium and potassium nitrate from molecular dynamics simulations using a recently developed method, which uses thermodynamic integration to compute the free energy difference between the solid and liquid phases. The computed melting point for NaNO3 was within 15K of its experimental value, while for LiNO3 and KNO3, the computed melting points were within 100K of the experimental values [4]. We are currently extending the approach to calculate melting temperatures for binary mixtures of lithium and sodium nitrate.

  20. Crystallization and Phase Changes in Paracetamol from the Amorphous Solid to the Liquid Phase

    PubMed Central

    2014-01-01

    For the case of paracetamol, we show how terahertz time-domain spectroscopy can be used to characterize the solid and liquid phase dynamics. Heating of supercooled amorphous paracetamol from 295 K in a covered sample under vacuum leads to its crystallization at 330 K. First, form III is formed followed by the transformation of form III to form II at 375 K, to form I at 405 K, and finally melting is observed around 455 K. We discuss the difference between the featureless spectra of the supercooled liquid and its liquid melt. Lastly, we studied the onset of crystallization from the supercooled liquid in detail and quantified its kinetics based on the Avrami–Erofeev model. We determined an effective rate constant of k = 0.056 min–1 with a corresponding onset of crystallization at T = 329.5 K for a heating rate of 0.4 K min–1. PMID:24579729

  1. Theoretical calculations of Electron Paramagnetic Resonance parameters of liquid phase Orotic acid radical

    NASA Astrophysics Data System (ADS)

    Sarikaya, Ebru Karakaş; Dereli, Ömer

    2017-02-01

    To obtain liquid phase molecular structure, conformational analysis of Orotic acid was performed and six conformers were determined. For these conformations, eight possible radicals were modelled by using Density Functional Theory computations with respect to molecular structure. Electron Paramagnetic Resonance parameters of these model radicals were calculated and then they were compared with the experimental ones. Geometry optimizations of the molecule and modeled radicals were performed using Becke's three-parameter hybrid-exchange functional combined with the Lee-Yang-Parr correlation functional of Density Functional Theory and 6-311++G(d,p) basis sets in p-dioxane solution. Because Orotic acid can be mutagenic in mammalian somatic cells and it is also mutagenic for bacteria and yeast, it has been studied.

  2. Construction materials for reaction unit in the liquid-phase synthesis of propylene oxide

    SciTech Connect

    Zaritskii, V.I.D.

    1987-09-01

    The main components of the reaction medium in equipment for the synthesis of propylene oxide by liquid-phase oxidation of gaseous propylene with peracetic acid are propylene, peracetic acid, ethyl acetate, acetic acid, propylene oxide, carbon dioxide, oxygen, methane, and propylene glycol acetates. The operating conditions of the equipment and content of the main components of the medium are shown. Results are given for the investigation of the corrosion behavior of 12Kh18N10T, 10Kh17N13M2T, 08Kh22N6T, and 08Kh21N6M2T steels, AD0 and AD1 aluminum, and VT1-0 titanium. VSt3 carbon steel was tested for comparison.

  3. Transient liquid-phase sintering using silver and tin powder mixture for die bonding

    NASA Astrophysics Data System (ADS)

    Fujino, Masahisa; Narusawa, Hirozumi; Kuramochi, Yuzuru; Higurashi, Eiji; Suga, Tadatomo; Shiratori, Toshiyuki; Mizukoshi, Masataka

    2016-04-01

    In this research, we develop transient liquid-phase bonding by uniaxial pressing using a Ag-Sn system. The Ag-Sn system was fabricated using Ag and Sn fine powder paste at optimized the proportions. The die bonding was performed for Cu substrates and metalized Si chips, and the sintering process was analyzed by cross-sectional observation. Die shear strength of bonded specimens was also measured. As a result, Ag-Sn completely formed a solid solution, also, Sn and Cu from substrates formed an intermetallic compound. The die shear strength was approximately 40 MPa obtained at 50 wt % Ag proportion of paste at 260, 280, and 300 °C sintering.

  4. Activity Coefficients at Infinite Dilution of Organic Compounds in Trihexyl(tetradecyl)phophonium Bis(trifluoromethylsulfonyl)imide Using Inverse Gas Chromatography

    SciTech Connect

    Revelli, Anne-Laure; Sprunger, Laura; Gibbs, Jennifer; Acree, William; Baker, Gary A; Mutelet, Fabrice

    2009-01-01

    Activity coefficients at infinite dilution of organic compounds in the ionic liquid (IL) trihexyl(tetradecyl) phosphonium bis(trifluoromethylsulfonyl)imide were determined using inverse gas chromatography at three temperatures, T ) (302.45, 322.35, and 342.45) K. Linear free energy relationship (LFER) correlations have been obtained for describing the gas-to-IL and water-to-IL partition coefficients.

  5. Crystallization of belite–melilite clinker minerals in the presence of liquid phase

    SciTech Connect

    Kurokawa, Daisuke; Yoshida, Hideto; Fukuda, Koichiro

    2014-06-01

    Crystallization of belite–melilite clinker minerals was studied from the view point of a high temperature equilibrium. Ca{sub 2}SiO{sub 4}–Ca{sub 2}Al{sub 2}SiO{sub 7} and Ca{sub 2}SiO{sub 4}–Ca{sub 2}AlFeSiO{sub 7} clinkers were synthesized at 1330 °C–1650 °C. The constituent phases were determined by X-ray powder diffractometry and optical microscopy. Chemical compositions of the individual clinker minerals were determined using an electron probe microanalyzer. We established the two types of P{sub 2}O{sub 5}-bearing pseudobinary phase diagrams in the systems Ca{sub 2}SiO{sub 4}–Ca{sub 2}Al{sub 2}SiO{sub 7} at 1505 °C–1650 °C and Ca{sub 2}SiO{sub 4}–Ca{sub 2}(Al,Fe){sub 2}SiO{sub 7} at 1330 °C–1550 °C. In the latter system, the liquid phase appeared at 1390 °C, which is approximately 150 °C lower than the temperature of liquid formation in the former system. The melilite phenocrysts larger than 50 μm were observed not only in the slowly cooled Ca{sub 2}SiO{sub 4}–Ca{sub 2}(Al,Fe){sub 2}SiO{sub 7} clinker but also in commercial belite–melilite clinkers. These crystals would be nucleated and grown from a liquid phase which was formed at relatively low temperatures.

  6. High temperature furnace for liquid phase epitaxy of silicon carbide in microgravity

    NASA Astrophysics Data System (ADS)

    Lockowandt, Christian; Yakimova, Rositza; Syväjärvi and, Mikael; Janzén, Erik

    1999-04-01

    The high temperature furnace for Liquid Phase Epitaxy (LPE) was developed by Swedish Space Corporation. It was developed for a Silicon Carbide liquid phase epitaxy microgravity experiment performed by Linköping University, Sweden. The LPE is capable of processing materials up to 1900°C in ultra clean atmosphere or vacuum in accordance with requirements for semiconductor crystal growth. The LPE has the capability to heat and cool the samples rapidly due to a high power input and a cooling gas system, this makes it possible to utilise it for short duration microgravity flights. The samples can be processed in isothermal conditions or with a temperature gradient up to 5°C/mm. The two resistive heaters are controlled individually which makes it possible for the user to pre-program an optional temperature profile for the experiment. The LPE was launched on the European microgravity rocket MASER 7 at Esrange in May 1996. For the first time under microgravity conditions four SiC samples were processed successfully. SiC has in comparison with Si superior properties regarding power electronics [1]. However, the quality of the material needs to be improved considerably before commercial production. Growth from a solution may give rise to an impurity microsegregation and growth instabilities due to the gravitation-induced convection, presumably resulting in an alteration of the point defect assembly. Growth under microgravity is thus a key for a better understanding of the growth process and defect formation. The material grown in microgravity is improved compared with on-ground reference growth.

  7. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect

    1997-09-30

    The Liquid Phase Methanol (LPMEOHT") demonstration project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 tons-per-day) of methanol from coal-derived synthesis gas (syngas) was designed, constructed, and is operating at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE's Clean Coal Technology Program, and its primary objective is to "demonstrate the production of methanol using the LPMEOWM Process in conjunction with an integrated coal gasification facility." The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fiel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOITM process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfdly piloted at a 10 tons-per- day (TPD) rate in the DOE-owned experimental unit at Air Products' LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

  8. Glass phase and other multiple liquid-to-liquid transitions resulting from two-liquid phase competition

    NASA Astrophysics Data System (ADS)

    Tournier, Robert F.

    2016-11-01

    Melt supercooling leads to glass formation. Liquid-to-liquid phase transitions are observed depending on thermal paths. Viscosity, density and surface tension thermal dependences measured at heating and subsequent cooling show hysteresis below a branching temperature and result from the competition of two-liquid phases separated by an enthalpy difference depending on temperature. The nucleation classical equation of these phases is completed by this enthalpy saving existing at all temperatures. The glass phase thermodynamic parameters and their thermal variation have already been determined in such a two-liquid model. They are used at high temperatures to predict liquid-to-liquid transitions in some metallic glass-forming melts.

  9. Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of Flux Control Coefficients and Elasticity Coefficients.

    PubMed Central

    Kruckeberg, A L; Neuhaus, H E; Feil, R; Gottlieb, L D; Stitt, M

    1989-01-01

    1. Subcellular-compartment-specific decreased-activity mutants of phosphoglucose isomerase in Clarkia xantiana were used to analyse the control of sucrose and starch synthesis during photosynthesis. Mutants were available in which the plastid phosphoglucose isomerase complement is decreased to 75% or 50% of the wild-type level, and the cytosol complement to 64%, 36% or 18% of the wild-type level. 2. The effects on the [product]/[substrate] ratio and on fluxes to sucrose or starch and the rate of photosynthesis were studied with the use of saturating or limiting light intensity to impose a high or low flux through these pathways. 3. Removal of a small fraction of either phosphoglucose isomerase leads to a significant shift of the [product]/[substrate] ratio away, from equilibrium. We conclude that there is no 'excess' of enzyme over that needed to maintain its reactants reasonably close to equilibrium. 4. Decreased phosphoglucose isomerase activity can also alter the fluxes to starch or sucrose. However, the effect on flux does not correlate with the extent of disequilibrium, and also varies depending on the subcellular compartment and on the conditions. 5. The results were used to estimate Flux Control Coefficients for the chloroplast and cytosolic phosphoglucose isomerases. The chloroplast isoenzyme exerts control on the rate of starch synthesis and on photosynthesis in saturating light intensity and CO2, but not at low light intensity. The cytosolic enzyme only exerts significant control when its complement is decreased 3-5-fold, and differs from the plastid isoenzyme in exerting more control in low light intensity. It has a positive Control Coefficient for sucrose synthesis, and a negative Control Coefficient for starch synthesis. 6. The Elasticity Coefficients in vivo of the cytosolic phosphoglucose isomerase were estimated to lie between 5 and 8 in the wild-type. They decrease in mutants with a lowered complement of cytosolic phosphoglucose isomerase. 7. The

  10. Pumice-supported Pd-Pt bimetallic catalysts: Synthesis, structural characterization, and liquid-phase hydrogenation of 1,3-cyclooctadiene

    SciTech Connect

    Deganello, G.; Duca, D.; Liotta, L.F.; Martorana, A.; Venezia, M.; Benedetti, A.; Fagherazz, G.

    1995-01-01

    A series of pumice-supported palladium-platinum bimetallic catalysts were prepared and investigated by X-ray scattering (WAXS and SAXS) and XPS techniques. An alloy Pd-Pt was formed. The less abundant metal was found to segregate to the surface. The catalysts were tested in the liquid-phase hydrogenation of 1,3-cyclooctadiene to cyclooctene, and compared with similarly prepared pumice-supported palladium and platinum catalysts and other supported Pd-Pt catalysts reported in the literature. The addition of platinum reduces the activity and the selectivity of the palladium catalysts. Differences between the activity of these pumice-supported catalysts and the activity of previously described Pd and Pd-Pt catalysts on other supports, are attributed to the presence, in the latter, of diffusional processes. 50 refs., 4 figs. 2 tabs.

  11. Thermoelectric Effects on the Boundary of Solid and Liquid Phases of Ternary Semiconductors and Alloys of the A-12B-IVC-V13 Type,

    DTIC Science & Technology

    THERMOELECTRICITY, *SEMICONDUCTORS), (* SEEBECK EFFECT , SEMICONDUCTORS), LIQUIDS, PHASE STUDIES, COPPER COMPOUNDS, GERMANIUM COMPOUNDS, TELLURIDES, SELENIDES, TIN COMPOUNDS, SILVER COMPOUNDS, THERMAL CONDUCTIVITY, USSR

  12. EFFECTS OF COVAPORS ON ADSORPTION RATE COEFFICIENTS OF ORGANIC VAPORS ADSORBED ONTO ACTIVATED CARBON FROM FLOWING AIR

    SciTech Connect

    G. WOOD

    2000-12-01

    Published breakthrough time, adsorption rate, and capacity data for components of organic vapor mixtures adsorbed from flows through fixed activated carbon beds have been analyzed. Capacities (as stoichiometric centers of constant pattern breakthrough curves) yielded stoichiometric times {tau}, which are useful for determining elution orders of mixture components. We also calculated adsorption rate coefficients k{sub v} of the Wheeler (or, more general Reaction Kinetic) breakthrough curve equation, when not reported, from breakthrough times and {tau}. Ninety-five k{sub v} (in mixture)/ k{sub v} (single vapor) ratios at similar vapor concentrations were calculated and averaged for elution order categories. For 43 first-eluting vapors the average ratio (1.07) was statistically no different (0.21 standard deviation) than unity, so that we recommend using the single-vapor k{sub v} for such. Forty-seven second-eluting vapor ratios averaged 0.85 (0.24 standard deviation), also not significantly different from unity; however, other evidence and considerations lead us recommend using k{sub v} (in mixture) = 0.85 k{sub v} (single vapor). Five third- and fourth-eluting vapors gave an average of 0.56 (0.16 standard deviation) for a recommended k{sub v} (in mixture) = 0.56 k{sub v} (single vapor) for such.

  13. Observations and implications of liquid-liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis without inorganic salts

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Song, Mijung; Marcolli, Claudia; Zhang, Yue; Liu, Pengfei F.; Grayson, James W.; Geiger, Franz M.; Martin, Scot T.; Bertram, Allan K.

    2016-07-01

    Particles consisting of secondary organic material (SOM) are abundant in the atmosphere. To predict the role of these particles in climate, visibility and atmospheric chemistry, information on particle phase state (i.e., single liquid, two liquids and solid) is needed. This paper focuses on the phase state of SOM particles free of inorganic salts produced by the ozonolysis of α-pinene. Phase transitions were investigated in the laboratory using optical microscopy and theoretically using a thermodynamic model at 290 K and for relative humidities ranging from < 0.5 to 100 %. In the laboratory studies, a single phase was observed from 0 to 95 % relative humidity (RH) while two liquid phases were observed above 95 % RH. For increasing RH, the mechanism of liquid-liquid phase separation (LLPS) was spinodal decomposition. The RH range over which two liquid phases were observed did not depend on the direction of RH change. In the modeling studies, the SOM took up very little water and was a single organic-rich phase at low RH values. At high RH, the SOM underwent LLPS to form an organic-rich phase and a water-rich phase, consistent with the laboratory studies. The presence of LLPS at high RH values can have consequences for the cloud condensation nuclei (CCN) activity of SOM particles. In the simulated Köhler curves for SOM particles, two local maxima were observed. Depending on the composition of the SOM, the first or second maximum can determine the critical supersaturation for activation. Recently researchers have observed inconsistencies between measured CCN properties of SOM particles and hygroscopic growth measured below water saturation (i.e., hygroscopic parameters measured below water saturation were inconsistent with hygroscopic parameters measured above water saturation). The work presented here illustrates that such inconsistencies are expected for systems with LLPS when the water uptake at subsaturated conditions represents the hygroscopicity of an organic

  14. Efficient catalyst removal and recycling in copolymerization of epoxides with carbon dioxide via simple liquid-liquid phase separation.

    PubMed

    Nakano, Koji; Fujie, Ryuhei; Shintani, Ryo; Nozaki, Kyoko

    2013-10-18

    A simple and efficient catalyst removal system has been developed in the cobalt-salen-catalyzed copolymerization of propylene oxide with carbon dioxide. The present system requires no prior modification of the catalyst, and the removal is achieved by simple addition of myristic acid, followed by organic liquid-liquid phase separation.

  15. Substrate-constituted three-liquid-phase system: a green, highly efficient and recoverable platform for interfacial enzymatic reactions.

    PubMed

    Li, Zhigang; Chen, Huayong; Wang, Weifei; Qu, Man; Tang, Qingyun; Yang, Bo; Wang, Yonghua

    2015-08-21

    Highly efficient interfacial enzymatic hydrolysis of oil was achieved in a three-liquid-phase system, wherein the substrate constituted one of the phases. The enlarged interfacial area and relieved product inhibition were responsible for the high catalytic efficiency. Convenient product isolation and the high reusability of the enzyme were also demonstrated.

  16. Linear solvation energy relationship of the limiting partition coefficient of organic solutes between water and activated carbon

    USGS Publications Warehouse

    Luehrs, Dean C.; Hickey, James P.; Nilsen, Peter E.; Godbole, K.A.; Rogers, Tony N.

    1995-01-01

    A linear solvation energy relationship has been found for 353 values of the limiting adsorption coefficients of diverse chemicals:  log K = −0.37 + 0.0341Vi − 1.07β + D + 0.65P with R = 0.951, s = 0.51, n = 353, and F = 818.0, where Vi is the intrinsic molar volume; β is a measure of the hydrogen bond acceptor strength of the solute; D is an index parameter for the research group which includes the effects of the different types of carbon used, the temperature, and the length of time allowed for the adsorption equilibrium to be established; and P is an index parameter for the flatness of the molecule. P is defined to be unity if there is an aromatic system in the molecule or if there is a double bond or series of conjugated double bonds with no more that one non-hydrogen atom beyond the double bond and zero otherwise. A slightly better fit is obtained if the two-thirds power of Vi is used as a measure of the surface area in place of the volume term:  log K = −1.75 + 0.227V2/3 − 1.10β + D + 0.60P with R = 0.954, s = 0.49, n = 353, and F = 895.39. This is the first quantitative measure of the effect of the shape of the molecule on its tendency to be adsorbed on activated carbon.

  17. Liquid-liquid phase transitions and water-like anomalies in liquids

    NASA Astrophysics Data System (ADS)

    Lascaris, Erik

    In this thesis we employ computer simulations and statistical physics to understand the origin of liquid-liquid phase transitions and their relationship with anomalies typical of liquid water. Compared with other liquids, water has many anomalies. For example the density anomaly: when water is cooled below 4 °C the density decreases rather than increases. This and other anomalies have also been found to occur in a few other one-component liquids, sometimes in conjunction with the existence of a liquid-liquid phase transition (LLPT) between a low-density liquid (LDL) and a high-density liquid (HDL). Using simple models we explain how these anomalies arise from the presence of two competing length scales. As a specific example we investigate the cut ramp potential, where we show the importance of "competition" in this context, and how one length scale can sometimes be zero. When there is a clear energetic preference for either LDL or HDL for all pressures and temperatures, then there is insufficient competition between the two liquid structures and no anomalies occur. From the simple models it also follows that anomalies can occur without the presence of a LLPT and vice versa. It remains therefore unclear if water has a LLPT that ends in a liquid-liquid critical point (LLCP), a hypothesis that was first proposed based on simulations of the ST2 water model. We confirm the existence of a LLCP in this model using finite size scaling and the Challa-Landau-Binder parameter, and show that the LLPT is not a liquid-crystal transition, as has recently been suggested. Previous research has indicated the possible existence of a LLCP in liquid silica. We perform a detailed analysis of two different silica models (WAC and BKS) at temperatures much lower than was previously simulated. Within the accessible temperature range we find no LLCP in either model, although in the case of WAC potential it is closely approached. We compare our results with those obtained for other

  18. Liquid-liquid phase separation in atmospheric aerosol particles: dependence on organic functionalities and mixture complexity

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.

    2012-04-01

    In the troposphere, aerosol particles undergo phase transitions such as deliquescence and efflorescence during humidity cycles (Marcolli and Krieger, 2006). In addition, interactions between organic and inorganic compounds lead to liquid-liquid phase separation (LLPS) (Ciobanu et al., 2009). Recent studies on a limited number of model systems have shown that oxygen-to-carbon ratios (O:C) of the organic aerosol fraction might be a good predictor for LLPS in mixed organic/ammonium sulfate (AS) particles (Bertram et al., 2011; Song et al., 2011). However, in order to corroborate this hypothesis experiments with an organic fraction that consists of a higher number of components with different O:C ratios and functional groups are needed. In order to determine the influence of O:C ratio, the specific organic functionalities and the mixture complexity on LLPS, we subjected organic/AS particles deposited on a hydrophobically coated substrate to relative humidity (RH) cycles and observed phase changes using optical microscopy and micro-Raman spectroscopy. To determine the influence of mixture complexity, we mixed together up to 10 organic compounds. We also prepared mixtures that were rich in different types of functional groups like polyols, aromatics and dicarboxylic acids which were identified from field measurements. We screened for a miscibility gap by varying the organic-to-inorganic ratio from 2:1 to 1:6. AS in the investigated single particles effloresced at 27 - 50 %RH and deliquesced at 72 - 79 %RH during humidity cycles. The occurrence of LLPS is determined to a high degree by the O:C of the organics: there was no LLPS for mixtures with O:C > 0.8 and there was always LLPS for mixtures with O:C < 0.57. In the range in between, we observed a dependence on the specific functional groups: a high share of aromatic functionalities shifts the range of O:C for which LLPS occurs to lower values. A correlation was also found for the onset RH of LLPS as a function of O

  19. SOLID-LIQUID PHASE TRANSFER CATALYZED SYNTHESIS OF CINNAMYL ACETATE-KINETICS AND ANALYSIS OF FACTORS AFFECTING THE REACTION IN A BATCH REACTOR

    EPA Science Inventory

    The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...

  20. Improvement of growing of Ge QDs by the method of liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Maronchuk, I. I.; Sanikovitch, D. D.; Cherkashin, A. S.; Nitchev, H.; Dimova-Malinovska, D.

    2017-01-01

    This paper reports on improvement of the technological conditions for nano-heteroepitaxial structures (NHES) growth with Ge quantum dots (QDs) by liquid phase epitaxial (LPE) method applying impulse cooling on the substrate (ICS) The physical and mathematic modeling of the processes of growth and the analysis of the thermodynamic status has been carried out to optimize the construction of the thermal unit, the located in it graphite cassette and of the thermal conditions. For the analysis the Solid Works Flow Simulation program is applied, which has a satisfactory accuracy of calculations of heat-transfer simulation. The analysis has revealed shortcomings in the construction of the equipment. Having in mind these results the equipment is reconstructed and new different elements of the thermal block are installed. Good agreement of the experimental and calculated temperature distribution in the process of NHES with Ge QDs growing is obtained. The grown Ge QDs have improved structure with homogeneous distribution and size and depth of the Quantum Wells. The experiments carried out show good reproducibility of the growing process confirming the correctness of the mathematic modeling.

  1. Large magneto-optic enhancement in ultra-thin liquid-phase-epitaxy iron garnet films

    SciTech Connect

    Levy, Miguel; Chakravarty, A.; Huang, H.-C.; Osgood, R. M.

    2015-07-06

    Significant departures from bulk-like magneto-optic behavior are found in ultra-thin bismuth-substituted iron-garnet films grown by liquid-phase-epitaxy. These changes are due, at least in part, to geometrical factors and not to departures from bulk-composition in the transient layer at the film-substrate interface. A monotonic increase in specific Faraday rotation with reduced thickness is the signature feature of the observed phenomena. These are traced to size-dependent modifications in the diamagnetic transition processes responsible for the Faraday rotation. These processes correspond to the electronic transitions from singlet {sup 6}S ground states to spin-orbit split excited states of the Fe{sup 3+} ions in the garnet. A measurable reduction in the corresponding ferrimagnetic resonance linewidths is found, thus pointing to an increase in electronic relaxation times and longer lived excitations at reduced thicknesses. These changes together with a shift in vibrational frequency of the Bi-O bonds in the garnet at reduced thicknesses result in greatly enhanced magneto-optical performance. These studies were conducted on epitaxial monocrystalline Bi{sub 0.8}Gd{sub 0.2}Lu{sub 2}Fe{sub 5}O{sub 12} films.

  2. Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir.

    PubMed

    Mosquera-Giraldo, Laura I; Taylor, Lynne S

    2015-02-02

    Amorphous solid dispersions are of great current interest because they can improve the delivery of poorly water-soluble compounds. It has been recently noted that the highly supersaturated solutions generated by dissolution of some ASDs can undergo a phase transition to a colloidal, disordered, drug-rich phase when the concentration exceeds the "amorphous solubility" of the drug. The purpose of this study was to investigate the phase behavior of supersaturated solutions of telaprevir, which is formulated as an amorphous solid dispersion in the commercial product. Different analytical techniques including proton nuclear magnetic resonance spectroscopy (NMR), ultraviolet spectroscopy (UV), fluorescence spectroscopy and flux measurements were used to evaluate the properties of aqueous supersaturated solutions of telaprevir. It was found that highly supersaturated solutions of telaprevir underwent glass-liquid phase separation (GLPS) when the concentration exceeded 90 μg/mL, forming a water-saturated colloidal, amorphous drug-rich phase with a glass transition temperature of 52 °C. From flux measurements, it was observed that the "free" drug concentration reached a maximum at the concentration where GLPS occurred, and did not increase further as the concentration was increased. This phase behavior, which results in a precipitate and a metastable equilibrium between a supersaturated solution and a drug-rich phase, is obviously important in the context of evaluating amorphous solid dispersion formulations and their crystallization routes.

  3. Segregation to interphase boundaries in liquid-phase sintered tungsten alloys

    NASA Astrophysics Data System (ADS)

    Lea, C.; Muddle, B. C.; Edmonds, D. V.

    1983-03-01

    Scanning Auger electron spectroscopy has been used to examine the distribution of impurity elements on the fracture surfaces of liquid-phase sintered W-Ni-Cu and W-Ni-Fe alloys. On the interphase boundaries between the fcc Ni-based matrix phase and the tungsten particles, segregation levels of ~0.4 and ~0.2 monolayers of phosphorus have been observed in as-sintered, furnace-cooled specimens of W-Ni-Cu and W-Ni-Fe, respectively. The phosphorus is homogeneously distributed but at fracture adheres preferentially to the matrix phase. High temperature heat treatment (1350 °C) followed by water quenching reduces significantly the phosphorus segregation and improves the degree of cohesion across these boundaries. Segregated sulfur is detected on both sides of the interphase boundaries after fracture. The sulfur is much less uniformly distributed than the phosphorus, and its segregation level increases in the heat treated specimens. Copper also segregates to the interphase boundaries during the heat treatment of W-Ni-Cu specimens, but no equivalent segregation of iron was observed in the W-Ni-Fe system. The boundaries developed between adjacent tungsten particles are free of impurity contamination in both alloy systems but have a segregated layer of nickel.

  4. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites

    NASA Astrophysics Data System (ADS)

    Döbbelin, Markus; Ciesielski, Artur; Haar, Sébastien; Osella, Silvio; Bruna, Matteo; Minoia, Andrea; Grisanti, Luca; Mosciatti, Thomas; Richard, Fanny; Prasetyanto, Eko Adi; de Cola, Luisa; Palermo, Vincenzo; Mazzaro, Raffaello; Morandi, Vittorio; Lazzaroni, Roberto; Ferrari, Andrea C.; Beljonne, David; Samorì, Paolo

    2016-04-01

    Multifunctional materials can be engineered by combining multiple chemical components, each conferring a well-defined function to the ensemble. Graphene is at the centre of an ever-growing research effort due to its combination of unique properties. Here we show that the large conformational change associated with the trans-cis photochemical isomerization of alkyl-substituted azobenzenes can be used to improve the efficiency of liquid-phase exfoliation of graphite, with the photochromic molecules acting as dispersion-stabilizing agents. We also demonstrate reversible photo-modulated current in two-terminal devices based on graphene-azobenzene composites. We assign this tuneable electrical characteristics to the intercalation of the azobenzene between adjacent graphene layers and the resulting increase in the interlayer distance on (photo)switching from the linear trans-form to the bulky cis-form of the photochromes. These findings pave the way to the development of new optically controlled memories for light-assisted programming and high-sensitive photosensors.

  5. Analysis of Protein Glycosylation and Phosphorylation Using Liquid Phase Separation, Protein Microarray Technology, and Mass Spectrometry

    PubMed Central

    Zhao, Jia; Patwa, Tasneem H.; Pal, Manoj; Qiu, Weilian; Lubman, David M.

    2010-01-01

    Summary Protein glycosylation and phosphorylation are very common posttranslational modifications. The alteration of these modifications in cancer cells is closely related to the onset and progression of cancer and other disease states. In this protocol, strategies for monitoring the changes in protein glycosylation and phosphorylation in serum or tissue cells on a global scale and specifically characterizing these alterations are included. The technique is based on lectin affinity enrichment for glycoproteins, all liquid-phase two-dimensional fractionation, protein microarray, and mass spectrometry technology. Proteins are separated based on pI in the first dimension using chromatofocusing (CF) or liquid isoelectric focusing (IEF) followed by the second-dimension separation using nonporous silica RP-HPLC. Five lectins with different binding specificities to glycan structures are used for screening glycosylation patterns in human serum through a biotin–streptavidin system. Fluorescent phosphodyes and phosphospecific antibodies are employed to detect specific phosphorylated proteins in cell lines or human tissues. The purified proteins of interest are identified by peptide sequencing. Their modifications including glycosylation and phosphorylation could be further characterized by mass-spectrometry-based approaches. These strategies can be used in biological samples for large-scale glycoproteome/phosphoproteome screening as well as for individual protein modification analysis. PMID:19241043

  6. Fabrication and Characterization of Liquid-Phase Sensor utilizing GaN-Based Two Terminal Devices

    NASA Astrophysics Data System (ADS)

    Abidin, Mastura Shafinaz Zainal; Jeat, Wang Soo; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Sharifabad, Maneea Eizadi; Omar, Nurul Afzan; Qindeel, Rabia

    2011-05-01

    Gallium Nitride (GaN) based materials are highly suitable for liquid-phase sensor applications due to their chemical stability and high internal piezoelectric polarization. The sensitivity of GaN surfaces in aqueous solutions and polar liquids has been investigated. For this purpose, two terminal devices fabricated on bulk Si doped-GaN structures and undoped-AlGaN/GaN heterostructures with unpassivated open area are used to measure the responses to the changes of the H+ concentration in aqueous solutions and the dipole moment in polar liquids. The I-V characteristics show that the devices are able to distinguish the variations of pH. It is observed that the drain current decreases linearly with pH for both device structures. Evaluating the sensitivity in aqueous solutions at VDS = 2V, a quite large current change is obtained for both structures. For the response to polar liquids, it is also found that the drain current decreases with the dipole moments. The results indicate that both devices are capable of distinguishing molecules with different dipole moments.

  7. Modern Evaluation of Liquisolid Systems with Varying Amounts of Liquid Phase Prepared Using Two Different Methods

    PubMed Central

    Vetchý, David

    2015-01-01

    Liquisolid systems are an innovative dosage form used for enhancing dissolution rate and improving in vivo bioavailability of poorly soluble drugs. These formulations require specific evaluation methods for their quality assurance (e.g., evaluation of angle of slide, contact angle, or water absorption ratio). The presented study is focused on the preparation, modern in vitro testing, and evaluation of differences of liquisolid systems containing varying amounts of a drug in liquid state (polyethylene glycol 400 solution of rosuvastatin) in relation to an aluminometasilicate carrier (Neusilin US2). Liquisolid powders used for the formulation of final tablets were prepared using two different methods: simple blending and spraying of drug solution onto a carrier in fluid bed equipment. The obtained results imply that the amount of liquid phase in relation to carrier material had an effect on the hardness, friability, and disintegration of tablets, as well as their height. The use of spraying technique enhanced flow properties of the prepared mixtures, increased hardness values, decreased friability, and improved homogeneity of the final dosage form. PMID:26075249

  8. Dynamical and structural heterogeneities close to liquid-liquid phase transitions: The case of gallium

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Cajahuaringa, Samuel; de Koning, Maurice

    2013-03-01

    Liquid-liquid phase transitions (LLPT) have been proposed in order to explain the thermodynamic anomalies exhibited by some liquids. Recently, it was found, through molecular dynamics simulations, that liquid elemental gallium, described by a modified embedded-atom model, exhibits a LLPT between a high-density liquid (HDL) and a low-density liquid (LDL), about 60 K below the melting temperature. In this work, we studied the dynamics of supercooled liquid gallium close to the LLPT. Our results show a large increase in the plateau of the self-intermediate scattering function (β-relaxation process) and in the non-Gaussian parameter, indicating a pronounced dynamical heterogeneity upon the onset of the LLPT. The dynamical heterogeneity of the LDL is closely correlated to its structural heterogeneity, since the fast diffusing atoms belong to high-density domains of predominantly 9-fold coordinated atoms, whereas the slow diffusing ones are mostly in low-density domains of 8-fold coordinated atoms. The energetics suggests that the reason for the sluggish dynamics of LDL is due to its larger cohesive energy as compared to that of the HDL. Work supported by FAPESP, CNPq, CAPES, and FAEPEX/UNICAMP

  9. The utilization of Triton X-100 for enhanced two-dimensional liquid-phase proteomics.

    PubMed

    Kim, Mina; Lee, Sang-Hee; Min, Jiho; Kobayashi, Fumihisa; Um, Hyun-Ju; Kim, Yang-Hoon

    2011-01-01

    One of the main challenges in proteomics lies in obtaining a high level of reproducible fractionation of the protein samples. Automated two-dimensional liquid phase fractionation (PF2D) system manufactured by Beckman Coulter provides a process well suited for proteome studies. However, the protein recovery efficiency of such system is low when a protocol recommended by the manufacturer is used for metaproteome profiling of environmental sample. In search of an alternative method that can overcome existing limitations, this study replaced manufacturer's buffers with Triton X-100 during the PF2D evaluation of Escherichia coli K12. Three different Triton X-100 concentrations-0.1%, 0.15%, and 0.2%-were used for the first-dimension protein profiling. As the first-dimension result was at its best in the presence of 0.15% Triton X-100, second-dimension protein fractionation was performed using 0.15% Triton X-100 and the standard buffers. When 0.15% Triton X-100 was used, protein recovery increased as much as tenfold. The elution reliability of 0.15% Triton X-100 determined with ribonuclease A, insulin, α-lactalbumin, trypsin inhibitor, and cholecystokinin (CCK) affirmed Triton X-100 at 15% can outperform the standard buffers without having adverse effects on samples. This novel use of 0.15% Triton X-100 for PF2D can lead to greater research possibilities in the field of proteomics.

  10. Morphology and crystal phase evolution of GeO 2 in liquid phase deposition process

    NASA Astrophysics Data System (ADS)

    Jing, Chengbin; Sun, Wei; Wang, Wei; Li, Yi; Chu, Junhao

    2012-01-01

    Morphology and crystal phase evolution of GeO 2 in liquid phase deposition (LPD) process is investigated. Rod-like solid phases precipitate out of solution ahead of truncated cube-like phases. SEM, XRD and TEM analyses reveal that the two sorts of solid phases are tetragonal GeO 2 and hexagonal GeO 2, respectively. The tetragonal GeO 2 phases start to experience a re-dissolving process as soon as the hexagonal phases come into being. The prior precipitation of the rod-like phase arises from a relatively low solute saturation of tetragonal GeO 2. Fast growth of a tetragonal GeO 2 phase along [111] direction leads to development of a rod-like shape. The re-dissolving phenomenon does not agree with the classic growth kinetics of crystals but is strongly favored by our calculations based on thermodynamics. The GeO 2 solutes are released in a fluctuant way by germanate ions, which promotes the occurrence of the re-dissolution phenomenon. The current researches open a door for room-temperature LPD growth of not only the hexagonal GeO 2 particles and film but also the one-dimensional tetragonal GeO 2 product.

  11. Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy

    SciTech Connect

    Jalilvand, V.; Omidvar, H.; Shakeri, H.R.; Rahimipour, M.R.

    2013-01-15

    IN-738LC nickel-based superalloy was joined by transient liquid phase diffusion bonding using AMS 4777 filler alloy. The bonding process was carried out at 1050 Degree-Sign C under vacuum atmosphere for various hold times. Microstructures of the joints were studied by optical and scanning electron microscopy. Continuous centerline eutectic phases, characterized as nickel-rich boride, chromium-rich boride and nickel-rich silicide were observed at the bonds with incomplete isothermal solidification. In addition to the centerline eutectic products, precipitation of boron-rich particles was observed in the diffusion affected zone. The results showed that, as the bonding time was increased to 75 min, the width of the eutectic zone was completely removed and the joint was isothermally solidified. Homogenization of isothermally solidified joints at 1120 Degree-Sign C for 300 min resulted in the elimination of intermetallic phases formed at the diffusion affected zone and the formation of significant {gamma} Prime precipitates in the joint region. - Highlights: Black-Right-Pointing-Pointer TLP bonding of IN-738LC superalloy was performed using AMS 4777 filler alloy. Black-Right-Pointing-Pointer Insufficient diffusion time resulted in the formation of eutectic product. Black-Right-Pointing-Pointer Precipitation of B-rich particles was observed within the DAZ. Black-Right-Pointing-Pointer The extent of isothermal solidification increased with increasing holding time. Black-Right-Pointing-Pointer Homogenizing of joints resulted in the dissolution of DAZ intermetallics.

  12. Irreversible properties of YBCO thick films deposited by liquid phase epitaxy on single crystalline substrates

    NASA Astrophysics Data System (ADS)

    Vostner, A.; Tönies, S.; Weber, H. W.; Cheng, Y. S.; Kurumovic, A.; Evetts, J. E.; Mennema, S. H.; Zandbergen, H. W.

    2003-10-01

    We report on the field and temperature dependence of the critical transport current density Jc, the angular dependence of the transport current at various external magnetic fields and the irreversibility fields in YBa2Cu3O7-delta (Y-123) thick films prepared by liquid phase epitaxy (LPE). A comparison of the irreversible properties between specimens produced with and without silver additions to the melt is also presented. Transmission electron microscopy (TEM) was employed to obtain information on the correlation between the transport properties and the microstructure. The samples were deposited either directly on NdGaO3 (NGO) or on seeded (100) MgO substrates, where a 200 nm thin YBCO film deposited by pulsed laser deposition (PLD) acts as seed layer for the LPE process. The final thickness of the Y-123 layer is of the order of 1 µm for the NGO and between 2 and 10 µm for the MgO samples. The critical current densities reach 3 × 109 A m-2 at zero field and 77 K in the best case.

  13. Headspace liquid-phase microextraction of methamphetamine and amphetamine in urine by an aqueous drop.

    PubMed

    He, Yi; Vargas, Angelica; Kang, Youn-Jung

    2007-04-25

    This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H(3)PO(4) drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 microg L(-1), repeatability of the extraction (R.S.D.<5%, n=6), and low detection limits (0.3 microg L(-1) for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples.

  14. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures.

    PubMed

    Tan, Chaoliang; Zeng, Zhiyuan; Huang, Xiao; Rui, Xianhong; Wu, Xue-Jun; Li, Bing; Luo, Zhimin; Chen, Junze; Chen, Bo; Yan, Qingyu; Zhang, Hua

    2015-02-02

    Although many two-dimensional (2D) hybrid nanostructures are being prepared, the engineering of epitaxial 2D semiconductor hetero-nanostructures in the liquid phase still remains a challenge. The preparation of 2D semiconductor hetero-nanostructures by epitaxial growth of metal sulfide nanocrystals, including CuS, ZnS and Ni3S2, is achieved on ultrathin TiS2 nanosheets by a simple electrochemical approach by using the TiS2 crystal and metal foils. Ultrathin CuS nanoplates that are 50-120 nm in size and have a triangular/hexagonal shape are epitaxially grown on TiS2 nanosheets with perfect epitaxial alignment. ZnS and Ni3S2 nanoplates can be also epitaxially grown on TiS2 nanosheets. As a proof-of-concept application, the obtained 2D CuS-TiS2 composite is used as the anode in a lithium ion battery, which exhibits a high capacity and excellent cycling stability.

  15. Luminescent transition metal dichalcogenide nanosheets through one-step liquid phase exfoliation

    NASA Astrophysics Data System (ADS)

    Mar Bernal, M.; Álvarez, Lidia; Giovanelli, Emerson; Arnáiz, Adriana; Ruiz-González, Luisa; Casado, Santiago; Granados, Daniel; Pizarro, Ana M.; Castellanos-Gomez, Andres; Pérez, Emilio M.

    2016-09-01

    Liquid phase exfoliation (LPE) from the bulk is an adequate method for the mass-production of thin nanosheets of transition metal dichalcogenides (TMDCs). However, making suspensions in which the extraordinary properties of mechanically exfoliated TMDCs are observable remains a challenge. We describe a mild LPE method to produce luminescent suspensions of MoS2 and WS2 in N-methylpyrrolidone or isopropanol/water mixtures, without the need for a purification step. The key differences in our experimental procedure compared to previously reported LPE methods are the use of mild bath sonication at controlled temperature and the low initial concentration of the parent TMDC. Spectroscopic and AFM data confirm that an overwhelming majority of the sample is composed of ultrathin nanosheets. HREM data support the formation of the luminescent 2H polytype. The ultrathin nanosheets can be transferred to pure water and cell culture medium. Confocal fluorescence microscopy experiments on MCF-7 breast cancer cells exposed to LPE WS2 show that the cells are viable and the photoluminescence of the nanosheets is detectable.

  16. High-yield production of graphene by liquid-phase exfoliation of graphite.

    PubMed

    Hernandez, Yenny; Nicolosi, Valeria; Lotya, Mustafa; Blighe, Fiona M; Sun, Zhenyu; De, Sukanta; McGovern, I T; Holland, Brendan; Byrne, Michele; Gun'Ko, Yurii K; Boland, John J; Niraj, Peter; Duesberg, Georg; Krishnamurthy, Satheesh; Goodhue, Robbie; Hutchison, John; Scardaci, Vittorio; Ferrari, Andrea C; Coleman, Jonathan N

    2008-09-01

    Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of approximately 1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

  17. Fuel and power coproduction: The Liquid Phase Methanol (LPMEOH{trademark}) process demonstration at Kingsport

    SciTech Connect

    Drown, D.P.; Brown, W.R.; Heydorn, E.C.; Moore, R.B.; Schaub, E.S.; Brown, D.M.; Jones, W.C.; Kornosky, R.M.

    1997-12-31

    The Liquid Phase Methanol (LPMEOH{trademark}) process uses a slurry bubble column reactor to convert syngas (primarily a mixture of carbon monoxide and hydrogen) to methanol. Because of its superior heat management, the process is able to be designed to directly handle the carbon monoxide (CO)-rich syngas characteristic of the gasification of coal, petroleum coke, residual oil, wastes, or of other hydrocarbon feedstocks. When added to an integrated gasification combined cycle (IGCC) power plant, the LPMEOH{trademark} process converts a portion of the CO-rich syngas produced by the gasifier to methanol, and the remainder of the unconverted gas is used to fuel the gas turbine combined-cycle power plant. The LPMEOH{trademark} process has the flexibility to operate in a daily electricity demand load-following manner. Coproduction of power and methanol via IGCC and the LPMEOH{trademark} process provides opportunities for energy storage for electrical demand peak shaving, clean fuel for export, and/or chemical methanol sales.

  18. Liquid phase thermochemical energy conversion systems - An application of Diels-Alder chemistry

    NASA Astrophysics Data System (ADS)

    Lenz, T. G.; Hegedus, L. S.; Vaughan, J. D.

    1982-12-01

    A method of thermochemical energy conversion, transport, and storage research involving moderate and low temperature liquid phase systems employing Diels-Alder cycloaddition chemistry is described. Proposed as a heat storage system for solar and industrial waste heat, the system involves the meeting, in a reactor, of energy-depleted and energy-rich fluids. The poor fluid gains energy and goes through a chemical, endothermic dissociative change. The use of Diels-Alder reactions provides completely reversible chemical reactions for this application. The heated fluid can be retransported for storage or implementation as a heat source. The return reaction, releasing the stored heat, can be done spontaneously or in the presence of a catalyst such as Lewis acids. Attention is recommended for the Wentworth-Chen temperature of 250-300 C to minimize the system thermal degradation. Research in the synthesis of diene and dienophile candidate chemicals, into sealed tube and reaction kinetic techniques, and into NMR techniques for identifying further reaction candidates are discussed.

  19. Coulomb Liquid Phases of Bosonic Cluster Mott Insulators on a Pyrochlore Lattice.

    PubMed

    Lv, Jian-Ping; Chen, Gang; Deng, Youjin; Meng, Zi Yang

    2015-07-17

    Employing large-scale quantum Monte Carlo simulations, we reveal the full phase diagram of the extended Hubbard model of hard-core bosons on the pyrochlore lattice with partial fillings. When the intersite repulsion is dominant, the system is in a cluster Mott insulator phase with an integer number of bosons localized inside the tetrahedral units of the pyrochlore lattice. We show that the full phase diagram contains three cluster Mott insulator phases with 1/4, 1/2, and 3/4 boson fillings, respectively. We further demonstrate that all three cluster Mott insulators are Coulomb liquid phases and its low-energy property is described by the emergent compact U(1) quantum electrodynamics. In addition to measuring the specific heat and entropy of the cluster Mott insulators, we investigate the correlation function of the emergent electric field and verify it is consistent with the compact U(1) quantum electrodynamics description. Our result sheds light on the magnetic properties of various pyrochlore systems, as well as the charge physics of the cluster magnets.

  20. Microstructure of the gravitationally settled region in a liquid-phase sintered dilute tungsten heavy alloy

    SciTech Connect

    German, R.M. . Dept. of Engineering Science and Mechanics)

    1995-02-01

    A dilute tungsten heavy alloy consisting of 50W-35Ni-15Fe (wt pct) was liquid phase sintered at 1,500 C for times ranging from 30 to 960 minutes. This alloy corresponds to a nominal solid content of 20 vol pct at the sintering temperature. Because of the excess liquid, the alloy densified easily and exhibited extensive liquid-solid separation due to the density difference between the phases. The solid content at the compact bottom ranged from 45 to 70 vol pct over position and time. The microstructure of the settled region was quantified for volume fraction of tungsten, grain size, connectivity, and settled solid angle of repose. These results provide a basis for extending the microstructural parameters to possible microgravity conditions. The grain growth rate constant varies with the inverse 2/3 power of the volume fraction of liquid, possibly reflecting combined coalescence and solution-reprecipitation processes. This volume-fraction effect on the grain-growth-rate constant applies to several systems.

  1. Analysis of quinolones by voltage-assisted liquid-phase microextraction combined with LC-MS.

    PubMed

    Wang, Mi-Hung; Wang, Shu-Ping

    2012-03-01

    The method of liquid-phase microextraction assisted with voltage was developed and applied on determination of quinolones in water sample in this study. Both of the reproducibility and extraction time were improved with the aid of applying voltage. Four analytes in neutral state such as cinoxacin, oxolinic acid, nalidixic acid, and flumequine were extracted from a sample solution at pH 2.0, through a polypropylene hollow fiber which was immobilized with 2-octanone, and then into a 25 μL of the acceptor phase of 40 mM borate buffer at pH 10.0 by applying voltage of 100 V. Subsequently, the acceptor solution was directly subjected to analysis by LC-MS. The performance of the method for four quinolones was also evaluated. Linearity was obtained in the range of 1.0-25.0 ng/mL with R(2) > 0.996. Limits of detection were below 0.6 ng/mL, and recoveries of water sample were ranged from 90.8 to 109.6%.

  2. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Aoi, Y.; Tominaga, T.

    2013-03-01

    Titanium dioxide (TiO2) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  3. Thermal Diffusivity and Thermal Conductivity of Five Different Steel Alloys in the Solid and Liquid Phases

    NASA Astrophysics Data System (ADS)

    Wilthan, B.; Schützenhöfer, W.; Pottlacher, G.

    2015-08-01

    The need for characterization of thermophysical properties of steel and nickel-based alloys was addressed in the FFG-Bridge Project 810999 in cooperation with a partner from industry, Böhler Edelstahl GmbH & Co KG. To optimize numerical simulations of production processes, such as remelting or plastic deformation, additional, and more accurate data were necessary for the alloys under investigation. With a fast ohmic pulse heating circuit system, the temperature-dependent specific electrical resistivity, density, and specific heat capacity for a set of five high alloyed steels were measured. Hence, using the Wiedemann-Franz law with a Lorenz number of , the thermal diffusivity and thermal conductivity could be calculated for the solid and liquid phases up to temperatures of 2500 K. This experimental approach is limited by the following requirements for the specimens: they have to be electrically conducting, the melting point has to be high enough for the implemented pyrometric temperature measurement, and one has to be able to draw wires of the material. The latter restriction is technologically challenging with some of the materials being very brittle. For all samples, electrical and temperature signals are recorded and a fast shadowgraph method is used to measure the volume expansion. For each material under investigation, a set of data including the chemical composition, the density at room temperature, solidus and liquidus temperatures, and the change of enthalpy, resistivity, density, thermal conductivity, and thermal diffusivity as a function of temperature is reported.

  4. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene–azobenzene composites

    PubMed Central

    Döbbelin, Markus; Ciesielski, Artur; Haar, Sébastien; Osella, Silvio; Bruna, Matteo; Minoia, Andrea; Grisanti, Luca; Mosciatti, Thomas; Richard, Fanny; Prasetyanto, Eko Adi; De Cola, Luisa; Palermo, Vincenzo; Mazzaro, Raffaello; Morandi, Vittorio; Lazzaroni, Roberto; Ferrari, Andrea C.; Beljonne, David; Samorì, Paolo

    2016-01-01

    Multifunctional materials can be engineered by combining multiple chemical components, each conferring a well-defined function to the ensemble. Graphene is at the centre of an ever-growing research effort due to its combination of unique properties. Here we show that the large conformational change associated with the trans–cis photochemical isomerization of alkyl-substituted azobenzenes can be used to improve the efficiency of liquid-phase exfoliation of graphite, with the photochromic molecules acting as dispersion-stabilizing agents. We also demonstrate reversible photo-modulated current in two-terminal devices based on graphene–azobenzene composites. We assign this tuneable electrical characteristics to the intercalation of the azobenzene between adjacent graphene layers and the resulting increase in the interlayer distance on (photo)switching from the linear trans-form to the bulky cis-form of the photochromes. These findings pave the way to the development of new optically controlled memories for light-assisted programming and high-sensitive photosensors. PMID:27052205

  5. Modern evaluation of liquisolid systems with varying amounts of liquid phase prepared using two different methods.

    PubMed

    Vraníková, Barbora; Gajdziok, Jan; Vetchý, David

    2015-01-01

    Liquisolid systems are an innovative dosage form used for enhancing dissolution rate and improving in vivo bioavailability of poorly soluble drugs. These formulations require specific evaluation methods for their quality assurance (e.g., evaluation of angle of slide, contact angle, or water absorption ratio). The presented study is focused on the preparation, modern in vitro testing, and evaluation of differences of liquisolid systems containing varying amounts of a drug in liquid state (polyethylene glycol 400 solution of rosuvastatin) in relation to an aluminometasilicate carrier (Neusilin US2). Liquisolid powders used for the formulation of final tablets were prepared using two different methods: simple blending and spraying of drug solution onto a carrier in fluid bed equipment. The obtained results imply that the amount of liquid phase in relation to carrier material had an effect on the hardness, friability, and disintegration of tablets, as well as their height. The use of spraying technique enhanced flow properties of the prepared mixtures, increased hardness values, decreased friability, and improved homogeneity of the final dosage form.

  6. Binary liquid phase separation and critical phenomena in a protein/water solution.

    PubMed Central

    Thomson, J A; Schurtenberger, P; Thurston, G M; Benedek, G B

    1987-01-01

    We have investigated the phase diagram of aqueous solutions of the bovine lens protein gamma II-crystallin. For temperatures T less than Tc = 278.5 K, we find that these solutions exhibit a reversible coexistence between two isotropic liquid phases differing in protein concentration. The dilute and concentrated branches of the coexistence curve were characterized, consistently, both by measurements of the two coexisting concentrations, c(T), and by measuring the cloud temperatures for various initial concentrations. We estimate that the critical concentration, cc, is 244 mg of protein per ml solution. The coexistence curve is well represented by the absolute value of (c - cc)/cc = 5.2 square root (Tc - T)/Tc. Using the temperature dependence of the scattered light intensity along isochores parallel to the critical isochore, we estimated the location of the spinodal line and found it to have the form (c - cc)/cc = 3.0 square root (Tc - T)/Tc. The ratio of the widths of the coexistence curve and the spinodal line, (5.2/3.0), is close to the mean-field value square root 3. We have also observed the growth of large crystals of gamma II-crystallin in some of these aqueous solutions and have made preliminary observations as to the factors that promote or delay the onset of crystallization. These findings suggest that selected protein/water systems can serve as excellent model systems for the study of phase transitions and critical phenomena. PMID:3478681

  7. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    SciTech Connect

    O'Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  8. Determination of pesticides in soil by liquid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Hou, Li; Lee, Hian Kee

    2004-06-04

    Trace amounts of pesticides in soil were determined by liquid-phase microextraction (LPME) coupled to gas chromatography-mass spectrometry (GC-MS). The technique involved the use of a small amount (3 microl) of organic solvent impregnated in a hollow fiber membrane, which was attached to the needle of a conventional GC syringe. The organic solvent was repeatedly discharged into and withdrawn from the porous polypropylene hollow fiber by a syringe pump, with the pesticides being extracted from a 4 ml aqueous soil sample into the organic solvent within the hollow fiber. Aspects of the developed procedure such as organic solvent selection, extraction time, movement pattern of plunger, concentrations of humic acid and salt, and the proportion of organic solvent in the soil sample, were optimized. Limits of detection (LOD) were between 0.05 and 0.1 microg/g with GC-MS analysis under selected-ion monitoring (SIM). Also, this method provided good precision ranging from 6 to 13%; the relative standard deviations were lower than 10% for most target pesticides (at spiked levels of 0.5 microg/g in aqueous soil sample). Finally, the results were compared to those achieved using solid-phase microextraction (SPME). The results demonstrated that LPME was a fast (within 4 min) and accurate method to determine trace amounts of pesticides in soil.

  9. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Kim, Jaegil; Farrell, James D.; Wales, David J.; Straub, John E.

    2014-11-01

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  10. Growth of SiO 2 on InP substrate by liquid phase deposition

    NASA Astrophysics Data System (ADS)

    Lei, Po Hsun; Yang, Chyi Da

    2010-04-01

    We have grown silicon dioxide (SiO 2) on indium phosphorous (InP) substrate by liquid phase deposition (LPD) method. With inserting InP wafer in the treatment solution composed of SiO 2 saturated hydrofluorosilicic acid (H 2SiF 6), 0.1 M boric acid (H 3BO 3) and 1.74 M diluted hydrochloric acid (HCl), the maximum deposition rate and refractive index for the as-grown LPD-SiO 2 film were about 187.5 Å/h and 1.495 under the constant growth temperature of 40 °C. The secondary ion mass spectroscope (SIMS) and energy dispersive X-ray (EDX) confirmed that the elements of silicon, oxygen, and chloride were found in the as-grown LPD-SiO 2 film. On the other hand, the effects of treatment solution incorporated with the hydrogen peroxide (H 2O 2) that can regulate the concentration of OH - ion were also shown in this article. The experimental results represented that the deposition rate decreases with increasing the concentration of hydrogen peroxide due to the reduced concentration of SiO 2 saturated H 2SiF 6 in treatment solution.

  11. Anomalous properties and the liquid-liquid phase transition in gallium

    NASA Astrophysics Data System (ADS)

    Li, Renzhong; Sun, Gang; Xu, Limei

    2016-08-01

    A group of materials including water and silicon exhibit many anomalous behaviors, e.g., density anomaly and diffusivity anomaly (increase upon compression). These materials are hypothesized to have a liquid-liquid phase transition (LLPT) and the critical fluctuation in the vicinity of the liquid-liquid critical point is considered as the origin of different anomalies. Liquid gallium was also reported to have a LLPT, yet whether it shows similar water-like anomalies is not yet studied. Using molecular dynamics simulations on a modified embedded-atom model, we study the thermodynamic, dynamic, and structural properties of liquid gallium as well as its LLPT. We find that, similar to water-like materials predicted to have the LLPT, gallium also shows different anomalous behaviors (e.g., density anomaly, diffusivity anomaly, and structural anomaly). We also find that its thermodynamic and structural response functions are continuous and show maxima in the supercritical region, the loci of which asymptotically approach to the other and merge to the Widom line. These phenomena are consistent with the supercritical phenomenon in a category of materials with a liquid-liquid critical point, which could be common features in most materials with a LLPT.

  12. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    SciTech Connect

    Singh, S. C. Gopal, R.; Kotnala, R. K.

    2015-08-14

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.

  13. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Olsen, C. S.

    1998-01-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 10(sup 13) cm(exp -3) can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm(exp -1) with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  14. Vector chiral spin liquid phase in quasi-one-dimensional incommensurate helimagnets

    SciTech Connect

    Cinti, Fabio; Cuccoli, Alessandro; Rettori, Angelo

    2011-05-01

    Making use of detailed classical Monte Carlo simulations, we study the critical properties of a two-dimensional planar spin model on a square lattice composed by weakly interacting helimagnetic chains. We find a large temperature window where the vector chirality order parameter, <{kappa}{sub jk}> = , the key quantity in multiferroic systems, takes nonzero value in the absence of long-range order or quasi-long-range order. The phase diagram we obtain for different strengths of the interchain coupling clearly shows that the weakness of the interchain interaction plays an essential role in order to observe the vector chiral spin liquid phase in a temperature range of up to now unattained width ({approx_equal}7%, to be compared with {approx_equal}1% or less previously reported for fully frustrated models, the only well-investigated systems unambiguously displaying spin-chirality decoupling). The relevance of our results for three-dimensional models is also discussed.

  15. Computer simulations of liquid silica: Equation of state and liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Saika-Voivod, Ivan; Sciortino, Francesco; Poole, Peter H.

    2001-01-01

    We conduct extensive molecular dynamics computer simulations of two models for liquid silica [the model of Woodcock, Angell and Cheeseman, J. Phys. Chem. 65, 1565 (1976); and that of van Beest, Kramer, and van Santen, Phys. Rev. Lett. 64, 1955 (1990)] to determine their thermodynamic properties at low temperature T across a wide density range. We find for both models a wide range of states in which isochores of the potential energy U are a linear function of T3/5, as recently proposed for simple liquids [Rosenfeld and P. Tarazona, Mol. Phys. 95, 141 (1998)]. We exploit this behavior to fit an accurate equation of state to our thermodynamic data. Extrapolation of this equation of state to low T predicts the occurrence of a liquid-liquid phase transition for both models. We conduct simulations in the region of the predicted phase transition, and confirm its existence by direct observation of phase separating droplets of atoms with distinct local density and coordination environments.

  16. CTU Optical probes for liquid phase detection in the 1000 MW steam turbine

    NASA Astrophysics Data System (ADS)

    Kolovratník, Michal; Bartoš, Ondřej

    2015-05-01

    The aim of this paper is to introduce the measurement capacity of a new generation of CTU's optical probes to determine the liquid phase distribution in steam turbines and other energy systems. At the same time the paper presents the first part of the results concerning output wetness achieved through the use of experimental research performed with the probes in a new low pressure (LP) part of the steam turbine 1000MW in the Temelin nuclear power plant (ETE). Two different probes were used. A small size extinction probe with a diameter of 25mm which was developed for measuring in a wider range of turbines in comparison with the previous generation with a diameter of 50mm. The second probe used was a photogrammetric probe developed to observe the coarse droplets. This probe is still under development and this measurement was focused on verifying the capabilities of the probe. The data processing technique is presented together with yielded examples of the wetness distribution along the last blade of the 1000MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o. (DSP).

  17. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    SciTech Connect

    Olsen, Christopher Sean

    1998-05-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 1013 cm-3 can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm-1 with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  18. Liquid-phase reactions induced by atmospheric pressure glow discharge with liquid electrode

    NASA Astrophysics Data System (ADS)

    Tochikubo, Fumiyoshi; Shirai, Naoki; Uchida, Satoshi

    2014-12-01

    We experimentally investigated some of the initial reactions in a liquid induced by electron or positive-ion irradiation from an atmospheric-pressure dc glow discharge in contact with the liquid. We used an H-shaped glass reactor to observe the effects of electron irradiation and positive-ion irradiation on the liquid-phase reaction separately and simultaneously. Aqueous solutions of NaCl, AgNO3, HAuCl4, and FeCl2 are used as the electrolyte. Solutions of AgNO3 and HAuCl4 are used for the generation of Ag and Au nanoparticles, respectively. Solution of FeCl2 is used for the generation of ferromagnetic particles. Experimental results showed that electron irradiation of the liquid surface generates OH- in water and that positive-ion irradiation of the liquid surface generates H+ in water even without the dissolution of gas-phase nitrogen oxide. A possible reaction process is qualitatively discussed. We also showed that the control of reductive and oxidative environment in the liquid is possible not only by the gas composition for the plasma generation but also by the liquid composition.

  19. Visual investigation of solid-liquid phase equilibria for nonflammable mixed refrigerant

    NASA Astrophysics Data System (ADS)

    Lee, C.; Yoo, J.; Park, I.; Park, J.; Cha, J.; Jeong, S.

    2015-12-01

    Non-flammable mixed refrigerant (NF-MR) Joule Thomson (J-T) refrigerators have desirable characteristics and wide cooling temperature range compared to those of pure J-T refrigerators. However, the operating challenge due to freezing is a critical issue to construct this refrigerator. In this paper, the solid-liquid phase equilibria (i.e. freezing point) of the NF-MR which is composed of Argon, R14 (CF4), and R218 (C3F8), has been experimentally investigated by a visualized apparatus. Argon, R14 and R218 mixtures are selected to be effectively capable of reaching 100 K in the MR J-T refrigerator system. Freezing points of the mixtures have been measured with the molar compositions from 0.1 to 0.8 for each component. Each test result is simultaneously acquired by a camcorder for visual inspection and temperature measurement during a warming process. Experimental results show that the certain mole fraction of Argon, R14, and R218 mixture can achieve remarkably low freezing temperature even below 77 K. This unusual freezing point depression characteristic of the MR can be a useful information for designing a cryogenic MR J-T refrigerator to reach further down to 77 K.

  20. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Kotnala, R. K.; Gopal, R.

    2015-08-01

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.

  1. Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials.

    PubMed

    Shen, Jianfeng; Wu, Jingjie; Wang, Man; Dong, Pei; Xu, Jingxuan; Li, Xiaoguang; Zhang, Xiang; Yuan, Junhua; Wang, Xifan; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2016-05-01

    A proper design of direct liquid phase exfoliation (LPE) for 2D materials as graphene, MoS2 , WS2 , h-BN, Bi2 Se3 , MoSe2 , SnS2 , and TaS2 with common cosolvents is carried out based on considering the polar and dispersive components of surface tensions of various cosolvents and 2D materials. It has been found that the exfoliation efficiency is enhanced by matching the ratio of surface tension components of cosolvents to that of the targeted 2D materials, based on which common cosolvents composed of IPA/water, THF/water, and acetone/water can be designed for sufficient LPE process. In this context, the library of low-toxic and low-cost solvents with low boiling points for LPE is infinitely enlarged when extending to common cosolvents. Polymer-based composites reinforced with a series of different 2D materials are compared with each other. It is demonstrated that the incorporation of cosolvents-exfoliated 2D materials can substantially improve the mechanical and thermal properties of polymer matrices. Typically, with the addition of 0.5 wt% of such 2D material as MoS2 nanosheets, the tensile strength and Young's modulus increased up to 74.85% and 136.97%, respectively. The different enhancement effect of 2D materials is corresponded to the intrinsic properties and LPE capacity of 2D materials.

  2. Graphene via Molecule-Assisted Ultrasound-Induced Liquid-Phase Exfoliation: A Supramolecular Approach

    NASA Astrophysics Data System (ADS)

    Eredia, Matilde; Ciesielski, Artur; Samorì, Paolo

    2016-12-01

    Graphene is a two-dimensional (2D) material holding unique optical, mechanical, thermal and electrical properties. The combination of these exceptional characteristics makes graphene an ideal model system for fundamental physical and chemical studies as well as technologically ground breaking material for a large range of applications. Graphene can be produced either following a bottom-up or top-down method. The former is based on the formation of covalent networks suitably engineered molecular building blocks undergoing chemical reaction. The latter takes place through the exfoliation of bulk graphite into individual graphene sheets. Among them, ultrasound-induced liquid-phase exfoliation (UILPE) is an appealing method, being very versatile and applicable to different environments and on various substrate types. In this chapter, we describe the recently reported methods to produce graphene via molecule-assisted UILPE of graphite, aiming at the generation of high-quality graphene. In particular, we will focus on the supramolecular approach, which consists in the use of suitably designed organic molecules during the UILPE of graphite. These molecules act as graphene dispersion-stabilizing agents during the exfoliation. This method relying on the joint effect of a solvent and ad hoc molecules to foster the exfoliation of graphite into graphene in liquid environment represents a promising and modular method toward the improvement of the process of UILPE in terms of the concentration and quality of the exfoliated material. Furthermore, exfoliations in aqueous and organic solutions are presented and discussed separately.

  3. Hollow-fiber liquid-phase microextraction of amphetamine-type stimulants in human hair samples.

    PubMed

    do Nascimento Pantaleão, Lorena; Bismara Paranhos, Beatriz Aparecida Passos; Yonamine, Mauricio

    2012-09-07

    A fast method was optimized and validated in order to quantify amphetamine-type stimulants (amphetamine, AMP; methamphetamine, MAMP; fenproporex, FPX; 3,4-methylenedioxymethamphetamine, MDMA; and 3,4-methylenedioxyamphetamine, MDA) in human hair samples. The method was based in an initial procedure of decontamination of hair samples (50 mg) with dichloromethane, followed by alkaline hydrolysis and extraction of the amphetamines using hollow-fiber liquid-phase micro extraction (HF-LPME) in the three-phase mode. Gas chromatography-mass spectrometry (GC-MS) was used for identification and quantification of the analytes. The LoQs obtained for all amphetamines (around 0.05 ng/mg) were below the cut-off value (0.2 ng/mg) established by the Society of Hair Testing (SoHT). The method showed to be simple and precise. The intra-day and inter-day precisions were within 10.6% and 11.4%, respectively, with the use of only two deuterated internal standards (AMP-d5 and MDMA-d5). By using the weighted least squares linear regression (1/x²), the accuracy of the method was satisfied in the lower concentration levels (accuracy values better than 87%). Hair samples collected from six volunteers who reported regular use of amphetamines were submitted to the developed method. Drug detection was observed in all samples of the volunteers.

  4. Biodegradation of polycyclic aromatic hydrocarbons in a two-liquid-phase system

    SciTech Connect

    Vanneck, P.; Beeckman, M.; Saeyer, N. De; Verstraete, W.; D`Haene, S.

    1995-12-31

    The use of a two-liquid-phase system consisting of silicone oil and water for biodegrading polycyclic aromatic hydrocarbons (PAHs) was investigated. Biomass determinations indicated that the cells were mainly growing at the silicon oil-water interface. In shaken and aerated systems with PAHs and inoculum, 97% and 80%, respectively, of the total biomass was attached to the silicone phase. PAH concentrations in the silicon phase dropped by a factor 2 to 100 when microorganisms were present. Biodegradation rates in these systems varied from 3.6 to 5 mg PAH-C/L reactor{center_dot}d. In the shaken systems at 28 C, the measured CO{sub 2} production rate was equal to 9.1 mg CO{sub 2}/L reactor{center_dot}d and corresponded to a 50% conversion to CO{sub 2}. In the aerated systems at 10 C, however, only 25% of the PAH-C was converted to CO{sub 2}, resulting in a CO{sub 2} production rate of 0.5 mg CO{sub 2}/L reactor{center_dot}d.

  5. Mathematical modeling of planar and spherical vapor-liquid phase interfaces for multicomponent fluids

    NASA Astrophysics Data System (ADS)

    Celný, David; Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2016-03-01

    Development of methods for accurate modeling of phase interfaces is important for understanding various natural processes and for applications in technology such as power production and carbon dioxide separation and storage. In particular, prediction of the course of the non-equilibrium phase transition processes requires knowledge of the properties of the strongly curved phase interfaces of microscopic droplets. In our work, we focus on the spherical vapor-liquid phase interfaces for binary mixtures. We developed a robust computational method to determine the density and concentration profiles. The fundamentals of our approach lie in the Cahn-Hilliard gradient theory, allowing to transcribe the functional formulation into a system of ordinary Euler-Langrange equations. This system is then split and modified into a shape suitable for iterative computation. For this task, we combine the Newton-Raphson and the shooting methods providing a good convergence speed. For the thermodynamic roperties, the PC-SAFT equation of state is used. We determine the density and concentration profiles for spherical phase interfaces at various saturation factors for the binary mixture of CO2 and C9H20. The computed concentration profiles allow to the determine the work of formation and other characteristics of the microscopic droplets.

  6. Switchable water: microfluidic investigation of liquid-liquid phase separation mediated by carbon dioxide.

    PubMed

    Lestari, Gabriella; Abolhasani, Milad; Bennett, Darla; Chase, Preston; Günther, Axel; Kumacheva, Eugenia

    2014-08-27

    Increase in the ionic strength of water that is mediated by the reaction of carbon dioxide (CO2) with nitrogenous bases is a promising approach toward phase separation in mixtures of water with organic solvents and potentially water purification. Conventional macroscale studies of this complicated process are challenging, due to its occurrence via several consecutive and concurrent steps, mass transfer limitation, and lack of control over gas-liquid interfaces. We report a new microfluidic strategy for fundamental studies of liquid-liquid phase separation mediated by CO2 as well as screening of the efficiency of nitrogenous agents. A single set of microfluidic experiments provided qualitative and quantitative information on the kinetics and completeness of water-tetrahydrofuran phase separation, the minimum amount of CO2 required to complete phase separation, the total CO2 uptake, and the rate of CO2 consumption by the liquid mixture. The efficiency of tertiary diamines with different lengths of alkyl chain was examined in a time- and labor-efficient manner and characterized with the proposed efficiency parameter. A wealth of information obtained using the MF methodology can facilitate the development of new additives for switchable solvents in green chemistry applications.

  7. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    SciTech Connect

    Lu, Qing; Kim, Jaegil; Straub, John E.; Farrell, James D.; Wales, David J.

    2014-11-14

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  8. MFI-type zeolite functional liquid phase sensor coated on the optical fiber end-face

    NASA Astrophysics Data System (ADS)

    Hu, Yaoxin; Sidiroglou, Fotios; Hill, Matthew R.; Collins, Stephen F.; Duke, Mikel

    2012-02-01

    Optical fibers are a unique medium to coat with functional sensor materials that change in refractive index upon adsorption/interaction with specific compounds. In this work, we demonstrate a simple technique to coat the end face of an optical fiber with the microporous MFI-type zeolite. The exposure of the zeolite films from air to water or to aqueous solutions of ethanol and isopropanol causes a distinct change in the film's refractive index. This change was then detected using a simple fiber optic refractive index sensor by monitoring the signal intensity reflected back from the coated fiber endface and as the zeolite is transferred between air, water and solutions containing ethanol and isopropanol. The zeolite coating was developed using the in-situ templated growth technique to grow the zeolite crystals on the cleaved endface of an optical fiber. Effective coating was achieved when the fiber was oriented horizontally in the hydrothermal reactor. The zeolite coated end face reflected less energy in water, at 0.0201 μW, and exhibited almost no change (~2% increase) with increasing ethanol concentration, but exhibited a 135% increase in reflected energy, i.e. 0.048 μW, in 100% ethanol. The zeolite therefore gave the sensor alcohol selectivity. Further work is exploring applicability for liquid phase chemical and water quality analysis.

  9. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Liquid phase epitaxial growth of GaInAsP/InP laser structures

    NASA Astrophysics Data System (ADS)

    Nohavica, D.; Têminová, J.; Berková, D.; Zagrádková, M.; Kortan, I.; Zelinka, I.; Walachová, I.; Malina, V.

    1988-11-01

    A modified single-phase liquid phase epitaxy method was developed on the basis of a novel variant of the growth boat. The method was used to grow GaInAsP/InP double heterostructures for lasers emitting at 1.3 and 1.55 μm. The main properties of wide-contact diodes (radiation power and threshold current density) were adopted as the characteristics of the quality of heterostructures characterized by different configurations of active and guiding layers. The quality of the structure was confirmed by the fabrication of laser diodes of the following types: stripe with oxide insulation, clad-ridge waveguide, and double-channel planar buried.

  10. Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Allali, Karima; Bricaud, Annick; Claustre, Hervé

    1997-01-01

    Chlorophyll-specific absorption coefficients of particles, a*p(λ), and of phytoplankton, a*ph(λ), were determined using the glass-fiber filter technique along 150°W in the equatorial Pacific (13°S-1°N). A site-specific algorithm for correcting the path length amplification effect was derived from field measurements. Then a decomposition technique using the high-performance liquid chromatography pigment information and taking into account the package effect was used to partition a*ph into the contributions of photosynthetic pigments (a*ps) and nonphotosynthetic pigments (a*nps). Both a*ph and a*nps values were observed to decrease from the oligotrophic waters of the subequatorial area (13°-1°S) to the mesotrophic waters of the equatorial area (1°S-1°N) and from the surface to deep waters. The a*ph variations were primarily, but not exclusively, caused by changes in the concentrations of nonphotosynthetic pigments. The level of pigment packaging was also variable both horizontally and vertically, as a result of changes in populations and photoacclimation. In comparison with a*ph, a*ps exhibited a reduced range of variation with depth and along the latitudinal gradient. The variations in a*ps originating from the package effect were partly compensated by variations in the concentrations of photosynthetic pigments. We extended this analysis to include data collected in other areas with different trophic states. The a*ps values varied over a factor of 4 at 440 nm, instead of 8 for a*ph, for chlorophyll a concentrations covering 2 orders of magnitude (0.02-2 mg m-3). In agreement with a previous study performed off California with a different method [Sosik and Mitchell, 1995], we conclude that a*ps is less dependent on environmental parameters than a*ph. In addition, our results provide evidence that the variability in a*ps cannot be neglected. The use of a*ps instead of a*ph in light-photosynthesis models (in conjunction with a quantum yield for carbon fixation

  11. Osmotic and Activity Coefficients of the {xZnCl2 + (1 - x)ZnSO4}(aq) System at 298.15 K

    SciTech Connect

    Ninkovic, R; Miladinovic, J; Todorovic, M; Grujic, S; Rard, J A

    2006-06-27

    Isopiestic vapor pressure measurements were made for (xZnCl{sub 2} + (1 - x)ZnSO{sub 4})(aq) solutions with ZnCl{sub 2} molality fractions of x = (0, 0.3062, 0.5730, 0.7969, and 1) at the temperature 298.15 K, using KCl(aq) as the reference standard. These measurements cover the water activity range 0.901-0.919 {le} a{sub w} {le} 0.978. The experimental osmotic coefficients were used to evaluate the parameters of an extended ion-interaction (Pitzer) model for these mixed electrolyte solutions. A similar analysis was made of the available activity data for ZnCl{sub 2}(aq) at 298.15 K, while assuming the presence of equilibrium amounts of ZnCl{sup +}(aq) ion-pairs, to derive the ion-interaction parameters for the hypothetical pure binary electrolytes (Zn{sup 2+}, 2Cl{sup -}) and (ZnCl{sup +},Cl{sup -}). These parameters are required for the analysis of the mixture results. Although significant concentrations of higher-order zinc chloride complexes may also be present in these solutions, it was possible to represent the osmotic coefficients accurately by explicitly including only the predominant complex ZnCl{sup +}(aq) and the completely dissociated ions. The ionic activity coefficients and osmotic coefficients were calculated over the investigated molality range using the evaluated extended Pitzer model parameters.

  12. Thermophysical Properties of a Chromium Nickel Molybdenum Steel in the Solid and Liquid Phases

    NASA Astrophysics Data System (ADS)

    Wilthan, B.; Reschab, H.; Tanzer, R.; Schützenhöfer, W.; Pottlacher, Gernot

    2008-02-01

    Numerical simulation of vacuum arc re-melting, pressurized or protective electro-slag re-melting, and ingot casting have become quite important in the metal industry. However, a major drawback of these simulation techniques is the lack of accurate thermophysical properties for temperatures above 1,500 K. Heat capacity, heat of fusion, density, and thermal conductivity are important input parameters for the heat transfer equation. Since, direct measurements of thermal conductivity of alloys in the liquid state are almost impossible, its estimation from electrical conductivity using the Wiedemann Franz law is very useful. The afore-mentioned thermophysical properties of several steels are investigated within the context of an ongoing project. Here, we present a full set of thermophysical data for the chromium nickel molybdenum steel meeting the standard DIN 1.4435 (X2CrNiMo18-14-3); these values will be used by our partner to simulate various re-melting and solidification processes. Wire-shaped samples of the steel are resistively volume-heated, as part of a fast capacitor discharge circuit. Time-resolved measurements with sub-μs resolution of current through the specimen are performed with a Pearson probe. The voltage drop across the specimen is measured with knife-edge contacts and ohmic voltage dividers, the temperature of the sample with a pyrometer, and the volumetric expansion of the wire with a fast acting CCD camera. These measurements enable the heat of fusion, the heat capacity, and the electrical resistivity to be determined as a function of temperature in the solid and liquid phases. The thermal conductivity and thermal diffusivity are estimated via the Wiedemann Franz law.

  13. On-Chip Pressure Generation for Driving Liquid Phase Separations in Nanochannels.

    PubMed

    Xia, Ling; Choi, Chiwoong; Kothekar, Shrinivas C; Dutta, Debashis

    2016-01-05

    In this Article, we describe the generation of pressure gradients on-chip for driving liquid phase separations in submicrometer deep channels. The reported pressure-generation capability was realized by applying an electrical voltage across the interface of two glass channel segments with different depths. A mismatch in the electroosmotic flow rate at this junction led to the generation of pressure-driven flow in our device, a fraction of which was then directed to an analysis channel to carry out the desired separation. Experiments showed the reported strategy to be particularly conducive for miniaturization of pressure-driven separations yielding flow velocities in the separation channel that were nearly unaffected upon scaling down the depth of the entire fluidic network. Moreover, the small dead volume in our system allowed for high dynamic control over this pressure gradient, which otherwise was challenging to accomplish during the sample injection process using external pumps. Pressure-driven velocities up to 3.1 mm/s were realized in separation ducts as shallow as 300 nm using our current design for a maximum applied voltage of 3 kV. The functionality of this integrated device was demonstrated by implementing a pressure-driven ion chromatographic analysis that relied on analyte interaction with the nanochannel surface charges to yield a nonuniform solute concentration across the channel depth. Upon coupling such analyte distribution to the parabolic pressure-driven flow profile in the separation duct, a mixture of amino acids could be resolved. The reported assay yielded a higher separation resolution compared to its electrically driven counterpart in which sample migration was realized using electroosmosis/electrophoresis.

  14. Determination of bile acids by hollow fibre liquid-phase microextraction coupled with gas chromatography.

    PubMed

    Ghaffarzadegan, T; Nyman, M; Jönsson, J Å; Sandahl, M

    2014-01-01

    A method based on hollow-fibre liquid phase microextraction combined with gas chromatography was developed for determination of specific bile acids in caecal materials of rats. Nine unconjugated bile acids, including the primary bile acids (cholic acid, chenodeoxycholic acid and α-muricholic acid) and the secondary bile acids (lithocholic acid, deoxycholic acid, ursodeoxycholic acid, hyodeoxycholic acid, β-muricholic acid and ω-muricholic acid) were quantified. Extraction conditions were evaluated, including: sample pH, type of organic solvent and amount of caecal material to be extracted. To compensate for sample matrix effects during extraction the method of standard addition was applied. The satisfactory linearity (r(2)>0.9840), high recovery (84.2-108.7%) and good intra-assay (6.3-10.6%) and inter-assay (6.9-11.1%) precision illustrated the good performance of the present method. The method is rapid, simple and capable of detecting and determining bile acids with limit of detection (LOD) ranged from 0.002 to 0.067μg/mL and limits of quantification (LOQ) varied from 0.006 to 0.224μg/mL. The results indicated that the concentration of some secondary bile acids, which usually are associated with health problems, were lower in rats fed with fermentable dietary fibre compared with a fibre free control diet, while the concentration of primary bile acids, usually connected with positive health effects, were higher in rats fed with diets containing dietary fibre. Of the dietary fibres, guar gum and to some extent the mixture of pectin+guar gum had the most positive effects. Thus, it was concluded that the composition of bile acids can be affected by the type of diet.

  15. Evidence of the existence of the low-density liquid phase in supercooled, confined water.

    PubMed

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Majolino, Domenico; Venuti, Valentina; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2007-01-09

    By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature TH = 231 K. Using this trick, we were able to study, by means of a Fourier transform infrared spectroscopy, vibrational spectra (HOH bending and OH-stretching modes) of deeply supercooled water in the temperature range 183 < T < 273 K. We observed, upon decreasing temperature, the building up of a new population of hydrogen-bonded oscillators centered around 3,120 cm(-1), the contribution of which progressively dominates the spectra as one enters into the deeply supercooled regime. We determined that the fractional weight of this spectral component reaches 50% just at the temperature, TL approximately 225 K, where the confined water shows a fragile-to-strong dynamic cross-over phenomenon [Ito, K., Moynihan, C. T., Angell, C. A. (1999) Nature 398:492-494]. Furthermore, the fact that the corresponding OH stretching spectral peak position of the low-density-amorphous solid water occurs exactly at 3,120 cm(-1) [Sivakumar, T. C., Rice, S. A., Sceats, M. G. (1978) J. Chem. Phys. 69:3468-3476.] strongly suggests that these oscillators originate from existence of the low-density-liquid phase derived from the occurrence of the first-order liquid-liquid (LL) phase transition and the associated LL critical point in supercooled water proposed earlier by a computer molecular dynamics simulation [Poole, P. H., Sciortino, F., Essmann, U., Stanley, H. E. (1992) Nature 360:324-328].

  16. Evidence of the existence of the low-density liquid phase in supercooled, confined water

    PubMed Central

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Majolino, Domenico; Venuti, Valentina; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2007-01-01

    By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature TH = 231 K. Using this trick, we were able to study, by means of a Fourier transform infrared spectroscopy, vibrational spectra (HOH bending and OH-stretching modes) of deeply supercooled water in the temperature range 183 < T < 273 K. We observed, upon decreasing temperature, the building up of a new population of hydrogen-bonded oscillators centered around 3,120 cm−1, the contribution of which progressively dominates the spectra as one enters into the deeply supercooled regime. We determined that the fractional weight of this spectral component reaches 50% just at the temperature, TL ≈ 225 K, where the confined water shows a fragile-to-strong dynamic cross-over phenomenon [Ito, K., Moynihan, C. T., Angell, C. A. (1999) Nature 398:492–494]. Furthermore, the fact that the corresponding OH stretching spectral peak position of the low-density-amorphous solid water occurs exactly at 3,120 cm−1 [Sivakumar, T. C., Rice, S. A., Sceats, M. G. (1978) J. Chem. Phys. 69:3468–3476.] strongly suggests that these oscillators originate from existence of the low-density-liquid phase derived from the occurrence of the first-order liquid–liquid (LL) phase transition and the associated LL critical point in supercooled water proposed earlier by a computer molecular dynamics simulation [Poole, P. H., Sciortino, F., Essmann, U., Stanley, H. E. (1992) Nature 360:324–328]. PMID:17192402

  17. Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans.

    PubMed

    Cho, Hyoun-Myoung; Zhang, Zhibo; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S; Di Girolamo, Larry; C-Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E

    2015-05-16

    Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius (re ) and optical thickness (τ) by projecting observed cloud reflectances onto a precomputed look-up table (LUT). When observations fall outside of the LUT, the retrieval is considered "failed" because no combination of τ and re within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the "re too large" failure accounting for 60%-85% of all failed retrievals. The rest is mostly due to the "re too small" or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun-satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large re values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study.

  18. Liquid-phase processing of fast pyrolysis bio-oil using platinum/HZSM-5 catalyst

    NASA Astrophysics Data System (ADS)

    Santos, Bjorn Sanchez

    Recent developments in converting biomass to bio-chemicals and liquid fuels provide a promising sight to an emerging biofuels industry. Biomass can be converted to energy via thermochemical and biochemical pathways. Thermal degradation processes include liquefaction, gasification, and pyrolysis. Among these biomass technologies, pyrolysis (i.e. a thermochemical conversion process of any organic material in the absence of oxygen) has gained more attention because of its simplicity in design, construction and operation. This research study focuses on comparative assessment of two types of pyrolysis processes and catalytic upgrading of bio-oil for production of transportation fuel intermediates. Slow and fast pyrolysis processes were compared for their respective product yields and properties. Slow pyrolysis bio-oil displayed fossil fuel-like properties, although low yields limit the process making it uneconomically feasible. Fast pyrolysis, on the other hand, show high yields but produces relatively less quality bio-oil. Catalytic transformation of the high-boiling fraction (HBF) of the crude bio-oil from fast pyrolysis was therefore evaluated by performing liquid-phase reactions at moderate temperatures using Pt/HZSM-5 catalyst. High yields of upgraded bio-oils along with improved heating values and reduced oxygen contents were obtained at a reaction temperature of 200°C and ethanol/HBF ratio of 3:1. Better quality, however, was observed at 240 °C even though reaction temperature has no significant effect on coke deposition. The addition of ethanol in the feed has greatly attenuated coke deposition in the catalyst. Major reactions observed are esterification, catalytic cracking, and reforming. Overall mass and energy balances in the conversion of energy sorghum biomass to produce a liquid fuel intermediate obtained sixteen percent (16 wt.%) of the biomass ending up as liquid fuel intermediate, while containing 26% of its initial energy.

  19. Liquid-Liquid Phase Equilibria and Interactions between Droplets in Water-in-Oil Microemulsions.

    PubMed

    Yin, Tianxiang; Wang, Mingjie; Tao, Xiaoyi; Shen, Weiguo

    2016-12-20

    The liquid-liquid phase equilibria of [water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-decane] with the molar ratio w0 of water to AOT being 37.9 and [water/AOT/ethoxylated-2,5,8,11-tetramethyl-6-dodecyne-5,8-diol(Dynol-604)/n-decane] with w0 = 37.9 and the mole fraction α of Dynol-604 in the total surfactants being 0.158 were measured in this study. From the data collected in the critical region, the critical exponent β corresponding to the width of the coexistence curve was determined, which showed good agreement with the 3D-Ising value. A thermodynamic approach based on the Carnahan-Starling-van der Waals type equation was proposed to describe the coexistence curves and to deduce the interaction properties between droplets in the microemulsions. The interaction enthalpies were found to be positive for the studied systems, which evidenced that the entropy effect dominated the phase separations as the temperature increased. The addition of Dynol-604 into the (water/AOT/n-decane) microemulsion resulted in the decrease in the critical temperature and the interaction enthalpy. Combining the liquid-liquid equilibrium data for (water/AOT/n-decane) microemulsions with various w0 values determined previously, it was shown that the interaction enthalpy decreased with w0 and tended to change its sign at low w0, which coincided with the results from the isothermal titration calorimetry investigation. All of these behaviors were interpreted by the effects of entropy and enthalpy and their competition, which resulted from the release of solvent molecules entrapped in the interface of microemulsion droplets and were dependent on the rigidity of the surfactant layers and the size of the droplet.

  20. Magnetic properties of liquid-phase sintered CoFe₂O₄ for application in magnetoelastic and magnetoelectric transducers.

    PubMed

    de Brito, Vera Lúcia Othéro; Cunha, Stéphanie Alá; Lemos, Leonardo Violim; Nunes, Cristina Bormio

    2012-01-01

    Cobalt ferrite is a ferrimagnetic magnetostrictive ceramic that has potential application in magnetoelastic and magnetoelectric transducers. In this work, CoFe(2)O(4) was obtained using a conventional ceramic method and Bi(2)O(3) was used as additive in order to obtain liquid-phase sintered samples. Bi(2)O(3) was added to the ferrite in amounts ranging from 0.25 mol% to 0.45 mol% and samples were sintered at 900 °C and 950 °C. It was observed the presence of Bi-containing particles in the microstructure of the sintered samples and the magnetostriction results indicated microstructural anisotropy. It was verified that it is possible to get dense cobalt ferrites, liquid-phase sintered, with relative densities higher than 90% and with magnetostriction values very close to samples sintered without additives.

  1. Magnetic Properties of Liquid-Phase Sintered CoFe2O4 for Application in Magnetoelastic and Magnetoelectric Transducers

    PubMed Central

    de Brito, Vera Lúcia Othéro; Cunha, Stéphanie Alá; Lemos, Leonardo Violim; Nunes, Cristina Bormio

    2012-01-01

    Cobalt ferrite is a ferrimagnetic magnetostrictive ceramic that has potential application in magnetoelastic and magnetoelectric transducers. In this work, CoFe2O4 was obtained using a conventional ceramic method and Bi2O3 was used as additive in order to obtain liquid-phase sintered samples. Bi2O3 was added to the ferrite in amounts ranging from 0.25 mol% to 0.45 mol% and samples were sintered at 900 °C and 950 °C. It was observed the presence of Bi-containing particles in the microstructure of the sintered samples and the magnetostriction results indicated microstructural anisotropy. It was verified that it is possible to get dense cobalt ferrites, liquid-phase sintered, with relative densities higher than 90% and with magnetostriction values very close to samples sintered without additives. PMID:23112589

  2. Enzymatic catalysis in heterogenous mixtures of substrates: The role of the liquid phase and the effects of "Adjuvants".

    PubMed

    López-Fandiño, R; Gill, I; Vulfson, E N

    1994-05-01

    The physicochemical mechanism of protease-catalyzed peptide synthesis in heterogenous etuectic mixtures of substrates has been examined by a combination of microscopic techniques. Using a number of model reactions of dipeptide amide synthesis, it was determined that liquid phase catalysis was mostly, if not exclusively, responsible for the observed conversion of substrates. Furthermore, the formation of liquid or semiliquid eutectics was an important requirement for the occurrence of those reactions where both substrates were solids in the pure state. The addition of small quantities of hydrophilic solvents (adjuvants) often resulted in significat improvements in the rates and yields of the reactions. This was due to the ability of these adjuvants to promote the formation of eutectics, thereby increasing the proportion, as well as affecting the composition the properties, as well as affecting the composition and properties of the liquid phase. (c) 1994 John Wiley & Sons, Inc.

  3. Thermal Stress Assessment for Transient Liquid-Phase Bonded Si Chips in High-Power Modules Using Experimental and Numerical Methods

    NASA Astrophysics Data System (ADS)

    Lis, Adrian; Kicin, Slavo; Brem, Franziska; Leinenbach, Christian

    2017-02-01

    The potential of transient liquid-phase (TLP) bonding for chip packaging applications has been evaluated, focusing on three interlayer arrangements (Ag-Sn-Ag, Ni-Sn-Ni, and Ag-Sn-Ni). Shear tests on TLP-bonded components provided the interlayer-dependent mechanical strength as well as failure mode and position. Critical local stresses, i.e., failure criteria, within the intermetallic compound (IMC) layer were derived by replicating the shear test conditions with finite-element methods. The missing coefficient of thermal expansion for Ag3Sn IMC was obtained by producing small IMC bulk samples and subjecting them to dilatometric measurements. The experimental results were implemented into a finite-element model of a representative power module architecture to provide first predictions on thermally induced residual stresses that could be classified into fail/safe, as successfully validated by TLP chip bonding experiments. A numerical parameter study then assessed thermal stresses, including failure prediction and design optimization for TLP-bonded Si chips, considering the influence of process temperature, service conditions, TLP interlayer system, and metallization layers within the TLP joint. The presented procedure serves as a guideline to choose an appropriate TLP interlayer system for predefined boundary conditions, or vice versa.

  4. Hyperbranched polyglycerol/graphene oxide nanocomposite reinforced hollow fiber solid/liquid phase microextraction for measurement of ibuprofen and naproxen in hair and waste water samples.

    PubMed

    Rezaeifar, Zohreh; Es'haghi, Zarrin; Rounaghi, Gholam Hossein; Chamsaz, Mahmoud

    2016-09-01

    A new design of hyperbranched polyglycerol/graphene oxide nanocomposite reinforced hollow fiber solid/liquid phase microextraction (HBP/GO -HF-SLPME) coupled with high performance liquid chromatography used for extraction and determination of ibuprofen and naproxen in hair and waste water samples. The graphene oxide first synthesized from graphite powders by using modified Hummers approach. The surface of graphene oxide was modified using hyperbranched polyglycerol, through direct polycondensation with thionyl chloride. The ready nanocomposite later wetted by a few microliter of an organic solvent (1-octanol), and then applied to extract the target analytes in direct immersion sampling mode.After the extraction process, the analytes were desorbed with methanol, and then detected via high performance liquid chromatography (HPLC). The experimental setup is very simple and highly affordable. The main factors influencing extraction such as; feed pH, extraction time, aqueous feed volume, agitation speed, the amount of functionalized graphene oxide and the desorption conditions have been examined in detail. Under the optimized experimental conditions, linearity was observed in the range of 5-30,000ngmL(-1) for ibuprofen and 2-10,000ngmL(-1) for naproxen with correlation coefficients of 0.9968 and 0.9925, respectively. The limits of detection were 2.95ngmL(-1) for ibuprofen and 1.51ngmL(-1) for naproxen. The relative standard deviations (RSDs) were found to be less than 5% (n=5).

  5. Liquid phase epitaxy of binary III-V nanocrystals in thin Si layers triggered by ion implantation and flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Wutzler, Rene; Rebohle, Lars; Prucnal, Slawomir; Bregolin, Felipe L.; Hübner, Rene; Voelskow, Matthias; Helm, Manfred; Skorupa, Wolfgang

    2015-05-01

    The integration of III-V compound semiconductors in Si is a crucial step towards faster and smaller devices in future technologies. In this work, we investigate the formation process of III-V compound semiconductor nanocrystals, namely, GaAs, GaSb, and InP, by ion implantation and sub-second flash lamp annealing in a SiO2/Si/SiO2 layer stack on Si grown by plasma-enhanced chemical vapor deposition. Raman spectroscopy, Rutherford Backscattering spectrometry, and transmission electron microscopy were performed to identify the structural and optical properties of these structures. Raman spectra of the nanocomposites show typical phonon modes of the compound semiconductors. The formation process of the III-V compounds is found to be based on liquid phase epitaxy, and the model is extended to the case of an amorphous matrix without an epitaxial template from a Si substrate. It is shown that the particular segregation and diffusion coefficients of the implanted group-III and group-V ions in molten Si significantly determine the final appearance of the nanostructure and thus their suitability for potential applications.

  6. Simultaneous extraction and quantification of albendazole and triclabendazole using vortex-assisted hollow-fiber liquid-phase microextraction combined with high-performance liquid chromatography.

    PubMed

    Asadi, Mohammad; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh

    2016-06-01

    A novel, simple, and rapid vortex-assisted hollow-fiber liquid-phase microextraction method was developed for the simultaneous extraction of albendazole and triclabendazole from various matrices before their determination by high-performance liquid chromatography with fluorescence detection. Several factors influencing the microextraction efficiency including sample pH, nature and volume of extraction solvent, ionic strength, vortex time, and sample volume were investigated and optimized. Under the optimal conditions, the limits of detection were 0.08 and 0.12 μg/L for albendazole and triclabendazole, respectively. The calibration curves were linear in the concentration ranges of 0.3-50.0 and 0.4-50.0 μg/L with the coefficients of determination of 0.9999 and 0.9995 for albendazole and triclabendazole, respectively. The interday and intraday relative standard deviations for albendazole and triclabendazole at three concentration levels (1.0, 10.0, and 30.0 μg/L) were in the range of 6.0-11.0 and 5.0-7.9%, respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, milk, honey, and urine samples.

  7. Determination of Carotenoids in Egg Yolk by High Performance Liquid Chromatography with Vortex-Assisted Hollow Fiber Liquid-Phase Microextraction using Mixed Extraction Solvent.

    PubMed

    Wang, Juan; Wu, Nan; Yang, Yaling

    2016-11-01

    A vortex-assisted hollow fiber liquid-phase microextraction method using a mixed solvent as the extraction solvent followed by high performance liquid chromatography diode-array detection was developed for the extraction and determination of two carotenoids including lutein and β-carotene from egg yolk. The method is based on the microextraction of carotenoids from sample solution into extracting agent (20 μL), which is located in the lumen of hollow fiber followed by vortex-mixing. The mixed solvent (1-octanol+1-undecanol, 6:4, v:v) was employed as extracting agent for it has suitable viscosity and compatible with carotenoids via hollow fiber. Vortex-mixing was utilized to provide effective and mild mixing of sample solution and increase the contact between analytes and boundary layers of the hollow fiber. Parameters influencing recoveries were investigated and optimized. Under the optimum conditions, the linear range of lutein and β-carotene were from 50 to 1,000 ng mL(-1) The correlation coefficients of the calibration curves were >0.9982, relative standard deviations (n = 5) were between 2.23% and 3.51% and the limits of detection were 0.038 and 0.045 μg mL(-1) for lutein and β-carotene, respectively. The proposed method was successfully applied to the extraction and determination of caroteonids in egg yolk with the satisfactory relative recoveries (90.2-101.8%).

  8. Determination of phenols in environmental water samples by two-step liquid-phase microextraction coupled with high performance liquid chromatography.

    PubMed

    Zhang, Ping-Ping; Shi, Zhi-Guo; Feng, Yu-Qi

    2011-10-15

    In this work, a two-step liquid-phase microextraction (LPME) method was presented for the extraction of phenols in environmental water samples. Firstly, the polar phenol in water samples (donor phase) was transferred to 1-octanol (extraction mesophase) by magnetic stirring-assisted LPME. Subsequently, target analytes in the 1-octanol was back extracted into 0.1 mol/L sodium hydroxide solution (acceptor phase) by vortex-assisted LPME. By combination of the two-step LPME, the enrichment factors were multiplied. The main features of this two-step LPME for phenols lie in the following aspects. Firstly, the extraction can be accomplished within relatively short time (ca. 20 min). Secondly, it was compatible with HPLC analysis, avoiding derivatization step that is generally necessary for GC analysis. Thirdly, high enrichment factors (296-954 fold) could be obtained for these analytes. Under the optimized conditions, the linearities were 10-1000, 1-500, 1-500, 5-500 and 1-500 ng/mL for different phenols with all regression coefficients higher than 0.9985. The limits of detection were in the range from 0.3 to 3.0 ng/mL for these analytes. Intra-and inter-day relative standard deviations were below 7.6%, indicating a good precision of the proposed method.

  9. Estimation of the toxicity of sulfadiazine to Daphnia magna using negligible depletion hollow-fiber liquid-phase microextraction independent of ambient pH

    NASA Astrophysics Data System (ADS)

    Liu, Kailin; Xu, Shiji; Zhang, Minghuan; Kou, Yahong; Zhou, Xiaomao; Luo, Kun; Hu, Lifeng; Liu, Xiangying; Liu, Min; Bai, Lianyang

    2016-12-01

    The toxicity of ionizable organic compounds to organisms depends on the pH, which therefore affects risk assessments of these compounds. However, there is not a direct chemical method to predict the toxicity of ionizable organic compounds. To determine whether hollow-fiber liquid-phase microextraction (HF-LPME) is applicable for this purpose, a three-phase HF-LPME was used to measure sulfadiazine and estimate its toxicity to Daphnia magna in solutions of different pH. The result indicated that the sulfadiazine concentrations measured by HF-LPME decreased with increasing pH, which is consistent with the decreased toxicity. The concentration immobilize 50% of the daphnids (EC50) in 48 h calculated from nominal concentrations increased from 11.93 to 273.5 mg L‑1 as the pH increased from 6.0 to 8.5, and the coefficient of variation (CV) of the EC50 values reached 104.6%. When calculated from the concentrations measured by HF-LPME (pH 12 acceptor phase), the EC50 ranged from 223.4 to 394.6 mg L‑1, and the CV decreased to 27.60%, suggesting that the concentrations measured by HF-LPME can be used to estimate the toxicity of sulfadiazine irrespective of the solution pH.

  10. Comparison of continuous-flow microextraction and static liquid-phase microextraction for the determination of p-toluidine in Chlamydomonas reinhardtii.

    PubMed

    Liu, Xiujuan; Chen, Xiaowen; Yang, Shao; Wang, Xuedong

    2007-10-01

    In this study, two microextraction methods, viz. continuous-flow microextraction (CFME) and static liquid-phase microextraction (s-LPME), were optimized and compared for the determination of p-toluidine in water and Chlamydomonas reinhardtii samples. The calibration curve for p-toluidine was linear in the concentration range of 0.01-5 microg/mL, and the squared regression coefficients (r(2)) for the lines were up to 0.999 for both CFME and s-LPME treatments. Detection limits in CFME and s-LPME were 8.2 ng/mL and 4.9 ng/mL, based on a signal-to-noise (S/N) ratio of 3, respectively. The precision was tested, in five replicates, by analysis of a 100-ng/mL standard solution of p-toluidine and the relative standard deviations were 5.43 and 3.08% for CFME and s-LPME, respectively. The concentration factors were 5.5 and 14.4 for CFME and s-LPME, respectively. s-LPME has a higher extraction efficiency, lower detection limit, and higher concentration factor than that of CFME. Additionally, the s-LPME method is precise and reproducible, and requires only a 3.0-microL microdrop of extraction solvent. Therefore, this procedure is more convenient in use, and viable for qualitative and quantitative analysis of p-toluidine in water and biota samples.

  11. Estimation of the toxicity of sulfadiazine to Daphnia magna using negligible depletion hollow-fiber liquid-phase microextraction independent of ambient pH

    PubMed Central

    Liu, Kailin; Xu, Shiji; Zhang, Minghuan; Kou, Yahong; Zhou, Xiaomao; Luo, Kun; Hu, Lifeng; Liu, Xiangying; Liu, Min; Bai, Lianyang

    2016-01-01

    The toxicity of ionizable organic compounds to organisms depends on the pH, which therefore affects risk assessments of these compounds. However, there is not a direct chemical method to predict the toxicity of ionizable organic compounds. To determine whether hollow-fiber liquid-phase microextraction (HF-LPME) is applicable for this purpose, a three-phase HF-LPME was used to measure sulfadiazine and estimate its toxicity to Daphnia magna in solutions of different pH. The result indicated that the sulfadiazine concentrations measured by HF-LPME decreased with increasing pH, which is consistent with the decreased toxicity. The concentration immobilize 50% of the daphnids (EC50) in 48 h calculated from nominal concentrations increased from 11.93 to 273.5 mg L−1 as the pH increased from 6.0 to 8.5, and the coefficient of variation (CV) of the EC50 values reached 104.6%. When calculated from the concentrations measured by HF-LPME (pH 12 acceptor phase), the EC50 ranged from 223.4 to 394.6 mg L−1, and the CV decreased to 27.60%, suggesting that the concentrations measured by HF-LPME can be used to estimate the toxicity of sulfadiazine irrespective of the solution pH. PMID:28004779

  12. Hollow fiber-based liquid-phase microextraction combined with on-line sweeping for trace analysis of Strychnos alkaloids in urine by micellar electrokinetic chromatography.

    PubMed

    Wang, Chun; Li, Cairui; Zang, Xiaohuan; Han, Dandan; Liu, Zhimei; Wang, Zhi

    2007-03-02

    A new method for the enrichment of Strychnos alkaloids in biological samples via liquid-phase microextraction (LPME) based on porous polypropylene hollow fibers combined with on-line sweeping in micellar electrokinetic chromatography (MEKC) was developed. Strychnos alkaloids were first extracted from urine sample which was adjusted to alkaline conditions (0.5 mol l(-1) NaOH). The unionized analytes were subsequently extracted into 1-octanol impregnated in the pores of hollow fibers, and then into an acidic acceptor solution (100 mmol l(-1) H3PO4) inside the hollow fiber. The extract was analyzed directly by on-line sweeping in MEKC. In the method, the compound berberine was used as the internal standard (I.S.) for the improvement of the experimental reproducibility. The calibration curve was linear over a range of 20-200 ng ml(-1) for both strychnine and brucine in human urine sample, with a correlation coefficient of 0.996 and 0.997, respectively. The detection limits (S/N=3:1) for strychnine and brucine were 1 and 2 ng ml(-1), respectively. The LPME-sweeping method has been successfully applied to the analysis of strychnine and brucine in real urine sample, indicating that LPME-sweeping-MEKC is a promising combination for analysis of basic drugs present at low levels in some biological matrices.

  13. Comparison of conventional hollow fiber based liquid phase microextraction and electromembrane extraction efficiencies for the extraction of ephedrine from biological fluids.

    PubMed

    Fotouhi, Lida; Yamini, Yadollah; Molaei, Saeideh; Seidi, Shahram

    2011-12-02

    In the present study, hollow fiber liquid phase microextraction (HF-LPME) based on pH gradient and electromembrane extraction (EME) coupled with high-performance liquid chromatography (HPLC) was compared for the extraction of ephedrine from biological samples. The influences of fundamental parameters affecting the extraction efficiency of ephedrine were studied and optimized for both methods. Under the optimized conditions, preconcentration factors of 120 and 35 for urine and 51 and 8 for human plasma were obtained using EME and HF-LPME, respectively. The calibration curves showed good linearity for urine and plasma samples by both methods with the coefficient of estimations higher than 0.98. The limits of detection were obtained 5 and 10 ng mL(-1) using EME and 60 and 200 ng mL(-1) by HF-LPME for urine and plasma samples respectively. The relative standard deviations of the analysis were found in the range of 5.2-8.6% (n=3). The results showed that in comparison with HF-LPME based on pH gradient, EME is a much more effective transport process, providing high extraction efficiencies in very short time.

  14. Effect of the particle size of a heterogeneous catalyst on the kinetics of liquid-phase oxidation of tetralin

    SciTech Connect

    Artemov, A.V.; Vainshtein, E.F.

    1988-01-10

    The dependence of the initial rate of oxidation of tetralin on the particle size of the Co/sup 2 +//SiO/sub 2/ catalyst is shown. The method proposed permitted explanation of the dependence of the kinetics of liquid-phase processes in the absence of extra- and intradiffusion hindrances on the particle size of a heterogeneous catalyst and estimation of the values of the kinetic constants from this dependence.

  15. Liquid phase separation methods for N-glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review.

    PubMed

    Hajba, Laszlo; Csanky, Eszter; Guttman, Andras

    2016-11-02

    Comprehensive carbohydrate analysis of glycoproteins from human biological samples and biotherapeutics are important from diagnostic and therapeutic points of view. This review summarizes the current state-of-the-art liquid phase separation techniques used in N-glycosylation analysis. The different liquid chromatographic techniques and capillary electrophoresis methods are critically discussed in detail. Miniaturization of these methods is also important to increase throughput and decrease analysis time. The sample preparation and labeling methods for asparagine linked oligosaccharides are also addressed.

  16. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase

    NASA Astrophysics Data System (ADS)

    Scherrer, Arne; Vuilleumier, Rodolphe; Sebastiani, Daniel

    2016-08-01

    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d2-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.

  17. Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy

    DOE PAGES

    Chen, Qian; Cho, Hoduk; Manthiram, Karthish; ...

    2015-03-23

    We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power ofmore » this approach to reveal unanticipated features of nanocrystal–nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemble but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics.« less

  18. Influence of gangue existing states in iron ores on the formation and flow of liquid phase during sintering

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-liang; Wu, Sheng-li; Chen, Shao-guo; Su, Bo; Que, Zhi-gang; Hou, Chao-gang

    2014-10-01

    Gangue existing states largely affect the high-temperature characteristics of iron ores. Using a micro-sintering method and scanning electron microscopy, the effects of gangue content, gangue type, and gangue size on the assimilation characteristics and fluidity of liquid phase of five different iron ores were analyzed in this study. Next, the mechanism based on the reaction between gangues and sintering materials was unraveled. The results show that, as the SiO2 levels increase in the iron ores, the lowest assimilation temperature (LAT) decreases, whereas the index of fluidity of liquid phase (IFL) increases. Below 1.5wt%, Al2O3 benefits the assimilation reaction, but higher concentrations proved detrimental. Larger quartz particles increase the SiO2 levels at the local reaction interface between the iron ore and CaO, thereby reducing the LAT. Quartz-gibbsite is more conductive to assimilation than kaolin. Quartz-gibbsite and kaolin gangues encourage the formation of liquid-phase low-Al2O3-SFCA with high IFL and high-Al2O3-SFCA with low IFL, respectively.

  19. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase.

    PubMed

    Scherrer, Arne; Vuilleumier, Rodolphe; Sebastiani, Daniel

    2016-08-28

    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d2-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.

  20. Interaction Potentials of Anisotropic Nanocrystals from the Trajectory Sampling of Particle Motion using in Situ Liquid Phase Transmission Electron Microscopy

    PubMed Central

    2015-01-01

    We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power of this approach to reveal unanticipated features of nanocrystal–nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemble but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics. PMID:27162944

  1. Gas holdup and flow regime transition in spider-sparger bubble column: effect of liquid phase properties

    NASA Astrophysics Data System (ADS)

    Besagni, G.; Inzoli, F.; De Guido, G.; Pellegrini, L. A.

    2017-01-01

    This paper discusses the effects of the liquid velocity and the liquid phase properties on the gas holdup and the flow regime transition in a large-diameter and large-scale counter-current two-phase bubble column. In particular, we compared and analysed the experimental data obtained in our previous experimental studies. The bubble column is 5.3 m in height, has an inner diameter of 0.24 m, it was operated with gas superficial velocities in the range of 0.004–0.20 m/s and, in the counter-current mode, the liquid was recirculated up to a superficial velocity of -0.09 m/s. Air was used as the dispersed phase and various fluids (tap water, aqueous solutions of sodium chloride, ethanol and monoethylene glycol) were employed as liquid phases. The experimental dataset consist in gas holdup measurements and was used to investigate the global fluid dynamics and the flow regime transition between the homogeneous flow regime and the transition flow regime. We found that the liquid velocity and the liquid phase properties significantly affect the gas holdup and the flow regime transition. In this respect, a possible relationship (based on the lift force) between the flow regime transition and the gas holdup was proposed.

  2. Effect of Excipients on Liquid-Liquid Phase Separation and Aggregation in Dual Variable Domain Immunoglobulin Protein Solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-03-07

    Liquid-liquid phase separation (LLPS) and aggregation can reduce the physical stability of therapeutic protein formulations. On undergoing LLPS, the protein-rich phase can promote aggregation during storage due to high concentration of the protein. Effect of different excipients on aggregation in protein solution is well documented; however data on the effect of excipients on LLPS is scarce in the literature. In this study, the effect of four excipients (PEG 400, Tween 80, sucrose, and hydroxypropyl beta-cyclodextrin (HPβCD)) on liquid-liquid phase separation and aggregation in a dual variable domain immunoglobulin protein solution was investigated. Sucrose suppressed both LLPS and aggregation, Tween 80 had no effect on either, and PEG 400 increased LLPS and aggregation. Attractive protein-protein interactions and liquid-liquid phase separation decreased with increasing concentration of HPβCD, indicating its specific binding to the protein. However, HPβCD had no effect on the formation of soluble aggregates and fragments in this study. LLPS and aggregation are highly temperature dependent; at low temperature protein exhibits LLPS, at high temperature protein exhibits aggregation, and at an intermediate temperature both phenomena occur simultaneously depending on the solution conditions.

  3. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    PubMed

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  4. Temperature-controlled ionic liquid dispersive liquid-phase microextraction for the sensitive determination of triclosan and triclocarban in environmental water samples prior to HPLC-ESI-MS/MS.

    PubMed

    Zhao, Ru-Song; Wang, Xia; Sun, Jing; Yuan, Jin-Peng; Wang, Shan-Shan; Wang, Xi-Kui

    2010-06-01

    A novel dispersive liquid-phase microextraction method without dispersive solvents has been developed for the enrichment and sensitive determination of triclosan and triclocarban in environmental water samples prior to HPLC-ESI-MS/MS. This method used only green solvent 1-hexyl-3-methylimidazolium hexafluorophosphate as extraction solvent and overcame the demerits of the use of toxic solvents and the instability of the suspending drop in single drop liquid-phase microextraction. Important factors that may influence the enrichment efficiencies, such as volume of ionic liquid, pH of solutions, extraction time, centrifuging time and temperature, were systematically investigated and optimized. Under optimum conditions, linearity of the method was observed in the range of 0.1-20 microg/L for triclocarban and 0.5-100 microg/L for triclosan, respectively, with adequate correlation coefficients (R>0.9990). The proposed method has been found to have excellent detection sensitivity with LODs of 0.04 and 0.3 microg/L, and precisions of 4.7 and 6.0% (RSDs, n=5) for triclocarban and triclosan, respectively. This method has been successfully applied to analyze real water samples and satisfactory results were achieved.

  5. Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem.

    PubMed

    Lafortune, Isabelle; Juteau, Pierre; Déziel, Eric; Lépine, François; Beaudet, Réjean; Villemur, Richard

    2009-04-01

    High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. Although several PAH-degrading bacterial species have been isolated, it is not expected that a single isolate would exhibit the ability to degrade completely all PAHs. A consortium composed of different microorganisms can better achieve this. Two-liquid phase (TLP) culture systems have been developed to increase the bioavailability of poorly soluble substrates for uptake and biodegradation by microorganisms. By combining a silicone oil-water TLP system with a microbial consortium capable of degrading HMW PAHs, we previously developed a highly efficient PAH-degrading system. In this report, we characterized the bacterial diversity of the consortium with a combination of culture-dependent and culture-independent methods. Polymerase chain reaction (PCR) of part of the 16S ribosomal RNA gene (rDNA) sequences combined with denaturing gradient gel electrophoresis was used to monitor the bacterial population changes during PAH degradation of the consortium when pyrene, chrysene, and benzo[a]pyrene were provided together or separately in the TLP cultures. No substantial changes in bacterial profiles occurred during biodegradation of pyrene and chrysene in these cultures. However, the addition of the low-molecular-weight PAHs phenanthrene or naphthalene in the system favored one bacterial species related to Sphingobium yanoikuyae. Eleven bacterial strains were isolated from the consortium but, interestingly, only one-IAFILS9 affiliated to Novosphingobium pentaromativorans-was capable of growing on pyrene and chrysene as sole source of carbon. A 16S rDNA library was derived from the consortium to identify noncultured bacteria. Among 86 clones screened, 20 were affiliated to different bacterial species-genera. Only three strains were represented in the screened clones. Eighty

  6. Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans

    PubMed Central

    Cho, Hyoun‐Myoung; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S.; Di Girolamo, Larry; C.‐Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E.

    2015-01-01

    Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius (r e) and optical thickness (τ) by projecting observed cloud reflectances onto a precomputed look‐up table (LUT). When observations fall outside of the LUT, the retrieval is considered “failed” because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the “r e too large” failure accounting for 60%–85% of all failed retrievals. The rest is mostly due to the “r e too small” or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun‐satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study. PMID:27656330

  7. Effect of liquid phase on coarsening behavior in porous single-phase and duplex microstructures

    NASA Astrophysics Data System (ADS)

    Alves, Fernando Jorge Lino

    1997-11-01

    A systematic investigation of the influence of different glass volume fractions (Vsb{f}) on the grain growth behavior of single-phase alumina (Alsb2Osb3), c-zirconia (c-ZrOsb2) and duplex Alsb2Osb3+50 vol.% c-ZrOsb2 (AZ50), has been conducted. Grain growth was studied for porous single-phase alumina and c-zirconia for one glass (anorthite) composition and different Vsb{f}. Grain growth on dense single-phase alumina and c-zirconia was also studied and compared with the results obtained for porous samples. It was observed that glass additions to porous (≈1 vol.% porosity) single-phase alumina or c-zirconia increase the grain growth rate constant (K) up to a critical Vsb{f}, above which further glass additions decrease K. This behavior is contrary to that of dense single-phase materials, for which K decreases continuously with Vsb{f}. This can be explained by the fact that very small amounts of glass can coat pore surfaces with a very thin (nanometer scale) liquid film, which promotes a faster diffusion path for atoms, thereby increasing K. However, as Vsb{f} increases, glass pockets are continuously enlarged, the diffusion distances across these pockets thus increase as well, and hence K starts to decrease. The grain growth rate equation for the final stage of sintering was adapted to describe the kinetic behavior observed in porous single-phase materials, for small amounts of glass. Special emphasis was given to the residual porosity, the microstructural features of alumina and c-zirconia grains, and to the grain growth controlling mechanism(s). Grain growth was studied for AZ50 for two glass compositions and different Vsb{f}. Unlike dense single-phase materials, glass additions to AZ50 were shown to promote grain growth. K increases continuously with Vsb{f} because the grain growth rate in duplex systems is controlled by long range diffusion which is enhanced by the presence of the liquid phase. As Vsb{f} increases, glass pockets are continuously enlarged and K

  8. Numerical simulation and experimental study of transient liquid phase bonding of single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Ghoneim, Adam

    The primary goals of the research in this dissertation are to perform a systematic study to identify and understand the fundamental cause of prolonged processing time during transient liquid phase bonding of difficult-to-bond single crystal Ni-base materials, and use the acquired knowledge to develop an effective way to reduce the isothermal solidification time without sacrificing the single crystalline nature of the base materials. To achieve these objectives, a multi-scale numerical modeling approach, that involves the use of a 2-D fully implicit moving-mesh Finite Element method and a Cellular Automata method, was developed to theoretically investigate the cause of long isothermal solidification times and determine a viable way to minimize the problem. Subsequently, the predictions of the theoretical models are experimentally validated. Contrary to previous suggestions, numerical calculations and experimental verifications have shown that enhanced intergranular diffusivity has a negligible effect on solidification time in cast superalloys and that another important factor must be responsible. In addition, it was found that the concept of competition between solute diffusivity and solubility as predicted by standard analytical TLP bonding models and reported in the literature as a possible cause of long solidification times is not suitable to explain salient experimental observations. In contrast, however, this study shows that the problem of long solidification times, which anomalously increase with temperature is fundamentally caused by departure from diffusion controlled parabolic migration of the liquid-solid interface with holding time during bonding due to a significant reduction in the solute concentration gradient in the base material. Theoretical analyses showed it is possible to minimize the solidification time and prevent formation of stray-grains in joints between single crystal substrates by using a composite powder mixture of brazing alloy and base

  9. Transient liquid phase bonding of a third generation gamma-titanium aluminum alloy: Gamma Met PX

    NASA Astrophysics Data System (ADS)

    Butts, Daniel A.

    The research work presented here discusses transient liquid phase (TLP) bonding of a current (i.e. third) generation gamma-TiAl alloy known as Gamma Met PX (GMPX). Effective implementation of GMPX in service is likely to require fabrication of complicated geometries for which a high performance metallurgical joining technique must be developed. Although a number of joining processes have been investigated, all have significant disadvantages that limit their ability to achieve sound joints. TLP bonding has proved to be a successful method of producing joints with microstructures and compositions similar to that of the bulk substrates. Hence, bonds with parent-like mechanical and oxidation properties are possible. The interlayer and bonding conditions employed for joining of GMPX were based on successful wide-gap TLP joining trials of an earlier generation cast gamma-TiAl alloy with a composition of Ti-48Al-2Cr-2Nb in atomic percent (abbreviated here to 48-2-2). A composite interlayer consisting of a 6:1 weight ratio (7 vol.% copper) of gas atomized 48-2-2 powders (-270 mesh) and pure copper powders (-325 mesh) was employed. When applied to GMPX, these interlayer ratio and bonding conditions produced undesirable microstructures and poor mechanical performance in as-bonded joints. Thus, modifications to the joining technique were required. Initially these modifications were based purely on empirical and phenomenological studies, however, detailed mechanistic studies of the underlying joining mechanisms were conducted to aid in selecting these modifications. Mechanisms such as diffusion, solubility and wettability of copper in/on GMPX and 48-2-2 bulk substrates were investigated and compared. A difference in solubility of copper in GMPX and 48-2-2 bulk substrates was attributed to (at least in part) to the observed differences in GMPX and 48-2-2 bonds. The copper solubility, at the bonding temperature, in the 48-2-2 and GMPX alloys was determined to be ˜2 at.% and ˜1

  10. Transient liquid phase bonding of titanium-aluminum-niobium-chromium alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Tao

    The research work presented in this study is mainly about the joining of Ti-48 at. % Al-2 at. % Nb-2 at. % Cr alloys with transient liquid phase (TLP) bonding technology. The TLP bonding technology that has been used in this project includes narrow-gap TLP bonding and wide-gap TLP bonding. Copper has been selected as the melting point depressant (MPD) for the bonding. Thin pure copper films are used for the narrow-gap TLP bonding and the composite interlayers made of 48-2-2 + Cu powders are used for the wide-gap TLP bonding. Different types of composite interlayers, including pre-sintered, manually deposited and automatically deposited composite interlayers have been used to make joints. The comparisons between the joints with all these different composite interlayers are drawn and the results suggest that all these interlayers could make sound bonds with suitable process conditions. The microstructures of the bonds, identified using light, scanning electron and transmission electron microscopy, are correlated with their mechanical properties. The mechanical tests include shear test, four point bend test and tensile test. The joints made with thin copper films usually have some excessive Cu-riched intermetallic at the bond line and the mechanical testing shows poor bonding strength. However, some joints made on Gleeble---1500 with very thin copper film (5 mum) could have some fairly high strength. The as-bonded wide-gap joints sometimes have some Cu-rich intermetallic compounds at the bond line and also have a finer microstructure than that of the substrates. These fine grains at the bond line come from the 48-2-2 powder particles in the composite interlayers. However, a fully lamellar microstructure could be formed at the bond line after post-bond heat treatment at 1350°C for 1 hour. The mechanical testing results show the strengths of the joints are quite similar to that of the bulk 48-2-2 alloys at both of the room and elevated temperature (700°). The post

  11. Liquid-phase micro-extraction techniques in pesticide residue analysis.

    PubMed

    Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2007-03-10

    Modern trends in analytical chemistry are towards the simplification and miniaturization of sample preparation, as well as the minimization of organic solvent used. In view of this aspect, several novel micro-extraction techniques are being developed in order to reduce the analysis step, increase the sample throughput and to improve the quality and the sensitivity of analytical methods. One of the emerging techniques in this area is liquid-phase micro-extraction (LPME). It is a miniaturized implementation of conventional liquid/liquid extraction (LLE) in which only microliters of solvents are used instead of several hundred milliliters in LLE. It is quick, inexpensive and can be automated. In the last few years, LPME has been combined with liquid chromatography (LC) and capillary electrophoresis (CE), besides the generally used coupling to gas chromatography (GC), and has been applied to various matrices, including biological, environmental, and food samples. This work is aimed at providing an overview of the major developments of LPME, coupled with chromatography and CE, as reported in the literature. The paper will focus on the application of the technique to different matrices and the aim is to reveal the panorama of opportunities and to try to indicate the potential of LPME in pesticide analysis. A critical review of the first applications to pesticide analyses is presented in the main part of the manuscript. The optimization of LPME as well as advantages and disadvantages are discussed. It is concluded that, because of its high pre-concentration factor, LPME can be introduced with benefit into water analysis for several pesticide groups. In particular, the application of LPME to non-polar pesticides in environmental analysis appears to be promising. However, similar to other micro-extraction techniques, such as solid phase micro-extraction (SPME), serious limitations still remain when analyzing semi-solid and solid environmental, food or biological matrices

  12. Hollow fiber-liquid-phase microextraction of fungicides from orange juices.

    PubMed

    Barahona, Francisco; Gjelstad, Astrid; Pedersen-Bjergaard, Stig; Rasmussen, Knut Einar

    2010-03-26

    Liquid-phase microextraction (LPME) based on polypropylene hollow fibers was evaluated for the extraction of the post-harvest fungicides thiabendazole (TBZ), carbendazim (CBZ) and imazalil (IMZ) from orange juices. Direct LPME was performed without any sample pretreatment prior to the extraction, using a simple home-built equipment. A volume of 500 microL of 840 mM NaOH was added to 3 mL of orange juice in order to compensate the acidity of the samples and to adjust pH into the alkaline region. Analytes were extracted in their neutral state through a supported liquid membrane (SLM) of 2-octanone into 20 microL of a stagnant aqueous solution of 10 mM HCl inside the lumen of the hollow fiber. Subsequently, the acceptor solution was directly subjected to analysis. Capillary electrophoresis (CE) was used during the optimization of the extraction procedure. Working under the optimized extraction conditions, LPME effectively extracted the analytes from different orange juices, regardless of different pH or solid material (pulp) present in the sample, with recoveries that ranged between 17.0 and 33.7%. The analytical performance of the method was evaluated by liquid chromatography coupled with mass spectrometry (LC/MS). This technique provided better sensitivity than CE and permitted the detection below the microg L(-1) level. The relative standard deviations of the recoveries (RSDs) ranged between 3.4 and 10.6%, which are acceptable values for a manual microextraction technique without any previous sample treatment, using a home-built equipment and working under non-equilibrium conditions (30 min extraction). Linearity was obtained in the range 0.1-10.0 microg L(-1), with r=0.999 and 0.998 for TBZ and IMZ, respectively. Limits of detection were below 0.1 microg L(-1) and are consistent with the maximum residue levels permitted for pesticides in drinking water, which is the most restrictive regulation applicable for these kinds of samples. It has been demonstrated the

  13. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis.

    PubMed

    Matsuda, Yoshiki; Sugiura, Keita; Hashimoto, Takashi; Ueda, Akane; Konno, Yoshihiro; Tatsumi, Yoshiyuki

    2016-01-01

    Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeated full-thickness human nails more deeply than luliconazole. Amorolfine and terbinafine did not show any detectable permeation. The free-drug concentration of efinaconazole in a 5% human nail keratin suspension was 24.9%, which was significantly higher than those of the other drugs (1.1-3.9%). Additionally, efinaconazole was released from human nail keratin at a greater proportion than the other drugs. The MICs of the five drugs for Trichophyton rubrum were determined at various concentrations of keratin (0-20%) in RPMI 1640 medium. The MICs of ciclopirox were not affected by keratin, whereas those of efinaconazole were slightly increased and those of luliconazole and terbinafine were markedly increased in the presence of 20% keratin. Efficacy coefficients were calculated using the nail permeation flux and MIC in media without or with keratin. Efinaconazole showed the highest efficacy coefficient, which was determined using MIC in media with keratin. The order of efficacy coefficients determined using MIC in keratin-containing media rather than keratin-free media was consistent with that of complete cure rates in previously reported clinical trials. The present study revealed that efficacy coefficients determined using MIC in keratin-containing media are useful for predicting the clinical efficacies of topical drugs. In order to be more effective, topical drugs have to possess higher efficacy coefficients.

  14. Efficacy Coefficients Determined Using Nail Permeability and Antifungal Activity in Keratin-Containing Media Are Useful for Predicting Clinical Efficacies of Topical Drugs for Onychomycosis

    PubMed Central

    2016-01-01

    Onychomycosis is difficult to treat topically due to the deep location of the infection under the densely keratinized nail plate. In order to obtain an in vitro index that is relevant to the clinical efficacy of topical anti-onychomycosis drugs, we profiled five topical drugs: amorolfine, ciclopirox, efinaconazole, luliconazole, and terbinafine, for their nail permeabilities, keratin affinities, and anti-dermatophytic activities in the presence of keratin. Efinaconazole and ciclopirox permeated full-thickness human nails more deeply than luliconazole. Amorolfine and terbinafine did not show any detectable permeation. The free-drug concentration of efinaconazole in a 5% human nail keratin suspension was 24.9%, which was significantly higher than those of the other drugs (1.1–3.9%). Additionally, efinaconazole was released from human nail keratin at a greater proportion than the other drugs. The MICs of the five drugs for Trichophyton rubrum were determined at various concentrations of keratin (0–20%) in RPMI 1640 medium. The MICs of ciclopirox were not affected by keratin, whereas those of efinaconazole were slightly increased and those of luliconazole and terbinafine were markedly increased in the presence of 20% keratin. Efficacy coefficients were calculated using the nail permeation flux and MIC in media without or with keratin. Efinaconazole showed the highest efficacy coefficient, which was determined using MIC in media with keratin. The order of efficacy coefficients determined using MIC in keratin-containing media rather than keratin-free media was consistent with that of complete cure rates in previously reported clinical trials. The present study revealed that efficacy coefficients determined using MIC in keratin-containing media are useful for predicting the clinical efficacies of topical drugs. In order to be more effective, topical drugs have to possess higher efficacy coefficients. PMID:27441843

  15. Determination of perfluorinated compounds (PFCs) in solid and liquid phase river water samples in Chao Phraya River, Thailand.

    PubMed

    Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana

    2011-01-01

    Perfluorinated compounds (PFCs), especially perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are fully fluorinated organic compounds, which have been used in many industrial applications. These chemicals have contaminated surface water all over the world even in developing countries like Thailand. The previous study showed the contamination in Chao Phraya River in 2006 and 2007. The purposes of this field study were to determine the solid and liquid phase of PFCs contamination in Chao Phraya River and to compare the changes of PFC concentration in 2008. Surveys were conducted in the lower reach of Chao Phraya River in the industrialized area. A solid phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis for ten PFCs. Ten PFCs were analyzed to identify the contamination in both solid and liquid phases. PFCs were detected in both the solid and liquid phase in every sample. PFOA was the most dominant PFC while PFPA and PFOS were also highly detected in most samples. The average loadings of PFPA, PFOA and PFOS in Chao Phraya River were 94.3, 284.6 and 93.4 g/d, respectively. PFOS concentrations did not show differences between 2006 and 2008. However, PFOA concentrations were higher in 2008/5/26, while comparing other samplings. The ratio of solid:liquid PFPA (2.1:1.0) [(ng/g)/(ng/L)] was lower than PFOA (13.9:1.0) [(ng/g)/(ng/L)] and PFOS (17.6:1.0) [(ng/g)/(ng/L)]. The shorter chain (more hydrophilic) PFC was better to dissolve in water rather than adsorb onto suspended solids. PFOS also showed more potential to attach in the suspended solids than PFOA.

  16. Measurements of liquid-phase turbulence in gas-liquid two-phase flows using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong

    2013-12-01

    Liquid-phase turbulence measurements were performed in an air-water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method--planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas-liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high

  17. Liquid-phase methanation/shift process development. Final technical report, September 1, 1980-November 30, 1981

    SciTech Connect

    Not Available

    1982-05-12

    This final technical report covers the work performed between September 1, 1980 and November 30, 1981 relating to Chem Systems' Liquid Phase Methanation/Shift Process. A total of 44 runs were completed covering testing of five commercially available catalysts at 900/sup 0/F, 1000 psig and 10,000 h/sup -1/ VHSV. The shifted methanation feed gas consisted of 63% H/sub 2/, 19% CO, 2% CO/sub 2/ and 16% CH/sub 4/. To determine the effects of steam, twenty of the scans had 15% steam injected into the feed gas. Each test ran for 100, 300, 600 or 1200 hours with continuous effluent sampling and temperature profile monitoring. At each of the termination points, a catalyst sample was taken from the hot spot section of the bed for analysis. Carbon was deposited on the catalyst under the methanation conditions studied. The rate of carbon deposition was primarily a function of catalyst properties and not of the thermodynamics of the methanation reaction system. In spite of heavy carbon deposition, the catalytic behavior for these systems generally remains unaffected. Physical plugging of the catalyst bed is the limiting condition of the process and not catalyst deactivation. In this respect, a controlled oxidation of the carbon deposits is a viable method of extending catalyst life. The hydrodynamics and design of a cold-flow test unit for a three-phase, liquid-fluidized bed for Liquid Phase Methanation/Shift was evaluated. The cold-flow unit process design, equipment take-off lists, consruction cost and timing schedule are included. As a second potential application, the unit was designed for hydrodynamic studies of a liquid-entrained system for Liquid Phase Methanation/Shift.

  18. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes

    SciTech Connect

    Wei, Ying; Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2013-10-15

    Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

  19. Characterization of transparent conducting p-type nickel oxide films grown by liquid phase deposition on glass

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Lai, Yen-Ting

    2013-02-01

    Transparent conducting nickel oxide (NiO) films were prepared by liquid phase deposition on glass. Saturated NiF2 and boric acid solutions were used as precursors. There was a growth delay time of 5 h and the growth rate was 34.3 nm per hour in the growth region. After annealing at 400 °C in air, the resistivity was improved from 4.85 × 103 Ω cm to 7.5 × 10-1 Ω cm, and the transmittance decreased from 91.85% to 66.49% at a wavelength of 550 nm, respectively.

  20. Solid-liquid phase transitions in 3D systems with the inverse-power and Yukawa potentials

    NASA Astrophysics Data System (ADS)

    Vaulina, O. S.; Koss, X. G.

    2016-03-01

    The melting of face-centered cubic (fcc) and body-centered cubic (bcc) crystal lattices was studied analytically and numerically for the systems of particles interacting via the inverse-power-law and Yukawa potentials. New approach is proposed for determination of the solid-liquid phase transitions in these systems. The suggested approach takes into account a nonlinearity (anharmonicity) of pair interaction forces and allows to correctly predict the conditions of melting of the systems with various isotropic pair interaction potentials. The obtained results are compared with the existing theoretical and numerical data.

  1. Buoyant thermocapillary flow with nonuniform supra-heating. I - Liquid-phase behavior. II - Two-phase behavior

    NASA Technical Reports Server (NTRS)

    Schiller, David N.; Sirignano, William A.

    1992-01-01

    The present computational study of transient heat transfer and fluid flow in a circular pool of n-decane which is undergoing central radiative heating from above gives attention to the volumetric absorption of the radiation incident on the pool surface. The first part of this study notes that buoyancy influences the number and recirculation rates of the subsurface vortices by stabilizing hot subsurface fluid above the colder core fluid; this affects the liquid surface temperature profile and in turn governs the velocity profile that is due to thermocapillarity. In the second part, the effects of gas-liquid phase coupling, variable density and thermophysical properties, and vaporization are considered.

  2. Interface morphology studies of liquid phase epitaxy grown HgCdTe films by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-04-01

    In this paper we report an investigation of the morphology of the interfaces of liquid phase epitaxy (LPE) grown HgCdTe thin films on CdTe and CdZnTe substrates by atomic force microscopy (AFM) on freshly cleaved (110) crystallographic planes. An empirical observation which may be linked to lattice mismatch was indicated by an angle between the cleavage steps of the substrate to those of the film. The precipitates with size ranging from 5 nm to 20 nm were found to be most apparent near the interface.

  3. Systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient model for real-life counter-current chromatography separation.

    PubMed

    Ren, Da-Bing; Yi, Lun-Zhao; Qin, Yan-Hua; Yun, Yong-Huan; Deng, Bai-Chuan; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-05-08

    Solvent system selection is the first step toward a successful counter-current chromatography (CCC) separation. This paper introduces a systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient (NRTL-SAC) model, which is efficient in predicting the solute partition coefficient. Firstly, the application of the NRTL-SAC method was extended to the ethyl acetate/n-butanol/water and chloroform/methanol/water solvent system families. Moreover, the versatility and predictive capability of the NRTL-SAC method were investigated. The results indicate that the solute molecular parameters identified from hexane/ethyl acetate/methanol/water solvent system family are capable of predicting a large number of partition coefficients in several other different solvent system families. The NRTL-SAC strategy was further validated by successfully separating five components from Salvia plebeian R.Br. We therefore propose that NRTL-SAC is a promising high throughput method for rapid solvent system selection and highly adaptable to screen suitable solvent system for real-life CCC separation.

  4. Active Control of Fan Noise: Feasibility Study. Volume 5; Numerical Computation of Acoustic Mode Reflection Coefficients for an Unflanged Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    A computational method to predict modal reflection coefficients in cylindrical ducts has been developed based on the work of Homicz, Lordi, and Rehm, which uses the Wiener-Hopf method to account for the boundary conditions at the termination of a thin cylindrical pipe. The purpose of this study is to develop a computational routine to predict the reflection coefficients of higher order acoustic modes impinging on the unflanged termination of a cylindrical duct. This effort was conducted wider Task Order 5 of the NASA Lewis LET Program, Active Noise Control of aircraft Engines: Feasibility Study, and will be used as part of the development of an integrated source noise, acoustic propagation, ANC actuator coupling, and control system algorithm simulation. The reflection coefficient prediction will be incorporated into an existing cylindrical duct modal analysis to account for the reflection of modes from the duct termination. This will provide a more accurate, rapid computation design tool for evaluating the effect of reflected waves on active noise control systems mounted in the duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an active noise control system design tool, the method can be used preliminary to more accurate but more numerically intensive acoustic propagation models such as finite element methods. The resulting computer program has been shown to give reasonable results, some examples of which are presented. Reliable data to use for comparison is scarce, so complete checkout is difficult, and further checkout is needed over a wider range of system parameters. In future efforts the method will be adapted as a subroutine to the GEAE segmented cylindrical duct modal analysis program.

  5. Extraction of recombination coefficients and internal quantum efficiency of GaN-based light emitting diodes considering effective volume of active region.

    PubMed

    Kim, Garam; Kim, Jang Hyun; Park, Euy Hwan; Kang, Donghoon; Park, Byung-Gook

    2014-01-27

    An improved rate equation model for GaN-based LEDs considering the effective volume of the active region is proposed. Through numerical simulations, it is confirmed that the IQE, especially efficiency droop is related with small effective volume. Also, we confirmed that the effective volume is controlled by polarization charge, the barriers between the quantum wells, and current density. We also developed a fast and reliable method for extracting the recombination coefficients and the IQE of the GaN-based LEDs by measuring transient characteristics and considering the effective volume.

  6. Liquid-phase non-thermal plasma-prepared N-doped TiO(2) for azo dye degradation with the catalyst separation system by ceramic membranes.

    PubMed

    Cheng, Hsu-Hui; Chen, Shiao-Shing; Cheng, Yi-Wen; Tseng, Wei-Lun; Wang, Yi-Hui

    2010-01-01

    This study strived to improve the photocatalytic activity by using liquid-phase non-thermal plasma (LPNTP) technology for preparing N-doping TiO(2) as well as to separate/recover the N-dope TiO(2) particles by using ceramic ultrafiltration membrane process. The yellow color N-doped TiO(2) photocatalysts, obtained through the LPNTP process, were characterized with UV-Vis spectroscopy, X-ray diffraction (XRD), and electron spectroscopy for chemical analysis (ESCA). The UV-Vis spectrum of N-doped TiO(2) showed that the absorption band was shifted to 439 nm and the band gap was reduced to 2.82 eV. The structure analysis of XRD spectra showed that the peak positions and the crystal structure remained unchanged as anatase after plasma-treating at 13.5 W for 40 min. The photocatalytic activity of N-doped TiO(2) was evaluated by azo dyes under visible light, and 63% of them was degraded after 16 hours in a continuous-flow photocatalytic system. For membrane separation/recover system, the recovery efficiency reached 99.5% after the ultrafiltration had been carried out for 90 min, and the result indicated that the photocatalyst was able to be separated/recovered completely.

  7. Nanoscale control of the network morphology of high efficiency polymer fullerene solar cells by the use of high material concentration in the liquid phase.

    PubMed

    Radbeh, R; Parbaile, E; Bouclé, J; Di Bin, C; Moliton, A; Coudert, V; Rossignol, F; Ratier, B

    2010-01-22

    Despite the constant improvement of their power conversion efficiencies, organic solar cells based on an interpenetrating network of a conjugated polymer as donor and fullerene derivatives as acceptor materials still need to be improved for commercial use. In this context, we present a study on the optimization of solar cells based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) by varying a specific cell parameter, namely the concentration of the active layer components in the liquid phase before blend film deposition, in order to improve device performance and to better understand the relation between morphology and device operation. Our study shows a significant increase of the short-circuit current, open-circuit voltage and cell efficiency by properly choosing the formulation of the initial blend before film deposition. We demonstrate that the active layer morphology, which is strongly dependent on the initial material concentrations and the processing conditions, can greatly impact the electronic characteristics of the device, especially regarding charge recombination dynamics at the donor-acceptor interface. Our optimized P3HT:PCBM device exhibits both slow recombination and high photocurrent generation associated with an overall power conversion efficiency of 4.25% under 100 mW cm(-2) illumination (AM1.5G).

  8. Development of a new and environment friendly hollow fiber-supported liquid phase microextraction using vesicular aggregate-based supramolecular solvent.

    PubMed

    Moradi, Morteza; Yamini, Yadollah; Rezaei, Fatemeh; Tahmasebi, Elham; Esrafili, Ali

    2012-08-07

    Hollow fiber-based liquid phase microextraction (HF-LPME) using conventional solvents is limited by their relative instability and high volatility. The use of supramolecular solvents as a liquid membrane phase could overcome these inconveniences due to their negligible vapour pressure and high viscosity. In the present study, a novel and highly flexible method was developed based on supramolecular solvents constructed of vesicles of decanoic acid, which were used for the first time as a solvent in HF-LPME. This solvent is produced from the coacervation of decanoic acid aqueous vesicles by the action of tetrabutylammonium (Bu(4)N(+)). In this work, halogenated anilines as model compounds were extracted from water samples into a supramolecular solvent impregnated in the pores and also filled inside the porous polypropylene hollow fiber membrane. The extracted anilines were separated and determined by high-performance liquid chromatography. The technique requires minimal sample preparation time and toxic organic solvent consumption, and provides a significant advantage over conventional analytical methods. The important parameters influencing the extraction efficiency were studied and optimized utilizing two different optimization methods: one variable at a time and the Box-Behnken design. Under the optimum conditions, the preconcentration factors were in the range of 74 to 203. Linearity of the method was obtained in the range of 1.0-100 μg L(-1) with the correlation coefficients of determination (R(2)) ranging from 0.9901 to 0.9986. The limits of detection for the target anilines were 0.5-1.0 μg L(-1). The relative standard deviations varied from 3.9% to 6.0%. The relative recoveries of the three halogenated anilines from water samples at a spiking level of 20.0 μg L(-1) were in the range of 90.4-107.4%.

  9. Determination of estrogenic compounds in milk and yogurt samples by hollow-fibre liquid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry.

    PubMed

    D'Orazio, Giovanni; Hernández-Borges, Javier; Herrera-Herrera, Antonio Vicente; Fanali, Salvatore; Rodríguez-Delgado, Miguel Ángel

    2016-10-01

    An environmentally friendly method based on hollow-fibre liquid-phase microextraction (HF-LPME) was developed for the extraction of selected estrogenic compounds (i.e. four natural sexual hormones: estrone, 17β-estradiol, 17α-estradiol and estriol; two exoestrogens: 17α-ethynylestradiol and 2-methoxyestradiol; two synthetic stilbenes: dienestrol and hexestrol; and five resorcylic acid lactones: zearalenone, α-zearalanol, β-zearalanol, α-zearalenol and β-zearalenol), from whole cow and semi-skimmed goat milk and whole natural yogurt. After the optimization of the sample preparation procedure, spiked extracts were derivatized to their trimethylsilyl products using N,O-bis(trimethylsilyl)trifluoroacetamide reagent and then analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS). Once optimum extraction conditions were established (protein precipitation with acetonitrile, extraction and the back-extraction in acetonitrile following the HF-LPME procedure), the method was validated and the calibration range, precision and accuracy were studied. The RSD values for the intra- and inter-day precision of the peak areas were in the range 0.65-9.69 and 1.00-11.47 %, respectively. The determination coefficients were higher than 0.991 for method calibration curves while LOD and LOQ values were between 0.06-2.55 and 0.16-6.11 μg/L for whole cow milk, 0.04-1.70 and 0.11-4.86 μg/L for semi-skimmed goat milk and 0.07-3.73 and 0.23-9.81 μg/L for natural yogurt, respectively. Finally, the accuracy and precision of the method were evaluated, obtaining a value in the range 84 81-119 % and RSD values lower than 20 % in all cases.

  10. Novel one-step headspace dynamic in-syringe liquid phase derivatization-extraction technique for the determination of aqueous aliphatic amines by liquid chromatography with fluorescence detection.

    PubMed

    Muniraj, Sarangapani; Shih, Hou-Kung; Chen, Ying-Fang; Hsiech, Chunming; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon

    2013-06-28

    A novel one-step headspace (HS) dynamic in-syringe (DIS) based liquid-phase derivatization-extraction (LPDE) technique has been developed for the selective determination of two short-chain aliphatic amines (SCAAs) in aqueous samples using high performance liquid chromatography (HPLC) with fluorescence detection (FLD). Methylamine (MA) and dimethylamine (DMA) were selected as model compounds of SCAAs. In this method, a micro-syringe pre-filled with derivatizing reagent solution (9-fluorenylmethyl chloroformate) in the barrel was applied to achieve the simultaneous derivatization and extraction of two methylamines evolved from alkalized aqueous samples through the automated reciprocated movements of syringe plunger. After the derivatization-extraction process, the derivatized phase was directly injected into HPLC-FLD for analysis. Parameters influencing the evolution of methylamines and the HS-DIS-LPDE efficiency, including sample pH and temperature, sampling time, as well as the composition of derivatization reagent, reaction temperature, and frequency of reciprocated plunger movements, were thoroughly examined and optimized. Under optimal conditions, detections were linear in the range of 25-500μgL(-1) for MA and DMA with correlation coefficients all above 0.995. The limits of detection (based on S/N=3) were 5 and 19ngmL(-1) for MA and DMA, respectively. The applicability of the developed method was demonstrated for the determination of MA and DMA in real water samples without any prior cleanup of the sample. The present method provides a simple, selective, automated, low cost and eco-friendly procedure to determine aliphatic amines in aqueous samples.

  11. Simultaneous quantification of amphetamines, caffeine and ketamine in urine by hollow fiber liquid phase microextraction combined with gas chromatography-flame ionization detector.

    PubMed

    Xiong, Jun; Chen, Jie; He, Man; Hu, Bin

    2010-08-15

    A method of hollow fiber (HF) liquid phase microextraction (LPME) combined with gas chromatography (GC)-flame ionization detection (FID) was developed for the simultaneous quantification of trace amphetamine (AP), methamphetamine (MA), methylenedioxyamphetamine (MDA), methylenedioxymethamphetamine (MDMA), caffeine and ketamine (KT) in drug abuser urine samples. The factors affecting on the extraction of six target analytes by HF-LPME were investigated and optimized, and the subsequent analytical performance evaluation and real sample analysis were performed by the extraction of six target analytes in sample solution containing 30% NaCl (pH 12.5) for 20 min with extraction temperature of 30 degrees C and stirring rate of 1000 rpm. Under such optimal conditions, the limits of detection (LODs, S/N=3) for the six target analytes were ranged from 8 microg/L (AP, KT) to 82 microg/L (MDA), with the enrichment factors (EFs) of 5-227 folds, and the relative standard deviations (RSDs, n=7) were in the range of 6.9-14.1%. The correlation coefficients of the calibration for the six target analytes over the dynamic linear range were higher than 0.9958. The application feasibility of HF-LPME-GC-FID in illegal drug monitoring was demonstrated by analyzing drug abuser urine samples, and the recoveries of target drugs for the spiked sample ranging from 75.2% to 119.3% indicated an excellent anti-interference capability of the developed method. The proposed method is simple, effective, sensitive and low-cost, and provides a much more accurate and sensitive detection platform over the conventional analytical techniques (such as immunological assay) for drug abuse analysis.

  12. ERRORS IN APPLYING LOW ION-STRENGTH ACTIVITY COEFFICIENT ALGORITHMS TO HIGHER IONIC-STRENGTH AQUATIC MEDIA

    EPA Science Inventory

    The toxicological and regulatory communities are currently exploring the use of free-ion-activity- models as a means of reducing uncertainties in current methods for assessing metals bioavailabi- lity from contaminated aquatic media. While most practitioners would support the des...

  13. Automated hollow-fiber liquid-phase microextraction followed by liquid chromatography with mass spectrometry for the determination of benzodiazepine drugs in biological samples.

    PubMed

    Nazaripour, Ali; Yamini, Yadollah; Ebrahimpour, Behnam; Fasihi, Javad

    2016-07-01

    In this study, two-phase hollow-fiber liquid-phase microextraction and three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three-phase hollow-fiber liquid-phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6-200 and 0.9-200 μg L(-1) and the limits of detection were 0.2 and 0.3 μg L(-1) for oxazepam and lorazepam, respectively. For two-phase hollow fiber liquid-phase microextraction, the calibration curves were found to be linear in the range of 1-200 and 1.5-200 μg L(-1) and the limits of detection were 0.3 and 0.5 μg L(-1) for oxazepam and lorazepam, respectively. In a urine sample, for three-phase hollow-fiber-based liquid-phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2-4.5% and preconcentration factors in the range of 70-180 were obtained for oxazepam and lorazepam, respectively. Also for the two-phase hollow-fiber liquid-phase microextraction, preconcentration factors in the range of 101-257 were obtained for oxazepam and lorazepam, respectively.

  14. Immunoassay of paralytic shellfish toxins by moving magnetic particles in a stationary liquid-phase lab-on-a-chip.

    PubMed

    Kim, Myoung-Ho; Choi, Suk-Jung

    2015-04-15

    In this study, we devised a stationary liquid-phase lab-on-a-chip (SLP LOC), which was operated by moving solid-phase magnetic particles in the stationary liquid phase. The SLP LOC consisted of a sample chamber to which a sample and reactants were added, a detection chamber containing enzyme substrate solution, and a narrow channel connecting the two chambers and filled with buffer. As a model system, competitive immunoassays of saxitoxin (STX), a paralytic shellfish toxin, were conducted in the SLP LOC using protein G-coupled magnetic particles (G-MPs) as the solid phase. Anti-STX antibodies, STX-horseradish peroxidase conjugate, G-MPs, and a STX sample were added to the sample chamber and reacted by shaking. While liquids were in the stationary state, G-MPs were transported from the sample chamber to the detection chamber by moving a magnet below the LOC. After incubation to allow the enzymatic reaction to occur, the absorbance of the detection chamber solution was found to be reciprocally related to the STX concentration of the sample. Thus, the SLP LOC may represent a novel, simple format for point-of-care testing applications of enzyme-linked immunosorbent assays by eliminating complicated liquid handling steps.

  15. Investigation of holdup and axial dispersion of liquid phase in a catalytic exchange column using radiotracer technique.

    PubMed

    Kumar, Rajesh; Pant, H J; Goswami, Sunil; Sharma, V K; Dash, A; Mishra, S; Bhanja, K; Mohan, Sadhana; Mahajani, S M

    2017-03-01

    Holdup and axial dispersion of liquid phase in a catalytic exchange column were investigated by measuring residence time distributions (RTD) using a radiotracer technique. RTD experiments were independently carried out with two different types of packings i.e. hydrophobic water-repellent supported platinum catalyst and a mixture (50% (v/v)) of hydrophobic catalyst and a hydrophillic wettable packing were used in the column. Mean residence times and hold-ups of the liquid phase were estimated at different operating conditions. Axial dispersion model (ADM) and axial dispersion with exchange model (ADEM) were used to simulate the measured RTD data. Both the models were found equally suitable to describe the measured data. The degree of axial mixing was estimated in terms of Peclet number (Pe) and Bodenstein number (Bo). Based on the obtained parameters of the ADM, correlations for total liquid hold-up (HT) and axial mixing in terms of Bo were proposed for design and scale up of the full-scale catalytic exchange column.

  16. Surface-functionalized ionic liquid crystal-supported ionic liquid phase materials: ionic liquid crystals in mesopores.

    PubMed

    Kohler, Florian T U; Morain, Bruno; Weiss, Alexander; Laurin, Mathias; Libuda, Jörg; Wagner, Valentin; Melcher, Berthold U; Wang, Xinjiao; Meyer, Karsten; Wasserscheid, Peter

    2011-12-23

    The influence of confinement on the ionic liquid crystal (ILC) [C(18)C(1)Im][OTf] is studied using differential scanning calorimetry (DSC), polarized optical microscopy (POM), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The ILC studied is supported on Si-based powders and glasses with pore sizes ranging from 11 to 50 nm. The temperature of the solid-to-liquid-crystalline phase transition seems mostly unaffected by the confinement, whereas the temperature of the liquid-crystalline-to-liquid phase transition is depressed for smaller pore sizes. A contact layer with a thickness in the order of 2 nm is identified. The contact layer exhibits a phase transition at a temperature 30 K lower than the solid-to-liquid-crystalline phase transition observed for the neat ILC. For applications within the "supported ionic liquid phase (SILP)" concept, the experiments show that in pores of diameter 50 nm a pore filling of α>0.4 is sufficient to reproduce the phase transitions of the neat ILC.

  17. Manganese oxide nanosheets and a 2D hybrid of graphene-manganese oxide nanosheets synthesized by liquid-phase exfoliation

    NASA Astrophysics Data System (ADS)

    Coelho, João; Mendoza-Sánchez, Beatriz; Pettersson, Henrik; Pokle, Anuj; McGuire, Eva K.; Long, Edmund; McKeon, Lorcan; Bell, Alan P.; Nicolosi, Valeria

    2015-06-01

    Manganese oxide nanosheets were synthesized using liquid-phase exfoliation that achieved suspensions in isopropanol (IPA) with concentrations of up to 0.45 mg ml-1. A study of solubility parameters showed that the exfoliation was optimum in N,N-dimethylformamide followed by IPA and diethylene glycol. IPA was the solvent of choice due to its environmentally friendly nature and ease of use for further processing. For the first time, a hybrid of graphene and manganese oxide nanosheets was synthesized using a single-step co-exfoliation process. The two-dimensional (2D) hybrid was synthesized in IPA suspensions with concentrations of up to 0.5 mg ml-1 and demonstrated stability against re-aggregation for up to six months. The co-exfoliation was found to be a energetically favorable process in which both solutes, graphene and manganese oxide nanosheets, exfoliate with an improved yield as compared to the single-solute exfoliation procedure. This work demonstrates the remarkable versatility of liquid-phase exfoliation with respect to the synthesis of hybrids with tailored properties, and it provides proof-of-concept ground work for further future investigation and exploitation of hybrids made of two or more 2D nanomaterials that have key complementary properties for various technological applications.

  18. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    SciTech Connect

    Huynh, T. T. D.; Petit, A.; Semmar, N.

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  19. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  20. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.

    PubMed

    Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won

    2017-02-02

    4H-SnS2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.

  1. A numerical study of aerosol influence on mixed-phase stratiform clouds through modulation of the liquid phase

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Hashino, T.; Tripoli, G. J.; Eloranta, E. W.

    2012-08-01

    Numerical simulations were carried out in a high-resolution two dimensional framework to increase our understanding of aerosol indirect effects in mixed-phase stratiform clouds. Aerosol characteristics explored include insoluble particle type, soluble mass fraction, the influence of aerosol-induced freezing point depression and the influence of aerosol number concentration. These experiments were completed with an emphasis on the liquid phase, with droplet freezing the mechanism for ice production. Of the aerosol properties investigated, aerosol insoluble mass type and its associated freezing efficiency was found to be most relevant to cloud lifetime. Secondary effects from aerosol soluble mass fraction and number concentration also alter cloud characteristics and lifetime. These alterations occur via various mechanisms, including changes to the amount of nucleated ice, influence on liquid phase precipitation and ice riming rates, and changes to liquid droplet growth rates. Simulation of the same environment leads to large variability of cloud thickness and lifetime, ranging from rapid and complete glaciation of the cloud to the production of a long-lived, thick stratiform mixed-phase cloud. In the end, these processes are summarized into a diagram that includes internal feedback loops that act within the cloud system.

  2. A numerical study of aerosol influence on mixed-phase stratiform clouds through modulation of the liquid phase

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Hashino, T.; Tripoli, G. J.; Eloranta, E. W.

    2013-02-01

    Numerical simulations were carried out in a high-resolution two-dimensional framework to increase our understanding of aerosol indirect effects in mixed-phase stratiform clouds. Aerosol characteristics explored include insoluble particle type, soluble mass fraction, influence of aerosol-induced freezing point depression and influence of aerosol number concentration. Simulations were analyzed with a focus on the processes related to liquid phase microphysics, and ice formation was limited to droplet freezing. Of the aerosol properties investigated, aerosol insoluble mass type and its associated freezing efficiency was found to be most relevant to cloud lifetime. Secondary effects from aerosol soluble mass fraction and number concentration also alter cloud characteristics and lifetime. These alterations occur via various mechanisms, including changes to the amount of nucleated ice, influence on liquid phase precipitation and ice riming rates, and changes to liquid droplet nucleation and growth rates. Alteration of the aerosol properties in simulations with identical initial and boundary conditions results in large variability in simulated cloud thickness and lifetime, ranging from rapid and complete glaciation of liquid to the production of long-lived, thick stratiform mixed-phase cloud.

  3. Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors.

    PubMed

    Arriaga, Sonia; Muñoz, Raúl; Hernández, Sergio; Guieysse, Benoit; Revah, Sergio

    2006-04-01

    Biofiltration of hydrophobic volatile pollutants is intrinsically limited by poor transfer of the pollutants from the gaseous to the liquid biotic phase, where biodegradation occurs. This study was conducted to evaluate the potential of silicone oil for enhancing the transport and subsequent biodegradation of hexane by the fungus Fusarium solani in various bioreactor configurations. Silicone oil was first selected among various solvents for its biocompatibility, nonbiodegradability, and good partitioning properties toward hexane. In batch tests, the use of silicone oil improved hexane specific biodegradation by approximately 60%. Subsequent biodegradation experiments were conducted in stirred-tank (1.5 L) and packed-bed (2.5 L) bioreactors fed with a constant gaseous hexane load of 180 g x m(-3)(reactor) x h(-1) and operated for 12 and 40 days, respectively. In the stirred reactors, the maximum hexane elimination capacity (EC) increased from 50 g x m(-3)(reactor) x h(-1) (removal efficiency, RE of 28%) in the control not supplied with silicone oil to 120 g x m(-3)(reactor) x h(-1) in the biphasic system (67% RE). In the packed-bed bioreactors, the maximum EC ranged from 110 (50% RE) to 180 g x m(-3)(reactor) x h(-1) (> 90% RE) in the control and two-liquid-phase systems, respectively. These results represent, to the best of our knowledge, the first reported case of fungi use in a two-liquid-phase bioreactor and the highest hexane removal capacities so far reported in biofilters.

  4. Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying

    2016-06-01

    A total enthalpy-based lattice Boltzmann (LB) method with adaptive mesh refinement (AMR) is developed in this paper to efficiently simulate solid-liquid phase change problem where variables vary significantly near the phase interface and thus finer grid is required. For the total enthalpy-based LB method, the velocity field is solved by an incompressible LB model with multiple-relaxation-time (MRT) collision scheme, and the temperature field is solved by a total enthalpy-based MRT LB model with the phase interface effects considered and the deviation term eliminated. With a kinetic assumption that the density distribution function for solid phase is at equilibrium state, a volumetric LB scheme is proposed to accurately realize the nonslip velocity condition on the diffusive phase interface and in the solid phase. As compared with the previous schemes, this scheme can avoid nonphysical flow in the solid phase. As for the AMR approach, it is developed based on multiblock grids. An indicator function is introduced to control the adaptive generation of multiblock grids, which can guarantee the existence of overlap area between adjacent blocks for information exchange. Since MRT collision schemes are used, the information exchange is directly carried out in the moment space. Numerical tests are firstly performed to validate the strict satisfaction of the nonslip velocity condition, and then melting problems in a square cavity with different Prandtl numbers and Rayleigh numbers are simulated, which demonstrate that the present method can handle solid-liquid phase change problem with high efficiency and accuracy.

  5. A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite

    NASA Astrophysics Data System (ADS)

    Yi, Min; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2012-08-01

    A versatile and scalable mixed-solvent strategy, by which two mediocre solvents could be combined into good solvents for exfoliating graphite, is demonstrated for facile and green preparation of graphene by liquid-phase exfoliation of graphite. Mild sonication of crystal graphite powder in a mixture of water and alcohol could yield graphene nanosheets, which formed a highly stable suspension in the mixed solvents. The graphene yield was estimated as 10 wt%. The optimum mass fraction of ethanol in water-ethanol mixtures and isopropanol in water-isopropanol mixtures was experimentally determined as 40 and 55 % respectively, which could be roughly predicted by the theory of Hansen solubility parameters. Statistics based on atomic force microscopic analysis show that up to 86 % of the prepared nanosheets were less than 10-layer thick with a monolayer fraction of 8 %. High resolution transmission electron microscopy, infrared spectroscopy, X-ray diffraction, and Raman spectrum analysis of the vacuum-filtered films suggest the graphene sheets to be largely free of defects and oxides. The proposed mixed-solvent strategy here extends the scope for liquid-phase processing graphene and gives researchers great freedom in designing ideal solvent systems for specific applications.

  6. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions.

  7. Individual activity coefficients of a solvent primitive model electrolyte calculated from the inverse grand-canonical Monte Carlo simulation and MSA theory

    NASA Astrophysics Data System (ADS)

    Lamperski, S.; Płuciennik, M.

    2011-01-01

    The recently developed inverse grand-canonical Monte Carlo technique (IGCMC) (S. Lamperski. Molecular Simulation 33, 1193 (2007)) and the MSA theory are applied to calculate the individual activity coefficients of ions and solvent for a solvent primitive model (SPM) electrolyte. In the SPM electrolyte model the anions, cations and solvent molecules are represented by hard spheres immersed in a dielectric continuum whose permittivity is equal to that of the solvent. The ions have a point electric charge embedded at the centre. A simple 1:1 aqueous electrolyte is considered. The ions are hydrated while the water molecules form clusters modelled by hard spheres of diameter d s. The diameter d s depends on the dissolved salt and is determined by fitting the mean activity coefficient ln γ ± calculated from IGCMC and from the MSA to the experimental data. A linear correlation is observed between d s and the Marcus parameter ΔG HB, which describes the ion influence on the water association.

  8. Ultrafast Intrinsic Photoresponse and Direct Evidence of Sub-gap States in Liquid Phase Exfoliated MoS2Thin Films

    PubMed Central

    Ghosh, Sujoy; Winchester, Andrew; Muchharla, Baleeswaraiah; Wasala, Milinda; Feng, Simin; Elias, Ana Laura; Krishna, M. Bala Murali; Harada, Takaaki; Chin, Catherine; Dani, Keshav; Kar, Swastik; Terrones, Mauricio; Talapatra, Saikat

    2015-01-01

    2-Dimensional structures with swift optical response have several technological advantages, for example they could be used as components of ultrafast light modulators, photo-detectors, and optical switches. Here we report on the fast photo switching behavior of thin films of liquid phase exfoliated MoS2, when excited with a continuous laser of λ = 658 nm (E = 1.88 eV), over a broad range of laser power. Transient photo-conductivity measurements, using an optical pump and THz probe (OPTP), reveal that photo carrier decay follows a bi-exponential time dependence, with decay times of the order of picoseconds, indicating that the photo carrier recombination occurs via trap states. The nature of variation of photocurrent with temperature confirms that the trap states are continuously distributed within the mobility gap in these thin film of MoS2, and play a vital role in influencing the overall photo response. Our findings provide a fundamental understanding of the photo-physics associated with optically active 2D materials and are crucial for developing advanced optoelectronic devices. PMID:26175112

  9. Solidification of floating organic drop liquid-phase microextraction cell fishing with gas chromatography-mass spectrometry for screening bioactive components from Amomum villosum Lour.

    PubMed

    Xue, Xue; Yang, Depo; Wang, Dongmei; Xu, Xinjun; Zhu, Longping; Zhao, Zhimin

    2015-04-01

    In this study, a novel solidification of floating organic drop liquid-phase microextraction cell fishing with gas chromatography-mass spectrometry (SFOD-LPME-CF-GC-MS) method was established and used to screen, isolate and analyze bioactive components from Amomum villosum Lour. extract. Through comparision of its effect on the models of normal cell and inflammatory cells, anti-inflammatory active components of essential oil from A. villosum Lour. were readily screened, and the components obtained are in agreement with related pharmacological articles. SFOD-LPME-CF-GC-MS was used to analyze the interaction of A. villosum Lour. extracts with normal and lipopolysaccharide-stimulated RAW264.7 macrophage cells. The effect of A. villosum Lour. essential oil extracts in the LPS-stimulated RAW264.7 model were also assessed in terms of cytotoxicity and nitric oxide production as an indication of bioactivity. Three potentially bioactive components were identified, demonstrating that SFOD-LPME-CF-GC-MS can be used successfully in the drug-screening process. This approach avoids the requirement for protein precipitation, but more importantly, generates a high concentration ratio, allowing analysis of trace components in traditional Chinese medicines. SFOD-LPME-CF-GC-MS is a simple, fast, effective and reliable method for the screening and analysis of bioactive components, and it can be extended to screen other bioactive components from TCMs.

  10. Removal of carbon, nitrogen and phosphorus from the separated liquid phase of hog manure by the multi-zone BioCAST technology.

    PubMed

    Yerushalmi, Laleh; Alimahmoodi, Mahmood; Afroze, Niema; Godbout, Stephane; Mulligan, Catherine N

    2013-06-15

    The removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) at concentrations of 960 ± 38 to 2400 ± 96 mg/L, 143 ± 9 to 235 ± 15 mg/L and 25 ± 2 to 57 ± 4 mg/L, respectively, from the separated liquid phase of hog manure by the multi-zone BioCAST technology is discussed. Despite the inhibitory effect of hog waste toward microbial activities, removal efficiencies up to 89.2% for COD, 69.2% for TN and 47.6% for TP were obtained during 185 d of continuous operation. The free ammonia inhibition was postulated to be responsible for the steady reduction of COD and TP removal with the increase of TN/TP ratio from 3.6 to 5.8. On the contrary, the increase of COD/TN ratio from 4.8 to 14.1 improved the removal of all contaminants. Nitrogen removal did not show any dependence on the COD/TP ratio, despite the steady increase of COD and TP removal with this ratio in the range of 19.3-50.6. The removal efficiencies of organic and inorganic contaminants increased progressively owing to the adaptation of microbial biomass, resulting from the presence of suspended biomass in the mixed liquor that circulated continuously between the three zones of aerobic, microaerophilic and anoxic, as well as the attached biomass immobilized inside the aerobic zone.

  11. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    SciTech Connect

    Thompson, Christopher

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  12. Liquid-Phase Synthesis of Ba2V2O7 Phosphor Powders and Films Using Immiscible Biphasic Organic-Aqueous Systems.

    PubMed

    Takahashi, Mami; Hagiwara, Manabu; Fujihara, Shinobu

    2016-08-15

    A liquid-phase synthesis of inorganic phosphor materials at a moderate temperature was proposed by using immiscible liquid-liquid biphasic systems. A self-activated Ba2V2O7 phosphor was actually synthesized from vanadium alkoxide dissolved in an organic solution and barium acetate in an aqueous solution. A mild hydrolysis reaction of the alkoxide started at the organic-inorganic interface, and an intermediate compound, Ba(VO3)2·H2O, was initially formed. Ba2V2O7 powders were then obtained by the conversion from Ba(VO3)2·H2O promoted in the aqueous solution. Ba2V2O7 films were obtained on surface-modified silica glass substrates through the similar chemical reactions. Factors such as the surface state of substrates, the kind of organic solvents, and the volume of aqueous solutions were examined to improve the film deposition behavior. The resultant Ba2V2O7 materials showed broad-band visible photoluminescence upon irradiation with ultraviolet light based on the charge transfer transition in the VO4(3-) units existing as dimers.

  13. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  14. In Situ Activation of Microcapsules

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Disclosed are microcapsules comprising a polymer shell enclosing two or more immiscible liquid phases in which a drug, or a prodrug and a drug activator are partitioned into separate phases. or prevented from diffusing out of the microcapsule by a liquid phase in which the drug is poorly soluble. Also disclosed are methods of using the microcapsules for in situ activation of drugs where upon exposure to an appropriate energy source the internal phases mix and the drug is activated in situ.

  15. Modeling, design, packing and experimental analysis of liquid-phase shear-horizontal surface acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Pollard, Thomas B

    Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity

  16. Activity Coefficients at Infinite Dilution and Physicochemical Properties for Organic Solutes and Water in the Ionic Liquid 1-Ethyl-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate.

    PubMed

    Wlazło, Michał; Marciniak, Andrzej; Letcher, Trevor M

    New data of activity coefficients at infinite dilution, γ13(∞), for 65 different solutes including alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, aldehydes, esters and water in the ionic liquid 1-ethyl-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate, were determined using inverse gas chromatography within the temperature range from 318.15 to 368.15 K. This is a continuation of our study of ionic liquids based on this anion. The results are compared with the other trifluorotris(perfluoroethyl)phosphate ionic liquids. The γ13(∞) values were used to calculate thermodynamic functions such as partial molar excess Gibbs energies [Formula: see text], enthalpies [Formula: see text] and entropies [Formula: see text] as well as gas-liquid partition coefficients of the solutes, KL. These values were used to determine the linear free energy relationship (LFER) system constants as a function of temperature. The selectivities at infinite dilution needed for some extraction problems were calculated and compared with literature data of ionic liquids based on the trifluorotris(perfluoroethyl)phosphate anion and the 1-ethyl-3-methylimidazolium cation. Additionally, the density and viscosity of the investigated ionic liquid at temperatures from 298.15 to 348.15 K were measured.

  17. In situ synchrotron study of liquid phase separation process in Al-10 wt.% Bi immiscible alloys by radiography and small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Lu, W. Q.; Zhang, S. G.; Li, J. G.

    2016-03-01

    Liquid phase separation process of immiscible alloys has been repeatedly tuned to create special structure for developing materials with unique properties. However, the fundamental understanding of the liquid phase separation process is still under debate due to the characteristics of immiscible alloys in opacity and high temperature environment of alloy melt. Here, the liquid phase separation process in solidifying Al-Bi immiscible alloys was investigated by synchrotron radiography and small angle X-ray scattering. We provide the first direct evidence of surface segregation prior to liquid decomposition and present that the time dependence on the number of Bi droplets follows Logistic curve. The liquid decomposition results from a nucleation and growth process rather than spinodal decomposition mechanism because of the positive deviation from Porod's law. We also found that the nanometer-sized Bi-rich droplets in Al matrix melt present mass fractal characteristics.

  18. Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics

    NASA Astrophysics Data System (ADS)

    Yang, Huafeng; Withers, Freddie; Gebremedhn, Elias; Lewis, Edward; Britnell, Liam; Felten, Alexandre; Palermo, Vincenzo; Haigh, Sarah; Beljonne, David; Casiraghi, Cinzia

    2014-06-01

    One of the challenges associated with the development of next-generation electronics is to find alternatives to silicon oxide caused by the size-reduction constraints of the devices. The dielectric properties of two-dimensional (2D) crystals, added to their excellent chemical stability, mechanical and thermal properties, make them promising dielectrics. Here we show that liquid-phase exfoliation (LPE) in water by using low-cost commercial organic dyes as dispersant agents can efficiently produce defect-free 2D nanosheets, including mono-layers, in suspensions. We further show that these suspensions can be easily incorporated into current practical graphene-based devices. In particular, it is found that boron nitride thin films made by LPE are excellent dielectrics that are highly compatible with graphene-based electronics.

  19. Communication: Re-entrant limits of stability of the liquid phase and the Speedy scenario in colloidal model systems

    NASA Astrophysics Data System (ADS)

    Rovigatti, Lorenzo; Bianco, Valentino; Tavares, José Maria; Sciortino, Francesco

    2017-01-01

    A re-entrant gas-liquid spinodal was proposed as a possible explanation of the apparent divergence of the compressibility and specific heat off supercooling water. Such a counter-intuitive possibility, e.g., a liquid that becomes unstable to gas-like fluctuations on cooling at positive pressure, has never been observed, neither in real substances nor in off-lattice simulations. More recently, such a re-entrant scenario has been dismissed on the premise that the re-entrant spinodal would collide with the gas-liquid coexisting curve (binodal) in the pressure-temperature plane. Here we study, numerically and analytically, two previously introduced one-component patchy particle models that both show (i) a re-entrant limit of stability of the liquid phase and (ii) a re-entrant binodal, providing a neat in silico (and in charta) realization of such unconventional thermodynamic scenario.

  20. The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Wang, Zhe; Chen, Sow-Hsin

    2015-10-01

    The Boson peak (BP) of deeply cooled confined water is studied by using inelastic neutron scattering (INS) in a large interval of the ( P, T) phase plane. By taking into account the different behavior of such a collective vibrational mode in both strong and fragile glasses as well as in glass-forming materials, we were able to determine the Widom line that characterizes supercooled bulk water within the frame of the liquid-liquid phase transition (LLPT) hypothesis. The peak frequency and width of the BP correlated with the water polymorphism of the LLPT scenario, allowing us to distinguish the "low-density liquid" (LDL) and "high-density liquid" (HDL) phases in deeply cooled bulk water.Moreover, the BP properties afford a further confirmation of theWidom line temperature T W as the ( P, T) locus in which the local structure of water transforms from a predominately LDL form to a predominately HDL form.