Science.gov

Sample records for liquid-scintillation alpha-detection techniques

  1. Effects of sampling technique, storage, cocktails, sources of variation, and extraction on the liquid scintillation technique for radon in water

    SciTech Connect

    Kinner, N.E.; Malley, J.P. Jr.; Clement, J.A.; Quern, P.A.; Schell, G.S.; Lessard, C.E. )

    1991-06-01

    Sampling and analytical procedures used in the liquid scintillation counting technique to determine radon in water were examined in a series of experiments. Factors evaluated included the following: sample collection, length of storage, sources of variability, choice of scintillation cocktail, and extraction procedure. Collection using the direct syringe technique yielded the highest radon activities, but its widespread use may be limited by cost and problems with distribution of syringes. Storage in VOA bottles was primarily affected by radioactive decay; however, leakage also led to decreases in radon activity. Sample preparation and instrumentation caused the majority of the variability observed in this study. An Opti-Fluor O scintillation cocktail yielded significantly higher count rates and was less expensive than toluene and mineral oil based cocktails. The data suggested that while the extraction procedure should not be considered in calculating the efficiency factor, samples should be shaken to maximize the rate of transfer of radon to the cocktail phase.

  2. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    SciTech Connect

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D.

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  3. Neutron crosstalk between liquid scintillators

    SciTech Connect

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  4. Neutron crosstalk between liquid scintillators

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-09-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  5. Neutron crosstalk between liquid scintillators

    DOE PAGES

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators wasmore » modeled to illustrate the improvement of the mass reconstruction.« less

  6. Liquid scintillator tiles for calorimetry

    SciTech Connect

    Amouzegar, M.; Belloni, A.; Bilki, B.; Calderon, J.; Barbaro, P. De; Eno, S. C.; Hatakeyama, K.; Hirschauer, J.; Jeng, G. Y.; Pastika, N. J.; Pedro, K.; Rumerio, Paolo; Samuel, J.; Sharp, E.; Shin, Y. H.; Tiras, E.; Vishnevskiy, D.; Wetzel, J.; Yang, Z.; Yao, Y.; Youn, S. W.

    2016-11-28

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity, and some preliminary results on radiation hardness.

  7. Liquid scintillator tiles for calorimetry

    NASA Astrophysics Data System (ADS)

    Amouzegar, M.; Belloni, A.; Bilki, B.; Calderon, J.; De Barbaro, P.; Eno, S. C.; Hatakeyama, K.; Hirschauer, J.; Jeng, G. Y.; Pastika, N. J.; Pedro, K.; Rumerio, Paolo; Samuel, J.; Sharp, E.; Shin, Y. H.; Tiras, E.; Vishnevskiy, D.; Wetzel, J.; Yang, Z.; Yao, Y.; Youn, S. W.

    2016-11-01

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. The light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity, and some preliminary results on radiation hardness.

  8. Liquid scintillator tiles for calorimetry

    DOE PAGES

    Amouzegar, M.; Belloni, A.; Bilki, B.; ...

    2016-11-28

    Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity,more » and some preliminary results on radiation hardness.« less

  9. Measurement of ortho-positronium properties in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Perasso, S.; Consolati, G.; Franco, D.; Hans, S.; Jollet, C.; Meregaglia, A.; Tonazzo, A.; Yeh, M.

    2013-08-01

    Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.

  10. Measurement of ortho-positronium properties in liquid scintillators

    SciTech Connect

    Perasso, S.; Franco, D.; Tonazzo, A.; Consolati, G.; Hans, S.; Yeh, M.; Jollet, C.; Meregaglia, A.

    2013-08-08

    Pulse shape discrimination in liquid scintillator detectors is a well-established technique for the discrimination of heavy particles from light particles. Nonetheless, it is not efficient in the separation of electrons and positrons, as they give rise to indistinguishable scintillator responses. This inefficiency can be overtaken through the exploitation of the formation of ortho-Positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants currently used in neutrino experiments, Gd and Nd. Further measurements for Li-loaded and Tl-loaded liquid scintillators are foreseen. We found that the o-Ps properties are suitable for enhancing the electron-positron discrimination.

  11. Laboratory studies on the removal of radon-born lead from KamLAND׳s organic liquid scintillator

    DOE PAGES

    Keefer, G.; Grant, C.; Piepke, A.; ...

    2014-09-28

    We studied the removal of radioactivity from liquid scintillator in preparation of a low background phase of KamLAND. We describe the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. Lastly, we report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.

  12. Laboratory studies on the removal of radon-born lead from KamLAND's organic liquid scintillator

    NASA Astrophysics Data System (ADS)

    Keefer, G.; Grant, C.; Piepke, A.; Ebihara, T.; Ikeda, H.; Kishimoto, Y.; Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; Takeuchi, S.; Mauger, C.; Zhang, C.; Schweitzer, G.; Berger, B. E.; Dazeley, S.; Decowski, M. P.; Detwiler, J. A.; Djurcic, Z.; Dwyer, D. A.; Efremenko, Y.; Enomoto, S.; Freedman, S. J.; Fujikawa, B. K.; Furuno, K.; Gando, A.; Gando, Y.; Gratta, G.; Hatakeyama, S.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Inoue, K.; Iwamoto, T.; Kamyshkov, Y.; Karwowski, H. J.; Koga, M.; Kozlov, A.; Lane, C. E.; Learned, J. G.; Maricic, J.; Markoff, D. M.; Matsuno, S.; McKee, D.; McKeown, R. D.; Miletic, T.; Mitsui, T.; Motoki, M.; Nakajima, Kyo; Nakajima, Kyohei; Nakamura, K.; O`Donnell, T.; Ogawa, H.; Piquemal, F.; Ricol, J.-S.; Shimizu, I.; Suekane, F.; Suzuki, A.; Svoboda, R.; Tajima, O.; Takemoto, Y.; Tamae, K.; Tolich, K.; Tornow, W.; Watanabe, Hideki; Watanabe, Hiroko; Winslow, L. A.; Yoshida, S.

    2015-01-01

    The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon-born lead from liquid scintillator.

  13. Radiopure metal-loaded liquid scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-08-17

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  14. Radiopure Metal-Loaded Liquid Scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  15. Measurement of ortho-positronium properties in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Perasso, S.; Consolati, G.; Franco, D.; Jollet, C.; Meregaglia, A.; Tonazzo, A.; Yeh, M.

    2014-03-01

    Pulse shape discrimination is a well-established technique for background rejection in liquid scintillator detectors. It is particularly effective in separating heavy particles from light particles, but not in distinguishing electrons from positrons. This inefficiency can be overtaken by exploiting the formation of ortho-positronium (o-Ps), which alters the time profile of light pulses induced by positrons. We characterized the o-Ps properties in the most commonly used liquid scintillators, i.e. PC, PXE, LAB, OIL and PC + PPO. In addition, we studied the effects of scintillator doping on the o-Ps properties for dopants used in neutrino-less double beta decay experiments (Nd and Te) and in anti-neutrino and neutron detection (Gd and Li respectively). We found that the o-Ps properties are similar in all the tested scintillators, with a lifetime around 3 ns and a formation probability of about 50%. This result indicates that an o-Ps-enhanced pulse shape discrimination can be applied in liquid scintillator detectors for neutrino and anti-neutrino detection and for neutrino-less double beta decay search.

  16. Quality study of the purified liquid scintillator

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Nakajima, K.; Kibe, Y.

    2008-07-01

    We have been distilling the KamLAND liquid scintillator (LS) for the low energy solar neutrino observation. The distillation removes radioactive impurities from LS efficiently. We developed two types of high sensitivity radon detectors to monitor 222Rn contamination which causes a primary background source 210Pb. Their required sensitivity is several mBq/m3. The features and the measurement results of these detectors are presented. We also report the study of liquid scintillator properties after the distillation: attenuation length, light output and PPO density.

  17. Liquid scintillators for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2, 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudo-cumene. The use of BIBUQ as an additional or primary solute is also disclosed.

  18. Liquid scintillators for optical fiber applications

    SciTech Connect

    Franks, L.A.; Lutz, S.S.

    1982-11-16

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2 , 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudocumene. The use of bibuq as an additional or primary solute is also disclosed.

  19. Ternary liquid scintillator for optical fiber applications

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  20. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE PAGES

    Bignell, L. J.; Diwan, M. V.; Hans, S.; ...

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore » 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  1. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    SciTech Connect

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % and 1.31 ± 0.59 % after ≈ 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  2. Determination of Total Body Radioactivity Using Liquid Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Reines, F.; Schuch, R. L.; Cowan, C. L.; Harrison, F. B.; Anderson, E. C.; Hayes, F. N.

    IN the course of developing equipment for other problems1, we have made some measurements of the total radioactivity content of several humans and a dog, using a technique which may have other applications in biophysics. The equipment used consists of a liquid scintillation detector in the shape of a cylinder 30 in. in diameter and 30 in. high, surrounded by RCA type 5819 photomultipliers, fortyfive of which were used in these measurements. Cylindrical steel inserts, 14 in. in diameter in one case and 20 in. in diameter in another, 32 in. high and 0.015 in. thick, were placed in the tank, leaving an annular region filled with liquid scintillator (toluene-terphenyl-α-naphthyl phenyl oxazole). A lead shield 5 in. thick was placed around the assembly, leaving only the top of the insert open. The fortyfive photomultipliers were connected in parallel and their output fed through a linear amplifier to a tenchannel pulse-height analyser (see Fig. 1)…

  3. Development of new Polysiloxane Based Liquid Scintillators

    SciTech Connect

    Dalla Palma, M.; Quaranta, A.; Gramegna, F.; Marchi, T.; Cinausero, M.; Carturan, S.; Collazuol, G.; Checchia, C.; Degerlier, M.

    2015-07-01

    In the last decade, attention toward neutron detection has been growing in the scientific community, driven by new requirements in different fields of application ranging from homeland security to medical and material analysis, from research physics, to nuclear energy production. So far neutron detection, with particular attention to fast neutrons, has been mainly based on organic liquid scintillators, owing to their good efficiency and pulse shape discrimination (PSD) capability. Most of these liquids have however some main drawbacks given by toxicity, flammability, volatility and sensitivity to dissolved oxygen that limits the duration and the quality of their performances with worse handiness and increased costs. Phenyl-substituted polysiloxanes could address most of these issues, being characterized by low toxicity, low volatility and low flammability. Their optical properties can be tailored by changing the phenyl distribution and concentration thus allowing to increase the solubility of organic dyes, to modify the fluorescence spectra and to vary the refractive index of the medium. Furthermore, polysiloxanes have been recently exploited for the production of plastic scintillators with very good chemical and thermal stability and very good radiation hardness and the development of polysiloxane liquid scintillators could allow to combine these interesting properties with the supremacy of liquid scintillators as regarding PSD over plastics. For these reasons, the properties of several phenyl-substituted polysiloxane with different phenyl amounts and different viscosities have been investigated, with particular attention to the scintillation response and the pulse shape discrimination capability, and the results of the investigation are reported in this work. More in details, the scintillation light yield towards gamma rays ({sup 60}Co and {sup 137}Cs) of several polysiloxane liquids has been analyzed and compared with the light yield of a commercial non

  4. Detecting energy dependent neutron capture distributions in a liquid scintillator

    NASA Astrophysics Data System (ADS)

    Balmer, Matthew J. I.; Gamage, Kelum A. A.; Taylor, Graeme C.

    2015-03-01

    A novel technique is being developed to estimate the effective dose of a neutron field based on the distribution of neutron captures in a scintillator. Using Monte Carlo techniques, a number of monoenergetic neutron source energies and locations were modelled and their neutron capture response was recorded. Using back propagation Artificial Neural Networks (ANN) the energy and incident direction of the neutron field was predicted from the distribution of neutron captures within a 6Li-loaded liquid scintillator. Using this proposed technique, the effective dose of 252Cf, 241AmBe and 241AmLi neutron fields was estimated to within 30% for four perpendicular angles in the horizontal plane. Initial theoretical investigations show that this technique holds some promise for real-time estimation of the effective dose of a neutron field.

  5. Liquid Scintillation Detectors for High Energy Neutrinos

    SciTech Connect

    Smith, Stefanie N.; Learned, John G.

    2010-03-30

    Large open volume (not segmented) liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long-baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat's principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we are calling the 'Fermat surface', and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long-baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long-baseline detector in this same beam, and LENA in Europe for future long-baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long-baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.

  6. Purification of KamLAND-Zen liquid scintillator

    SciTech Connect

    Ikeda, Haruo

    2013-08-08

    KamLAND-Zen is neutrino-less double-beta decay search experiment using enriched 300 kg of {sup 136}Xe dissolved in pure liquid scintillator. This report is purification work of liquid scintillator for KamLAND-Zen experiment before installation in the inner-balloon and background rejection processes after installation.

  7. Alpha counting and spectrometry using liquid scintillation methods

    SciTech Connect

    McDowell, W J

    1986-01-01

    The material in this report is intended to be a practical introduction and guide to the use of liquid scintillation for alpha counting and spectrometry. Other works devoted to the development of the theory of liquid scintillation exist and a minimum of such material is repeated here. Much remains to be learned and many improvements remain to be made in the use of liquid scintillation for alpha counting and spectrometry. It is hoped that this modest work will encourage others to continue development in the field.

  8. A large area liquid scintillation multiphoton detector

    NASA Astrophysics Data System (ADS)

    Bharadwaj, V. K.; Cain, M. P.; Caldwell, D. O.; Denby, B. H.; Eisner, A. M.; Joshi, U. P.; Kennett, R. G.; Lu, A.; Morrison, R. J.; Pfost, D. R.; Stuber, H. R.; Summers, D. J.; Yellin, S. J.; Appel, J. A.

    1985-01-01

    A 60 layer lead-liquid scintillator shower detector, which we call the SLIC, has been used for multiphoton detection in the Fermilab tagged photon spectrometer. The detector has an unimpeded active area which is 2.44 m by 4.88 m and is segmented, by means of teflon coated channels, into 3.17 cm wide strips. The 60 layers in depth are broken into three directions of alternating readouts so that three position coordinates are determined for each shower. At present the readouts are made by 334 photomultiplier tubes coupled to BBQ doped wavelength shifter bars which integrate the entire depth of the detector. It is relatively straightforward to increase the number of readouts to include longitudinal segmentation and to increase the segmentation of the outer region which are at present read out two strips to a readout. The energy and position resolutions of isolated showers are about {12%}/{√E} and 3 mm., respectively. The SLIC has been used to study the K-π+π0 decay of the D 0 [1], as well as for electron and muon identification in ψ → e +e - and ψ → μ+μ- plus π0 identification in γp → ψχ [8].

  9. Development of an Ultra-Low Background Liquid Scintillation Counter for Trace Level Analysis

    SciTech Connect

    Erchinger, Jennifer L.; Orrell, John L.; Aalseth, Craig E.; Bernacki, Bruce E.; Douglas, Matthew; Finn, Erin C.; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Panisko, Mark E.; Shaff, Sarah M.; Warren, Glen A.; Wright, Michael E.

    2015-09-01

    Low-level liquid scintillation counting (LSC) has been established as one of the radiation detection techniques useful in elucidating environmental processes and environmental monitoring around nuclear facilities. The Ultra-Low Background Liquid Scintillation Counter (ULB-LSC) under construction in the Shallow Underground Laboratory at Pacific Northwest National Laboratory aims to further reduce the MDAs and/or required sample processing. Through layers of passive shielding in conjunction with an active veto and 30 meters water equivalent overburden, the background reduction is expected to be 10 to 100 times below typical analytic low-background liquid scintillation systems. Simulations have shown an expected background of around 14 counts per day. A novel approach to the light collection will use a coated hollow light guide cut into the inner copper shielding. Demonstration LSC measurements will show low-energy detection, spectral deconvolution, and alpha/beta discrimination capabilities, from trials with standards of tritium, strontium-90, and actinium-227, respectively. An overview of the system design and expected demonstration measurements will emphasize the potential applications of the ULB-LSC in environmental monitoring for treaty verification, reach-back sample analysis, and facility inspections.

  10. Optimization of screening for radioactivity in urine by liquid scintillation.

    SciTech Connect

    Shanks, Sonoya Toyoko; Reese, Robert P.; Preston, Rose T.

    2007-08-01

    Numerous events have or could have resulted in the inadvertent uptake of radionuclides by fairly large populations. Should a population receive an uptake, valuable information could be obtained by using liquid scintillation counting (LSC) techniques to quickly screen urine from a sample of the affected population. This study investigates such LSC parameters as discrimination, quench, volume, and count time to yield guidelines for analyzing urine in an emergency situation. Through analyzing variations of the volume and their relationships to the minimum detectable activity (MDA), the optimum ratio of sample size to scintillating chemical cocktail was found to be 1:3. Using this optimum volume size, the alpha MDA varied from 2100 pCi/L for a 30-second count time to 35 pCi/L for a 1000-minute count time. The typical count time used by the Sandia National Laboratories Radiation Protection Sample Diagnostics program is 30 minutes, which yields an alpha MDA of 200 pCi/L. Because MDA is inversely proportional to the square root of the count time, count time can be reduced in an emergency situation to achieve the desired MDA or response time. Note that approximately 25% of the response time is used to prepare the samples and complete the associated paperwork. It was also found that if the nuclide of interest is an unknown, pregenerated discriminator settings and efficiency calibrations can be used to produce an activity value within a factor of two, which is acceptable for a screening method.

  11. Development of a liquid scintillator neutron multiplicity counter (LSMC)

    NASA Astrophysics Data System (ADS)

    Frame, Katherine; Clay, Willam; Elmont, Tim; Esch, Ernst; Karpius, Peter; MacArthur, Duncan; McKigney, Edward; Santi, Peter; Smith, Morag; Thron, Jonathan; Williams, Richard

    2007-08-01

    A new neutron multiplicity counter is being developed that utilizes the fast response of liquid scintillator detectors. The ability to detect fast (vs. moderated) fission neutrons makes possible a coincidence gate of the order of tens of nanoseconds (vs. tens of microseconds). A neutron counter with such a narrow gate will be virtually insensitive to accidental coincidences, making it possible to measure items with a high single neutron background to greater accuracy in less time. This includes impure Pu items with high (α, n) rates as well as items of low-mass HEU where a strong active interrogation source is needed. Liquid scintillator detectors also allow for energy discrimination between interrogation source neutrons and fission neutrons, allowing for even greater assay sensitivity. Designing and building a liquid scintillator multiplicity counter (LSMC) requires a symbiotic effort of simulation and experiment to optimize performance and mitigate hardware costs in the final product. We present preliminary Monte-Carlo studies using the GEANT toolkit.

  12. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.

    PubMed

    Zhou, Xiang; Liu, Qian; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhang, Zhenyu; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-07-01

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.

  13. Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors

    SciTech Connect

    Zhou, Xiang Zhang, Zhenyu; Liu, Qian; Zheng, Yangheng; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-07-15

    Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.

  14. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  15. Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus

    SciTech Connect

    Giacomelli, L.; Conroy, S.; Gorini, G.; Horton, L.; Murari, A.; Popovichev, S.; Syme, D. B.

    2014-02-15

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.

  16. Direct determination of lead-210 by liquid-scintillation counting

    NASA Technical Reports Server (NTRS)

    Fairman, W. D.; Sedlet, J.

    1969-01-01

    Soft betas, the internal conversion electrons, and unconverted gamma rays from lead-210 are efficiently detected in a liquid scintillation counting system with efficiency of 97 percent. The counter is interfaced with a multichannel pulse height analyzer. The spectra obtained is stored on paper tape and plotted on an x-y plotter.

  17. New liquid scintillators for fiber-optic applications

    SciTech Connect

    Lutz, S.S.; Franks, L.A.; Flournoy, J.M.; Lyons, P.B.

    1981-01-01

    New long-wavelength-emitting, high-speed, liquid scintillators have been developed and tailored specifically for plasma diagnostic experiments employing fiber optics. These scintillators offer significant advantages over commercially available plastic scintillators in terms of sensitivity and bandwidth. FWHM response times as fast as 350 ps have been measured. Emission spectra, time response data, and relative sensitivity information are presented.

  18. Recent Developments In Fast Neutron Detection And Multiplicity Counting With Verification With Liquid Scintillator

    SciTech Connect

    Nakae, L; Chapline, G; Glenn, A; Kerr, P; Kim, K; Ouedraogo, S; Prasad, M; Sheets, S; Snyderman, N; Verbeke, J; Wurtz, R

    2011-09-30

    For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, we used thermal neutron detectors (mainly {sup 3}He), taking advantage of the high thermal neutron interaction cross-sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics which respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production time-scales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array, and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of {sup 3}He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  19. Recent Developments in Fast Neutron Detection and Multiplicity Counting with Liquid Scintillator

    SciTech Connect

    Nakae, L. F.; Chapline, G. F.; Glenn, A. M.; Kerr, P. L.; Kim, K. S.; Ouedraogo, S. A.; Prasad, M. K.; Sheets, S. A.; Snyderman, N. J.; Verbeke, J. M.; Wurtz, R. E.

    2011-12-13

    For many years, LLNL researchers have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of the techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, thermal neutron detectors (mainly {sup 3}He) were used, taking advantage of the high thermal neutron interaction cross sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics that respond over 1000 times faster (ns versus tens of {mu}s) than thermal neutron detectors. Fast neutron detection offers considerable advantages since the inherent ns production timescales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of {sup 3}He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  20. Optical properties of quantum-dot-doped liquid scintillators

    PubMed Central

    Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.

    2014-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

  1. Optical properties of quantum-dot-doped liquid scintillators

    NASA Astrophysics Data System (ADS)

    Aberle, C.; Li, J. J.; Weiss, S.; Winslow, L.

    2013-10-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  2. Optical properties of quantum-dot-doped liquid scintillators.

    PubMed

    Aberle, C; Li, J J; Weiss, S; Winslow, L

    2013-10-14

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  3. Fluorescence decay-time constants in organic liquid scintillators

    SciTech Connect

    Marrodan Undagoitia, T.; Feilitzsch, F. von; Oberauer, L.; Potzel, W.; Ulrich, A.; Winter, J.; Wurm, M.

    2009-04-15

    The fluorescence decay-time constants have been measured for several scintillator mixtures based on phenyl-o-xylylethane (PXE) and linear alkylbenzene (LAB) solvents. The resulting values are of relevance for the physics performance of the proposed large-volume liquid scintillator detector Low Energy Neutrino Astronomy (LENA). In particular, the impact of the measured values to the search for proton decay via p{yields}K{sup +}{nu} is evaluated in this work.

  4. Liquid scintillation composition for low volume biological specimens

    SciTech Connect

    Mallik, A.; Edelstein, H.

    1984-04-17

    A liquid scintillation cocktail especially suitable for low volume biological specimens comprising an aromatic liquid, preferably pseudocumene, for capturing energy from radiation, at least one fluor, preferably PPO and Bis-MSB, and a mixture of anionic and nonionic surfactants. The cocktails are prepared by treating with a cation exchange resin to clarify and with a solid buffer to raise the temperature at which cloudiness develops upon heating.

  5. Ternary liquid scintillator for optical-fiber applications

    SciTech Connect

    Franks, L.A.; Lutz, S.S.

    1981-06-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  6. Positronium signature in organic liquid scintillators for neutrino experiments

    SciTech Connect

    Franco, D.; Consolati, G.; Trezzi, D.

    2011-01-15

    Electron antineutrinos are commonly detected in liquid scintillator experiments via inverse {beta} decay by looking at the coincidence between the reaction products: neutrons and positrons. Prior to positron annihilation, an electron-positron pair may form an orthopositronium (o-Ps) state, with a mean lifetime of a few nanoseconds. Even if the o-Ps decay is speeded up by spin-flip or pick-off effects, it may introduce distortions in the photon emission time distribution, crucial for position reconstruction and pulse shape discrimination algorithms in antineutrino experiments. Reversing the problem, the o-Ps-induced time distortion represents a new signature for tagging antineutrinos in liquid scintillator. In this article, we report the results of measurements of the o-Ps formation probability and lifetime for the most used solvents for organic liquid scintillators in neutrino physics (pseudocumene, linear alkyl benzene, phenylxylylethane, and dodecane). We characterize also a mixture of pseudocumene +1.5 g/l of 2,5-diphenyloxazole, a fluor acting as wavelength shifter. In the second part of the article, we demonstrate that the o-Ps-induced distortion of the scintillation photon emission time distributions represent an optimal signature for tagging positrons on an event by event basis, potentially enhancing the antineutrino detection.

  7. Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix

    NASA Astrophysics Data System (ADS)

    Zheng, Zhanlong; Zhu, Jiayi; Luo, Xuan; Xu, Yewei; Zhang, Qianfeng; Zhang, Xing; Bi, Yutie; Zhang, Lin

    2017-04-01

    A novel liquid scintillator with the mixed solvent as the matrix was prepared for obtaining a good comprehensive performance. In this ternary liquid scintillator, the combination of 20% pseudocumene (PC) and 80% linear-alkyl benzene (LAB) by volume was chosen as the mixed solvent, and 2,5-diphenyloxazole (PPO) and 1,4-bis(2-Methylstyryl) benzene (bis-MSB) were as the primary fluor and wavelength shifter, respectively. The optimum prescription was obtained with regard to the light yield. Some characterizations based on the optimal formulation were conducted. The fluorescence emission spectra and wavelength-dependent optical attenuation length of the sample were measured by the fluorescence spectrophotometer and an UV-Vis spectrometer, respectively. The light yield was characterized by adopting the home-made optical platform device. The decay time was tested by adopting the time-correlated single photon counting (TCSPC) technique featured in high dynamic range of several orders of magnitude in light intensity. The experimental test results showed that the sample had a fairly good comprehensive performance.

  8. Purification of large liquid scintillators for Borexino

    SciTech Connect

    Benziger, J.B.; Calaprice, F.P.; Vogelaar, R.B.

    1993-10-01

    Distillation extraction and crystallization have been used on scintillator mixtures for solar neutrino physics to remove cosmo- genically produced impurities ({sup 7}Be) and naturally occurring impurities ({sup 238}U, {sup 232}Th, and {sup 40}K), and to improve the optical transmission. Distillation was effective at removing {sup 7}Be and other impurities from aromatic solvents (p-xylene and pseudocumene) used as scintillator solvents. Distillation also provided the greatest improvement in the optical clarity of the solvents. Commercially available fluors (PPO and PMP) have high levels of potassium, far in excess of those tolerable for Borexino. Extraction techniques have been found to be effective at removing radioactive impurities, particularly potassium, from the fluors. An overall strategy for on-line purification of the scintillator for Borexino will be presented.

  9. Organic liquid scintillation detector shape and volume impact on radiation portal monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc G.; Clarke, Shaun D.; Pozzi, Sara A.

    2016-07-01

    We have developed and tested a radiation portal monitor using organic liquid scintillation detectors. In order to optimize our system designs, neutron measurements were carried out with three organic liquid scintillation detectors of different shapes and sizes, along with a 3He radiation portal monitor (RPM) as a reference. The three liquids tested were a 7.62 cm diameter by 7.62 cm length cylindrical active volume organic liquid scintillation detector, a 12.7 cm diameter by 12.7 cm length cylindrical active volume organic liquid scintillation detector, and a 25 cm by 25 cm by 10 cm "paddle" shaped organic liquid scintillation detector. Background and Cf-252 neutron measurements were recorded to allow for a comparison of neutron intrinsic efficiencies as well as receiver operating characteristics (ROC) curves between detectors. The 12.7 cm diameter cylindrical active volume organic liquid scintillation detector exhibited the highest intrinsic neutron efficiency (54%) of all three liquid scintillators. An ROC curve analysis for a heavily moderated Cf-252 measurement showed that using the 12.7 cm diameter by 12.7 cm length cylindrical active volume Eljen EJ309 organic liquid scintillation detector would result in the fewest needed detector units in order to achieve a near 100% positive neutron alarm rate while maintaining a better than 1 in 10,000 false alarm rate on natural neutron background. A small number of organic liquid scintillation detectors could therefore be a valid alternative to 3He in some RPM applications.

  10. Optical scattering lengths in large liquid-scintillator neutrino detectors

    SciTech Connect

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Hofmann, M.; Lewke, T.; Meindl, Q.; Moellenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Winter, J.; Lachenmaier, T.; Traunsteiner, C.; Undagoitia, T. Marrodan

    2010-05-15

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  11. Plasmonic light yield enhancement of a liquid scintillator

    NASA Astrophysics Data System (ADS)

    Bignell, Lindsey J.; Mume, Eskender; Jackson, Timothy W.; Lee, George P.

    2013-05-01

    We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

  12. Liquid Scintillator Production for the NOvA Experiment

    DOE PAGES

    Mufson, S.; Baugh, B.; Bower, C.; ...

    2015-04-15

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  13. Optical scattering lengths in large liquid-scintillator neutrino detectors.

    PubMed

    Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  14. Liquid scintillator production for the NOvA experiment

    NASA Astrophysics Data System (ADS)

    Mufson, S.; Baugh, B.; Bower, C.; Coan, T. E.; Cooper, J.; Corwin, L.; Karty, J. A.; Mason, P.; Messier, M. D.; Pla-Dalmau, A.; Proudfoot, M.

    2015-11-01

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  15. Plasmonic light yield enhancement of a liquid scintillator

    SciTech Connect

    Bignell, Lindsey J.; Jackson, Timothy W.; Mume, Eskender; Lee, George P.

    2013-05-27

    We demonstrate modifications to the light yield properties of an organic liquid scintillator due to the localization of the tertiary fluorophore component to the surface of Ag-core silica-shell nanoparticles. We attribute this enhancement to the near-field interaction of Ag nanoparticle plasmons with these fluor molecules. The scintillation light yield enhancement is shown to be equal to the fluorescence enhancement within measurement uncertainties. With a suitable choice of plasmon energy and scintillation fluor, this effect may be used to engineer scintillators with enhanced light yields for radiation detection applications.

  16. Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Hutcheson, Anthony L.; Gwon, Chul; Phlips, Bernard F.; Wulf, Eric A.

    2015-06-01

    This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or γ rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm×10 cm×10 cm cube and a 10-cm diameter×10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the 7Li(p,n)7Be reaction (Q-value: -1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5-3.2 MeV neutrons in 200-300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted γ background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (Ee.e.) vs. proton equivalent energy (Ep.e.), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for <1.0 MeV neutrons; and ranging between a 5-35% reduction for 2.5-3.0 MeV neutrons compared to the EJ-301/309, depending on the scintillator and geometry. Monte Carlo modeling techniques were

  17. Standardization of 241Am by digital coincidence counting, liquid scintillation counting and defined solid angle counting.

    PubMed

    Balpardo, C; Capoulat, M E; Rodrigues, D; Arenillas, P

    2010-01-01

    The nuclide (241)Am decays by alpha emission to (237)Np. Most of the decays (84.6%) populate the excited level of (237)Np with energy of 59.54 keV. Digital coincidence counting was applied to standardize a solution of (241)Am by alpha-gamma coincidence counting with efficiency extrapolation. Electronic discrimination was implemented with a pressurized proportional counter and the results were compared with two other independent techniques: Liquid scintillation counting using the logical sum of double coincidences in a TDCR array and defined solid angle counting taking into account activity inhomogeneity in the active deposit. The results show consistency between the three methods within a limit of a 0.3%. An ampoule of this solution will be sent to the International Reference System (SIR) during 2009. Uncertainties were analysed and compared in detail for the three applied methods.

  18. A step toward CNO solar neutrino detection in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Villante, F. L.; Ianni, A.; Lombardi, F.; Pagliaroli, G.; Vissani, F.

    2011-07-01

    The detection of CNO solar neutrinos in ultrapure liquid scintillator detectors is limited by the background produced by bismuth-210 nuclei that undergo β-decay to polonium-210 with a lifetime of ˜7 days. Polonium-210 nuclei are unstable and decay with a lifetime equal to ˜200 days emitting α particles that can be also detected. In this Letter, we show that the Bi-210 background can be determined by looking at the time evolution of α-decay rate of Po-210, provided that α particle detection efficiency is stable over the data acquisition period and external sources of Po-210 are negligible. A sufficient accuracy can be obtained in a relatively short time. As an example, if the initial Po-210 event rate is ˜2000 cpd/100 ton or lower, a Borexino-like detector could start discerning CNO neutrino signal from Bi-210 background in Δt˜1 yr.

  19. Characterization and Modeling of a Water-based Liquid Scintillator

    SciTech Connect

    L. J. Bignell; Beznosko, D.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; S. Kettell; Rosero, R.; Themann, H. W.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-12-15

    We characterised Water-based Liquid Scintillator (WbLS) using low energy protons, UV-VIS absorbance, and fluorescence spectroscopy. We have also developed and validated a simulation model that describes the behaviour of WbLS in our detector configurations for proton beam energies of 210 MeV, 475 MeV, and 2 GeV and for two WbLS compositions. These results have enabled us to estimate the light yield and ionisation quenching of WbLS, as well as to understand the influence of the wavelength shifting of Cherenkov light on our measurements. These results are relevant to the suitability of WbLS materials for next generation intensity frontier experiments.

  20. Deuterated Liquid Scintillators: A New Tool for Neutron Measurements

    SciTech Connect

    Ojaruega, M.; Becchetti, F. D.; Torres-Isea, R.; Villano, A. N.; Roberts, A.; Kolata, J. J.; Lawrence, C. C.; Pozzi, S. A.; Flaska, M.; Clarke, S. D.

    2011-12-13

    The response of large (4x6) deuterated liquid scintillators (up to 10 cm diameter by 15 cm) to neutrons in the energy range from 0.5 MeV to 20 MeV has been studied using several nuclear reactions, including d(d,n), and {sup 12}C(d,n){sup 13}N, at the University of Notre Dame FN tandem accelerator. The latter two reactions utilized 9 MeV and 16 MeV deuteron beams, including a pulsed beam that also permitted time-of-flight (ToF) measurements. Combining pulse-shape discrimination and (ToF) allows gating on specific neutron energy groups to determine the detector response to specific neutron energies. Newly-obtained and optimized pulse shape discrimination using digitized pulse analysis from these detectors will be presented in this paper. These measurements confirmed the ability of these detectors to provide useful neutron spectra without ToF.

  1. Optimization of Pulse Shape Discrimination of PROSPECT Liquid Scintillator Signals

    NASA Astrophysics Data System (ADS)

    Han, Ke; Prospect Collaboration

    2015-04-01

    PROSPECT, A Precision Oscillation and Spectrum Experiment, will use a segmented Li-6 doped liquid scintillator detector for precision measurement of the reactor anti-neutrino spectrum at the High Flux Isotope Reactor at Oak Ridge National Laboratory. PROSPECT also searches for very short baseline neutrino oscillation, an indication of the existence of eV-scale sterile neutrinos. Pulse shape analysis of the prompt anti-neutino signal and delayed neutron capture on Li-6 signal will greatly suppress background sources such as fast neutrons and accidental coincidence of gammas. In this talk, I will discuss different pulse shape parameters used in PROSPECT prototype detectors and multivariate optimization of event selection cuts based on those parameters.

  2. High speed liquid scintillators for optical fiber applications

    NASA Astrophysics Data System (ADS)

    Lutz, S. S.; Franks, L. A.; Flournoy, J. M.; Lyons, P. B.

    1982-02-01

    Three liquid scintillator systems have been developed which offer the long-wavelength emission and short impulse response required for long-path, wide-bandwidth, optical fiber applications. Binary liquid systems employing the dye Coumarin 540-A are reported with impulse responses (fwhm) of 1.4 ns at 570 nm in benzyl alcohol and 350 ps at 525 nm in pseudo-cumene. Addition of 10 g/ℓ of 4,4‴ di(2-butyloctoxy-1)-p-quaterphenyl substantially improves performance of the latter system at low Coumarin 540 concentrations. A third system using the dye Nile Blue nitrate has a fwhm of less than 1 ns at 700 nm when simultaneously heated and quenched with phenol.

  3. Radiation effects on wavelength shifting fibers used with liquid scintillators

    SciTech Connect

    Ables, E.; Armatis, P.; Bionta, R.; Britt, H.; Clamp, O.; Cochran, C.; Graham, G.; Lowry, M.; Masquelier, D.; Skulina, K.; Wuest, C.; Bolen, L.; Cremaldi, L.; Harper, S.; Moore, B.; Quinn, B.; Reidy, J.; Zhou, J.; Croft, L.; Piercey, R.; Bauer, M.L.; Bishop, B.L.; Cohn, H.O.; Gabriel, T.A.; Gordeev, A.; Kamyshkov, Yu.; Lillei, R.A.; Plasil, F.; Read, K.; Rennich, M.J.; Savin, A.; Shmakov, K.; Singeltary, B.H.; Smirnov, A.; Tarkovsky, E.; Todd, R.A.; Young, K.G.; Berridge, S.C.; Bugg, W.M.; Handler, T.; Pisharody, M.; Aziz, T.; Banerjee, S.; Chendvankar, S.R.; Ganfuli, S.N.; Malhotra, K.; Mazumdar, K.; Raghavan, R.; Shankar, K.; Sudhakar, K.; Tonwar, S.C.; Arefiev, A.; Baranov, O.; Efremenko, Yu.; Gorodkov, Yu.; Malinin, A.; Nikitin, A.; Markizov, V.; Onoprienko, D.; Rozjkov, A.; Shoumilov, E.; Shoutko, V.

    1992-06-01

    The chemical compatibility of wave length shifting fibers with several liquid scintillators has been investigated. Based on systematic characterization of the behavior of the BC-517 family, a time of life of 70{endash}450 years was estimated for the polystyrene based wave length shifting fiber in BC-517P scintillator. WLS (wavelength shifting) fibers irradiated continuously to a dose of 6.4 Mrads (at .377Mrad/hr of Co-60) were observed to decrease from 100% to 5% transmission; however, after 100 hours of annealing, the transmission increased to 90%. Geant simulations of a simplified calorimeter located behind a BaF2 electromagnetic calorimeter for the GEM detector at SSC showed that the constant term in the energy resolution will change from 1.8 to 2.9 in five years at 10{star}{star}34 luminosity for psuedorapidity eta=3.

  4. Background characterization of an ultra-low background liquid scintillation counter

    DOE PAGES

    Erchinger, J. L.; Orrell, John L.; Aalseth, C. E.; ...

    2017-01-26

    The Ultra-Low Background Liquid Scintillation Counter developed by Pacific Northwest National Laboratory will expand the application of liquid scintillation counting by enabling lower detection limits and smaller sample volumes. By reducing the overall count rate of the background environment approximately 2 orders of magnitude below that of commercially available systems, backgrounds on the order of tens of counts per day over an energy range of ~3–3600 keV can be realized. Finally, initial test results of the ULB LSC show promising results for ultra-low background detection with liquid scintillation counting.

  5. Determination of 125I impurities in [ 123I]labelled radiopharmaceuticals, by liquid scintillation counting: sensitivity of the method

    NASA Astrophysics Data System (ADS)

    Bonardi, M. L.; Birattari, C.; Groppi, F.; Gini, L.; Mainardi, C. H. S.; Menapace, E.

    2004-01-01

    Iodine-125 is a radioisotopic impurity "always" present in iodine-123, produced by nuclear reactions induced either on natural or "highly" enriched targets. Liquid scintillation counting is a very sensitive tool to determine low level impurities of both low energy electrons and photons in aqueous and organic solutions of radiopharmaceutical compounds. With this technique it was possible to determine, on commercial samples, that the content of 125I was of the order of not less than 0.1% for 123I produced via 127I(p,5n) reactions and not less than 0.01% for 123I produced via "highly" enriched 124Xe(p,X) nuclear reactions.

  6. A bottle crusher, built to facilitate the disposal of liquid scintillation waste.

    PubMed

    Presswell, D; Bailey, M R

    1984-01-01

    A crusher for liquid scintillation bottles, designed to dispose of 2500 bottles per week, employs a revolving drum and sump for collection of spent fluid. Air extraction maintains safe levels by removing flammable vapours.

  7. Study of absorption and re-emission processes in a ternary liquid scintillation system

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Lin; Li, Xiao-Bo; Zheng, Dong; Cao, Jun; Wen, Liang-Jian; Wang, Nai-Yan

    2010-11-01

    Liquid scintillators are widely used as the neutrino target in neutrino experiments. The absorption and emission of different components of a ternary liquid scintillator (Linear Alkyl Benzene (LAB) as the solvent, 2,5-diphenyloxazole (PPO) as the fluor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as wavelength shifter) are studied. It is shown that the absorption of this liquid scintillator is dominant by LAB and PPO at wavelengths less than 349 nm, and the absorption by bis-MSB becomes prevalent at the wavelength larger than 349 nm. The fluorescence quantum yields, which are the key parameters to model the absorption and re-emission processes in large liquid scintillation detectors, are measured.

  8. Biocomponent determination in vinegars with the help of 14C measured by liquid scintillation counting.

    PubMed

    Tudyka, Konrad; Pawlyta, Jacek

    2014-02-15

    This article presents a method of carbon extraction from vinegar used in preparation of liquid scintillation counting cocktails for measurements of low (14)C radioactivity. The presented method is relatively fast and can be used to produce liquid scintillation cocktails e.g., via benzene synthesis. In this work we present specific radiocarbon radioactivity determinations and based on them estimation of bio product content for five commercially available vinegars. All investigated vinegars are likely produced from plants in fermentation process.

  9. Fast range measurement of spot scanning proton beams using a volumetric liquid scintillator detector

    PubMed Central

    Hui, CheukKai; Robertson, Daniel; Alsanea, Fahed; Beddar, Sam

    2016-01-01

    Accurate confirmation and verification of the range of spot scanning proton beams is crucial for correct dose delivery. Current methods to measure proton beam range using ionization chambers are either time-consuming or result in measurements with poor spatial resolution. The large-volume liquid scintillator detector allows real-time measurements of the entire dose profile of a spot scanning proton beam. Thus, liquid scintillator detectors are an ideal tool for measuring the proton beam range for commissioning and quality assurance. However, optical artefacts may decrease the accuracy of measuring the proton beam range within the scintillator tank. The purpose of the current study was to 1) develop a geometric calibration system to accurately calculate physical distances within the liquid scintillator detector, taking into account optical artefacts; and 2) assess the accuracy, consistency, and robustness of proton beam range measurement using the liquid scintillator detector with our geometric calibration system. The range of the proton beam was measured with the calibrated liquid scintillator system and was compared to the nominal range. Measurements were made on three different days to evaluate the setup robustness from day to day, and three sets of measurements were made for each day to evaluate the consistency from delivery to delivery. All proton beam ranges measured using the liquid scintillator system were within half a millimeter of the nominal range. The delivery-to-delivery standard deviation of the range measurement was 0.04 mm, and the day-to-day standard deviation was 0.10 mm. In addition to the accuracy and robustness demonstrated by these results when our geometric calibration system was used, the liquid scintillator system allowed the range of all 94 proton beams to be measured in just two deliveries, making the liquid scintillator detector a perfect tool for range measurement of spot scanning proton beams. PMID:27274863

  10. Characterization of a cubic EJ-309 liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Tomanin, A.; Paepen, J.; Schillebeeckx, P.; Wynants, R.; Nolte, R.; Lavietes, A.

    2014-08-01

    A cubic EJ-309 liquid scintillator of 10 cm width has been characterized for its response to γ-rays and neutrons. Response functions to γ-rays were measured with calibrated radionuclide γ-ray sources in the energy range from 400 keV to 6 MeV. Response functions for neutrons were obtained from measurements at the PTB Van de Graaff accelerator with quasi-monoenergetic neutron beams in the energy range from 500 keV to 2.7 MeV, and at the PTB cyclotron with time-of-flight (TOF) measurements in the energy range from 2.5 to 14 MeV. The light output and resolution functions for electrons and protons were derived by a least squares adjustment to experimental data using theoretical response functions determined with Monte Carlo simulations. The simulated response function for neutron was validated by results of measurements with an AmBe neutron source which was characterized for its total neutron intensity. The results indicate that the cubic EJ-309 detector is suitable for use in mixed γ-ray and neutron fields.

  11. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    SciTech Connect

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Orrell, John L.; Panisko, Mark E.; Warren, Glen A.; Wright, Michael E.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processing to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.

  12. Separating double-beta decay events from solar neutrino interactions in a kiloton-scale liquid scintillator detector by fast timing

    NASA Astrophysics Data System (ADS)

    Elagin, Andrey; Frisch, Henry J.; Naranjo, Brian; Ouellet, Jonathan; Winslow, Lindley; Wongjirad, Taritree

    2017-03-01

    We present a technique for separating nuclear double beta decay (ββ -decay) events from background neutrino interactions due to 8B decays in the sun. This background becomes dominant in a kiloton-scale liquid-scintillator detector deep underground and is usually considered as irreducible due to an overlap in deposited energy with the signal. However, electrons from 0 νββ -decay often exceed the Cherenkov threshold in liquid scintillator, producing photons that are prompt and correlated in direction with the initial electron direction. The use of large-area fast photodetectors allows some separation of these prompt photons from delayed isotropic scintillation light and, thus, the possibility of reconstructing the event topology. Using a simulation of a 6.5 m radius liquid scintillator detector with 100 ps resolution photodetectors, we show that a spherical harmonics analysis of early-arrival light can discriminate between 0 νββ -decay signal and 8B solar neutrino background events on a statistical basis. Good separation will require the development of a slow scintillator with a 5 ns risetime.

  13. Exploring detection of nuclearites in a large liquid scintillator neutrino detector

    NASA Astrophysics Data System (ADS)

    Guo, Wan-Lei; Xia, Cheng-Jun; Lin, Tao; Wang, Zhi-Min

    2017-01-01

    We take the JUNO experiment as an example to explore nuclearites in the future large liquid scintillator detector. Comparing to the previous calculations, the visible energy of nuclearites across the liquid scintillator will be reestimated for the liquid scintillator based detector. Then the JUNO sensitivities to the nuclearite flux are presented. It is found that the JUNO projected sensitivities can be better than 7.7 ×10-17 cm-2 s-1 sr-1 for the nuclearite mass 1 015 GeV ≤M ≤1 024 GeV and initial velocity 10-4≤β0≤10-1 with a 20 year running. Note that the JUNO will give the most stringent limits for downgoing nuclearites with 1.6 ×1 013 GeV ≤M ≤4.0 ×1 015 GeV and a typical galactic velocity β0=10-3.

  14. Timing properties and pulse shape discrimination of LAB-based liquid scintillator

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Bo; Xiao, Hua-Lin; Cao, Jun; Li, Jin; Ruan, Xi-Chao; Heng, Yue-Kun

    2011-11-01

    Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power.

  15. Retrospective Determination of Radon Exposure to Glass Using Liquid Scintillation Counting

    NASA Astrophysics Data System (ADS)

    Jones, Rodger Ferguson

    A method is introduced whereby glass samples exposed to known levels of ^{222}Rn are analyzed for ^{210}Pb build-up by liquid scintillation counting. This retrospective radon detector relies on the phenomena of recoil of the decaying nuclide on emission of an alpha -particle into the substrate of the glass. Simple liquid scintillation counting is then used to measure the activity of the ^{210}Pb. The surface of the glass containing the decay products is etched with hydrofluoric acid and then added to a scintillant. The method is useful for exposures up from around 250 PCi.l ^{-1}-years giving a correlation of.97 in a controlled laboratory experiment.

  16. A study of liquid scintillator and fiber materials for use in a fiber calorimeter

    SciTech Connect

    Altice, P.P. Jr.

    1990-04-01

    This reports an investigation into the performance of selected scintillation oils and fiber materials to test their applicability in high energy, liquid scintillator calorimetry. Two scintillating oils, Bicron BC-517 and an oil mixed for the MACRO experiment, and two fiber materials, Teflon and GlassClad PS-252, were tested for the following properties: light yield, attenuation length and internal reflection angle. The results of these tests indicated that the scintillation oils and the fiber materials had an overall good performance with lower energies and would meet the requirements of liquid scintillator detection at SSC energies. 6 refs.

  17. Oxygen quenching in a LAB based liquid scintillator and the nitrogen bubbling model

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Lin; Deng, Jing-Shan; Wang, Nai-Yan

    2010-05-01

    The oxygen quenching effect in a Linear Alkl Benzene (LAB) based liquid scintillator (LAB as the solvent, 3 g/L 2, 5 diphe-nyloxazole (PPO) as the fluor and 15 mg/L p-bis-(o-methylstyryl)-benzene (bis-MSB) as the λ-shifter) is studied by measuring the light yield as a function of the nitrogen bubbling time. It is shown that the light yield of the fully purged liquid scintillator is increased by 11% at room temperature and the room atmospheric pressure. A simple nitrogen bubbling model is proposed to describe the relationship between the relative light yield (oxygen quenching factor) and the bubbling time.

  18. Liquid scintillators with near infrared emission based on organoboron conjugated polymers.

    PubMed

    Tanaka, Kazuo; Yanagida, Takayuki; Yamane, Honami; Hirose, Amane; Yoshii, Ryousuke; Chujo, Yoshiki

    2015-11-15

    The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region.

  19. DETECTORS AND EXPERIMENTAL METHODS: Measurement of the neutron spectrum of a Pu-C source with a liquid scintillator

    NASA Astrophysics Data System (ADS)

    Wang, Song-Lin; Huang, Han-Xiong; Ruan, Xi-Chao; Li, Xia; Bao, Jie; Nie, Yang-Bo; Zhong, Qi-Ping; Zhou, Zu-Ying; Kong, Xiang-Zhong

    2009-05-01

    The neutron response function for a BC501A liquid scintillator (LS) has been measured using a series of monoenergetic neutrons produced by the p-T reaction. The proton energies were chosen such as to produce neutrons in the energy range of 1 to 20 MeV. The principles of the technique of unfolding a neutron energy spectrum by using the measured neutron response function and the measured Pulse Height (PH) spectrum is briefly described. The PH spectrum of neutrons from the Pu-C source, which will be used for the calibration of the reactor antineutrino detectors for the Daya Bay neutrino experiment, was measured and analyzed to get the neutron energy spectrum. Simultaneously the neutron energy spectrum of an Am-Be source was measured and compared with other measurements as a check of the result for the Pu-C source. Finally, an error analysis and a discussion of the results are given.

  20. Absolute measurement of anti. nu. /sub p/ for /sup 252/Cf using the ORNL large liquid scintillator neutron detector

    SciTech Connect

    Spencer, R.R.; Gwin, R.; Ingle, R.

    1981-08-01

    The ORNL large liquid scintillator detector was used in a precise determination of anti ..nu../sub p/, the number of neutrons emitted promptly, for spontaneous fission of /sup 252/Cf. Measurements of the detector efficiency over a broad energy region were made by means of a proton-recoil technique employing the ORELA white neutron source. Monte Carlo calculation of the detector efficiency for a spectrum representative of /sup 252/Cf fission neutrons was calibrated with these elaborate measurements. The unusually flat response of the neutron detector resulted in elimination of several known sources of error. Experimental measurement was coupled with calculational methods to correct for other known errors. These measurements lead to an unusually small estimated uncertainty of 0.2% in the value obtained, anti ..nu../sub p/ = 3.773 +- 0.007.

  1. Development of a low background liquid scintillation counter for a shallow underground laboratory

    SciTech Connect

    Erchinger, Jennifer L.; Aalseth, Craig E.; Bernacki, Bruce E.; Douglas, Matthew; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Orrell, John L.; Panisko, Mark E.; Warren, Glen A.; Williams, Russell O.; Wright, Michael E.

    2015-08-20

    Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of lowconcentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., B, a) emitting isotopes with no (orvery weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately-designed shield located in a clean underground laboratory provides the opportunity for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35-meter water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the instrumental shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements.

  2. Design optimization of liquid scintillator cosmic-ray veto detector with BBQ shifter

    SciTech Connect

    Kruse, H.W.; Egdorf, S.S.; Simmons, D.F.

    1981-10-01

    Certain design characteristics of a liquid scintillator detector for charged cosmic particles, have been studied. These include evaluation of scintillator emission spectra, absorption in various thicknesses of BBQ shifter bars and effective transmission in long lengths of BBQ acrylic. For our BBQ sample, 12.5 mm thick with semicircular shape, the shifted light was transmitted with 2.0 m absorption length.

  3. Development of a Position Sensitive Liquid Scintillator Bar-type Detector

    NASA Astrophysics Data System (ADS)

    Atencio, Ariella; Cizewski, Jolie; Walter, David; Chipps, Kelly; Febbraro, Michael; Pain, Steven; Smith, Karl; Thornsberry, Cory

    2016-09-01

    The ability to detect neutrons is important for both nuclear reactions and beta decay. Liquid scintillators have the useful property of Pulse Shape Discrimination(PSD), which can be used to separate gamma-ray-induced events when the scintillators are used as neutron detectors. Because of their ability to apply PSD, these liquid scintillators will have many applications in neutron detection, such as a recent experiment conducted at the University of Notre Dame. The liquid scintillators use a xylene based liquid made in-house at Oak Ridge National Laboratory. Naphthalene in the liquid scintillator improves the light output properties of the scintillator. An optimized method for the purification of naphthalene will be discussed as well as the first implementation of an array of these detectors. This work is supported in part by the NSF and the U.S. DOE. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy.

  4. Separation and Purification and Beta Liquid Scintillation Analysis of Sm-151 in Savannah River Site and Hanford Site DOE High Level Waste

    SciTech Connect

    Dewberry, R.A.

    2001-02-13

    This paper describes development work to obtain a product phase of Sm-151 pure of any other radioactive species so that it can be determined in US Department of Energy high level liquid waste and low level solid waste by liquid scintillation {beta}-spectroscopy. The technique provides separation from {mu}Ci/ml levels of Cs-137, Pu alpha and Pu-241 {beta}-decay activity, and Sr-90/Y-90 activity. The separation technique is also demonstrated to be useful for the determination of Pm-147.

  5. SU-E-T-641: Proton Range Measurements Using a Geometrically Calibrated Liquid Scintillator Detector

    SciTech Connect

    Hui, C; Robertson, D; Alsanea, F; Beddar, S

    2015-06-15

    Purpose: The purpose of this work is to develop a geometric calibration method to accurately calculate physical distances within a liquid scintillator detector and to assess the accuracy, consistency, and robustness of proton beam range measurements when using a liquid scintillator detector system with the proposed geometric calibration process. Methods: We developed a geometric calibration procedure to accurately convert pixel locations in the camera frame into physical locations in the scintillator frame. To ensure accuracy, the geometric calibration was performed before each experiment. The liquid scintillator was irradiated with spot scanning proton beams of 94 energies in two deliveries. A CCD camera was used to capture the two-dimensional scintillation light profile of each of the proton energies. An algorithm was developed to automatically calculate the proton range from the acquired images. The measured range was compared to the nominal range to assess the accuracy of the detector. To evaluate the robustness of the detector between each setup, the experiments were repeated on three different days. To evaluate the consistency of the measurements between deliveries, three sets of measurements were acquired for each experiment. Results: Using this geometric calibration procedure, the proton beam ranges measured using the liquid scintillator system were all within 0.3mm of the nominal range. The average difference between the measured and nominal ranges was −0.20mm. The delivery-to-delivery standard deviation of the proton range measurement was 0.04mm, and the setup-to-setup standard deviation of the measurement was 0.10mm. Conclusion: The liquid scintillator system can measure the range of all 94 beams in just two deliveries. With the proposed geometric calibration, it can measure proton range with sub-millimeter accuracy, and the measurements were shown to be consistent between deliveries and setups. Therefore, we conclude that the liquid scintillator

  6. Searching for dark matter annihilation to monoenergetic neutrinos with liquid scintillation detectors

    SciTech Connect

    Kumar, J.; Sandick, P.

    2015-06-22

    We consider searches for dark matter annihilation to monoenergetic neutrinos in the core of the Sun. We find that liquid scintillation neutrino detectors have enhanced sensitivity to this class of dark matter models, due to the energy and angular resolution possible for electron neutrinos and antineutrinos that scatter via charged-current interactions. In particular we find that KamLAND, utilizing existing data, could provide better sensitivity to such models than any current direct detection experiment for m{sub X}≲15 Gev. KamLAND’s sensitivity is signal-limited, and future liquid scintillation or liquid argon detectors with similar energy and angular resolution, but with larger exposure, will provide significantly better sensitivity. These detectors may be particularly powerful probes of dark matter with mass O(10) GeV.

  7. Searching for dark matter annihilation to monoenergetic neutrinos with liquid scintillation detectors

    SciTech Connect

    Kumar, J.; Sandick, P. E-mail: sandick@physics.utah.edu

    2015-06-01

    We consider searches for dark matter annihilation to monoenergetic neutrinos in the core of the Sun. We find that liquid scintillation neutrino detectors have enhanced sensitivity to this class of dark matter models, due to the energy and angular resolution possible for electron neutrinos and antineutrinos that scatter via charged-current interactions. In particular we find that KamLAND, utilizing existing data, could provide better sensitivity to such models than any current direct detection experiment for m{sub X} ∼< 15 Gev. KamLAND's sensitivity is signal-limited, and future liquid scintillation or liquid argon detectors with similar energy and angular resolution, but with larger exposure, will provide significantly better sensitivity. These detectors may be particularly powerful probes of dark matter with mass O(10) GeV.

  8. N-(2-Ethylhexyl)carbazole: A New Fluorophore Highly Suitable as a Monomolecular Liquid Scintillator.

    PubMed

    Montbarbon, Eva; Sguerra, Fabien; Bertrand, Guillaume H V; Magnier, Élodie; Coulon, Romain; Pansu, Robert B; Hamel, Matthieu

    2016-08-16

    The synthesis, photophysical properties, and applications in scintillation counting of N-(2-ethylhexyl)carbazole (EHCz) are reported. This molecule displays all of the required characteristics for an efficient liquid scintillator (emission wavelength, scintillation yield), and can be used without any extra fluorophores. Thus, its scintillation properties are discussed, as well as its fast neutron/gamma discrimination. For the latter application, the material is compared with the traditional liquid scintillator BC-501 A, and other liquid fluorescent molecules classically used as scintillation solvents, such as xylene, pseudocumene (PC), linear alkylbenzenes (LAB), diisopropylnaphthalene (DIN), 1-methylnaphthalene (1-MeNapht), and 4-isopropylbiphenyl (iPrBiph). For the first time, an excimeric form of a molecule has been advantageously used in scintillation counting. A moderate discrimination between fast neutrons and gamma rays was observed in bulk EHCz, with an apparent neutron/gamma discrimination potential half of that of BC-501 A.

  9. Feasibility study of a gadolinium-loaded DIN-based liquid scintillator

    NASA Astrophysics Data System (ADS)

    Song, Sook Hyung; Joo, Kyung Kwang; So, Sun Heang; Yeo, In Sung

    2013-09-01

    DIN (di-isopropylnaphthalene) has a high flashpoint and can be used as a base solvent in liquid scintillators. It reduces safety concerns to humans and the environment. (PPO, 3 g/ ℓ) and (bis-MSB, 30 mg/ ℓ) were dissolved to formulate a DIN-based liquid scintillator (LS). A gadolinium (Gd) complex with carboxylic acid was synthesized using a neutralized chemical reaction. Then, 0.1% Gd was loaded into the LS. This Gd-loaded DIN-based LS using a solvent-solvent extraction method is the first attempt at a LS. In this study, we investigated the physical and the optical properties of this LS, and we will summarize all the characteristics of the Gd-loaded DIN-based LS.

  10. Non-toxic liquid scintillators with high light output based on phenyl-substituted siloxanes

    NASA Astrophysics Data System (ADS)

    Dalla Palma, M.; Carturan, S. M.; Degerlier, M.; Marchi, T.; Cinausero, M.; Gramegna, F.; Quaranta, A.

    2015-04-01

    The work describes the development of a new class of liquid scintillators based on polysiloxane liquid compounds. These materials are characterized by low toxicity, chemical inertness, very low volatility and low flammability, allowing their use without concerns even at high temperatures in vacuum. In this view different polysiloxane based liquids have been tested, with variable content and distribution of phenyl lateral substituents and added with suitable dyes, namely 2,5-diphenyloxazole (PPO) and Lumogen Violet (LV). Absorption and fluorescence spectroscopy have been used in order to study the emission feature of the various compounds and to investigate the spectral matching between siloxane solvents and dissolved primary dyes. Scintillation efficiency towards 60Co and 137Cs gamma rays, relative to commercial liquid scintillator (EJ-309), has been measured and the results have been related to the energy transfer and energy migration mechanism from monomer and excimer forming sites in liquid siloxanes.

  11. Structural design of a high energy particle detector using liquid scintillator

    SciTech Connect

    Berg, Timothy John; /Minnesota U.

    1997-02-01

    This thesis presents a design for a 10,000 ton liquid scintillator neutrino detector being considered for the MINOS project at Fermilab. Details of designing, manufacturing, and assembling the active detector components are presented. The detector consists of 1080 magnetized steel absorber planes alternating with 1080 active detector planes. Each active plane is made up of plastic extrusions divided into nearly 400 cells for positional resolution. Life tests on the plastic extrusions determine their feasibility for containing the scintillator. The extrusions are sealed at the bottom, filled with liquid scintillator, and have an optical fiber running the entire length of each cell. The fibers terminate at the top of each extrusion in a manifold. An optical-fiber-light-guide connects the fibers in each manifold to a photo-detector. The photo-detector converts the light signals from the scintillator and optical fibers into electrical impulses for computer analysis.

  12. Performance of a prototype active veto system using liquid scintillator for a dark matter search experiment

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Adhikari, P.; Adhikari, G.; Oh, S. Y.; Kim, N. Y.; Kim, Y. D.; Ha, C.; Park, K. S.; Lee, H. S.; Jeon, E. J.

    2017-04-01

    We report the performance of an active veto system using a liquid scintillator with NaI(Tl) crystals for use in a dark matter search experiment. When a NaI(Tl) crystal is immersed in the prototype detector, the detector tags 48% of the internal 40K background in the 0-10 keV energy region. We also determined the tagging efficiency for events at 6-20 keV as 26.5±1.7% of the total events, which corresponds to 0.76±0.04 events/keV/kg/day. According to a simulation, approximately 60% of the background events from U, Th, and K radioisotopes in photomultiplier tubes are tagged at energies of 0-10 keV. Full shielding with a 40-cm-thick liquid scintillator can increase the tagging efficiency for both the internal 40K and external background to approximately 80%.

  13. The research program of the Liquid Scintillation Detector (LSD) in the Mont Blanc Laboratory

    NASA Technical Reports Server (NTRS)

    Dadykin, V. L.; Yakushev, V. F.; Korchagin, P. V.; Korchagin, V. B.; Malgin, A. S.; Ryassny, F. G.; Ryazhskaya, O. G.; Talochkin, V. P.; Zatsepin, G. T.; Badino, G.

    1985-01-01

    A massive (90 tons) liquid scintillation detector (LSD) has been running since October 1984 in the Mont Blanc Laboratory at a depth of 5,200 hg/sq cm of standard rock. The research program of the experiment covers a variety of topics in particle physics and astrophysics. The performance of the detector, the main fields of research are presented and the preliminary results are discussed.

  14. Evaluation of the ultrasonic method for solubilizing Daphnia magna before liquid scintillation counting

    SciTech Connect

    Dauble, D.D.; Hanf, R.W. Jr.; Carlile, D.W.

    1984-11-01

    Adult Daphnia magna were exposed to /sup 14/C-labeled phenol and tissues analyzed for /sup 14/C uptake by three methods: (1) tissue solubilizer, (2) tissue solubilizer plus sonication, and (3) sonication alone. Analysis by liquid scintillation counting revealed that measurements of total activity among treatments were not significantly different (..cap alpha.. less than or equal to 0.10) at two count levels. Sonicated samples showed less variation than tissue samples that were solubilized. 5 references, 1 table.

  15. Preliminary study of the inclusion of Water-based Liquid Scintillator in the WATCHMAN Detector

    SciTech Connect

    Sweany, Melinda; Feng, Patrick L.; Marleau, Peter

    2015-02-01

    This note summarizes an effort to characterize the effects of adding water-based liquid scintillator to the WATCHMAN detector. A detector model was built in the Geant4 Monte Carlo toolkit, and the position reconstruction of positrons within the detector was compared with and without scintillator. This study highlights the need for further modeling studies and small-scale experimental studies before inclusion into a large-scale detector, as the benefits compared to the associated costs are unclear.

  16. A liquid scintillator neutron multiplicity counter for assaying special nuclear material

    NASA Astrophysics Data System (ADS)

    Sheets, Steven; Glenn, A. M.; Kerr, P. L.; Kim, K. S.; Nakae, L. F.; Newby, R. J.; Prasad, M. K.; Snyderman, N. J.; Verbeke, J. M.; Wurtz, R. E.

    2010-11-01

    The use of 3-He detectors to infer the mass of a fissioning source from the statistical properties of the neutron multiplicity distribution is a mature technology. We describe a new neutron multiplicity counter using the fast timing of liquid scintillators for the non-destructive assay of special nuclear materials (SNM). A liquid scintillator multiplicity counter (LSMC) that detects fast fission neutrons makes possible a coincidence gate on the order of nanoseconds (vs. tens of microseconds for thermal counters). This allows a LSMC to assay SNM in high rate environments where the fission chains would overlap for a thermal counter. This includes items such as impure Pu with high (α,n) rates as well as low mass HEU where an active interrogation source is needed. Furthermore, the time-of-flight of correlated n-γ pairs allows the LSMC to act as an imager of SNM. We report on the development of a liquid scintillator multiplicity counter at Lawrence Livermore National Laboratory. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Neutron emission measurement at the HL-2A tokamak device with a liquid scintillation detector

    SciTech Connect

    Xie, Xufei; Chen, Zhongjing; Peng, Xingyu; Yuan, Xi; Zhang, Xing; Cui, Zhiqiang; Du, Tengfei; Hu, Zhimeng; Li, Tao; Fan, Tieshuan Chen, Jinxiang; Li, Xiangqing; Zhang, Guohui; Gorini, Giuseppe; Yuan, Guoliang; Yang, Jinwei; Yang, Qingwei

    2014-10-15

    Neutron emission measurement at the HL-2A tokamak device with a liquid scintillation detector is described. The detector was placed at a location with little structure material in the field of view, and equipped with a gain monitoring system which could provide the possibility to evaluate the gain variation as well as to correct for the detector response. Time trace of the neutron emissivity was obtained and it was consistent with the result of a standard {sup 235}U fission chamber. During the plasma discharge the neutron yield could vary by about four orders of magnitude and the fluctuation of the detector gain was up to about 6%. Pulse height spectrum of the liquid scintillation detector was constructed and corrected with the aid of the gain monitoring system, and the correction was found to be essential for the assessment of the neutron energy spectrum. This successful measurement offered experience and confidence for the application of liquid scintillation detectors in the upcoming neutron camera system.

  18. Development of liquid scintillator containing a zirconium complex for neutrinoless double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoshiyuki; Moriyama, Shigetaka; Ogawa, Izumi

    2013-12-01

    An organic liquid scintillator containing a zirconium complex has been developed for a new neutrinoless double beta decay experiment. In order to produce a detector that has good energy resolution (4% at 2.5 MeV) and low background (0.1 counts/(t·year)) and that can monitor tons of target isotope, we chose a zirconium β-diketone complex having high solubility (over 10 wt%) in anisole. However, the absorption peak of the diketone ligand overlaps with the luminescence of anisole. Therefore, the light yield of the liquid scintillator decreases in proportion to the concentration of the complex. To avoid this problem, we synthesized a β-keto ester complex introducing -OC3H7 or -OC2H5 substituent groups in the β-diketone ligand, which shifted the absorption peak to around 245 nm, which is shorter than the emission peak of anisole (275 nm). However, the shift of the absorption peak depends on the polarity of the scintillation solvent. Therefore we must choose a low polarity solvent for the liquid scintillator. We also synthesized a Zr-ODZ complex, which has a high quantum yield (30%) and good emission wavelength (425 nm) with a solubility 5 wt% in benzonitrile. However, the absorption peak of the Zr-ODZ complex was around 240 nm. Therefore, it is better to use the scintillation solvent which has shorter luminescence wavelength than that of the aromatic solvent.

  19. Design of a Low Background Liquid Scintillation Counter for a Shallow Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Orrell, John; Aalseth, Craig; Bernacki, Bruce; Douglas, Matt; Erchinger, Jennifer; Fuller, Erin; Keillor, Martin; Morley, Shannon; Mullen, Crystal; Panisko, Mark; Shaff, Sarah; Warren, Glen; Wright, Michael

    2014-09-01

    Pacific Northwest National Laboratory operates a 35-meter water-equivalent overburden, shallow underground laboratory for measuring low-concentration radioactive isotopes in environmental samples collected. A low-background liquid scintillation counter is under development. Liquid scintillation counting is useful for beta-emitting isotopes without (or low) gamma ray yields. The high-efficiency beta detection in a liquid scintillation cocktail coupled with the low-background environment of a shield located in a clean underground laboratory provides for increased-sensitivity measurements to a range of isotopes. Benchmarked simulations have evaluated the shield design requirements to assess the background rate achievable. Assay of shield construction materials provides the basis for the shield design development. The low background design is informed by efforts in experimental design of neutrinoless double beta decay experiments, direct detection dark matter experiments, and low energy neutrino detection experiments. In this vein a background budget for the instrument is presented with attention to low background methods directed toward applications of nuclear measurements.

  20. Response of organic liquid scintillators to fast neutrons and gamma radiation

    NASA Astrophysics Data System (ADS)

    Hoertz, Paul G.; Mills, Karmann; Davis, Lynn; Baldasaro, Nicholas; Gupta, Vijay

    2013-03-01

    Liquid organic scintillators are cocktails of aromatic fluorophores in an aromatic solvent. They find widespread use in Liquid Scintillation Counters with applications in medical diagnostics as well as fundamental nuclear and particle physics. Ultima Gold™ XR, a commercially available organic liquid scintillator from Perkin Elmer, can be used in both aqueous and non-aqueous systems and is typically used for beta detection in medical diagnostics. Its performance under gamma radiation and neutron radiation is less well-characterized. Special and normal Ultima Gold™ XR liquid scintillators were exposed in separate experiments to fast neutrons and high energy photons from a nuclear reactor and to gamma rays from a Co-60 source. To perform the measurements in the radiation chamber, a custom light collection system consisting of a fiber optic cable, spectrometer and a diffuse reflecting optical cavity was fabricated. Advanced calibration procedures, traceable to NIST standards, were developed to determine photon fluxes and flux densities of the scintillators under ionizing radiation conditions. The scintillator emission spectra under gamma radiation from a Co-60 source and neutron radiation from a pool-type nuclear reactor were recorded and compared. Results on the spectrometer design and comparison of the spectra under different exposure are presented.

  1. Determination of (222)Rn absorption properties of polycarbonate foils by liquid scintillation counting. Application to (222)Rn measurements.

    PubMed

    Mitev, K; Cassette, P; Georgiev, S; Dimitrova, I; Sabot, B; Boshkova, T; Tartès, I; Pressyanov, D

    2016-03-01

    This work demonstrates that a Liquid Scintillation Counting (LSC) technique using a Triple to Double Coincidence Ratio counter with extending dead-time is very appropriate for the accurate measurement of (222)Rn activity absorbed in thin polycarbonate foils. It is demonstrated that using a toluene-based LS cocktail, which dissolves polycarbonates, the (222)Rn activity absorbed in thin Makrofol N foil can be determined with a relative standard uncertainty of about 0.7%. A LSC-based application of the methodology for determination of the diffusion length of (222)Rn in thin polycarbonate foils is proposed and the diffusion length of (222)Rn in Makrofol N (38.9±1.3µm) and the partition coefficient of (222)Rn in Makrofol N from air (112±12, at 20°C) and from water (272±17, at 21°C) are determined. Calibration of commercial LS spectrometers for (222)Rn measurements by LSC of thin polycarbonate foils is performed and the minimum detectable activities by this technique are estimated.

  2. Uncertainties in 63Ni and 55Fe determinations using liquid scintillation counting methods.

    PubMed

    Herranz, M; Idoeta, R; Abelairas, A; Legarda, F

    2012-09-01

    The implementation of (63)Ni and (55)Fe determination methods in an environmental laboratory implies their validation. In this process, the uncertainties related to these methods should be analysed. In this work, the expression of the uncertainty of the results obtained using separation methods followed by liquid scintillation counting is presented. This analysis includes the consideration of uncertainties coming from the different alternatives which these methods use as well as those which are specific to the individual laboratory and the competency of its operators in applying the standard ORISE (Oak Ridge Institute for Science and Education) methods.

  3. Analysis of radioactive strontium-90 in food by Čerenkov liquid scintillation counting.

    PubMed

    Pan, Jingjing; Emanuele, Kathryn; Maher, Eileen; Lin, Zhichao; Healey, Stephanie; Regan, Patrick

    2017-01-27

    A simple liquid scintillation counting method using DGA/TRU resins for removal of matrix/radiometric interferences, Čerenkov counting for measuring (90)Y, and EDXRF for quantifying Y recovery was validated for analyzing (90)Sr in various foods. Analysis of samples containing energetic β emitters required using TRU resin to avoid false detection and positive bias. Additional 34% increase in Y recovery was obtained by stirring the resin while eluting Y with H2C2O4. The method showed acceptable accuracy (±10%), precision (10%), and detectability (~0.09Bqkg(-1)).

  4. Characterizing Scitillation and Cherenkov Light Yield in Water-Based Liquid Scintillators

    NASA Astrophysics Data System (ADS)

    Land, B. J.; Caravaca, J.; Descamps, F. B.; Orebi Gann, G. D.

    2016-03-01

    The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light, which lends itself well to a broad program of neutrino physics. Here we explore the light yields and optical properties of WbLS materials in development for Theia (formerly ASDC) as measured in our benchtop Theia R&D at Berkeley Lab and extrapolate to larger detectors.

  5. The determination of low levels of cobalt-60 in environmental waters by liquid scintillation counting

    USGS Publications Warehouse

    Claassen, H.C.

    1970-01-01

    A method for determination of cobalt-60 in waters at levels greater than 0.5 pCi per sample is presented. A modification of the method may be used to analyze fluvial sediments and soils. After the cobalt has been separated, first as the hydroxide and then as the thiocyanate complex in methyl isobutyl ketone, it is counted in a liquid scintillation system at 80% efficiency. Separation factors achieved for six isotopes are generally greater than 2,000. The time for a single analysis, exclusive of the counting and evaporation operations, is about 2 h. ?? 1970.

  6. TDCR and CIEMAT/NIST Liquid Scintillation Methods applied to the Radionuclide Metrology

    NASA Astrophysics Data System (ADS)

    da Cruz, P. A. L.; da Silva, C. J.; Iwahara, A.; Loureiro, J. S.; De Oliveira, A. E.; Tauhata, L.; Lopes, R. T.

    2016-07-01

    This work presents TDCR and CIEMAT/NIST methods of liquid scintillation implemented in National Institutes of Metrology for activity standardization of radionuclides, which decay by beta emission and electron capture. The computer codes used to calculate the detection efficiency take into account: decay schemes, beta decay theory, quenching parameter evaluation, Poisson statistic model and Monte Carlo simulation for photon and particle interactions in the detection system. Measurements were performed for pure emitters 3H, 14C, 99Tc and for 68Ge/68Ga which decay by electron capture and positron emission, with uncertainties smaller than 1% (k = 1).

  7. Comparison of (14)C liquid scintillation counting at NIST and NRC Canada.

    PubMed

    Bergeron, Denis E; Galea, Raphael; Laureano-Pérez, Lizbeth; Zimmerman, Brian E

    2016-03-01

    An informal bilateral comparison of (14)C liquid scintillation (LS) counting at the National Research Council of Canada (NRC) and the National Institute of Standards and Technology (NIST) has been completed. Two solutions, one containing (14)C-labeled sodium benzoate and one containing (14)C-labeled n-hexadecane, were measured at both laboratories. Despite observed LS cocktail instabilities, the two laboratories achieved accord in their standardizations of both solutions. At the conclusion of the comparison, the beta spectrum used for efficiency calculations was identified as inadequate and the data were reanalyzed with different inputs, improving accord.

  8. Neutron detection in a high gamma ray background with liquid scintillators

    SciTech Connect

    Stevanato, L.; Cester, D.; Viesti, G.; Nebbia, G.

    2013-04-19

    The capability of liquid scintillator (namely 2'' Multiplication-Sign 2'' cells of EJ301 and EJ309) of detecting neutrons in a very high gamma ray background is explored. A weak {sup 252}Cf source has been detected in a high {sup 137}Cs gamma ray background corresponding to a dose rate of 100 {mu}Sv/h with probability of detection in compliance with IEC requirements for hand held instruments. Tests were performed with new generation of CAEN digitizers, in particular the V1720 (8 Channel 12bit 250 MS/s) one.

  9. Novel determination of protein, fat, and lactose of milk by liquid scintillation counter

    SciTech Connect

    Noble, R.C.; Shand, J.H.; West, I.G.

    1981-01-01

    A method for routine determination of protein, fat, and lactose contents of milk is based on the ability of a scintillation counter to measure coloration or opalescence through attenuation of photons emitted from sealed miniature carbon-14 and hydrogen-3 radioactive standards. A series of simplified and accurate analytical procedures enable full advantage to be taken of the automatic facilities on the modern liquid scintillation counter. The methods provide several advantages over existing procedures. Accuracy of quantification was high as assessed by comparing the results with those derived by recommended Kjeldahl, Gerber, and colorimetric procedures for protein, fat, and lactose determinations, respectively.

  10. Neutron-gamma discrimination employing pattern recognition of the signal from liquid scintillator

    NASA Astrophysics Data System (ADS)

    Kamada, Kohji; Enokido, Uhji; Ogawa, Seiji

    1999-05-01

    A pattern recognition method was applied to the neutron-gamma discrimination of the pulses from the liquid scintillator, NE-213. The circuit for the discrimination is composed of A/D converter, fast SCA, memory control circuit, two digital delay lines and two buffer memories. All components are packed on a small circuit board and are installed into a personal computer. Experiments using a weak 252Cf n-γ source were undertaken to test the feasibility of the circuit. The circuit is of very easy adjustment and, at the same time, of very economical price when compared with usual discrimination circuits, such as the TAC system.

  11. Validation of a procedure for the analysis of (226)Ra in naturally occurring radioactive materials using a liquid scintillation counter.

    PubMed

    Kim, Hyuncheol; Jung, Yoonhee; Ji, Young-Yong; Lim, Jong-Myung; Chung, Kun Ho; Kang, Mun Ja

    2017-01-01

    An analytical procedure for detecting (226)Ra in naturally occurring radioactive materials (NORMs) using a liquid scintillation counter (LSC) was developed and validated with reference materials (zircon matrix, bauxite matrix, coal fly ash, and phosphogypsum) that represent typical NORMs. The (226)Ra was released from samples by a fusion method and was separated using sulfate-coprecipitation. Next, a (222)Rn-emanation technique was applied for the determination of (226)Ra. The counting efficiency was 238 ± 8% with glass vials. The recovery for the reference materials was 80 ± 11%. The linearity of the method was tested with different masses of zircon matrix reference materials. Using 15 types of real NORMs, including raw materials and by-products, this LSC method was compared with γ-spectrometry, which had already been validated for (226)Ra analysis. The correlation coefficient for the results from the LSC method and γ-spectrometry was 0.993 ± 0.058.

  12. Digital processing of signals arising from organic liquid scintillators for applications in the mixed-field assessment of nuclear threats

    NASA Astrophysics Data System (ADS)

    Aspinall, M. D.; Joyce, M. J.; Mackin, R. O.; Jarrah, Z.; Peyton, A. J.

    2008-10-01

    The nuclear aspect of the CBRN* threat is often divided amongst radiological substances posing no criticality risk, often referred to as 'dirty bomb' scenarios, and fissile threats. The latter have the theoretical potential for criticality excursion, resulting in elevated neutron fluxes in addition to the γ-ray component that is common to dirty bombs. Even in isolation of the highly-unlikely criticality scenario, fissile substances often exhibit radiation fields comprising a significant neutron component which can require considerably different counterterrorism measures and clean-up methodologies. The contrast between these threats can indicate important differences in the relative sophistication of the perpetrators and their organizations. Consequently, the detection and discrimination of nuclear perils in terms of mixed-field content is an important assay in combating terrorist threats. In this paper we report on the design and implementation of a fast digitizer and embedded-processor for onthe- fly signal processing of events from organic liquid scintillators. A digital technique, known as Pulse Gradient Analysis (PGA), has been developed at Lancaster University for the digital discrimination of neutrons and γ rays. PGA has been deployed on bespoke hardware and demonstrates remarkable improvement over analogue methods for the assay of mixed fields and the real-time discrimination of neutrons and γ rays. In this regard the technology constitutes an attractive and affordable means for the discrimination of the radiation fields arising from fissile threats and those from dirty bombs. Data are presented demonstrating this capability with sealed radioactive sources.

  13. Determination of specific activity of iron-55 by spectrophotometry and liquid scintillation counting with bathophenanthroline complex

    SciTech Connect

    Yonezawa, C.; Hoshi, M.; Tachikawa, E.

    1985-12-01

    A method for determining the macroscopic amount of iron and its radioactivity (/sup 55/Fe) in radioactive corrosion products was established with a single chemical procedure. The iron was first extracted into a liquid scintillator (2,5-diphenyloxazole-xylene) as an ion associate of iron bathophenanthroline (BPT) complex and perchlorate at pH 3-8, followed by measurement of its radioactivity by a liquid scintillation counter and its absorbance by a spectrophotometer. The absorption maximum and molar absorptivity (epsilon) of the complex were 535 nm and 22,000, respectively. The system conforms to Beer's law at concentrations of up to 30 ..mu..g of iron in 10 mL of organic phase. The counting efficiency of the extracted /sup 55/Fe was found to be 60%. Although /sup 60/Co is extracted into the PPO-xylene together with /sup 5/)2%Fe, it is separated from /sup 55/Fe by back extraction with 0.005 M ethylenediaminetetraacetic acid (pH 6.0) into the aqueous phase. The effects of other foreign elements and radionuclides were also examined. The proposed method was successfully applied to analysis of radioactive corrosion products. 21 references, 6 figures, 3 tables.

  14. Preliminary study of light yield dependence on LAB liquid scintillator composition

    NASA Astrophysics Data System (ADS)

    Ye, Xing-Chen; Yu, Bo-Xiang; Zhou, Xiang; Zhao, Li; Ding, Ya-Yun; Liu, Meng-Chao; Ding, Xue-Feng; Zhang, Xuan; Jie, Quan-Lin; Zhou, Li; Fang, Jian; Chen, Hai-Tao; Hu, Wei; Niu, Shun-Li; Yan, Jia-Qing; Zhao, Hang; Hong, Dao-Jin

    2015-09-01

    Liquid scintillator (LS) will be adopted as the detector material in JUNO (Jiangmen Underground Neutrino Observatory). The energy resolution requirement of JUNO is 3%, which has never previously been reached. To achieve this energy resolution, the light yield of liquid scintillator is an important factor. PPO (the fluor) and bis-MSB (the wavelength shifter) are the two main materials dissolved in LAB. To study the influence of these two materials on the transmission of scintillation photons in LS, 25 and 12 cm-long quartz vessels were used in a light yield experiment. LS samples with different concentration of PPO and bis-MSB were tested. At these lengths, the light yield growth is not obvious when the concentration of PPO is higher than 4 g/L. The influence from bis-MSB becomes insignificant when its concentration is higher than 8 mg/L. This result could provide some useful suggestions for the JUNO LS. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA10010500), National Natural Science Foundation of China (11390384) and CAS Center for Excellence in Particle Physics (CCEPP)

  15. Laboratory Studies of Lead Removal from Liquid Scintillator in Preparation for KamLAND's Low Background Phase

    SciTech Connect

    Keefer, Gregory

    2011-04-27

    The removal of Radon induced Lead from liquid scintillator was extensively studied in preparation for KamLAND's low background phase. This work presents the results from laboratory experiments performed at the University of Alabama and their implications for KamLAND and future low background experiments using carbon based liquid scintillator. It was observed that distillation was the most effective purification procedure and that one must consider a non-polar and non-ionic component of Lead in order to reach the levels of radio-purity required for these new class of ultra-low background experiments.

  16. Some applications of Photon/Electron-Rejecting Alpha Liquid Scintillation (PERALS) spectrometry to the assay of alpha emitters

    SciTech Connect

    McDowell, W.J.; Case, G.N.

    1988-01-01

    The combination of certain solvent extraction separations and a special kind of liquid scintillation detector and electronics designed for alpha spectrometry allows some highly accurate, yet simple determinations of alpha-emitting nuclides. Counting efficiency is 99.68% with backgrounds of <0.02 cpm. Energy resolution and peak position are sufficient for the identification of many nuclides. Rejection of interference from ..beta.. and ..gamma.. radiation is >99.95%. The Photon/Electron Rejecting Alpha Liquid Scintillation (PERALS) equipment is described and procedures for the separation and determination of uranium, thorium, plutonium, polonium, radium, and trivalent actinides are outlined. 25 refs., 10 figs., 1 tab.

  17. The light-yield response of a NE-213 liquid-scintillator detector measured using 2-6 MeV tagged neutrons

    NASA Astrophysics Data System (ADS)

    Scherzinger, J.; Al Jebali, R.; Annand, J. R. M.; Fissum, K. G.; Hall-Wilton, R.; Kanaki, K.; Lundin, M.; Nilsson, B.; Perrey, H.; Rosborg, A.; Svensson, H.

    2016-12-01

    The response of a NE-213 liquid-scintillator detector has been measured using tagged neutrons from 2 to 6 MeV originating from an Am/Be neutron source. The neutron energies were determined using the time-of-flight technique. Pulse-shape discrimination was employed to discern between gamma-rays and neutrons. The behavior of both the fast (35 ns) and the combined fast and slow (475 ns) components of the neutron scintillation-light pulses were studied. Three different prescriptions were used to relate the neutron maximum energy-transfer edges to the corresponding recoil-proton scintillation-light yields, and the results were compared to simulations. The overall normalizations of parametrizations which predict the fast or total light yield of the scintillation pulses were also tested. Our results agree with both existing data and existing parametrizations. We observe a clear sensitivity to the portion and length of the neutron scintillation-light pulse considered.

  18. An alpha–gamma coincidence spectrometer based on the Photon–Electron Rejecting Alpha Liquid Scintillation (PERALS®) system

    DOE PAGES

    Cadieux, J. R.; Fugate, G. A.; King, III, G. S.

    2015-02-07

    Here, an alpha–gamma coincidence spectrometer has been developed for the measurement of selected actinide isotopes in the presence of high beta/gamma fields. The system is based on a PERALS® liquid scintillation counter for beta/alpha discrimination and was successfully tested with both high purity germanium and bismuth germanate, gamma-ray detectors using conventional analog electronics.

  19. Analysis of 161Tb by radiochemical separation and liquid scintillation counting

    DOE PAGES

    Jiang, J.; Davies, A.; Arrigo, L.; ...

    2015-12-05

    The determination of 161Tb activity is problematic due to its very low fission yield, short half-life, and the complication of its gamma spectrum. At AWE, radiochemically purified 161Tb solution was measured on a PerkinElmer 1220 QuantulusTM Liquid Scintillation Spectrometer. Since there was no 161Tb certified standard solution available commercially, the counting efficiency was determined by the CIEMAT/NIST Efficiency Tracing method. The method was validated during a recent inter-laboratory comparison exercise involving the analysis of a uranium sample irradiated with thermal neutrons. Lastly, the measured 161Tb result was in excellent agreement with the result using gamma spectrometry and the result obtainedmore » by Pacific Northwest National Laboratory.« less

  20. Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2014-09-01

    The structural properties of three small gadolinium carboxylate complexes in three liquid scintillator solvents (pseudocumene, linear alkylbenzene, and phenyl xylylethane) were theoretically investigated using density functional theory (B3LYP/LC-RECP) and polarizable continuum model (PCM). The average interaction energy between gadolinium atom and carboxylate ligand (E(int)) and the energy difference of the highest singly occupied molecular orbital and lowest unoccupied molecular orbital (Δ(SL)) were calculated to evaluate and compare the relative stability of these complexes in solvents. The calculation results show that the larger (with a longer alkyl chain) gadolinium carboxylate complex has greater stability than the smaller one, while these gadolinium carboxylates in linear alkylbenzene were found to have greater stability than those in the other two solvents.

  1. Measurement of the optical performance of liquid scintillator filled Teflon-fiber tubes

    SciTech Connect

    Zaman, S.M.

    1990-05-01

    A study of the optical performance of a liquid scintillator (BC517L) filled Teflon tube of inner diameter 0.06 cm, was carried out using a rectangular array of those tubes. Two experimental methods, the cosmic ray telescope and the direct scouce method, were used in measuring the light output (in photoelectrons) and the light attenuation length through the scintillator. Results showed the light output from this array for minimum ionizing charged particles to ba a fraction of a photoelectron (about 10{sup {minus}2}) and the attenuation length to be about 20.0 cm, for high energy particles, suggesting a limiting value for the tube diameter of the Teflon that can be used in scintillating fiber calorimeters for high energy physics experiments. 18 refs., 16 figs., 4 tabs.

  2. Neutron detection in nuclear astrophysics experiments: study of organic liquid scintillators

    NASA Astrophysics Data System (ADS)

    Ciani, Giovanni Francesco

    2016-02-01

    In order to study the nuclear reaction 13 C(α,n)16 O, crucial for the nucleosynthesis of heavy nuclei (A>58), the LUNA collaboration at Laboratori Nazionali del Gran Sasso, is looking for the best neutron detector to use in the set up. One of the possibilities is to use detectors based on cell filled with Organic Liquid Scintillator BC501A. These detectors are sensible to fast neutron, but also to gamma rays. A Pulse Shape Discrimination process using the Zero Crossing method has been performed to select only signals from neutrons. Comparing the neutron spectra after the Pulse Shape Discrimination and the spectrum from a GEANT4 simulations, the efficiency of the BC501A, in function of the neutron energy and varying the light threshold, has been evaluated.

  3. Analysis of 161Tb by radiochemical separation and liquid scintillation counting

    SciTech Connect

    Jiang, J.; Davies, A.; Arrigo, L.; Friese, J.; Seiner, B. N.; Greenwood, L.; Finch, Z.

    2015-12-05

    The determination of 161Tb activity is problematic due to its very low fission yield, short half-life, and the complication of its gamma spectrum. At AWE, radiochemically purified 161Tb solution was measured on a PerkinElmer 1220 QuantulusTM Liquid Scintillation Spectrometer. Since there was no 161Tb certified standard solution available commercially, the counting efficiency was determined by the CIEMAT/NIST Efficiency Tracing method. The method was validated during a recent inter-laboratory comparison exercise involving the analysis of a uranium sample irradiated with thermal neutrons. Lastly, the measured 161Tb result was in excellent agreement with the result using gamma spectrometry and the result obtained by Pacific Northwest National Laboratory.

  4. Characterizing Scintillation and Cherenkov Light in Water-Based Liquid Scintillators

    NASA Astrophysics Data System (ADS)

    Land, Benjamin; Caravaca, Javier; Descamps, Freija; Orebi Gann, Gabriel

    2016-09-01

    The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light which lends itself well to a broad program of neutrino physics. Here we explore the light yields and time profiles of WbLS materials in development for Theia (formerly ASDC) as measured in CheSS: our bench-top Cherenkov and scintillation separation R&D project at Berkeley Lab. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.

  5. Suppression of gamma-ray sensitivity of liquid scintillators for neutron detection

    NASA Astrophysics Data System (ADS)

    Swiderski, L.; Moszyński, M.; Wolski, D.; Iwanowska, J.; Szczęśniak, T.; Schotanus, P.; Hurlbut, C.

    2011-10-01

    Methods to reduce gamma-ray sensitivity of a liquid scintillator EJ309 have been studied. Zero-crossing pulse shape discrimination method was used to separate events generated by neutron and gamma radiation between 60- keVee and 4 MeVee. The measurements were carried out under irradiation from an intense 137Cs source, yielding dose rate of 10 mR/h at the detector. A Pu-Be source was used to establish neutron integration window. Pile-up rejection (PUR) circuit was used to reduce gamma-ray induced events under irradiation from an intense gamma-ray source. Further, application of lead, tin and copper shields was done in order to decrease intrinsic gamma-neutron detection efficiency.

  6. Discriminating cosmic muons and radioactivity using a liquid scintillation fiber detector

    NASA Astrophysics Data System (ADS)

    Zhang, Y. P.; Xu, J. L.; Lu, H. Q.; Zhang, P.; Zhang, C. C.; Yang, C. G.

    2017-03-01

    In the case of underground experiments for neutrino physics or rare event searches, the background caused by cosmic muons contributes significantly and therefore must be identified and rejected. We proposed and optimized a new detector using liquid scintillator with wavelenghth-shifting fibers which can be employed as a veto detector for cosmic muons background rejection. From the prototype study, it has been found that the detector has good performances and is capable of discriminating between muons induced signals and environmental radiation background. Its muons detection efficiency is greater than 98%, and on average, 58 photo-electrons (p.e.) are collected when a muon passes through the detector. To optimize the design and enhance the collection of light, the reflectivity of the coating materials has been studied in detail. A Monte Carlo simulation of the detector has been developed and compared to the performed measurements showing a good agreement between data and simulation results.

  7. A new gadolinium-loaded liquid scintillator for reactor neutrino detection

    NASA Astrophysics Data System (ADS)

    Ding, Yayun; Zhang, Zhiyong; Liu, Jinchang; Wang, Zhimin; Zhou, Pengju; Zhao, Yuliang

    2008-01-01

    A high flash point, low toxicity gadolinium-loaded liquid scintillator (Gd-LS) has been developed for the detection of reactor neutrino. Carboxylic acid 3,5,5-trimethylhexanoic acid is used as complexing ligand to form organo-complex with gadolinium chloride, and 2,5-diphenyloxazole (PPO), and 1,4-bis[2-methylstyryl]benzene (bis-MSB) are used as primary fluor and wavelength shifter, respectively. The scintillator base is linear alkyl benzene (LAB). The Gd-LS prepared with such recipe has long attenuation length, high light yield and long-term stability. Eight hundred liters of Gd-LS (1 g/L Gd) was synthesized and tested in a prototype detector at Institute of High Energy Physics. Preliminary results of the obviously peaks corresponding to neutron captured by H and Gd give an additional evidence that such Gd-LS are very promising for anti-neutrino detection.

  8. Development and Characterization of 6Li-doped Liquid Scintillator Detectors for PROSPECT

    NASA Astrophysics Data System (ADS)

    Gaison, Jeremy; Prospect Collaboration

    2016-09-01

    PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, is a phased reactor antineutrino experiment designed to search for eV-scale sterile neutrinos via short-baseline neutrino oscillations and to make a precision measurement of the 235U reactor antineutrino spectrum. A multi-ton, optically segmented detector will be deployed at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) to measure the reactor spectrum at baselines ranging from 7-12m. A two-segment detector prototype with 50 liters of active liquid scintillator target has been built to verify the detector design and to benchmark its performance. In this presentation, we will summarize the performance of this detector prototype and describe the optical and energy calibration of the segmented PROSPECT detectors.

  9. Laboratory measurement of radioactivity purification for 212Pb in liquid scintillator

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Fang, Jian; Yu, Bo-Xiang; Zhang, Xuan; Zhou, Li; Cai, Xiao; Sun, Li-Jun; Liu, Wan-Jin; Wang, Lan; Lü, Jun-Guang

    2016-09-01

    Liquid scintillator (LS) has been widely used in past and running neutrino experiments, and is expected also to be used in future experiments. Requirements on LS radio-purity have become higher and higher. Water extraction is a powerful method to remove soluble radioactive nuclei, and a mini-extraction station has been constructed. To evaluate the extraction efficiency and optimize the operation parameters, a setup to load radioactivity to LS and a laboratory scale setup to measure radioactivity using the 212Bi-212Po-208Pb cascade decay have been developed. Experience from this laboratory study will be useful for the design of large scale water extraction plants and the optimization of working conditions in the future. Supported by The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA10010500), Natural Science Foundation of China (11390384)

  10. Limits on low-energy neutrino fluxes with the Mont Blanc liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Antonioli, P.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Dadykin, V. L.; Fulgione, W.; Galeotti, P.; Khalchukov, F. F.; Korolkova, E. V.; Kortchaguin, P. V.; Kortchaguin, V. B.; Kudryavtsev, V. A.; Malguin, A. S.; Periale, L.; Ryassny, V. G.; Ryazhskaya, O. G.; Saavedra, O.; Trinchero, G.; Vernetto, S.; Yakushev, V. F.; Zatsepin, G. T.

    1992-11-01

    The LSD liquid scintillation detector has been operating since 1985 as an underground neutrino observatory in the Mont Blanc Laboratory with the main objective of detecting antineutrino bursts from collapsing stars. In August 1988 the construction of an additional lead and borex paraffin shield considerably reduced the radioactive background and increased the sensitivity of the apparatus. In this way the search for steady fluxes of low-energy neutrinos of different flavours through their interactions with free protons and carbon nuclei of the scintillator was made possible. No evidence for a galactic collapse was observed during the whole period of measurement. The corresponding 90% c.l. upper limit on the galactic collapses rate is 0.45 y -1 for a burst duration of ΔT ⩽ 10 s. After analysing the last 3 years data, the following 90% c.l. upper limits on the steady neutrino and antineutrino fluxes were obtained:

  11. Characterization of a 10B-doped liquid scintillator as a capture-gated neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Hunt, S.; Iliadis, C.; Longland, R.

    2016-03-01

    We use a 250 MHz digitizer to characterize the pulse shape discrimination of a BC-523A 10B-doped liquid scintillator with capture-gating capabilities. Our results are compared to recent work claiming pulse shape discrimination between fast and thermal neutron signals. The capture event is identified, and we explain the origin of signals that are often misinterpreted. We use the time-of-flight method to measure the detector energy resolution for fast incident monoenergetic neutrons and the intrinsic neutron detection efficiency. Monte Carlo simulations are performed and we find agreement between measured and simulated results. These steps are important for understanding 10B-doped capture-gated spectroscopy in mixed radiation environments, as efficiencies using capture-gating are rarely reported in the literature.

  12. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    NASA Astrophysics Data System (ADS)

    Chen, YongHao; Chen, XiMeng; Lei, JiaRong; An, Li; Zhang, XiaoDong; Shao, JianXiong; Zheng, Pu; Wang, XinHua

    2014-10-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of 241Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of 241Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded 241Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  13. Comparison of neutron spectra measured with three sizes of organic liquid scintillators using differentiation analysis

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Pierce, C. R.

    1972-01-01

    Proton recoil distributions were obtained by using organic liquid scintillators of different size. The measured distributions are converted to neutron spectra by differentiation analysis for comparison to the unfolded spectra of the largest scintillator. The approximations involved in the differentiation analysis are indicated to have small effects on the precision of neutron spectra measured with the smaller scintillators but introduce significant error for the largest scintillator. In the case of the smallest cylindrical scintillator, nominally 1.2 by 1.3 cm, the efficiency is shown to be insensitive to multiple scattering and to the angular distribution to the incident flux. These characteristics of the smaller scintillator make possible its use to measure scalar flux spectra within media high efficiency is not required.

  14. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    SciTech Connect

    Lombigit, L. Yussup, N. Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M.

    2015-04-29

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.

  15. Results of the liquid scintillation detector of the Mont Blanc Laboratory

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Badino, G.; Bologna, G. F.; Castagnoli, C.; Fulgione, W.

    1986-04-01

    Preliminary results research on collapsing-star neutrino bursts and cosmic-ray muons, obtained using the 90-ton 72 element liquid-scintillation detector (LSD) at Mt. Blanc Laboratory since October 1984, are presented in tables and graphs and characterized. The theoretically expected energy and time values for neutrinos from collapsing stars of 2 solar mass are calculated, and it is shown that no burst with multiplicity 6 or greater and Delta t 30 s or less was detected in 4 mo of LSD live time, corresponding to a preliminary upper limit of 3/yr for Galactic stellar collapses. About 3 muons/h crossing at least two counters were observed, and detection of aobut 700 muon bundles per year of multiplicity 2 or greater or 90 bundles per year of multiplicity 3 or greater is predicted. The possible use of the LSD to search for nucleon instability (proton decay into muons) is considered.

  16. Plutonium and uranium determination in environmental samples: combined solvent extraction-liquid scintillation method.

    PubMed

    McDowell, W J; Farrar, D T; Billings, M R

    1974-12-01

    A method for the determination of uranium and plutonium by a combined high-resolution liquid scintillation-solvent extraction method is presented. Assuming a sample count equal to background count to be the detection limit, the lower detection limit for these and other alpha-emitting nuclides is 1.0 dpm with a Pyrex sample tube, 0.3 dpm with a quartz sample tube using present detector shielding or 0.02 d.p.m. with pulse-shape discrimination. Alpha-counting efficiency is 100%. With the counting data presented as an alpha-energy spectrum, an energy resolution of 0.2-0.3 MeV peak half-width and an energy identification to +/-0.1 MeV are possible. Thus, within these limits, identification and quantitative determination of a specific alpha-emitter, independent of chemical separation, are possible. The separation procedure allows greater than 98% recovery of uranium and plutonium from solution containing large amounts of iron and other interfering substances. In most cases uranium, even when present in 10(8)-fold molar ratio, may be quantitatively separated from plutonium without loss of the plutonium. Potential applications of this general analytical concept to other alpha-counting problems are noted. Special problems associated with the determination of plutonium in soil and water samples are discussed. Results of tests to determine the pulse-height and energy-resolution characteristics of several scintillators are presented. Construction of the high-resolution liquid scintillation detector is described.

  17. Characterizing a fast-response, low-afterglow liquid scintillator for neutron time-of-flight diagnostics in fast ignition experiments

    SciTech Connect

    Abe, Y. Hosoda, H.; Arikawa, Y.; Nagai, T.; Kojima, S.; Sakata, S.; Inoue, H.; Iwasa, Y.; Iwano, K.; Yamanoi, K.; Fujioka, S.; Nakai, M.; Sarukura, N.; Shiraga, H.; Norimatsu, T.; Azechi, H.

    2014-11-15

    The characteristics of oxygen-enriched liquid scintillators with very low afterglow are investigated and optimized for application to a single-hit neutron spectrometer for fast ignition experiments. It is found that 1,2,4-trimethylbenzene has better characteristics as a liquid scintillator solvent than the conventional solvent, p-xylene. In addition, a benzophenon-doped BBQ liquid scintillator is shown to demonstrate very rapid time response, and therefore has potential for further use in neutron diagnostics with fast time resolution.

  18. Nd loaded liquid scintillator to search for 150Nd neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Barabanov, I.; Bezrukov, L.; Cattadori, C.; Danilov, N.; di Vacri, A.; Ianni, A.; Nisi, S.; Ortica, F.; Romani, A.; Salvo, C.; Smirnov, O.; Yanovich, E.

    2008-11-01

    The 150Nd is considered one of the most attractive candidate for searching neutrinoless double beta (0νββ-) decay, thanks to its high Q-value (3.367 MeV), that makes the external background issue less significative respect to other isotopes, and favorable computed matrix elements. The isotopic abundance of this isotope in natural neodimium is only 5.6% and up to now, it has been investigated only in low mass experiments. The next step is to increase the sensitivity of the experiments using larger mass of neodymium (10 ton-1 kton). This could be possible with a Nd loaded liquid scintillator (LS). At the Gran Sasso National Laboratory (LNGS), a joint INFN (Istituto Nazionale di Fisica Nucleare) and INR (Institute for Nuclear Research of Moscow) working group has been carrying out since 2001 an R&D activity aiming to develop organic liquid scintillators (LS) doped with metals. The achieved know-how and the satisfactory results obtained both with In and Gd allowed to face the development and production of Nd doped LS. The development of metal doped LS is challenging because the metal has to be embedded in a proper organic system that makes it soluble in an organic solvent minimizing the impact of the metal-organic compound on the optical and scintillation properties of the LS. A further challenge in the case of Nd is the presence of absorption bands of this element in the optical region with a transparent region around 400 nm, which is about at the maximum of the scintillator emission spectrum. A 2.5 1 Nd loaded LS has been produced diluting an originally developed Nd-Carboxylic (Nd-CBX) salt in pseudocumene (PC), the solvent of the Borexino liquid scintillator. The measured light yield, at [Nd] = 6.5 g/1 and [PPO] = 1.5 g/1, is ~ 75% of pure PC at the same fluor concentration (~ 10000 ph/MeV). The Nd doped LS has been tested in a 2 1 quartz cell (wrapped by VM2000 reflector film) having dimensions 5x5x100 cm3. The light propagates in the cell by total internal

  19. The angular dependence of pulse shape discrimination and detection sensitivity in cylindrical and cubic EJ-309 organic liquid scintillators

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Joyce, M. J.

    2017-01-01

    Liquid scintillators are used widely for neutron detection and for the assay of nuclear materials. However, due to the constituents of the detector and the nitrogen void within the detector cell, usually incorporated to accommodate any expansion that might occur to avoid leakage, fluctuations in detector response have been observed associated with the orientation of the detector when in use. In this work the angular dependence of the pulse-shape discrimination performance in an EJ309 liquid scintillator has been investigated with 252Cf in terms of the separation of γ -ray and neutron events, described quantitatively by the figure-of-merit. A subtle dependence in terms of pulse-shape discrimination is observed. In contrast, a more significant dependence of detection sensitivity with the angle of orientation is evident.

  20. Application of a BC501A Liquid Scintillation Detector with a Gain Stabilization System on the EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Peng, Xingyu; Chen, Zhongjing; Du, Tengfei; Hu, Zhimeng; Ge, Lijian; Chen, Jinxiang; Li, Xiangqing; Fan, Tieshuan

    2016-01-01

    A 2” × 2” BC501A liquid scintillation detector with a gain stabilization system is developed and applied to neutron and γ-ray measurement on the EAST tokamak. Energy calibration of a liquid scintillator using a fast coincidence method is presented and compared with the Monte Carlo simulation. Determination of the proton light output function of the BC501A is presented. Results from dedicated experiments with an Am-Be neutron source, γ source and quasi-monoenergetic neutron beams, and from measurements on EAST tokamak are presented and discussed. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106004 and 2012GB101003) and National Natural Science Foundation of China (No. 91226102)

  1. COCO, a Compton coincidence experiment to study liquid scintillator response in the 1-20 keV energy range

    NASA Astrophysics Data System (ADS)

    Péron, M. N.; Cassette, P.

    1994-12-01

    The use of Liquid Scintillation Counting (LSC) as a fundamental radionuclide standardisation method requires a correct description of the physical phenomena occurring during the LSC process. In that framework, a special point of interest is the description of the liquid scintillator response, especially for low-energy electrons, in a region where this response is known to be non-linear. As there is no simple way to produce monoenergetic electrons in the liquid scintillator, we have simulated these electrons using a Compton interaction coincidence method. Due to the energy conservation law, the selection of the energy of the scattered Compton X-ray photon is equivalent to the selection of the energy of a monoenergetic electron. This paper describes the experimental system and the methods used to analyse the experimental results in order to deduce the statistical distribution of the photons emitted by the scintillator. The effects of some artefacts are discussed, including the accidental coincidences and the influence of cascade Compton interactions.

  2. Exploration of the potential of liquid scintillators for real-time 3D dosimetry of intensity modulated proton beams

    PubMed Central

    Beddar, Sam; Archambault, Louis; Sahoo, Narayan; Poenisch, Falk; Chen, George T.; Gillin, Michael T.; Mohan, Radhe

    2009-01-01

    In this study, the authors investigated the feasibility of using a 3D liquid scintillator (LS) detector system for the verification and characterization of proton beams in real time for intensity and energy-modulated proton therapy. A plastic tank filled with liquid scintillator was irradiated with pristine proton Bragg peaks. Scintillation light produced during the irradiation was measured with a CCD camera. Acquisition rates of 20 and 10 frames per second (fps) were used to image consecutive frame sequences. These measurements were then compared to ion chamber measurements and Monte Carlo simulations. The light distribution measured from the images acquired at rates of 20 and 10 fps have standard deviations of 1.1% and 0.7%, respectively, in the plateau region of the Bragg curve. Differences were seen between the raw LS signal and the ion chamber due to the quenching effects of the LS and due to the optical properties of the imaging system. The authors showed that this effect can be accounted for and corrected by Monte Carlo simulations. The liquid scintillator detector system has a good potential for performing fast proton beam verification and characterization. PMID:19544791

  3. Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors

    SciTech Connect

    Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; Pozzi, Sara A.; Massey, Thomas N.

    2013-03-26

    Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for the light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.

  4. Liquid scintillation counting methodology for 99Tc analysis. A remedy for radiopharmaceutical waste

    SciTech Connect

    Khan, Mumtaz; Um, Wooyong

    2015-08-13

    This paper presents a new approach for liquid scintillation counting (LSC) analysis of single-radionuclide samples containing appreciable organic or inorganic quench. This work offers better analytical results than existing LSC methods for technetium-99 (99gTc) analysis with significant savings in analysis cost and time. The method was developed to quantify 99gTc in environmental liquid and urine samples using LSC. Method efficiency was measured in the presence of 1.9 to 11,900 ppm total dissolved solids. The quench curve was proved to be effective in the case of spiked 99gTc activity calculation for deionized water, tap water, groundwater, seawater, and urine samples. Counting efficiency was found to be 91.66% for Ultima Gold LLT (ULG-LLT) and Ultima Gold (ULG). Relative error in spiked 99gTc samples was ±3.98% in ULG and ULG-LLT cocktails. Minimum detectable activity was determined to be 25.3 mBq and 22.7 mBq for ULG-LLT and ULG cocktails, respectively. A pre-concentration factor of 1000 was achieved at 100°C for 100% chemical recovery.

  5. Discrimination of neutrons and γ-rays in liquid scintillator based on Elman neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Cai-Xun; Lin, Shin-Ted; Zhao, Jian-Ling; Yu, Xun-Zhen; Wang, Li; Zhu, Jing-Jun; Xing, Hao-Yang

    2016-08-01

    In this work, a new neutron and γ (n/γ) discrimination method based on an Elman Neural Network (ENN) is proposed to improve the discrimination performance of liquid scintillator (LS) detectors. Neutron and γ data were acquired from an EJ-335 LS detector, which was exposed in a 241Am-9Be radiation field. Neutron and γ events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network (BPNN) as a control. The results show that the two methods have different n/γ discrimination performances. Compared to the BPNN, the ENN provides an improved of Figure of Merit (FOM) in n/γ discrimination. The FOM increases from 0.907 ± 0.034 to 0.953 ± 0.037 by using the new method of the ENN. The proposed n/γ discrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection. Supported by National Natural Science Foundation of China (11275134,11475117)

  6. Sample volume optimization for radon-in-water detection by liquid scintillation counting.

    PubMed

    Schubert, Michael; Kopitz, Juergen; Chałupnik, Stanisław

    2014-08-01

    Radon is used as environmental tracer in a wide range of applications particularly in aquatic environments. If liquid scintillation counting (LSC) is used as detection method the radon has to be transferred from the water sample into a scintillation cocktail. Whereas the volume of the cocktail is generally given by the size of standard LSC vials (20 ml) the water sample volume is not specified. Aim of the study was an optimization of the water sample volume, i.e. its minimization without risking a significant decrease in LSC count-rate and hence in counting statistics. An equation is introduced, which allows calculating the ²²²Rn concentration that was initially present in a water sample as function of the volumes of water sample, sample flask headspace and scintillation cocktail, the applicable radon partition coefficient, and the detected count-rate value. It was shown that water sample volumes exceeding about 900 ml do not result in a significant increase in count-rate and hence counting statistics. On the other hand, sample volumes that are considerably smaller than about 500 ml lead to noticeably lower count-rates (and poorer counting statistics). Thus water sample volumes of about 500-900 ml should be chosen for LSC radon-in-water detection, if 20 ml vials are applied.

  7. Computational aspects in modelling the interaction of low-energy X-rays with liquid scintillators.

    PubMed

    Grau Carles, A; Grau Malonda, A

    2006-01-01

    The commercial liquid scintillators available nowadays are mostly complex cocktails that frequently include non-negligible amounts of heavier elements than the commonly expected carbon or hydrogen. In May 1993, nine laboratories agreed to participate in the frame of the EUROMET project in a comparison of the activity concentration measurement of 55Fe. One particular aspect of the results that caught one's eye was a small systematic difference between the activity concentrations obtained with Ultima Gold and Insta Gel. The detection of the radiation emitted by EC nuclides involves, in addition to the atomic rearrangement generated by the capture of the electron by the nucleus, a frequently ignored secondary atomic rearrangement process due to photoionization. Such a process can be neglected for scintillators that only contain hydrogen and carbon, e.g., toluene, but must be taken into account when the EC nuclide solution is incorporated to cocktails with heavier elements, e.g., Ultima Gold. All along the present year, an improved version of the program EMI has been developed. This code adds the photoionization reduced energy correction to the previous versions, and successfully explains the systematic difference between the measured activity concentrations of 55Fe in Ultima Gold and Insta Gel.

  8. Preparation of Gd Loaded Liquid Scintillator for Daya Bay Neutrino Experiment

    SciTech Connect

    Ding Yayun; Zhang Zhiyong

    2010-05-12

    Gadolinium loaded liquid scintillator (Gd-LS) is an excellent target material for reactor antineutrino experiments. Ideal Gd-LS should have long attenuation length, high light yield, long term stability, low toxicity, and should be compatible with the material used to build the detector. We have developed a new Gd-LS recipe in which carboxylic acid 3,5,5-trimethylhexanoic acid is used as the complexing ligand to gadolinium, 2,5-diphenyloxazole (PPO) and 1,4-bis[2-methylstyryl]benzene (bis-MSB) are used as primary fluor and wavelength shifter, respectively. The scintillator base is linear alkyl benzene (LAB). Eight hundred liters of Gd-LS has been synthesized and tested in a prototype detector. Results show that the Gd-LS has high quality and is suitable for underground experiments in large quantity. Large scale production facility has been built. A full batch production of 4 t Gd-LS has been produced and monitored for several months. The production of 180 t Gd-LS will be carried out in the near future.

  9. Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors

    SciTech Connect

    Fischer, V.; Chirac, T.; Lasserre, T. E-mail: tchirac@gmail.fr; and others

    2015-08-01

    Core-collapse supernovae produce an intense burst of electron antineutrinos in the few-tens-of-MeV range. Several Large Liquid Scintillator-based Detectors (LLSD) are currently operated worldwide, being very effective for low energy antineutrino detection through the Inverse Beta Decay (IBD) process. In this article, we develop a procedure for the prompt extraction of the supernova location by revisiting the details of IBD kinematics over the broad energy range of supernova neutrinos. Combining all current scintillator-based detector, we show that one can locate a canonical supernova at 10 kpc with an accuracy of 45 degrees (68% C.L.). After the addition of the next generation of scintillator-based detectors, the accuracy could reach 12 degrees (68% C.L.), therefore reaching the performances of the large water Čerenkov neutrino detectors. We also discuss a possible improvement of the SuperNova Early Warning System (SNEWS) inter-experiment network with the implementation of a directionality information in each experiment. Finally, we discuss the possibility to constrain the neutrino energy spectrum as well as the mass of the newly born neutron star with the LLSD data.

  10. An improved liquid scintillation counting method for the determination of gross alpha activity in groundwater wells.

    PubMed

    Ruberu, Shiyamalie R; Liu, Yun-Gang; Perera, S Kusum

    2008-10-01

    A liquid scintillation counting (LSC) method having several advantages over the gas proportional counting (GPC) U.S. Environmental Protection Agency (EPA) Method 900.0 for the detection of gross alpha activity in drinking water was evaluated in this study. The improved method described here involves the use of nitromethane as the quench agent for establishing counting efficiencies and spillover factors, and it minimizes sample preparation. It has the advantage of achieving the regulatory detection limit of 111 mBq L(-1) with short count times (100 min) and small sample aliquot sizes. A thorough method validation study was performed by testing field samples ranging in total dissolved solids (TDS) from 0.3 mg L(-1) to 1,000 mg L(-1) and spiking each matrix from 194 mBq L(-1) to 11.6 Bq L(-1). Comparable method precision and accuracy was observed on the two types of LSC instruments tested, Perkin Elmer Quantulus 1220 and Packard 2550, with the former giving better performance. Data presented demonstrate that this efficient and high throughput LSC method is suitable for groundwater samples in excess of 1,000 mg L(-1) of TDS in contrast with the 500 mg L(-1) limit by the routine GPC method. Groundwater wells across the state of California were sampled, analyzed for gross alpha activity using the EPA- approved method and the improved LSC method, and the results were compared.

  11. Using the transportable, computer-operated, liquid-scintillator fast-neutron spectrometer system

    SciTech Connect

    Thorngate, J.H.

    1988-11-01

    When a detailed energy spectrum is needed for radiation-protection measurements from approximately 1 MeV up to several tens of MeV, organic-liquid scintillators make good neutron spectrometers. However, such a spectrometer requires a sophisticated electronics system and a computer to reduce the spectrum from the recorded data. Recently, we added a Nuclear Instrument Module (NIM) multichannel analyzer and a lap-top computer to the NIM electronics we have used for several years. The result is a transportable fast-neutron spectrometer system. The computer was programmed to guide the user through setting up the system, calibrating the spectrometer, measuring the spectrum, and reducing the data. Measurements can be made over three energy ranges, 0.6--2 MeV, 1.1--8 MeV, or 1.6--16 MeV, with the spectrum presented in 0.1-MeV increments. Results can be stored on a disk, presented in a table, and shown in graphical form. 5 refs., 51 figs.

  12. Liquid scintillation counting of /sup 14/C for differentiation of synthetic ethanol from ethanol of fermentation

    SciTech Connect

    Martin, G.E.; Noakes, J.E.; Alfonso, F.C.; Figert, D.M.

    1981-09-01

    Samples containing ethanol are fractionated on a column so that the resultant ethanol content is > 93%. Determination of /sup 14/C by liquid scintillation counting on the ethanol fraction differentiates ethanol produced by fermentation from synthetic ethanol produced from fossil fuel sources. Twenty-seven samples were fractionated and analyzed for the /sup 14/C isotope. Six samples were synthetic ethanol derived from ethylene gas (direct and indirect process), and yielded a mean value for /sup 14/C isotope of 0.167 dpm/g carbon with a standard deviation (SD) of 0.066 dpm/g carbon (disintegrations per minute per gram of carbon). The remaining samples were ethanol derived from the fermentation of natural materials, such as corn, pear, sugar cane, grape, cherry, and blackberry, and yielded a mean value for /sup 14/C isotope of 16.11 dpm/g carbon with an SD of 1.27. The /sup 14/C values for specific mixtures of a synthetic and a natural ethanol compare favorably with the analytical values obtained by this procedure.

  13. Liquid scintillation counting methodology for (99)Tc analysis: a remedy for radiopharmaceutical waste.

    PubMed

    Khan, Mumtaz; Um, Wooyong

    2015-09-01

    This paper presents a new approach for liquid scintillation counting (LSC) analysis of single-radionuclide samples containing appreciable organic or inorganic quench. This work offers better analytical results than existing LSC methods for technetium-99 ((99g)Tc) analysis with significant savings in analysis cost and time. The method was developed to quantify (99g)Tc in environmental liquid and urine samples using LSC. Method efficiency was measured in the presence of 1.9 to 11 900 ppm total dissolved solids. The resultant quench curve proved to be effective for quantifying spiked (99g)Tc activity in deionized water, tap water, groundwater, seawater, and urine samples. Counting efficiency was found to be 91.66% for Ultima Gold LLT (ULG-LLT) and Ultima Gold (ULG). Relative error in spiked (99g)Tc samples was ±3.98% in ULG and ULG-LLT cocktails. Minimum detectable activity was determined to be 25.3 and 22.7 mBq for ULG-LLT and ULG cocktails, respectively. A preconcentration factor of 1000 was achieved at 100 °C for 100% chemical recovery.

  14. Indium-loaded Liquid Scintillator for the Low Energy Neutrino Spectrometer (LENS)

    NASA Astrophysics Data System (ADS)

    Hu, Liangming; Hans, Sunej; Rosero, Richard; Beriguete, Wanda; Chan, Wai Ting; Cumming, James; Yeh, Minfang; Roundtree, Derek; Vogelaar, Bruce

    2012-03-01

    The Chemistry Department at Brookhaven National Laboratory has a long history of neutrino research since Ray Davis's Homestake experiment. The Solar Neutrino and Nuclear Chemistry group has been successfully building large neutrino detectors over the past decade for various physics experiments, using tens to hundreds of tons of liquid scintillator. Among them, LENS aims to use 8% indium-loaded LS (In-LS, first investigated by Raghavan in the 1970s) for a real-time measurement of over 95% of sub-MeV solar neutrinos, mainly from pp-, CNO-, and ^7Be-processes. A nearly background-free spectral image from neutrino interactions on ^115In can be obtained via a triple coincidence tag in space and time. LENS detector R&D has made major progress in the recent years. The development of In-LS, in collaboration with Virginia Tech, now meets the challenging requirements of light yield, optical clarity, and chemical stability; and the collaboration is in the process of building a 410-L prototype (miniLENS). In this talk, the preparation and properties of In-LS for the miniLENS detector will be presented.

  15. ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE

    SciTech Connect

    Kyser, E.; Fondeur, F.; Crump, S.

    2011-12-21

    Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitric acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator.

  16. Preparation of Gd Loaded Liquid Scintillator for Daya Bay Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Ya-yun, Ding; Zhi-yong, Zhang

    2010-05-01

    Gadolinium loaded liquid scintillator (Gd-LS) is an excellent target material for reactor antineutrino experiments. Ideal Gd-LS should have long attenuation length, high light yield, long term stability, low toxicity, and should be compatible with the material used to build the detector. We have developed a new Gd-LS recipe in which carboxylic acid 3,5,5-trimethylhexanoic acid is used as the complexing ligand to gadolinium, 2,5-diphenyloxazole (PPO) and 1,4-bis[2-methylstyryl]benzene (bis-MSB) are used as primary fluor and wavelength shifter, respectively. The scintillator base is linear alkyl benzene (LAB). Eight hundred liters of Gd-LS has been synthesized and tested in a prototype detector. Results show that the Gd-LS has high quality and is suitable for underground experiments in large quantity. Large scale production facility has been built. A full batch production of 4 t Gd-LS has been produced and monitored for several months. The production of 180 t Gd-LS will be carried out in the near future.

  17. Development of a gadolinium-loaded liquid scintillator for the Hanaro short baseline prototype detector

    NASA Astrophysics Data System (ADS)

    Yeo, In Sung; Joo, Kyung Kwang; So, Sun Heang; Song, Sook Hyung; Kim, Hong Joo; So, Jung Ho; Park, Kang Soon; Ma, Kyung Ju; Jeon, Eun Ju; Kim, Jin Yu; Kim, Young Duk; Lee, Jason; Lee, Jeong-Yeon; Sun, Gwang-Min

    2014-02-01

    We propose a new experiment on the site of the Korea Atomic Energy Research Institute (KAERI) located at Daejeon, Korea. The Hanaro short baseline (SBL) nuclear reactor with a thermal power output 30 MW is used to investigate a reactor neutrino anomaly. A Hanaro SBL prototype detector having a 60- l volume has been constructed ˜6 m away from the reactor core. A gadolinium (Gd)-loaded liquid scintillator (LS) is used as an active material to trigger events. The selection of the LS is guided by physical and technical requirements, as well as safety considerations. A linear alkyl benzene (LAB) is used as a base solvent of the Hanaro SBL prototype detector. Three g/ l of PPO and 30 mg/ l of bis-MSB are dissolved to formulate the LAB-based LS. Then, a 0.5% gadolinium (Gd) complex with carboxylic acid is loaded into the LAB-based LS by using the liquidliquid extraction method. In this paper, we will summarize all the characteristics of the Gd-loaded LAB-based LS for the Hanaro prototype detector.

  18. Liquid Scintillation Counting of Environmental Radioisotopes: A Review of the Impact of Background Reduction

    SciTech Connect

    Douglas, Matthew; Bernacki, Bruce E.; Erchinger, Jennifer L.; Finn, Erin C.; Fuller, Erin S.; Hoppe, Eric W.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Orrell, John L.; Panisko, Mark E.; Warren, Glen A.; Wright, Michael E.

    2016-03-09

    Liquid scintillation counting (LSC) is a versatile and commonplace method for radiometric measurement of charged particle emitting radionuclides. The LSC method provides utility in a range of environmental science applications including hydrological studies of water transport, anthropogenic releases of radionuclides into the environment, and vertical mixing rates within oceans. Instrumental measurement background is one limiting factor of radiometric measurement sensitivity. As part of the development of a custom low background LSC system located in a shallow underground laboratory at Pacific Northwest National Laboratory, a number of measurement applications of LSC have been considered and are summarized here. The focus is on determining which aspects of such measurements would gain the greatest benefit from the reduction of LSC backgrounds by a factor of 10-100 relative to values reported in the literature. Examples of benefits include lowering the minimum detectable activity, reducing the sample size required, and shortening the elapsed timeline of the processing and analysis sequence. In particular tritium, strontium, and actinium isotopes are examined as these isotopes cover a range of requirements related to the LSC measurement method (e.g., 3H: low energy; Sr: spectral deconvolution; Ac: alpha/beta discrimination).

  19. Evaluation of 2-PI liquid scintillation whole body counter using MCNP

    NASA Astrophysics Data System (ADS)

    Mireles-Garcia, Fernando

    The 2-pi liquid scintillation whole body counter (WBC) at the University of Missouri-Columbia has been evaluated using MCNP-4A (a general Monte Carlo Neutron-Photon transport code, Version 4A). This facility is of importance to a wide variety of applications, such as determination of body fat content in human and animal subjects and measurement of radioactive tracers in animals. Phantoms and mathematical models were used in this research to upgrade the calibration procedures of the WBC. Since the existing protocol assumes a simple efficiency calibration based only upon body mass, it does not account for body shape and gives no methodology for placement of the subject below the detectors. Mathematical models were developed to calculate geometry efficiency for a variety of subjects and geometries utilizing the MCNP-4A transport code. Comparison of the results from simulation with experimental data shows excellent agreement not only in the shape of the curves as a function of subject position but also in absolute magnitude. In the case of the WBC and a phantom consisting of 40 liters of water containing 800 grams of sp+K the error in the magnitude is within 6%, which is easily attributable to the experimental calibration of the detectors. The efficiency of the WBC has been calculated for different weights for modified Adam-E through Adam-L model geometries; hence weight and shape can be modeled carefully and correction can be applied to actual human measurements based upon this work.

  20. 210Pb and 210Po determination in environmental samples using liquid scintillation counting and alpha spectrometry

    NASA Astrophysics Data System (ADS)

    Pérez Sánchez, D.; Martin Sánchez, A.; Jurado Vargas, M.

    2003-01-01

    A simple radiochemical procedure has been developed to determine 210Pb and 210Po in environmental samples from the same matrix. Sediment samples are decomposed by leaching with mineral acids or by microwave digestion, while water samples are pre-concentrated. One part of the resulting solution, spiked with 209Po, is used for 210Po determination by spontaneous deposition onto nickel disks (α-spectrometry). The other part is assayed for 210Pb, separating the Pb either by anion-exchange (sediment samples), or by solvent extraction (water samples). The 210Pb source is finally prepared by precipitation as oxalate and the chemical recovery determined by gravimetry. The 210Pb activity concentration is determined by liquid scintillation. A standard sediment sample supplied by IAEA and spiked water samples were analysed to check the procedure. The 210Pb and 210Po measurements agreed well with the certifications, deviations being less than 10%. The mean recoveries for Pb and Po were (70±12)% and (77±8%) for sediments, and (70±10)% and (81±7)% for waters, respectively.

  1. Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors

    DOE PAGES

    Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; ...

    2013-03-26

    Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for themore » light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.« less

  2. Apparatus for positioning an external radioactive standard in a liquid scintillation counter

    SciTech Connect

    Horrocks, D.L.; Kampf, R.S.

    1987-07-07

    This patent describes a liquid scintillation counter having a counting chamber for receiving a sample containing a scintillator substance and a sample of a radioactive substance to be counted. The improved apparatus positions a radioactive source in an operating location to irradiate the sample in the counting chamber comprising, in combination: (1) a continuous bidirectionally flexible conveyor forming a closed loop for conveying the radioactive source through on operating location and a storage location; (2) means supporting the radioactive source at a position along the flexible conveyor for conveyance; (3) guide means for supporting the conveyor and for guiding conveyor movement along a selected path, the path transversing at spaced positions the storage location for the radioactive source remote from the counting chamber and the operating location for the radioactive source near to the counting chamber; and (4) drive means coupled to the continuous flexible conveyor to draw the conveyor around the path for conveying the radioactive source through the spaced storage and operating locations.

  3. Beta Emitter Radionuclides (90Sr) Contamination in Animal Feed: Validation and Application of a Radiochemical Method by Ultra Low Level Liquid Scintillation Counting

    PubMed Central

    Iammarino, Marco; dell’Oro, Daniela; Bortone, Nicola

    2015-01-01

    90Sr is considered as a dangerous contaminant of agri-food supply chains due to its chemical affinity with Calcium, which makes its absorption in bones easy. 90Sr accumulation in raw materials and then in final products is particularly significant in relationship to its ability to transfer into animal source products. The radionuclides transfer (137Cs and 90Sr) from environment to forages and then to products of animal origin (milk, cow and pork meats) was studied and evaluated in different studies, which were carried out in contaminated areas, from Chernobyl disaster until today. In the present work, the development and validation of a radiochemical method for the detection of 90Sr in different types of animal feed, and the application of this technique for routinely control activities, are presented. Liquid scintillation counting was the employed analytical technique, since it is able to determine very low activity concentrations of 90Sr (<0.01 Bq Kg–1). All samples analysed showed a 90Sr contamination much higher than method detection limit (0.008 Bq kg–1). In particular, the highest mean activity concentration was registered in hay samples (2.93 Bq kg–1), followed by silage samples (2.07 Bq kg–1) and animal feeds (0.77 Bq kg–1). In fact, all samples were characterized by 90Sr activity concentrations much lower than reference limits. This notwithstanding, the necessity to monitor these levels was confirmed, especially considering that 90Sr is a possible carcinogen for human. PMID:27800378

  4. Beta Emitter Radionuclides ((90)Sr) Contamination in Animal Feed: Validation and Application of a Radiochemical Method by Ultra Low Level Liquid Scintillation Counting.

    PubMed

    Iammarino, Marco; dell'Oro, Daniela; Bortone, Nicola; Chiaravalle, Antonio Eugenio

    2015-02-03

    (90)Sr is considered as a dangerous contaminant of agri-food supply chains due to its chemical affinity with Calcium, which makes its absorption in bones easy. (90)Sr accumulation in raw materials and then in final products is particularly significant in relationship to its ability to transfer into animal source products. The radionuclides transfer ((137)Cs and (90)Sr) from environment to forages and then to products of animal origin (milk, cow and pork meats) was studied and evaluated in different studies, which were carried out in contaminated areas, from Chernobyl disaster until today. In the present work, the development and validation of a radiochemical method for the detection of (90)Sr in different types of animal feed, and the application of this technique for routinely control activities, are presented. Liquid scintillation counting was the employed analytical technique, since it is able to determine very low activity concentrations of (90)Sr (<0.01 Bq Kg(-1)). All samples analysed showed a (90)Sr contamination much higher than method detection limit (0.008 Bq kg(-1)). In particular, the highest mean activity concentration was registered in hay samples (2.93 Bq kg(-1)), followed by silage samples (2.07 Bq kg(-1)) and animal feeds (0.77 Bq kg(-1)). In fact, all samples were characterized by (90)Sr activity concentrations much lower than reference limits. This notwithstanding, the necessity to monitor these levels was confirmed, especially considering that (90)Sr is a possible carcinogen for human.

  5. Results of low energy background measurements with the Liquid Scintillation Detector (LSD) of the Mont Blanc Laboratory

    NASA Technical Reports Server (NTRS)

    Aglietta, M.; Badino, G.; Bologna, G. F.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G. C.; Vernetto, S.; Dadykin, V. L.

    1985-01-01

    The 90 tons liquid scintillation detector (LSD) is fully running since October 1984, at a depth of 5,200 hg/sq cm of standard rock underground. The main goal is to search for neutrino bursts from collapsing stars. The experiment is very sensitive to detect low energy particles and has a very good signature to gamma-rays from (n,p) reaction which follows the upsilon e + p yields n + e sup + neutrino capture. The analysis of data is presented and the preliminary results on low energy measurements are discussed.

  6. SOLVENT PURIFICATION AND FLUOR SELECTION FOR GADOLINIUM-LOADED LIQUID SCINTILLATORS

    SciTech Connect

    Kesete, T.; Storm, A.; Hahn, R. L.; Yeh, M.; Seleem, S.

    2007-01-01

    The last decade has seen huge progress in the study of neutrinos, elementary sub-atomic particles. Continued growth in the fi eld of neutrino research depends strongly on the calculation of the neutrino mixing angle θ13, a fundamental neutrino parameter that is needed as an indicative guideline for proposed next-generation neutrino experiments. Experiments involving reactor antineutrinos are favored for the calculation of θ13 because their derivation equation for θ13 is relatively simple and unambiguous. A Gd-loaded liquid scintillator (Gd-LS) is the centerpiece of the detector and it consists of ~99% aromatic solvent, ~0.1% Gd, and < 1% fl uors. Key required characteristics of the Gd-LS are long-term chemical stability, high optical transparency, and high photon production by the scintillator. This summer’s research focused on two important aspects of the detector: (1) purifi cation of two selected scintillation solvents, 1, 2, 4-trimethylbenzene (PC) and linear alkyl benzene (LAB), to improve the optical transparency and long-term chemical stability of the Gd-LS, and (2) investigation of the added fl uors to optimize the photon production. Vacuum distillation and column separation were used to purify PC and LAB, respectively. Purifi cation was monitored using UV-visible absorption spectra and verifi ed in terms of decreased solvent absorption at 430nm. Absorption in PC at 430nm decreased by a factor slightly >10 while the absorption in LAB was lowered by a factor of ~5. Photon production for every possible combination of two solvents, four primary shifters, and two secondary shifters was determined by measuring the Compton-Scattering excitation induced by an external Cs-137 gamma source (Eγ ~ 662-keV). The ideal shifter concentration was identifi ed by measuring the photon production as a function of shifter quantity in a series of samples. Results indicate that 6g/L p-terphenyl with 150mg/L 1,4-Bis(2-methylstyryl)-benzene (bis-MSB) produces the maximum

  7. Effective determination of the long-lived nuclide 41Ca in nuclear reactor bioshield concretes: comparison of liquid scintillation counting and accelerator mass spectrometry.

    PubMed

    Warwick, P E; Croudace, I W; Hillegonds, D J

    2009-03-01

    The routine application of liquid scintillation counting to (41)Ca determination has been hindered by the absence of traceable calibration standards of known (41)Ca activity concentrations. The introduction of the new IRMM (41)Ca mass-spectrometric standards with sufficiently high (41)Ca activities for radiometric detection has partly overcome this although accurate measurement of stable Ca concentrations coupled with precise half-life data are still required to correct the certified (41)Ca:(40)Ca ratios to (41)Ca activity concentrations. In this study, (41)Ca efficiency versus quench curves have been produced using the IRMM standard, and their accuracy validated by comparison with theoretical calculations of (41)Ca efficiencies. Further verification of the technique was achieved through the analysis of (41)Ca in a reactor bioshield core that had been previously investigated for other radionuclide variations. Calcium-41 activity concentrations of up to 25 Bq/g were detected. Accelerator mass spectrometry (AMS) measurements of the same suite of samples showed a very good agreement, providing validation of the procedure. Calcium-41 activity concentrations declined exponentially with distance from the core of the nuclear reactor and correlated well with the predicted neutron flux.

  8. Radiocarbon dating of archaeological samples (sambaqui) using CO(2) absorption and liquid scintillation spectrometry of low background radiation.

    PubMed

    Mendonça, Maria Lúcia T G; Godoy, José M; da Cruz, Rosana P; Perez, Rhoneds A R

    2006-01-01

    Sambaqui means, in the Tupi language, a hill of shells. The sambaquis are archaeological sites with remains of pre-historical Brazilian occupation. Since the sambaqui sites in the Rio de Janeiro state region are older than 10,000 years, the applicability of CO(2) absorption on Carbo-sorb and (14)C determination by counting on a low background liquid scintillation counter was tested. In the present work, sambaqui shells were treated with H(3)PO(4) in a closed vessel in order to generate CO(2). The produced CO(2) was absorbed on Carbo-sorb. On saturation about 0.6g of carbon, as CO(2), was mixed with commercial liquid scintillation cocktail (Permafluor), and the (14)C activity determined by counting on a low background counter, Packard Tricarb 3170 TR/SL, for a period of 1000 mins to enable detection of a radiocarbon age of 22,400 BP. But only samples with ages up to 3500 BP were submitted to the method because the samples had been collected in the municipality of Guapimirim, in archaeological sambaqui-type sites belonging to this age range. The same samples were sent to the (14)C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.

  9. An improved sensitive assay for polonium-210 by use of a background-rejecting extractive liquid-scintillation method.

    PubMed

    Case, G N; McDowell, W J

    1982-10-01

    A procedure is described for the determination of polonium-210 in various types of materials, including ores, mill tailings, and environmental samples, by a combined solvent-extraction liquid-scintillation spectrometry method. Concentration of polonium-210 and separation from interfering elements (such as iron) are accomplished by extraction from a 7M phosphoric acid-0.01M hydrochloric acid solution with 0.20M trioctylphosphine oxide solution (together with a scintillator) in toluene. The polonium-210 is determined by counting the 5.3-MeV alpha-radiation with a photon/ electron-rejecting alpha liquid-scintillation spectrometer. Extraction coefficients of over 1000 for polonium ensure quantitative recovery, and no other alpha-emitters in the decay chains of uranium-238, uranium-235 and thorium-232 are extracted. The results for several samples show the relative standard deviation to be approximately 1.2%. A lower limit of detection of 0.0038 pCi is proposed, based on a counting time of 1000 min and an easily obtainable background of 0.01 cpm for the alpha peak.

  10. Homestake tracking spectrometer: a one-mile deep 1400-ton liquid-scintillation nucleon-decay detector

    SciTech Connect

    Cherry, M.L.; Davidson, I.; Lande, K.; Lee, C.K.; Marshall, E.; Steinberg, R.I.; Cleveland, B.; Davis, R. Jr.; Lowenstein, D.

    1982-01-01

    We describe a proposed nucleon decay detector able to demonstrate the existence of nucleon decay for lifetimes up to 5 x 10/sup 32/ yr. The proposed instrument is a self-vetoed completely-active 1400-ton liquid scintillation Tracking Spectrometer to be located in the Homestake Mine at a depth of 4200 mwe, where the cosmic ray muon flux is only 1100/m/sup 2//yr, more than 10/sup 7/ times lower than the flux at the earth's surface. Based on computer simulations and laboratory measurements, the Tracking Spectrometer will have a spatial resolution of +- 15 cm (0.32 radiation lengths); energy resolution of +- 4.2%; and time resolution of +-1.3 ns. Because liquid scintillator responds to total ionization energy, all neutrinoless nucleon decay modes will produce a sharp (+- 4.2%) total energy peak at approximately 938 MeV, thereby allowing clear separation of nucleon decay events from atmospheric neutrino and other backgrounds. The instrument will be about equally sensitive to most nucleon decay modes. It will be able to identify most of the likely decay modes (including n ..-->.. ..nu.. + K/sub s//sup 0/ as suggested by supersymmetric grand unified theories), as well as determine the charge of lepton secondaries and the polarization of secondary muons.

  11. Digital pulse shape discrimination methods for n-γ separation in an EJ-301 liquid scintillation detector

    NASA Astrophysics Data System (ADS)

    Wan, Bo; Zhang, Xue-Ying; Chen, Liang; Ge, Hong-Lin; Ma, Fei; Zhang, Hong-Bin; Ju, Yong-Qin; Zhang, Yan-Bin; Li, Yan-Yan; Xu, Xiao-Wei

    2015-11-01

    A digital pulse shape discrimination system based on a programmable module NI-5772 has been established and tested with an EJ-301 liquid scintillation detector. The module was operated by running programs developed in LabVIEW, with a sampling frequency up to 1.6 GS/s. Standard gamma sources 22Na, 137Cs and 60Co were used to calibrate the EJ-301 liquid scintillation detector, and the gamma response function was obtained. Digital algorithms for the charge comparison method and zero-crossing method have been developed. The experimental results show that both digital signal processing (DSP) algorithms can discriminate neutrons from γ-rays. Moreover, the zero-crossing method shows better n-γ discrimination at 80 keVee and lower, whereas the charge comparison method gives better results at higher thresholds. In addition, the figure-of-merit (FOM) for detectors of two different dimensions were extracted at 9 energy thresholds, and it was found that the smaller detector presented better n-γ separation for fission neutrons. Supported by National Natural Science Foundation of China (91226107, 11305229) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03030300)

  12. A simple method to determine bioethanol content in gasoline using two-step extraction and liquid scintillation counting.

    PubMed

    Yunoki, Shunji; Saito, Masaaki

    2009-12-01

    A simple method for determining bioethanol content in gasoline containing bioethanol (denoted as E-gasoline in this study) is urgently required. Liquid scintillation counting (LSC) was employed based on the principle that (14)C exists in bioethanol but not in synthetic ethanol. Bioethanol was extracted in two steps by water from E-gasoline containing 3% (E3) or 10% (E10) bioethanol. The (14)C radioactivity was measured by LSC and converted to the amount of bioethanol. The bioethanol content in E-gasoline was determined precisely from the partition coefficient in the extraction and the amount of bioethanol in the water phases: 2.98+/-0.10% for E3 and 10.0+/-0.1% for E10 (means+/-SD; n=3). It appears that this method can be used to determine bioethanol content in E-gasoline quickly and easily.

  13. e+/e- discrimination in liquid scintillator and its usage to suppress 8He/9Li backgrounds

    NASA Astrophysics Data System (ADS)

    Cheng, Ya-Ping; Wen, Liang-Jian; Zhang, Peng; Cao, Xing-Zhong

    2017-01-01

    Reactor neutrino experiments build large-scale detector systems to detect neutrinos. In liquid scintillator, a neutral bound state of a positron and an electron, named positronium, can be formed. The spin triplet state is called ortho-positronium (o-Ps). In this article, an experiment is designed to measure the lifetime of o-Ps, giving a result of 3.1 ns. A PSD parameter based on photon emission time distribution (PETD) was constructed to discriminate e+/e-. Finally, the application of e+/e- discrimination in the JUNO experiment is shown. It helps suppress 8He/9Li backgrounds and improves the sensitivity by 0.6 in χ 2 analysis with an assumption of σ = 1 ns PMT Transit Time Spread, which will bring a smearing effect to the PETD. Supported by National Natural Science Foundation of China (11575226, 11475197, 11205183)

  14. Determination of strontium-90 in deer bones by liquid scintillation spectrometry after separation on Sr-specific ion exchange columns.

    PubMed

    Landstetter, Claudia; Wallner, Gabriele

    2006-01-01

    The activity concentration of (90)Sr was determined in several deer bones from Austria. Strontium specific ion exchange columns with 4',4''(5'')-di-t-butylcyclohexane-18-crown-6 from Eichrom Industries, Inc. were used for separation. The yield of the chemical procedure was quantified with AAS. Directly after column separation, the solution containing (90)Sr was mixed with the scintillation cocktail HiSafe III and measured by liquid scintillation counting. Prevention of (210)Pb contamination and reusability of the separation columns was investigated as well as the activity distribution within the bones. Results were compared with pre-Chernobyl measurements in Austria; a correlation between activity concentration of (90)Sr and site altitude was found.

  15. Attenuation length measurements of a liquid scintillator with LabVIEW and reliability evaluation of the device

    NASA Astrophysics Data System (ADS)

    Gao, Long; Yu, Bo-Xiang; Ding, Ya-Yun; Zhou, Li; Wen, Liang-Jian; Xie, Yu-Guang; Wang, Zhi-Gang; Cai, Xiao; Sun, Xi-Lei; Fang, Jian; Xue, Zhen; Zhang, Ai-Wu; Lü, Qi-Wen; Sun, Li-Jun; Ge, Yong-Shuai; Liu, Ying-Biao; Niu, Shun-Li; Hu, Tao; Cao, Jun; Lü, Jun-Guang

    2013-07-01

    An attenuation length measurement device was constructed using an oscilloscope and LabVIEW for signal acquisition and processing. The performance of the device has been tested in a variety of ways. The test results show that the set-up has a good stability and high precision (sigma/mean reached 0.4 percent). Besides, the accuracy of the measurement system will decrease by about 17 percent if a filter is used. The attenuation length of a gadolinium-loaded liquid scintillator (Gd-LS) was measured as 15.10±0.35 m where Gd-LS was heavily used in the Daya Bay Neutrino Experiment. In addition, one method based on the Beer-Lambert law was proposed to investigate the reliability of the measurement device, the R-square reached 0.9995. Moreover, three purification methods for Linear Alkyl Benzene (LAB) production were compared in the experiment.

  16. Light yield and n-γ pulse-shape discrimination of liquid scintillators based on linear alkyl benzene

    NASA Astrophysics Data System (ADS)

    Kögler, T.; Junghans, A. R.; Beyer, R.; Hannaske, R.; Massarczyk, R.; Schwengner, R.; Wagner, A.

    2012-03-01

    The relative light yields of NE-213 and LAB-based liquid scintillators to electrons were determined in the electron energy range 5-1600 keV using a combination of monoenergetic photon sources and a Compton spectrometer. The light yield was found to be proportional to energy for both types of scintillator and expected deviations below 100 keV were described successfully applying Birks' law. Digital pulse-shape discrimination in a mixed n-γ field of a 252Cf source was investigated for LAB+PPO and LAB+PPO+bis-MSB and compared to NE-213. In combination with these two solutes, LAB shows poorer abilities to separate neutron-induced pulses from photon-induced ones.

  17. Light yield and n-γ pulse-shape discrimination of liquid scintillators based on linear alkyl benzene

    NASA Astrophysics Data System (ADS)

    Kögler, T.; Beyer, R.; Birgersson, E.; Hannaske, R.; Junghans, A. R.; Massarczyk, R.; Matic, A.; Wagner, A.; Zuber, K.

    2013-02-01

    The relative light yields of NE-213 and linear alkyl benzene (LAB) based liquid scintillators from electrons were determined in the electron energy range 13-1600 keV using a combination of monoenergetic γ sources and a Compton spectrometer. The light yield was found to be proportional to energy for both types of scintillator and expected deviations below 100 keV were described successfully applying Birks’ law. A description of the Cherenkov light contribution to the total light yield was achieved for both detectors and is in agreement with the electromagnetic theory of fast particles in matter. Digital pulse-shape discrimination in a mixed n-γ field from a 252Cf source was investigated for LAB+PPO and LAB+PPO+bis-MSB and compared to NE-213. In combination with these two solutes, LAB shows poorer abilities to separate neutron-induced pulses from γ-induced ones.

  18. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting

    NASA Astrophysics Data System (ADS)

    Korschinek, G.; Bergmaier, A.; Faestermann, T.; Gerstmann, U. C.; Knie, K.; Rugel, G.; Wallner, A.; Dillmann, I.; Dollinger, G.; von Gostomski, Ch. Lierse; Kossert, K.; Maiti, M.; Poutivtsev, M.; Remmert, A.

    2010-01-01

    The importance of 10Be in different applications of accelerator mass spectrometry (AMS) is well-known. In this context the half-life of 10Be has a crucial impact, and an accurate and precise determination of the half-life is a prerequisite for many of the applications of 10Be in cosmic-ray and earth science research. Recently, the value of the 10Be half-life has been the centre of much debate. In order to overcome uncertainties inherent in previous determinations, we introduced a new method of high accuracy and precision. An aliquot of our highly enriched 10Be master solution was serially diluted with increasing well-known masses of 9Be. We then determined the initial 10Be concentration by least square fit to the series of measurements of the resultant 10Be/ 9Be ratio. In order to minimize uncertainties because of mass bias which plague other low-energy mass spectrometric methods, we used for the first time Heavy-Ion Elastic Recoil Detection (HI-ERD) for the determination of the 10Be/ 9Be isotopic ratios, a technique which does not suffer from difficult to control mass fractionation. The specific activity of the master solution was measured by means of accurate liquid scintillation counting (LSC). The resultant combination of the 10Be concentration and activity yields a 10Be half-life of T1/2 = 1.388 ± 0.018 (1 s, 1.30%) Ma. In a parallel but independent study (Chmeleff et al. [11]), found a value of 1.386 ± 0.016 (1.15%) Ma. Our recommended weighted mean and mean standard error for the new value for 10Be half-life based on these two independent measurements is 1.387 ± 0.012 (0.87%) Ma.

  19. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system

    PubMed Central

    Archambault, L.; Poenisch, F.; Sahoo, N.; Robertson, D.; Lee, A.; Gillin, M. T.; Mohan, R.; Beddar, S.

    2012-01-01

    Purpose: Intensity-modulated proton therapy (IMPT) using spot scanned proton beams relies on the delivery of a large number of beamlets to shape the dose distribution in a highly conformal manner. The authors have developed a 3D system based on liquid scintillator to measure the spatial location, intensity, and depth of penetration (energy) of the proton beamlets in near real-time. Methods: The detector system consists of a 20 × 20 × 20 cc liquid scintillator (LS) material in a light tight enclosure connected to a CCD camera. This camera has a field of view of 25.7 by 19.3 cm and a pixel size of 0.4 mm. While the LS is irradiated, the camera continuously acquires images of the light distribution produced inside the LS. Irradiations were made with proton pencil beams produced with a spot-scanning nozzle. Pencil beams with nominal ranges in water between 9.5 and 17.6 cm were scanned to irradiate an area of 10 × 10 cm square on the surface of the LS phantom. Image frames were acquired at 50 ms per frame. Results: The signal to noise ratio of a typical Bragg peak was about 170. Proton range measured from the light distribution produced in the LS was accurate to within 0.3 mm on average. The largest deviation seen between the nominal and measured range was 0.6 mm. Lateral position of the measured pencil beam was accurate to within 0.4 mm on average. The largest deviation seen between the nominal and measured lateral position was 0.8 mm; however, the accuracy of this measurement could be improved by correcting light scattering artifacts. Intensity of single proton spots were measured with precision ranging from 3 % for the smallest spot intensity (0.005 MU) to 0.5 % for the largest spot (0.04 MU). Conclusions: Our LS detector system has been shown to be capable of fast, submillimeter spatial localization of proton spots delivered in a 3D volume. This system could be used for beam range, intensity and position verification in IMPT. PMID:22380355

  20. Development of a System for Survey of Radon Concentration of the Dayton Area Using a Liquid Scintillation Counter and Analysis of the Data

    DTIC Science & Technology

    1992-03-01

    conversion, a calibration factor, an elution time constant, and adsorption time constant were calculated . The procedure for handling the vials...the vials were done on Packard Tri- Carb 2200CA Liquid Scintillation Analyzer. To calculate radon concentration in pCi/l from net counts per minute...started to set up a system for a large scale survey of radon concentration. He used one of Sharp’s protocol for calculating the radon concentration. Using

  1. Liquid scintillation based quantitative measurement of dual radioisotopes (3H and 45Ca) in biological samples for bone remodeling studies.

    PubMed

    Hui, Susanta K; Sharma, M; Bhattacharyya, M H

    2012-01-01

    Acute and prolonged bone complications associated with radiation and chemotherapy in cancer survivors underscore the importance of establishing a laboratory-based complementary dual-isotope tool to evaluate short- as well as long-term bone remodeling in an in vivo model. To address this need, a liquid scintillation dual-label method was investigated using different scintillation cocktails for quantitative measurement of (3)H-tetracycline ((3)H-TC) and (45)Ca as markers of bone turnover in mice. Individual samples were prepared over a wide range of known (45)Ca/(3)H activity ratios. Results showed that (45)Ca/(3)H activity ratios determined experimentally by the dual-label method were comparable to the known activity ratios (percentage difference ∼2%), but large variations were found in samples with (45)Ca/(3)H activity ratios in range of 2-10 (percentage difference ∼20-30%). Urine and fecal samples from mice administered with both (3)H-TC and (45)Ca were analyzed with the dual-label method. Positive correlations between (3)H and (45)Ca in urine (R=0.93) and feces (R=0.83) indicate that (3)H-TC and (45)Ca can be interchangeably used to monitor longitudinal in vivo skeletal remodeling.

  2. Separately measuring radon and thoron concentrations exhaled from soil using AlphaGUARD and liquid scintillation counter methods.

    PubMed

    Yasuoka, Y; Sorimachi, A; Ishikawa, T; Hosoda, M; Tokonami, S; Fukuhori, N; Janik, M

    2010-10-01

    It was shown that radon and thoron concentrations exhaled from soil were separately measured using the AlphaGUARD and liquid scintillation counter (LSC) methods. The thoron concentrations from the RAD 7 were used to create the conversion equation to calculate thoron levels with the AlphaGUARD. However, the conversion factor was found to depend on the air flow rate. When air containing thoron of ∼60 kBq m(-3) was fed to the scintillation cocktail, thoron and thoron progeny could not be measured with the LSC method. The radon concentration of about 10 kBq m(-3) was measured with three methods, first with the LSC method and then with two AlphaGUARDs (one in the diffusion mode and the other in the flow mode (0.5 l min(-1))). There were no significant differences between these results. Finally, it was shown that the radon and thoron concentrations in air could be measured with the AlphaGUARD and LSC methods.

  3. MO-F-CAMPUS-T-03: Verification of Range, SOBP Width, and Output for Passive-Scattering Proton Beams Using a Liquid Scintillator Detector

    SciTech Connect

    Henry, T; Robertson, D; Therriault-Proulx, F; Beddar, S

    2015-06-15

    Purpose: Liquid scintillators have been shown to provide fast and high-resolution measurements of radiation beams. However, their linear energy transfer-dependent response (quenching) limits their use in proton beams. The purpose of this study was to develop a simple and fast method to verify the range, spread-out Bragg peak (SOBP) width, and output of a passive-scattering proton beam with a liquid scintillator detector, without the need for quenching correction. Methods: The light signal from a 20×20×20 cm3 liquid scintillator tank was collected with a CCD camera. Reproducible landmarks on the SOBP depth-light curve were identified which possessed a linear relationship with the beam range and SOBP width. The depth-light profiles for three beam energies (140, 160 and 180 MeV) with six SOBP widths at each energy were measured with the detector. Beam range and SOBP width calibration factors were obtained by comparing the depth-light curve landmarks with the nominal range and SOBP width for each beam setting. The daily output stability of the liquid scintillator detector was also studied by making eight repeated output measurements in a cobalt-60 beam over the course of two weeks. Results: The mean difference between the measured and nominal beam ranges was 0.6 mm (σ=0.2 mm), with a maximum difference of 0.9 mm. The mean difference between the measured and nominal SOBP widths was 0.1 mm (σ=1.8 mm), with a maximum difference of 4.0 mm. Finally an output variation of 0.14% was observed for 8 measurements performed over 2 weeks. Conclusion: A method has been developed to determine the range and SOBP width of a passive-scattering proton beam in a liquid scintillator without the need for quenching correction. In addition to providing rapid and accurate beam range and SOBP measurements, the detector is capable of measuring the output consistency with a high degree of precision. This project was supported in part by award number CA182450 from the National Cancer

  4. Simultaneous determination of gross alpha, gross beta and ²²⁶Ra in natural water by liquid scintillation counting.

    PubMed

    Fons, J; Zapata-García, D; Tent, J; Llauradó, M

    2013-11-01

    The determination of gross alpha, gross beta and (226)Ra activity in natural waters is useful in a wide range of environmental studies. Furthermore, gross alpha and gross beta parameters are included in international legislation on the quality of drinking water [Council Directive 98/83/EC]. In this work, a low-background liquid scintillation counter (Wallac, Quantulus 1220) was used to simultaneously determine gross alpha, gross beta and (226)Ra activity in natural water samples. Sample preparation involved evaporation to remove (222)Rn and its short-lived decay daughters. The evaporation process concentrated the sample ten-fold. Afterwards, a sample aliquot of 8 mL was mixed with 12 mL of Ultima Gold AB scintillation cocktail in low-diffusion vials. In this study, a theoretical mathematical model based on secular equilibrium conditions between (226)Ra and its short-lived decay daughters is presented. The proposed model makes it possible to determine (226)Ra activity from two measurements. These measurements also allow determining gross alpha and gross beta simultaneously. To validate the proposed model, spiked samples with different activity levels for each parameter were analysed. Additionally, to evaluate the model's applicability in natural water, eight natural water samples from different parts of Spain were analysed. The eight natural water samples were also characterised by alpha spectrometry for the naturally occurring isotopes of uranium ((234)U, (235)U and (238)U), radium ((224)Ra and (226)Ra), (210)Po and (232)Th. The results for gross alpha and (226)Ra activity were compared with alpha spectrometry characterization, and an acceptable concordance was obtained.

  5. Alpha detection for decontamination and decommissioning: Results and possibilities

    SciTech Connect

    MacArthur, D.

    1995-08-01

    Alpha detectors based on the long-range alpha detection (LRAD) technology have numerous uses, both potential and demonstrated, in facility D&D. These monitors operate by detecting the ions created by alpha particles interacting with ambient air. Thus, detection is not limited by the short range of the alpha particle and no window is required between the contamination and the detection region. These properties make LRAD-based detectors ideal for operation in field environments where complex objects to be monitored are the norm and reliability is crucial. Three monitors of particular interest in D&D operations are the building surface monitor, the internal volume monitor for use on the inner surfaces of pipes, ducts, and tanks, and the conveyer belt monitor for concrete rubble and structural steel. Surface monitors have been used extensively, both in laboratory and field environments, internal volume monitors have been tested in the laboratory, and the conveyer system is still a conceptual design. These monitors and related applications demonstrate the utility of LRAD-based monitors for D&D operations as well as exploring some of the new ways that fieldable monitoring systems can be used for D&D. Ion collection sensing technology can be used to solve many of the alpha detection problems unique to the D&D field.

  6. A Dose Distribution Study of Uranyl Nitrate in Zebrafish using Liquid Scintillation and Passivated Implanted Planar Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Alshammari, Ohud Fhaid

    Standard curves for a Perkin Elmer TriCarb 2800 liquid scintillation detector (LSC) and a Ludlum 3030p Passivated Implanted Planar Silicon detector have been developed and utilized for studying the dose distribution of depleted uranium (DU) within zebrafish. The DU source was crystallized uranyl nitrate (N2O8U•6H2O) solution, normally used for staining in electron microscopy with a manufactured average specific activity of 0.3 uCi/g. Zebrafish, both larvae and adults, were exposed to three different mass concentrations, dissected, dissolved and counted using an LSC. The counts were compared to the standard curve correlating the measured activity to that of the mass absorbed. It was found that the larvae were more tolerant to the toxicity of the DU by almost a factor of 10 showing survival up to 200 ppm where the adults had zero survival when exposed to concentrations above 20 ppm. The absorbed DU was observed to concentrate more heavily in the skeletal structure and the blood containing organs (liver and heart) when comparing the relative mass concentrations observed in each organ compared to that of the whole fish exposed to the same concentration. The highest absorbed dose rate was found in the skeletal system at 3.5 mGy/d followed by the blood containing organs at 2.2 mGy/d when exposed to 20 ppm DU. It was also noted that the bioconcentration factors (BCF) of the adult zebrafish followed the same trend observed in similar studies. As the mass concentration of DU was lowered, the BCF calculated for fish exposed increased with a BCF of 130.6 found for those exposed to 20 ppm U and a BCF of 774.2 for fish exposed to 2 ppm. This method shows to present a suitable way of developing a dose distribution for DU along with similar isotopes which will be instrumental in studying the long term effects of more specific exposures to natural radioactive metals combined with other common environmental exposures.

  7. A comparison of digital zero-crossing and charge-comparison methods for neutron/γ-ray discrimination with liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.

    2015-10-01

    In this paper, we have compared the performances of the digital zero-crossing and charge-comparison methods for n/γ discrimination with liquid scintillation detectors at low light outputs. The measurements were performed with a 2″×2″ cylindrical liquid scintillation detector of type BC501A whose outputs were sampled by means of a fast waveform digitizer with 10-bit resolution, 4 GS/s sampling rate and one volt input range. Different light output ranges were measured by operating the photomultiplier tube at different voltages and a new recursive algorithm was developed to implement the digital zero-crossing method. The results of our study demonstrate the superior performance of the digital zero-crossing method at low light outputs when a large dynamic range is measured. However, when the input range of the digitizer is used to measure a narrow range of light outputs, the charge-comparison method slightly outperforms the zero-crossing method. The results are discussed in regard to the effects of the quantization noise and the noise filtration performance of the zero-crossing filter.

  8. Measurements of high energy neutrons penetrated through iron shields using the Self-TOF detector and an NE213 organic liquid scintillator

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Nakao, N.; Nunomiya, T.; Nakamura, T.; Fukumura, A.; Takada, M.

    2002-11-01

    Neutron energy spectra penetrated through iron shields were measured using the Self-TOF detector and an NE213 organic liquid scintillator which have been newly developed by our group at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS), Japan. Neutrons were generated by bombarding 400 MeV/nucleon C ion on a thick (stopping-length) copper target. The neutron spectra in the energy range from 20 to 800 MeV were obtained through the FORIST unfolding code with their response functions and compared with the MCNPX calculations combined with the LA150 cross section library. The neutron fluence measured by the NE213 detector was simulated by the track length estimator in the MCNPX, and evaluated the contribution of the room-scattered neutrons. The calculations are in fairly good agreement with the measurements. Neutron fluence attenuation lengths were obtained from the experimental results and the calculation.

  9. Determination of sulfur in fly ash and fuel oil standard reference materials by radiochemical neutron activation analysis and liquid scintillation counting

    SciTech Connect

    Li, M.; Filby, R.H.

    1983-12-01

    Sulfur was determined in NBS Coal Fly Ash (SRM 1633) and Residual Fuel Oils (SRM's 1619, 1620a, 1634a) by radiochemical neutron activation analysis (NAA) using the /sup 34/S(n,..gamma..)/sup 35/S reaction. The /sup 35/S was separated from solutions of the standards by either cation-anion exchange on Dowex 50W-X8/Dowex 1-X8 or by adsorption on Al/sub 2/O/sub 3/. Liquid scintillation counting of aqueous solutions was used for /sup 35/S measurement. The /sup 35/Cl(n,p)/sup 35/S interference was corrected for by measurement of chlorine by instrumental NAA. The method may be applied to very small samples of fly ash or air particulates (<10/sup -3/ g). 1 figure, 5 tables.

  10. Organic liquid scintillation detectors for on-the-fly neutron/gamma alarming and radionuclide identification in a pedestrian radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Ruch, Marc L.; Poitrasson-Riviere, Alexis; Sagadevan, Athena; Clarke, Shaun D.; Pozzi, Sara

    2015-07-01

    We present new experimental results from a radiation portal monitor based on the use of organic liquid scintillators. The system was tested as part of a 3He-free radiation portal monitor testing campaign at the European Commission's Joint Research Centre in Ispra, Italy, in February 2014. The radiation portal monitor was subjected to a wide range of test conditions described in ANSI N42.35, including a variety of gamma-ray sources and a 20,000 n/s 252Cf source. A false alarm test tested whether radiation portal monitors ever alarmed in the presence of only natural background. The University of Michigan Detection for Nuclear Nonproliferation Group's system triggered zero false alarms in 2739 trials. It consistently alarmed on a variety of gamma-ray sources travelling at 1.2 m/s at a 70 cm source to detector distance. The neutron source was detected at speeds up to 3 m/s and in configurations with up to 8 cm of high density polyethylene shielding. The success of on-the-fly radionuclide identification varied with the gamma-ray source measured as well as with which of two radionuclide identification methods was used. Both methods used a least squares comparison between the measured pulse height distributions to library spectra to pick the best match. The methods varied in how the pulse height distributions were modified prior to the least squares comparison. Correct identification rates were as high as 100% for highly enriched uranium, but as low as 50% for 241Am. Both radionuclide identification algorithms produced mixed results, but the concept of using liquid scintillation detectors for gamma-ray and neutron alarming in radiation portal monitor was validated.

  11. Absolute measurements of the response function of an NE213 organic liquid scintillator for the neutron energy range up to 206 /MeV

    NASA Astrophysics Data System (ADS)

    Nakao, Noriaki; Kurosawa, Tadahiro; Nakamura, Takashi; Uwamino, Yoshitomo

    2001-05-01

    The absolute values of the neutron response functions of a 12.7 cm diameter by 12.7 cm long NE213 organic liquid scintillator were measured using a quasi-monoenergetic neutron field in the energy range of 66- 206 MeV via the 7Li(p,n) 7Be reaction in the ring cyclotron facility at RIKEN. The measured response functions were compared with calculations using a Monte Carlo code developed by Cecil et al. The measurements clarified that protons escaping through the scintillator wall induced by high-energy neutrons increase from 6% for 66 MeV neutrons to 35% for 206 MeV neutrons, and that this wall effect causes a difficult problem for n-γ discrimination. Measured response functions without the wall-effect events were also obtained by eliminating the escaping-proton events in the analysis, and compared with calculations using a modified Monte Carlo code. Comparisons between the measurements and calculations both with and without any wall-effect events gave a good agreement, but some discrepancy in the light output distribution could be found, mainly because the deuteron generation process was not taken into account in the calculation. The calculated efficiencies for 10 MeVee threshold, however, also gave good agreement within about 10% with the measurements.

  12. Alpha detection in pipes using an inverting membrane scintillator

    SciTech Connect

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.

    1995-10-01

    Characterization of surface alpha emitting contamination inside enclosed spaces such as piping systems presents an interesting radiological measurement challenge. Detection of these alpha particles from the exterior of the pipe is impossible since the alpha particles are completely absorbed by the pipe wall. Traditional survey techniques, using hand-held instruments, simply can not be used effectively inside pipes. Science and Engineering Associates, Inc. is currently developing an enhancement to its Pipe Explorer{trademark} system that will address this challenge. The Pipe Explorer{trademark} uses a unique sensor deployment method where an inverted tubular membrane is propagated through complex pipe runs via air pressure. The inversion process causes the membrane to fold out against the pipe wall, such that no part of the membrane drags along the pipe wall. This deployment methodology has been successfully demonstrated at several DOE sites to transport specially designed beta and gamma, scintillation detectors into pipes ranging in length up to 250 ft.

  13. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)(3)He and D(d,n)(3)He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the (9)Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  14. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device

    PubMed Central

    Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-01-01

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima. PMID:26273118

  15. Deuterated-xylene (xylene-d10; EJ301D): A new, improved deuterated liquid scintillator for neutron energy measurements without time-of-flight

    SciTech Connect

    Becchetti, F. D.; Raymond, R. S.; Torres-Isea, R. O.; Di Fulvio, A.; Clarke, S. D.; Pozzi, S. A.; Febbraro, M.

    2016-03-02

    In conjunction with Eljen Technology, Inc. (Sweetwater,TX) we have designed, constructed, and evaluated a 3 in. x 3 in. deuterated-xylene organic liquid scintillator (C8D10; EJ301D) as a fast neutron detector. Similar to deuterated benzene (C6D6; NE230, BC537, and E1315) this scintillator can provide good pulse shape discrimination between neutrons and gamma rays, has good timing characteristics, and can provide a light spectrum with peaks corresponding to discrete neutron energy groups up to ca. 20 MeV. Unlike benzene -based detectors, deuterated xylene is less volatile, less toxic, is not known to be carcinogenic, has a higher flashpoint, and hence is much safer for many applications. In addition E1301D can provide slightly more light output and better PSD than deuterated-benzene scintillators. We show that, as with deuterated-benzene scintillators, the light -response spectra can be unfolded to provide useable neutron energy spectra without need for time-of-flight (ToF). An array of these detectors arranged at many angles close to a reaction target can be much more effective ( x 10 to x 100 or more) than an array of long-path ToF detectors which must utilize a narrowly-bunched and pulse-selected beam. Here, as we demonstrate using a small Van de Graaff accelerator, measurements can thus be performed when a bunched and pulse -selected beam (as needed for time-of-flight) is not available.

  16. Deuterated-xylene (xylene-d10; EJ301D): A new, improved deuterated liquid scintillator for neutron energy measurements without time-of-flight

    DOE PAGES

    Becchetti, F. D.; Raymond, R. S.; Torres-Isea, R. O.; ...

    2016-03-02

    In conjunction with Eljen Technology, Inc. (Sweetwater,TX) we have designed, constructed, and evaluated a 3 in. x 3 in. deuterated-xylene organic liquid scintillator (C8D10; EJ301D) as a fast neutron detector. Similar to deuterated benzene (C6D6; NE230, BC537, and E1315) this scintillator can provide good pulse shape discrimination between neutrons and gamma rays, has good timing characteristics, and can provide a light spectrum with peaks corresponding to discrete neutron energy groups up to ca. 20 MeV. Unlike benzene -based detectors, deuterated xylene is less volatile, less toxic, is not known to be carcinogenic, has a higher flashpoint, and hence is muchmore » safer for many applications. In addition E1301D can provide slightly more light output and better PSD than deuterated-benzene scintillators. We show that, as with deuterated-benzene scintillators, the light -response spectra can be unfolded to provide useable neutron energy spectra without need for time-of-flight (ToF). An array of these detectors arranged at many angles close to a reaction target can be much more effective ( x 10 to x 100 or more) than an array of long-path ToF detectors which must utilize a narrowly-bunched and pulse-selected beam. Here, as we demonstrate using a small Van de Graaff accelerator, measurements can thus be performed when a bunched and pulse -selected beam (as needed for time-of-flight) is not available.« less

  17. Determination of radon-222 in ground water using liquid scintillation counting-survey of carefree cave-creek water basin in Arizona

    SciTech Connect

    Barnett, J.M.; McKlveen, J.W.; Hood, W.K. III

    1992-12-31

    Well water used in homes may contribute additional {sup 222}Rn to the indoor radon concentration. Our research objectives are to establish a method to measure radon in ground water using liquid scintillation (LS) spectrometry, and to determine the lung dose from the radon released into the air. The method involves collecting a nonaerated, slow, steady flow of water from a pumping well into a 437-mi (16-oz) glass bottle. A high meniscus assures no head space, and the sample is capped. In the laboratory, standard 22-ml LS glass vials are filled with 10 ml of a toluene-based, mineral oil, LS cocktail and two 5-ml sample aliquots. The vial is capped tightly, shaken vigorously, and placed in the LS counter. Equilibrium was established in about 3.5 h, after which samples were counted for 100 min each. Only radon and daughters were measured. According to NUREG/CR-4007, the lower limit of detection is 1.9 Bq L{sup -1} (51 pCi L{sup -1}) in the window of interest. The radon progeny detection efficiency was between 320 and 330% per unit radon activity (accounting for the detection efficiency of each alpha particle and the beta continuum), and the average background was approximately 6 counts per minute. We expect that wells containing radon concentrations between 100 and 1000 Bq L{sup -1} would produce an effective dose equivalent to the lungs of 0.4 to 0.7 mSv y{sup -1} (40-70 mrem y{sup -1}). Our study of 28 wells in Carefree-Cave Creek indicates that in 25% of the wells, radon levels were over 100 Bq L{sup -1} (2700 pCi L{sup -1}). Twelve wells were chosen for monthly monitoring to ensure the efficiency of the methodology. This simple method allows us to count a large number of samples over a short time period.

  18. Broad energy range neutron spectroscopy using a liquid scintillator and a proportional counter: Application to a neutron spectrum similar to that from an improvised nuclear device

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-09-01

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  19. Measurements of the response functions of a large size NE213 organic liquid scintillator for neutrons up to 800 MeV.

    PubMed

    Taniguchi, S; Moriya, T; Takada, M; Hatanaka, K; Wakasa, T; Saito, T

    2005-01-01

    The response functions of 25.4 cm (length) x 25.4 cm (diameter) NE213 organic liquid scintillator have been measured for neutrons in the energy range from 20 to 800 MeV at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) and at the Research Center for Nuclear Physics (RCNP) of Osaka University. At HIMAC, white (continuous) energy spectrum neutrons were produced by the 400 MeV per nucleon carbon ion bombardment on a thick graphite target, whose energy spectrum has already been measured by Kurosawa et al., [Nucl. Sci. Eng. 132, 30 (1999)] and the response functions of the time-of-flight-gated monoenergetic neutrons in a wide energy range from 20 to 800 MeV were simultaneously measured. At RCNP, the quasi-monoenergetic neutrons were produced via 7Li(p,n)7Be reaction by 250 MeV proton beam bombardment on a thin 7Li target, and the TOF-gated 245 MeV peak neutrons were measured. The absolute peak neutron yield was obtained by the measurement of 478 keV gamma rays from the 7Be nuclei produced in a Li target. The measured results show that the response functions for monoenergetic neutrons < 250 MeV have a recoil proton plateau and an edge around the maximum light output, which increases with increasing incident neutron energy, on the other hand > 250 MeV, the plateau and the edge become unclear because the proton range becomes longer than the detector size and the escaping protons increase. It can be found that the efficiency of the 24.5 cm (diameter) x 25.4 cm (length) NE213 for the 250 MeV neutrons is -10 times larger than the 12.7 cm (length) x 12.7 cm (diameter) NE213, which is widely used as a neutron spectrometer.

  20. Deuterated-xylene (xylene-d10; EJ301D): A new, improved deuterated liquid scintillator for neutron energy measurements without time-of-flight

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Raymond, R. S.; Torres-Isea, R. O.; Di Fulvio, A.; Clarke, S. D.; Pozzi, S. A.; Febbraro, M.

    2016-06-01

    In conjunction with Eljen Technology, Inc. (Sweetwater,TX) we have designed, constructed, and evaluated a 3 in. ×3 in. deuterated-xylene organic liquid scintillator (C8D10; EJ301D) as a fast neutron detector. Similar to deuterated benzene (C6D6; NE230, BC537, and EJ315) this scintillator can provide good pulse-shape discrimination between neutrons and gamma rays, has good timing characteristics, and can provide a light spectrum with peaks corresponding to discrete neutron energy groups up to ca. 20 MeV. Unlike benzene-based detectors, deuterated xylene is less volatile, less toxic, is not known to be carcinogenic, has a higher flashpoint, and hence is much safer for many applications. In addition EJ301D can provide slightly more light output and better PSD than deuterated-benzene scintillators. We show that, as with deuterated-benzene scintillators, the light-response spectra can be unfolded to provide useable neutron energy spectra without need for time-of-flight (ToF). An array of these detectors arranged at many angles close to a reaction target can be much more effective (×10 to ×100 or more) than an array of long-path ToF detectors which must utilize a narrowly-bunched and pulse-selected beam. As we demonstrate using a small Van de Graaff accelerator, measurements can thus be performed when a bunched and pulse-selected beam (as needed for time-of-flight) is not available.

  1. Development of a quasi-monoenergetic neutron field and measurements of the response function of an organic liquid scintillator for the neutron energy range from 66 to 206 MeV

    NASA Astrophysics Data System (ADS)

    Nakao, Noriaki; Kurosawa, Tadahiro; Nakamura, Takashi; Uwamino, Yoshitomo

    2002-01-01

    A quasi-monoenergetic neutron field was developed using a thin 7Li target bombarded by protons in the energy range from 70 to 210 MeV at the RIKEN ring cyclotron facility. The neutron energy spectra were measured with an NE213 organic liquid scintillator using the TOF method. The absolute peak neutron yields were obtained by measurements of 478 keV γ-rays from 7Be nuclei produced in a 7Li target through the 7Li( p,n) 7Be (g.s.+0.429 MeV) reaction. Using the neutron field, the absolute values of the neutron response functions of a 12.7 cm diameter by 12.7 cm long NE213 organic liquid scintillator were measured, and were compared with calculations using a Monte Carlo code developed by Cecil et al. The measured response functions without any wall-effect events were also obtained, and compared with calcualtions using a modified Monte Carlo code. Comparisons between a measurement and a calculation both with and without any wall-effect events gave a good agreement.

  2. An in-cell alpha detection system for radioisotope component assembly operations

    SciTech Connect

    Carteret, B.A. ); Goles, R.W. )

    1991-09-01

    A remotely operated alpha detection system is being developed for use at the Radioisotope Power Systems Facility at the US Department of Energy's Hanford Site. It will be used in hot cells being constructed to assemble components of Radioisotope Thermoelectric Generators for space power applications. The in-cell detection equipment will survey radiological swipe samples to determine smearable surface contamination levels on radioisotope fuel, fueled components, and hot-cell work areas. This system is potentially adaptable to other hot cell and glovebox applications where radiation dose rates and contamination levels are expected to be low. 2 figs.

  3. Improvement of the Eakins and Brown method for measuring 59Fe and 55Fe in blood and other iron-containing materials by liquid scintillation counting and sample preparation using microwave digestion and ion-exchange column purification of iron.

    PubMed

    Viteri, F E; Kohaut, B A

    1997-01-01

    The simultaneous measurement of 59Fe and 55Fe in whole blood by liquid scintillation counting by the Eakins and Brown (EB) method is extensively used in iron absorption studies. The EB method requires many steps which increase the chances of error and decrease its sensitivity. We describe two modifications to the above method consisting of microwave digestion and column purification of iron. This "New Method" (NM) is simpler and more precise, and sensitive than the EB method. Counting efficiencies with the NM are similar for 59Fe (75%) as with the EB method but are better for 55Fe (29% for NM vs 22%), and cross counting from 59Fe into the 55Fe window is lower with the NM (3.7-4.5%) than with the EB method (10-12%). For the NM, recoveries of radioactive blood samples, in relation to processed standards ranged from 100 to 103% for 59Fe and 101 to 113% for 55Fe. For the EB method, recoveries ranged from 94 to 99% for 59Fe and from 88 to 93% for 55Fe. Even with very low counts, average intrarun CV with the NM was lower than 5.4% for either isotope, while it was as high as 10.0% for 55Fe with the EB method.

  4. Real-time, digital pulse-shape discrimination in non-hazardous fast liquid scintillation detectors: Prospects for safety and security

    SciTech Connect

    Joyce, M. J.; Aspinall, M. D.; Cave, F. D.; Lavietes, A. D.

    2011-07-01

    Pulse-shape discrimination (PSD) in fast, organic scintillation detectors is a long-established technique used to separate neutrons and {gamma} rays in mixed radiation fields. In the analogue domain the method can achieve separation in real time, but all knowledge of the pulses themselves is lost thereby preventing the possibility of any post- or repeated analysis. Also, it is typically reliant on electronic systems that are largely obsolete and which require significant experience to set up. In the digital domain, PSD is often more flexible but significant post-processing has usually been necessary to obtain neutron/{gamma}-ray separation. Moreover, the scintillation media on which the technique relies usually have a low flash point and are thus deemed hazardous. This complicates the ease with which they are used in industrial applications. In this paper, results obtained with a new portable digital pulse-shape discrimination instrument are described. This instrument provides real-time, digital neutron/{gamma} separation whilst preserving the synchronization with the time-of-arrival for each event, and realizing throughputs of 3 x 10{sup 6} events per second. Furthermore, this system has been tested with a scintillation medium that is non-flammable and not hazardous. (authors)

  5. Low background techniques for the Borexino nylon vessels

    SciTech Connect

    Pocar, Andrea

    2005-09-08

    Borexino is an organic liquid scintillator underground detector for low energy solar neutrinos. The experiment has to satisfy extremely stringent low background requirements. The thin nylon spherical scintillator containment vessel has to meet cleanliness and low radioactivity levels second only, within the detector, to the scintillator itself. Overall, the background from the vessel in the fiducial volume of the detector must be kept at the level of one event per day or better. The requirements, design choices, results from laboratory tests, and fabrication techniques that have been adopted to meet this goal are presented. Details of the precautions taken during the installation of the vessels inside the Borexino detector are also discussed.

  6. Large-Area Liquid Scintillation Detector Slab

    NASA Astrophysics Data System (ADS)

    Crouch, M. F.; Gurr, H. S.; Hruschka, A. A.; Jenkins, T. L.; Kropp, W. P.; Reines, P.; Sobel, H.

    The following sections are included: * SUMMARY * INTRODUCTION * DETECTOR RESPONSE FUNCTION F(z) AND EVENT POSITION DETERMINATION * REFINEMENTS IN THE DETECTOR CONFIGURATION DESIGN * DETECTOR PERFORMANCE * APPENDIX * REFERENCES

  7. Event Reconstruction Techniques in NOvA

    NASA Astrophysics Data System (ADS)

    Baird, M.; Bian, J.; Messier, M.; Niner, E.; Rocco, D.; Sachdev, K.

    2015-12-01

    The NOvA experiment is a long-baseline neutrino oscillation experiment utilizing the NuMI beam generated at Fermilab. The experiment will measure the oscillations within a muon neutrino beam in a 300 ton Near Detector located underground at Fermilab and a functionally-identical 14 kiloton Far Detector placed 810 km away. The detectors are liquid scintillator tracking calorimeters with a fine-grained cellular structure that provides a wealth of information for separating the different particle track and shower topologies. Each detector has its own challenges with the Near Detector seeing multiple overlapping neutrino interactions in each event and the Far Detector having a large background of cosmic rays due to being located on the surface. A series of pattern recognition techniques have been developed to go from event records, to spatially and temporally separating individual interactions, to vertexing and tracking, and particle identification. This combination of methods to achieve the full event reconstruction will be discussed.

  8. Review of uranium bioassay techniques

    SciTech Connect

    Bogard, J.S.

    1996-04-01

    A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

  9. Diagnostics techniques and dosimetric evaluations for environmental radioactivity investigations

    NASA Astrophysics Data System (ADS)

    Caridi, F.; D'Agostino, M.; Belvedere, A.; Marguccio, S.; Belmusto, G.; Gatto, M. F.

    2016-10-01

    A comprehensive study was conducted about the investigation of the natural/anthropo-genic radioactivity of various environmental matrices. Different diagnostics techniques were employed: high resolution HpGe gamma spectrometry, to quantify the activity concentration of radionuclides that emit gamma photons; alpha spectrometry, for the determination of the specific activity of α -emitters radioisotopes; liquid scintillation, to measure the activity concentration of tritium, radon and total alpha/beta in liquid samples; alpha spectrometry through the Rad7 setup, to estimate the gas radon activity concentration in air, water and soil; total alpha/beta counter, for the activity concentration quantification of radionuclides, in solid samples, emitting alpha/beta particles. From the dosimetric point of view, knowledge of the radioactivity level in the environmental matrices allows to evaluate any possible radiological hazard for the population, through the calculation of the appropriate parameters of radioprotection and their comparison with the safety limits reported by the literature.

  10. Radon assay for SNO+

    SciTech Connect

    Rumleskie, Janet

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  11. Radon assay for SNO+

    NASA Astrophysics Data System (ADS)

    Rumleskie, Janet

    2015-12-01

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  12. A new water-based liquid scintillator and potential applications

    NASA Astrophysics Data System (ADS)

    Yeh, M.; Hans, S.; Beriguete, W.; Rosero, R.; Hu, L.; Hahn, R. L.; Diwan, M. V.; Jaffe, D. E.; Kettell, S. H.; Littenberg, L.

    2011-12-01

    In this paper we describe a new type of scintillating liquid based on water. We describe the concept, preparation, and properties of this liquid, and how it could be used for a very large, but economical detector. The applications of such a detector range from fundamental physics such as nucleon decay and neutrino physics to physics with broader application such as neutron detection. We briefly describe the scientific requirements of these applications, and how they can be satisfied by the new material.

  13. Method for measuring multiple scattering corrections between liquid scintillators

    SciTech Connect

    Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.; Wurtz, R. E.

    2016-04-11

    In this study, a time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  14. Method for measuring multiple scattering corrections between liquid scintillators

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.; Wurtz, R. E.

    2016-07-01

    A time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  15. Characterization of Hundreds of MeV 7Li(p,n) Quasi-Monoenergetic Neutron Source at RCNP Using a Proton Recoil Telescope and TOF Technique

    NASA Astrophysics Data System (ADS)

    Hagiwara, Masayuki; Iwamoto, Yosuke; Iwase, Hiroshi; Yashima, Hiroshi; Satoh, Daiki; Matsumoto, Tetsuro; Masuda, Akihiko; Nakane, Yoshihiro; Tamii, Atsushi; Shima, Tatsushi; Hatanaka, Kichiji; Nakamura, Takashi

    The peak neutron fluence of a quasi-monoenergetic 7Li(p,n) neutron source at RCNP of Osaka University have been measured for four incident proton energies between 100 and 300 MeV, using a proton recoil telescope (PRT) with event selection by a time-of-flight technique. We deduced the cross section of the peak neutron production reaction, 7Li(p,n0,1)7Be, at 0° and compared with that previously obtained with a time-of-flight (TOF) method employing an organic liquid scintillator. The results obtained with different methods are in agreement within their uncertainties and generally consistent with the other experimental data in several hundreds of MeV region.

  16. Free Radical Polymerization of Styrene: A Radiotracer Experiment

    ERIC Educational Resources Information Center

    Mazza, R. J.

    1975-01-01

    Describes an experiment designed to acquaint the chemistry student with polymerization reactions, vacuum techniques, liquid scintillation counting, gas-liquid chromatography, and the handling of radioactive materials. (MLH)

  17. Comparison Between Digital and Analog Pulse Shape Discrimination Techniques For Neutron and Gamma Ray Separation

    SciTech Connect

    R. Aryaeinejad; John K. Hartwell

    2005-11-01

    Recent advancement in digital signal processing (DSP) using fast processors and computer makes it possible to be used in pulse shape discrimination applications. In this study, we have investigated the feasibility of using a DSP to distinguish between the neutrons and gamma rays by the shape of their pulses in a liquid scintillator detector (BC501), and have investigated pulse shape-based techniques to improve the resolution performance of room-temperature cadmium zinc telluride (CZT) detectors. For the neutron/gamma discrimination, the advantage of using a DSP over the analog method is that in analog system two separate charge-sensitive ADC's are required. One ADC is used to integrate the beginning of the pulse risetime while the second ADC is for integrating the tail part. Using a DSP eliminates the need for separate ADCs as one can easily get the integration of two parts of the pulse from the digital waveforms. This work describes the performance of these DSP techniques and compares the results with the analog method.

  18. Comparison Between Digital and Analog Pulse Shape Discrimination Techniques for Neutron and Gamma Ray Separation

    SciTech Connect

    Rahmat Aryaeinejad

    2005-10-01

    Recent advancements in digital signal processing (DSP) using fast processors and a computer allows one to envision using it in pulse shape discrimination. In this study, we have investigated the feasibility of using a DSP to distinguish between neutrons and gamma rays by the shape of their pulses in a liquid scintillator detector (BC501). For neutron/gamma discrimination, the advantage of using a DSP over the analog method is that in an analog system, two separate charge-sensitive ADCs are required. One ADC is used to integrate the beginning of the pulse rise time while the second ADC is for integrating the tail part. In DSP techniques the incoming pulses coming directly from the detector are immediately digitized and can be decomposed into individual pulses waveforms. This eliminates the need for separate ADCs as one can easily get the integration of two parts of the pulse from the digital waveforms. This work describes the performance of these DSP techniques and compares the results with the analog method.

  19. The development of emergency radioanalytical techniques for the determination of radiostrontium and transuranic radioisotopes in environmental materials

    SciTech Connect

    Martin, J.P.; Odell, K.J.

    1998-12-31

    Environmental monitoring procedures have been introduced which are designed to provide a rapid response by the nuclear industry in the event of a nuclear emergency. Within three hours of sample receipt the laboratory is now capable of screening up to 80 samples by total alpha/beta determination and gamma spectrometry. This rapid screening would enable the identification of samples of particular interest. Radiochemical analytical methodology is in place which would then enable the determination of transuranic radioisotopes and radiostrontium ({sup 89}Sr and {sup 90}Sr) within a period of 24 hours from sample receipt to reporting of results. The Limit of Detection achievable via this methodology is of the order of 10% of the Commission for the European Communities restriction level. Typically, the 2{sigma}-counting uncertainty associated with these measurements is in the range 10--50%. As such, this methodology is appropriate for the urgent provision of reassurance or informed advice in the event of radionuclide release. Improvements in batch analysis time have been achieved by the use of microwave enhanced sample digestion techniques, commercially available extraction resins, optimization of conventional radiochemistry procedures and the utilization of combined Cerenkov and triple channel liquid scintillation counting techniques. Sample calculation and management is facilitated by a computerized Laboratory Information Management System (LIMS).

  20. Calculation of extrapolation curves in the 4π(LS)β-γ coincidence technique with the Monte Carlo code Geant4.

    PubMed

    Bobin, C; Thiam, C; Bouchard, J

    2016-03-01

    At LNE-LNHB, a liquid scintillation (LS) detection setup designed for Triple to Double Coincidence Ratio (TDCR) measurements is also used in the β-channel of a 4π(LS)β-γ coincidence system. This LS counter based on 3 photomultipliers was first modeled using the Monte Carlo code Geant4 to enable the simulation of optical photons produced by scintillation and Cerenkov effects. This stochastic modeling was especially designed for the calculation of double and triple coincidences between photomultipliers in TDCR measurements. In the present paper, this TDCR-Geant4 model is extended to 4π(LS)β-γ coincidence counting to enable the simulation of the efficiency-extrapolation technique by the addition of a γ-channel. This simulation tool aims at the prediction of systematic biases in activity determination due to eventual non-linearity of efficiency-extrapolation curves. First results are described in the case of the standardization (59)Fe. The variation of the γ-efficiency in the β-channel due to the Cerenkov emission is investigated in the case of the activity measurements of (54)Mn. The problem of the non-linearity between β-efficiencies is featured in the case of the efficiency tracing technique for the activity measurements of (14)C using (60)Co as a tracer.

  1. Study on Response Function of Organic Liquid Scintillator for High-Energy Neutrons

    NASA Astrophysics Data System (ADS)

    Satoh, Daiki; Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Takada, Masashi; Ishibashi, Kenji

    2005-05-01

    Response functions of liquid organic scintillator for neutrons up to 800 MeV have been measured at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS). 800-MeV/u Si ions and 400-MeV/u C ions bombarded a thick carbon target to produce neutrons. The kinetic energies of emitted neutrons were determined by the time-of-flight (TOF) method. Light output for neutrons was evaluated by eliminating events due to gamma-rays and charged particles. The measured response functions were compared with calculations using SCINFUL-QMD and CECIL codes. It was found that SCINFUL-QMD reproduced our experimental data adequately.

  2. Characteristic parameters in the measurement of (14)C of biobased diesel fuels by liquid scintillation.

    PubMed

    Idoeta, R; Pérez, E; Herranz, M; Legarda, F

    2014-11-01

    The direct method based on the radiocarbon content present in modern-day materials used for the quantification of the renewable origin component in diesel has been analysed in order to establish the best sample preparation and measuring conditions that minimise the limit of detection. The scintillation cocktail and the diesel/cocktail ratio have been optimised.

  3. A New Water-based Liquid Scintillator for Large Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Yeh, Minfang

    2012-03-01

    A new type of scintillating liquid based on water has been developed at Brookhaven National Laboratory (Chemistry & Physics). The concept, preparation, and properties of this liquid, and how it could be used for a very large, but economical detector will be discussed in the talk. The applications of such a detector range from fundamental physics such as nucleon decay and neutrino physics to physics with broader application such as neutron detection. We will briefly describe the scientific requirements of these applications, and how they can be satisfied by this new material.

  4. A Combined Neutron and Gamma-Ray Multiplicity Counter Based on Liquid Scintillation Detectors

    SciTech Connect

    Andreas Enqvist; Marek Flaska; Jennifer Dolan; David L. Chichester; Sara A. Pozzi

    2011-10-01

    Multiplicity counters for neutron assay have been extensively used in materials control and accountability for nonproliferation and nuclear safeguards. Typically, neutron coincidence counters are utilized in these fields. In this work, we present a measurement system that makes use not only of neutron (n) multiplicity counting but also of gamma-ray (g) multiplicity counting and the combined higher-order multiples containing both neutrons and gamma rays. The benefit of this approach is in using both particle types available from the sample, leading to a reduction in measurement times needed when using more measurables. We present measurement results of n, g, nn, ng, gg, nnn, nng, ngg, and ggg multiples emitted by Mixed-Oxide (MOX) samples measured at Idaho National Laboratory (INL). The MOX measurement is compared to initial validation of the detection system done using a 252Cf source. The dual radiation measuring system proposed here uses extra measurables to improve the statistics when compared to a neutron-only system and allows for extended analysis and interpretation of sample parameters. New challenges such as the effect of very high intrinsic gamma-ray sources in the case of MOX samples is discussed. Successful measurements of multiples rates can be performed also when using high-Z shielding.

  5. On the stability of (3)H and (63)Ni Ultima Gold liquid scintillation sources.

    PubMed

    Nedjadi, Youcef; Duc, Pierre-François; Bochud, François; Bailat, Claude

    2016-12-01

    The stability of (3)H and (63)Ni samples, made with Ultima Gold and Ultima Gold AB using eight aqueous fractions ranging between 0.1% and 10%, was monitored over a period of 32 weeks. Counting rate losses were measured in all cases, but were found to be particularly severe for samples with low aqueous fractions. Hydrodynamic diameter measurements of the reverse micelles of (3)H and (63)Ni in Ultima Gold and Ultima Gold AB samples were performed with dynamic light scattering. For Ultima Gold, the micelle diameters were measured to be about 2nm and slightly dependent of the aqueous fraction, while for Ultima Gold AB they were found to vary strongly with the aqueous fraction and range between 1 and 4nm. The hypothesis that the counting rate instabilities derive from changes in the sizes of micelles was tested by measuring them four times over the monitoring period. The measurement results do not support this claim.

  6. 90Sr liquid scintillation urine analysis utilizing different approaches for tracer recovery.

    SciTech Connect

    Piraner, Olga; Preston, Rose T.; Shanks, Sonoya Toyoko; Jones, Robert

    2010-08-01

    90Sr is one of the isotopes most commonly produced by nuclear fission. This medium lived isotope presents serious challenges to radiation workers, the environment, and following a nuclear event, the general public. Methods of identifying this nuclide have been in existence for a number of years (e.g. Horwitz, E.P. [1], Maxwell, S.L.[2], EPA 905.0 [3]) which are time consuming, requiring a month or more for full analysis. This time frame is unacceptable in the present security environment. It is therefore important to have a dependable and rapid method for the determination of Sr. The purposes of this study are to reduce analysis time to less than half a day by utilizing a single method of radiation measurement while continuing to yield precise results. This paper presents findings on three methods that can meet this criteria; (1) stable Sr carrier, (2) 85Sr by gamma spectroscopy, and (3) 85Sr by LSC. Two methods of analyzing and calculating the 85Sr tracer recovery were investigated (gamma spectroscopy and a low energy window-Sr85LEBAB by LSC) as well as the use of two different types of Sr tracer (85Sr and stable Sr carrier). Three separate stock blank urine samples were spiked with various activity levels of 239Pu, 137Cs, 90Sr /90Y to determine the effectiveness of the Eichrome Sr-spec resin 2mL extractive columns. The objective was to compare the recoveries of 85Sr versus a stable strontium carrier, attempt to compare the rate at which samples can be processed by evaluating evaporation, neutralization, and removing the use of another instrument (gamma spectrometer) by using the LSC spectrometer to obtain 85Sr recovery. It was found that when using a calibration curve comprised of a different cocktail and a non-optimum discriminator setting reasonable results (bias of « 25%) were achieved. The results from spiked samples containing 85Sr demonstrated that a higher recovery is obtained when using gamma spectroscopy (89-95%) than when using the LEB window from LSC (120-470%). The high recovery for 85Sr by LSC analysis may be due to the interference/cross talk from the alpha region since alpha counts were observed in all sample sets. After further investigation it was determined that the alpha counts were due to 239Pu breakthrough on the Sr-spec column. This requires further development to purify the Sr before an accurate tracer recovery determination can be made. Sample preparation times varied and ranged from 4-6 hours depending on the specific sample preparation process. The results from the spiked samples containing stable strontium nitrate Sr(NO3)2 carrier demonstrate that gravimetric analysis yields the most consistent high recoveries (97-101%) when evaporation is carefully performed. Since this method did not have a variation on the tracer recovery method, the samples were counted in 1) LEB/Alpha/Beta mode optimized for Sr-90, 2) DPM for Sr-90, and 3) general LEB/Alpha/Beta mode. The results (from the known) ranged from 79-104%, 107-177%, and 85-89% for 1, 2, and 3 respectively. Counting the prepared samples in a generic low energy beta/alpha/beta protocol yielded more accurate and consistent results and also yielded the shortest sample preparation turn-around-time of 3.5 hours.

  7. Direct in-vial collection for liquid-scintillation assay of carbon-14 and tritium

    NASA Technical Reports Server (NTRS)

    Huebner, L. G.; Kisieleski, W. E.

    1969-01-01

    Dissolution of biological materials combines the simplicity of oxygen-flask combustion with the reproducibility and purity of the final product, and convenience of direct in-vial collection of the sample by the sealed-tube method. It assures quantitative and reproducible recoveries.

  8. On the scintillation efficiency of carborane-loaded liquid scintillators for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Okoye, Nkemakonam C.; Urffer, Matthew J.; Green, Alexander D.; Childs, Kyle E.; Miller, Laurence F.

    2015-01-01

    The scintillation efficiency in response to thermal neutrons was studied by loading different concentrations of carborane (0-8.5 wt%) and naphthalene (0 and 100 g/L) in five liquid organic scintillators. The sample was characterized in Pb and Cd shields under the irradiation of the thermal neutrons from a 252Cf source. A method was developed to extract the net neutron response from the pulse-height spectra. It was found that the order of scintillation efficiencies for both γ-rays and thermal neutrons is as follows: diisopropylnaphthalene>toluene (concentrated solutes)>toluene~pseudocumene~m-xylene. The quench constants, obtained by fitting the Stern-Volmer model to the plots of light output versus carborane concentration, are in the range of 0.35-1.4 M-1 for all the scintillators. The Birks factors, estimated using the specific energy loss profiles of the incident particles, are in the range of 9.3-14 mg cm-2 MeV-1 for all the samples. The light outputs are in the range of 63-86 keV electron equivalents (keVee) in response to thermal neutrons. Loading naphthalene generally promotes the scintillation efficiency of the scintillator with a benzene derivative solvent. Among all the scintillators tested, the diisopropylnaphthalene-based scintillator shows the highest scintillation efficiency, lowest Birks factor, and smallest quench constants. These properties are primarily attributed to the double fused benzene-ring structure of the solvent, which is more efficient to populate to the excited singlet state under ionizing radiation and to transfer the excitation energy to the fluorescent solutes.

  9. A combined neutron and gamma-ray multiplicity counter based on liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Enqvist, Andreas; Flaska, Marek; Dolan, Jennifer L.; Chichester, David L.; Pozzi, Sara A.

    2011-10-01

    Multiplicity counters for neutron assay have been extensively used in materials control and accountability for nonproliferation and nuclear safeguards. Typically, neutron coincidence counters are utilized in these fields. In this work, we present a measurement system that makes use not only of neutron (n) multiplicity counting but also of gamma-ray ( γ) multiplicity counting and the combined higher-order multiples containing both neutrons and gamma rays. The benefit of this approach is in using both particle types available from the sample, leading to a reduction in measurement times compared with single-particle measurements. We present measurement results of n, γ, nn, nγ, γγ, nnn, nnγ, nγγ and γγγ multiples emitted by Mixed-Oxide (MOX) samples measured at Idaho National Laboratory (INL). The MOX measurement is compared to initial validation of the detection system done using a 252Cf source. The dual radiation measuring system proposed here uses extra measurables to improve the statistics when compared to a neutron-only system and allows for extended analysis and interpretation of sample parameters. New challenges such as the effect of very high intrinsic gamma-ray sources in the case of MOX samples are discussed. Successful measurements of multiple rates can be performed also when using high-Z shielding.

  10. Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy

    NASA Astrophysics Data System (ADS)

    Beaulieu, Luc; Beddar, Sam

    2016-10-01

    While scintillation dosimetry has been around for decades, the need for a dosimeter tailored to the reality of modern radiation therapy—in particular a real-time, water-equivalent, energy-independent dosimeter with high spatial resolution—has generated renewed interest in scintillators over the last 10 years. With the advent of at least one commercial plastic scintillation dosimeter and the ever-growing scientific literature on this subject, this topical review is intended to provide the medical physics community with a wide overview of scintillation physics, related optical concepts, and applications of plastic scintillation dosimetry.

  11. An Isotopic Dilution Experiment Using Liquid Scintillation: A Simple Two-System, Two-Phase Analysis.

    ERIC Educational Resources Information Center

    Moehs, Peter J.; Levine, Samuel

    1982-01-01

    A simple isotonic, dilution analysis whose principles apply to methods of more complex radioanalyses is described. Suitable for clinical and instrumental analysis chemistry students, experimental manipulations are kept to a minimum involving only aqueous extraction before counting. Background information, procedures, and results are discussed.…

  12. p-Terphenyl: An alternative to liquid scintillators for neutron detection

    NASA Astrophysics Data System (ADS)

    Sardet, A.; Varignon, C.; Laurent, B.; Granier, T.; Oberstedt, A.

    2015-08-01

    A detailed characterization of doped paraterphenyl (p-Terphenyl) neutron detectors was obtained by means of γ-sources and a 252Cf fission chamber. The intrinsic timing resolution, the energy resolution up to 2 MeVee, and the electron-equivalent energy calibration were determined using γ-sources. The neutron time-of-flight spectrum from the spontaneous fission of 252Cf provided information on the proton energy calibration, the light output function, and the intrinsic neutron detection efficiency between 0 and 8 MeV for a threshold of 250 keV. Measurements of the latter were also performed using monoenergetic neutron beams. The applied experimental methods were cross-checked using two BC501A scintillation detectors, which were previously calibrated at the Physikalisch-Technische Bundesanstalt in Braunschweig, Germany. Results were compared to Monte-Carlo simulations performed using NRESP7 and NEFF7 codes.

  13. Sterile technique

    MedlinePlus

    ... technique. In: Perry AG, Potter PA, eds. Clinical Nursing Skills and Techniques . 8th ed. Philadelphia, PA: Elsevier Mosby; 2014:chap 8. Read More Stress urinary incontinence Urge incontinence Urinary incontinence Patient Instructions ...

  14. Modulation techniques

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1982-01-01

    Bandwidth efficient digital modulation techniques, proposed for use on and/or applied to satellite channels, are reviewed. In a survey of recent works on digital modulation techniques, the performance of several schemes operating in various environments are compared. Topics covered include: (1) quadrature phase shift keying; (2) offset - QPSK and MSK; (3) combined modulation and coding; and (4) spectrally efficient modulation techniques.

  15. Dismantling techniques

    SciTech Connect

    Wiese, E.

    1998-03-13

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

  16. Evaluation of the (14)C-urea breath test using indigenously produced (14)C-urea capsules and a modified technique for trapping exhaled breath: a pilot study.

    PubMed

    Tiwari, Bijaynath P; Nistala, Srinivas; Patil, Sanjay P; Kalgutkar, Deepak P; Jaychandran, Narath; Chander, Harish; Basu, Sandip

    2014-03-01

    The carbon urea breath test ((14)C-UBT) is a noninvasive technique used to detect Helicobacter pylori infection in patients presenting with dyspeptic symptoms. The present study was undertaken to determine the efficacy of indigenously produced (14)C-UBT capsules by the Board of Radiation and Isotope Technology, India. Thirty consecutive patients with dyspeptic symptoms were included in the study. After ingestion of capsules, breath samples were collected in a CO2-trapping solution to which a scintillation cocktail was added. After 24 h, the whole sample was counted in a liquid scintillation counter along with a standard of (14)C. The number of disintegrations of (14)C per minute in the breath sample was calculated. The results were compared with histopathological reports. Of 30 patients, 19 were positive and 11 were negative on (14)C-UBT. Histopathological reports confirmed 27 cases as positive and three as negative for H. pylori. Thus, the results of (14)C-UBT were concordant with histopathological results in 22/30 (73.3%) cases. Considering histopathology as the gold standard, the sensitivity, specificity, and positive predictive value of (14)C-UBT using indigenously produced capsules were found to be 70.33, 100, and 100%, respectively. On critical analysis of the discordant results, we observed that six patients had undergone H. pylori eradication therapy exactly 4 weeks before the test. When these six patients were excluded from the analysis, the sensitivity, specificity, and positive predictive value were found to be 90.05, 100, and 100%, respectively, which compared well with the values obtained using the standard procedure. The study demonstrates adequate efficacy of the indigenous methodology in newly diagnosed symptomatic patients with acid peptic disorders. The analyses of the results indicate that the test should be preferably employed after the recommended period of 1 month following completion of eradication therapy.

  17. Folic acid absorption determined by a single stool sample test--a double-isotope technique. The folic acid absorption capacity in children

    SciTech Connect

    Hjelt, K. )

    1989-10-01

    The fractional folic acid absorption (FAFol) was determined in 66 patients with various gastrointestinal diseases by a double-isotope technique, employing a single stool sample test (SSST) as well as a complete stool collection. The age of the patients ranged from 2.5 months to 16.8 years (mean 6.3 years). The test dose was administered orally and consisted of 50 micrograms of (3H)folic acid (monoglutamate) (approximately 20 muCi), carmine powder, and 2 mg 51CrCl3 (approximately 1.25 muCi) as the unabsorbable tracer. The whole-body radiation given to a 1-year-old child averaged 4.8 mrad only. The stool and napkin contents were collected and homogenized by the addition of 300 ml chromium sulfuric acid. A 300-ml sample of the homogenized stool and napkin contents, as well as 300 ml chromium sulfuric acid (75% vol/vol) containing the standards, were counted for the content of 51Cr in a broad-based well counter. The quantity of (3H)folic acid was determined by liquid scintillation, after duplicate distillation. Estimated by SSST, the FAFol, which employs the stool with the highest content of 51Cr corresponding to the most carmine-colored stool, correlated closely with the FAFol based on complete stool collection (r = 0.96, n = 39, p less than 0.0001). The reproducibility of FAFol determined by SSST was assessed from repeated tests in 18 patients. For a mean of 81%, the SD was 4.6%, which corresponded to a coefficient of variation of 5.7%.

  18. Fiber Techniques

    ERIC Educational Resources Information Center

    Nalle, Leona

    1976-01-01

    Describes a course in fiber techniques, which covers design methods involving fibers and fabric, that students in the Art Department at Sleeping Giant Junior High School had the opportunity to learn. (Author/RK)

  19. Radon Diffusion Measurement in Polyethylene based on Alpha Detection

    SciTech Connect

    Rau, Wolfgang

    2011-04-27

    We present a method to measure the diffusion of Radon in solid materials based on the alpha decay of the radon daughter products. In contrast to usual diffusion measurements which detect the radon that penetrates a thin barrier, we let the radon diffuse into the material and then measure the alpha decays of the radon daughter products in the material. We applied this method to regular and ultra high molecular weight poly ethylene and find diffusion lengths of order of mm as expected. However, the preliminary analysis shows significant differences between two different approaches we have chosen. These differences may be explained by the different experimental conditions.

  20. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  1. Prospects of detecting the QCD phase transition in the Galactic supernova neutrino burst with 20-kton scale liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Petkov, V. B.

    2016-06-01

    The supernova explosion in the Galaxy is a rare event; that is why the comprehensive study of the next one has absolute priority for the low-energy neutrino astronomy. Because the detailed explosion mechanism has not been unambiguously identified yet and the surrounding matter envelope is opaque for photons, the neutrinos only can give information about physical conditions, dynamics of the collapse, and the SN mechanism. Furthermore, neutrinos could potentially reveal new physics (e.g. QCD phase transition) operating deep in the stellar core.

  2. The Use of Isotope Dilution Alpha Spectrometry and Liquid Scintillation Counting to Determine Radionuclides in Environmental Samples

    SciTech Connect

    Bylyku, Elida

    2009-04-19

    In Albania in recent years it has been of increasing interest to determine various pollutants in the environment and their possible effects on human health. The radiochemical procedure used to identify Pu, Am, U, Th, and Sr radioisotopes in soil, sediment, water, coal, and milk samples is described. The analysis is carried out in the presence of respective tracer solutions and combines the procedure for Pu analysis based on anion exchange, the selective method for Sr isolation based on extraction chromatography using Sr-Spec resin, and the application of the TRU-Spec column for separation of Am fraction. An acid digestion method has been applied for the decomposition of samples. The radiochemical procedure involves the separation of Pu from Th, Am, and Sr by anion exchange, followed by the preconcentration of Am and Sr by coprecipitation with calcium oxalate. Am is separated from Sr by extraction chromatography. Uranium is separated from the bulk elements by liquid-liquid extraction using UTEVA registered resin. Thin sources for alpha spectrometric measurements are prepared by microprecipitation with NdF3. Two International Atomic Energy Agency reference materials were analyzed in parallel with the samples.

  3. Aseptic technique.

    PubMed

    Bykowski, Tomasz; Stevenson, Brian

    2008-11-01

    This chapter describes common laboratory procedures that can reduce the risk of culture contaminations (sepsis), collectively referred as "aseptic technique." Two major strategies of aseptic work are described: using a Bunsen burner and a laminar flow hood. Both methods are presented in the form of general protocols applicable to a variety of laboratory tasks such as pipetting and dispensing aliquots, preparing growth media, and inoculating, passaging, and spreading microorganisms on petri dishes.

  4. Electrochemical Techniques

    SciTech Connect

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  5. Conceptual Ideas for New Nondestructive UF6 Cylinder Assay Techniques

    SciTech Connect

    Miller, Karen A.

    2012-05-02

    for this application and should be assessed quantitatively. The next set of techniques leverage scintillator detectors that are sensitive to both neutron and gamma radiation. The first is the BC-523A capture-gated organic liquid scintillator. The detector response from several different neutron energies has been characterized and is included in the study. The BC-523A has not yet been tested with UF{sub 6} cylinders, but the application appears to be well suited for this technology. The second detector type is a relatively new inorganic scintillator called CLYC. CLYC provides a complementary detection approach to the HEVA and PNEM systems that could be used to determine uranium enrichment in UF{sub 6} cylinders. In this section, the conceptual idea for an integrated CLYC-HEVA/PNEM system is explored that could yield more precision and robustness against systemic uncertainties than any one of the systems by itself. This is followed by a feasibility study on using alpha-particle-induced reaction gamma-rays as a way to estimate {sup 234}U abundance in UF{sub 6}. Until now, there has been no readily available estimate of the strength of these reaction gamma-rays. Thick target yields of the chief reaction gammas are computed and show that they are too weak for practical safeguards applications. In special circumstances where long count times are permissible, the 1,275 keV F({alpha},x{gamma}) is observable. Its strength could help verify an operator declaration provided other knowledge is available (especially the age). The other F({alpha},x{gamma}) lines are concealed by the dominant uranium line spectrum and associated continuum. Finally, the last section provides several ideas for electromagnetic and acoustic nondestructive evaluation (NDE) techniques. These can be used to measure cylinder wall thickness, which is a source of systematic uncertainty for gamma-ray-based NDA techniques; characterize the UF{sub 6} filling profile inside the cylinder, which is a source of

  6. Development of radiographic and microscopic techniques for the characterization of bacterial transport in intact sediment cores from Oyster, Virginia.

    PubMed

    Dong, H; Onstott, T C; DeFlaun, M F; Fuller, M E; Gillespie, K M; Fredrickson, J K

    1999-08-01

    The objective of this study was to ascertain the physical and mineralogical properties responsible for the retention of bacteria in subsurface sediments. The sediment core chosen for this study was a fine-grained, quartz-rich sand with minor amounts of Fe and Al hydroxides. A bacterial transport experiment was performed using an intact core collected from a recent excavation of the Butler's Bluff member of the Nassawadox formation in the borrow pit at Oyster, VA. and a 14C-labeled bacterial strain OYS2-A was selected for its relatively low adhesion. After the bacterial breakthrough was observed in the effluent, the intact core was dissected to determine the internal distribution of the injected bacteria retained in the sediment. The sediment was dried, epoxy fixed, and thin sectioned. The distribution of 14C activity in the thin sections was mapped using a phosphor screen and X-ray film. The remainder of the core was subsampled and the 14C activity of the subsamples was determined by liquid scintillation counting. The phosphor imaging technique was capable of directly imaging the distribution of radiolabeled bacteria in thin sections, because of its high sensitivity and linear response over a large activity range. The phosphor imaging signal intensity was utilized as a measure of bacterial concentration. The distribution of bacteria at the millimeter scale in the thin sections was compared to the grain size, porosity, and mineralogy as measured by scanning electron microscopy (SEM) and energy dispersive spectrum (EDS) analyses. No apparent correlation was observed between the retention or collision efficiency of bacteria in the sediment and the amount of Fe and Al hydroxides. This apparent lack of correlation can be qualitatively explained by combination of several factors including a nearly neutral surface charge of the bacterial strain, and texture of the Fe and Al hydroxides in the sediment. The combination of phosphor imaging with SEM-EDS proved to be a robust

  7. MCNPX--PoliMi Variance Reduction Techniques for Simulating Neutron Scintillation Detector Response

    NASA Astrophysics Data System (ADS)

    Prasad, Shikha

    Scintillation detectors have emerged as a viable He-3 replacement technology in the field of nuclear nonproliferation and safeguards. The scintillation light produced in the detectors is dependent on the energy deposited and the nucleus with which the interaction occurs. For neutrons interacting with hydrogen in organic liquid scintillation detectors, the energy-to-light conversion process is nonlinear. MCNPX-PoliMi is a Monte Carlo Code that has been used for simulating this detailed scintillation physics; however, until now, simulations have only been done in analog mode. Analog Monte Carlo simulations can take long times to run, especially in the presence of shielding and large source-detector distances, as in the case of typical nonproliferation problems. In this thesis, two nonanalog approaches to speed up MCNPX-PoliMi simulations of neutron scintillation detector response have been studied. In the first approach, a response matrix method (RMM) is used to efficiently calculate neutron pulse height distributions (PHDs). This method combines the neutron current incident on the detector face with an MCNPX-PoliMi-calculated response matrix to generate PHDs. The PHD calculations and their associated uncertainty are compared for a polyethylene-shielded and lead-shielded Cf-252 source for three different techniques: fully analog MCNPX-PoliMi, the RMM, and the RMM with source biasing. The RMM with source biasing reduces computation time or increases the figure-of-merit on an average by a factor of 600 for polyethylene and 300 for lead shielding (when compared to the fully analog calculation). The simulated neutron PHDs show good agreement with the laboratory measurements, thereby validating the RMM. In the second approach, MCNPX-PoliMi simulations are performed with the aid of variance reduction techniques. This is done by separating the analog and nonanalog components of the simulations. Inside the detector region, where scintillation light is produced, no variance

  8. Analytical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.

  9. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  10. Data analysis techniques

    NASA Technical Reports Server (NTRS)

    Park, Steve

    1990-01-01

    A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.

  11. Tools & techniques--statistics: propensity score techniques.

    PubMed

    da Costa, Bruno R; Gahl, Brigitta; Jüni, Peter

    2014-10-01

    Propensity score (PS) techniques are useful if the number of potential confounding pretreatment variables is large and the number of analysed outcome events is rather small so that conventional multivariable adjustment is hardly feasible. Only pretreatment characteristics should be chosen to derive PS, and only when they are probably associated with outcome. A careful visual inspection of PS will help to identify areas of no or minimal overlap, which suggests residual confounding, and trimming of the data according to the distribution of PS will help to minimise residual confounding. Standardised differences in pretreatment characteristics provide a useful check of the success of the PS technique employed. As with conventional multivariable adjustment, PS techniques cannot account for confounding variables that are not or are only imperfectly measured, and no PS technique is a substitute for an adequately designed randomised trial.

  12. Radiolocation Techniques (Les Techniques de Radiolocalisation

    DTIC Science & Technology

    1992-11-01

    importants sont occasionnds par Ia rifraction atmosphdnque. Sur route la bande de fr~quences radio. Ic bruit, aussi bien naturel qu’artificieljoue souvent...rdscau, techniques multi- capteurs ; aspects brouillage. - Uimpact de la propagation sur la gomornidmie et la tdlddetection: Les grandesi ondes, HF, VHF...par 36 Capteur At Analyse Sliquentielle en Balayage Rapide par D.Josset Radio Location through High Resolution Eigenstructure Processing Techniques 37

  13. Seals and Sealing Techniques

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Developments by the aerospace industry in seals and sealing techniques are announced for possible use in other areas. The announcements presented are grouped as: sealing techniques for cryogenic fluids, high pressure applications, and modification for improved performance.

  14. Nondestructive evaluation technique guide

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    A total of 70 individual nondestructive evaluation (NDE) techniques are described. Information is presented that permits ease of comparison of the merits and limitations of each technique with respect to various NDE problems. An NDE technique classification system is presented. It is based on the system that was adopted by the National Materials Advisory Board (NMAB). The classification system presented follows the NMAB system closely with the exception of additional categories that have been added to cover more advanced techniques presently in use. The rationale of the technique is explained. The format provides for a concise description of each technique, the physical principles involved, objectives of interrogation, example applications, limitations of each technique, a schematic illustration, and key reference material. Cross-index tabulations are also provided so that particular NDE problems can be referred to appropriate techniques.

  15. The radiocarbon hydroxyl technique

    NASA Technical Reports Server (NTRS)

    Campbell, Malcolm J.; Sheppard, John C.

    1994-01-01

    The Radiocarbon Technique depends upon measuring the rate of oxidation of CO in an essentially unperturbed sample of air. The airborne technique is slightly different. Hydroxyl concentrations can be calculated directly; peroxyl concentrations can be obtained by NO doping.

  16. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  17. The Binding Constant of Estradiol to Bovine Serum Albumin: An Upper-Level Experiment Utilizing Tritium-Labeled Estradiol and Liquid Scintillation Counting

    ERIC Educational Resources Information Center

    Peihong Liang; Adhyaru, Bhavin; Pearson, Wright L.; Williams, Kathryn R.

    2006-01-01

    The experiment used [to the third power]H-labeled estradiol to determine the binding constant of estradiol to bovine serum albumin. Estradiol must complex with serum proteins for the transport in the blood stream because of its low solubility in aqueous systems and estradiol-protein binding constant, where K[subscript B] is important to understand…

  18. DETECTORS AND EXPERIMENTAL METHODS: Measurement of the response function and the detection efficiency of an organic liquid scintillator for neutrons between 1 and 30 MeV

    NASA Astrophysics Data System (ADS)

    Huang, Han-Xiong; Ruan, Xi-Chao; Chen, Guo-Chang; Zhou, Zu-Ying; Li, Xia; Bao, Jie; Nie, Yang-Bo; Zhong, Qi-Ping

    2009-08-01

    The light output function of a varphi50.8 mm × 50.8 mm BC501A scintillation detector was measured in the neutron energy region of 1 to 30 MeV by fitting the pulse height (PH) spectra for neutrons with the simulations from the NRESP code at the edge range. Using the new light output function, the neutron detection efficiency was determined with two Monte-Carlo codes, NEFF and SCINFUL. The calculated efficiency was corrected by comparing the simulated PH spectra with the measured ones. The determined efficiency was verified at the near threshold region and normalized with a Proton-Recoil-Telescope (PRT) at the 8-14 MeV energy region.

  19. ANALYTICAL PERFORMANCE OF ACCELERATOR MASS SPECTROMETRY AND LIQUID SCINTILLATION COUNTING FOR DETECTION OF 14C-LABELED ATRAZINE METABOLITES IN HUMAN URINE. (R825433)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Improvements in apparatus and procedures for using an organic liquid scintillator as a fast-neutron spectrometer for radiation protection applications

    SciTech Connect

    Thorngate, J.H.

    1987-05-15

    For use in radiation protection measurements, a neutron spectrometer must have a wide energy range, good sensitivity, medium resolution, and ease of taking and reducing data. No single spectrometer meets all of these requirements. Several experiments aimed at improving and characterizing the detector response to gamma rays and neutrons were conducted. A light pipe (25 mm) was needed between the scintillator cell and the photomultiplier tube to achieve the best resolution. The light output of the scintillator as a function of gamma-ray energy was measured. Three experiments were conducted to determine the light output as a function of neutron energy. Monte Carlo calculations were made to evaluate the effects of multiple neutron scattering and edge effects in the detector. The electronic systems associated with the detector were improved with a transistorized circuit providing the bias voltage for the photomultiplier tube dynodes. This circuit was needed to obtain pulse-height linearity over the wide range of signal sizes. A special live-time clock was built to compensate for the large amount of dead time generated by the pulse-shape discrimination circuit we chose to use. 64 refs., 58 figs., 9 tabs.

  1. Imaging technologies and techniques.

    PubMed

    Rafter, Patrick; Phillips, Patrick; Vannan, Mani A

    2004-05-01

    Equipment manufacturers provide contrast-specific detection techniques that have excellent sensitivity and excellent agent-to-tissue specificity along with helpful tools that improve workflow efficiency dramatically. Excellent contrast agents have been approved for LV opacification and are available worldwide. Techniques designed for low-MI imaging offer real-time acquisition capabilities and lead to faster examinations. Techniques designed for medium-MI imaging offer better sensitivity than low-MI techniques while maintaining the benefit of rapid image acquisition. Techniques designed for high-MI imaging offer the best sensitivity with longer acquisition times. These techniques are viable means for imaging contrast agents tailored to clinical needs. Progress by contrast agent manufacturers, equipment manufacturers, and physicians will continue to drive improvements in the areas of detection and clinical workflow for improved patient care.

  2. Hot techniques for tonsillectomy.

    PubMed

    Scott, A

    2006-11-01

    (1) Some patients experience pain and bleeding after a standard or extracapsular tonsillectomy. (2) Evidence suggests that none of the hot tonsillectomy techniques offers concurrent reductions in intra- and post-operative bleeding and pain, compared with traditional cold-steel dissection with packs or ties. (3) Little information is available on the cost effectiveness of the hot techniques. (4) Diathermy is likely to remain the most commonly practised hot tonsillectomy technique.

  3. UIAGM Ropehandling Techniques.

    ERIC Educational Resources Information Center

    Cloutier, K. Ross

    The Union Internationale des Associations des Guides de Montagne's (UIAGM) rope handling techniques are intended to form the standard for guiding ropework worldwide. These techniques have become the legal standard for instructional institutions and commercial guiding organizations in UIAGM member countries: Austria, Canada, France, Germany, Great…

  4. Emerging optical nanoscopy techniques

    PubMed Central

    Montgomery, Paul C; Leong-Hoi, Audrey

    2015-01-01

    To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270

  5. Flight Test Techniques

    DTIC Science & Technology

    2009-07-01

    Fort Rucker, AL 36362-5276 8. PERFORMING ORGANIZATION REPORT NUMBER TOP 7-4-020 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES...2 3. REQUIRED TEST CONDITIONS ............................................. 3 3.1...3. REQUIRED TEST CONDITIONS . 3.1 Air Vehicle Flight Test Techniques. Many different flight test techniques are in existence. As technology

  6. Contamination Control Techniques

    SciTech Connect

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  7. Offshore hydraulic fracturing technique

    SciTech Connect

    Meese, C.A. ); Mullen, M.E. ); Barree, R.D. )

    1994-03-01

    This paper describes the frac-and-pack completion technique currently being used in the Gulf of Mexico, and elsewhere, for stimulation and sand control. The paper describes process applications and concerns that arise during implementation of the technique and discusses the completion procedure, treatment design, and execution.

  8. Techniques for Teachers Section

    ERIC Educational Resources Information Center

    Tait, A., Ed.

    1973-01-01

    Includes a simple technique to demonstrate Millikan's oil drop experiment, an environmental studies experiment to measure dissolved oxygen in water samples, and a technique to demonstrate action-reaction. Science materials described are the Pol-A-Star Tomiscope, Nuffield chemistry film loops, air pucks and pH meters. (JR)

  9. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  10. Electrical termination techniques

    NASA Technical Reports Server (NTRS)

    Oakey, W. E.; Schleicher, R. R.

    1976-01-01

    A technical review of high reliability electrical terminations for electronic equipment was made. Seven techniques were selected from this review for further investigation, experimental work, and preliminary testing. From the preliminary test results, four techniques were selected for final testing and evaluation. These four were: (1) induction soldering, (2) wire wrap, (3) percussive arc welding, and (4) resistance welding. Of these four, induction soldering was selected as the best technique in terms of minimizing operator errors, controlling temperature and time, minimizing joint contamination, and ultimately producing a reliable, uniform, and reusable electrical termination.

  11. Separation techniques: Chromatography

    PubMed Central

    Coskun, Ozlem

    2016-01-01

    Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406

  12. Small Scale Organic Techniques

    ERIC Educational Resources Information Center

    Horak, V.; Crist, DeLanson R.

    1975-01-01

    Discusses the advantages of using small scale experimentation in the undergraduate organic chemistry laboratory. Describes small scale filtration techniques as an example of a semi-micro method applied to small quantities of material. (MLH)

  13. Monitoring by Control Technique

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page links to different control techniques used to reduce pollutant emissions.

  14. Relaxation techniques for stress

    MedlinePlus

    ... problems such as high blood pressure, stomachaches, headaches, anxiety, and depression. Using relaxation techniques can help you feel calm. These exercises can also help you manage stress and ease ...

  15. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  16. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Balsley, B. B.

    1985-01-01

    The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

  17. "Techniques for Teachers" Section

    ERIC Educational Resources Information Center

    Tait, A.

    1972-01-01

    A series of short articles describe a method of combined developing/fixing for monochrome film, techniques for thin layer chromatography, experiments with lasers, and safety precautions to be used with lasers in school laboratories. (AL)

  18. Occlusal cranial balancing technique.

    PubMed

    Smith, Gerald H

    2007-01-01

    The acronym for Occlusal Cranial Balancing Technique is OCB. The OCB concept is based on the architectural principle of a level foundation. The principles of Occlusal Cranial Balancing are a monumental discovery and if applied will enhance total body function.

  19. Nondestructive testing techniques

    NASA Astrophysics Data System (ADS)

    Bray, Don E.; McBride, Don

    A comprehensive reference covering a broad range of techniques in nondestructive testing is presented. Based on years of extensive research and application at NASA and other government research facilities, the book provides practical guidelines for selecting the appropriate testing methods and equipment. Topics discussed include visual inspection, penetrant and chemical testing, nuclear radiation, sonic and ultrasonic, thermal and microwave, magnetic and electromagnetic techniques, and training and human factors. (No individual items are abstracted in this volume)

  20. Cherenkov and scintillation light separation on the CheSS experiment

    NASA Astrophysics Data System (ADS)

    Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.

    2016-09-01

    Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.

  1. Techniques of male circumcision.

    PubMed

    Abdulwahab-Ahmed, Abdullahi; Mungadi, Ismaila A

    2013-01-01

    Male circumcision is a controversial subject in surgical practice. There are, however, clear surgical indications of this procedure. The American Academy of Pediatrics (AAP) recommends newborn male circumcision for its preventive and public health benefits that has been shown to outweigh the risks of newborn male circumcision. Many surgical techniques have been reported. The present review discusses some of these techniques with their merits and drawbacks. This is an attempt to inform the reader on surgical aspects of male circumcision aiding in making appropriate choice of a technique to offer patients. Pubmed search was done with the keywords: Circumcision, technique, complications, and history. Relevant articles on techniques of circumcision were selected for the review. Various methods of circumcision including several devices are in use for male circumcision. These methods can be grouped into three: Shield and clamp, dorsal slit, and excision. The device methods appear favored in the pediatric circumcision while the risk of complications increases with increasing age of the patient at surgery.

  2. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  3. Development of a technique for the measurement of the radon exhalation rate using an activated charcoal collector.

    PubMed

    Iimoto, Takeshi; Akasaka, Yoshinori; Koike, Yuya; Kosako, Toshiso

    2008-04-01

    A simple system to evaluate the 222Rn (radon) exhalation rate from soil has been improved. A sampling cuvette of 2.1 L is placed so that it covers the targeted ground soil, and radon emanating from the soil accumulates within the cuvette for 24 h. Its internal radon concentration is measured by the combination of an activated charcoal (PICO-RAD) and a liquid scintillation counting system. This study shows variations of the conversion factor (CF: unit Bq m(-3)/cpm) of PICO-RAD. The range of CF due to temperature (10-30 degrees C) was between -21% and +69%, and this due to humidity (30-90%) was between 0% and -15%. Humidity and radon concentration in the cuvette covering soil tended to saturate in a few hours. The above information was used to correct the CF for the evaluation. The improved system shows high reliability and can be easily applied to natural environments.

  4. Radiation techniques for acromegaly

    PubMed Central

    2011-01-01

    Radiotherapy (RT) remains an effective treatment in patients with acromegaly refractory to medical and/or surgical interventions, with durable tumor control and biochemical remission; however, there are still concerns about delayed biochemical effect and potential late toxicity of radiation treatment, especially high rates of hypopituitarism. Stereotactic radiotherapy has been developed as a more accurate technique of irradiation with more precise tumour localization and consequently a reduction in the volume of normal tissue, particularly the brain, irradiated to high radiation doses. Radiation can be delivered in a single fraction by stereotactic radiosurgery (SRS) or as fractionated stereotactic radiotherapy (FSRT) in which smaller doses are delivered over 5-6 weeks in 25-30 treatments. A review of the recent literature suggests that pituitary irradiation is an effective treatment for acromegaly. Stereotactic techniques for GH-secreting pituitary tumors are discussed with the aim to define the efficacy and potential adverse effects of each of these techniques. PMID:22136376

  5. Remote Raman measurement techniques

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.

    1981-01-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  6. Craniospinal irradiation techniques

    SciTech Connect

    Scarlatescu, Ioana Avram, Calin N.; Virag, Vasile

    2015-12-07

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  7. Effective Frequency Technique

    NASA Technical Reports Server (NTRS)

    Kirk, C. Laurence; Weng, Chi Y.

    2002-01-01

    An effective monochromatic frequency technique is described to represent the effects of finite spectral bandwidth for active and passive measurements centered on an absorption line, a trough region, or a slowly varying spectral feature. For Gaussian and rectangular laser line shapes, the effective frequency is shown to have a simple form which depends only on the instrumental line shape and bandwidth and not on the absorption line profile. The technique yields accuracies better than 0.1% for bandwidths less than 0.2 times the atmospheric line width.

  8. Merchandising Techniques and Libraries.

    ERIC Educational Resources Information Center

    Green, Sylvie A.

    1981-01-01

    Proposes that libraries employ modern booksellers' merchandising techniques to improve circulation of library materials. Using displays in various ways, the methods and reasons for weeding out books, replacing worn book jackets, and selecting new books are discussed. Suggestions for learning how to market and 11 references are provided. (RBF)

  9. Mathematical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Articles on theoretical and applied mathematics are introduced. The articles cover information that might be of interest to workers in statistics and information theory, computational aids that could be used by scientists and engineers, and mathematical techniques for design and control.

  10. Techniques in Adlerian Psychology.

    ERIC Educational Resources Information Center

    Carlson, Jon, Ed.; Slavik, Steven, Ed.

    This book is a collection of classic and recent papers (published between 1964 and 1994) reprinted from the "Journal of Juvenile Psychology""Individual Psychologist," and "Individual Psychology." Each of the five sections is introduced by the editor's comments. "General Techniques" contains the following…

  11. Problem Solving Techniques Seminar.

    ERIC Educational Resources Information Center

    Massachusetts Career Development Inst., Springfield.

    This booklet is one of six texts from a workplace literacy curriculum designed to assist learners in facing the increased demands of the workplace. Six problem-solving techniques are developed in the booklet to assist individuals and groups in making better decisions: problem identification, data gathering, data analysis, solution analysis,…

  12. The attribute measurement technique

    SciTech Connect

    Macarthur, Duncan W; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  13. Oral surgery. Basic techniques.

    PubMed

    Ross, D L; Goldstein, G S

    1986-09-01

    Some of the clinical problems most frequently seen in veterinary dentistry and their surgical solutions are discussed. Extraction of teeth, surgical repositioning of teeth, tooth transplant, oral abscesses of tooth origin, impaction of teeth, repair of maxillary canine oronasal fistula, and simple techniques for oral wiring are among the issues considered.

  14. Super Techniques for Teachers.

    ERIC Educational Resources Information Center

    Foley, Michael K.

    A variety of techniques can help a teacher create the atmosphere of a "quality circle," a Japanese management method in which each member of a group shares and contributes to the learning experience. "Creating a Commercial" allows students to create original oratory for presentation to the class. In "The Good News First," students improve their…

  15. Techniques in Teaching Writing.

    ERIC Educational Resources Information Center

    Raimes, Ann

    A manual of techniques for teaching writing in classes of English as a second language (ESL) encourages composition beyond elementary-level sentence exercises. The objectives include communicating to a reader, expressing ideas without the pressure of face-to-face communication, exploring a subject, recording experiences, and becoming familiar with…

  16. Correlative Techniques in Microscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imaging is an important component in basic research, product development and understanding structure/function relationships in agricultural commodities and products. An array of microscopes and techniques can be used illustrate the structure and microchemistry of diverse samples. Examples of the var...

  17. Values Concepts and Techniques.

    ERIC Educational Resources Information Center

    National Education Association, Washington, DC.

    This book contains 29 articles for elementary and secondary teachers dealing with fundamental concepts and teaching techniques in values education. Part one of the book deals with concepts. Louis E. Raths examines valuing and its relationship to freedom and intelligence. The cognitive developmental approach to moral education is discussed by…

  18. RFI Mitigation / Excision techniques

    NASA Astrophysics Data System (ADS)

    Roshi, D. A.

    2004-06-01

    Radio frequency interference (RFI) is increasingly affecting radio astronomy research. A few years ago, active research to investigate the possibility of observing in the presence of interference using RFI mitigation techniques was initiated. In this paper, I briefly discuss four RFI mitigation/excision projects. These projects are:- (1) A technique to suppress double sideband amplitude modulated interference in which I show that an astronomical signal in the presence of a DSB interference can be observed with a signal-to-noise ratio factor of 2 less compared to observations if the RFI were not present. (2) Techniques to suppress interference due to synchronization signals in composite video signals are presented. A combination of noise-free modelling of the synchronization signals and adaptive filtering is used for suppressing the interference. (3) Design techniques to minimize spurious pick-up at the analog input of an analog-to-digital converter are discussed. (4) Spectral RFI excision using a spectral channel weighted scheme and its application to Green Bank telescope observations are also presented.

  19. New Teaching Techniques.

    ERIC Educational Resources Information Center

    Health Education (Washington D.C.), 1985

    1985-01-01

    Health educators have consistently shown creativity in using innovative teaching techniques. Three articles from the past discuss "new" teaching methods: (1) "A Radio Project Teaches Your Class" (Miller); (2) "An Activity Program in Alcohol Education" (Breg); and (3) "Teaching Health Through Pictures" (Haviland). (CB)

  20. Techniques for Vocal Health.

    ERIC Educational Resources Information Center

    Wiest, Lori

    1997-01-01

    Outlines a series of simple yet effective practices, techniques, and tips for improving the singing voice and minimizing stress on the vocal chords. Describes the four components for producing vocal sound: respiration, phonation, resonation, and articulation. Provides exercises for each and lists symptoms of sickness and vocal strain. (MJP)

  1. Art Appreciation and Technique.

    ERIC Educational Resources Information Center

    Dean, Diane R.; Milam, Debora

    1985-01-01

    Presents examples of independent study units for gifted high school students in a resource room setting. Both art appreciation and technique are covered in activities concerned with media (basics of pencil, India ink, pastels, crayons, oil, acrylics, and watercolors), subject matter (landscapes, animals, the human figure), design and illustration…

  2. The Symbolic Identity Technique.

    ERIC Educational Resources Information Center

    Goud, Nelson H.

    2001-01-01

    Explains the role of symbols in attaining total psychic growth by applying concepts of C. Jung, R. Assagiolo, and L. Kubie. Describes a new strategy, the symbolic identity technique, which involves environmental exploration in a relaxed, receptive manner in order to discover something in the outer environment that reflects one's inner nature.…

  3. Blood Typing--Technique.

    ERIC Educational Resources Information Center

    Johnstone, W. T., Jr.

    This instructional packet deals with the study of hematology. It is recommended for all high school students of biology. A general understanding of antigen-antibody reactions is necessary before attempting this learning activity. Behavioral objectives place emphasis on the techniques of and understanding of blood typing. The equipment and…

  4. Multisensor Data Integration Techniques

    NASA Technical Reports Server (NTRS)

    Evans, D. L.; Blake, P. L.; Conel, J. E.; Lang, H. R.; Logan, T. L.; Mcguffie, B. A.; Paylor, E. D.; Singer, R. B.; Schenck, L. R.

    1985-01-01

    The availability of data from sensors operating in several different wavelength regions had led to the development of new techniques and strategies for both data management and image analysis. Work is ongoing to develop computer techniques for analysis of integrated data sets. These techniques include coregistration of multisensor images, rectification of radar images in areas of topographic relief to ensure pixel to pixel registration with planimetric data sets, calibration of data so that signatures can be applied to remote areas, normalization of data acquired with disparate sensors and determination of extended spectral signatures of surface units. In addition, software is being developed to analyze coregistrated digital terrain and image data so that automated stratigraphic and structural analyses can be performed. These software procedures include: strike and dip determination, terrain profile generation, stratigraphic column generation, stratigraphic thickness measurements, structural cross-section generation, and creation of 3-D block diagrams. These techniques were applied to coregistered LANDSAT 4 Thematic Mapper (TM), Thermal Infrared Multispectral Scanner (TIMS), and multipolarization synthetic aperture radar (SAR) data of the Wind River Basin in Wyoming.

  5. Assessing Classroom Assessment Techniques

    ERIC Educational Resources Information Center

    Simpson-Beck, Victoria

    2011-01-01

    Classroom assessment techniques (CATs) are teaching strategies that provide formative assessments of student learning. It has been argued that the use of CATs enhances and improves student learning. Although the various types of CATs have been extensively documented and qualitatively studied, there appears to be little quantitative research…

  6. Novel Diffusivity Measurement Technique

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser

    2001-01-01

    A common-path interferometer (CPI) system was developed to measure the diffusivity of liquid pairs. The CPI is an optical technique that can be used to measure changes in the gradient of the refraction index of transparent materials. This system uses a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. Hence, the molecular diffusion coefficient of liquids can be determined using the physical relations between changes in the optical path length and the liquid phase properties. The data obtained with this interferometer were compared with similar results from other techniques and demonstrated that the instrument is superior in measuring the diffusivity of miscible liquids while keeping the system very compact and robust. CPI can also be used for studies in interface dynamics and other diffusion-dominated-process applications.

  7. Brain Vascular Imaging Techniques

    PubMed Central

    Laviña, Bàrbara

    2016-01-01

    Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases. PMID:28042833

  8. Oberst beam test technique

    NASA Astrophysics Data System (ADS)

    Fasana, Alessandro; Garibaldi, Luigi; Giorcelli, Ermanno; Ruzzene, Massimo

    1998-06-01

    The definition of the mechanical properties of viscoelastic materials, i.e. the elastic modulus and the loss factor, is carried out, according to many national and international standards, with many different techniques, both of the resonant and non-resonant type. In this paper we focus our attention on the pros and cons of the resonant technique based on the classical Oberst beam method. When the damping material to be tested is not self-supporting, its properties are determined taking start from the measured modal frequencies and loss factors of a laminated beam, constituted by one or two metallic strips, ideally undamped, and one or two viscoelastic layers. The formulae specified on the standards hold valid under the assumptions of the theory developed by Kerwin, Ungar and Ross and we try in this paper to quantify witch deviation of the results should be expected when moving away from their ideal hypotheses.

  9. Network acceleration techniques

    NASA Technical Reports Server (NTRS)

    Crowley, Patricia (Inventor); Awrach, James Michael (Inventor); Maccabe, Arthur Barney (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  10. New Etch Monitoring Technique

    NASA Astrophysics Data System (ADS)

    Kaiser, Christina; Adamcyk, Martin; Levy, Yuval; Tiedje, Tom; Young, Jeff F.; Kelson, Itzhak

    2000-05-01

    Plasma etching is an important tool for the development of various types of nanostructures. The development of specific plasma etching procedures is often time-consuming. We will describe an new technique for IN-SITU monitoring of the etch rate and sidewall profile of 1D GRATINGS in a remote plasma etcher. The technique involves monitoring the energy loss of alpha particles that propagate through the layer being etched. Samples to be etched are impregnated by a thin near-surface layer of 224Ra nuclei that decay by alpha particle emission. The energy spectrum of the alpha particles is acquired at intervals in the etch process. The etch rate on flat surfaces can be determined quite simply by measuring the change in the peak energy of the transmitted particles. By using a simple geometric model that employs the Bethe Bloch formula for energy loss of charges particles the etch profile of masked samples can also be inferred.

  11. Nozzle fabrication technique

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor)

    1988-01-01

    This invention relates to techniques for fabricating hour glass throat or convergent divergent nozzle shapes, and more particularly to new and improved techniques for forming rocket nozzles from electrically conductive material and forming cooling channels in the wall thereof. The concept of positioning a block of electrically conductive material so that its axis is set at a predetermined skew angle with relation to a travelling electron discharge machine electrode and thereafter revolving the body about its own axis to generate a hyperbolic surface of revolution, either internal or external is novel. The method will generate a rocket nozzle which may be provided with cooling channels using the same control and positioning system. The configuration of the cooling channels so produced are unique and novel. Also the method is adaptable to nonmetallic material using analogous cutting tools, such as, water jet, laser, abrasive wire and hot wire.

  12. Whole cell entrapment techniques.

    PubMed

    Trelles, Jorge A; Rivero, Cintia W

    2013-01-01

    Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others. Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation and bioprocess scale-up feasibility. Cell entrapment is the most widely used technique for whole cell immobilization. This technique-in which the cells are included within a rigid network-is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100 % in most cases).

  13. Instrument techniques for rheometry

    NASA Astrophysics Data System (ADS)

    Hou, Ying Y.; Kassim, Hamida O.

    2005-10-01

    This article presents a review of some latest advances in rheology measuring techniques. Consideration is given to the modification and approaches in conventional measuring techniques and also to the development of specialty instruments. A number of sensing technologies such as nuclear-magnetic-resonance imaging and ultrasonic pulse Doppler mapping have recently been adopted to produce viscoelastic measurements for both Newtonian and non-Newtonian materials. The working principles of these technologies and their applications are described. Other recent developments in modifications of conventional rheometers for performance enhancement and for complex material characterizations have been thoroughly discussed. Some instrument designs and their special applications, such as interfacial rheometers, extensional rheometers, and high-pressure rheometers, have also been evaluated in detail.

  14. Forming techniques and procedures

    NASA Astrophysics Data System (ADS)

    Ronde-Oustau, F.

    1980-09-01

    Several forming techniques are discussed including: (1) cooling stamping and swaging tools by the "Caloduc' methods; (2) non-burr stamping (stamping in a closed die); (3) continuous casting; (4) orbital forging; and (5) plastic deformation and spheroidal graphite iron. In addition, the subject of superplasticity is discussed in some detail, and brief consideration is given to precision forging, forging die castings, sintered forging, squeeze casting, ausforming, magnetoforming, and ultrasonic forming.

  15. Electronic Packaging Techniques

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A characteristic of aerospace system design is that equipment size and weight must always be kept to a minimum, even in small components such as electronic packages. The dictates of spacecraft design have spawned a number of high-density packaging techniques, among them methods of connecting circuits in printed wiring boards by processes called stitchbond welding and parallel gap welding. These processes help designers compress more components into less space; they also afford weight savings and lower production costs.

  16. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  17. Resin infiltration transfer technique

    DOEpatents

    Miller, David V.; Baranwal, Rita

    2009-12-08

    A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

  18. Materials Coating Techniques

    DTIC Science & Technology

    1980-03-01

    properties of the coating layers and their interaction with the bulk material will be considered. Lectures will also cover the behaviour of coated parts...stability etc. Finally, available techniques for the analysis and non-destructive evaluation of the composition. properties and soundness of the...provide stiffness or flexibility, and to carry the applied loads without macroscopic failure. Such properties are associated with the bulk material of

  19. Particle-mesh techniques

    NASA Technical Reports Server (NTRS)

    Macneice, Peter

    1995-01-01

    This is an introduction to numerical Particle-Mesh techniques, which are commonly used to model plasmas, gravitational N-body systems, and both compressible and incompressible fluids. The theory behind this approach is presented, and its practical implementation, both for serial and parallel machines, is discussed. This document is based on a four-hour lecture course presented by the author at the NASA Summer School for High Performance Computational Physics, held at Goddard Space Flight Center.

  20. Advancement on Visualization Techniques

    DTIC Science & Technology

    1980-10-01

    Aeroa and As ronautics Massachusetts Institute of Technology Cambridge, MA 02139 USA I !ii 1 I This AGARDograph was prepared at the request of the...the fields of science § and technology relating to aerospace for the following purposes: - Exchanging of scientific and technical information...Techniques for providing the pilot visualization have grown rapidly. Technology has developed fron mechanical gauges through electro-mechanical

  1. The Plate Overlap Technique.

    DTIC Science & Technology

    1978-07-31

    INTRODUCTION 1 II. NOTATION 2 III. THE GNOMONIC PROJECTION 4 IV . THE PLATE OVERLAP TECHNIQUE 6 A. MOTIVATION 6 B. FORNULATION 9 C. ON STATISTICAL RIGOR 14 D...and new hardware. Since this aim was clearly recognized long ago, wherever possible in earlier documents or software development flexibility was...reader should see 1, 2, and 3. The procedures one should use to update stellar positions are discussed in 4 with applica- tions to the SAOC in 5. Non

  2. Colorimetric protein assay techniques.

    PubMed

    Sapan, C V; Lundblad, R L; Price, N C

    1999-04-01

    There has been an increase in the number of colorimetric assay techniques for the determination of protein concentration over the past 20 years. This has resulted in a perceived increase in sensitivity and accuracy with the advent of new techniques. The present review considers these advances with emphasis on the potential use of such technologies in the assay of biopharmaceuticals. The techniques reviewed include Coomassie Blue G-250 dye binding (the Bradford assay), the Lowry assay, the bicinchoninic acid assay and the biuret assay. It is shown that each assay has advantages and disadvantages relative to sensitivity, ease of performance, acceptance in the literature, accuracy and reproducibility/coefficient of variation/laboratory-to-laboratory variation. A comparison of the use of several assays with the same sample population is presented. It is suggested that the most critical issue in the use of a chromogenic protein assay for the characterization of a biopharmaceutical is the selection of a standard for the calibration of the assay; it is crucial that the standard be representative of the sample. If it is not possible to match the standard with the sample from the perspective of protein composition, then it is preferable to use an assay that is not sensitive to the composition of the protein such as a micro-Kjeldahl technique, quantitative amino acid analysis or the biuret assay. In a complex mixture it might be inappropriate to focus on a general method of protein determination and much more informative to use specific methods relating to the protein(s) of particular interest, using either specific assays or antibody-based methods. The key point is that whatever method is adopted as the 'gold standard' for a given protein, this method needs to be used routinely for calibration.

  3. Dynamic Environmental Qualification Techniques

    DTIC Science & Technology

    1979-11-01

    ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD) AGARD Report No.682 DYNAMIC ENVIRONMENTAL QUALIFICATION TECHNIQUES II¥ ,n . r-,, q - .j, i ~Papers present d at...better the knowledge of sources of excitation, transmission paths, dynamic system behaviour , the better the understanding and establishment of appropriate...featuring resonance dwell have poor similarity to the dynamic equipment behaviour in the A/C. As a specific example, a vibration test with a

  4. Advanced echocardiographic techniques

    PubMed Central

    Perry, Rebecca

    2015-01-01

    Abstract Echocardiography has advanced significantly since its first clinical use. The move towards more accurate imaging and quantification has driven this advancement. In this review, we will briefly focus on three distinct but important recent advances, three‐dimensional (3D) echocardiography, contrast echocardiography and myocardial tissue imaging. The basic principles of these techniques will be discussed as well as current and future clinical applications. PMID:28191159

  5. Image compression technique

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  6. Image compression technique

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  7. Covariance mapping techniques

    NASA Astrophysics Data System (ADS)

    Frasinski, Leszek J.

    2016-08-01

    Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.

  8. RFI emitter location techniques

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    The possibility is discussed of using Doppler techniques for determining the location of ground based emitters causing radio frequency interference with low orbiting satellites. An error analysis indicates that it is possible to find the emitter location within an error range of 2 n.mi. The parameters which determine the required satellite receiver characteristic are discussed briefly along with the non-real time signal processing which may by used in obtaining the Doppler curve. Finally, the required characteristics of the satellite antenna are analyzed.

  9. Intelligent Tracking Techniques

    DTIC Science & Technology

    1979-09-30

    11x6 + 12x9 + 13x9 + ]. = 17.78 and,156"’ Y = YBAR = 1-’[6x6 + 7x4 + 8x12 + 9x14 + ... ] 1888/156 12.10. The variances, S( 2 = I n n tu’ a • J - (XBAR)l...8217~~5. TYPE Of REPORT a PERIOD COVERED InelgntTakn Techniques i/ Fourth Quarterly Report Y -Report-July 1, 1979 - Sept. 30, 1979 .-ERFRMIN ORO...equipment which reduces its effectiveness. Effectiveness must be maintained in spite of enem~ y tactics encountered during an attack. One tactic which

  10. Automatic Threshold Detector Techniques

    DTIC Science & Technology

    1976-07-15

    TECHNIQUES Contract No. DAAH01-76-C-0363 ER76-4208 15 July 1976 Prepared for: HEADQUA RTERS U.S. Army Missile Command Redstone Arsenal, Alabama 35809 j...rain cross section each FFT filter) a MUT, MUCL , KCL, MUN, MUCLF (2 ), MUl, MUWI= MUW2 where MUT = Target cross section (M2), MUCL = total ground...variable is currently not used by the program. Since there is yet no point clutter model, MUCL represents the fluctuating component. Until a point plus

  11. Optical Techniques in Optogenetics

    PubMed Central

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-01-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially-controlled optogenetic stimulation and detection of cellular activities. PMID:26412943

  12. SAR antenna calibration techniques

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Newell, A. C.

    1978-01-01

    Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.

  13. Formulation techniques for nanofluids.

    PubMed

    Rivera-Solorio, Carlos I; Payán-Rodríguez, Luis A; García-Cuéllar, Alejandro J; Ramón-Raygoza, E D; L Cadena-de-la-Peña, Natalia; Medina-Carreón, David

    2013-11-01

    Fluids with suspended nanoparticles, commonly known as nanofluids, may be formulated to improve the thermal performance of industrial heat transfer systems and applications. Nanofluids may show enhanced thermal and electrical properties such as thermal conductivity, viscosity, heat transfer coefficient, dielectric strength, etc. However, stability problems may arise as nanoparticles usually have the tendency to agglomerate and sediment producing deterioration in the increment of these properties. In this review, we discuss patents that report advances in the formulation of nanofluids including: production methods, selection of components (nanoparticles, base fluid and surfactants), their chemical compositions and morphologies, and characterization techniques. Finally, current and future directions in the development of nanofluid formulation are discussed.

  14. ECM techniques generator

    NASA Astrophysics Data System (ADS)

    Nunez, Abel S.; Marshall, Patrick T.; McGrath, Michael; Byers, Christopher D.; Simpson, Chad; Hong, Seng M.

    2006-05-01

    The development of electronic countermeasures against target track radars is both an expensive and time-consuming process. One method of cutting development time is to use genetic algorithms to develop electronic countermeasures using integrated software models of the target track radar and the jammer. This paper demonstrates the feasibility of this idea by using a genetic algorithm to optimize the parameters of a range gate pull-off electronic countermeasure technique to break the target lock of a generic radar split gate range tracker.

  15. Diamond Anvil Cell Techniques

    NASA Astrophysics Data System (ADS)

    Piermarini, Gasper J.

    It has often been said that scientific advances are made either in a dramatic and revolutionary way, or, as in the case of the diamond anvil cell (DAC), in a slow and evolutionary manner over a period of several years. For more than 2 decades, commencing in 1958, the DAC developed stepwise from a rather crude qualitative instrument to the sophisticated quantitative research tool it is today, capable of routinely producing sustained static pressures in the multi-megabar range and readily adaptable to numerous scientific measurement techniques because of its optical accessibility, miniature size, and portability.

  16. Information hiding technique

    NASA Astrophysics Data System (ADS)

    Younger, Michael; Budulas, Peter P.; Young, Stuart H.

    2002-08-01

    Spread spectrum communication techniques have been recognized as a viable method to gain an advantage in interference environments. Many military-oriented systems have been initiated, and some civil systems have been attempted. Spread spectrum allows the ability to hide the signal of interest below or in the noise floor, so as not to be detected. A spread spectrum system is one in which the transmitted signal is spread over a wide frequency band, much wider, in fact, than the minimum bandwidth required to transmit the information being sent. We at Army Research Lab (ARL) are proposing using the same technique on the Internet with port hopping. The information would be transmitted in data packets over multiple ports. The port used would vary per packet or per session basis. This port hopping gives you and the recipients the ability to take datagram's and spread them out over a multitude of ports. This will hide information among the Internet noise. This will allow trusted communications between the transmitter and receiver because of the port coding sequence. There are 64K possible ports to span datagram. Jamming of transmission would be limiting the ability of the sniffer/listener. Also, the listener will find it difficult to use a man in the middle attach, since the data will be spread over multiple ports and only the receiver and transmitter will know the specific port sequencing for the datagram.

  17. [Neuromodulation - new techniques].

    PubMed

    Heinze, K; van Ophoven, A

    2015-03-01

    Neuromodulative procedures have become an inherent component in the therapy of functional urinary bladder and pelvic floor function disorders. Sacral neuromodulation has been used in Germany for more than 20 years and reresents the standard neuromodulative therapy. Technical improvements in the field of test stimulation and the phasing out of the large pulse generator models represent current changes with the resulting advantages and disadvantages. Pudendal neuromodulation (PNM) has been known for many years as a procedure for treatment of chronic diseases of the urinary bladder and the lesser pelvis and is predominantly used as second-line neuromodulative therapy; however, for pelvic pain syndromes and in particular for pudendal neuralgia, it represents a promising minimally invasive first-line therapy. Due to the technically demanding puncture procedure, PNM has so far only been used in Germany in specialized centers. Through the development of new operation techniques, the prerequisites for a wider multicentric use, with the future aim of approval of the procedure, have been achieved. External transdermal pudendal neuromodulation is a promising therapeutic approach and after further testing in randomized studies could find an application as a conservative step before minimally invasive pudendal neuromodulation. Although the technique of laparoscopic electrode placement on neural structures of the lesser pelvis is technically attractive, it predominantly finds a monocentric use and must in due course be critically compared with established minimally invasive procedures.

  18. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  19. Data flow modeling techniques

    NASA Technical Reports Server (NTRS)

    Kavi, K. M.

    1984-01-01

    There have been a number of simulation packages developed for the purpose of designing, testing and validating computer systems, digital systems and software systems. Complex analytical tools based on Markov and semi-Markov processes have been designed to estimate the reliability and performance of simulated systems. Petri nets have received wide acceptance for modeling complex and highly parallel computers. In this research data flow models for computer systems are investigated. Data flow models can be used to simulate both software and hardware in a uniform manner. Data flow simulation techniques provide the computer systems designer with a CAD environment which enables highly parallel complex systems to be defined, evaluated at all levels and finally implemented in either hardware or software. Inherent in data flow concept is the hierarchical handling of complex systems. In this paper we will describe how data flow can be used to model computer system.

  20. Extended Ewald summation technique

    NASA Astrophysics Data System (ADS)

    Kylänpää, Ilkka; Räsänen, Esa

    2016-09-01

    We present a technique to improve the accuracy and to reduce the computational labor in the calculation of long-range interactions in systems with periodic boundary conditions. We extend the well-known Ewald method by using a linear combination of screening Gaussian charge distributions instead of only one. This enables us to find faster converging real-space and reciprocal space summations. The combined simplicity and efficiency of our method is demonstrated, and the scheme is readily applicable to large-scale periodic simulations, classical as well as quantum. Moreover, apart from the required a priori optimization the method is straightforward to include in most routines based on the Ewald method within, e.g., density-functional, molecular dynamics, and quantum Monte Carlo calculations.

  1. DNA Vaccination Techniques.

    PubMed

    Fissolo, Nicolás; Montalban, Xavier; Comabella, Manuel

    2016-01-01

    Multiple sclerosis (MS) is the most common inflammatory, demyelinating, and neurodegenerative disorder of the central nervous system (CNS) in humans. Although the etiology of MS remains unknown, several lines of evidence support the notion that autoimmunity against components of the myelin sheath plays a major role in susceptibility to and development of the disease. At present, there are no approved MS therapies aimed specifically toward downregulating antigen-specific autoreactive immune cells. One antigen-specific approach that appears promising for the treatment of MS is DNA vaccination. This technique has demonstrated efficacy in clinical trials while maintaining safety.Here, we describe the generation of DNA vaccines containing immunologically relevant antigens of MS. Moreover, we present a detailed protocol for the prophylactic and therapeutic administration of DNA vaccines via intramuscular injection targeting on the development of experimental autoimmune encephalomyelitis (EAE), an animal model resembling MS.

  2. Techniques for fire detection

    NASA Technical Reports Server (NTRS)

    Bukowski, Richard W.

    1987-01-01

    An overview is given of the basis for an analysis of combustable materials and potential ignition sources in a spacecraft. First, the burning process is discussed in terms of the production of the fire signatures normally associated with detection devices. These include convected and radiated thermal energy, particulates, and gases. Second, the transport processes associated with the movement of these from the fire to the detector, along with the important phenomena which cause the level of these signatures to be reduced, are described. Third, the operating characteristics of the individual types of detectors which influence their response to signals, are presented. Finally, vulnerability analysis using predictive fire modeling techniques is discussed as a means to establish the necessary response of the detection system to provide the level of protection required in the application.

  3. Nondestructive Acoustic Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Schmitz, Volker

    Acoustic imaging techniques are used in the field of nondestructive testing of technical components to measure defects such as lack of side wall fusion or cracks in welded joints. Data acquisition is performed by a remote-controlled manipulator and a PC for the mass storage of the high-frequency time-of-flight data at each probe position. The quality of the acoustic images and the interpretation relies on the proper understanding of the transmitted wave fronts and the arrangement of the probes in pulse-echo mode or in pitch-and-catch arrangement. The use of the Synthetic Aperture Focusing Technique allows the depth-dependent resolution to be replaced by a depth-independent resolution and the signal-to-noise ratio to be improved. Examples with surface-connected cracks are shown to demonstrate the improved features. The localization accuracy could be improved by entering 2-dimensional or 3-dimensional reconstructed data into the environment of a 3-dimensional CAD drawing. The propagation of ultrasonic waves through austenitic welds is disturbed by the anisotropic and inhomogeneous structure of the material. The effect is more or less severe depending upon the longitudinal or shear wave modes. To optimize the performance of an inspection software tool, a 3-dimensional CAD-Ray program has been implemented, where the shape of the inhomogeneous part of a weld can be simulated together with the grain structure based on the elastic constants. Ray-tracing results are depicted for embedded and for surface-connected defects.

  4. Programing techniques for CDC equipment

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Tiffany, S. H.

    1979-01-01

    Five techniques reduce core requirements for fast batch turnaround time and interactive-terminal capability. Same techniques increase program versatility, decrease problem-configuration dependence, and facilitate interprogram communication.

  5. Nozzle fabrication technique

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor)

    1991-01-01

    A block of electrically conductive material which is to be formed into a body with internal and/or external surfaces that approximate hyperboloids of one sheet is placed so that its axis is set at a predetermined skew angle with relation to a traveling EDM electrode wire. The electrode wire is then moved into cutting proximity of the body wire. Thereafter, by revolving the body about its own axis, the external and/or internal surfaces of the body will be cut into an approximate hyperbolic surface of revolution depending upon whether the body is positioned with the cutting wire outside of the body or in a previously formed longitudinal passage in the body. As an alternative technique, elongated channels can also be cut into the wall of the body by successively orienting the body to a selected number of angular positions, with the electrode wire being either outside of the body or in a previously formed passage in the body. At each of these angular positions, the electrode wire is moved orthogonally with respect to the axis of the wire, while both the body axis skew angle and the rotational position about that axis is controlled by cutting a channel or groove in the body to relieve stresses in the body material or to convey a coolant fluid.

  6. Nozzle fabrication technique

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor)

    1989-01-01

    A block of electrically-conductive material which is to be formed into a body with internal and/or external surfaces that approximate hyperboloids of one sheet is placed so that its axis is set at a predetermined skew angle with relation to a travelling EDM electrode wire and the electrode wire is then moved into cutting proximity of the body. Thereafter, by revolving the body about its own axis, the external and/or internal surfaces of the body will be cut into an approximate hyperbolic surface of revolution depending upon whether the body is positioned with the cutting wire outside of the body or in a previously-formed longitudinal passage in the body. As an alternative technique, elongated channels can also be cut into the walls of the body by successively orienting the body to a selected number of angular positions with the electrode wire being either outside of the body or in a previously-formed passage in the body. At each of these angular positions, the electrode wire is moved orthogonally with respect to the axis of the wire while both the body axis skew angle and the rotational position about that axis are controlled for cutting a channel or groove in the body as required to relieve stresses in the material of the body or to convey a coolant fluid.

  7. Sample preparation techniques.

    PubMed

    Baumgartner, W A; Hill, V A

    1993-12-01

    Evidentiary false positives are caused by passive exposure to drugs in the environment rather than by active use of drugs. The avoidance of such positives is essential for both hair and urine analysis. Hair analysis enjoys the advantage over urinalysis in having a number of approaches for making this distinction. These include: methylene blue staining of the hair specimen for selecting the appropriate wash solvent; application of hair digestion techniques for the complete release of chemically unaltered analytes; the determination of three diagnostic ratios from wash and digestion data; the measurement of metabolite:drug ratios; the use of cut-off levels setting the limits for passive endogenous drug exposure; reproducibility of results (including segmental analysis) with a newly collected hair specimen; and the reporting of results as either negative, positive, or contaminated. Our sample preparation procedures have been effectively applied to the analyses of nearly 200,000 specimens, i.e. to approximately one million drug analyses for cocaine, opiates, methamphetamine, phencyclidine or marijuana. On the basis of this experience we conclude that hair analysis is a safe and effective method for workplace drug testing.

  8. Improved Search Techniques

    NASA Technical Reports Server (NTRS)

    Albornoz, Caleb Ronald

    2012-01-01

    Thousands of millions of documents are stored and updated daily in the World Wide Web. Most of the information is not efficiently organized to build knowledge from the stored data. Nowadays, search engines are mainly used by users who rely on their skills to look for the information needed. This paper presents different techniques search engine users can apply in Google Search to improve the relevancy of search results. According to the Pew Research Center, the average person spends eight hours a month searching for the right information. For instance, a company that employs 1000 employees wastes $2.5 million dollars on looking for nonexistent and/or not found information. The cost is very high because decisions are made based on the information that is readily available to use. Whenever the information necessary to formulate an argument is not available or found, poor decisions may be made and mistakes will be more likely to occur. Also, the survey indicates that only 56% of Google users feel confident with their current search skills. Moreover, just 76% of the information that is available on the Internet is accurate.

  9. Fenestration obscuration techniques

    NASA Astrophysics Data System (ADS)

    Smalley, Michael

    2007-10-01

    There are situations where it is advantageous to visually obscure through glass, to an external observer, the movement of people within a well lit room. It may be that the building use has changed or existing measures which had provided obscuration such as 'Bomb-blast' curtains have been discontinued. Recognising that implemented solutions must create the minimum disruption to outward visibility and involve the least procedural effort (be simple to use), the Centre for Protection of National Infrastructure, CPNI, commissioned this study, defining key requirements including: (a) Automatic or simple manual operation (b) Obscuration of movement within the building from outside (c) Varying levels of obscuration depending on the difference in internal and external light levels. (d) Minimum disruption to outward visibility (e) Acceptable for use on heritage and iconic sites (f) Easy to retrofit (g) Low cost This report reviews earlier work carried out into the protection of Guardrooms by the use of lighting techniques coupled with the use of reflective and screen printed films. Other innovative solutions including Electrochromatic controllable glazing which may prove more appropriate to office and commercial buildings are also considered. It is seen that some measures, (window films or blinds), are cost effective and unsophisticated while more complex automatic systems using reactive glazing can offer critical design advantages. It must be noted however that some of the key requirements are mutually exclusive and any solution chosen will always be a compromise based on client needs and circumstances.

  10. Microorganism identification technique

    SciTech Connect

    Sillman, R. E.

    1985-07-02

    An identification technique for micro-organisms in which a dilute solution of a culture medium containing an unknown micro-organism has added thereto an emissive agent such as a radioactive amino acid to produce a mix of emissive products that depends on the metabolic mechanism of the micro-organism. After a predetermined incubation period, the reaction is arrested and the solution layered onto a gel plate where it is subjected to electrophoresis. The plate is then autoradiographed by exposing the gel to a sensitive photographic film for a period sufficient to produce thereon a characteristic band pattern functioning as an identifier for the micro-organism. Identification may be effected by comparing the identifier for the unknown with a collection of identifiers for known micro-organisms to find a match with one of these known identifiers. The comparison is preferably carried out by scanning the unknown identifier to produce a signal which is compared with signals representing known identifiers stored in a computer which, when a match is found, yields identification data. Alternatively, the emissive products, after separation, may be detected by direct scanning to provide an identifier signal for computer processing.

  11. COHERENT-LIGHT RECORDING TECHNIQUES.

    DTIC Science & Technology

    The purpose of this report is to summarize, define and demonstrate techniques necessary for the application of coherent light to the problems of...Investigations into such areas as the coherent light source itself, modulation, deflection or scanning techniques, readout techniques and the evaluation of recording media are reported.

  12. Ethical Use of Gestalt Techniques.

    ERIC Educational Resources Information Center

    Given, Jane A.

    The purpose of this paper is to engender a healthy respect for Gestalt theory and techniques and the use of the techniques in the client's best interest and in the interest of positive professional and self-development in the practitioner. An overview of Gestalt techniques is provided, concentrating on the two category divisions of experiments and…

  13. Dose Reduction Techniques

    SciTech Connect

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  14. Advanced qualification techniques

    SciTech Connect

    Winokur, P.S; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M.

    1993-12-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ``builds in`` the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ``process capability`` is illustrated and a comparison of 10-keV x-ray and Co{sup 60} gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe`s Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments.

  15. Techniques in Broadband Interferometry

    SciTech Connect

    Erskine, D J

    2004-01-04

    This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the official versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.

  16. Fog dispersion. [charged particle technique

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1980-01-01

    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.

  17. Aseptic technique in microgravity.

    PubMed

    McCuaig, K

    1992-11-01

    Within the next decade, the United States will launch a space station into low Earth orbit as a preliminary step toward a manned mission to Mars. Provision of asepsis in the unique microgravity environment, essential in operative and invasive procedures, is addressed. An assessment of conventional terrestrial aseptic methods and possible modifications for a microgravity environment was done during the microgravity portion of parabolic flight on NASA KC-135 aircraft. During 110 parabolas on three flight days, a "surgical team" (surgeon, scrub nurse and circulating nurse) using a life size mannequin fastened to a prototype surgical "work station" (operating table), evaluated open and closed gloving (ten parabolas), skin preparation (six parabolas), surgical scrub methods (24 parabolas), gowning (22 parabolas) and draping (48 parabolas). Evaluated were povidone iodine solution, 1 percent povidone iodine detergent, Chloroxylenol with detergent, wet prep soap sponge, a water insoluble iodophor polymer (DuraPrep, 3M), disposable towels, disposable and reusable gowns, large and small disposable drapes with and without adhesive edges, disposable latex surgeon's gloves with and without packaging modifications and restraint mechanisms (tether, swiss seat, waist and foot restraint devices, fairfield and wire clamps and clips). Ease of use, provision of restraint for supplies and personnel and waste disposal were assessed. The literature was reviewed and its relevance to the space environment discussed, including risk factors, environmental contamination, immune status and microbiology. The microgravity environment, limited water supply and restricted operating area mandated that modifications of fabrication and packaging of supplies and technique be made to create and preserve asepsis. Material must meet stringent flammability and off-gassing standards. Either a chlorhexidine or povidone iodine detergent prepackaged brush and sponge would provide an adequate scrub plus

  18. Chemiluminescence measurements on irradiated garlic powder by the single photon counting technique

    NASA Astrophysics Data System (ADS)

    Narvaiz, P.

    1995-02-01

    The feasibility of identifying irradiated garlic powder measuring chemiluminescence by liquid scintillation spectrometry was studied. Samples packed in 100 μm thick polyethylene bags were irradiated in a 60Co semi-industrial facility, with doses of 10 and 30 kGy. Control and irradiated samples were stored at 20 ± 4°C and 70 ± 10% RH in darkness for 2 years. Assays were performed to establish the best sample concentration and pH of the buffer solution in which garlic powder was to be suspended for its measurement. The water content of garlic samples was also analyzed throughout storage time, as it related to the stability of the species causing luminescence. Chemiluminescence values diminished in every sample over storage time following an exponential pattern. Irradiated samples showed values significantly higher than those of the control samples, according to the radiation dose, throughout the storage period. This does not necessarily imply that the identification of the irradiated samples would be certain, since values of control samples coming from different origins have been found to fluctuate within a rather wide range. Nonetheless, in principle, the method looks promising for the measurement of chemiluminescence in irradiated samples

  19. Dual radiolabeling as a technique to track nanocarriers: the case of gold nanoparticles.

    PubMed

    Rambanapasi, Clinton; Barnard, Nicola; Grobler, Anne; Buntting, Hylton; Sonopo, Molahlehi; Jansen, David; Jordaan, Anine; Steyn, Hendrik; Zeevaart, Jan Rijn

    2015-07-16

    Gold nanoparticles (AuNPs) have shown great potential for use in nanomedicine and nanotechnologies due to their ease of synthesis and functionalization. However, their apparent biocompatibility and biodistribution is still a matter of intense debate due to the lack of clear safety data. To investigate the biodistribution of AuNPs, monodisperse 14-nm dual-radiolabeled [14C]citrate-coated [198Au]AuNPs were synthesized and their physico-chemical characteristics compared to those of non-radiolabeled AuNPs synthesized by the same method. The dual-radiolabeled AuNPs were administered to rats by oral or intravenous routes. After 24 h, the amounts of Au core and citrate surface coating were quantified using gamma spectroscopy for 198Au and liquid scintillation for the 14C. The Au core and citrate surface coating had different biodistribution profiles in the organs/tissues analyzed, and no oral absorption was observed. We conclude that the different components of the AuNPs system, in this case the Au core and citrate surface coating, did not remain intact, resulting in the different distribution profiles observed. A better understanding of the biodistribution profiles of other surface attachments or cargo of AuNPs in relation to the Au core is required to successfully use AuNPs as drug delivery vehicles.

  20. Systemic distribution of sup 14 C-labeled formaldehyde applied in the root canal following pulpectomy

    SciTech Connect

    Hata, G.I.; Nishikawa, I.; Kawazoe, S.; Toda, T.

    1989-11-01

    The systemic distribution of {sup 14}C-labeled formaldehyde which had been placed in the root canals of the canines of cats following pulpectomies was studied using liquid scintillation counting and whole-body autoradiographic technique. Radioactive {sup 14}C which had been placed in the canals was found in the plasma 30 min after the root canal procedure. The recovery of systemic {sup 14}C radioactivity increased with time. In addition, it seemed that approximately 3% of the dose placed in the teeth was excreted in the urine within 36 h. Whole-body autoradiograms indicated extensive concentration of {sup 14}C radioactivity in tissues other than those analyzed with the liquid scintillation technique.

  1. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  2. Classroom Assessment Techniques

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2003-12-01

    and the learner should be carefully observed and monitored. Forrest says that Student Portfolios, which document learning in more detail, seldom reveal how teaching contributes to students' progress. Cerbin further indicates that a course portfolio is essentially, a like a manuscript of scholarly work in progress. In this example, it is a work that explains what, how, and why students learn or do not learn in a course. In this paper, the author reports on a dozen techniques that could perhaps be used to document assessment of student learning. References : Cerbin, W. (1993). Fostering a culture of teaching as scholarship. The Teaching Professor, 7(3), 1-2. Edgerton, R., Hutchings, P., & Quinlan, P. (1991). The teaching portfolio: Capturing the scholarship in teaching. Washington, DC: American Association for Higher Education. Forrest, A. (1990). Time will tell: Portfolio-assisted assessment of general education. Washington, DC: American Association for Higher Education. Linn, R., Baker, E., & Dunbar, S. (1991). Complex, Performance-based Assessment: Expectations and Validation Criteria. Educational Researcher, 20 (8), 15-21. Narayanan, M. (2003). Assessment in Higher Education: Partnerships in Learning. Paper presented at the 23rd Annual Lilly Conference on College Teaching, Miami University, Oxford, OH. Seldin, P. (1991). The teaching portfolio. Bolton, MA: Anker. Young, C. O., Sr., & Young, L. H. (1999). Assessing Learning in Interactive Courses. Journal on Excellence in College Teaching, 10 (1), 63-76.

  3. Microcantilever Sensors for In-Situ Subsurface Characterization

    SciTech Connect

    Thundat, Thomas G.; Zhiyu Hu; Brown, Gilbert M.; Baohua Gu

    2006-06-01

    Real-time, in-situ analysis is critical for decision makers in environmental monitoring, but current techniques for monitoring and characterizing radionuclides rely primarily on liquid scintillation counting, ICP-MS, and spectrofluorimetry, which require sample handling and labor intensive lengthy analytical procedures. Other problems that accompany direct sampling include adherence to strict holding times and record maintenance for QA/QC procedures. Remote, automated sensing with direct connection to automated data management is preferred.

  4. Radio-Purification of Neodymium Chloride

    SciTech Connect

    Hans, S.; Yeh, M.; Cumming, J. B.; Hahn, R. L.

    2011-04-27

    Organometallic liquid scintillator becomes one of the man detection mediums for neutrino experiment. Liquid-liquid extraction is the method of choice for loading metallic ions of interest into the organic solvents at BNL. High purity of all starting materials is essential for the optimization of synthesis. A newly developed 'self-scavenging' technique was applied to purify undesired radioisotopes from the starting metal compound and found to effectively remove thorium and such containments from the neodymium chloride for SNO+.

  5. Mixed waste management at the National Institutes of Health

    SciTech Connect

    Walker, W.J.

    1994-12-31

    This article is an overview of the operations of the National Institutes of Health and describes what kind of wastes are generated from its various research programs. Chemical, radioactive, biohazardous, and mixed wastes are generated from seven major processes including: liquid scintillation counting, gel fixing and washing, liquid chromatography, filter and blot washing, protein precipitation, autoradiography, and radioimmunoassay. A description of waste minimization techniques and current waste disposal procedures is included.

  6. Correlation of cure monitoring techniques

    NASA Astrophysics Data System (ADS)

    Chang, S. S.; Mopsik, F. I.; Hunston, D. L.

    Six different composite matrix or neat resin cure-monitoring methods are presently used to follow the cure process in a model epoxy system, and the results obtained are compared. Differential scanning calorimetry, viscosity monitoring, the ultrasonic shear wave propagation technique, dielectric spectrometry, and two different fluorescence intensity techniques are compared with a view to common traits and differences. Dielectric fluorescence and ultrasonic measurement techniques are noted to be applicable to on-line process monitoring.

  7. Helium II level measurement techniques

    NASA Astrophysics Data System (ADS)

    Celik, D.; Hilton, D. K.; Zhang, T.; Van Sciver, S. W.

    2001-05-01

    In this paper, a survey of cryogenic liquid level measurement techniques applicable to superfluid helium (He II) is given. The survey includes both continuous and discrete measurement techniques. A number of different probes and controlling circuits for this purpose have been described in the literature. They fall into one of the following categories: capacitive liquid level gauges, superconducting wire liquid level gauges, thermodynamic (heat transfer-based) liquid level gauges, resistive gauges, ultrasound and transmission line-based level detectors. The present paper reviews these techniques and their suitability for He II service. In addition to these methods, techniques for measuring the total liquid volume and mass gauging are also discussed.

  8. Complete arch implant impression technique.

    PubMed

    Ma, Junping; Rubenstein, Jeffrey E

    2012-06-01

    When making a definitive impression for an arch containing multiple implants, there are many reported techniques for splinting impression copings. This article introduces a splint technique that uses the shim method, which has been demonstrated to reduce laboratory and patient chair time, the number of impression copings and laboratory analogs needed, and the ultimate cost.

  9. TECHNIQUES FOR TEACHING CONSERVATION EDUCATION.

    ERIC Educational Resources Information Center

    BROWN, ROBERT E.; MOUSER, G.W.

    CONSERVATION PRINCIPLES, FIELD METHODS AND TECHNIQUES, AND SPECIFIC FIELD LEARNING ACTIVITIES ARE INCLUDED IN THIS REFERENCE VOLUME FOR TEACHERS. CONSERVATION PRINCIPLES INCLUDE STATEMENTS PERTAINING TO (1) SOIL, (2) WATER, (3) FOREST, AND (4) WILDLIFE. FIELD METHODS AND TECHNIQUES INCLUDE (1) PREPARING FOR A FIELD TRIP, (2) GETTING STUDENT…

  10. Numerical grid generation techniques. [conference

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The state of the art in topology and flow geometry is presented. Solution techniques for partial differential equations are reviewed and included developments in coordinate transformations, conformal mapping, and invariant imbeddings. Applications of these techniques in fluid mechanics, flow geometry, boundary value problems, and fluidics are presented.

  11. Field measurements involve various techniques

    SciTech Connect

    Moore, D.P.; Byars, H.G. )

    1990-07-30

    A number of field techniques are available to determine the extent of corrosion on production equipment. This article on oil field corrosion explains the use of corrosion coupons, several types of probes, and various inspection techniques, and shows how to monitor iron content in water.

  12. Resiliency Techniques in School Practice

    ERIC Educational Resources Information Center

    Molony, Terry; Henwood, Maureen; Gilroy, Shawn

    2010-01-01

    School psychologists can help build resilience in youth in many ways. This article offers a list of some easy techniques to use when working with individuals or groups, most based on basic cognitive-behavior therapy (CBT) techniques. They include: (1) Emotional awareness; (2) Emotional Regulation; (3) Cognitive Flexibility; (4) Self-efficacy; and…

  13. Selected Logistics Models and Techniques.

    DTIC Science & Technology

    1984-09-01

    Programmable Calculator LCC...Program 27 TI-59 Programmable Calculator LCC Model 30 Unmanned Spacecraft Cost Model 31 iv I: TABLE OF CONTENTS (CONT’D) (Subject Index) LOGISTICS...34"" - % - "° > - " ° .° - " .’ > -% > ]*° - LOGISTICS ANALYSIS MODEL/TECHNIQUE DATA MODEL/TECHNIQUE NAME: TI-59 Programmable Calculator LCC Model TYPE MODEL: Cost Estimating DEVELOPED BY:

  14. Photogrammetric techniques for aerospace applications

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu; Burner, Alpheus W.; Jones, Thomas W.; Barrows, Danny A.

    2012-10-01

    Photogrammetric techniques have been used for measuring the important physical quantities in both ground and flight testing including aeroelastic deformation, attitude, position, shape and dynamics of objects such as wind tunnel models, flight vehicles, rotating blades and large space structures. The distinct advantage of photogrammetric measurement is that it is a non-contact, global measurement technique. Although the general principles of photogrammetry are well known particularly in topographic and aerial survey, photogrammetric techniques require special adaptation for aerospace applications. This review provides a comprehensive and systematic summary of photogrammetric techniques for aerospace applications based on diverse sources. It is useful mainly for aerospace engineers who want to use photogrammetric techniques, but it also gives a general introduction for photogrammetrists and computer vision scientists to new applications.

  15. Accuracy of implant impression techniques.

    PubMed

    Assif, D; Marshak, B; Schmidt, A

    1996-01-01

    Three impression techniques were assessed for accuracy in a laboratory cast that simulated clinical practice. The first technique used autopolymerizing acrylic resin to splint the transfer copings. The second involved splinting of the transfer copings directly to an acrylic resin custom tray. In the third, only impression material was used to orient the transfer copings. The accuracy of stone casts with implant analogs was measured against a master framework. The fit of the framework on the casts was tested using strain gauges. The technique using acrylic resin to splint transfer copings in the impression material was significantly more accurate than the two other techniques. Stresses observed in the framework are described and discussed with suggestions to improve clinical and laboratory techniques.

  16. Single Cell Electrical Characterization Techniques

    PubMed Central

    Mansor, Muhammad Asraf; Ahmad, Mohd Ridzuan

    2015-01-01

    Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Since two decades ago, many researchers have developed tools to analyze the cell’s electrical states especially in single cell analysis (SCA). In depth analysis and more fully described activities of cell differentiation and cancer can only be accomplished with single cell analysis. This growing interest was supported by the emergence of various microfluidic techniques to fulfill high precisions screening, reduced equipment cost and low analysis time for characterization of the single cell’s electrical properties, as compared to classical bulky technique. This paper presents a historical review of single cell electrical properties analysis development from classical techniques to recent advances in microfluidic techniques. Technical details of the different microfluidic techniques are highlighted, and the advantages and limitations of various microfluidic devices are discussed. PMID:26053399

  17. Rapid screening of 90Sr activity in water and milk samples using Cherenkov radiation.

    PubMed

    Stamoulis, K C; Ioannides, K G; Karamanis, D T; Patiris, D C

    2007-01-01

    A method for screening 90Sr in milk samples is proposed. This method is based on a liquid scintillation technique taking advantage of Cherenkov radiation, which is produced in a liquid medium and then detected by the photomultipliers of a Liquid Scintillation Counter (LSC). Twenty millilitres of water and milk samples spiked with various concentrations of 90Sr/90Y in equilibrium were added in plastic vials and then were measured with an LSC (TriCarb 3170 TR/SL). The derived efficiencies were 49% for water samples and 14% for milk samples. The detection limit was 470 mBq L(-1)(90)Sr for water, without any pretreatment. Milk contains potassium, which also produces Cherenkov radiation due to the presence of 40K. For this reason, the interference of 40K in the measurements of 90Sr in milk samples was also investigated. The detection limit for milk was 1.7 Bq L(-1)90Sr.

  18. Astroparticle Physics: Detectors for Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Salazar, Humberto; Villaseñor, Luis

    2006-09-01

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection of extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.

  19. Metal-loaded organic scintillators for neutrino physics

    NASA Astrophysics Data System (ADS)

    Buck, Christian; Yeh, Minfang

    2016-09-01

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.

  20. Experimental particle physics. Progress report, September 16, 1991--September 30, 1992

    SciTech Connect

    Steinberg, R.I.; Lane, C.E.

    1992-09-01

    The goals of this research are the experimental testing of fundamental theories of physics beyond the standard model and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large-area underground detector to search fore grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low- and high-energy neutrinos; the Chooz experiment to search for reactor neutrino oscillations at a distance of 1 km from the source; a new proposal (the Perry experiment) to construct a one-kiloton liquid scintillator in the Fairport, Ohio underground facility IMB to study neutrino oscillations with a 13 km baseline; and development of technology for improved liquid scintillators and for very-low-background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments.

  1. Experimental particle physics. [Dept. of Physics, Drexel Univ

    SciTech Connect

    Steinberg, R.I.; Lane, C.E.

    1992-09-01

    The goals of this research are the experimental testing of fundamental theories of physics beyond the standard model and the exploration of cosmic phenomena through the techniques of particle physics. We are working on the MACRO experiment, which employs a large-area underground detector to search fore grand unification magnetic monopoles and dark matter candidates and to study cosmic ray muons as well as low- and high-energy neutrinos; the Chooz experiment to search for reactor neutrino oscillations at a distance of 1 km from the source; a new proposal (the Perry experiment) to construct a one-kiloton liquid scintillator in the Fairport, Ohio underground facility IMB to study neutrino oscillations with a 13 km baseline; and development of technology for improved liquid scintillators and for very-low-background materials in support of the MACRO and Perry experiments and for new solar neutrino experiments.

  2. Metal-loaded organic scintillators for neutrino physics

    DOE PAGES

    Buck, Christian; Yeh, Minfang

    2016-08-03

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can bemore » used under stable conditions for many years even in ton scale experiments. Lastly, we review applications of metal loaded scintillators in neutrino experiments and compare the performance as well as the prospects of different scintillator types.« less

  3. Metal-loaded organic scintillators for neutrino physics

    SciTech Connect

    Buck, Christian; Yeh, Minfang

    2016-08-03

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Lastly, we review applications of metal loaded scintillators in neutrino experiments and compare the performance as well as the prospects of different scintillator types.

  4. Theorists and Techniques: Connecting Education Theories to Lamaze Teaching Techniques

    PubMed Central

    Podgurski, Mary Jo

    2016-01-01

    ABSTRACT Should childbirth educators connect education theory to technique? Is there more to learning about theorists than memorizing facts for an assessment? Are childbirth educators uniquely poised to glean wisdom from theorists and enhance their classes with interactive techniques inspiring participant knowledge and empowerment? Yes, yes, and yes. This article will explore how an awareness of education theory can enhance retention of material through interactive learning techniques. Lamaze International childbirth classes already prepare participants for the childbearing year by using positive group dynamics; theory will empower childbirth educators to address education through well-studied avenues. Childbirth educators can provide evidence-based learning techniques in their classes and create true behavioral change. PMID:26848246

  5. Satellite Moisture Retrieval Techniques. Volume 1. Technique Development and Evaluation

    DTIC Science & Technology

    1983-01-01

    VOLUME 2: Atmospheric Sounding Bibliography — NAVENVPREDRSCHFAC CR 83-01( b ) — for listings developed by literature search in the subject area. 19...Contractor Report CR 83-01 (a): Satellite Moisture Retrieval Techniques, Vol 1, Technique Development and Evaluation (2) CR 83-01 ( b ): Vol 2...AND EVALUATION Prepared By: A. Rosenberg, D. B . Hogan, and C. K. Bowman V /, RCA Government Systems Division, Astro-Electronics, Princeton, New

  6. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  7. Multigrid techniques for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  8. Magnetic tunnel junction pattern technique

    NASA Astrophysics Data System (ADS)

    Chen, Eugene; Schwarz, Benjamin; Choi, Chang Ju; Kula, Witold; Wolfman, Jerome; Ounadjela, Kamel; Geha, Sam

    2003-05-01

    We have developed a magnetic tunnel junction (MTJ) pattern technique that involves transforming the magnetic layer above the tunnel barrier in unwanted areas into an insulator, thus providing insulation between different MTJ devices without suffering common tunnel barrier shorting problems. With this technique, 90%-100% yielding MTJ devices have been observed. MTJ results using this process are superior to an etching based process. Switching distribution of patterned magnetic bits is also narrower using this novel technique. Process control and the ability to stop on the tunnel barrier have been demonstrated.

  9. Introduction: nanoimaging techniques in biology.

    PubMed

    Sousa, Alioscka A; Kruhlak, Michael J

    2013-01-01

    To dissect the astonishing complexity of the biomolecular machinery functioning within a cell, imaging has been an integral tool in biology, allowing researches to "view" the detailed molecular biology responsible for coordinating cellular life. To visualize the molecular components of cellular structures requires, in particular, imaging techniques capable of reaching nanoscale spatial resolutions. Such nanoimaging techniques are the focus of this volume. Chapters in the current volume are divided into four parts and include specialized techniques in the areas of light, electron, and scanning probe microscopy, as well as methodologies employing combinatorial and complementary imaging approaches.

  10. PIGE technique implementation at ININ

    SciTech Connect

    Policroniades, R. Martínez-Quiroz, E.; Méndez-Garrido, B.; Murillo, G.; Moreno, E.; Villaseñor, P.

    2015-07-23

    In this work, we present a general overview about the implementation at ININ of a Particle Induced Gamma Emission (PIGE) analysis technique, based on the bombardment of samples by protons and deuterons at different energies within our tandem accelerator facility. As it is well known, this technique is based on the detection of γ-rays emitted by nuclei in a target following a charged particle irradiation. The main feature of this technique, apart from being non-destructive and low time consuming, is that it allows a multi-elemental analysis of a sample, permitting an isotopic identification of many nuclides. Advances and some preliminary results are presented.

  11. Low Light Level TV Techniques.

    PubMed

    Gildea, J

    1970-10-01

    As the science of low light level sensing becomes better understood, the demand for systems with this capability has increased considerably in recent years. Low light level television systems are part of these low light sensing devices in which interest has grown. Development of low light level TV systems has, in turn, stimulated technical advances in new tube types with improved performance, development of electronic techniques which enhance the over-all performance, and design techniques which make the system more versatile and adaptable. A general look at some of these developments and techniques gives insight into the versatility and adaptability of low light level TV.

  12. PIGE technique implementation at ININ

    NASA Astrophysics Data System (ADS)

    Policroniades, R.; Martínez-Quiroz, E.; Méndez-Garrido, B.; Murillo, G.; Moreno, E.; Villaseñor, P.

    2015-07-01

    In this work, we present a general overview about the implementation at ININ of a Particle Induced Gamma Emission (PIGE) analysis technique, based on the bombardment of samples by protons and deuterons at different energies within our tandem accelerator facility. As it is well known, this technique is based on the detection of γ-rays emitted by nuclei in a target following a charged particle irradiation. The main feature of this technique, apart from being non-destructive and low time consuming, is that it allows a multi-elemental analysis of a sample, permitting an isotopic identification of many nuclides. Advances and some preliminary results are presented.

  13. Radium-228 analysis of natural waters by Cherenkov counting of Actinium-228.

    PubMed

    Aleissa, Khalid A; Almasoud, Fahad I; Islam, Mohammed S; L'Annunziata, Michael F

    2008-12-01

    The activities of (228)Ra in natural waters were determined by the Cherenkov counting of the daughter nuclide (228)Ac. The radium was pre-concentrated on MnO(2) and the radium purified via ion exchange and, after a 2-day period of incubation to allow for secular equilibrium between the parent-daughter (228)Ra((228)Ac), the daughter nuclide (228)Ac was isolated by ion exchange according to the method of Nour et al. [2004. Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Appl. Radiat. Isot. 61, 1173-1178]. The Cherenkov photons produced by (228)Ac were counted directly without the addition of any scintillation reagents. The optimum Cherenkov counting window, sample volume, and vial type were determined experimentally to achieve optimum Cherenkov photon detection efficiency and lowest background count rates. An optimum detection efficiency of 10.9+/-0.1% was measured for (228)Ac by Cherenkov counting with a very low Cherenkov photon background of 0.317+/-0.013cpm. The addition of sodium salicylate into the sample counting vial at a concentration of 0.1g/mL yielded a more than 3-fold increase in the Cherenkov detection efficiency of (228)Ac to 38%. Tests of the Cherenkov counting technique were conducted with several water standards of known activity and the results obtained compared closely with a conventional liquid scintillation counting technique. The advantages and disadvantages of Cherenkov counting compared to liquid scintillation counting methods are discussed. Advantages include much lower Cherenkov background count rates and consequently lower minimal detectable activities for (228)Ra and no need for expensive environmentally unfriendly liquid scintillation cocktails. The disadvantages of the Cherenkov counting method include the need to measure (228)Ac Cherenkov photon detection efficiency and optimum Cherenkov counting volume, which are not at all required when liquid

  14. Monitoring by Control Technique - Condensers

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about condenser control techniques used to reduce pollutant emissions.

  15. Monitoring by Control Technique - Cyclone

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about cyclone control techniques used to reduce pollutant emissions.

  16. Modern Observational Techniques for Comets

    NASA Technical Reports Server (NTRS)

    Brandt, J. C. (Editor); Greenberg, J. M. (Editor); Donn, B. (Editor); Rahe, J. (Editor)

    1981-01-01

    Techniques are discussed in the following areas: astrometry, photometry, infrared observations, radio observations, spectroscopy, imaging of coma and tail, image processing of observation. The determination of the chemical composition and physical structure of comets is highlighted.

  17. Behavioral Techniques in Foster Care

    ERIC Educational Resources Information Center

    Stein, Theodore J.; Gambrill, Eileen D.

    1976-01-01

    Behavioral modification techniques are used with families of children in foster care as a way of helping them achieve long-range goals for their children. Case examples illustrate the goals, intervention plans, and the outcomes. (Author)

  18. Digital Techniques for Laboratory Measurements

    ERIC Educational Resources Information Center

    Dart, S. Leonard

    1975-01-01

    Describes techniques and equipment intended to both improve laboratory measurements and also form a background for more advanced work by introducing the concepts of electronic and digital circuits. (GS)

  19. Supercooling Water: A Simple Technique.

    ERIC Educational Resources Information Center

    Geer, Ira W.

    1980-01-01

    Describes a technique for the supercooling of water, for use in the science classroom, involving adding common salt to a mixture of ice and water. Several investigations are included for use during (and after) the process of supercooling. (DS)

  20. Data compression techniques and applications

    NASA Astrophysics Data System (ADS)

    Benelli, G.; Cappellini, V.; Lotti, F.

    1980-02-01

    The paper reviews several data compression methods for signal and image digital processing and transmission, including both established and more recent techniques. Attention is also given to methods of prediction-interpolation, differential pulse code modulation, delta modulation and transformations. The processing of two dimensional data is also considered, and the results of the application of these techniques to space telemetry and biomedical digital signal processing and telemetry systems are presented.

  1. EMP and HPM Suppression Techniques

    DTIC Science & Technology

    2007-11-02

    Previous Results design procedure for quantum tunnelling devices. The first step is to give an accurate derivation of the fundamental tunnelling...number of techniques are presently used. In- cluded are the use of special device and circuit design techniques. Although of definite advantage...TEST SAMPLE PREPARATION Sections: IV-1 Material Fabrication rV-2 Test Cell Design PartV: LABORATORY MEASUREMENTS Sections: V-1 Test

  2. Discovering the Botnet Detection Techniques

    NASA Astrophysics Data System (ADS)

    Rahim, Aneel; Bin Muhaya, Fahad T.

    Botnet is a network of compromised computers. It just fellow the master slave concept. Bots are comprised computers and do the tasks what ever their master orders them. Internet Relay Chat (IRC) is used for the communication between the master and bots. Information is also encrypted to avoid the effect of third party. In this paper we discuss the Botnets detection techniques and comparative analysis of these techniques on the basis of DNS query, History data and group activity.

  3. Testing methods and techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mechanical testing techniques, electrical and electronics testing techniques, thermal testing techniques, and optical testing techniques are the subject of the compilation which provides technical information and illustrations of advanced testing devices. Patent information is included where applicable.

  4. Microscopy techniques in flavivirus research.

    PubMed

    Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee

    2014-04-01

    The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses.

  5. [Current techniques in tonsil surgery].

    PubMed

    Coromina Isern, Jordi; Esteller Moré, Eduard

    2010-12-01

    In recent years, consolidation of tonsillar hypertrophy as the principal surgical procedure has led to the emergence of new techniques. Most aim to reduce volume (tonsillectomy or tonsil reduction). These techniques have considerably decreased intra- and postoperative hemorrhages and pain intensity. The present article describes the mechanisms and the advantages and disadvantages of the various techniques, including electro-dissection using electrical scalpels, reduction using a microdebrider, ultrasonic scalpel, radiofrequency (with its different variations) and CO(2) laser. When techniques that reduce tonsil volume are used, the possibility of recurrence of the tonsillar hypertrophy is high if less than 85% of the tonsil is removed. There is also a considerable possibility of infection of the remaining tonsils, whichever technique is used, and therefore these techniques are not valid in the case of repetitive tonsillitis. Recently, alternatives to classical adenoidectomy using adenoid curette have also appeared. Bleeding can be minimized by using a microdebrider, radiofrequency or a blood coagulator. We also discuss the concept of partial adenoidectomy, which is preferred in patients at risk of velopharyngeal insufficiency.

  6. Landing Techniques in Beach Volleyball

    PubMed Central

    Tilp, Markus; Rindler, Michael

    2013-01-01

    The aims of the present study were to establish a detailed and representative record of landing techniques (two-, left-, and right-footed landings) in professional beach volleyball and compare the data with those of indoor volleyball. Beach volleyball data was retrieved from videos taken at FIVB World Tour tournaments. Landing techniques were compared in the different beach and indoor volleyball skills serve, set, attack, and block with regard to sex, playing technique, and court position. Significant differences were observed between men and women in landings following block actions (χ2(2) = 18.19, p < 0.01) but not following serve, set, and attack actions. Following blocking, men landed more often on one foot than women. Further differences in landings following serve and attack with regard to playing technique and position were mainly observed in men. The comparison with landing techniques in indoor volleyball revealed overall differences both in men (χ2(2) = 161.4, p < 0.01) and women (χ2(2) = 84.91, p < 0.01). Beach volleyball players land more often on both feet than indoor volleyball players. Besides the softer surface in beach volleyball, and therefore resulting lower loads, these results might be another reason for fewer injuries and overuse conditions compared to indoor volleyball. Key Points About 1/3 of all jumping actions in beach volleyball result in a landing on one foot. Especially following block situations men land on one foot more often than women. Landing techniques are related to different techniques and positions. Landings on one foot are less common in beach volleyball than indoor volleyball. This could be a reason for fewer injuries and overuse conditions. PMID:24149150

  7. Applications of Electromigration Techniques: Electromigration Techniques in Detection of Microorganisms

    NASA Astrophysics Data System (ADS)

    Dziubakiewicz, Ewelina; Buszewski, Bogusław

    The detection and identification of microbes is a challenge and an important aspect in many fields of our lives from medicine to bioterrorism defense. However, the analysis of such complex molecules brings a lot of questions mainly about their behavior. Bacteria are biocolloid, whose surface charge originates from the ionization of carboxyl, phosphate, or amino groups and the adsorption of ions from solution. Consequently, the charged cell wall groups determine the spontaneous formation of the electrical double layer. In this chapter application of electromigration techniques for microorganism's identification and separation are described. This approach represents the possibility to apply electromigration techniques in medical diagnosis, detection of food contamination, and sterility testing.

  8. Authentication techniques for smart cards

    SciTech Connect

    Nelson, R.A.

    1994-02-01

    Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thorough understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.

  9. Aseptic technique for cell culture.

    PubMed

    Coté, R J

    2001-05-01

    This unit describes some of the ways that a laboratory can deal with the constant threat of microbial contamination in cell cultures. A protocol on aseptic technique is described first. This catch-all term universally appears in any set of instructions pertaining to procedures in which noncontaminating conditions must be maintained. In reality, aseptic technique encompasses all aspects of environmental control, personal hygiene, equipment and media sterilization, and associated quality control procedures needed to ensure that a procedure is, indeed, performed with aseptic, noncontaminating technique. Although cell culture can theoretically be carried out on an open bench in a low-traffic area, most cell culture work is carried out using a horizontal laminar-flow clean bench or a vertical laminar-flow biosafety cabinet. Both are described here.

  10. NASA standard: Trend analysis techniques

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Descriptive and analytical techniques for NASA trend analysis applications are presented in this standard. Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, developmental/operational programs. This document should be consulted for any data analysis activity requiring the identification or interpretation of trends. Trend analysis is neither a precise term nor a circumscribed methodology: it generally connotes quantitative analysis of time-series data. For NASA activities, the appropriate and applicable techniques include descriptive and graphical statistics, and the fitting or modeling of data by linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would only rarely apply and are not included in this document. The basic ideas needed for qualitative and quantitative assessment of trends along with relevant examples are presented.

  11. A computational hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Habibi, Nasim; Azari, Mohammad; Abolbashari, Mehrdad; Farahi, Faramarz

    2016-03-01

    A novel spectral imaging technique is introduced based on a highly dispersive imaging lens system. The chromatic aberration of the lens system is utilized to spread the spectral content of the object over a focal distance. Two three-dimensional surface reconstruction algorithms, depth from focus and depth from defocus, are applied to images captured by dispersive lens system. Using these algorithms, the spectral imager is able to relate either the location of focused image or the amount of defocus at the imaging detector to the spectral content of the object. A spectral imager with ~5 nm spectral resolution is designed based on this technique. The spectral and spatial resolutions of the introduced technique are independent and can be improved simultaneously. Simulation and experimental results are presented.

  12. Resolution enhancement techniques in microscopy

    NASA Astrophysics Data System (ADS)

    Cremer, Christoph; Masters, Barry R.

    2013-05-01

    We survey the history of resolution enhancement techniques in microscopy and their impact on current research in biomedicine. Often these techniques are labeled superresolution, or enhanced resolution microscopy, or light-optical nanoscopy. First, we introduce the development of diffraction theory in its relation to enhanced resolution; then we explore the foundations of resolution as expounded by the astronomers and the physicists and describe the conditions for which they apply. Then we elucidate Ernst Abbe's theory of optical formation in the microscope, and its experimental verification and dissemination to the world wide microscope communities. Second, we describe and compare the early techniques that can enhance the resolution of the microscope. Third, we present the historical development of various techniques that substantially enhance the optical resolution of the light microscope. These enhanced resolution techniques in their modern form constitute an active area of research with seminal applications in biology and medicine. Our historical survey of the field of resolution enhancement uncovers many examples of reinvention, rediscovery, and independent invention and development of similar proposals, concepts, techniques, and instruments. Attribution of credit is therefore confounded by the fact that for understandable reasons authors stress the achievements from their own research groups and sometimes obfuscate their contributions and the prior art of others. In some cases, attribution of credit is also made more complex by the fact that long term developments are difficult to allocate to a specific individual because of the many mutual connections often existing between sometimes fiercely competing, sometimes strongly collaborating groups. Since applications in biology and medicine have been a major driving force in the development of resolution enhancing approaches, we focus on the contribution of enhanced resolution to these fields.

  13. Current techniques in laparoscopic appendectomy.

    PubMed

    Nowzaradan, Y; Barnes, J P

    1993-12-01

    An improved technique for laparoscopic appendectomy based on an experience of > 120 cases is presented. This method includes numerous additions to and modifications of previously described techniques and is effective for gangrenous and perforated appendicitis as well as for less severe cases. The most important elements are that (a) it is a safer procedure for attaining insertion of the Veress needle and the primary trocar; (b) it employs electrocautery to separate the appendix from the mesoappendix; (c) an Endosac can be used for removal of the appendix from the abdomen without contamination of the abdominal wall; (d) no laser is necessary; and (e) staples are rarely necessary.

  14. Techniques for Interfacing Multiplex Systems.

    DTIC Science & Technology

    1981-02-01

    Study 6 1.2. 3 Selection of Techniques 7 1.3 RECOMMENDATIONS AND SUMMARY 7 1.3.1 ARINC and H009 (F-15) Interfaces 7 1. 3. 2 Basic Signal...Override Transmitter Shutdown 72 3.4.8 Selected Transmitter Shutdown 72 viii TABLE OF CONTENTS (cont t d) Page I 3.4.9 Override Selected Transmitter...Common Mode Rejection 90 4.0 SELECTION OF TECHNIQUES 91 4.1 BACKGROUND AND RATIONALE 91 4.1.1 Ease of Retrofit 91 4. 1. 2 Future Implementation 92 4

  15. Grid flexibility and patching techniques

    NASA Technical Reports Server (NTRS)

    Keith, T. G.; Smith, L. W.; Yung, C. N.; Barthelson, S. H.; Dewitt, K. J.

    1984-01-01

    The numerical determination of combustor flowfields is of great value to the combustor designer. An a priori knowledge of the flow behavior can speed the combustor design process and reduce the number of experimental test rigs required to arrive at an optimal design. Even 2-D steady incompressible isothermal flow predictions are of use; many codes of this kind are available, each employing different techniques to surmount the difficulties arising from the nonlinearity of the governing equations and from typically irregular combustor geometries. Mapping techniques (algebraic and elliptic PDE), and adaptive grid methods (both multi-grid and grid embedding) as applied to axisymmetric combustors are discussed.

  16. Drilling techniques for osteochondritis dissecans.

    PubMed

    Heyworth, Benton E; Edmonds, Eric W; Murnaghan, M Lucas; Kocher, Mininder S

    2014-04-01

    Although the advanced stages of osteochondritis dissecans remain challenging to treat, most early-stage lesions in skeletally immature patients, if managed appropriately, can be stimulated to heal. For stable lesions that do not demonstrate adequate healing with nonoperative measures, such as activity modification, weight-bearing protection, or bracing, drilling of the subchondral bone has emerged as the gold standard of management. Several techniques of drilling exist, including transarticular drilling, retroarticular drilling, and notch drilling. Although each technique has been shown to be effective in small retrospective studies, higher-powered prospective comparative studies are needed to better elucidate their relative advantages and disadvantages.

  17. Techniques and indications in radiology

    SciTech Connect

    Lange, S.

    1987-01-01

    The stated purpose of this book is to review modern radiologic diagnostic techniques as applied to the study of the kidney and urinary tract, and their pertinent indications. This goal is partially accomplished in the first two segments of the book, which consist of about 100 pages. These include a synoptic description of various techniques - including classic uroradiologic studies such as excretory urography and retrograde pyelography, plus sonography, computed tomography, angiography, and nuclear medicine. The diagnostic signs and the differential diagnoses are fairly well described, aided by a profusion of tables and diagrams. The overall quality of the reproduction of the illustrations is good.

  18. Techniques in Endovascular Aneurysm Repair

    PubMed Central

    Phade, Sachin V.; Garcia-Toca, Manuel; Kibbe, Melina R.

    2011-01-01

    Endovascular repair of infrarenal abdominal aortic aneurysms (EVARs) has revolutionized the treatment of aortic aneurysms, with over half of elective abdominal aortic aneurysm repairs performed endoluminally each year. Since the first endografts were placed two decades ago, many changes have been made in graft design, operative technique, and management of complications. This paper summarizes modern endovascular grafts, considerations in preoperative planning, and EVAR techniques. Specific areas that are addressed include endograft selection, arterial access, sheath delivery, aortic branch management, graft deployment, intravascular ultrasonography, pressure sensors, management of endoleaks and compressed limbs, and exit strategies. PMID:22121487

  19. Mass spectrometry. [review of techniques

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Kimble, B. J.; Derrick, P. J.

    1976-01-01

    Advances in mass spectrometry (MS) and its applications over the past decade are reviewed in depth, with annotated literature references. New instrumentation and techniques surveyed include: modulated-beam MS, chromatographic MS on-line computer techniques, digital computer-compatible quadrupole MS, selected ion monitoring (mass fragmentography), and computer-aided management of MS data and interpretation. Areas of application surveyed include: organic MS and electron impact MS, field ionization kinetics, appearance potentials, translational energy release, studies of metastable species, photoionization, calculations of molecular orbitals, chemical kinetics, field desorption MS, high pressure MS, ion cyclotron resonance, biochemistry, medical/clinical chemistry, pharmacology, and environmental chemistry and pollution studies.

  20. Urologic imaging and interventional techniques

    SciTech Connect

    Bush, W.H.

    1989-01-01

    This book provides an overview of all imaging modalities and invasive techniques of the genitourinary system. Three general chapters discuss ionic and nonionic contrast media, the management of reactions to contrast media, and radiation doses from various uroradiologic procedures. Chapters are devoted to intravenous pyelography, computed tomography, magnetic resonance imaging, ultrasound, nuclear medicine, lymphography, arteriography, and venography. Two chapters discuss the pediatric applications of uroradiology and ultrasound. Two chapters integrate the various imaging techniques of the upper and lower genitourinary systems into an algorithmic approach for various pathologic entities.

  1. Selected photographic techniques, a compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A selection has been made of methods, devices, and techniques developed in the field of photography during implementation of space and nuclear research projects. These items include many adaptations, variations, and modifications to standard hardware and practice, and should prove interesting to both amateur and professional photographers and photographic technicians. This compilation is divided into two sections. The first section presents techniques and devices that have been found useful in making photolab work simpler, more productive, and higher in quality. Section two deals with modifications to and special applications for existing photographic equipment.

  2. Selenium incorporation using recombinant techniques

    SciTech Connect

    Walden, Helen

    2010-04-01

    An overview of techniques for recombinant incorporation of selenium and subsequent purification and crystallization of the resulting labelled protein. Using selenomethionine to phase macromolecular structures is common practice in structure determination, along with the use of selenocysteine. Selenium is consequently the most commonly used heavy atom for MAD. In addition to the well established recombinant techniques for the incorporation of selenium in prokaryal expression systems, there have been recent advances in selenium labelling in eukaryal expression, which will be discussed. Tips and things to consider for the purification and crystallization of seleno-labelled proteins are also included.

  3. Computerized proof techniques for undergraduates

    NASA Astrophysics Data System (ADS)

    Smith, Christopher J.; Tefera, Akalu; Zeleke, Aklilu

    2012-12-01

    The use of computer algebra systems such as Maple and Mathematica is becoming increasingly important and widespread in mathematics learning, teaching and research. In this article, we present computerized proof techniques of Gosper, Wilf-Zeilberger and Zeilberger that can be used for enhancing the teaching and learning of topics in discrete mathematics. We demonstrate by examples how one can use these computerized proof techniques to raise students' interests in the discovery and proof of mathematical identities and enhance their problem-solving skills.

  4. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    NASA Astrophysics Data System (ADS)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  5. Single-Donor Leukophoretic Technique

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.

    1977-01-01

    Leukocyte separation-and-retrieval device utilizes granulocyte and monocyte property of leukoadhesion to glass surfaces as basis of their separation from whole blood. Device is used with single donor technique and has application in biological and chemical processing, veterinary research and clinical care.

  6. Orthodontic palatal implants: clinical technique.

    PubMed

    Tinsley, D; O'Dwyer, J J; Benson, P E; Doyle, P T; Sandler, J

    2004-03-01

    The aim of this paper is to familiarize the readers with some of the clinical considerations necessary to ensure successful use of mid-palatal implants. Both surgical and technical aspects will be discussed along with a description of impression techniques used.

  7. A measurement technique for hydroxyacetone

    SciTech Connect

    Klotz, P.J.

    1999-10-04

    Hydroxyacetone (HA) is mainly produced in the atmosphere from oxidation of hydrocarbons of the type, CH{sub 3}(R)C{double{underscore}bond}CH{sub 2}. Tuazon and Atkinson (1990) reported HA yield of 41% from the OH-initiated oxidation of methacrolein in the presence of NOx. Since methacrolein is a major product of isoprene oxidation (Carter and Atkinson, 1996), isoprene, a key biogenic hydrocarbon, is therefore expected to be an important source for HA. Consequently, knowledge of ambient concentration of HA would provide information needed to examine the applicability of isoprene reaction mechanisms developed in laboratory and to assess the contribution of isoprene to photooxidant production. The commonly used GC-FID technique involving cryo-focusing is unsuitable for HA owing to HA's thermal instability. When subjected to a temperature of 100 C for only a few seconds, HA was found to disappear completely. Since HA is highly soluble in water, the authors developed a wet chemical technique similar in principle to the one they reported earlier, namely, derivatization following liquid scrubbing. To increase the sensitivity, they adopted a fluorescence detection scheme based on o-phthaldialdehyde (OPA) chemistry. The technique was deployed in the field during two measurement periods at a NARSTO site located on Long Island, New York. The authors report the principle and the operation of this technique and the results obtained from these field studies.

  8. The Split-Stem Technique

    ERIC Educational Resources Information Center

    Carter, Roy A.

    1972-01-01

    Describes a procedure useful for investigating the effects of substances on plant growth and development. A bean seedling's stem is partially split, and each half is placed in a different nutrient solution. Suggestions for the instructional use of the technique are made. (AL)

  9. Multimodal Revision Techniques in Webtexts

    ERIC Educational Resources Information Center

    Ball, Cheryl E.

    2014-01-01

    This article examines how an online scholarly journal, "Kairos: Rhetoric, Technology, Pedagogy," mentors authors to revise their webtexts (interactive, digital media scholarship) for publication. Using an editorial pedagogy in which multimodal and rhetorical genre theories are merged with revision techniques found in process-based…

  10. Techniques Class: September 12, 2001.

    ERIC Educational Resources Information Center

    More, William; Corsetti, Patricia L.; Endleman, Orna; Julian, Sarah; Lindemann, Evie; Spinelli, Laura

    2002-01-01

    On September 12, 2001, the Techniques in Art Therapy class in the art therapy program at Albertus Magnus College met at its normal Wednesday evening time. This article describes the class session through the words and images of several class members who found the class useful in their own process of beginning to deal with the attacks and their…

  11. Survey of Biochemical Separation Techniques

    ERIC Educational Resources Information Center

    Nilsson, Melanie R.

    2007-01-01

    A simple laboratory exercise is illustrated that exposes students to wide range of separation techniques in one laboratory program and provides a nice complement to a project-oriented program. Students have learned the basic principles of syringe filtration, centricon, dialysis, gel filtration and solid-phase extraction methodologies and have got…

  12. [Evidence-based TEP technique].

    PubMed

    Köckerling, F

    2017-01-13

    The guidelines of all international hernia societies recommend as procedures of choice the laparoendoscopic techniques total extraperitoneal patch plasty (TEP) and transabdominal preperitoneal patch plasty (TAPP) as well as the open Lichtenstein operation for elective inguinal hernia repair. The learning curve associated with the laparoendoscopic techniques, in particular TEP, is longer than that for the open Lichtenstein technique due to the complexity of the procedures. Accordingly, for laparoendoscopic techniques it is particularly important that the operations are conducted in a standardized manner in compliance with the evidence-based recommendations given for the technical details. When procedures are carried out in strict compliance with the guidelines of the international hernia societies, low rates of perioperative complications, complication-related reoperations, recurrences and chronic pain can be expected for TEP. Compliance with the guidelines can also positively impact mastery of the learning curve for TEP. The technical guidelines on TEP are based on study results and on the experiences of numerous experts; therefore, it is imperative that they are implemented in routine surgical practice.

  13. Thematic Repetition as Rhetorical Technique.

    ERIC Educational Resources Information Center

    Allen, Jo

    1991-01-01

    Explores William Harvey's work, "On the Motion of the Heart and Blood in Animals." Highlights Harvey's fear of publication and his strategies for reducing resistance to his ideas. Underscores his use of circular references, metaphors, and organizational techniques that enhance and demonstrate his underlying thesis. (SG)

  14. Teaching Techniques in Clinical Chemistry.

    ERIC Educational Resources Information Center

    Wilson, Diane

    This master's thesis presents several instructional methods and techniques developed for each of eleven topics or subject areas in clinical chemistry: carbohydrate metabolism, lipid metabolism, diagnostic enzymology, endocrinology, toxicology, quality control, electrolytes, acid base balance, hepatic function, nonprotein nitrogenous compounds, and…

  15. Generalized fast automatic differentiation technique

    NASA Astrophysics Data System (ADS)

    Evtushenko, Yu. G.; Zubov, V. I.

    2016-11-01

    A new efficient technique intended for the numerical solution of a broad class of optimal control problems for complicated dynamical systems described by ordinary and/or partial differential equations is investigated. In this approach, canonical formulas are derived to precisely calculate the objective function gradient for a chosen finite-dimensional approximation of the objective functional.

  16. Thumb ultrasound: Technique and pathologies

    PubMed Central

    Singh, Jatinder P; Kumar, Shwetam; Kathiria, Atman V; Harjai, Rachit; Jawed, Akram; Gupta, Vikas

    2016-01-01

    Ultrasound is ideally suited for the assessment of complex anatomy and pathologies of the thumb. Focused and dynamic thumb ultrasound can provide a rapid real-time diagnosis and can be used for guided treatment in certain clinical situations. We present a simplified approach to scanning technique for thumb-related pathologies and illustrate a spectrum of common and uncommon pathologies encountered. PMID:27857468

  17. Developments in functional neuroimaging techniques

    SciTech Connect

    Aine, C.J.

    1995-03-01

    A recent review of neuroimaging techniques indicates that new developments have primarily occurred in the area of data acquisition hardware/software technology. For example, new pulse sequences on standard clinical imagers and high-powered, rapidly oscillating magnetic field gradients used in echo planar imaging (EPI) have advanced MRI into the functional imaging arena. Significant developments in tomograph design have also been achieved for monitoring the distribution of positron-emitting radioactive tracers in the body (PET). Detector sizes, which pose a limit on spatial resolution, have become smaller (e.g., 3--5 mm wide) and a new emphasis on volumetric imaging has emerged which affords greater sensitivity for determining locations of positron annihilations and permits smaller doses to be utilized. Electromagnetic techniques have also witnessed growth in the ability to acquire data from the whole head simultaneously. EEG techniques have increased their electrode coverage (e.g., 128 channels rather than 16 or 32) and new whole-head systems are now in use for MEG. But the real challenge now is in the design and implementation of more sophisticated analyses to effectively handle the tremendous amount of physiological/anatomical data that can be acquired. Furthermore, such analyses will be necessary for integrating data across techniques in order to provide a truly comprehensive understanding of the functional organization of the human brain.

  18. Theater As A Guidance Technique

    ERIC Educational Resources Information Center

    Wolpert, William

    1973-01-01

    Guidance-drama activity provides (a) crisp definitions of selected issues; (b) potent modeling from the characters in the play, the students actively engaged in the play, and the students involved in the discussions that follow the play; and (c) a technique for peer-led discussions on sensitive issues. This article gives precise definition to the…

  19. Advanced Geophysical Environmental Simulation Techniques

    DTIC Science & Technology

    2007-11-02

    cloud property retrieval algorithms for processing of large multiple-satellite data sets; development and application of improved cloud -phase and... cloud optical property retrieval algorithms; investigation of techniques potentially applicable for retrieval of cloud spatial properties from very...14. SUBJECT TERMS cirrus cloud retrieval satellite meteorology polar-orbiting geostationary 15. NUMBER OF PAGES 16. PRICE CODE 17. SECURITY

  20. Time domain period determination techniques

    NASA Technical Reports Server (NTRS)

    Stellingwerf, R. F.

    1980-01-01

    Two simple period determination schemes are discussed. They are well suited to problems involving non-sinusoidal periodic phenomena sampled at a few irregularly spaced points. Statistical properties are discussed. The techniques are applied to the double mode Cepheids BK Cen and TU Cas as test cases.

  1. Low background techniques in CANDLES

    SciTech Connect

    Nakajima, K. E-mail: nkyohei@u-fukui.ac.jp; Iida, T.; Matsuoka, K.; Nomachi, M.; Umehara, S.; Kishimoto, T.; Chan, W. M.; Kakubata, H.; Li, X.; Maeda, T.; Ohata, T.; Temuge, B.; Tetsuno, K.; Trang, V. T. T.; Uehara, T.; Yoshida, S.; Morishita, K.; Ogawa, I.; Sakamoto, K.; Tamagawa, Y.; and others

    2015-08-17

    CANDLES is a double beta decay experiment using {sup 48}Ca in CaF{sub 2} crystals. The measurement is being performed with prototype detector (CANDLES III) for high sensitive measurement in the future. Recent status of detector improvements and background reduction techniques are described in this paper.

  2. Computerized Proof Techniques for Undergraduates

    ERIC Educational Resources Information Center

    Smith, Christopher J.; Tefera, Akalu; Zeleke, Aklilu

    2012-01-01

    The use of computer algebra systems such as Maple and Mathematica is becoming increasingly important and widespread in mathematics learning, teaching and research. In this article, we present computerized proof techniques of Gosper, Wilf-Zeilberger and Zeilberger that can be used for enhancing the teaching and learning of topics in discrete…

  3. Digital synchronization and communication techniques

    NASA Technical Reports Server (NTRS)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  4. Techniques of Assessing Mental Effort.

    ERIC Educational Resources Information Center

    Cennamo, Katherine S.

    The search for techniques to increase the effort that learners invest in video-based instruction has been hindered by the limitations of the instruments used to assess the construct of mental effort. Several researchers have noted the confusion of terms in the field that refer to the cognitive resources devoted to processing the stimulus. In this…

  5. Compendium on Risk Analysis Techniques

    DTIC Science & Technology

    The evolution of risk analysis in the materiel acquisition process is traced from the Secretary Packard memorandum to current AMC guidance. Risk ... analysis is defined and many of the existing techniques are described in light of this definition and their specific role in program management and

  6. Optical multiple object tracking techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-02-01

    Two multichannel multiple-object tracking techniques are reviewed. In the diffraction grating technique, the input scene is picked up by a TV camera and imaged onto a liquid-crystal light valve (LCLV), and the output side of the light valve is illuminated with a suitably polarized and collimated coherent laser beam to yield a reflected beam with polarization modulated according to the intensity of the incoherent input. This reflected beam passes through a beam splitter cube and an analyzer, resulting in an intensity modulated coherent image. An array of spectrum islands containing the information of the input appears after crossing a contact screen/lens combination. In the multiple-focus hololens technique, the scene of moving objects is sent into the LCTVSLM through a camera; a collimated laser beam is incident upon the LCTV screen; a low-pass filter is inserted between the LCTVSLM and the hololens for the removal of the high order diffractions due to the grid structure of the LCTV. The feasibility of the LCTVSLM and multiple-focus hololens technique is demonstrated.

  7. Optical multiple object tracking techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    Two multichannel multiple-object tracking techniques are reviewed. In the diffraction grating technique, the input scene is picked up by a TV camera and imaged onto a liquid-crystal light valve (LCLV), and the output side of the light valve is illuminated with a suitably polarized and collimated coherent laser beam to yield a reflected beam with polarization modulated according to the intensity of the incoherent input. This reflected beam passes through a beam splitter cube and an analyzer, resulting in an intensity modulated coherent image. An array of spectrum islands containing the information of the input appears after crossing a contact screen/lens combination. In the multiple-focus hololens technique, the scene of moving objects is sent into the LCTVSLM through a camera; a collimated laser beam is incident upon the LCTV screen; a low-pass filter is inserted between the LCTVSLM and the hololens for the removal of the high order diffractions due to the grid structure of the LCTV. The feasibility of the LCTVSLM and multiple-focus hololens technique is demonstrated.

  8. Colonoscopic polypectomy and associated techniques

    PubMed Central

    Fyock, Christopher J; Draganov, Peter V

    2010-01-01

    Polypectomy of colonic polyps has been shown to reduce the risk of colon cancer development and is considered a fundamental skill for all endoscopists who perform colonoscopy. A variety of polypectomy techniques and devices are available, and their use can vary greatly based on local availability and preferences. In general, cold forceps and cold snare have been the polypectomy methods of choice for smaller polyps, and hot snare has been the method of choice for larger polyps. The use of hot forceps has mostly fallen out of favor. Polypectomy for difficult to remove polyps may require the use of special devices and advanced techniques and has continued to evolve. As a result, the vast majority of polyps today can be removed endoscopically. Since electrocautery is frequently used for polypectomy, endoscopists should be thoroughly familiar with the basic principles of electrosurgery as it pertains to polypectomy. Tattooing of a polypectomy site is an important adjunct to polypectomy and can greatly facilitate future surgery or endoscopic surveillance. The two most common post-polypectomy complications are bleeding and perforation. Their incidence can be decreased with the use of meticulous polypectomy techniques and the application of some prophylactic maneuvers. This review will examine the technique of polypectomy and its complications from the perspective of the practicing gastroenterologist. PMID:20677334

  9. New Techniques for Particle Acclerators

    SciTech Connect

    Sessler, Andrew M.

    1990-06-01

    A review is presented of the new techniques which have been proposed for use in particle accelerators. Attention is focused upon those areas where significant progress has been made in the last two years--in particular, upon two-beam accelerators, wakefield accelerators, and plasma focusers.

  10. Diagnostic cardiology: Noninvasive imaging techniques

    SciTech Connect

    Come, P.C.

    1985-01-01

    This book contains 23 chapters. Some of the chapter titles are: The chest x-ray and cardiac series; Computed tomographic scanning of the heart, coronary arteries, and great vessels; Digital subtraction angiography in the assessment of cardiovascular disease; Magnetic resonance: technique and cardiac applications; Basics of radiation physics and instrumentation; and Nuclear imaging: the assessment of cardiac performance.

  11. Uranium Detection - Technique Validation Report

    SciTech Connect

    Colletti, Lisa Michelle; Garduno, Katherine; Lujan, Elmer J.; Mechler-Hickson, Alexandra Marie; May, Iain; Reilly, Sean Douglas

    2016-04-14

    As a LANL activity for DOE/NNSA in support of SHINE Medical Technologies™ ‘Accelerator Technology’ we have been investigating the application of UV-vis spectroscopy for uranium analysis in solution. While the technique has been developed specifically for sulfate solutions, the proposed SHINE target solutions, it can be adapted to a range of different solution matrixes. The FY15 work scope incorporated technical development that would improve accuracy, specificity, linearity & range, precision & ruggedness, and comparative analysis. Significant progress was achieved throughout FY 15 addressing these technical challenges, as is summarized in this report. In addition, comparative analysis of unknown samples using the Davies-Gray titration technique highlighted the importance of controlling temperature during analysis (impacting both technique accuracy and linearity/range). To fully understand the impact of temperature, additional experimentation and data analyses were performed during FY16. The results from this FY15/FY16 work were presented in a detailed presentation, LA-UR-16-21310, and an update of this presentation is included with this short report summarizing the key findings. The technique is based on analysis of the most intense U(VI) absorbance band in the visible region of the uranium spectra in 1 M H2SO4, at λmax = 419.5 nm.

  12. Brain Friendly Techniques: Mind Mapping

    ERIC Educational Resources Information Center

    Goldberg, Cristine

    2004-01-01

    Mind Mapping can be called the Swiss Army Knife for the brain, a total visual thinking tool or a multi-handed thought catcher. Invented by Tony Buzan in the early 1970s and used by millions around the world, it is a method that can be a part of a techniques repertoire when teaching information literacy, planning, presenting, thinking, and so…

  13. Microprocessor Simulation: A Training Technique.

    ERIC Educational Resources Information Center

    Oscarson, David J.

    1982-01-01

    Describes the design and application of a microprocessor simulation using BASIC for formal training of technicians and managers and as a management tool. Illustrates the utility of the modular approach for the instruction and practice of decision-making techniques. (SK)

  14. Progress in Exosome Isolation Techniques

    PubMed Central

    Li, Pin; Kaslan, Melisa; Lee, Sze Han; Yao, Justin; Gao, Zhiqiang

    2017-01-01

    Exosomes are one type of membrane vesicles secreted into extracellular space by most types of cells. In addition to performing many biological functions particularly in cell-cell communication, cumulative evidence has suggested that several biological entities in exosomes like proteins and microRNAs are closely associated with the pathogenesis of most human malignancies and they may serve as invaluable biomarkers for disease diagnosis, prognosis, and therapy. This provides a commanding impetus and growing demands for simple, efficient, and affordable techniques to isolate exosomes. Capitalizing on the physicochemical and biochemical properties of exosomes, a number of techniques have been developed for the isolation of exosomes. This article summarizes the advances in exosome isolation techniques with an emphasis on their isolation mechanism, performance, challenges, and prospects. We hope that this article will provide an overview of exosome isolation techniques, opening up new perspectives towards the development more innovative strategies and devices for more time saving, cost effective, and efficient isolations of exosomes from a wide range of biological matrices. PMID:28255367

  15. Optical interconnection techniques for Hypercube

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Bergman, L. A.; Wu, W. H.

    1988-01-01

    Direct free-space optical interconnection techniques are described for the Hypercube concurrent processor machine using a holographic optical element. Computational requirements and optical constraints on implementation are briefly summarized with regard to topology, power consumption, and available technologies. A hybrid lens/HOE approach is described that can support an eight-dimensional cube of 256 nodes.

  16. Individualized Instruction Using Computer Techniques

    ERIC Educational Resources Information Center

    Castleberry, S.; Lagowski, J. J.

    1970-01-01

    Explains how computer-based instructional techniques are being used to individualize general chemistry instruction. After describing the computer equipment and language used, author describes simulated experiments and computer programmed drill exercises. Outlines fifteen topics programmed for instruction. Comparisons were made between experimental…

  17. Biopsy techniques for intraocular tumors

    PubMed Central

    Rishi, Pukhraj; Dhami, Abhinav; Biswas, Jyotirmay

    2016-01-01

    Biopsy involves the surgical removal of a tissue specimen for histopathologic evaluation. Most intraocular tumors are reliably diagnosed based on the clinical evaluation or with noninvasive diagnostic techniques. However, accurately diagnosing a small percentage of tumors can be challenging. A tissue biopsy is thus needed to establish a definitive diagnosis and plan the requisite treatment. From fine-needle aspiration biopsy (FNAB) to surgical excision, all tissue collection techniques have been studied in the literature. Each technique has its indications and limitations. FNAB has been reported to provide for 88–95% reliable and safe ophthalmic tumor diagnosis and has gained popularity for prognostic purposes and providing eye conserving treatment surgeries. The technique and instrumentation for biopsy vary depending upon the tissue involved (retina, choroid, subretinal space, vitreous, and aqueous), suspected diagnosis, size, location, associated retinal detachment, and clarity of the media. The cytopathologist confers a very important role in diagnosis and their assistance plays a key role in managing and planning the treatment for malignancies. PMID:27488148

  18. Techniques for Use in Intervention.

    ERIC Educational Resources Information Center

    Thorne, Daniel R.

    1983-01-01

    Discusses an intervention technique that can be used in working with alcoholics and drug abusers who deny the need for help. The intervention focuses on the family, providing them with drug education and improved communication skills. Defusion, reframing, and positive data are used. The counselor's role is described. (JAC)

  19. Spatial interpolation techniques using R

    EPA Science Inventory

    Interpolation techniques are used to predict the cell values of a raster based on sample data points. For example, interpolation can be used to predict the distribution of sediment particle size throughout an estuary based on discrete sediment samples. We demonstrate some inter...

  20. Objective techniques for psychological assessment

    NASA Technical Reports Server (NTRS)

    Wortz, E.; Hendrickson, W.; Ross, T.

    1973-01-01

    A literature review and a pilot study are used to develop psychological assessment techniques for determining objectively the major aspects of the psychological state of an astronaut. Relationships between various performance and psychophysiological variables and between those aspects of attention necessary to engage successfully in various functions are considered in developing a paradigm to be used for collecting data in manned isolation chamber experiments.

  1. Identifying Major Techniques of Persuasion.

    ERIC Educational Resources Information Center

    Makosky, Vivian Parker

    1985-01-01

    The purpose of this class exercise is to increase undergraduate psychology students' awareness of common persuasion techniques used in advertising, including the appeal to or creation of needs, social and prestige suggestion, and the use of emotionally loaded words and images. Television commercials and magazine advertisements are used as…

  2. Techniques in Advanced Language Teaching.

    ERIC Educational Resources Information Center

    Ager, D. E.

    1967-01-01

    For ease of presentation, advanced grammar teaching techniques are briefly considered under the headings of structuralism (belief in the effectiveness of presenting grammar rules) and contextualism (belief in the maximum use by students of what they know in the target language). The structuralist's problem of establishing a syllabus is discussed…

  3. Radioactive-gas separation technique

    NASA Technical Reports Server (NTRS)

    Haney, R.; King, K. J.; Nellis, D. O.; Nisson, R. S.; Robling, P.; Womack, W.

    1977-01-01

    Cryogenic technique recovers gases inexpensively. Method uses differences in vapor pressures, melting points, and boiling points of components in gaseous mixture. Series of temperature and pressure variations converts gases independently to solid and liquid states, thereby simplifying separation. Apparatus uses readily available cryogen and does not require expensive refrigeration equipment.

  4. Bipulsating Technique for Silicon Production

    NASA Technical Reports Server (NTRS)

    Sanjurjo, A.

    1982-01-01

    Method controls reaction temperature and rate of reaction of sodium and silicon tetrafluoride by alternately adding measured amounts of reactants. Technique used in large reactor, where heat dissipation becomes serious problem, to control reactor temperatures. Highly efficient method, which would utilize almost 100 percent of raw materials.

  5. Time domain period determination techniques

    NASA Astrophysics Data System (ADS)

    Stellingwerf, R. F.

    1980-05-01

    Two simple period determination schemes are discussed. They are well suited to problems involving non-sinusoidal periodic phenomena sampled at a few irregularly spaced points. Statistical properties are discussed. The techniques are applied to the double mode Cepheids BK Cen and TU Cas as test cases.

  6. Application of chlorine-36 technique in determining the age of modern groundwater in the Al-Zulfi province, Saudi Arabia.

    PubMed

    Challan, Mohsen B

    2016-06-01

    The present study aims to estimate the residence time of groundwater based on bomb-produced (36)Cl. (36)Cl/Cl ratios in the water samples are determined by inductively coupled plasma mass spectrometry and liquid scintillation counting. (36)Cl/Cl ratios in the groundwater were estimated to be 1.0-2.0 × 10(-12). Estimates of residence time were obtained by comparing the measured bomb-derived (36)Cl concentrations in groundwater with the background reference. Dating based on a (36)Cl bomb pulse may be more reliable and sensitive for groundwater recharged before 1975, back as far as the mid-1950s. The above (36)Cl background concentration was deduced by determining the background-corrected Dye-3 ice core data from the frozen Arctic data, according to the estimated total (36)Cl resources. The residence time of 7.81 × 10(4) y is obtained from extrapolated groundwater flow velocity. (36)Cl concentration in groundwater does not reflect the input of bomb pulse (36)Cl, and it belongs to the era before 1950.

  7. Quantitative Techniques in Volumetric Analysis

    NASA Astrophysics Data System (ADS)

    Zimmerman, John; Jacobsen, Jerrold J.

    1996-12-01

    Quantitative Techniques in Volumetric Analysis is a visual library of techniques used in making volumetric measurements. This 40-minute VHS videotape is designed as a resource for introducing students to proper volumetric methods and procedures. The entire tape, or relevant segments of the tape, can also be used to review procedures used in subsequent experiments that rely on the traditional art of quantitative analysis laboratory practice. The techniques included are: Quantitative transfer of a solid with a weighing spoon Quantitative transfer of a solid with a finger held weighing bottle Quantitative transfer of a solid with a paper strap held bottle Quantitative transfer of a solid with a spatula Examples of common quantitative weighing errors Quantitative transfer of a solid from dish to beaker to volumetric flask Quantitative transfer of a solid from dish to volumetric flask Volumetric transfer pipet A complete acid-base titration Hand technique variations The conventional view of contemporary quantitative chemical measurement tends to focus on instrumental systems, computers, and robotics. In this view, the analyst is relegated to placing standards and samples on a tray. A robotic arm delivers a sample to the analysis center, while a computer controls the analysis conditions and records the results. In spite of this, it is rare to find an analysis process that does not rely on some aspect of more traditional quantitative analysis techniques, such as careful dilution to the mark of a volumetric flask. Figure 2. Transfer of a solid with a spatula. Clearly, errors in a classical step will affect the quality of the final analysis. Because of this, it is still important for students to master the key elements of the traditional art of quantitative chemical analysis laboratory practice. Some aspects of chemical analysis, like careful rinsing to insure quantitative transfer, are often an automated part of an instrumental process that must be understood by the

  8. Cerebrovascular hemodynamics during pranayama techniques

    PubMed Central

    Nivethitha, L.; Mooventhan, A.; Manjunath, N. K.; Bathala, Lokesh; Sharma, Vijay K.

    2017-01-01

    Background: Pranayama techniques are known to produce variable physiological effects on the body. We evaluated the effect of the two commonly practiced Pranayama techniques on cerebral hemodynamics. Materials and Methods: Fifteen healthy male volunteers, trained in Yoga and Pranayama, were included in the study. Mean age was 24 years (range 22–32 years). Study participants performed 2 Pranayamas in 2 different orders. Order 1 (n = 7) performed Bhastrika (bellows breaths) followed by Kumbhaka (breath retention) while order 2 (n = 8) performed Kumbhaka followed by Bhastrika. Both breathing techniques were performed for 1 min each. Continuous transcranial Doppler (TCD) monitoring was performed during the breathing techniques. TCD parameters that were recorded included peak systolic velocity (PSV), end-diastolic velocity (EDV), mean flow velocity (MFV), and pulsatility index (PI) of the right middle cerebral artery at baseline, 15, 30, 45, and 60 s. Results: Significant reductions in EDV (3.67 ± 6.48; P < 0.001) and MFV (22.00 ± 7.30; P < 0.001) with a significant increase in PI (2.43 ± 0.76; P < 0.001) were observed during Bhastrika. On the contrary, a significant increase in PSV (65.27 ± 13.75; P < 0.001), EDV (28.67 ± 12.03; P < 0.001), and MFV (43.67 ± 12.85; P < 0.001) with a significant reduction in PI (0.89 ± 0.28; P < 0.01) was observed only during Kumbhaka. Conclusion: Bhastrika and Kumbhaka practices of Pranayama produce considerable and opposing effects on cerebral hemodynamic parameters. Our findings may play a potential role in designing the Pranayama techniques according to patients’ requirements. PMID:28149083

  9. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  10. The Use of Expressive Techniques in Counseling

    ERIC Educational Resources Information Center

    Bradley, Loretta J.; Whiting, Peggy; Hendricks, Bret; Parr, Gerald; Jones, Eugene Gordon, Jr.

    2008-01-01

    This manuscript explores and identifies the use of expressive techniques in counseling. Although verbal techniques are important, sometimes the best of verbal techniques are not sufficient. Creative, expressive techniques can add a new, important dimension to counseling. Such expressive techniques as cinema, art, and music are described to help…

  11. Occupational ingestion of P-32: the value of monitoring techniques to determine dose. A case report.

    PubMed

    McCunney, R J; Masse, F; Galanek, M

    1999-10-01

    The purpose of this article is to described the analytical methods used to assess the internal dose from a P-32-labeled compound that was inadvertently ingested. Bioassay data, using the International Commission on Radiation Protection (ICRP)-30 model, enabled the calculation of internal dose. Whole body counting (WBC) and urinary measurement with liquid scintillation counting were utilized to estimate the amount of radioactive material deposited in body organs. This metabolic model assumes that 80% of the material ingested is absorbed through the gastrointestinal tract because P-32 is soluble. The time of the intake, a critical variable in this method, was estimated on the basis of urine contamination of clothing. Twenty-four-hour urine sampling over a 6-week period, coupled with daily WBC over the same period, was performed. Because P-32 does not emit photons, WBC relied on measuring the bremsstrahlung radiation produced as a result of interaction of beta radiation with the body's tissues. A P-32-spiked phantom was used as a control. Over the 6-week monitoring period, urinary results indicated an ingestion of 560 microCi of P-32, whereas WBC estimated on intake of 580 microCi. An assessment of the laboratory where the accident occurred indicated that approximately 600 microCi of radioactive phosphorous was missing. The total effective dose equivalent was estimated at 4.8 rem (48 mSv). On the basis of this study, the ICRP model appears to fit the data obtained from urine measurements and WBC. No symptoms were noted from the ingestion of 580 microCi. The committed organ doses were well within the occupational nonstochastic limits of 50 (0.5 Sv) permitted by the Nuclear Regulatory Commission. These results were confirmed by NUREG/CR-4884 and commercial software (CINDY). This report confirms the value of using the ICRP-30 model with urinary measurements and WBC to estimate the dose received as a result of ingestion of radioactive P-32.

  12. Techniques for Quantifying Phytoplankton Biodiversity

    NASA Astrophysics Data System (ADS)

    Johnson, Zackary I.; Martiny, Adam C.

    2015-01-01

    The biodiversity of phytoplankton is a core measurement of the state and activity of marine ecosystems. In the context of historical approaches, we review recent major advances in the technologies that have enabled deeper characterization of the biodiversity of phytoplankton. In particular, high-throughput sequencing of single loci/genes, genomes, and communities (metagenomics) has revealed exceptional phylogenetic and genomic diversity whose breadth is not fully constrained. Other molecular tools—such as fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization—have provided additional insight into the dynamics of this diversity in the context of environmental variability. Techniques for characterizing the functional diversity of community structure through targeted or untargeted approaches based on RNA or protein have also greatly advanced. A wide range of techniques is now available for characterizing phytoplankton communities, and these tools will continue to advance through ongoing improvements in both technology and data interpretation.

  13. Techniques for quantifying phytoplankton biodiversity.

    PubMed

    Johnson, Zackary I; Martiny, Adam C

    2015-01-01

    The biodiversity of phytoplankton is a core measurement of the state and activity of marine ecosystems. In the context of historical approaches, we review recent major advances in the technologies that have enabled deeper characterization of the biodiversity of phytoplankton. In particular, high-throughput sequencing of single loci/genes, genomes, and communities (metagenomics) has revealed exceptional phylogenetic and genomic diversity whose breadth is not fully constrained. Other molecular tools-such as fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization-have provided additional insight into the dynamics of this diversity in the context of environmental variability. Techniques for characterizing the functional diversity of community structure through targeted or untargeted approaches based on RNA or protein have also greatly advanced. A wide range of techniques is now available for characterizing phytoplankton communities, and these tools will continue to advance through ongoing improvements in both technology and data interpretation.

  14. Historical Techniques of Lie Detection

    PubMed Central

    Vicianova, Martina

    2015-01-01

    Since time immemorial, lying has been a part of everyday life. For this reason, it has become a subject of interest in several disciplines, including psychology. The purpose of this article is to provide a general overview of the literature and thinking to date about the evolution of lie detection techniques. The first part explores ancient methods recorded circa 1000 B.C. (e.g., God’s judgment in Europe). The second part describes technical methods based on sciences such as phrenology, polygraph and graphology. This is followed by an outline of more modern-day approaches such as FACS (Facial Action Coding System), functional MRI, and Brain Fingerprinting. Finally, after the familiarization with the historical development of techniques for lie detection, we discuss the scope for new initiatives not only in the area of designing new methods, but also for the research into lie detection itself, such as its motives and regulatory issues related to deception. PMID:27247675

  15. Clear air turbulence forecasting techniques

    NASA Technical Reports Server (NTRS)

    Keller, J. L.

    1980-01-01

    A method to improve clear air turbulence (CAT) forecasting by more effectively using the currently operational rawinsonde (RW) system is discussed. The method is called the Diagnostic Richardson Number Tendency (DRT) technique. The technique does not attempt to use the RW as a direct detector of the turbulent motion or even of the CAT mechanism structure but rather senses the synoptic scale centers of action which provide the energy to the CAT mechanism at the mesoscale level. The DRT algorithm is deterministic rather than statistical in nature, using the hydrodynamic equations (equations of motion) relevant to the synoptic scale. However, interpretation, by necessity, is probabilistic. What is most important with respect to its operational implementation is that this method uses the same input data as currently used by the operational National Meteorological Center prognostic models.

  16. Techniques for integrating -omics data.

    PubMed

    Akula, Siva Prasad; Miriyala, Raghava Naidu; Thota, Hanuman; Rao, Allam Appa; Gedela, Srinubabu

    2009-01-01

    The challenge for -omics research is to tackle the problem of fragmentation of knowledge by integrating several sources of heterogeneous information into a coherent entity. It is widely recognized that successful data integration is one of the keys to improve productivity for stored data. Through proper data integration tools and algorithms, researchers may correlate relationships that enable them to make better and faster decisions. The need for data integration is essential for present -omics community, because -omics data is currently spread world wide in wide variety of formats. These formats can be integrated and migrated across platforms through different techniques and one of the important techniques often used is XML. XML is used to provide a document markup language that is easier to learn, retrieve, store and transmit. It is semantically richer than HTML. Here, we describe bio warehousing, database federation, controlled vocabularies and highlighting the XML application to store, migrate and validate -omics data.

  17. Technique and staining optimization leucoconcentration.

    PubMed

    Pierrez, J; Guerci, A; Guerci, O

    1987-09-01

    In cytometric clinical application, it is important to obtain cell suspensions rapidly with as little cytological alteration as possible. A procedure has been achieved to prepare cell suspensions for flow cytometric analysis. The leucoconcentration technique, first described by Herbeuval for cytologic analysis, has been modified to be applied in cytometry. This technique involves Saponin lysis of red cells of peripheral blood or bone marrow samples that have been previously fixed with picric acid alcohol solution. Cells in suspension are not shifted and tinctorial affinity is not modified. Then cells have been stained with Mithramycin. Each parameter defined by Crissman has been analyzed to define the best staining conditions. The availability of Leucoconcentration with Mithramycin-DNA-staining permits determination of cell cycle with a fine resolution.

  18. [Useful radiological techniques in orthodontics].

    PubMed

    Felizardo, Rufino; Thomas, Alexis; Foucart, Jean-Michel

    2012-03-01

    Specialists in dento-facial orthopedics have a large range of dental radiological techniques at their disposal to help them in their diagnostic and therapeutic procedures. Peri-apical, occlusal, panoramic, and cephalometric X-Rays are two-dimensional techniques that orthodontists can complement, if necessary, with Multi slices CT scan or Cone Beam Computed Tomography. Orthodontists must apply and respect quality criteria for each type of film in order to derive the best information from every image and to avoid producing artifacts or false images that will reduce their diagnostic value and, accordingly, the service that they render to patients. Practitioners must be willing to spend the few moments it takes to position patients correctly in the radiological apparatus instead of taking multiple views to compensate for failing to scrupulously follow protocols of radiology.

  19. A new atrial septostomy technique.

    PubMed

    Park, S C; Zuberbuhler, J R; Neches, W H; Lenox, C C; Zoltun, R A

    1975-01-01

    Balloon atrial septostomy is usually ineffective if the atrial septum is thickened. A technique for incising the atrial septum is described. A no. 6 French catheter was modified to enclose a tiny surgical blade. The distal end of the blade was pivoted to the catheter tip, and the proximal end was attached to a guide wire in the catheter lumen. Advancing the guide wire protruded the blade through a slit in the long axis of the tip of the catheter. Atrial septostomy was performed in five newborn lambs in vivo and in adult dog hearts and human hearts in vitro by advancing the catheter tip across the atrial septum with the blade retracted and withdrawing it to the right atrium with the blade extended. Eight to 12 mm lacerations of the atrial septum were produced and could be extended by subsequent balloon septostomy. The technique may be useful when balloon septostomy has been ineffective.

  20. LHC Olympics: Advanced Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Armour, Kyle; Larkoski, Andrew; Gray, Amanda; Ventura, Dan; Walsh, Jon; Schabinger, Rob

    2006-05-01

    The LHC Olympics is a series of workshop aimed at encouraging theorists and experimentalists to prepare for the soon-to-be-online Large Hadron Collider in Geneva, Switzerland. One aspect of the LHC Olympics program consists of the study of simulated data sets which represent various possible new physics signals as they would be seen in LHC detectors. Through this exercise, LHC Olympians learn the phenomenology of possible new physics models and gain experience in analyzing LHC data. Additionally, the LHC Olympics encourages discussion between theorists and experimentalists, and through this collaboration new techniques could be developed. The University of Washington LHC Olympics group consists of several first-year graduate and senior undergraduate students, in both theoretical and experimental particle physics. Presented here is a discussion of some of the more advanced techniques used and the recent results of one such LHC Olympics study.

  1. Genetics Techniques for Thermococcus kodakarensis

    PubMed Central

    Hileman, Travis H.; Santangelo, Thomas J.

    2012-01-01

    Thermococcus kodakarensis (T. kodakarensis) has emerged as a premier model system for studies of archaeal biochemistry, genetics, and hyperthermophily. This prominence is derived largely from the natural competence of T. kodakarensis and the comprehensive, rapid, and facile techniques available for manipulation of the T. kodakarensis genome. These genetic capacities are complemented by robust planktonic growth, simple selections, and screens, defined in vitro transcription and translation systems, replicative expression plasmids, in vivo reporter constructs, and an ever-expanding knowledge of the regulatory mechanisms underlying T. kodakarensis metabolism. Here we review the existing techniques for genetic and biochemical manipulation of T. kodakarensis. We also introduce a universal platform to generate the first comprehensive deletion and epitope/affinity tagged archaeal strain libraries. PMID:22701112

  2. Apoptosis Evaluation by Electrochemical Techniques.

    PubMed

    Yin, Jian; Miao, Peng

    2016-03-04

    Apoptosis has close relevance to pathology, pharmacology, and toxicology. Accurate and convenient detection of apoptosis would be beneficial for biological study, clinical diagnosis, and drug development. Based on distinct features of apoptotic cells, a diversity of analytical techniques have been exploited for sensitive analysis of apoptosis, such as surface plasmon resonance, electrochemical methods, flow cytometry, and some imaging assays. Among them, the features of simplicity, easy operation, low cost, and high sensitivity make electrochemical techniques powerful tools to investigate electron-transfer processes of in vitro biological systems. In this contribution, a general overview of current knowledge on various technical approaches for apoptosis evaluation is provided. Furthermore, recently developed electrochemical biosensors for detecting apoptotic cells and their advantages over traditional methods are summarized. One of the main considerations focuses on designing the recognition elements based on various biochemical events during apoptosis.

  3. Survey of Header Compression Techniques

    NASA Technical Reports Server (NTRS)

    Ishac, Joseph

    2001-01-01

    This report provides a summary of several different header compression techniques. The different techniques included are: (1) Van Jacobson's header compression (RFC 1144); (2) SCPS (Space Communications Protocol Standards) header compression (SCPS-TP, SCPS-NP); (3) Robust header compression (ROHC); and (4) The header compression techniques in RFC2507 and RFC2508. The methodology for compression and error correction for these schemes are described in the remainder of this document. All of the header compression schemes support compression over simplex links, provided that the end receiver has some means of sending data back to the sender. However, if that return path does not exist, then neither Van Jacobson's nor SCPS can be used, since both rely on TCP (Transmission Control Protocol). In addition, under link conditions of low delay and low error, all of the schemes perform as expected. However, based on the methodology of the schemes, each scheme is likely to behave differently as conditions degrade. Van Jacobson's header compression relies heavily on the TCP retransmission timer and would suffer an increase in loss propagation should the link possess a high delay and/or bit error rate (BER). The SCPS header compression scheme protects against high delay environments by avoiding delta encoding between packets. Thus, loss propagation is avoided. However, SCPS is still affected by an increased BER (bit-error-rate) since the lack of delta encoding results in larger header sizes. Next, the schemes found in RFC2507 and RFC2508 perform well for non-TCP connections in poor conditions. RFC2507 performance with TCP connections is improved by various techniques over Van Jacobson's, but still suffers a performance hit with poor link properties. Also, RFC2507 offers the ability to send TCP data without delta encoding, similar to what SCPS offers. ROHC is similar to the previous two schemes, but adds additional CRCs (cyclic redundancy check) into headers and improves

  4. A MEASUREMENT TECHNIQUE FOR HYDROXYACETONE.

    SciTech Connect

    KLOTZ,P.J.

    1999-10-04

    Hydroxyacetone (HA) is mainly produced in the atmosphere from oxidation of hydrocarbons of the type, CH{sub 3}(R)C=CH{sub 2}. Tuazon and Atkinson (1990) reported HA yield of 41% from the OH-initiated oxidation of methacrolein in the presence of NO{sub x}. Since methacrolein is a major product of isoprene oxidation (Carter and Atkinson, 1996), isoprene, a key biogenic hydrocarbon, is therefore expected to be an important source for HA. Consequently, knowledge of ambient concentration of HA would provide information needed to examine the applicability of isoprene reaction mechanisms developed in laboratory and to assess the contribution of isoprene to photooxidant production. The commonly used GC-FID technique involving cryo-focusing is unsuitable for HA owing to HA's thermal instability. When subjected to a temperature of 100 C for only a few seconds, HA was found to disappear completely. Since HA is highly soluble in water (it's Henry's law constant being {approx}2 x 10{sup 4} M atm{sup -1} at 20 C, Zhou and Lee, unpublished data), we developed a wet chemical technique similar in principle to the one we reported earlier (Lee and Zhou, 1993), namely, based on derivatization following liquid scrubbing. To increase the sensitivity, we adopted a fluorescence detection scheme based on o-phthaldialdehyde (OPA) chemistry. The technique was deployed in the field during two measurement periods at a NARSTO site located on Long Island (LI), New York. We report the principle and the operation of this technique and the results obtained from these field studies.

  5. Instrumental Techniques in Archeological Research

    DTIC Science & Technology

    1988-09-01

    instantaneously, and as a result archeomagnetic studies have become more numerous and effective. P. C. Hammond, " Archaeometry and Time: A Review," Journal of...Trapped Electron Dating," Journal of Geophysical Research , Vol 76 (1971), pp 7875-7887. 25 keya, M. and Miki, T., "Electron Spin Resonance Dating of...1974, " Archaeometry and Time: A Review," Journal of Field Archae- ology 1, pp 329-335. Excellent brief summary of history of technique and its

  6. Lightning Simulation Test Technique Evaluation

    DTIC Science & Technology

    1988-10-01

    Example Resistive Response Measurement 94 43 Example dI/dt Response Measurement 95 44 Statistical Distribution of Swept CW Extrapolated Values - Nose...Aircraft 2 2 Prior Research and Development Tests on Full-Scale Air Vehicles 10 3 Summary of Simulation Technique Capabilities 14 4 Test Bed Resistance ...second L Inductance henrys R Resistance ohms V Potential difference volts STANDARD UNITS A amperes dB, dBm decibels Hz hertz kA kiloamps kV kilovolts

  7. Climbing techniques for bridge inspection

    NASA Astrophysics Data System (ADS)

    Kaslan, Erol C.

    1998-03-01

    California has about 24,000 publicly owned bridges that require routine structural evaluations to comply with National Bridge Inspection Standard (NBIS) mandates. Of these, about 800 are identified as possessing fatigue prone or fracture critical details requiring thorough tactile investigations. Gaining access to bridge elements to perform these investigations has become increasingly difficult and costly. The traditional uses of under bridge inspection trucks, lift equipment and rigging are economically and practically limited by bridge size, structure type, traffic demands and support costs. In some cases, bridges that have become damaged by earthquakes cannot safely support the loads of heavy personnel lift equipment. The California Department of Transportation (Caltrans)'s Office of Structural Materials and Office of Structure Maintenance and Investigations evaluated the use of rock climbing and mountaineering techniques as an alternative means of gaining access for bridge inspections. Under a small research grant, a bridge climbing training course was developed through a local University of California outdoor recreation group and 7 engineers and technicians were initially trained. A comprehensive Code of Safe Practices was created and standards of training, procedures and equipment required for bridge inspections were established. A successful climb investigation on a large, previously inaccessible arch bridge was completed at the end of the training that proved the techniques safe, economical and effective. Within one year, 20 bridge maintenance engineers were trained, and a formal program was established to organize, schedule, equip and certify engineers and technicians for bridge climbing. Several other offices within Caltrans as well as the California Department of Water Resources have since adopted these techniques for specialized structural inspection tasks. Climbing techniques are now used routinely in California as an alterative means of gaining access

  8. Radon assay and purification techniques

    SciTech Connect

    Simgen, Hardy

    2013-08-08

    Radon is a source of background in many astroparticle physics experiments searching for rare low energy events. In this paper an overview about radon in the field is given including radon detection techniques, radon sources and material screening with respect to radon emanation. Finally, also the problem of long-lived radioactive {sup 222}Rn-daughters and the question of gas purification from radon is addressed.

  9. Research in millimeter wave techniques

    NASA Technical Reports Server (NTRS)

    Forsythe, R. E.

    1982-01-01

    Subharmonically pumped mixers were ascended and tested. A computerized version of the automatic noise figure measurement system was developed. Impedance matching techniques suitable for these types of mixers were investigated. Narrow and broadband (one octave) matching networks for the subharmonic mixers were designed. The automatic mixer noise figure test facility was completed. Subharmonic mixers and the systems that use them at 183 and 220 GHz were evaluated and characterized.

  10. Acoustic techniques in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Sinha, D.N.

    1995-07-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  11. Monolithic microcircuit techniques and processes

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1972-01-01

    Brief discussions of the techniques used to make dielectric and metal thin film depositions for monolithic circuits are presented. Silicon nitride deposition and the properties of silicon nitride films are discussed. Deposition of dichlorosilane and thermally grown silicon dioxide are reported. The deposition and thermal densification of borosilicate, aluminosilicate, and phosphosilicate glasses are discussed. Metallization for monolithic circuits and the characteristics of thin films are also included.

  12. Characterization Techniques for Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 2 http://dx.doi.org/10.1007/9getType="URL"/> 'Systems from B-Be-Fe to Co-W-Zr' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter '2 Characterization Techniques for Amorphous Alloys' with the content:

  13. Data mining and visualization techniques

    DOEpatents

    Wong, Pak Chung; Whitney, Paul; Thomas, Jim

    2004-03-23

    Disclosed are association rule identification and visualization methods, systems, and apparatus. An association rule in data mining is an implication of the form X.fwdarw.Y where X is a set of antecedent items and Y is the consequent item. A unique visualization technique that provides multiple antecedent, consequent, confidence, and support information is disclosed to facilitate better presentation of large quantities of complex association rules.

  14. Selenium incorporation using recombinant techniques.

    PubMed

    Walden, Helen

    2010-04-01

    Using selenomethionine to phase macromolecular structures is common practice in structure determination, along with the use of selenocysteine. Selenium is consequently the most commonly used heavy atom for MAD. In addition to the well established recombinant techniques for the incorporation of selenium in prokaryal expression systems, there have been recent advances in selenium labelling in eukaryal expression, which will be discussed. Tips and things to consider for the purification and crystallization of seleno-labelled proteins are also included.

  15. Surface Characterization Techniques: An Overview

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2002-01-01

    To understand the benefits that surface modifications provide, and ultimately to devise better ones, it is necessary to study the physical, mechanical, and chemical changes they cause. This chapter surveys classical and leading-edge developments in surface structure and property characterization methodologies. The primary emphases are on the use of these techniques as they relate to surface modifications, thin films and coatings, and tribological engineering surfaces and on the implications rather than the instrumentation.

  16. Fluid Manipulation Utilizing Electrowetting Techniques

    NASA Astrophysics Data System (ADS)

    Kaiser, Laura; Pyrak-Nolte, Laura

    2014-03-01

    The fraction of the pore space in rock occupied by a given fluid is called saturation. The relationship between saturation and capillary pressure for porous media is hysteretic between imbibition and drainage cycles. If the wetting phase saturation increases, the capillary pressure follows an imbibition curve, and, if the wetting phase saturation decreases, the capillary pressure follows the drainage curve. Due to this hysteresis, researchers have suggested that there is a third variable that should be considered called interfacial area per volume that removes the ambiguity in the capillary pressure - saturation relationship. Before the relationship can be explored in more detail, we first must be able to manipulate the saturation internally rather than externally. We used electrowetting techniques to manipulate the contact angle of a salt water drop. This technique affects the interfacial energy and, therefore, enables manipulation of the contact angles and saturation. Once mastered, the technique could be used to explore the effect of interfacial area per volume on micromodel systems. NSF REU

  17. NASA standard: Trend analysis techniques

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This Standard presents descriptive and analytical techniques for NASA trend analysis applications. Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, developmental/operational programs. Use of this Standard is not mandatory; however, it should be consulted for any data analysis activity requiring the identification or interpretation of trends. Trend Analysis is neither a precise term nor a circumscribed methodology, but rather connotes, generally, quantitative analysis of time-series data. For NASA activities, the appropriate and applicable techniques include descriptive and graphical statistics, and the fitting or modeling of data by linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would only rarely apply and are not included in this Standard. The document presents the basic ideas needed for qualitative and quantitative assessment of trends, together with relevant examples. A list of references provides additional sources of information.

  18. Layout techniques for integrated circuits

    SciTech Connect

    Tsay, C.Y.

    1986-01-01

    Several techniques are presented for solving circuit-layout problems. In particular, a channel-placement algorithm is first introduced to reduce the channel density (d) so that a channel router can complete the routing requirements in fewer tracks. A 4-layer channel-routing model is then formulated so that a general channel routing problem (CRP) with cyclic conflicts and long critical paths can be completed with d/2. Finally, the 4-layer, 2-dimensional switchbox routing problem needed to enhance the channel routing in general circuit layout is investigated from the graph-theoretical viewpoint. The channel-placement technique consists of two phases. Using the principle of decomposition, the initial placement phase effectively reduces the complexity of the problem and, therefore, improves the efficiency of the second phase, which is called the iterative improvement placement. The main feature of this phase is its hill-climbing ability to avoid being trapped at local minima. The combination of these two phases leads to an efficient technique for standard cell placement. To utilize multi-layer technology, a new 4-layer channel routing model is introduced to minimize the channel width of more-generalized CRP's. The 2-dimensional switchbox routing problem is transformed to an equivalent graph-theoretical problem.

  19. Simultaneous multislice (SMS) imaging techniques

    PubMed Central

    Barth, Markus; Breuer, Felix; Koopmans, Peter J.; Poser, Benedikt A.

    2015-01-01

    Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in‐plane parallel imaging this can have only a marginal intrinsic signal‐to‐noise ratio penalty, and the full acceleration is attainable at fixed echo time, as is required for many echo planar imaging applications. Furthermore, for some implementations SMS techniques can reduce radiofrequency (RF) power deposition. In this review the current state of the art of SMS imaging is presented. In the Introduction, a historical overview is given of the history of SMS excitation in MRI. The following section on RF pulses gives both the theoretical background and practical application. The section on encoding and reconstruction shows how the collapsed multislice images can be disentangled by means of the transmitter pulse phase, gradient pulses, and most importantly using multichannel receiver coils. The relationship between classic parallel imaging techniques and SMS reconstruction methods is explored. The subsequent section describes the practical implementation, including the acquisition of reference data, and slice cross‐talk. Published applications of SMS imaging are then reviewed, and the article concludes with an outlook and perspective of SMS imaging. Magn Reson Med 75:63–81, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:26308571

  20. Imaging techniques for myocardial inflammation

    SciTech Connect

    O'Connell, J.B.; Henkin, R.E.; Robinson, J.A.

    1986-03-01

    Dilated cardiomyopathy (DC) represents a heterogeneous group of disorders which results in morbidity and mortality in young individuals. Recent evidence suggests that a subset of these patients have histologic evidence of myocarditis which is potentially treatable with immunosuppression. The identification of myocardial inflammation may therefore lead to development of therapeutic regimens designed to treat the cause rather than the effect of the myocardial disease. Ultimately, this may result in improvement in the abysmal prognosis of DC. The currently accepted technique for identification of active myocardial inflammation is endomyocardial biopsy. This technique is not perfect, however, since pathologic standards for the diagnosis of myocarditis have not been established. Furthermore, focal inflammation may give rise to sampling error. The inflammation-avid radioisotope gallium-67 citrate has been used as an adjunct to biopsy improving the yield of myocarditis from 7 percent to 36 percent. Serial imaging correlates well to biopsy results. Future studies are designed to study the applicability of lymphocyte labelling techniques to myocardial inflammatory disease.