Sample records for lisa interferometry simulator

  1. Status of the LISA On Table experiment: a electro-optical simulator for LISA

    NASA Astrophysics Data System (ADS)

    Laporte, M.; Halloin, H.; Bréelle, E.; Buy, C.; Grüning, P.; Prat, P.

    2017-05-01

    The LISA project is a space mission that aim at detecting gravitational waves in space. An electro-optical simulator called LISA On Table (LOT) is being developed at APC in order to test noise reduction techniques (such as Timed Delayed Interferometry) and instruments that will be used. This document presents its latest results: TimeDelayed Interferometry of 1st generation works in the case of a simulated white noise with static, unequal arms. Future and ongoing developments of the experiment are also addressed.

  2. Numerical simulation of time delay Interferometry for LISA with one arm dysfunctional

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou; Dhurandhar, Sanjeev V.; Nayak, K. Rajesh; Wang, Gang

    In order to attain the requisite sensitivity for LISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In a previous paper(a), we have found an infinite family of second generation analytic solutions of time delay interferometry and estimated the laser noise due to residual time delay semi-analytically from orbit perturbations due to earth. Since other planets and solar-system bodies also perturb the orbits of LISA spacecraft and affect the time delay interferometry, we simulate the time delay numerically in this paper. To conform to the actual LISA planning, we have worked out a set of 10-year optimized mission orbits of LISA spacecraft using CGC3 ephemeris framework(b). Here we use this numerical solution to calculate the residual errors in the second generation solutions upto n 3 of our previous paper, and compare with the semi-analytic error estimate. The accuracy of this calculation is better than 1 m (or 30 ns). (a) S. V. Dhurandhar, K. Rajesh Nayak and J.-Y. Vinet, time delay Interferometry for LISA with one arm dysfunctional (b) W.-T. Ni and G. Wang, Orbit optimization for 10-year LISA mission orbit starting at 21 June, 2021 using CGC3 ephemeris framework

  3. The LISA benchtop simulator at the University of Florida

    NASA Astrophysics Data System (ADS)

    Thorpe, James; Cruz, Rachel; Guntaka, Sridhar; Mueller, Guido

    2006-11-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA-ESA mission to detect gravitational radiation in space. The detector is designed to see gravitational waves from various exciting sources in the frequency range of 3x10-5 to 1 Hz. LISA consists of three spacecraft forming a triangle with 5x10^9 m long arms. The spacecraft house proof masses and act to shield the proof masses from external forces so that they act as freely-falling test particles of the gravitational radiation. Laser interferometry is used to monitor the distance between proof masses on different spacecraft and will be designed to see variations on the order of 10 pm. Pre-stabilization, arm-locking, and time delay interferometry (TDI) will be employed to meet this sensitivity. At the University of Florida, we are developing an experimental LISA simulator to test aspects of LISA interferometry. The foundation of the simulator is a pair of cavity-stabilized lasers that provide realistic, LISA-like phase noise for our measurements. The light travel time between spacecraft is recreated in the lab by use of an electronic phase delay technique. Initial tests of the simulator have focused on phasemeter implementation, first-generation TDI, and arm-locking. We will present results from these experiments as well as discuss current and future upgrades in the effort to make the LISA simulator as realistic as possible.

  4. Hardware Verification of Laser Noise Cancellation and Gravitational Wave Extraction using Time-Delay Interferometry

    NASA Astrophysics Data System (ADS)

    Mitryk, Shawn; Mueller, Guido

    The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.

  5. Numerical simulation of time delay interferometry for a LISA-like mission with the simplification of having only one interferometer

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.; Ni, W.-T.; Wang, G.

    2013-01-01

    In order to attain the requisite sensitivity for LISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In a previous paper (Dhurandhar, S.V., Nayak, K.R., Vinet, J.-Y. Time delay interferometry for LISA with one arm dysfunctional. Class. Quantum Grav. 27, 135013, 2010), we have found a large family of second-generation analytic solutions of time delay interferometry with one arm dysfunctional, and we also estimated the laser noise due to residual time-delay semi-analytically from orbit perturbations due to Earth. Since other planets and solar-system bodies also perturb the orbits of LISA spacecraft and affect the time delay interferometry (TDI), we simulate the time delay numerically in this paper for all solutions with the generation number n ⩽ 3. We have worked out a set of 3-year optimized mission orbits of LISA spacecraft starting at January 1, 2021 using the CGC2.7 ephemeris framework. We then use this numerical solution to calculate the residual optical path differences in the second-generation solutions of our previous paper, and compare with the semi-analytic error estimate. The accuracy of this calculation is better than 1 cm (or 30 ps). The maximum path length difference, for all configuration calculated, is below 1 m (3 ns). This is well below the limit under which the laser frequency noise is required to be suppressed. The numerical simulation in this paper can be applied to other space-borne interferometers for gravitational wave detection with the simplification of having only one interferometer.

  6. LISA Long-Arm Interferometry

    NASA Technical Reports Server (NTRS)

    Thorpe, James I.

    2009-01-01

    An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallisneri, Michele

    We report on three numerical experiments on the implementation of Time-Delay Interferometry (TDI) for LISA, performed with Synthetic LISA, a C++/Python package that we developed to simulate the LISA science process at the level of scientific and technical requirements. Specifically, we study the laser-noise residuals left by first-generation TDI when the LISA armlengths have a realistic time dependence; we characterize the armlength-measurement accuracies that are needed to have effective laser-noise cancellation in both first- and second-generation TDI; and we estimate the quantization and telemetry bitdepth needed for the phase measurements. Synthetic LISA generates synthetic time series of the LISA fundamentalmore » noises, as filtered through all the TDI observables; it also provides a streamlined module to compute the TDI responses to gravitational waves according to a full model of TDI, including the motion of the LISA array and the temporal and directional dependence of the armlengths. We discuss the theoretical model that underlies the simulation, its implementation, and its use in future investigations on system-characterization and data-analysis prototyping for LISA.« less

  8. Simulating Responses of Gravitational-Wave Instrumentation

    NASA Technical Reports Server (NTRS)

    Armstrong, John; Edlund, Jeffrey; Vallisneri. Michele

    2006-01-01

    Synthetic LISA is a computer program for simulating the responses of the instrumentation of the NASA/ESA Laser Interferometer Space Antenna (LISA) mission, the purpose of which is to detect and study gravitational waves. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the time-delay-interferometry (TDI) observables. (TDI is a method of canceling phase noise in temporally varying unequal-arm interferometers.) Synthetic LISA provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI (including the motion of the LISA array and the temporal and directional dependence of the arm lengths). Synthetic LISA is written in the C++ programming language as a modular package that accommodates the addition of code for specific gravitational wave sources or for new noise models. In addition, time series for waves and noises can be easily loaded from disk storage or electronic memory. The package includes a Python-language interface for easy, interactive steering and scripting. Through Python, Synthetic LISA can read and write data files in Flexible Image Transport System (FITS), which is a commonly used astronomical data format.

  9. Tone-assisted time delay interferometry on GRACE Follow-On

    NASA Astrophysics Data System (ADS)

    Francis, Samuel P.; Shaddock, Daniel A.; Sutton, Andrew J.; de Vine, Glenn; Ware, Brent; Spero, Robert E.; Klipstein, William M.; McKenzie, Kirk

    2015-07-01

    We have demonstrated the viability of using the Laser Ranging Interferometer on the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) space mission to test key aspects of the interspacecraft interferometry proposed for detecting gravitational waves. The Laser Ranging Interferometer on GRACE-FO will be the first demonstration of interspacecraft interferometry. GRACE-FO shares many similarities with proposed space-based gravitational wave detectors based on the Laser Interferometer Space Antenna (LISA) concept. Given these similarities, GRACE-FO provides a unique opportunity to test novel interspacecraft interferometry techniques that a LISA-like mission will use. The LISA Experience from GRACE-FO Optical Payload (LEGOP) is a project developing tests of arm locking and time delay interferometry (TDI), two frequency stabilization techniques, that could be performed on GRACE-FO. In the proposed LEGOP TDI demonstration one GRACE-FO spacecraft will have a free-running laser while the laser on the other spacecraft will be locked to a cavity. It is proposed that two one-way interspacecraft phase measurements will be combined with an appropriate delay in order to produce a round-trip, dual one-way ranging (DOWR) measurement independent of the frequency noise of the free-running laser. This paper describes simulated and experimental tests of a tone-assisted TDI ranging (TDIR) technique that uses a least-squares fitting algorithm and fractional-delay interpolation to find and implement the delays needed to form the DOWR TDI combination. The simulation verifies tone-assisted TDIR works under GRACE-FO conditions. Using simulated GRACE-FO signals the tone-assisted TDIR algorithm estimates the time-varying interspacecraft range with a rms error of ±0.2 m , suppressing the free-running laser frequency noise by 8 orders of magnitude. The experimental results demonstrate the practicability of the technique, measuring the delay at the 6 ns level in the presence of a significant displacement signal.

  10. Simulating laser interferometers for missions such as (E)Lisa, Lisa pathfinder and Grace follow-on

    NASA Astrophysics Data System (ADS)

    Wanner, Gudrun; Kochkina, Evgenia; Mahrdt, Christoph; Müller, Vitali; Schuster, Sönke; Heinzel, Gerhard; Danzmann, Karsten

    2017-11-01

    Sensing tiny distance variations interferometrically will be a key task in several future space missions. Interferometric detectors such as (e)LISA will observe gravitational waves from cosmic events such as for instance super novae and extreme mass ratio inspirals. The detection principle of such detectors is sensing phase variations due to tiny distance variations between two free floating test masses aboard two remote spacecraft originating from passing gravitational waves. This detection principle will be tested for the first time by LISA Pathfinder (launch 2015), where the interferometric readout of two free floating test masses aboard one single spacecraft will be demonstrated. Future geodesy missions will map Earths Gravity field, by interferometrically measuring distance variations between two spacecraft in low Earth orbit. This will be tested for the first time by the Laser Ranging Instrument (LRI) aboard GRACE Follow-On (launch 2017). The low noise laser interferometry of all these missions provides a number of challenging tasks. We will present optical simulations performed for the missions above. The interferometry of LISA Pathfinder is purely local (there do not exist any received beams from remote spacecraft), such that all beams can be approximated by fundamental Gaussian beams. We will present simulations regarding the coupling of residual test mass jitter (longitudinal and lateral as well as angular) to the phase readout, including Monte Carlo simulations to predict how misalignment affects resulting phase noise and estimate in-flight alignment of the test masses. In all of the mentioned missions, the local laser beams are delivered to the optical bench by fibers, resulting in laser beams in fiber modes. Besides local laser beams, the interferometry of missions such as (e)LISA and LRI involves also received beams from remote spacecraft. These beams have diameters in the range of tens of meters (LRI) or kilometers (LISA / eLISA and alike), before being clipped down to centimeter scale by the receiving aperture. The resulting top hat beams show strong diffraction effects and are therefore imaged on the optical benches. Key elements for simulations are therefore the propagation with diffraction of top hat beams and fiber modes in vacuum, as well as imaging optics causing aberration and astigmatism, with the central task to characterize the coupling of test mass or spacecraft jitter to optical readout noise, in presence of realistic alignment errors. A recurring and often limiting noise in the length measurement originates from the cross coupling of angular component jitter. This cross coupling will be briefly introduced with strategies for its mitigation in the various missions. To overcome the limitations of existing and commercial software, we have written and used for the simulations above as well as for general interferometer design purposes a dedicated software package called IfoCAD which is publicly available and will be presented as well.

  11. A LISA Interferometry Primer

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2010-01-01

    A key challenge for all gravitational wave detectors in the detection of changes in the fractional difference between pairs of test masses with sufficient precision to measure astrophysical strains with amplitudes on the order of approx.10(exp -21). ln the case of the five million km arms of LISA, this equates to distance measurements on the ten picometer level. LISA interferometry utilizes a decentralized topology, in which each of the sciencecraft houses its own light sources, detectors, and electronics. The measurements made at each of the sciencecraft are then telemetered to ground and combined to extract the strain experienced by the constellation as a whole. I will present an overview of LISA interferometry and highlight some of the key components and technologies that make it possible.

  12. LISA pathfinder optical interferometry

    NASA Astrophysics Data System (ADS)

    Braxmaier, Claus; Heinzel, Gerhard; Middleton, Kevin F.; Caldwell, Martin E.; Konrad, W.; Stockburger, H.; Lucarelli, S.; te Plate, Maurice B.; Wand, V.; Garcia, A. C.; Draaisma, F.; Pijnenburg, J.; Robertson, D. I.; Killow, Christian; Ward, Harry; Danzmann, Karsten; Johann, Ulrich A.

    2004-09-01

    The LISA Technology Package (LTP) aboard of LISA pathfinder mission is dedicated to demonstrate and verify key technologies for LISA, in particular drag free control, ultra-precise laser interferometry and gravitational sensor. Two inertial sensor, the optical interferometry in between combined with the dimensional stable Glass ceramic Zerodur structure are setting up the LTP. The validation of drag free operation of the spacecraft is planned by measuring laser interferometrically the relative displacement and tilt between two test masses (and the optical bench) with a noise levels of 10pm/√Hz and 10 nrad/√Hz between 3mHz and 30mHz. This performance and additionally overall environmental tests was currently verified on EM level. The OB structure is able to support two inertial sensors (≍17kg each) and to withstand 25 g design loads as well as 0...40°C temperature range. Optical functionality was verified successfully after environmental tests. The engineering model development and manufacturing of the optical bench and interferometry hardware and their verification tests will be presented.

  13. Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments

    NASA Astrophysics Data System (ADS)

    Gerberding, Oliver; Sheard, Benjamin; Bykov, Iouri; Kullmann, Joachim; Esteban Delgado, Juan Jose; Danzmann, Karsten; Heinzel, Gerhard

    2013-12-01

    Intersatellite laser interferometry is a central component of future space-borne gravity instruments like Laser Interferometer Space Antenna (LISA), evolved LISA, NGO and future geodesy missions. The inherently small laser wavelength allows us to measure distance variations with extremely high precision by interfering a reference beam with a measurement beam. The readout of such interferometers is often based on tracking phasemeters, which are able to measure the phase of an incoming beatnote with high precision over a wide range of frequencies. The implementation of such phasemeters is based on all digital phase-locked loops (ADPLL), hosted in FPGAs. Here, we present a precise model of an ADPLL that allows us to design such a readout algorithm and we support our analysis by numerical performance measurements and experiments with analogue signals.

  14. LISA on Table: an optical simulator for LISA

    NASA Astrophysics Data System (ADS)

    Halloin, H.; Jeannin, O.; Argence, B.; Bourrier, V.; de Vismes, E.; Prat, P.

    2017-11-01

    LISA, the first space project for detecting gravitational waves, relies on two main technical challenges: the free falling masses and an outstanding precision on phase shift measurements (a few pm on 5 Mkm in the LISA band). The technology of the free falling masses, i.e. their isolation to forces other than gravity and the capability for the spacecraft to precisely follow the test masses, will soon be tested with the technological LISA Pathfinder mission. The performance of the phase measurement will be achieved by at least two stabilization stages: a pre-stabilisation of the laser frequency at a level of 10-13 (relative frequency stability) will be further improved by using numerical algorithms, such as Time Delay Interferometry, which have been theoretically and numerically demonstrated to reach the required performance level (10-21). Nevertheless, these algorithms, though already tested with numerical model of LISA, require experimental validation, including `realistic' hardware elements. Such an experiment would allow to evaluate the expected noise level and the possible interactions between subsystems. To this end, the APC is currently developing an optical benchtop experiment, called LISA On Table (LOT), which is representative of the three LISA spacecraft. A first module of the LOT experiment has been mounted and is being characterized. After completion this facility may be used by the LISA community to test hardware (photodiodes, phasemeters) or software (reconstruction algorithms) components.

  15. Laser Interferometry for Gravitational Wave Observation: LISA and LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA gravitational wave observatory in the frequency range of 0.1mHz-100mHz. This observation band is inaccessible to ground-based detectors due to the large ground motions of the Earth. Gravitational wave sources for LISA include galactic binaries, mergers of supermasive black-hole binaries, extreme-mass-ratio inspirals, and possibly from as yet unimagined sources. LISA is a constellation of three spacecraft separated by 5 million km in an equilateral triangle, whose center follows the Earth in a heliocentric orbit with an orbital phase offset oF 20 degrees. Challenging technology is required to ensure pure geodetic trajectories of the six onboard test masses, whose distance fluctuations will be measured by interspacecraft laser interferometers with picometer accuracy. LISA Pathfinder is an ESA-launched technology demonstration mission of key LISA subsystems such us spacecraft control with micro-newton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of flight hardware of the Gravitational Reference Sensor and Optical Metrology subsystems of LISA Pathfinder is currently ongoing. An introduction to laser interferometric gravitational wave detection, ground-based observatories, and a detailed description of the two missions together with an overview of current investigations conducted by the community will bc discussed. The current status in development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts will also be presented

  16. Flight phasemeter on the Laser Ranging Interferometer on the GRACE Follow-On mission

    NASA Astrophysics Data System (ADS)

    Bachman, B.; de Vine, G.; Dickson, J.; Dubovitsky, S.; Liu, J.; Klipstein, W.; McKenzie, K.; Spero, R.; Sutton, A.; Ware, B.; Woodruff, C.

    2017-05-01

    As the first inter-spacecraft laser interferometer, the Laser Ranging Interferometer (LRI) on the GRACE Follow-On Mission will demonstrate interferometry technology relevant to the LISA mission. This paper focuses on the completed LRI Laser Ranging Processor (LRP), which includes heterodyne signal phase tracking at μ {{cycle/}}\\sqrt{{{Hz}}} precision, differential wavefront sensing, offset frequency phase locking and Pound-Drever-Hall laser stabilization. The LRI design has characteristics that are similar to those for LISA: 1064 nm NPRO laser source, science bandwidth in the mHz range, MHz-range intermediate frequency and Doppler shift, detected optical power of tens of picoWatts. Laser frequency stabilization has been demonstrated at a level below 30{{Hz/}}\\sqrt{{{Hz}}}, better than the LISA requirement of 300{{Hz/}}\\sqrt{{{Hz}}}. The LRP has completed all performance testing and environmental qualification and has been delivered to the GRACE Follow-On spacecraft. The LRI is poised to test the LISA techniques of tone-assisted time delay interferometry and arm-locking. GRACE Follow-On launches in 2017.

  17. Optical bench development for LISA

    NASA Astrophysics Data System (ADS)

    d'Arcio, L.; Bogenstahl, J.; Dehne, M.; Diekmann, C.; Fitzsimons, E. D.; Fleddermann, R.; Granova, E.; Heinzel, G.; Hogenhuis, H.; Killow, C. J.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Shoda, A.; Sohmer, A.; Taylor, A.; Tröbs, M.; Wanner, G.; Ward, H.; Weise, D.

    2017-11-01

    For observation of gravitational waves at frequencies between 30 μHz and 1 Hz, the LISA mission will be implemented in a triangular constellation of three identical spacecraft, which are mutually linked by laser interferometry in an active transponder scheme over a 5 million kilometer arm length. On the end point of each laser link, remote and local beam metrology with respect to inertial proof masses inside the spacecraft is realized by the LISA Optical Bench. It implements further- more various ancillary functions such as point-ahead correction, acquisition sensing, transmit beam conditioning, and laser redundancy switching. A comprehensive design of the Optical Bench has been developed, which includes all of the above mentioned functions and at the same time ensures manufacturability on the basis of hydroxide catalysis bonding, an ultrastable integration technology already perfected in the context of LISA's technology demonstrator mission LISA Pathfinder. Essential elements of this design have been validated by dedicated pre-investigations. These include the demonstration of polarizing heterodyne interferometry at the required Picometer and Nanoradian performance levels, the investigation of potential non-reciprocal noise sources in the so-called backlink fiber, as well as the development of a laser redundancy switch breadboard.

  18. Frequency References for Gravitational Wave Missions

    NASA Technical Reports Server (NTRS)

    Preston, Alix; Thrope, J. I.; Donelan, D.; Miner, L.

    2012-01-01

    The mitigation of laser frequency noise is an important aspect of interferometry for LISA-like missions. One portion of the baseline mitigation strategy in LISA is active stabilization utilizing opto-mechanical frequency references. The LISA optical bench is an attractive place to implement such frequency references due to its environmental stability and its access to primary and redundant laser systems. We have made an initial investigation of frequency references constructed using the techniques developed for the LISA and LISA Pathfinder optical benches. Both a Mach-Zehnder interferometer and triangular Fabry-Perot cavity have been successfully bonded to a Zerodur baseplate using the hydroxide bonding method. We will describe the construction of the bench along with preliminary stability results.

  19. Multi-Axis Heterodyne Interferometry (MAHI)

    NASA Astrophysics Data System (ADS)

    Thorpe, James

    The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft. We propose to develop a laboratory prototype of a LISA-like interferometric metrology system capable of simultaneously making picometer-level position and nanoradian-level attitude measurements of a free-flying target. In the LISA application, this prototype would represent the short-arm interferometer, measuring the displacement and relative attitude between the gravitational test mass and the spacecraft. This measurement is used both to drive the drag-free attitude and control system as well as to extract the gravitational wave science signal. In addition to the LISA application, such a system would have broader applications in future geodesy and formation-flying missions. The prototype free-flying metrology system will consist of the following subcomponents: an optical bench providing stable pathlengths, an optical target mounted on a precision actuator, a low-noise quadrant photoreceiver for generating differential wavefront signals, and a phase measurement system to measure the individual heterodyne signals and convert them into quantities such as position and angle. In addition to the moving target, the optical bench will include a pair of fixed targets to be used as references. Comparing the two reference interferometers will provide an estimate of the noise performance of the measurement system, while comparing a reference interferometer with the free-flying target will allow us to demonstrate measurement over a large dynamic range. In addition to making performance measurements, we will use this prototype system to explore a number of system-level issues related to free-flying interferometry including initial acquisition, beam-walk effects, and jitter couplings.

  20. The LISA Pathfinder Mission: Sub-picometer Interferometry in Space

    NASA Astrophysics Data System (ADS)

    Slutsky, Jacob; LISA Pathfinder Collaboration

    2018-01-01

    The European Space Agency’s LISA Pathfinder was a mission built to demonstrate the technologies essential to implement a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band. ESA recently selected the LISA mission as such a future observatory, scheduled to launch in the early 2030s. LISA Pathfinder launched in late 2015 and concluded its final extended mission in July 2017, during which time it placed the two test masses into free fall and successfully measured the relative acceleration between them to a sensitivity that validates a number of critical technologies for LISA. These include drag-free control of the test masses, low noise microNewton thrusters to control the spacecraft, and sub-picometer-level laser metrology in space. The mission also served as a sensitive probe of the environmenal conditions in which LISA will operate. This poster summarizes the recent analysis results, with an eye towards the implications for the LISA mission.

  1. LISA: Astrophysics Out to z Approximately 10 with Low-Frequency Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    This viewgraph presentation reviews the Laser Interferometer Space Antenna (LISA). LISA os a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector. The 5 million Kilometer long detector will consist of three spacecraft orbiting the Sun in a triangular formation. Space-Time strains induced by gravitational waves are detected by measuring changes in the separation of fiducial masses with laser interferometry. LISA is expected to detect signals from merging massive black holes, compact stellar objects spiraling into super massive black holes in galactic nuclei, thousands of close binaries of compact objects in the Milky way and possible backgrounds of cosmological origin.

  2. LISA Mission Concept Study, Laser Interferometer Space Antenna for the Detection and Observation of Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Bender, P. L.; Stebbins, R. T.

    1998-01-01

    This document presents the results of a design feasibility study for LISA (Laser Interferometer Space Antenna). The goal of LISA is to detect and study low-frequency astrophysical gravitational radiation from strongly relativistic regions. Astrophysical sources potentially visible to LISA include extra-galactic massive black hole binaries at cosmological distances, binary systems composed of a compact star and a massive black hole, galactic neutron star-black hole binaries, and background radiation from the Big Bang. The LISA mission will comprise three spacecraft located five million kilometers apart forming an equilateral triangle in an Earth-trailing orbit. Fluctuations in separation between shielded test masses located within each spacecraft will be determined by optical interferometry which determines the phase shift of laser light transmitted between the test masses.

  3. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    NASA Technical Reports Server (NTRS)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  4. LISA technologies in new light: exploring alternatives for charge management and optical bench construction

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Conklin, John W.; Mueller, Guido

    2015-08-01

    A LISA-like gravitational wave observatory is the choice candidate for ESA's L3 large mission scheduled to launch in 2034. The LISA Test Package (LTP) mission will launch later this year and test many critical technologies needed for such an observatory, among which are picometer interferometry in space and UV charge management of the Test Mass (TM). The design of these subsystems has been frozen many years ago during the final formulation of the LTP mission; since then, the LISA mission concept has evolved and new technologies have become available, making it possible to re-think the way these subsystem are implemented. With the final formulation of the L3 mission still years in the future and the LTP results expected in about one year, now is an ideal time look for areas of possible improvement and explore alternative implementations that can enhance performance, reduce costs or mitigate risks.Recently developed UV LED are lighter, cheaper and more powerful than traditional mercury lamps; in addition, their fast response time can be used to implement AC discharge techniques that can save even more space and power, and provide a more precise control of the charge.The most recent iteration of the mission baseline design allows for eliminating some of the optical components initially deemed essential; paired with the use of polarization multiplexing, this permits a redesign of the optical bench that simplifies the layout and enables a modular approach to machining and assembly, thus reducing the risks and costs associated with the current monolithic design without compromising the picometer stability of the optical path.Leveraging on extensive previous experience with LISA interferometry and the availability of a torsion pendulum-based LISA test-bed, the University of Florida LISA group is working at developing, demonstrating and optimizing both these technologies. I will describe the most recent advancements and results.

  5. Laser system development for gravitational-wave interferometry in space

    NASA Astrophysics Data System (ADS)

    Numata, Kenji; Yu, Anthony W.; Camp, Jordan B.; Krainak, Michael A.

    2018-02-01

    A highly stable and robust laser system is a key component of the space-based Laser Interferometer Space Antenna (LISA) mission, which is designed to detect gravitational waves from various astronomical sources. The baseline architecture for the LISA laser consists of a low-power, low-noise Nd:YAG non-planar ring oscillator (NPRO) followed by a diode-pumped Yb-fiber amplifier with 2 W output. We are developing such laser system at the NASA Goddard Space Flight Center (GSFC), as well as investigating other laser options. In this paper, we will describe our progress to date and plans to demonstrate a technology readiness level (TRL) 6 LISA laser system.

  6. The Radiation Environment for the LISA/Laser Interferometry Space Antenna

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael; Poivey, Christian

    2005-01-01

    The purpose of this document is to define the radiation environment for the evaluation of degradation due to total ionizing and non-ionizing dose and of single event effects (SEES) for the Laser Interferometry Space Antenna (LISA) instruments and spacecraft. The analysis took into account the radiation exposure for the nominal five-year mission at 20 degrees behind Earth's orbit of the sun, at 1 AU (astronomical unit) and assumes a launch date in 2014. The transfer trajectory out to final orbit has not yet been defined, therefore, this evaluation does not include the impact of passing through the Van Allen belts. Generally, transfer trajectories do not contribute significantly to degradation effects; however, single event effects and deep dielectric charging effects must be taken into consideration especially if critical maneuvers are planned during the van Allen belt passes.

  7. LISA Technology Development at GSFC

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira; McWilliams, S.; Baker, J.

    2008-01-01

    The prime focus of LISA technology development efforts at NASA/GSFC has been in LISA interferometry, specifically in the area of laser frequency noise mitigation. Laser frequency noise is addressed through a combination of stabilization and common-mode rejection. Current plans call for two stages of stabilization, pre-stabilization to a local frequency reference and further stabilization using the constellation as a frequency reference. In order for these techniques to be used simultaneously, the pre-stabilization step must provide an adjustable frequency offset. Here, we report on a modification to the standard modulation/demodulation techniques used to stabilize to optical cavities that generates a frequency-tunable reference from a fixed-length cavity. This technique requires no modifications to the cavity itself and only minor modifications to the components. The measured noise performance and dynamic range of the laboratory prototype meets the LISA requirements.

  8. LISA Beyond Einstein: From the Big Bang to Black Holes. LISA Technology Development at GSFC

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2008-01-01

    This viewgraph presentation reviews the work that has been ongoing at the Goddard Space Flight Center (GSFC) in the development of the technology to be used in the Laser Interferometer Space Antenna (LISA) spacecrafts. The prime focus of LISA technology development efforts at NASA/GSFC has been in LISA interferometry. Specifically efforts have been made in the area of laser frequency noise mitigation. Laser frequency noise is addressed through a combination of stabilization and common-mode rejection. Current plans call for two stages of stabilization, pre-stabilization to a local frequency reference and further stabilization using the constellation as a frequency reference. In order for these techniques to be used simultaneously, the pre-stabilization step must provide an adjustable frequency offset. This presentation reports on a modification to the standard modulation/demodulation technique used to stabilize to optical cavities that generates a frequency-tunable reference from a fixed length cavity. This technique requires no modifications to the cavity itself and only minor modifications to the components. The measured noise performance and dynamic range of the laboratory prototype meet the LISA requirements.

  9. A New Optical Bench Concept for Space-Based Laser Interferometric Gravitational Wave Missions

    NASA Astrophysics Data System (ADS)

    Chilton, Andrew; Apple, Stephen; Ciani, Giacomo; Olatunde, Taiwo; Conklin, John; Mueller, Guido

    2015-04-01

    Space-based interferometric gravitational wave detectors such as LISA have been proposed to detect low-frequency gravitational wave sources such as the inspirals of compact objects into massive black holes or two massive black holes into each other. The optical components used to perform the high-precision interferometry required to make these measurements have historically been bonded to Zerodur optical benches, which are thermally ultrastable but difficult and time-consuming to manufacture. More modern implementations of LISA-like interferometry have reduced the length stability requirement on these benches from 30fm/√{Hz} to a few pm √{ Hz}. We therefore propose to alter the design of the optical bench in such a way as to no longer require the use of Zerodur; instead, we plan to replace it with more easily-used materials such as titanium or molybdenum. In this presentation, we discuss the current status of and future plans for the construction and testing of such an optical bench.

  10. Black Holes, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Baker, John

    2009-01-01

    Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.

  11. Arm Locking for the Laser Interferometer Space Antenna

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Thorpe, J. I.; Livas, J.

    2009-01-01

    The Laser Interferometer Space Antenna (LISA) mission is a planned gravitational wave detector consisting of three spacecraft in heliocentric orbit. Laser interferometry is used to measure distance fluctuations between test masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Laser frequency fluctuations must be suppressed in order to meet the measurement requirements. Arm-locking, a technique that uses the constellation of spacecraft as a frequency reference, is a proposed method for stabilizing the laser frequency. We consider the problem of arm-locking using classical optimal control theory and find that our designs satisfy the LISA requirements.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, J.D.; Woan, G.

    Data from the Laser Interferometer Space Antenna (LISA) is expected to be dominated by frequency noise from its lasers. However, the noise from any one laser appears more than once in the data and there are combinations of the data that are insensitive to this noise. These combinations, called time delay interferometry (TDI) variables, have received careful study and point the way to how LISA data analysis may be performed. Here we approach the problem from the direction of statistical inference, and show that these variables are a direct consequence of a principal component analysis of the problem. We presentmore » a formal analysis for a simple LISA model and show that there are eigenvectors of the noise covariance matrix that do not depend on laser frequency noise. Importantly, these orthogonal basis vectors correspond to linear combinations of TDI variables. As a result we show that the likelihood function for source parameters using LISA data can be based on TDI combinations of the data without loss of information.« less

  13. Sensing and actuation system for the University of Florida Torsion Pendulum for LISA

    NASA Astrophysics Data System (ADS)

    Chilton, Andrew; Shelley, Ryan; Olatunde, Taiwo; Ciani, Giacomo; Conklin, John; Mueller, Guido

    2014-03-01

    Space-based gravitational wave detectors like LISA are a necessity for understanding the low-frequency portion of the gravitational universe. They use test masses (TMs) which are separated by Gm and are in free fall inside their respective spacecraft. Their relative distance is monitored with laser interferometry at the pm/rtHz level in the LISA band, ranging from 0.1 to 100 mHz. Each TM is enclosed in a housing that provides isolation, capacitive sensing, and electrostatic actuation capabilities. The electronics must both be sensitive at the 1 nm/rtHz level and not induce residual acceleration noise above the requirement for LISA Pathfinder (3*10-15 m/sec2Hz1/2at 3 mHz). Testing and developing this technology is one of the roles of the University of Florida Torsion Pendulum, the only US testbed for LISA-like gravitational reference sensor technology. Our implementation of the sensing system functions by biasing our hollow LISA-like TMs with a 100 kHz sine wave and coupling a pair surrounding electrodes as capacitors to a pair of preamps and a differential amplifier; all other processing is done digitally. Here we report on the design of, implementation of, and preliminary results from the UF Torsion Pendulum.

  14. Gravitational Reference Sensor Front-End Electronics Simulator for LISA

    NASA Astrophysics Data System (ADS)

    Meshksar, Neda; Ferraioli, Luigi; Mance, Davor; ten Pierick, Jan; Zweifel, Peter; Giardini, Domenico; ">LISA Pathfinder colaboration, Demonstration of sub-picometer length measurements and sub-nanoradian angular read-out in the millihertz-frequency range

    NASA Astrophysics Data System (ADS)

    Diekmann, Christian; Troebs, Michael; Steier, Frank; Bykov, Iouri; Heinzel, Gerhard; Danzmann, Karsten

    The space-based interferometric gravitational-wave detector Laser Interferometer Space An-tenna (LISA) requires interferometry with subpicometer and nanoradian sensitivity in the fre-quency range between 3 mHz and 1 Hz. Currently, a first prototype of the optical bench for LISA is being designed. We report on a pre-experiment with the aim to demonstrate the required sensitivities and to thoroughly characterise the equipment. For this purpose, a quasi-monolithic optical setup has been built with two Mach-Zehnder interferometers (MZI) on an optical bench made of zerodur. In a first step the relative length change between these two MZI will be measured with a heterodyne modulation scheme in the kHz-range and the angle between two laser beams will be read out via quadrant photodiodes and a technique called differential wavefront sensing. These techniques have already been used for the LISA prede-cessor mission LISA Pathfinder and their sensitivity needs to be further improved to fulfill the requirements of the LISA mission. We describe the experiment and the characterization of the basic components. Measurements of the length and angular noise will be presented.

  15. Gravitational wave detection in space

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    Gravitational Wave (GW) detection in space is aimed at low frequency band (100nHz-100mHz) and middle frequency band (100mHz-10Hz). The science goals are the detection of GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries and (v) Relic GW Background. In this paper, we present an overview on the sensitivity, orbit design, basic orbit configuration, angular resolution, orbit optimization, deployment, time-delay interferometry (TDI) and payload concept of the current proposed GW detectors in space under study. The detector proposals under study have arm length ranging from 1000km to 1.3 × 109km (8.6AU) including (a) Solar orbiting detectors — (ASTROD Astrodynamical Space Test of Relativity using Optical Devices (ASTROD-GW) optimized for GW detection), Big Bang Observer (BBO), DECi-hertz Interferometer GW Observatory (DECIGO), evolved LISA (e-LISA), Laser Interferometer Space Antenna (LISA), other LISA-type detectors such as ALIA, TAIJI etc. (in Earthlike solar orbits), and Super-ASTROD (in Jupiterlike solar orbits); and (b) Earth orbiting detectors — ASTROD-EM/LAGRANGE, GADFLI/GEOGRAWI/g-LISA, OMEGA and TIANQIN.

  16. LISA Pathfinder Instrument Data Analysis

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    LISA Pathfinder (LPF) is an ESA-launched demonstration mission of key technologies required for the joint NASA-ESA gravitational wave observatory in space, LISA. As part of the LPF interferometry investigations, analytic models of noise sources and corresponding noise subtraction techniques have been developed to correct for effects like the coupling of test mass jitter into displacement readout, and fluctuations of the laser frequency or optical pathlength difference. Ground testing of pre-flight hardware of the Optical Metrology subsystem is currently ongoing at the Albert Einstein Institute Hannover. In collaboration with NASA Goddard Space Flight Center, the LPF mission data analysis tool LTPDA is being used to analyze the data product of these tests. Furthermore, the noise subtraction techniques and in-flight experiment runs for noise characterization are being defined as part of the mission experiment master plan. We will present the data analysis outcome of preflight hardware ground tests and possible noise subtraction strategies for in-flight instrument operations.

  17. Simulating Gravitational Radiation from Binary Black Holes Mergers as LISA Sources

    NASA Technical Reports Server (NTRS)

    Baker, John

    2005-01-01

    A viewgraph presentation on the simulation of gravitational waves from Binary Massive Black Holes with LISA observations is shown. The topics include: 1) Massive Black Holes (MBHs); 2) MBH Binaries; 3) Gravitational Wavws from MBH Binaries; 4) Observing with LISA; 5) How LISA sees MBH binary mergers; 6) MBH binary inspirals to LISA; 7) Numerical Relativity Simulations; 8) Numerical Relativity Challenges; 9) Recent Successes; 10) Goddard Team; 11) Binary Black Hole Simulations at Goddard; 12) Goddard Recent Advances; 13) Baker, et al.:GSFC; 13) Starting Farther Out; 14) Comparing Initial Separation; 15) Now with AMR; and 16) Conclusion.

  18. Design and construction of a telescope simulator for LISA optical bench testing

    NASA Astrophysics Data System (ADS)

    Bogenstahl, J.; Tröbs, M.; d'Arcio, L.; Diekmann, C.; Fitzsimons, E. D.; Hennig, J. S.; Hey, F. G.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Taylor, A.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.

    2017-11-01

    LISA (Laser Interferometer Space Antenna) is a proposed space-based instrument for astrophysical observations via the measurement of gravitational waves at mHz frequencies. The triangular constellation of the three LISA satellites will allow interferometric measurement of the changes in distance along the arms. On board each LISA satellite there will be two optical benches, one for each testmass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. For technology development, an Optical Bench Elegant Bread Board (OB EBB) is currently under construction. To verify the performance of the EBB, another optical bench - the so-called telescope simulator bench - will be constructed to simulate the beam coming from the far spacecraft. The optical beam from the telescope simulator will be superimposed with the light on the LISA OB, in order to simulate the link between two LISA satellites. Similarly in reverse, the optical beam from the LISA OB will be picked up and measured on the telescope simulator bench. Furthermore, the telescope simulator houses a test mass simulator. A gold coated mirror which can be manipulated by an actuator simulates the test mass movements. This paper presents the layout and design of the bench for the telescope simulator and test mass simulator.

  19. Adhesive Bonding for Optical Metrology Systems in Space Applications

    NASA Astrophysics Data System (ADS)

    Gohlke, Martin; Schuldt, Thilo; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2015-05-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10-15 range for longer integration times. The EM setup was thermally cycled and vibration tested.

  1. Preparing for LISA Data: The Testbed for LISA Analysis Project

    NASA Astrophysics Data System (ADS)

    Finn, Lee Samuel; Benacquista, Matthew J.; Larson, Shane L.; Rubbo, Louis J.

    2006-11-01

    The Testbed for LISA Analysis (TLA) Project aims to facilitate the development, validation, and comparison of different methods for LISA science data analysis by the broad LISA Science Community to meet the special challenges that LISA poses. It includes a well-defined Simulated LISA Data Product (SLDP), which provides a clean interface between the modeling of LISA, the preparation of LISA data, and the analysis of the LISA science data stream; a web-based clearinghouse (at ) providing SLDP software libraries, relevant software, papers and other documentation, and a repository for SLDP data sets; a set of mailing lists for communication between and among LISA simulator developers and LISA science analysts; a problem tracking system for SLDP support; and a program of workshops to allow the burgeoning LISA science community to further refine the SLDP definition, define specific LISA science analysis challenges, and report their results. This proceedings paper describes the TLA Project, the resources it provides immediately, its future plans, and invites the participation of the broader community in the furtherance of its goals.

  2. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.

    PubMed

    Sweeney, Dylan; Mueller, Guido

    2012-11-05

    The Laser Interferometer Space Antenna (LISA) and other space based gravitational wave detector designs require a laser communication subsystem to, among other things, transfer clock signals between spacecraft (SC) in order to cancel clock noise in post-processing. The original LISA baseline design requires frequency synthesizers to convert each SC clock into a 2 GHz signal, and electro-optic modulators (EOMs) to modulate this 2 GHz clock signal onto the laser light. Both the frequency synthesizers and the EOMs must operate with a phase fidelity of 2×10(-4)cycles/√Hz. In this paper we present measurements of the phase fidelity of frequency synthesizers and EOMs. We found that both the frequency synthesizers and the EOMs meet the requirement when tested independently and together. We also performed an electronic test of the clock noise transfer using frequency synthesizers and the University of Florida LISA Interferometry (UFLIS) phasemeter. We found that by applying a time varying fractional delay filter we could suppress the clock noise to a level below our measurement limit, which is currently determined by timing jitter and is less than an order of magnitude above the LISA requirement for phase measurements.

  3. LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2008-01-01

    USA Pathfinder is a space mission dedicated to demonstrating technology for the Laser Interferometer Space Antenna (LISA). LISA is a joint ESA/NASA mission to detect low-frequency gravitational waves on the 0.0001 to 0.1 Hz frequency band. LISA is expected to observe 100's of merging massive black hole binaries out z-15, tens of thousands of close compact binary systems in the Milky Way, merging intermediate-mass black hole binaries, tens of stellar-mass black holes falling into supermassive black holes in galactic centers, and possibly other exotic sources. Several critical LISA technologies have not been demonstrated at the requisite level of performance. In spaceflight, and some fight hardware cannot be tested in a 1-g environment. Hence, the LISA Pathfinder mission is being implemented to demonstrate these critical LISA technologies in a relevant flight environment. LISA Pathfinder mimics one arm of the LISA constellation by shrinking the 5-million-kilometer armlength down to a few tens of centimeters. The experimental concept is to measure the relative separation between two test masses nominally following their own geodesics, and thereby determine the relative residual acceleration between them near 1 mHz, about a decade above the lowest frequency required by LISA. To implement such a concept, disturbances on the test masses must be kept very small by many design features, but chiefly by "drag-free" flight. A drag-free spacecraft follows a free-falling test mass which it encloses, but has no mechanical connection to. The spacecraft senses it's orientation and separation with respect to the proof mass, and its propulsion system is commanded to keep the spacecraft centered about the test mass. Thus, the spacecraft shields the test mass from most external influences, and minimizes the effect of force gradients arising from the spacecraft, and acting on the test mass. LISA Pathfinder will compare the geodesic of one test mass against that of the other. Only a metrology system based on interferometry can achieve the displacement sensitivity. Interferometers monitor the separation of both test masses with a sensitivity comparable to that required by LISA, and using the same technologies. LISA Pathfinder is scheduled to be launched in the first half of 1020 to a Lissajous orbit around the first Sun-Earth Lagrange point, L1. In addition to a complete European technology package (the LISA Technology Package, or LTP), LISA Pathfinder will also carry thrusters and software, known as ST-7, a part of NASA's New Millennium Program.

  4. Evaluation of new technologies for the LISA gravitational reference sensor using the UF torsion pendulum

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Aitken, Michael; Ciani, Giacomo; Mueller, Guido

    2016-01-01

    The Laser Interferometer Space Antenna (LISA) is the most mature concept for detecting gravitational waves from space. The LISA design has been studied for more than 20 years as a joint effort between NASA and the European Space Agency. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 1-5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics. A single test mass together with its protective housing and associated components is referred to as a gravitational reference sensor. A drag-free control system is supplied with measurements of the test mass position from these sensors and commands external micronewton thrusters to force the spacecraft to fly in formation with the test masses. Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. We have constructed a new torsion pendulum facility with a force sensitivity in the range of pN/Hz1/2 around 1 mHz for testing new gravitational reference sensor technologies. This experimental facility consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by their electrode housings. With the aid of this facility, we are (a) developing a novel test mass charge control scheme based on ultraviolet LEDs, (b) examining alternate test mass and electrode housing coatings, and (c) evaluating alternate operational modes of the LISA gravitational reference sensor. This presentation will describe this facility and the development status of these new technologies.

  5. Novel Payload Architectures for LISA

    NASA Astrophysics Data System (ADS)

    Johann, Ulrich A.; Gath, Peter F.; Holota, Wolfgang; Schulte, Hans Reiner; Weise, Dennis

    2006-11-01

    As part of the current LISA Mission Formulation Study, and based on prior internal investigations, Astrium Germany has defined and preliminary assessed novel payload architectures, potentially reducing overall complexity and improving budgets and costs. A promising concept is characterized by a single active inertial sensor attached to a single optical bench and serving both adjacent interferometer arms via two rigidly connected off-axis telescopes. The in-plane triangular constellation ``breathing angle'' compensation is accomplished by common telescope in-field of view pointing actuation of the transmit/received beams line of sight. A dedicated actuation mechanism located on the optical bench is required in addition to the on bench actuators for differential pointing of the transmit and receive direction perpendicular to the constellation plane. Both actuators operate in a sinusoidal yearly period. A technical challenge is the actuation mechanism pointing jitter and the monitoring and calibration of the laser phase walk which occurs while changing the optical path inside the optical assembly during re-pointing. Calibration or monitoring of instrument internal phase effects e.g. by a laser metrology truss derived from the existing interferometry is required. The architecture exploits in full the two-step interferometry (strap down) concept, separating functionally inter spacecraft and intra-spacecraft interferometry (reference mass laser metrology degrees of freedom sensing). The single test mass is maintained as cubic, but in free-fall in the lateral degrees of freedom within the constellation plane. Also the option of a completely free spherical test mass with full laser interferometer readout has been conceptually investigated. The spherical test mass would rotate slowly, and would be allowed to tumble. Imperfections in roundness and density would be calibrated from differential wave front sensing in a tetrahedral arrangement, supported by added attitude information via a grid of tick marks etched onto the surface and monitored by the laser readout.

  6. LISA Technology Development and Risk Reduction at NASA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector based on a laser interferometer. LISA relies on several technologies that are either new to spaceflight or must perform at levels not previously demonstrated in a spaceflight environment. The ESA-led LISA Pathfinder mission is the main effort to demonstrate LISA technology. NASA also supports complementary ground-based technology development and risk reduction activities. This presentation will report the status of NASA work on micronewton thrusters, the telescope, the optical pointing subsystem and mission formulation. More details on some of these topics will be given in posters. Other talks and posters will describe NASA-supported work on the laser subsystem, the phasemeter, and aspects of the interferometry. Two flight-qualified clusters of four colloid micronewton thrusters, each capable of thrust Levels between 5 and 30 microNewton with a resolution less than 0.l microNewton and a thrust noise less than 0.1 microNewton/vHz (0.001 to 4 Hz), have been integrated onto the LISA Pathfinder spacecraft. The complementary ground-based development focuses on lifetime demonstration. Laboratory verification of failure models and accelerated life tests are just getting started. LISA needs a 40 cm diameter, afocal telescope for beam expansion/reduction that maintains an optical pathlength stability of approximately 1 pm/vHz in an extremely stable thermal environment. A mechanical prototype of a silicon carbide primary-secondary structure has been fabricated for stability testing. Two optical assemblies must point at different distant spacecraft with nanoradian accuracy over approximately 1 degree annual variation in the angle between the distant spacecraft. A candidate piezo-inchworm actuator is being tested in a suitable testbed. In addition to technology development, NASA has carried out several studies in support of the mission formulation. The results of systems engineering work on flight software, avionics and reliability will be summarized.

  7. Gravitational Reference Sensor Technology Development at the University of Florida

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Chiani, Giacomo; Mueller, Guido; Shelley, Ryan

    2013-04-01

    The Laser Interferometer Space Antenna (LISA), the most mature concept for detecting gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million kilometer-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics. A single TM together with its protective housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3 x 10-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2014. In order to increase U.S. competency in GRS technologies, various research activities at the University of Florida (UF) have been initiated. The first is the development of a nearly thermally noise limited torsion pendulum for testing the GRS and for understanding the dozens of acceleration noise sources that affect the performance of the LISA GRS. The team at UF also collaborates with Stanford and NASA Ames on a small satellite mission that will test the performance of UV LEDs for ac charge control in space. This presentation will describe the design of the GRS testing facility at UF, the status of the UV LED small satellite mission, and plans for UF participation in the LISA Pathfinder mission.

  8. A new torsion pendulum for testing enhancements to the LISA Gravitational Reference Sensor

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, A.; Ciani, G.; Mueller, G.; Olatunde, T.; Shelley, R.

    2014-01-01

    The Laser Interferometer Space Antenna (LISA), the most mature concept for observing gravitational waves from space, consists of three Sun-orbiting spacecraft that form a million km-scale equilateral triangle. Each spacecraft houses two free-floating test masses (TM), which are protected from disturbing forces so that they follow pure geodesics in spacetime. A single test mass together with its housing and associated components is referred to as a gravitational reference sensor (GRS). Laser interferometry is used to measure the minute variations in the distance between these free-falling TMs, caused by gravitational waves. The demanding acceleration noise requirement of 3E-15 m/sec^2Hz^1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in 2015. Recently, efforts have begun in the U.S. to design and assemble a new, nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and will consist of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. The GRS technology enhancements under development include a novel TM charge control scheme based on ultraviolet LEDs, simplified capacitive readout electronics, and a six degree-of-freedom, all-optical TM sensor. This presentation will describe the design of the torsion pendulum facility, its expected performance, and the potential technology enhancements.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petiteau, Antoine; Auger, Gerard; Halloin, Hubert

    A new LISA simulator (LISACode) is presented. Its ambition is to achieve a new degree of sophistication allowing to map, as closely as possible, the impact of the different subsystems on the measurements. LISACode is not a detailed simulator at the engineering level but rather a tool whose purpose is to bridge the gap between the basic principles of LISA and a future, sophisticated end-to-end simulator. This is achieved by introducing, in a realistic manner, most of the ingredients that will influence LISA's sensitivity as well as the application of TDI combinations. Many user-defined parameters allow the code to studymore » different configurations of LISA thus helping to finalize the definition of the detector. Another important use of LISACode is in generating time-series for data analysis developments.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaut, Arkadiusz

    We present the results of the estimation of parameters with LISA for nearly monochromatic gravitational waves in the low and high frequency regimes for the time-delay interferometry response. Angular resolution of the detector and the estimation errors of the signal's parameters in the high frequency regimes are calculated as functions of the position in the sky and as functions of the frequency. For the long-wavelength domain we give compact formulas for the estimation errors valid on a wide range of the parameter space.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edlund, Jeffrey A.; Tinto, Massimo; Krolak, Andrzej

    LISA (Laser Interferometer Space Antenna) is a proposed space mission, which will use coherent laser beams exchanged between three remote spacecraft to detect and study low-frequency cosmic gravitational radiation. In the low part of its frequency band, the LISA strain sensitivity will be dominated by the incoherent superposition of hundreds of millions of gravitational wave signals radiated by inspiraling white-dwarf binaries present in our own Galaxy. In order to estimate the magnitude of the LISA response to this background, we have simulated a synthesized population that recently appeared in the literature. Our approach relies on entirely analytic expressions of themore » LISA time-delay interferometric responses to the gravitational radiation emitted by such systems, which allows us to implement a computationally efficient and accurate simulation of the background in the LISA data. We find the amplitude of the galactic white-dwarf binary background in the LISA data to be modulated in time, reaching a minimum equal to about twice that of the LISA noise for a period of about two months around the time when the Sun-LISA direction is roughly oriented towards the Autumn equinox. This suggests that, during this time period, LISA could search for other gravitational wave signals incoming from directions that are away from the galactic plane. Since the galactic white-dwarf background will be observed by LISA not as a stationary but rather as a cyclostationary random process with a period of 1 yr, we summarize the theory of cyclostationary random processes, present the corresponding generalized spectral method needed to characterize such process, and make a comparison between our analytic results and those obtained by applying our method to the simulated data. We find that, by measuring the generalized spectral components of the white-dwarf background, LISA will be able to infer properties of the distribution of the white-dwarf binary systems present in our Galaxy.« less

  12. Polarization Considerations for the Laser Interferometer Space Antenna

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, Paul

    2005-01-01

    A polarization ray trace model of the Laser Interferometer Space Antenna s (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required, very long path length, picometer level dynamic interferometry. The computational steps are described. This should eliminate any ambiguities associated with polarization ray tracing of interferometers and provide a basis for determining the computer model s limitations and serve as a clearly defined starting point for future work.

  13. LISA: a java API for performing simulations of trajectories for all types of balloons

    NASA Astrophysics Data System (ADS)

    Conessa, Huguette

    2016-07-01

    LISA (LIbrarie de Simulation pour les Aerostats) is a java API for performing simulations of trajectories for all types of balloons (Zero Pressure Balloons, Pressurized Balloons, Infrared Montgolfier), and for all phases of flight (ascent, ceiling, descent). This library has for goals to establish a reliable repository of Balloons flight physics models, to capitalize developments and control models used in different tools. It is already used for flight physics study software in CNES, to understand and reproduce the behavior of balloons, observed during real flights. It will be used operationally for the ground segment of the STRATEOLE2 mission. It was developed with quality rules of "critical software." It is based on fundamental generic concepts, linking the simulation state variables to interchangeable calculation models. Each LISA model defines how to calculate a consistent set of state variables combining validity checks. To perform a simulation for a type of balloon and a phase of flight, it is necessary to select or create a macro-model that is to say, a consistent set of models to choose from among those offered by LISA, defining the behavior of the environment and the balloon. The purpose of this presentation is to introduce the main concepts of LISA, and the new perspectives offered by this library.

  14. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  15. Time Domain Simulations of Arm Locking in LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; Maghami, P.; Livas, Jeff

    2011-01-01

    Arm locking is a technique that has been proposed for reducing laser frequency fluctuations in the Laser Interferometer Space Antenna (LISA). a gravitational-wave observatory sensitive' in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that comprise LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of arm locking including the expected limiting noise sources (shot noise, clock noise. spacecraft jitter noise. and residual laser frequency noise). The effect of imperfect a priori knowledge of the LISA heterodyne frequencies and associated "pulling" of an arm locked laser is included. We find that our implementation meets requirements both on the noise and dynamic range of the laser frequency.

  16. Report on the first round of the Mock LISA Data Challenges

    NASA Astrophysics Data System (ADS)

    Arnaud, K. A.; Auger, G.; Babak, S.; Baker, J. G.; Benacquista, M. J.; Bloomer, E.; Brown, D. A.; Camp, J. B.; Cannizzo, J. K.; Christensen, N.; Clark, J.; Cornish, N. J.; Crowder, J.; Cutler, C.; Finn, L. S.; Halloin, H.; Hayama, K.; Hendry, M.; Jeannin, O.; Królak, A.; Larson, S. L.; Mandel, I.; Messenger, C.; Meyer, R.; Mohanty, S.; Nayak, R.; Numata, K.; Petiteau, A.; Pitkin, M.; Plagnol, E.; Porter, E. K.; Prix, R.; Roever, C.; Stroeer, A.; Thirumalainambi, R.; Thompson, D. E.; Toher, J.; Umstaetter, R.; Vallisneri, M.; Vecchio, A.; Veitch, J.; Vinet, J.-Y.; Whelan, J. T.; Woan, G.

    2007-10-01

    The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine challenges consisting of data sets containing simulated gravitational-wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. All of the challenges had at least one entry which successfully characterized the signal to better than 95% when assessed via a correlation with phasing ambiguities accounted for. Here, we describe the challenges, summarize the results and provide a first critical assessment of the entries.

  17. Black-hole Merger Simulations for LISA Science

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; Centrella, Joan M.; McWilliams, Sean T.

    2009-01-01

    The strongest expected sources of gravitational waves in the LISA band are the mergers of massive black holes. LISA may observe these systems to high redshift, z>10, to uncover details of the origin of massive black holes, and of the relationship between black holes and their host structures, and structure formation itself. These signals arise from the final stage in the development of a massive black-hole binary emitting strong gravitational radiation that accelerates the system's inspiral toward merger. The strongest part of the signal, at the point of merger, carries much information about the system and provides a probe of extreme gravitational physics. Theoretical predictions for these merger signals rely on supercomputer simulations to solve Einstein's equations. We discuss recent numerical results and their impact on LISA science expectations.

  18. Probing Massive Black Hole Populations and Their Environments with LISA

    NASA Astrophysics Data System (ADS)

    Katz, Michael; Larson, Shane

    2018-01-01

    With the adoption of the LISA Mission Proposal by the European Space Agency in response to its call for L3 mission concepts, gravitational wave measurements from space are on the horizon. With data from the Illustris large-scale cosmological simulation, we provide analysis of LISA detection rates accompanied by characterization of the merging Massive Black Holes (MBH) and their host galaxies. MBHs of total mass $\\sim10^6-10^9 M_\\odot$ are the main focus of this study. Using a precise treatment of the dynamical friction evolutionary process prior to gravitational wave emission, we evolve MBH simulation particle mergers from $\\sim$kpc scales until coalescence to achieve a merger distribution. Using the statistical basis of the Illustris output, we Monte-carlo synthesize many realizations of the merging massive black hole population across space and time. We use those realizations to build mock LISA detection catalogs to understand the impact of LISA mission configurations on our ability to probe massive black hole merger populations and their environments throughout the visible Universe.

  19. Non-linear quantization error reduction for the temperature measurement subsystem on-board LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Sanjuan, J.; Nofrarias, M.

    2018-04-01

    Laser Interferometer Space Antenna (LISA) Pathfinder is a mission to test the technology enabling gravitational wave detection in space and to demonstrate that sub-femto-g free fall levels are possible. To do so, the distance between two free falling test masses is measured to unprecedented sensitivity by means of laser interferometry. Temperature fluctuations are one of the noise sources limiting the free fall accuracy and the interferometer performance and need to be known at the ˜10 μK Hz-1/2 level in the sub-millihertz frequency range in order to validate the noise models for the future space-based gravitational wave detector LISA. The temperature measurement subsystem on LISA Pathfinder is in charge of monitoring the thermal environment at key locations with noise levels of 7.5 μK Hz-1/2 at the sub-millihertz. However, its performance worsens by one to two orders of magnitude when slowly changing temperatures are measured due to errors introduced by analog-to-digital converter non-linearities. In this paper, we present a method to reduce this effect by data post-processing. The method is applied to experimental data available from on-ground validation tests to demonstrate its performance and the potential benefit for in-flight data. The analog-to-digital converter effects are reduced by a factor between three and six in the frequencies where the errors play an important role. An average 2.7 fold noise reduction is demonstrated in the 0.3 mHz-2 mHz band.

  20. Non-linear quantization error reduction for the temperature measurement subsystem on-board LISA Pathfinder.

    PubMed

    Sanjuan, J; Nofrarias, M

    2018-04-01

    Laser Interferometer Space Antenna (LISA) Pathfinder is a mission to test the technology enabling gravitational wave detection in space and to demonstrate that sub-femto-g free fall levels are possible. To do so, the distance between two free falling test masses is measured to unprecedented sensitivity by means of laser interferometry. Temperature fluctuations are one of the noise sources limiting the free fall accuracy and the interferometer performance and need to be known at the ∼10 μK Hz -1/2 level in the sub-millihertz frequency range in order to validate the noise models for the future space-based gravitational wave detector LISA. The temperature measurement subsystem on LISA Pathfinder is in charge of monitoring the thermal environment at key locations with noise levels of 7.5 μK Hz -1/2 at the sub-millihertz. However, its performance worsens by one to two orders of magnitude when slowly changing temperatures are measured due to errors introduced by analog-to-digital converter non-linearities. In this paper, we present a method to reduce this effect by data post-processing. The method is applied to experimental data available from on-ground validation tests to demonstrate its performance and the potential benefit for in-flight data. The analog-to-digital converter effects are reduced by a factor between three and six in the frequencies where the errors play an important role. An average 2.7 fold noise reduction is demonstrated in the 0.3 mHz-2 mHz band.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenzie, Kirk; Spero, Robert E.; Shaddock, Daniel A.

    For the Laser Interferometer Space Antenna (LISA) to reach its design sensitivity, the coupling of the free-running laser frequency noise to the signal readout must be reduced by more than 14 orders of magnitude. One technique employed to reduce the laser frequency noise will be arm locking, where the laser frequency is locked to the LISA arm length. In this paper we detail an implementation of arm locking. We investigate orbital effects (changing arm lengths and Doppler frequencies), the impact of errors in the Doppler knowledge that can cause pulling of the laser frequency, and the noise limit of armmore » locking. Laser frequency pulling is examined in two regimes: at lock acquisition and in steady state. The noise performance of arm locking is calculated with the inclusion of the dominant expected noise sources: ultrastable oscillator (clock) noise, spacecraft motion, and shot noise. We find that clock noise and spacecraft motion limit the performance of dual arm locking in the LISA science band. Studying these issues reveals that although dual arm locking [A. Sutton and D. A. Shaddock, Phys. Rev. D 78, 082001 (2008)] has advantages over single (or common) arm locking in terms of allowing high gain, it has disadvantages in both laser frequency pulling and noise performance. We address this by proposing a modification to the dual arm-locking sensor, a hybrid of common and dual arm-locking sensors. This modified dual arm-locking sensor has the laser frequency pulling characteristics and low-frequency noise coupling of common arm locking, but retains the control system advantages of dual arm locking. We present a detailed design of an arm-locking controller and perform an analysis of the expected performance when used with and without laser prestabilization. We observe that the sensor phase changes beneficially near unity-gain frequencies of the arm-locking controller, allowing a factor of 10 more gain than previously believed, without degrading stability. With a time-delay error of 3 ns (equivalent of 1 m interspacecraft ranging error), time-delay interferometry (TDI) is capable of suppressing 300 Hz/{radical}(Hz) of laser frequency noise to the required level. We show that if no interspacecraft laser links fail, arm locking alone surpasses this noise performance for the entire mission. If one interspacecraft laser link fails, arm locking alone will achieve this performance for all but approximately 1 h per year, when the arm length mismatch of the two remaining arms passes through zero. Therefore, the LISA sensitivity can be realized with arm locking and time-delay interferometry only, without any form of prestabilization.« less

  2. EDITORIAL: Proceedings of the 8th International LISA Symposium, Stanford University, California, USA, 28 June-2 July 2010 Proceedings of the 8th International LISA Symposium, Stanford University, California, USA, 28 June-2 July 2010

    NASA Astrophysics Data System (ADS)

    Buchman, Sasha; Sun, Ke-Xun

    2011-05-01

    The international research community interested in the Laser Interferometric Space Antenna (LISA) program meets every two years to exchange scientific and technical information. From 28 June-2 July 2010, Stanford University hosted the 8th International LISA Symposium. The symposium was held on the campus of the SLAC National Accelerator Laboratory. Many of the foremost scientific and technological researchers in LISA and gravitational wave theory and detection presented their work and ideas. Over one hundred engineers and graduate students attended the meeting. The leadership from NASA and ESA research centers and programs joined the symposium. A total of 280 delegates participated in the 8th LISA Symposium, and enjoyed the scientific and social programs. The scientific program included 46 invited plenary lectures, 44 parallel talks, and 77 posters, totaling 167 presentations. The one-slide introduction presentation of the posters is a new format in this symposium and allowed graduate students the opportunity to talk in front of a large audience of scientists. The topics covered included LISA Science, LISA Interferometry, LISA PathFinder (LPF), LISA and LPF Data Analysis, Astrophysics, Numerical Relativity, Gravitational Wave Theory, GRS Technologies, Other Space Programs, and Ground Detectors. Large gravitational wave detection efforts, DECIGO, and LIGO were presented, as well as a number of other fundamental physics space experiments, with GP-B and STEP being examples. A public evening lecture was also presented at the symposium. Professor Bernard Schutz from the Albert Einstein Institute gave a general audience, multimedia presentation on `Gravitational waves: Listening to the music of spheres'. For more detailed information about the symposium and many presentation files, please browse through the website: http://www.stanford.edu/group/lisasymposium The Proceedings of the 8th International LISA Symposium are jointly published by Classical and Quantum Gravity (CQG) and Journal of Physics: Conference Series (JPCS). The plenary lectures are published in CQG, while most parallel talks and posters are being published in JPCS. At the recommendation of the science organization committee (SOC) other selected work from the conference will also appear in CQG. All papers in CQG have been screened through the journal's regular peer review process. We gratefully acknowledge the support of the CQG and JPCS Publishers and staff for the publication of the proceedings. The symposium and proceedings are generously sponsored by L'Agenzia Spaziale Italiana, the California Institute of Technology, EADS Astrium Germany, the KACST Foundation Saudi Arabia, the LIGO collaboration, the Max-Planck Institute in Potsdam, Germany, NASA, and the National Science Foundation. Stanford University made very significant contributions through the Dean of Research Office, the Department of Applied Physics, the Department of Physics, the Hansen Experimental Physics Laboratory (HEPL), and the SLAC National Accelerator Laboratory. We thank the Stanford local organization committee (LOC), administration and professional staff, KACST engineers, and graduate students for their support of the symposium operations. LISA is one of the most tantalizing yet challenging scientific space missions ever. The 8th International LISA Symposium and publication of the proceedings contribute to its progress. Sasha Buchman and Ke-Xun Sun Stanford University Guest Editors

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowder, Jeff; Cornish, Neil J.; Reddinger, J. Lucas

    This work presents the first application of the method of genetic algorithms (GAs) to data analysis for the Laser Interferometer Space Antenna (LISA). In the low frequency regime of the LISA band there are expected to be tens of thousands of galactic binary systems that will be emitting gravitational waves detectable by LISA. The challenge of parameter extraction of such a large number of sources in the LISA data stream requires a search method that can efficiently explore the large parameter spaces involved. As signals of many of these sources will overlap, a global search method is desired. GAs representmore » such a global search method for parameter extraction of multiple overlapping sources in the LISA data stream. We find that GAs are able to correctly extract source parameters for overlapping sources. Several optimizations of a basic GA are presented with results derived from applications of the GA searches to simulated LISA data.« less

  4. Concepts and technology development towards a platform for macroscopic quantum experiments in space

    NASA Astrophysics Data System (ADS)

    Kaltenbaek, Rainer

    Tremendous progress has been achieved in space technology over the last decade. This technological heritage promises enabling applications of quantum technology in space already now or in the near future. Heritage in laser and optical technologies from LISA Pathfinder comprises core technologies required for quantum optical experiments. Low-noise micro-thruster technology from GAIA allows achieving an impressive quality of microgravity, and passive radiative cooling approaches as in the James Webb Space Telescope may be adapted for achieving cryogenic temperatures. Developments like these have rendered space an increasingly attractive platform for quantum-enhanced sensing and for fundamental tests of physics using quantum technology. In particular, there already have been significant efforts towards ralizing atom interferometry and atomic clocks in space as well as efforts to harness space as an environment for fundamental tests of physics using quantum optomechanics and high-mass matter-wave interferometry. Here, we will present recent efforts in spacecraft design and technology development towards this latter goal in the context of the mission proposal MAQRO.

  5. HELLFIRE 6-DOF Simulation Validation for Stockpile Reliability Program with Seeker Test Data

    DTIC Science & Technology

    1994-09-12

    Research, Development and Engineering Centeri U.S. Army Missile Command Willy Albanes and Eddie Hammons COLSA Corporation Lisa Collins AMTEC Corporation I...I 3 AMTEC Corporation ATTN: Lisa Collins 500 Wynn Drive, Suite 314 H

  6. Laser interferometer space antenna dynamics and controls model

    NASA Astrophysics Data System (ADS)

    Maghami, Peiman G.; Tupper Hyde, T.

    2003-05-01

    A 19 degree-of-freedom (DOF) dynamics and controls model of a laser interferometer space antenna (LISA) spacecraft has been developed. This model is used to evaluate the feasibility of the dynamic pointing and positioning requirements of a typical LISA spacecraft. These requirements must be met for LISA to be able to successfully detect gravitational waves in the frequency band of interest (0.1-100 mHz). The 19-DOF model includes all rigid-body degrees of freedom. A number of disturbance sources, both internal and external, are included. Preliminary designs for the four control systems that comprise the LISA disturbance reduction system (DRS) have been completed and are included in the model. Simulation studies are performed to demonstrate that the LISA pointing and positioning requirements are feasible and can be met.

  7. Acceleration Noise Measurements for LISA

    NASA Astrophysics Data System (ADS)

    Schlamminger, Stephan; Gundlach, Jens

    2005-04-01

    The close spacing between the proof mass and the housing in the LISA (Laser Interferometer Space Antenna) spacecraft has been a concern as there may be spurious feeble forces. Such forces may limit the performance of the gravity wave detector at frequencies below 3 mHz and must be studied experimentally. We are performing ultra sensitive torsion balance tests to investigate such effects. Our torsion pendulum and a nearby plate are designed to simulate the LISA proof mass with its adjacent housing surface. We study torque noise on the pendulum as a function of separation between the surfaces. In order to exceed the LISA requirement we are probing the acceleration noise at much closer separations, than those planned for LISA. We have taken data at separations as small as 0.15 mm.

  8. Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer.

    PubMed

    Hechenblaikner, Gerald

    2013-05-01

    High precision metrology systems based on heterodyne interferometry can measure the position and attitude of objects to accuracies of picometer and nanorad, respectively. A frequently found feature of the general system design is the subtraction of a reference phase from the phase of the position interferometer, which suppresses low frequency common mode amplitude and phase fluctuations occurring in volatile optical path sections shared by both the position and reference interferometer. Spectral components of the noise at frequencies around or higher than the heterodyne frequency, however, are generally transmitted into the measurement band and may limit the measurement accuracy. Detailed analytical calculations complemented with Monte Carlo simulations show that high frequency noise components may also be entirely suppressed, depending on the relative difference of measurement and reference phase, which may be exploited by corresponding design provisions. While these results are applicable to any heterodyne interferometer with certain design characteristics, specific calculations and related discussions are given for the example of the optical metrology system of the LISA Pathfinder mission to space.

  9. Quantum Interferometry

    NASA Technical Reports Server (NTRS)

    Dowling, Jonathan P.

    2000-01-01

    Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.

  10. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  11. Micrometeorite Science with LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Pagane, Nicole; Thorpe, James Ira; Littenberg, Tyson; Littenberg, Tyson; Baker, John; Slutsky, Jacob; Hourihane, Sophie; LISA Pathfinder Team

    2018-01-01

    The primary objective of LISA Pathfinder (LPF) was to demonstrate drag-free control of test masses—along with the technology necessary to maintain the inertial motion—that LISA (Laser Interferometer Space Antenna) would later utilize as a space-based gravitational wave observatory. Due to the precise interferometry used during the mission, LPF could be employed as an accelerometer and used to detect micrometeorite impacts while in orbit about the Sun-Earth Lagrange Point L1. To infer micrometeorite impacts, the flight data was processed for event reconstruction to determine external acceleration of LPF; impact parameters were then estimated through a Markov-Chain Monte-Carlo (MCMC) tool via Bayesian analysis by fitting delta functions in the acceleration domain. As impact candidates were collected, a catalog of event data was curated with the reconstructed estimated parameters, among which were impact sky localizations that were later rotated into more intuitive reference frames. To infer the results of this dust modeling technique, current micrometeorite models were compared to the impact data. In the final reference frame common to the available micrometeorite models, the reconstructed impacts appear to cluster at (±90°, 0°)—where impacts prograde in this longitude-latitude frame were at (-90°, 0°), retrograde were (90°, 0°), and the sun was centered at the origin. The two available models used for comparison were of the Jupiter-family comets (JFC) and Halley-type comets (HTC), which clustered primarily around (±90°, 0°) and (0°, ±20°) respectively. This suggests that the JFC population seems to account for the majority of the impacts detected by LPF. The models’ expected rates given localization and velocity are currently being compared to the reconstructed data to further characterize the micrometeorite populations at L1. We will present our current analysis of this data set and discuss possibilities of extending such an analysis for LISA.

  12. Acoustic waves and the detectability of first-order phase transitions by eLISA

    NASA Astrophysics Data System (ADS)

    Weir, David J.

    2017-05-01

    In various extensions of the Standard Model it is possible that the electroweak phase transition was first order. This would have been a violent process, involving the formation of bubbles and associated shock waves. Not only would the collision of these bubbles and shock waves be a detectable source of gravitational waves, but persistent acoustic waves could enhance the signal and improve prospects of detection by eLISA. I summarise the results of a recent campaign to model such a phase transition based on large-scale hydrodynamical simulations, and its implications for the eLISA mission.

  13. Reconstructing the dark sector interaction with LISA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Rong-Gen; Yang, Tao; Tamanini, Nicola, E-mail: cairg@itp.ac.cn, E-mail: nicola.tamanini@cea.fr, E-mail: yangtao@itp.ac.cn

    We perform a forecast analysis of the ability of the LISA space-based interferometer to reconstruct the dark sector interaction using gravitational wave standard sirens at high redshift. We employ Gaussian process methods to reconstruct the distance-redshift relation in a model independent way. We adopt simulated catalogues of standard sirens given by merging massive black hole binaries visible by LISA, with an electromagnetic counterpart detectable by future telescopes. The catalogues are based on three different astrophysical scenarios for the evolution of massive black hole mergers based on the semi-analytic model of E. Barausse, Mon. Not. Roy. Astron. Soc. 423 (2012) 2533.more » We first use these standard siren datasets to assess the potential of LISA in reconstructing a possible interaction between vacuum dark energy and dark matter. Then we combine the LISA cosmological data with supernovae data simulated for the Dark Energy Survey. We consider two scenarios distinguished by the time duration of the LISA mission: 5 and 10 years. Using only LISA standard siren data, the dark sector interaction can be well reconstructed from redshift z ∼1 to z ∼3 (for a 5 years mission) and z ∼1 up to z ∼5 (for a 10 years mission), though the reconstruction is inefficient at lower redshift. When combined with the DES datasets, the interaction is well reconstructed in the whole redshift region from 0 z ∼ to z ∼3 (5 yr) and z ∼0 to z ∼5 (10 yr), respectively. Massive black hole binary standard sirens can thus be used to constrain the dark sector interaction at redshift ranges not reachable by usual supernovae datasets which probe only the z ∼< 1.5 range. Gravitational wave standard sirens will not only constitute a complementary and alternative way, with respect to familiar electromagnetic observations, to probe the cosmic expansion, but will also provide new tests to constrain possible deviations from the standard ΛCDM dynamics, especially at high redshift.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wass, P. J.; Araujo, H.; Sumner, T.

    We present the concept, design and testing of the radiation monitor for LISA Pathfinder. Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) will cause charging of the LISA Pathfinder test masses producing unwanted disturbances which could be significant during a large solar eruption. A radiation monitor on board LISA Pathfinder, using silicon PIN diodes as particle detectors, will measure the particle flux responsible for charging. It will also be able to record spectral information to identify solar energetic particle events. The design of the monitor was supported by Monte Carlo simulations which allow detailed predictions of the radiation monitormore » performance. We present these predictions as well as the results of high-energy proton tests carried out at the Paul Scherrer Institute, Switzerland. The tests show good agreement with our simulations and confirm the capability of the radiation monitor to perform well in the space environment, meeting all science requirements.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorpe, J. I.; Livas, J.; Maghami, P.

    Arm locking is a proposed laser frequency stabilization technique for the Laser Interferometer Space Antenna (LISA), a gravitational-wave observatory sensitive in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that compose LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of a Kalman-filter-based arm-locking system that includes the expected limiting noise sources as well as the effects of imperfect a priorimore » knowledge of the constellation geometry on which the design is based. We use the simulation to study aspects of the system performance that are difficult to capture in a steady-state frequency-domain analysis such as frequency pulling of the master laser due to errors in estimates of heterodyne frequency. We find that our implementation meets requirements on both the noise and dynamic range of the laser frequency with acceptable tolerances and that the design is sufficiently insensitive to errors in the estimated constellation geometry that the required performance can be maintained for the longest continuous measurement intervals expected for the LISA mission.« less

  16. TDRS orbit determination by radio interferometry

    NASA Technical Reports Server (NTRS)

    Pavloff, Michael S.

    1994-01-01

    In support of a NASA study on the application of radio interferometry to satellite orbit determination, MITRE developed a simulation tool for assessing interferometry tracking accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE models the statistical properties of tracking error sources, including inherent observable imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in the predicted satellites state vector. This paper presents results from ODAE application to orbit determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry. Conclusions about optimal ground station locations for interferometric tracking of TDRS are presented, along with a discussion of operational advantages of radio interferometry.

  17. Multi-Messenger Astronomy: White Dwarf Binaries, LISA and GAIA

    NASA Astrophysics Data System (ADS)

    Bueno, Michael; Breivik, Katelyn; Larson, Shane L.

    2017-01-01

    The discovery of gravitational waves has ushered in a new era in astronomy. The low-frequency band covered by the future LISA detector provides unprecedented opportunities for multi-messenger astronomy. With the Global Astrometric Interferometer for Astrophysics (GAIA) mission, we expect to discover about 1,000 eclipsing binary systems composed of a WD and a main sequence star - a sizeable increase from the approximately 34 currently known binaries of this type. In advance of the first GAIA data release and the launch of LISA within the next decade, we used the Binary Stellar Evolution (BSE) code simulate the evolution of White Dwarf Binaries (WDB) in a fixed galaxy population of about 196,000 sources. Our goal is to assess the detectability of a WDB by LISA and GAIA using the parameters from our population synthesis, we calculate GW strength h, and apparent GAIA magnitude G. We can then use a scale factor to make a prediction of how many multi- messenger sources we expect to be detectable by both LISA and GAIA in a galaxy the size of the Milky Way. We create binaries 10 times to ensure randomness in distance assignment and average our results. We then determined whether or not astronomical chirp is the difference between the total chirp and the GW chirp. With Astronomical chirp and simulations of mass transfer and tides, we can gather more information about the internal astrophysics of stars in ultra-compact binary systems.

  18. The Mock LISA Data Challenge Round 3: New and Improved Sources

    NASA Technical Reports Server (NTRS)

    Baker, John

    2008-01-01

    The Mock LISA Data Challenges are a program to demonstrate and encourage the development of data-analysis capabilities for LISA. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants are asked to analyze the data sets and report the maximum information they can infer about the source parameters. The challenges are being released in rounds of increasing complexity and realism. Challenge 3. currently in progress, brings new source classes, now including cosmic-string cusps and primordial stochastic backgrounds, and more realistic signal models for supermassive black-hole inspirals and galactic double white dwarf binaries.

  19. A Detection Pipeline for Galactic Binaries in LISA Data

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2012-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers) etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise - over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract greater than or equal to 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  20. Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caprini, Chiara; Tamanini, Nicola, E-mail: chiara.caprini@cea.fr, E-mail: nicola.tamanini@cea.fr

    We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 ∼< zmore » ∼< 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z ∼< 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, L.; Ciani, G.; Dolesi, R.

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensormore » that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.« less

  2. Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Nabias, Laurent; Schanen, Isabelle; Berger, Jean-Philippe; Kern, Pierre; Malbet, Fabien; Benech, Pierre

    2018-04-01

    This paper, "Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  3. Interferometric Techniques for Gravitational Wave Detection in Space

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T; Bender, Peter L.

    2000-01-01

    The Laser Interferometer Space Antenna (LISA) mission will detect gravitational waves from galactic and extragalactic sources, most importantly those involving supermassive black holes. The primary goal of this project is to investigate stability and robustness issues associated with LISA interferometry. We specifically propose to study systematic errors arising from: optical misalignments, optical surface errors, thermal effects and pointing tolerances. This report covers the first fiscal year of the grant, from January 1st to December 31st 1999. We have employed an optical modeling tool to evaluate the effect of misplaced and misaligned optical components. Preliminary results seem to indicate that positional tolerances of one micron and angular tolerances of 0.6 millirad produce no significant effect on the achievable contrast of the interference pattern. This report also outlines research plans for the second fiscal year of the grant, from January 1st to December 31st 2000. Since the work under NAG5-6880 has gone more rapidly than projected, our test bed interferometer is operational, and can be used for measurements of effects that cause beam motion. Hence, we will design, build and characterize a sensor for measuring beam motion, and then install it. We are also planning a differential wavefront sensor based on a quadrant photodiode as a first generation sensor.

  4. Precision Measurement of Black Hole Binary Dynamics: Analyzing the LISA Data Stream

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Thorpe, James Ira; Baker, John G.; Arnaud, Keith A.; Kelly, Bernard J.

    2008-01-01

    One of the richest potential sources of insight into fundamental physics that LISA will be capable of observing is the inspiral of supermassive black hole binaries (BHBs). However, the data analysis challenge presented by the LISA data stream is quite unlike the situation for present day gravitational wave detectors. In order to make the precision measurements necessary to achieve LISA's science goals, the BHB signal must be distinguished from a data stream that not only contains instrumental noise, but potentially thousands of other signals as well, so that the "background" we wish to separate out to focus on the BHB signal is likely to be highly nonstationary and nongaussian, as well as being of scientific interest in its own right. In addition, whereas the theoretical templates that we calculate in order to ultimately estimate the parameters can afford to be somewhat inaccurate and still be effective for present day and near future detectors, this is not the case for LISA, and extremely high fidelity of the theoretical templates for high signal-to-noise signals will be required to prevent theoretical errors from dominating the parameter estimates. NVe, will describe efforts in the community of LISA data analysts to address the challenges regarding the specific issue of BHB signals. These efforts include using a Markov Chain Monte Carlo approach with the freedom to model the BHB and the other signals present in the data stream simultaneously, rather than trying to remove other signals and risk biasing the remaining data. The Mock LISA Data Challenge is a community of LISA scientists who generate rounds of simulated LISA noise with increasingly difficult signal content, and invite the LISA data analysis community to exercise their methods, or develop new methods, in an attempt to extract the parameters for the signals embedded in the mock data. In addition to practical approaches such ,is this to assess the level of parameter accuracy, one can apply the Fisher matrix formalism to assess both the statistical errors from noise and the theoretical errors

  5. A Galactic Binary Detection Pipeline

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2011-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  6. Molecular laser stabilization for LISA

    NASA Astrophysics Data System (ADS)

    Halloin, Hubert; Acef, Ouali; Argence, Berengere; Jeannin, Olivier; Prat, Pierre; de Vismes, Eden; Plagnol, Eric; Brillet, Alain; Mondin, Linda; Berthon, Jacques; Turazza, Oscar

    2017-11-01

    The expected performance of LISA relies on two main technical challenges: the ability for the spacecrafts to precisely follow the free-flying masses and the outstanding precision of the phase shift measurement. This latter constraint requires frequency stabilized lasers and efficient numerical algorithms to account for the redundant, delayed noise propagation, thus cancelling laser phase noise by many orders of magnitude (TDI methods). Recently involved in the technical developments for LISA, the goal of our team at APC (France) is to contribute on these two subjects: frequency reference for laser stabilization and benchtop simulation of the interferometer. In the present design of LISA, two stages of laser stabilization are used (not accounting for the "post-processed" TDI algorithm): laser pre-stabilization on a frequency reference and lock on the ultra stable distance between spacecrafts (arm-locking). While the foreseen (and deeply studied) laser reference consists of a Fabry-Perot cavity, other techniques may be suitable for LISA or future metrology missions. In particular, locking to a molecular reference (namely iodine in the case of the LISA Nd:YAG laser) is an interesting alternative. It offers the required performance with very good long-term stability (absolute frequency reference) though the reference can be slightly tuned to account for arm-locking. This technique is currently being investigated by our team and optimized for LISA (compactness, vacuum compatibility, ease of use and initialization, etc.). A collaboration with a French laboratory (the SYRTE) had been started aiming to study a second improved technique consisting in inserting the iodine cell in a Fabry-Perot cavity. Ongoing results and prospects to increase the performance of the system are presented in the present article.

  7. A proto-Data Processing Center for LISA

    NASA Astrophysics Data System (ADS)

    Cavet, Cécile; Petiteau, Antoine; Le Jeune, Maude; Plagnol, Eric; Marin-Martholaz, Etienne; Bayle, Jean-Baptiste

    2017-05-01

    The LISA project preparation requires to study and define a new data analysis framework, capable of dealing with highly heterogeneous CPU needs and of exploiting the emergent information technologies. In this context, a prototype of the mission’s Data Processing Center (DPC) has been initiated. The DPC is designed to efficiently manage computing constraints and to offer a common infrastructure where the whole collaboration can contribute to development work. Several tools such as continuous integration (CI) have already been delivered to the collaboration and are presently used for simulations and performance studies. This article presents the progress made regarding this collaborative environment and discusses also the possible next steps towards an on-demand computing infrastructure. This activity is supported by CNES as part of the French contribution to LISA.

  8. Multi-link laser interferometer architecture for a next generation GRACE

    NASA Astrophysics Data System (ADS)

    Francis, Samuel Peter

    When GRACE Follow-On (GRACE-FO) launches, it will be the first time a laser interferometer has been used to measure displacement between spacecraft. In the future, interspacecraft laser interferometry will be used in LISA, a space-based gravitational wave detector, that requires the change in separation between three spacecraft to be measured with a resolution of 1 pm/rtHz. The sensitivity of an interspacecraft interferometer is potentially limited by spacecraft degrees-of-freedom, such as rotation, coupling into the interspacecraft displacement measurement. GRACE-FO and LISA therefore have strict requirements placed on the positioning and alignment of the interferometers during spacecraft integration. Decades of work has gone into adapting traditionally lab-based techniques for these space applications. As an example, GRACE-FO stops rotation of the two spacecraft from coupling into displacement using the triple mirror assembly. The triple mirror assembly is a precision optic, comprised of three mirrors, that function as a retroreflector. Provided the triple mirror assembly vertex coincides with the spacecraft centre of mass, any spacecraft rotation will asymmetrically lengthen and shorten the optical pathlengths of the incoming and outgoing beams, ensuring that the round trip pathlength between the spacecraft is unaffected. To achieve the required displacement sensitivity, the triple mirror assembly vertex must be positioned within 0.5 mm of the spacecraft centre of mass, making spacecraft integration challenging. In this thesis a new, all-fibre interferometer architecture is presented that aims to simplify the positioning and alignment of space-based interferometers. Using multiple interspacecraft link measurements and high-speed signal processing the interspacecraft displacement is synthesised in post-processing. The multi-link interferometry concept is similar to the triple mirror assembly's symmetric suppression of rotation, however, since the rotation-to-pathlength cancellation is performed in post-processing, the weighting of each interspacecraft link measurement can be optimised to completely cancel any rotation coupled error. Consequently, any uncertainty in the positioning of the multi-link interferometer during spacecraft integration can be corrected for in post-processing. The strict hardware integration requirements of current interferometers can therefore be relaxed, enabling a new class of simpler, cheaper missions. (Abstract shortened by ProQuest.).

  9. Picometer resolution interferometric characterization of the dimensional stability of zero CTE CFRP

    NASA Astrophysics Data System (ADS)

    Cordero Machado, Jorge; Heinrich, Thomas; Schuldt, Thilo; Gohlke, Martin; Lucarelli, Stefano; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2008-07-01

    Highly stable but lightweight structural materials are essential for the realization of spaceborne optical instruments, for example telescopes. In terms of optical performance, usually tight tolerances on the absolute spacing between telescope mirrors have to be maintained from integration on ground to operation in final orbit. Furthermore, a certain stability of the telescope structure must typically be ensured in the measurement band. Particular challenging requirements have to be met for the LISA Mission (Laser Interferometer Space Antenna), where the spacing between primary and secondary mirror must be stable to a few picometers. Only few materials offer sufficient thermal stability to provide such performance. Candidates are for example Zerodur and Carbon-Fiber Reinforced Plastic (CFRP), where the latter is preferred in terms of mechanical stiffness and robustness. We are currently investigating the suitability of CFRP with respect to the LISA requirements by characterization of its dimensional stability with heterodyne laser interferometry. The special, highly symmetric interferometer setup offers a noise level of 2 pm/√Hz at 0.1Hz and above, and therefore represents a unique tool for this purpose. Various procedures for the determination of the coefficient of thermal expansion (CTE) have been investigated, both on a test sample with negative CTE, as well as on a CFRP tube specifically tuned to provide a theoretical zero expansion in the axial dimension.

  10. Massive Black Hole Mergers: Can we see what LISA will hear?

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    Coalescing massive black hole binaries are formed when galaxies merge. The final stages of this coalescence produce strong gravitational wave signals that can be detected by the space-borne LISA. When the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  11. Massive Black Hole Mergers: Can We "See" what LISA will "Hear"?

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2010-01-01

    The final merger of massive black holes produces strong gravitational radiation that can be detected by the space-borne LISA. If the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We will review current efforts to simulate these systems, and discuss possibilities for observing the electromagnetic signals they produce.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, Joey Shapiro; Cornish, Neil J.

    The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full 17 parameter waveform model that includes the effects of orbital eccentricity, spinmore » precession, and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the eccentricity can be measured depends only very weakly on the eccentricity, making it possible to distinguish circular orbits from those with very small eccentricities. LISA measurements of the orbital eccentricity can help constraints theories of galaxy mergers in the early universe. Failing to account for the eccentricity in the waveform modeling can lead to a loss of signal power and bias the estimation of parameters such as the black hole masses and spins.« less

  13. Detection of Double White Dwarf Binaries with Gaia, LSST and eLISA

    NASA Astrophysics Data System (ADS)

    Korol, V.; Rossi, E. M.; Groot, P. J.

    2017-03-01

    According to simulations around 108 double degenerate white dwarf binaries are expected to be present in the Milky Way. Due to their intrinsic faintness, the detection of these systems is a challenge, and the total number of detected sources so far amounts only to a few tens. This will change in the next two decades with the advent of Gaia, the LSST and eLISA. We present an estimation of how many compact DWDs with orbital periods less than a few hours we will be able to detect 1) through electromagnetic radiation with Gaia and LSST and 2) through gravitational wave radiation with eLISA. We find that the sample of simultaneous electromagnetic and gravitational waves detections is expected to be substantial, and will provide us a powerful tool for probing the white dwarf astrophysics and the structure of the Milky Way, letting us into the era of multi-messenger astronomy for these sources.

  14. Engineering of the LISA Pathfinder mission—making the experiment a practical reality

    NASA Astrophysics Data System (ADS)

    Warren, Carl; Dunbar, Neil; Backler, Mike

    2009-05-01

    LISA Pathfinder represents a unique challenge in the development of scientific spacecraft—not only is the LISA Test Package (LTP) payload a complex integrated development, placing stringent requirements on its developers and the spacecraft, but the payload also acts as the core sensor and actuator for the spacecraft, making the tasks of control design, software development and system verification unusually difficult. The micro-propulsion system which provides the remaining actuation also presents substantial development and verification challenges. As the mission approaches the system critical design review, flight hardware is completing verification and the process of verification using software and hardware simulators and test benches is underway. Preparation for operations has started, but critical milestones for LTP and field effect electric propulsion (FEEP) lie ahead. This paper summarizes the status of the present development and outlines the key challenges that must be overcome on the way to launch.

  15. Mapping the Milky Way Galaxy with LISA

    NASA Technical Reports Server (NTRS)

    McKinnon, Jose A.; Littenberg, Tyson

    2012-01-01

    Gravitational wave detectors in the mHz band (such as the Laser Interferometer Space Antenna, or LISA) will observe thousands of compact binaries in the galaxy which can be used to better understand the structure of the Milky Way. To test the effectiveness of LISA to measure the distribution of the galaxy, we simulated the Close White Dwarf Binary (CWDB) gravitational wave sky using different models for the Milky Way. To do so, we have developed a galaxy density distribution modeling code based on the Markov Chain Monte Carlo method. The code uses different distributions to construct realizations of the galaxy. We then use the Fisher Information Matrix to estimate the variance and covariance of the recovered parameters for each detected CWDB. This is the first step toward characterizing the capabilities of space-based gravitational wave detectors to constrain models for galactic structure, such as the size and orientation of the bar in the center of the Milky Way

  16. Binary Black Hole Late Inspiral: Simulations for Gravitational Wave Observations

    NASA Technical Reports Server (NTRS)

    Baker, John G.; vanMeter, James R.; Centrella, Joan; Choi, Dae-Il; Kelly, Bernard J.; Koppitz, Michael

    2006-01-01

    Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the spacebased interferometer LISA. Until recently it has been impossible to reliably derive the predictions of General Relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late inspiral stage on orbits with very low eccentricity and evolve for approximately 1200M through approximately 7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass approximately 14 cycles before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when comparing models. Matching our results to PN calculations for the earlier parts of the inspiral provides a combined waveform with less than half a cycle of accumulated phase error through the entire coalescence. Using this waveform, we calculate signal-to-noise ratios (SNRs) for iLIGO, adLIGO, and LISA, highlighting the contributions from the late-inspiral and merger-ringdown parts of the waveform which can now be simulated numerically. Contour plots of SNR as a function of z and M show that adLIGO can achieve SNR 2 10 for some IMBBHs out to z approximately equals 1, and that LISA can see MBBHs in the range 3 x 10(exp 4) approximately < M/Mo approximately < 10(exp 7) at SNR > 100 out to the earliest epochs of structure formation at z > 15.

  17. Merging Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Jinzhong; Han Zhanwen; Zhang Fenghui

    Close double white dwarfs (CDWDs) are believed to dominate the Galactic gravitational wave (GW) radiation in the frequency range 10{sup -4} to 0.1 Hz, which will be detected by the Laser Interferometer Space Antenna (LISA) detector. The aim of this detector is to detect GW radiation from astrophysical sources in the universe and to help improve our understanding of the origin of the sources and their physical properties (masses and orbital periods). In this paper, we study the probable candidate sources in the Galaxy for the LISA detector: CDWDs. We use the binary population synthesis approach of CDWDs together withmore » the latest findings of the synthesis models from Han, who proposed three evolutionary channels: (1) stable Roche lobe overflow plus common envelope (RLOF+CE), (2) CE+CE, and (3) exposed core plus CE. As a result, we systematically investigate the detailed physical properties (the distributions of masses, orbital periods, and chirp masses) of the CDWD sources for the LISA detector, examine the importance of the three evolutionary channels for the formation of CDWDs, and carry out Monte Carlo simulations. Our results show that RLOF+CE and CE+CE are the main evolutionary scenarios leading to the formation of CDWDs. For the LISA detectable sources, we also explore and discuss the importance of these three evolutionary channels. Using the calculated birth rate, we compare our results to the LISA sensitivity curve and the foreground noise floor of CDWDs. We find that our estimate for the number of CDWD sources that can be detected by the LISA detector is greater than 10,000. We also find that the detectable CDWDs are produced via the CE+CE channel and we analyze the fraction of the detectable CDWDs that are double helium (He+He), or carbon-oxygen plus helium (CO+He) WD binary systems.« less

  19. LISA Framework for Enhancing Gravitational Wave Signal Extraction Techniques

    NASA Technical Reports Server (NTRS)

    Thompson, David E.; Thirumalainambi, Rajkumar

    2006-01-01

    This paper describes the development of a Framework for benchmarking and comparing signal-extraction and noise-interference-removal methods that are applicable to interferometric Gravitational Wave detector systems. The primary use is towards comparing signal and noise extraction techniques at LISA frequencies from multiple (possibly confused) ,gravitational wave sources. The Framework includes extensive hybrid learning/classification algorithms, as well as post-processing regularization methods, and is based on a unique plug-and-play (component) architecture. Published methods for signal extraction and interference removal at LISA Frequencies are being encoded, as well as multiple source noise models, so that the stiffness of GW Sensitivity Space can be explored under each combination of methods. Furthermore, synthetic datasets and source models can be created and imported into the Framework, and specific degraded numerical experiments can be run to test the flexibility of the analysis methods. The Framework also supports use of full current LISA Testbeds, Synthetic data systems, and Simulators already in existence through plug-ins and wrappers, thus preserving those legacy codes and systems in tact. Because of the component-based architecture, all selected procedures can be registered or de-registered at run-time, and are completely reusable, reconfigurable, and modular.

  20. Bayesian inference on EMRI signals using low frequency approximations

    NASA Astrophysics Data System (ADS)

    Ali, Asad; Christensen, Nelson; Meyer, Renate; Röver, Christian

    2012-07-01

    Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions.

  1. NASA's Preparations for ESA's L3 Gravitational Wave Mission

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2016-01-01

    Telescope Subsystem - Jeff Livas (GSFC): Demonstrate pathlength stability, straylight and manufacturability. Phase Measurement System - Bill Klipstein (JPL): Key measurement functions demonstrated. Incorporate full flight functionality. Laser Subsystem - Jordan Camp (GSFC): ECL master oscillator, phase noise of fiber power amplifier, demonstrate end-to-end performance in integrated system, lifetime. Micronewton Thrusters - John Ziemer (JPL): Propellant storage and distribution, system robustness, manufacturing yield, lifetime. Arm-locking Demonstration - Kirk McKenzie (JPL): Studying a demonstration of laser frequency stabilization with GRACE Follow-On. Torsion Pendulum - John Conklin (UF): Develop U.S. capability with GRS and torsion pendulum test bed. Multi-Axis Heterodyne Interferometry - Ira Thorpe (GSFC): Investigate test mass/optical bench interface. UV LEDs - John Conklin+ (UF): Flight qualify UV LEDs to replace mercury lamps in discharging system. Optical Bench - Guido Mueller (UF): Investigate alternate designs and fabrication processes to ease manufacturability. LISA researchers at JPL are leading the Laser Ranging Interferometer instrument on the GRACE Follow-On mission.

  2. Systemic errors calibration in dynamic stitching interferometry

    NASA Astrophysics Data System (ADS)

    Wu, Xin; Qi, Te; Yu, Yingjie; Zhang, Linna

    2016-05-01

    The systemic error is the main error sauce in sub-aperture stitching calculation. In this paper, a systemic error calibration method is proposed based on pseudo shearing. This method is suitable in dynamic stitching interferometry for large optical plane. The feasibility is vibrated by some simulations and experiments.

  3. Doppler synthetic aperture radar interferometry: a novel SAR interferometry for height mapping using ultra-narrowband waveforms

    NASA Astrophysics Data System (ADS)

    Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.

    2018-05-01

    This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.

  4. An Interferometry Imaging Beauty Contest

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy; hide

    2004-01-01

    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  5. The Prospects of SAS Interferometry for Detection and Classification (SAS Interferometrie voor Detectie en Classificatie)

    DTIC Science & Technology

    2008-10-01

    DV2008A176 Opdrachtnummer Datum October 2008 Auteur (s) dr. R. van Vossen B.A.J. Quesson dr.ir. J.C. Sabel Rubricering rapport Ongerubriceerd TH9...TNO report | TNO-DV 2008 A176 4/44 Summary This report presents an overview of the theory and implementation of interferometric SAS processing at TNO... theory in software has been tested on two types of data, simulated and measured. Chapter 3 presents results obtained with simulated data; Chapter 4

  6. Very Long Baseline Interferometry Applied to Polar Motion, Relativity and Geodesy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Ma, C.

    1978-01-01

    The causes and effects of diurnal polar motion are described. An algorithm is developed for modeling the effects on very long baseline interferometry observables. Five years of radio-frequency very long baseline interferometry data from stations in Massachusetts, California, and Sweden are analyzed for diurnal polar motion. It is found that the effect is larger than predicted by McClure. Corrections to the standard nutation series caused by the deformability of the earth have a significant effect on the estimated diurnal polar motion scaling factor and the post-fit residual scatter. Simulations of high precision very long baseline interferometry experiments taking into account both measurement uncertainty and modeled errors are described.

  7. Direct modeling of coda wave interferometry: comparison of numerical and experimental approaches

    NASA Astrophysics Data System (ADS)

    Azzola, Jérôme; Masson, Frédéric; Schmittbuhl, Jean

    2017-04-01

    The sensitivity of coda waves to small changes of the propagation medium is the principle of the coda waves interferometry, a technique which has been found to have a large range of applications over the past years. It exploits the evolution of strongly scattered waves in a limited region of space, to estimate slight changes like the wave velocity of the medium but also the location of scatterer positions or the stress field. Because of the sensitivity of the method, it is of a great value for the monitoring of geothermal EGS reservoir in order to detect fine changes. The aim of this work is thus to monitor the impact of different scatterer distributions and of the loading condition evolution using coda wave interferometry in the laboratory and numerically by modelling the scatter wavefield. In the laboratory, we analyze the scattering of an acoustic wave through a perforated loaded plate of DURAL. Indeed, the localized damages introduced behave as a scatter source. Coda wave interferometry is performed computing correlations of waveforms under different loading conditions, for different scatter distributions. Numerically, we used SPECFEM2D (a 2D spectral element code, (Komatitsch and Vilotte (1998)) to perform 2D simulations of acoustic and elastic seismic wave propagation and enables a direct comparison with laboratory and field results. An unstructured mesh is thus used to simulate the propagation of a wavelet in a loaded plate, before and after introduction of localized damages. The linear elastic deformation of the plate is simulated using Code Aster. The coda wave interferometry is performed similarly to experimental measurements. The accuracy of the comparison of the numerically and laboratory obtained results is strongly depending on the capacity to adapt the laboratory and numerical simulation conditions. In laboratory, the capacity to illuminate the medium in a similar way to that used in the numerical simulation deeply conditions among others the comparison. In the simulation, the gesture of the mesh and its dispersion also influences the rightness of the comparison and interpretation. Moreover, the spectral elements distribution of the mesh and its relative refinement could also be considered as an interesting scatter source.

  8. Optical Bench for LISA-like missions

    NASA Astrophysics Data System (ADS)

    Mueller, Guido

    The detection of B-modes in the μ-Wave background has rattled the scientific community and further enhanced the large scientific interest in gravitational waves and gravitational wave astronomy. The first direct detection of gravitational waves by Advanced LIGO and maybe also by pulsar timing arrays in the second half of this decade will be another watershed event which will start a new era in astronomy and astrophysics. However, the holy grail of gravitational wave astronomy will be opened by a LISA-like mission. Only space provides the environment that allows to cover the signal-rich mHz frequency range where we expect to see gravitational waves from massive black hole mergers, compact galactic binaries, and many other sources. All mature concepts use laser interferometry between free falling test masses separated by millions of km. The central piece in all these concepts is a stable optical bench which is used to prepare and exchange the laser beams between the different arms. It has always been assumed that the base material for the optical bench has to be one of the ultra-low expansion glasses such as Zerodur or ULE to meet the pm/#Hz stability requirements. This very conservative approach was a reflection of the state-of-the-art in frequency stabilization experiments which used optical reference cavities in the early ‘90s. It is not surprising that the LISA pathfinder (LPF) uses also an all Zerodur bench where each optical component is precision bonded to the bench using hydroxide bonding, a nonreversible bonding technique. The manufacturing of this bench was a very time consuming one-mirror-a-day effort and was one of the highest risk items in terms of schedule and cost. The original LISA design uses the same approach except that the LISA bench is far more complex than the LPF bench and manufacturing of the required 10+ benches, six flight units and at least four pre-flight models and spares, will be even more time consuming and expensive. We question the need for ultra-low expansion glass for the optical bench. We will streamline the design of the bench and explore other materials and assembly techniques to significantly simplify the manufacturing process. Why are we confident that this is possible? One argument is that in early LISA designs the reference cavity was also part of the bench. This cavity drove the requirements to 30 fm/#Hz, a factor 30 more stringent compared to the current requirements. Since the cavity has now been removed from the bench, the requirements have been relaxed. A second argument is that we demonstrated pm/#Hz performance for a number of different materials and structures which are all candidate materials for the telescopes which also have to meet the same requirements over actually a larger distance. Our objective is to take a fresh look at the optical bench. We will redesign core parts of the interferometer bench with a focus on reducing the number and lengths of critical paths and moving non-critical parts away from the core part of the bench and sometimes even into optical fibers. We also propose to use different materials and assembly techniques for the optical bench and strongly believe that they will still meet the pm/#Hz requirement and will also be stable on long time scales. This confidence is based on nearly ten years of experience during which we investigated different materials and structures for the telescopes which we plan to apply now to the optical bench.

  9. Binary black hole late inspiral: Simulations for gravitational wave observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, John G.; Centrella, Joan; Kelly, Bernard J.

    2007-06-15

    Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Until recently it has been impossible to reliably derive the predictions of general relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late-inspiral stage on orbitsmore » with very low eccentricity and evolve for {approx}1200M through {approx}7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass {approx}14 cycle before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when comparing models. Matching our results to post-Newtonian (PN) calculations for the earlier parts of the inspiral provides a combined waveform with less than one cycle of accumulated phase error through the entire coalescence. Using this waveform, we calculate signal-to-noise ratios (SNRs) for iLIGO, adLIGO, and LISA, highlighting the contributions from the late-inspiral and merger-ringdown parts of the waveform, which can now be simulated numerically. Contour plots of SNR as a function of z and M show that adLIGO can achieve SNR > or approx. 10 for some intermediate mass binary black holes (IMBBHs) out to z{approx}1, and that LISA can see massive binary black holes (MBBHs) in the range 3x10{sup 4} < or approx. M/M{sub {center_dot}} < or approx. 10{sup 7} at SNR>100 out to the earliest epochs of structure formation at z>15.« less

  10. Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing

    DTIC Science & Technology

    2014-06-12

    interferometry and polarimetry . In the paper, the model was used to simulate SAR data for Mangrove (tropical) and Nezer (temperate) forests for P-band and...Scattering Model Applied to Radiometry, Interferometry, and Polarimetry at P- and L-Band. IEEE Transactions on Geoscience and Remote Sensing 44(4): 849

  11. Unequal-Arm Interferometry and Ranging in Space

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo

    2005-01-01

    Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-traveltimes will necessarily be unequal, time-varying, and (due to aberration) have different time delays on up- and down-links. By using knowledge of the inter-spacecraft light-travel-times and their time evolution it is possible to cancel in post-processing the otherwise dominant laser phase noise and obtain a variety of interferometric data combinations sensitive to gravitational radiation. This technique, which has been named Time-Delay Interferometry (TDI), can be implemented with constellations of three or more formation-flying spacecraft that coherently track each other. As an example application we consider the Laser Interferometer Space Antenna (LISA) mission and show that TDI combinations can be synthesized by properly time-shifting and linearly combining the phase measurements performed on board the three spacecraft. Since TDI exactly suppresses the laser noises when the delays coincide with the light-travel-times, we then show that TDI can also be used for estimating the time-delays needed for its implementation. This is done by performing a post-processing non-linear minimization procedure, which provides an effective, powerful, and simple way for making measurements of the inter-spacecraft light-travel-times. This processing technique, named Time-Delay Interferometric Ranging (TDIR), is highly accurate in estimating the time-delays and allows TDI to be successfully implemented without the need of a dedicated ranging subsystem.

  12. Laboratory investigation on super-Earths atmospheres

    NASA Astrophysics Data System (ADS)

    Erculiani, M. S.; Claudi, R. U.; Lessio, L.; Farisato, G.; Giro, E.; Cocola, L.; Billi, D.; D'alessandro, M.; Pace, E.; Schierano, D.; Benatti, S.; Bonavita, M.; Galletta, G.

    2014-04-01

    In the framework of Atmosphere in a Test Tube, at the Astronomical Observatory of Padova (INAF) we are going to perform experiments aimed to understand the possible modification of the atmosphere by photosynthetic biota present on the planet surface. This goal can be achieved simulating M star planetary environmental conditions. The bacteria that are being studied are Acaryochloris marina, Chroococcidiopsis spp. and Halomicronema hingdechloris. Tests will be performed with LISA or MINI-LISA ambient simulator in the laboratory of the Padova Astronomic Observatory. In this paper we describe the whole road map to follow in order to perform experiments and to obtain useful data to be compared with the real ones that will be obtained by the future space missions. Starting by a fiducial experiment we will modify either environmental and thermodynamical properties in order to simulate both real irradiation by an M star and gas mixture mimicing super earths atmospheres. These laboratory tests could be used as a guideline in order to understand whether chemical disequilibrium of O2, CO2 and CH4 could be ascribed to biotic life forms.

  13. The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress in the Simulation and Synthesis of WIIT Data

    NASA Technical Reports Server (NTRS)

    Juanola Parramon, Roser; Leisawitz, David T.; Bolcar, Matthew R.; Maher, Stephen F.; Rinehart, Stephen A.; Iacchetta, Alex; Savini, Giorgio

    2016-01-01

    The Wide-field Imaging Interferometry Testbed (WIIT) is a double Fourier (DF) interferometer operating at optical wavelengths, and provides data that are highly representative of those from a space-based far-infrared interferometer like SPIRIT. This testbed has been used to measure both a geometrically simple test scene and an astronomically representative test scene. Here we present the simulation of recent WIIT measurements using FIInS (the Far-infrared Interferometer Instrument Simulator), the main goal of which is to simulate both the input and the output of a DFM system. FIInS has been modified to perform calculations at optical wavelengths and to include an extended field of view due to the presence of a detector array.

  14. Science with the space-based interferometer eLISA. III: probing the expansion of the universe using gravitational wave standard sirens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamanini, Nicola; Caprini, Chiara; Barausse, Enrico

    We investigate the capability of various configurations of the space interferometer eLISA to probe the late-time background expansion of the universe using gravitational wave standard sirens. We simulate catalogues of standard sirens composed by massive black hole binaries whose gravitational radiation is detectable by eLISA, and which are likely to produce an electromagnetic counterpart observable by future surveys. The main issue for the identification of a counterpart resides in the capability of obtaining an accurate enough sky localisation with eLISA. This seriously challenges the capability of four-link (2 arm) configurations to successfully constrain the cosmological parameters. Conversely, six-link (3 arm)more » configurations have the potential to provide a test of the expansion of the universe up to z ∼ 8 which is complementary to other cosmological probes based on electromagnetic observations only. In particular, in the most favourable scenarios, they can provide a significant constraint on H{sub 0} at the level of 0.5%. Furthermore, (Ω{sub M}, Ω{sub Λ}) can be constrained to a level competitive with present SNIa results. On the other hand, the lack of massive black hole binary standard sirens at low redshift allows to constrain dark energy only at the level of few percent.« less

  15. Variance in binary stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  16. Studying Variance in the Galactic Ultra-compact Binary Population

    NASA Astrophysics Data System (ADS)

    Larson, Shane L.; Breivik, Katelyn

    2017-01-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations on week-long timescales, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  17. Music from the heavens - gravitational waves from supermassive black hole mergers in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John

    2016-11-01

    We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilizing the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a Lambda cold dark matter cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger time-scale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.

  18. An elegant Breadboard of the optical bench for eLISA/NGO

    NASA Astrophysics Data System (ADS)

    d'Arcio, Luigi; Bogenstahl, Johanna; Diekmann, Christian; Fitzsimons, Ewan D.; Heinzel, Gerhard; Hogenhuis, Harm; Killow, Christian J.; Lieser, Maike; Nikolov, Susanne; Perreur-Lloyd, Michael; Pijnenburg, Joep; Robertson, David I.; Taylor, Alasdair; Tröbs, Michael; Ward, Harry; Weise, Dennis

    2017-11-01

    The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10-5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching. These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels.

  19. Atomic Gravitational Wave Interferometric Sensors (AGIS) in Space

    NASA Astrophysics Data System (ADS)

    Sugarbaker, Alex; Hogan, Jason; Johnson, David; Dickerson, Susannah; Kovachy, Tim; Chiow, Sheng-Wey; Kasevich, Mark

    2012-06-01

    Atom interferometers have the potential to make sensitive gravitational wave detectors, which would reinforce our fundamental understanding of gravity and provide a new means of observing the universe. We focus here on the AGIS-LEO proposal [1]. Gravitational waves can be observed by comparing a pair of atom interferometers separated over an extended baseline. The mission would offer a strain sensitivity that would provide access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Many of the techniques relevant to an AGIS mission can be investigated in the Stanford 10-m drop tower.[4pt] [1] J.M. Hogan, et al., Gen. Rel. Grav. 43, 1953-2009 (2011).

  20. Testing of the LISA pathfinder GRS

    NASA Astrophysics Data System (ADS)

    Antonucci, Federica; Cavalleri, Antonella; Ciani, Giacomo; Congedo, Giuseppe; Dolesi, Rita; de Marchi, Fabrizio; Ferraioli, Luigi; Hueller, Mauro; Nicolodi, Daniele; Tombolato, David; Vitale, Stefano; Wass, Peter J.; Weber, William J.

    The ESA/NASA mission,LISA (Laser Interferometric Space Antenna), will measure gravita-tional waves emitted by astronomical sources, galactic and extra-galactic, at frequencies 10-4 to 10-1 Hz. LISA is a 5-million-km arm-length interferometer whose mirrors are test masses which must be nominally free-falling to a level which does not exceed 3 · 10-15 ms-2 Hz -1/2 in acceleration. LISA Pathfinder is a technology demonstration mission which will show that the relative parasitic acceleration between two masses on one spacecraft can be lower than 3 · 10-14 ms-2 Hz -1/2 , at frequencies around 1 mHz -one order of magnitude larger than LISA's goal. At the core of the LISA Pathfinder experiment is the GRS (gravitational reference sensor), a capacitive sensor with mm gaps used to measure the position of the test mass and actuate its position in 6-degrees-of-freedom. Testing the purity of free-fall for LISA Pathfinder on-ground is achieved using a torsion pendulum which allows us to measure force disturbances at a level relevant to LISA Pathfinder. We will present the latest campaign of tests of the LISA Pathfinder GRS using the 4-test-mass torsion pendulum facility aimed at measuring force-noise sources (responsible for the parasitic acceleration) for LISA Pathfinder in its frequency band. Our GRS , is the LISA Pathfinder flight-model replica, and its testing is crucial in verifying the design and performance of the flight instrument and measuring many of the unwanted disturbances which can limit the performance of LISA and LISA pathfinder. The measurements concern the dependence of the force on the test mass position in the sensor and their electrostatic coupling, electrostatic fields due to surface-potential variations and thermal gradients.

  1. Modeling of Compaction Wave Behavior in Confined Granular Energetic Material

    DTIC Science & Technology

    1990-08-01

    Compacted 65% TMD Aggregate Melamine Compaction Wave Microwave DIAGNOSTICS: Interferometry (a) Microwave Interferometry (b) 3 Wall-Mounted Pressure...involved 65% TMD melamine but was run very recently (Dec 1989) The value of compaction wave speed (from the microwave data) just after impact is...47 B. Simulation of PDC-M34 / 65% TMD Melamine (Inert Material) ........ 54 C. Influence of Energy Release / PDC Experiment

  2. Method for the fabrication error calibration of the CGH used in the cylindrical interferometry system

    NASA Astrophysics Data System (ADS)

    Wang, Qingquan; Yu, Yingjie; Mou, Kebing

    2016-10-01

    This paper presents a method of absolutely calibrating the fabrication error of the CGH in the cylindrical interferometry system for the measurement of cylindricity error. First, a simulated experimental system is set up in ZEMAX. On one hand, the simulated experimental system has demonstrated the feasibility of the method we proposed. On the other hand, by changing the different positions of the mirror in the simulated experimental system, a misalignment aberration map, consisting of the different interferograms in different positions, is acquired. And it can be acted as a reference for the experimental adjustment in real system. Second, the mathematical polynomial, which describes the relationship between the misalignment aberrations and the possible misalignment errors, is discussed.

  3. Comparison of simulation and experimental results for a gas puff nozzle on Ambiorix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnier, J-N.; Chevalier, J-M.; Dubroca, B.

    One of source term of Z-Pinch experiments is the gas puff density profile. In order to characterize the gas jet, an experiment based on interferometry has been performed. The first study was a point measurement (a section density profile) which led us to develop a global and instantaneous interferometry imaging method. In order to optimise the nozzle, we simulated the experiment with a flow calculation code (ARES). In this paper, the experimental results are compared with simulations. The different gas properties (He, Ne, Ar) and the flow duration lead us to take care, on the one hand, of the gasmore » viscosity, and on the other, of modifying the code for an instationary flow.« less

  4. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  5. PREFACE: 10th International LISA Symposium

    NASA Astrophysics Data System (ADS)

    Ciani, Giacomo; Conklin, John W.; Mueller, Guido

    2015-05-01

    The LISA Symposia have become a mainstay of the gravitational wave community. Held every two years, they are the prime opportunity for our community to discuss the exciting science, technology, mission designs, and progress of the Laser Interferometer Space Antenna. The 8th LISA symposium, held at Stanford University in the summer of 2010 was the largest symposium so far and was dominated by progress and hopes that the LISA mission will soon excel following the expected launch of the LISA pathfinder (LPF), no later than 2012, and the expected prioritization by the Decadal survey which was released 6 weeks later. The following years were challenging. Although the Decadal survey ranked LISA very high, NASA's budget issues, mostly due to the cost increase of the James Webb Space Telescope, and continued delays in LPF put too much stress on the LISA project and it officially ended in 2011. The LISA International Science Team (LIST), the core group of LISA scientists and technologists, was dissolved and the community in the U.S. was struggling to maintain cohesion. In the wake of these events, ESA started a new selection process for their next three large missions, L1, L2, and L3, and the European LISA team developed the New Gravitational wave Observatory (NGO), an evolved LISA concept, as an ESA only L1 candidate. A few weeks before the 9th LISA Symposium, held in Paris in May 2012, ESA announced its decision to select JUICE, a planetary mission to Jupiter and its moons, as its next large science mission (L1). Despite having the highest ranked science case, NGO was not selected due to further delays in LPF and the general feeling outside the GW community that the technology is perhaps too challenging to be pulled off in time for the L1 launch in 2022. Many U.S. members of the LISA community cancelled their travel plans and the mood at that symposium ranged from resignation to defiance. Hope for a somewhat timely launch of a LISA-like mission rested upon L2, the next large mission in Europe, and a potential comprehensive technology development program followed by a number one selection in the 2020 Decadal Survey in the U.S. The selection of L2 was combined with the selection of L3 and the newly formed eLISA consortium submitted an updated NGO concept under the name eLISA, or Evolved LISA, to the competition. It was widely believed that the launch date of 2028 for L2, would be seen by the selection committee as providing sufficient time to retire any remaining technological risks for LISA. However, the committee selected the 'Hot and Energetic Universe', an X-ray mission, as the science theme for L2 and the 'Gravitational Universe', the eLISA science theme, for L3. Although very disappointed, it was not a surprising decision. LPF did experience further delays just prior to and during the selection process, which may have influenced the decision. The strong technology program in the U.S. never materialized because WFIRST, the highest priority large mission in the 2010 Decadal following JWST, not only moved ahead but was also up-scoped significantly. The L3 selection, the WFIRST schedule, and the missing comprehensive technology development in the U.S. will make a launch of a GW mission in the 2020s very difficult. Although many in the LISA community, including ourselves, did not want to accept this harsh reality, this was the situation just prior to the 10th LISA symposium. However, despite all of this, the LISA team is now hopeful! In May of 2014 the LISA community gathered at the University of Florida in Gainesville to discuss progress in both the science and technology of LISA. The most notable plenary and contributed sessions included updates on the progress of LISA Pathfinder, which remains on track for launch in the second half of 2015(!), the science of LISA which ranges from super-massive black hole mergers and cosmology to the study of compact binaries within our own galaxy, and updates from other programs that share some of LISA's science or technology. Plenary talks from the pulsar timing and ground-based laser interferometer groups told of the reasonable expectation of gravitational wave detection within the next 4 to 8 years. We also heard about the GRACE Follow-on mission, which will demonstrate a precision laser ranging system in space in 2017, using technology that is somewhat similar to that of LISA. Presentations on the Large Synoptic Survey Telescope, Athena, the Cherenkov Telescope Array, and WFIRST provided data on the landscape in which LISA will live in the 2030s. Beyond the 10th symposium there is much to look forward to. There is high-expectation that LISA Pathfinder will launch in 2015, prior to the 11th symposium in Zürich, which, for the first time, will be dedicated to the results of LPF and not its preparation. Ground-based gravitational wave observatories, especially Advanced LIGO, are rapidly approaching their required sensitivities and could make the first direct detection before the 12th LISA symposium. Advanced VIRGO and KAGRA, and the pulsar timing community are also hopeful that they will reach the required sensitivity within this decade or shortly thereafter. These events will dramatically improve the perception of gravitational wave science by the broader astronomy and astrophysics communities. The U.S. LISA team is also embolden by the announcement that NASA is now planning to join ESA in the gravitational wave L3 mission as a junior partner and will begin funding a technology development program to support this partnership. A space-based gravitational wave mission is inevitable. At the time of the 10th LISA Symposium, it was not clear if the gradient of LISA's trajectory was perceived as positive or negative. But in hindsight, 2014 will hopefully be seen as a time when LISA regained some of the ground recently lost and began accelerating towards launch.

  6. Digital Holographic Interferometry and Speckle Correlation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Ichirou

    2010-04-01

    Relations and combinations between holographic interferometry and speckle correlation in contouring by phase-shifting digital holography are discussed. Three-dimensional distributions of correlations of the complex amplitudes and intensities before and after the laser wavelength shift are calculated in numerical simulations where a rough surface is modeled with random numbers. Fringe localization related to speckle displacement as well as speckle suppression in phase analysis are demonstrated for general surface shape and recording conditions.

  7. Phase retrieval in generalized optical interferometry systems.

    PubMed

    Farriss, Wesley E; Fienup, James R; Malhotra, Tanya; Vamivakas, A Nick

    2018-02-05

    Modal analysis of an optical field via generalized interferometry (GI) is a novel technique that treats said field as a linear superposition of transverse modes and recovers the amplitudes of modal weighting coefficients. We use phase retrieval by nonlinear optimization to recover the phase of these modal weighting coefficients. Information diversity increases the robustness of the algorithm by better constraining the solution. Additionally, multiple sets of random starting phase values assist the algorithm in overcoming local minima. The algorithm was able to recover nearly all coefficient phases for simulated fields consisting of up to 21 superpositioned Hermite Gaussian modes from simulated data and proved to be resilient to shot noise.

  8. Effective Algorithm for Detection and Correction of the Wave Reconstruction Errors Caused by the Tilt of Reference Wave in Phase-shifting Interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Xianfeng; Cai, Luzhong; Li, Dailin; Mao, Jieying

    2010-04-01

    In phase-shifting interferometry (PSI) the reference wave is usually supposed to be an on-axis plane wave. But in practice a slight tilt of reference wave often occurs, and this tilt will introduce unexpected errors of the reconstructed object wave-front. Usually the least-square method with iterations, which is time consuming, is employed to analyze the phase errors caused by the tilt of reference wave. Here a simple effective algorithm is suggested to detect and then correct this kind of errors. In this method, only some simple mathematic operation is used, avoiding using least-square equations as needed in most methods reported before. It can be used for generalized phase-shifting interferometry with two or more frames for both smooth and diffusing objects, and the excellent performance has been verified by computer simulations. The numerical simulations show that the wave reconstruction errors can be reduced by 2 orders of magnitude.

  9. Threshold secret sharing scheme based on phase-shifting interferometry.

    PubMed

    Deng, Xiaopeng; Shi, Zhengang; Wen, Wei

    2016-11-01

    We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.

  10. The Mock LISA Data Challenges: History, Status, Prospects

    NASA Technical Reports Server (NTRS)

    Vallisneri, Michele; Babak, Stas; Baker, John; Benacquista, Matt; Cornish, Neil; Crowder, Jeff; Cutler, Curt; Larson, Shane; Littenberg, Tyson; Porter, Edward; hide

    2007-01-01

    This slide presentation reviews the importance for the Mock LISA Data Challenges (MLDC). Laser Interferometer Space Antenna (LISA) is a gravitational wave (GW) observatory that will return data such that data analysis is integral to the measurement concept. Further rationale of the MLDC are to kickstart the development of a LISA data-analysis computational infrastructure, and to encourage, track, and compare progress in LISA data-analysis development in the open community. The MLDCs is a coordinated, voluntary effort in GW community, that will periodically issue datasets with synthetic noise and GW signals from sources of undisclosed parameters; increasing difficulty. The challenge participants return parameter estimates and descriptions of search methods. Some of the challenges and the resultant entries are reviewed. The aim is to show that LISA data analysis is possible, and to develop new techniques, using multiple international teams for the development of LISA core analysis tools

  11. Steady-state free precession with myocardial tagging: CSPAMM in a single breathhold.

    PubMed

    Zwanenburg, Jaco J M; Kuijer, Joost P A; Marcus, J Tim; Heethaar, Robert M

    2003-04-01

    A method is presented that combines steady-state free precession (SSFP) cine imaging with myocardial tagging. Before the tagging preparation at each ECG-R wave, the steady-state magnetization is stored as longitudinal magnetization by an alpha/2 flip-back pulse. Imaging is continued immediately after tagging preparation, using linearly increasing startup angles (LISA) with a rampup over 10 pulses. Interleaved segmented k-space ordering is used to prevent artifacts from the increasing signal during the LISA rampup. First, this LISA-SSFP method was evaluated regarding ghost artifacts from the steady-state interruption by comparing LISA with an alpha/2 startup method. Next, LISA-SSFP was compared with spoiled gradient echo (SGRE) imaging, regarding tag contrast-to-noise ratio and tag persistence. The measurements were performed in phantoms and in six subjects applying breathhold cine imaging with tagging (temporal resolution 51 ms). The results show that ghost artifacts are negligible for the LISA method. Compared to the SGRE reference, LISA-SSFP was two times faster, with a slightly better tag contrast-to-noise. Additionally, the tags persisted 126 ms longer with LISA-SSFP than with SGRE imaging. The high efficiency of LISA-SSFP enables the acquisition of complementary tagged (CSPAMM) images in a single breathhold. Copyright 2003 Wiley-Liss, Inc.

  12. Spatially resolved photodiode response for simulating precise interferometers.

    PubMed

    Fernández Barranco, Germán; Tröbs, Michael; Müller, Vitali; Gerberding, Oliver; Seifert, Frank; Heinzel, Gerhard

    2016-08-20

    Quadrant photodiodes (QPDs) are used in laser interferometry systems to simultaneously detect longitudinal displacement of test masses and angular misalignment between the two interfering beams. The latter is achieved by means of the differential wavefront sensing (DWS) technique, which provides ultra-high precision for measuring angular displacements. We have developed a setup to obtain the spatially resolved response of QPDs that, together with an extension of the simulation software IfoCAD, allows us to use the measured response in simulations and accurately predict the desired longitudinal and DWS phase observables. Three different commercial off-the-shelf QPD candidates for space-based interferometry were characterized. The measured response of one QPD was used in optical simulations. Nonuniformities in the response of the device and crosstalk between segments do not introduce significant variations in the longitudinal and DWS measurands with respect to the standard case when a uniform QPD without crosstalk is used.

  13. Threshold multi-secret sharing scheme based on phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Deng, Xiaopeng; Wen, Wei; Shi, Zhengang

    2017-03-01

    A threshold multi-secret sharing scheme is proposed based on phase-shifting interferometry. The K secret images to be shared are firstly encoded by using Fourier transformation, respectively. Then, these encoded images are shared into many shadow images based on recording principle of the phase-shifting interferometry. In the recovering stage, the secret images can be restored by combining any 2 K + 1 or more shadow images, while any 2 K or fewer shadow images cannot obtain any information about the secret images. As a result, a (2 K + 1 , N) threshold multi-secret sharing scheme can be implemented. Simulation results are presented to demonstrate the feasibility of the proposed method.

  14. A Computational Account of Children's Analogical Reasoning: Balancing Inhibitory Control in Working Memory and Relational Representation

    ERIC Educational Resources Information Center

    Morrison, Robert G.; Doumas, Leonidas A. A.; Richland, Lindsey E.

    2011-01-01

    Theories accounting for the development of analogical reasoning tend to emphasize either the centrality of relational knowledge accretion or changes in information processing capability. Simulations in LISA (Hummel & Holyoak, 1997, 2003), a neurally inspired computer model of analogical reasoning, allow us to explore how these factors may…

  15. 75 FR 39668 - Notice of Availability of Final Environmental Impact Statement for the Proposed Rio del Oro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... writing to: Lisa M. Gibson, U.S. Army Corps of Engineers, Sacramento District, Regulatory Division; 1325 J Street, Room 1480, Sacramento, CA 95814-2922, or via e-mail to Lisa[email protected] . FOR FURTHER INFORMATION CONTACT: Lisa M. Gibson, (916) 557-5288, or via e-mail at Lisa[email protected

  16. Probing Strong-field General Relativity with Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Pretorius, Frans

    We are on the verge of a new era in astrophysics as a world-wide effort to observe the universe with gravitational waves takes hold---ground based laser interferometers (Hz to kHz), pulsar timing (micro to nano Hz), measurements of polarization of the cosmic microwave background (sub-nano Hz), and the planned NASA/ESA mission LISA (.1 mHz to .1 Hz). This project will study the theoretical nature of gravitational waves (GWs) emitted by two sources in the LISA band, namely supermassive-black-hole (SMBH) binary mergers, and extreme-mass-ratio-inspirals (EMRI's)---the merger of a stellar mass black hole, neutron star, or white dwarf with a SMBH. The primary goal will be to ascertain how well LISA, by observing these sources, could answer the following related questions about the fundamental nature of strong-field gravity: Does Einstein's theory of general relativity (GR) describe the geometry of black holes in the universe? What constraints can GW observations of SMBH mergers and EMRIs place on alternative theories of gravity? If there are deviations from GR, are there statistics that could give indications of a deviation if sources are detected using a search strategy based solely on GR waveforms? The primary reasons for focusing on LISA sources to answer these questions are (a) binary SMBH mergers could be detected by LISA with exquisitely high signal-to- noise, allowing enough parameters of the system to be accurately extracted to perform consistency checks of the underlying theory, (b) EMRIs will spend numerous orbits close to the central black hole, and thus will be quite sensitive to even small near-horizon deviations from GR. One approach to develop the requisite knowledge and tools to answer these questions is to study a concrete, theoretically viable alternative to GR. We will focus on the dynamical variant of Chern-Simons modified gravity (CSMG), which is interesting for several reasons, chief among which are (1) that CSMG generically arises in both string theory and loop quantum gravity, and (2) that although CSMG is consistent with all present day tests of GR, it still allows for significant, near-horizon deformations in the geometry of rotating (Kerr) black holes. Here is a brief list of the steps and research methodology we will employ:
(i) Obtain the equivalent of the full Kerr solution in CSMG using numerical methods. (ii) Explore the structure of GWs emitted by EMRIs about the CS rotating black hole solution. Given simulated LISA noise curves, we can then address the questions posed above within the context of CSMG. (iii) Simulate the latter stages of comparable mass SMBH binary mergers in CSMG by numerically solving the full CSMG field equations to learn about highly dynamical, non- linear GR deformations. We can then repeat the analysis of (ii). (iv) Study whether CSMG GWs fit in the recently proposed parameterized post- Einsteinian (ppE) framework, to study generic deviations from GR in a statistical fashion. One can then repeat the analysis of (ii) but within the ppE scheme. We believe this proposed work is of significance and import to both the objectives of this solicitation, and the interests of NASA---knowing the nature of strong-field gravity will be one of the keys to unraveling the origin of the universe, and will tell us how black holes behave and interact with their environs, the details of which are important in understanding the formation and evolution of structure in the universe. Furthermore, these questions are best suited to be answered by LISA, a planned joint NASA-ESA mission. The ultimate success of LISA is very much dependent on (amongst other things) how well the community understands the complete nature of gravitational wave sources.

  17. 76 FR 30679 - Notice of Availability of Final Environmental Impact Statement for the Proposed Folsom South of U...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... submitted in writing to: Lisa M. Gibson, U.S. Army Corps of Engineers, Sacramento District, Regulatory Division; 650 Capitol Mall, Suite 5-200, Sacramento, CA 95814, or via e-mail to Lisa[email protected] . FOR FURTHER INFORMATION CONTACT: Lisa M. Gibson, (916) 557-5288, or via e-mail at Lisa.M.Gibson2...

  18. Experimental validation of ultrasonic guided modes in electrical cables by optical interferometry.

    PubMed

    Mateo, Carlos; de Espinosa, Francisco Montero; Gómez-Ullate, Yago; Talavera, Juan A

    2008-03-01

    In this work, the dispersion curves of elastic waves propagating in electrical cables and in bare copper wires are obtained theoretically and validated experimentally. The theoretical model, based on Gazis equations formulated according to the global matrix methodology, is resolved numerically. Viscoelasticity and attenuation are modeled theoretically using the Kelvin-Voigt model. Experimental tests are carried out using interferometry. There is good agreement between the simulations and the experiments despite the peculiarities of electrical cables.

  19. LTP interferometer—noise sources and performance

    NASA Astrophysics Data System (ADS)

    Robertson, David; Killow, Christian; Ward, Harry; Hough, Jim; Heinzel, Gerhard; Garcia, Antonio; Wand, Vinzenz; Johann, Ulrich; Braxmaier, Claus

    2005-05-01

    The LISA Technology Package (LTP) uses laser interferometry to measure the changes in relative displacement between two inertial test masses. The goals of the mission require a displacement measuring precision of 10 pm Hz-1/2 at frequencies in the 3 30 mHz band. We report on progress with a prototype LTP interferometer optical bench in which fused silica mirrors and beamsplitters are fixed to a ZERODUR® substrate using hydroxide catalysis bonding to form a rigid interferometer. The couplings to displacement noise of this interferometer of two expected noise sources—laser frequency noise and ambient temperature fluctuations—have been investigated, and an additional, unexpected, noise source has been identified. The additional noise is due to small amounts of signal at the heterodyne frequency arriving at the photodiode preamplifiers with a phase that quasistatically changes with respect to the optical signal. The phase shift is caused by differential changes in the external optical paths the beams travel before they reach the rigid interferometer. Two different external path length stabilization systems have been demonstrated and these allowed the performance of the overall system to meet the LTP displacement noise requirement.

  20. Search for unbound nuclides and beam/fragment optics with the MoNA/LISA segmented target at NSCL

    NASA Astrophysics Data System (ADS)

    Gueye, Paul; Frank, Nathan; Thoennessen, Michael; Redpath, Thomas; MoNA Collaboration

    2017-09-01

    A multi-layered Si/Be segmented target consisting of three 700 mg/cm2 thick Be9 slabs and four 140 microns Si detectors was used by the MoNA Collaboration at the National Superconducting Cyclotron Laboratory of Michigan State University to study the O26 lifetime. This target provides unprecedented information on the incident beams and fragments (energy loss and position), thus allowing for better determination of the incident and outgoing energies and momenta of the detected particles compare to previous experiments conducted at this facility. With the availability of a newly developed Geant4 Monte Carlo simulation of the full N2 vault, we will present and discuss the performances of this target. Search for unbound nuclides and beam/fragment optics with the MoNA/LISA segmented target at NSCL.

  1. Phase gradient algorithm based on co-axis two-step phase-shifting interferometry and its application

    NASA Astrophysics Data System (ADS)

    Wang, Yawei; Zhu, Qiong; Xu, Yuanyuan; Xin, Zhiduo; Liu, Jingye

    2017-12-01

    A phase gradient method based on co-axis two-step phase-shifting interferometry, is used to reveal the detailed information of a specimen. In this method, the phase gradient distribution can only be obtained by calculating both the first-order derivative and the radial Hilbert transformation of the intensity difference between two phase-shifted interferograms. The feasibility and accuracy of this method were fully verified by the simulation results for a polystyrene sphere and a red blood cell. The empirical results demonstrated that phase gradient is sensitive to changes in the refractive index and morphology. Because phase retrieval and tedious phase unwrapping are not required, the calculation speed is faster. In addition, co-axis interferometry has high spatial resolution.

  2. Measurement of the surface morphology of plasma facing components on the EAST tokamak by a laser speckle interferometry approach

    NASA Astrophysics Data System (ADS)

    Hongbei, WANG; Xiaoqian, CUI; Yuanbo, LI; Mengge, ZHAO; Shuhua, LI; Guangnan, LUO; Hongbin, DING

    2018-03-01

    The laser speckle interferometry approach provides the possibility of an in situ optical non-contacted measurement for the surface morphology of plasma facing components (PFCs), and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm. A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST. The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image. The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.

  3. 75 FR 14457 - Notice of Proposed Renewal of Information Collection: OMB Control Number 1093-0004, Take Pride in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... Interior, 1849 C Street, NW., Mailstop 3559 MIB, Washington, DC 20240, or via e-mail to lisa[email protected], Washington, DC 20240. You may also request further information by e-mail at lisa[email protected] or call... Lisa Young by telephone on (202) 208-7586, or by e-mail at lisa[email protected] . A valid picture...

  4. Analyzing refractive index profiles of confined fluids by interferometry.

    PubMed

    Kienle, Daniel F; Kuhl, Tonya L

    2014-12-02

    This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid's refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.

  5. Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, Atsushi; Sesana, Alberto; Berti, Emanuele; Klein, Antoine

    2017-03-01

    A space-based interferometer such as the evolved Laser Interferometer Space Antenna (eLISA) could observe a few to a few thousands of progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where eLISA is the most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black hole (MBH) have distinct eccentricity distributions in the eLISA band. We generate mock eLISA observations, folding in measurement errors, and using a Bayesian model selection, we study whether eLISA measurements can identify the BHB formation channel. We find that a handful of observations would suffice to tell whether BHBs were formed in the gravitational field of an MBH. Conversely, several tens of observations are needed to tell apart field formation from globular cluster formation. A 5-yr eLISA mission with the longest possible armlength is desirable to shed light on BHB formation scenarios.

  6. Constraining stellar binary black hole formation scenarios with LISA eccentricity measurements

    NASA Astrophysics Data System (ADS)

    Berti, Emanuele; Nishizawa, Atsushi; Sesana, Alberto; Klein, Antoine

    2017-01-01

    A space-based interferometer such as LISA could observe few to few thousands progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where LISA is most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black hole (MBH) have distinct eccentricity distributions in the LISA band. We generate mock LISA observations, folding in measurement errors, and using Bayesian model selection we study whether LISA measurements can identify the BHB formation channel. We find that a handful of observations would suffice to tell whether BHBs were formed in the gravitational field of a MBH. Conversely, several tens of observations are needed to tell apart field formation from globular cluster formation. A five-year LISA mission with the longest possible armlength is desirable to shed light on BHB formation scenarios. NSF CAREER Grant No. PHY-1055103, NSF Grant No. PHY-1607130, FCT contract IF/00797/2014/CP1214/CT0012.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Andrew; Shaddock, Daniel A.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

    The Laser Interferometer Space Antenna (LISA) will be the first dedicated space based gravitational wave detector. LISA will consist of a triangular formation of spacecraft, forming an interferometer with 5x10{sup 6} km long arms. Annual length variations of the interferometer arms prevent exact laser frequency noise cancellation. Despite prestabilization to an optical cavity the expected frequency noise is many orders of magnitude larger than the required levels. Arm locking is a feedback control method that will further stabilize the laser frequency by referencing it to the 5x10{sup 6} km arms. Although the original arm locking scheme produced a substantial noisemore » reduction, the technique suffered from slowly decaying start-up transients and excess noise at harmonic frequencies of the inverse round-trip time. Dual arm locking, presented here, improves on the original scheme by combining information from two interferometer arms for feedback control. Compared to conventional arm locking, dual arm locking exhibits significantly reduced start-up transients, no noise amplification at frequencies within the LISA signal band, and more than 50 fold improvement in noise suppression at low frequencies. In this article we present a detailed analysis of the dual arm locking control system and present simulation results showing a noise reduction of 10 000 at a frequency of 10 mHz.« less

  8. Nanostructure Secondary-Mirror Apodizing Mask for Transmitter Signal Suppression in a Duplex Telescope

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Livas, Jeffrey; Shiri, Shahram; Getty, Stephanie; Tveekrem, June; Butler, James

    2012-01-01

    A document discusses a nanostructure apodizing mask, made of multi-walled carbon nanotubes, that is applied to the centers (or in and around the holes) of the secondary mirrors of telescopes that are used to interferometrically measure the strain of space-time in response to gravitational waves. The shape of this ultra-black mask can be adjusted to provide a smooth transition to the clear aperture of the secondary mirror to minimize diffracted light. Carbon nanotubes grown on silicon are a viable telescope mirror substrate, and can absorb significantly more light than other black treatments. The hemispherical reflectance of multi-walled carbon nanotubes grown at GSFC is approximately 3 to 10 times better than a standard aerospace paint used for stray light control. At the LISA (Laser Interferometer Space Antenna) wavelength of 1 micron, the advantage over paint is a factor of 10. Primarily, in the center of the secondary mirror (in the region of central obscuration, where no received light is lost) a black mask is applied to absorb transmitted light that could be reflected back into the receiver. In the LISA telescope, this is in the center couple of millimeters. The shape of this absorber is critical to suppress diffraction at the edge. By using the correct shape, the stray light can be reduced by approximately 10 to the 9 orders of magnitude versus no center mask. The effect of the nanotubes has been simulated in a stray-light model. The effect of the apodizing mask has been simulated in a near-field diffraction model. Specifications are geometry-dependent, but the baseline design for the LISA telescope has been modeled as well. The coatings are somewhat fragile, but work is continuing to enhance adhesion.

  9. Galactic binary science with the new LISA design

    NASA Astrophysics Data System (ADS)

    Cornish, Neil; Robson, Travis

    2017-05-01

    Building on the great success of the LISA Pathfinder mission, the outlines of a new LISA mission design were laid out at the 11th International LISA Symposium in Zurich. The revised design calls for three identical spacecraft forming an equilateral triangle with 2.5 million kilometer sides, and two laser links per side delivering full polarization sensitivity. With the demonstrated Pathfinder performance for the disturbance reduction system, and a well studied design for the laser metrology, it is anticipated that the new mission will have a sensitivity very close to the original LISA design. This implies that the mid-band performance, between 0.5 mHz and 3 mHz, will be limited by unresolved signals from compact binaries in our galaxy. Here we use the new LISA design to compute updated estimates for the galactic confusion noise, the number of resolvable galactic binaries, and the accuracy to which key parameters of these systems can be measured.

  10. 78 FR 68019 - Performance Review Board Appointments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ....; Chasteen, G. Taylor; Christian, Lisa A.; Clanton, Michael W.; Coffee, Richard; Cook, Cheryl L.; Davenport....; Paul, Matt; Pfaeffle, Frederick; Pino, Lisa; Repass, Todd; Robinson, Quinton; Romero, Ramona; Ruiz..., Lisa; Wright, Ann; Young, Benjamin; Young, Mike; Zehren, Christopher J. Marketing and Regulatory...

  11. Development of realtime connected element interferometry at the Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Edwards, C. D.

    1990-01-01

    Connected-element interferometry (CEI) has the potential to provide high-accuracy angular spacecraft tracking on short baselines by making use of the very precise phase delay observable. Within the Goldstone Deep Space Communications Complex (DSCC), one of three tracking complexes in the NASA Deep Space Network, baselines of up to 21 km in length are available. Analysis of data from a series of short-baseline phase-delay interferometry experiments are presented to demonstrate the potential tracking accuracy on these baselines. Repeated differential observations of pairs of angularly close extragalactic radio sources were made to simulate differential spacecraft-quasar measurements. Fiber-optic data links and a correlation processor are currently being developed and installed at Goldstone for a demonstration of real-time CEI in 1990.

  12. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    NASA Astrophysics Data System (ADS)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Edward K.; Cornish, Neil J.

    Massive black hole binaries are key targets for the space based gravitational wave Laser Interferometer Space Antenna (LISA). Several studies have investigated how LISA observations could be used to constrain the parameters of these systems. Until recently, most of these studies have ignored the higher harmonic corrections to the waveforms. Here we analyze the effects of the higher harmonics in more detail by performing extensive Monte Carlo simulations. We pay particular attention to how the higher harmonics impact parameter correlations, and show that the additional harmonics help mitigate the impact of having two laser links fail, by allowing for anmore » instantaneous measurement of the gravitational wave polarization with a single interferometer channel. By looking at parameter correlations we are able to explain why certain mass ratios provide dramatic improvements in certain parameter estimations, and illustrate how the improved polarization measurement improves the prospects for single interferometer operation.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiter, Ashley J.; Belczynski, Krzysztof; Benacquista, Matthew

    Double white dwarfs (WDs) are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this 'foreground noise' is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e.g., gravitational waves arising from stellar-mass objects inspiraling into massive black holes. In many previous studies, only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe overflow (RLOF) Galactic binaries on the shape and strength ofmore » the LISA signal. Since >99% of remnant binaries that have orbital periods within the LISA sensitivity range are WD binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to >6 mHz. We find that it is important to consider the population of mass-transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number ({approx}11,300) of Galactic double WD binaries that will have a signal-to-noise ratio >5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of WD binaries, show the most important formation channels contributing to the LISA disk and bulge populations, and discuss the implications of these new findings.« less

  15. LISA -- The Library and Information Services in Astronomy Conferences

    NASA Astrophysics Data System (ADS)

    Corbin, Brenda G.; Grothkopf, Uta

    2006-12-01

    In this chapter, we give an overview of the history of LISA meetings and describe their logistics. The topics covered by the conferences and how they have changed over time are reviewed, and we investigate how LISA influences the professional life of astronomy librarians.

  16. Empirical Foundations of the Relativistic Gravity

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    In 1859, Le Verrier discovered the mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 141 years to 2000, the precisions of laboratory and space experiments, and astrophysical and cosmological observations on relativistic gravity have been improved by 3 orders of magnitude. In 1999, we envisaged a 3-6 order improvement in the next 30 years in all directions of tests of relativistic gravity. In 2000, the interferometric gravitational wave detectors began their runs to accumulate data. In 2003, the measurement of relativistic Shapiro time-delay of the Cassini spacecraft determined the relativistic-gravity parameter γ to be 1.000021 ± 0.000023 of general relativity — a 1.5-order improvement. In October 2004, Ciufolini and Pavlis reported a measurement of the Lense-Thirring effect on the LAGEOS and LAGEOS2 satellites to be 0.99 ± 0.10 of the value predicted by general relativity. In April 2004, Gravity Probe B (Stanford relativity gyroscope experiment to measure the Lense-Thirring effect to 1%) was launched and has been accumulating science data for more than 170 days now. μSCOPE (MICROSCOPE: MICRO-Satellite à trainée Compensée pour l'Observation du Principle d'Équivalence) is on its way for a 2008 launch to test Galileo equivalence principle to 10-15. LISA Pathfinder (SMART2), the technological demonstrator for the LISA (Laser Interferometer Space Antenna) mission is well on its way for a 2009 launch. STEP (Satellite Test of Equivalence Principle), and ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) are in good planning stage. Various astrophysical tests and cosmological tests of relativistic gravity will reach precision and ultra-precision stages. Clock tests and atomic interferometry tests of relativistic gravity will reach an ever-increasing precision. These will give revived interest and development both in experimental and theoretical aspects of gravity, and may lead to answers to some profound questions of gravity and the cosmos.

  17. 78 FR 43842 - State of Kansas; Authorization of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... by August 21, 2013. ADDRESSES: Submit your comments by one of the following methods: 1. Federal e... comments. 2. Email: haugen.lisa@epa.gov . 3. Mail: Lisa Haugen, Environmental Protection Agency, Region 7...: Deliver your comments to Lisa Haugen, Environmental Protection Agency, Region 7, Enforcement Coordination...

  18. LISA's Move from SilverPlatter to Bowker--Looking at the Interface.

    ERIC Educational Resources Information Center

    Stein, Jonathan

    1994-01-01

    Compares LISA (Library and Information Science Abstracts) on SilverPlatter's CD-ROM with its replacement version, Bowker-Saur's LISA Plus. Features reviewed include entry to the databases; use of Boolean search facilities; indexes and browsing; displaying and printing records; subsidiary functions; on-screen help; and interfaces. (Contains eight…

  19. Late time cosmology with LISA: Probing the cosmic expansion with massive black hole binary mergers as standard sirens

    NASA Astrophysics Data System (ADS)

    Tamanini, Nicola

    2017-05-01

    This paper summarises the potential of the LISA mission to constrain the expansion history of the universe using massive black hole binary mergers as gravitational wave standard sirens. After briefly reviewing the concept of standard siren, the analysis and methodologies of Ref [1] are briefly outlined to show how LISA can be used as a cosmological probe, while a selection of results taken from Refs. [1, 2] is presented in order to estimate the power of LISA in constraining cosmological parameters.

  20. Possible LISA Technology Applications for Other Missions

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey

    2018-01-01

    The Laser Interferometer Space Antenna (LISA) has been selected as the third large class mission launch opportunity of the Cosmic Visions Program by the European Space Agency (ESA). LISA science will explore a rich spectrum of astrophysical gravitational-wave sources expected at frequencies between 0.0001 and 0.1 Hz and complement the work of other observatories and missions, both space and ground-based, electromagnetic and non-electromagnetic. Similarly, LISA technology may find applications for other missions. This paper will describe the capabilities of some of the key technologies and discuss possible contributions to other missions.

  1. Digital off-axis holographic interferometry with simulated wavefront.

    PubMed

    Belashov, A V; Petrov, N V; Semenova, I V

    2014-11-17

    The paper presents a novel algorithm based on digital holographic interferometry and being promising for evaluation of phase variations from highly noisy or modulated by speckle-structures digital holograms. The suggested algorithm simulates an interferogram in finite width fringes, by analogy with classical double exposure holographic interferometry. Thus obtained interferogram is then processed as a digital hologram. The advantages of the suggested approach are demonstrated in numerical experiments on calculations of differences in phase distributions of wave fronts modulated by speckle structure, as well as in a physical experiment on the analysis of laser-induced heating dynamics of an aqueous solution of a photosensitizer. It is shown that owing to the inherent capability of the approach to perform adjustable smoothing of compared wave fronts, the resulting difference undergoes noise filtering. This capability of adjustable smoothing may be used to minimize losses in spatial resolution. Since the method allows to vary an observation angle of compared wave fields, an opportunity to compensate misalignment of optical axes of these wave fronts arises. This feature can be required, for example, when using two different setups in comparative digital holography or for compensation of recording system displacements during a set of exposures in studies of dynamic processes.

  2. Denoising in digital speckle pattern interferometry using wave atoms.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2007-05-15

    We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.

  3. Retrieval of phase-derivative discontinuities in digital speckle pattern interferometry fringes using the Wigner-Ville distribution

    NASA Astrophysics Data System (ADS)

    Federico, Alejandro; Kaufmann, Guillermo H.

    2004-08-01

    We evaluate the application of the Wigner-Ville distribution (WVD) to measure phase gradient maps in digital speckle pattern interferometry (DSPI), when the generated correlation fringes present phase discontinuities. The performance of the WVD method is evaluated using computer-simulated fringes. The influence of the filtering process to smooth DSPI fringes and additional drawbacks that emerge when this method is applied are discussed. A comparison with the conventional method based on the continuous wavelet transform in the stationary phase approximation is also presented.

  4. Baseline-dependent averaging in radio interferometry

    NASA Astrophysics Data System (ADS)

    Wijnholds, S. J.; Willis, A. G.; Salvini, S.

    2018-05-01

    This paper presents a detailed analysis of the applicability and benefits of baseline-dependent averaging (BDA) in modern radio interferometers and in particular the Square Kilometre Array. We demonstrate that BDA does not affect the information content of the data other than a well-defined decorrelation loss for which closed form expressions are readily available. We verify these theoretical findings using simulations. We therefore conclude that BDA can be used reliably in modern radio interferometry allowing a reduction of visibility data volume (and hence processing costs for handling visibility data) by more than 80 per cent.

  5. Polar-interferometry: what can be learnt from the IOTA/IONIC experiment

    NASA Astrophysics Data System (ADS)

    Le Bouquin, Jean-Baptiste; Rousselet-Perraut, Karine; Berger, Jean-Philippe; Herwats, Emilie; Benisty, Myriam; Absil, Olivier; Defrere, Denis; Monnier, John; Traub, Wesley

    2008-07-01

    We report the first near-IR polar-interferometric observations, performed at the IOTA array using its integrated optics combiner IONIC. Fringes have been obtained on calibration stars and resolved late-type giants. Optical modeling of the array and dedicated laboratory measures allowed us to confirm the good accuracy obtained on the calibrated polarized visibilities and closure phases. However, no evidences for polarimetric features at high angular resolution have been detected. The simulations and the results presented here open several perspectives for polar-interferometry, especially in the context of fibered, single-mode combiners.

  6. Relative astrometry of compact flaring structures in Sgr A* with polarimetric very long baseline interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D.; Doeleman, Sheperd S.; Fish, Vincent L.

    2014-10-20

    We demonstrate that polarimetric interferometry can be used to extract precise spatial information about compact polarized flares of Sgr A*. We show that, for a faint dynamical component, a single interferometric baseline suffices to determine both its polarization and projected displacement from the quiescent intensity centroid. A second baseline enables two-dimensional reconstruction of the displacement, and additional baselines can self-calibrate using the flare, enhancing synthesis imaging of the quiescent emission. We apply this technique to simulated 1.3 mm wavelength observations of a 'hot spot' embedded in a radiatively inefficient accretion disk around Sgr A*. Our results indicate that, even withmore » current sensitivities, polarimetric interferometry with the Event Horizon Telescope can achieve ∼5 μas relative astrometry of compact flaring structures near Sgr A* on timescales of minutes.« less

  7. Technology development for the LISA using the UF Torsion Pendulu

    NASA Astrophysics Data System (ADS)

    Conklin, John W.; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido

    2015-08-01

    Space-based gravitational wave observatories like LISA measure picometer changes in the distances between free falling test masses separated by millions of kilometers caused by gravitational waves. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). LISA will observe gravitational wave sources ranging from super-massive black hole mergers to compact galactic binaries in the millihertz region, and LISA science has consistently been ranked in the top two for future large space missions in the last two NASA astrophysics decadal reviews. With the 2015 launch of LISA Pathfinder (LPF) and the expected detection of gravitational waves by aLIGO and/or Pulsar Timing Arrays within in the next several years, this can arguably be called the decade of gravitational waves. Following a successful demonstration of the baseline LISA GRS by LPF, the measurement principle will be carried forward, but improvements in several GRS components are possible over the next ten years that will lead to cost savings and potential noise reductions. The UF LISA group has constructed the UF Torsion Pendulum to increase U.S. competency in this critical area and to have a facility where new technologies can be developed and evaluated. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. This presentation will describe this facility, focusing on its mechanical design, capacitive sensing and electrostatic actuation systems, and overall acceleration noise performance

  8. Astrophysics to z approx. 10 with Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Hughes, Scott; Lang, Ryan

    2007-01-01

    The most useful characterization of a gravitational wave detector's performance is the accuracy with which astrophysical parameters of potential gravitational wave sources can be estimated. One of the most important source types for the Laser Interferometer Space Antenna (LISA) is inspiraling binaries of black holes. LISA can measure mass and spin to better than 1% for a wide range of masses, even out to high redshifts. The most difficult parameter to estimate accurately is almost always luminosity distance. Nonetheless, LISA can measure luminosity distance of intermediate-mass black hole binary systems (total mass approx.10(exp 4) solar mass) out to z approx.10 with distance accuracies approaching 25% in many cases. With this performance, LISA will be able to follow the merger history of black holes from the earliest mergers of proto-galaxies to the present. LISA's performance as a function of mass from 1 to 10(exp 7) solar mass and of redshift out to z approx. 30 will be described. The re-formulation of LISA's science requirements based on an instrument sensitivity model and parameter estimation will be described.

  9. Free-Flight Experiments in LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; Cutler, C. J.; Hewitson, M.; Jennrich, O.; Maghami, P.; Paczkowski, S.; Russano, G.; Vitale, S.; Weber, W. J.

    2014-01-01

    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this 'suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.

  10. Charge Management in LISA Pathfinder: The Continuous Discharging Experiment

    NASA Astrophysics Data System (ADS)

    Ewing, Becca Elizabeth

    2018-01-01

    Test mass charging is a significant source of excess force and force noise in LISA Pathfinder (LPF). The planned design scheme for mitigation of charge induced force noise in LISA is a continuous discharge by UV light illumination. We report on analysis of a charge management experiment on-board LPF conducted during December 2016. We discuss the measurement of test mass charging noise with and without continuous UV illumination, in addition to the dynamic response in the continuous discharge scheme. Results of the continuous discharge system will be discussed for their application to operating LISA with lower test mass charge.

  11. Image quality comparison of two multifocal IOLs: influence of the pupil.

    PubMed

    García-Domene, Mari Carmen; Felipe, Adelina; Peris-Martínez, Cristina; Navea, Amparo; Artigas, Jose M; Pons, Álvaro M

    2015-04-01

    To evaluate the effect of pupil size on image quality of a sectorial multifocal intraocular lens (IOL), the Lentis Mplus (Oculentis GmbH, Berlin, Germany), and the Acri.LISA IOL (Carl Zeiss Meditec, Jena, Germany). The authors measured the MTFs of the Lentis Mplus LS-312 IOL and the Acri.LISA 366D IOL with three different sizes of pupil diameters: 3, 4, and 5 mm. The MTF was calculated from the cross-line spread function recorded with the OPAL Vector System (Image Science Ltd., Oxford, UK) by using fast Fourier-transform techniques. In distance focus, the image quality provided by the Lentis Mplus IOL was better than that of the Acri. LISA IOL with all pupil diameters. In near focus, the MTF of the Acri.LISA IOL was better with a 3-mm pupil, but poor with larger pupils. The aberration effect was equal in both IOLs in distance focus, but in near focus and with a 3-mm pupil, the Acri.LISA IOL was less affected by the aberration than the Lentis Mplus IOL. The Lentis Mplus IOL provides better distance image quality than the Acri.LISA IOL, whereas the near image quality of the Acri.LISA IOL is better with small-pupil diameter. The sectorial design makes this IOL more suitable for patients with a pupil diameter greater than 3 mm. Copyright 2015, SLACK Incorporated.

  12. A UV LED-based Charge Management System for LISA

    NASA Astrophysics Data System (ADS)

    Conklin, John W.; Chilton, Andrew; Olatunde, Taiwo Janet; Apple, Stephen; Parry, Samantha; Ciani, Giacomo; Wass, Peter; Mueller, Guido

    2018-01-01

    The Laser Interferometer Space Antenna (LISA) will be the first space instrument to observe gravitational waves in the millihertz frequency band. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 2.5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics in spacetime. A drag-free control system commands micronewton thrusters to force the spacecraft to fly in formation with the test masses and laser interferometers measure the minute variations in the distance, or light travel time, between these free-falling test masses caused by gravitational waves. The LISA observatory, with a planned launch in the early 2030s, is led by the European Space Agency with significant contributions from NASA. Recently, NASA has initiated strategic investments in key LISA technologies that will likely become U.S. flight hardware contributions to this ground-breaking mission. One of these payload elements is the Charge Management System (CMS), which controls the electric potential of the test masses relative to their housings to reduce spurious force noise acting on the test masses to below the required level. This talk, presented by University of Florida team that leads the CMS development, will describe this vital U.S. contribution to the LISA mission in the context of the envisioned LISA payload architecture and its in-flight sensitivity to gravitational waves.

  13. KSC-05PD-0359

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During an End-to-End (ETE) Mission Management Team (MMT) launch simulation at KSC, Mike Rein, division chief of Media Services, and Lisa Malone, director of External Relations and Business Development at KSC, work the consoles. In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. The ETE MMT simulation included L-2 and L-1 day Prelaunch MMT meetings, an external tanking/weather briefing, and a launch countdown. The ETE transitioned to the Johnson Space Center for the flight portion of the simulation, with the STS-114 crew in a simulator at JSC. Such simulations are common before a launch to keep the Shuttle launch team sharp and ready for liftoff.

  14. PREFACE: Proceedings of the 7th International LISA Symposium, Barcelona, Spain, 16-20 June 2008

    NASA Astrophysics Data System (ADS)

    Lobo, Alberto; Sopuerta, Carlos F.

    2009-07-01

    In June 2006 the LISA International Science Team (LIST) accepted the bid presented by the Institut d'Estudis Espacials de Catalunya (IEEC) to host the 7th International LISA Symposium. This was during its 11th meeting at the University of Maryland, just before the 6th edition of the Symposium started in NASA's Goddard Space Flight Center. The 7th International LISA Symposium took place at the city of Barcelona, Spain, from 16-20 June 2008, in the premises of CosmoCaixa, a modern Science Museum located in the hills near Tibidabo. Almost 240 delegates registered for the event, a record breaking figure compared to previous editions of the Symposium. Many of the most renowned world experts in LISA, Gravitational Wave Science, and Astronomy, as well as Engineers, attended LISA 7 and produced state-of-the-art presentations, while everybody benefited from the opportunity to have live discussions during the week in a friendly environment. The programme included 31 invited plenary lectures in the mornings, and 8 parallel sessions in the afternoons. These were classified into 7 major areas of research: LISA Technology, LISA PathFinder, LISA PathFinder Data Analysis, LISA Data Analysis, Gravitational Wave sources, Cosmology and Fundamental Physics with LISA and Other Gravitational Wave Detectors. 138 abstracts for communications were received, of which a selection was made by the session convenors which would fit time constraints. Up to 63 posters completed the scientific programme. More details on the programme, including some of the talks, can be found at the Symposium website: http://www.ice.cat/research/LISA_Symposium. There was however a remarkable add-on: Professor Clifford Will delivered a startling presentation to the general public, who completely filled the Auditori—the main Conference Room, 320 seats—and were invited to ask questions to the speaker who had boldly guided them through the daunting world of Black Holes, Waves of Gravity, and other Warped Ideas of Dr Einstein. The Proceedings of the 7th International LISA Symposium are jointly published by Classical and Quantum Gravity (CQG) and Journal of Physics: Conference Series (JPCS). This formula has a precedent in the last Amaldi Conference (Sydney 2007), and was motivated by the impossibility to fit all communications into a single CQG volume. Plenary speakers were invited to submit their contributions to CQG, and so were a number of parallel session authors chosen by the session convenors and the Science Organising Committee (SOC). Authors of the other parallel session presentations and posters were invited to submit to JPCS. All papers have been peer reviwed prior to being accepted for publication in either journal, and the whole set is well representative of the talks we heard during the Symposium. Thanks are accordingly due to all authors for their collaborative attitude and, more generally, to all delegates who came to Barcelona and made of the Symposium a first class scientific event. The LISA community has been steadily growing since the Symposium took off in Chilton, near Oxford (UK) back in 1996. The support of such community strongly endorses a complex mission Project, whose short term future requires such support for a much longer term new era of Gravitational Wave Astronomy and Fundamental Physics. In this sense, the number of attendees and their active interest in the LISA mission sparks optimism. The 7th International LISA Symposium sponsors are also sincerely acknowldged. They are: the Albert Einstein Institute (Hannover), the Spanish Ministry of Science and Innovation, the Generalitat de Catalunya (AGAUR), the Barcelona Institute of High Energy Physics (IFAE), the University of Barcelona (UB), the Polytechnique University of Catalunya (UPC), the Spanish Society of General Relativity and Gravitation (SEGRE), CosmoCaixa, NASA and the European Space Agency (ESA). The latter provided the LISA PathFinder model, a 1:4 scale model whose primer display we enjoyed during the Symposium. Finally, the Local Organising Committee and the IEEC staff have given their enthusiastic support to the organisation in every detail, and have efficiently worked for months to make the Symposium happen. Many thanks to all of them, and congratulations. Alberto Lobo and Carlos F Sopuerta Institut de Ciències de l'Espai (CSIC-IEEC) Guest Editors

  15. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2012-12-01

    The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.

  16. LISA Pathfinder: An important first step towards a space-based gravitational wave observatory

    NASA Astrophysics Data System (ADS)

    Thorpe, James

    2017-08-01

    ESA's LISA Pathfinder mission was launched on Dec 3rd, 2015 and completed earlier this Summer. During this relatively short mission, Pathfinder at its two science payloads, Europe's LISA Technology Package and NASA's Disturbance Reduction System, demonstrated several techniques and technologies that enable development of a future space-based gravitational wave observatory. Most notably, Pathfinder demonstrated that the technique of drag-free flight could be utilized to place a test mass in near-perfect free-fall, with residual accelerations at the femto-g level in the milliHertz band. Additionally, technologies such as precision bonded optical structures for metrology, micropropulsion systems, and non-contact charge control, were successfully tested, retiring risk for LISA. In this talk, I will present an overview of Pathfinder's results to date and some perspective on how this success will be leveraged into realizing LISA.

  17. Technology Development for the LISA Backlink

    NASA Astrophysics Data System (ADS)

    Chilton, Andrew; Hillsberry, Daniel; Ciani, Giacomo; Coneglian, Michele; Conklin, John; Mueller, Guido

    2018-01-01

    The LISA mission is a proposed space-based gravitational wave detector that aims to detect gravitational waves in the signal-rich frequency band between 10-4 Hz and 1 Hz. Among the many detection targets are supermassive black hole binary mergers, extreme mass ratio inspirals, and compact galactic binaries. LISA features a constellation of three satellites which fly in an equilateral triangle; by exchanging lasers between the satellites to form interferometers, it can detect passing gravitational waves. While this basic mission concept for LISA has existed for some time, it is not yet finalized. In particular, the design of the laser backlink, which exchanges laser beams between the two local optical benches is still being discussed. In this presentation we discuss the different LISA backlinks, including the classical and modified fiber backlinks, as well as options for a free space backlink. Furthermore, we present results from our free space backlink testbed and plans for future experiments.

  18. One-dimensional stitching interferometry assisted by a triple-beam interferometer

    DOE PAGES

    Xue, Junpeng; Huang, Lei; Gao, Bo; ...

    2017-04-13

    In this work, we proposed for stitching interferometry to use a triple-beam interferometer to measure both the distance and the tilt for all sub-apertures before the stitching process. The relative piston between two neighboring sub-apertures is then calculated by using the data in the overlapping area. Comparisons are made between our method, and the classical least-squares principle stitching method. Our method can improve the accuracy and repeatability of the classical stitching method when a large number of sub-aperture topographies are taken into account. Our simulations and experiments on flat and spherical mirrors indicate that our proposed method can decrease themore » influence of the interferometer error from the stitched result. The comparison of stitching system with Fizeau interferometry data is about 2 nm root mean squares and the repeatability is within ± 2.5 nm peak to valley.« less

  19. A novel plasmonic interferometry and the potential applications

    NASA Astrophysics Data System (ADS)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.

    2018-03-01

    In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.

  20. Circular carrier squeezing interferometry: Suppressing phase shift error in simultaneous phase-shifting point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel

    2018-03-01

    Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.

  1. Qualifciation test series of the indium needle FEEP micro-propulsion system for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Scharlemann, C.; Buldrini, N.; Killinger, R.; Jentsch, M.; Polli, A.; Ceruti, L.; Serafini, L.; DiCara, D.; Nicolini, D.

    2011-11-01

    The Laser Interferometer Space Antenna project (LISA) is a co-operative program between ESA and NASA to detect gravitational waves by measuring distortions in the space-time fabric. LISA Pathfinder is the precursor mission to LISA designed to validate the core technologies intended for LISA. One of the enabling technologies is the micro-propulsion system based on field emission thrusters necessary to achieve the uniquely stringent propulsion requirements. A consortium consisting of Astrium GmbH and the University of Applied Sciences Wiener Neustadt (formerly AIT) was commissioned by ESA to develop and qualify the micro-propulsion system based on the Indium Needle FEEP technology. Several successful tests have verified the proper Needle Field Emission Electric Propulsion (FEEP) operation and the thermal and mechanical design of subcomponents of the developed system. For all functional tests, the flight representative Power Control Unit developed by SELEX Galileo S.p.A (also responsible for the Micro-Propulsion Subsystem (MPS) development) was used. Measurements have shown the exceptional stability of the thruster. An acceptance test of one Thruster Cluster Assembly (TCA) over 3600 h has shown the stable long term operation of the developed system. During the acceptance test compliance to all the applicable requirements have been shown such as a thrust resolution of 0.1 μN, thrust range capability between 0 and 100 μN, thrust overshoot much lower than the required 0.3 μN+3% and many others. In particular important is the voltage stability of the thruster (±1% over the duration of the testing) and the confirmation of the very low thrust noise. Based on the acceptance test the lifetime of the thruster is expected to exceed 39,000 h generating a total impulse bit of 6300 Ns at an average thrust level of 50 μN. A flight representative qualification model of the Needle FEEP Cluster Assembly (DM1) equipped with one active TCA has performed a qualification program consisting of acceptance, vibration, shock, and thermal vacuum test. During the last test, the thermal vacuum test (TVT), a performance decrease was observed. According to a preliminary analysis, this performance decrease is not linked to the thermal conditions simulated in the TVT but might be rather linked to secondary effects of the TVT set-up.

  2. 76 FR 17650 - Federal Communications Commission Recharters and Seeks Nominations for Membership on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... Communications Commission, via e- mail at lisa[email protected] ; via facsimile at 202- 418-2817; or via U.S. mail... submission by e-mail or facsimile. FOR FURTHER INFORMATION CONTACT: Lisa M. Fowlkes, Deputy Chief, Public Safety & Homeland Security Bureau, (202) 418-7452 (voice) or lisa[email protected] (e-mail) or Jeffery...

  3. Parameter estimation accuracies of Galactic binaries with eLISA

    NASA Astrophysics Data System (ADS)

    Błaut, Arkadiusz

    2018-09-01

    We study parameter estimation accuracy of nearly monochromatic sources of gravitational waves with the future eLISA-like detectors. eLISA will be capable of observing millions of such signals generated by orbiting pairs of compact binaries consisting of white dwarf, neutron star or black hole and to resolve and estimate parameters of several thousands of them providing crucial information regarding their orbital dynamics, formation rates and evolutionary paths. Using the Fisher matrix analysis we compare accuracies of the estimated parameters for different mission designs defined by the GOAT advisory team established to asses the scientific capabilities and the technological issues of the eLISA-like missions.

  4. A heterodyne interferometer for high resolution translation and tilt measurement as optical readout for the LISA inertial sensor

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Kraus, Hans-Jürgen; Weise, Dennis; Braxmaier, Claus; Peters, Achim; Johann, Ulrich

    2017-11-01

    The space-based gravitational wave detector LISA (Laser Interferometer Space Antenna) requires a high performance position sensor in order to measure the translation and tilt of the free flying test mass with respect to the LISA optical bench. Here, we present a mechanically highly stable and compact setup of a heterodyne interferometer combined with differential wavefront sensing for the tilt measurement which serves as a demonstrator for an optical readout of the LISA test mass position. First results show noise levels below 1 nm/√Hz and 1 μrad/√Hz, respectively, for frequencies < 10-3 Hz.

  5. LISA: Opening New Horizons

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2011-01-01

    The Laser Interferometer Space Antenna (LISA) is a space-borne observatory that will open the low frequency (approx.0.1-100 mHz) gravitational wave window on the universe. LISA will observe a rich variety of gravitational wave sources, including mergers of massive black holes, captures of stellar black holes by massive black holes in the centers of galaxies, and compact Galactic binaries. These sources are generally long-lived, providing unprecedented opportunities for multi-messenger astronomy in the transient sky. This talk will present an overview of these scientific arenas, highlighting how LISA will enable stunning discoveries in origins, understanding the cosmic order, and the frontiers of knowledge.

  6. Gravitational-wave Mission Study

    NASA Technical Reports Server (NTRS)

    Mcnamara, Paul; Jennrich, Oliver; Stebbins, Robin T.

    2014-01-01

    In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies

  7. Distinguishing between Formation Channels for Binary Black Holes with LISA

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2016-10-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary black hole (BBH) mergers in the local universe. While ground-based gravitational wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of BBHs in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of BBH populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ∼ 90 % of binaries formed either dynamically or in isolation have eccentricities that are measurable with LISA. Finally, we note how measured eccentricities of low-mass BBHs evolved in isolation could provide detailed constraints on the physics of black hole natal kicks and common-envelope evolution.

  8. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.

  9. EDITORIAL: Proceedings of the 7th International LISA Symposium, Barcelona, Spain, 16-20 June 2008 Proceedings of the 7th International LISA Symposium, Barcelona, Spain, 16-20 June 2008

    NASA Astrophysics Data System (ADS)

    Lobo, Alberto; Sopuerta, Carlos F.

    2009-05-01

    In June 2006 the LISA International Science Team (LIST) accepted the bid presented by the Institut d'Estudis Espacials de Catalunya (IEEC) to host the 7th International LISA Symposium. This was during its 11th meeting at the University of Maryland, just before the 6th edition of the symposium started at NASA's Goddard Space Flight Center. The 7th International LISA Symposium took place in the city of Barcelona, Spain, 16-20 June, 2008, in the premises of CosmoCaixa, a modern science museum located in the hills near Tibidabo. Almost 240 delegates registered for the event, a record breaking figure compared to previous editions of the symposium. Many of the most renowned world experts in LISA, gravitational wave science, and astronomy, as well as engineers, attended LISA #7 and produced state of the art presentations, while everybody benefited from the opportunity to have live discussions during the week in a friendly environment. The programme included 31 invited plenary lectures in the mornings, and eight parallel sessions in the afternoons. These were classified into seven major areas of research: LISA Technology, LISA PathFinder, LISA PathFinder Data Analysis, LISA Data Analysis, Gravitational Wave Sources, Cosmology and Fundamental Physics with LISA and Other Gravitational Wave Detectors. Abstracts for 138 communications were received, from which a selection was made by the session convenors which would fit time constraints. Up to 63 posters completed the scientific programme. More details on the programme, including some of the talks, can be found at the symposium website:http://www.ice.cat/research/LISA_Symposium. There was, however, a remarkable add-on: Professor Clifford Will delivered a startling presentation to the general public, who completely filled the Auditori—the main conference room, 320 seats—and were invited to ask questions to the speaker who boldly guided them through the daunting world of Black Holes, Waves of Gravity, and other Warped Ideas of Dr Einstein. The Proceedings of the 7th International LISA Symposium are jointly published by the journal Classical and Quantum Gravity (CQG) and the Journal of Physics: Conference Series (JPCS). This formula has a precedent in the last Amaldi Conference (Sydney 2007), and was motivated by the impossibility to include all communications into a single CQG volume. Plenary speakers were invited to submit their contributions to CQG, as were a number of parallel session authors chosen by the session convenors and the Science Organising Committee (SOC). Authors of the other parallel session presentations and posters were invited to submit to JPCS. All papers have been peer-reviewed prior to being accepted for publication in either journal, and the whole set is a good representation of the talks we heard during the symposium. Thanks are accordingly due to all of the authors for their collaborative attitude and, more generally, to all of the delegates who came to Barcelona and made the symposium a first-class scientific event. The LISA community has been steadily growing since the symposium launched in Chilton, near Oxford (UK), back in 1996. The support of such community strongly endorses a complex mission project, whose short term future requires such support for a much longer term new era of gravitational wave astronomy and fundamental physics. In this sense, the number of attendees and their active interest in the LISA mission sparks optimism. The 7th International LISA Symposium sponsors are also sincerely acknowledged. They are: the Albert Einstein Institute (Hannover), the Spanish Ministry of Science and Innovation, the Generalitat de Catalunya (AGAUR), the Barcelona Institute of High Energy Physics (IFAE), the University of Barcelona (UB), the Polytechnique University of Catalunya (UPC), the Spanish Society of General Relativity and Gravitation (SEGRE), CosmoCaixa, NASA and the European Space Agency (ESA). The latter provided the LISA PathFinder model, a 1:4 scale model whose primer display we enjoyed during the symposium. Finally, the local organising committee (LOC) and the IEEC staff have given their enthusiastic support to the organization in every detail, and have worked efficiently for months to make the symposium happen. Many thanks to all of them, and congratulations. This is a co-publication with Journal of Physics Conference Series. A selection of papers are published in this issue of Classical and Quantum Gravity with the bulk of the papers, after peer review, published in Journal of Physics: Conference Series. Alberto Lobo and Carlos F Sopuerta Institut de Ciències de l'Espai (CSIC-IEEC) Guest Editors

  10. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Astrophysics Data System (ADS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; van Meter, J.

    2007-12-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks.” The magnitude of these kicks has bearing on the production and growth of supermassive blackholes during the epoch of structure formation, and on the retention of black holes in stellar clusters. This work was supported by NASA grant 06-BEFS06-19, and the simulations were carried out using Project Columbia at the NASA Advanced Supercomputing Division (Ames Research Center) and at the NASA Center for Computational Sciences (Goddard Space Flight Center).

  11. Enhanced Interferometry with Programmable Spatial Light Modulator

    DTIC Science & Technology

    2010-06-07

    metrolaserinc.com6-7-2010-Monday 6 Simulated by Zemax  Lenslet diameters, d, define spatial resolution over the wavefront being measured.  (sensitivity...MetroLaser Irvine, California Fitted Zernike Polynomials upto 36 terms, found and put into Zemax Simulated Cats’ eye wavefronts by ZEMAX Experimental...measurement Simulated Fringes Leftover < 0.1λ 23 Cat’s eye wavefronts by ZEMAX based on Experimental results Jtrolinger@metrolaserinc.com6-7-2010

  12. Combining Monte Carlo methods with coherent wave optics for the simulation of phase-sensitive X-ray imaging

    PubMed Central

    Peter, Silvia; Modregger, Peter; Fix, Michael K.; Volken, Werner; Frei, Daniel; Manser, Peter; Stampanoni, Marco

    2014-01-01

    Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging. PMID:24763652

  13. Comparison of Ice-shelf Creep Flow Simulations with Ice-front Motion of Filchner-Ronne Ice Shelf, Antarctica, Detected by SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Hulbe, C. L.; Rignot, E.; MacAyeal, D. R.

    1998-01-01

    Comparison between numerical model ice-shelf flow simulations and synthetic aperture radar (SAR) interferograms is used to study the dynamics at the Hemmen Ice Rise (HIR) and Lassiter Coast (LC) corners of the iceberg-calving front of the Filchner-Ronne Ice Shelf (FRIS).

  14. Gravitational Wave Signals from the First Massive Black Hole Seeds

    NASA Astrophysics Data System (ADS)

    Hartwig, Tilman; Agarwal, Bhaskar; Regan, John A.

    2018-05-01

    Recent numerical simulations reveal that the isothermal collapse of pristine gas in atomic cooling haloes may result in stellar binaries of supermassive stars with M* ≳ 104M⊙. For the first time, we compute the in-situ merger rate for such massive black hole remnants by combining their abundance and multiplicity estimates. For black holes with initial masses in the range 104 - 6M⊙ merging at redshifts z ≳ 15 our optimistic model predicts that LISA should be able to detect 0.6 mergers per year. This rate of detection can be attributed, without confusion, to the in-situ mergers of seeds from the collapse of very massive stars. Equally, in the case where LISA observes no mergers from heavy seeds at z ≳ 15 we can constrain the combined number density, multiplicity, and coalesence times of these high-redshift systems. This letter proposes gravitational wave signatures as a means to constrain theoretical models and processes that govern the abundance of massive black hole seeds in the early Universe.

  15. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; vanMeter, J.

    2008-01-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks." The magnitude of these kicks has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters.

  16. The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology

    USGS Publications Warehouse

    Galloway, D.L.; Hoffmann, J.

    2007-01-01

    The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions. ?? Springer-Verlag 2006.

  17. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2009-12-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  18. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2010-03-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  19. Non-null annular subaperture stitching interferometry for aspheric test

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.

  20. Enhanced Gravitational Wave Science with LISA and gLISA.

    NASA Astrophysics Data System (ADS)

    Tinto, Massimo

    2017-05-01

    The geosynchronous Laser Interferometer Space Antenna (gLISA) is a space-based gravitational wave (GW) mission that, for the past five years, has been under joint study at the Jet Propulsion Laboratory, Stanford University, the National Institute for Space Research (I.N.P.E., Brazil), and Space Systems Loral. With an arm length of 73,000 km, gLISA will display optimal sensitivity over a frequency region that is exactly in between those accessible by LISA and LIGO. Such a GW frequency band is characterized by the presence of a very large ensemble of coalescing black-hole binaries (BHBs) similar to those first observed by LIGO and with masses that are 10 to 100 times the mass of the Sun. gLISA will detect thousands of such signals with good signal-to-noise ratio (SNR) and enhance the LIGO science by measuring with high precision the parameters characterizing such signals (source direction, chirp parameter, time to coalescence, etc.) well before they will enter the LIGO band. This valuable information will improve LIGO’s ability to detect these signals and facilitate its study of the merger and ring-down phases not observable by space-based detectors. If flown at the same time as the LISA mission, the two arrays will deliver a joint sensitivity that accounts for the best performance of both missions in their respective parts of the milliHertz band. This simultaneous operation will result in an optimally combined sensitivity curve that is “white” from about 3 × 10-3 Hz to 1 Hz, making the two antennas capable of detecting, with high signal-to-noise ratios (SNRs), BHBs with masses in the range (10 - 107)M ⊙. Their ability of jointly tracking, with enhanced SNR, signals similar to that observed by the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) on September 14, 2015 (the GW150914 event) will result in a larger number of observable small-mass binary black-holes and an improved precision of the parameters characterizing these sources. Together, LISA, gLISA and aLIGO will cover, with good sensitivity, the (10-4 - 103) Hz frequency band.

  1. From a structural average to the conformational ensemble of a DNA bulge

    PubMed Central

    Shi, Xuesong; Beauchamp, Kyle A.; Harbury, Pehr B.; Herschlag, Daniel

    2014-01-01

    Direct experimental measurements of conformational ensembles are critical for understanding macromolecular function, but traditional biophysical methods do not directly report the solution ensemble of a macromolecule. Small-angle X-ray scattering interferometry has the potential to overcome this limitation by providing the instantaneous distance distribution between pairs of gold-nanocrystal probes conjugated to a macromolecule in solution. Our X-ray interferometry experiments reveal an increasing bend angle of DNA duplexes with bulges of one, three, and five adenosine residues, consistent with previous FRET measurements, and further reveal an increasingly broad conformational ensemble with increasing bulge length. The distance distributions for the AAA bulge duplex (3A-DNA) with six different Au-Au pairs provide strong evidence against a simple elastic model in which fluctuations occur about a single conformational state. Instead, the measured distance distributions suggest a 3A-DNA ensemble with multiple conformational states predominantly across a region of conformational space with bend angles between 24 and 85 degrees and characteristic bend directions and helical twists and displacements. Additional X-ray interferometry experiments revealed perturbations to the ensemble from changes in ionic conditions and the bulge sequence, effects that can be understood in terms of electrostatic and stacking contributions to the ensemble and that demonstrate the sensitivity of X-ray interferometry. Combining X-ray interferometry ensemble data with molecular dynamics simulations gave atomic-level models of representative conformational states and of the molecular interactions that may shape the ensemble, and fluorescence measurements with 2-aminopurine-substituted 3A-DNA provided initial tests of these atomistic models. More generally, X-ray interferometry will provide powerful benchmarks for testing and developing computational methods. PMID:24706812

  2. Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Caprini, Chiara; Domcke, Valerie; Figueroa, Daniel G.; Garcia-Bellido, Juan; Chiara Guzzetti, Maria; Liguori, Michele; Matarrese, Sabino; Peloso, Marco; Petiteau, Antoine; Ricciardone, Angelo; Sakellariadou, Mairi; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2016-12-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  3. Development of Fiber-Based Laser Systems for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2010-01-01

    We present efforts on fiber-based laser systems for the LISA mission at the NASA Goddard Space Flight Center. A fiber-based system has the advantage of higher robustness against external disturbances and easier implementation of redundancies. For a master oscillator, we are developing a ring fiber laser and evaluating two commercial products, a DBR linear fiber laser and a planar-waveguide external cavity diode laser. They all have comparable performance to a traditional NPRO at LISA band. We are also performing reliability tests of a 2-W Yb fiber amplifier and radiation tests of fiber laser/amplifier components. We describe our progress to date and discuss the path to a working LISA laser system design.

  4. LISA Pathfinder: A Mission Status

    NASA Astrophysics Data System (ADS)

    Hewitson, Martin; LISA Pathfinder Team Team

    2016-03-01

    On December 3rd at 04:04 UTC, The European Space Agency launched the LISA Pathfinder satellite on board a VEGA rocket from Kourou in French Guiana. After a series of orbit raising manoeuvres and a 2 month long transfer orbit, LISA Pathfinder arrived at L1. Following a period of commissioning, the science operations commenced at the start of March, beginning the demonstration of technologies and methodologies which pave the way for a future large-scale gravitational wave observatory in space. This talk will present the scientific goals of the mission, discuss the technologies being tested, elucidate the link to a future space-based observatory, such as LISA, and present preliminary results from the in-orbit operations and experiments.

  5. 240 nm UV LEDs for LISA test mass charge control

    NASA Astrophysics Data System (ADS)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Serra, Paul; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-05-01

    Test Masses inside the LISA Gravitational Reference Sensor must maintain almost pure geodesic motion for gravitational waves to be successfully detected. LISA requires residual test mass accelerations below 3 fm/s2/√Hz at all frequencies between 0.1 and 3 mHz. One of the well-known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electromagnetic fields. LISA Pathfinder will use Hg-discharge lamps emitting mostly around 254 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. Presented here is a preliminary study of the effectiveness of charge control using latest generation UV-LEDs which produce light at 240 nm with energy above the work function of pure Au. Their lower mass, better power efficiency and small size make them an ideal replacement for Hg lamps.

  6. Laser frequency stabilization for LISA

    NASA Technical Reports Server (NTRS)

    Mueller, Guido; McNamara, Paul; Thorpe, Ira; Camp, Jordan

    2005-01-01

    The requirement on laser frequency noise in the Laser Interferometer Space Antenna (LISA) depends on the velocity and our knowledge of the position of each spacecraft of the interferometer. Currently it is assumed that the lasers must have a pre-stabilized frequency stability of 30Hz/square root of Hz over LISA'S most sensitive frequency band (3 mHz - 30 mHz). The intrinsic frequency stability of even the most stable com- mercial lasers is several orders of magnitude above this level. Therefore it is necessary to stabilize the laser frequency to an ultra-stable frequency reference which meets the LISA requirements. The baseline frequency reference for the LISA lasers are high finesse optical cavities based on ULE spacers. We measured the stability of two ULE spacer cavities with respect to each other. Our current best results show a noise floor at, or below, 30 Hz/square root of Hz above 3 mHz. In this report we describe the experimental layout of the entire experiment and discuss the limiting noise sources.

  7. Calibration Method to Eliminate Zeroth Order Effect in Lateral Shearing Interferometry

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Xiang, Yang; Qi, Keqi; Chen, Dawei

    2018-04-01

    In this paper, a calibration method is proposed which eliminates the zeroth order effect in lateral shearing interferometry. An analytical expression of the calibration error function is deduced, and the relationship between the phase-restoration error and calibration error is established. The analytical results show that the phase-restoration error introduced by the calibration error is proportional to the phase shifting error and zeroth order effect. The calibration method is verified using simulations and experiments. The simulation results show that the phase-restoration error is approximately proportional to the phase shift error and zeroth order effect, when the phase shifting error is less than 2° and the zeroth order effect is less than 0.2. The experimental result shows that compared with the conventional method with 9-frame interferograms, the calibration method with 5-frame interferograms achieves nearly the same restoration accuracy.

  8. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) mission is part of NASA s Beyond Einstein program. This program seeks to answer the questions What Powered the Big Bang?, What happens at the edge of a Black Hole?, and What is Dark Energy?. LISA IS the first mission to be launched in this new program. This paper will give an overview of the Beyond Einstein program, its current status and where LISA fits in.

  9. Coherent observations of gravitational radiation with LISA and gLISA

    NASA Astrophysics Data System (ADS)

    Tinto, Massimo; de Araujo, José C. N.

    2016-10-01

    The geosynchronous Laser Interferometer Space Antenna (gLISA) is a space-based gravitational wave (GW) mission that, for the past 5 years, has been under joint study at the Jet Propulsion Laboratory; Stanford University; the National Institute for Space Research (I.N.P.E., Brazil); and Space Systems Loral. If flown at the same time as the LISA mission, the two arrays will deliver a joint sensitivity that accounts for the best performance of both missions in their respective parts of the millihertz band. This simultaneous operation will result in an optimally combined sensitivity curve that is "white" from about 3 ×10-3 Hz to 1 Hz, making the two antennas capable of detecting, with high signal-to-noise ratios (SNRs), coalescing black-hole binaries (BHBs) with masses in the range (10 -1 08)M⊙ . Their ability of jointly tracking, with enhanced SNR, signals similar to that observed by the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) on September 14, 2015 (the GW150914 event) will result in a larger number of observable small-mass binary black holes and an improved precision of the parameters characterizing these sources. Together, LISA, gLISA and aLIGO will cover, with good sensitivity, the (10-4-1 03) Hz frequency band.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gair, Jonathan R.; Tang, Christopher; Volonteri, Marta

    One of the sources of gravitational waves for the proposed space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA), are the inspirals of compact objects into supermassive black holes in the centers of galaxies--extreme-mass-ratio inspirals (EMRIs). Using LISA observations, we will be able to measure the parameters of each EMRI system detected to very high precision. However, the statistics of the set of EMRI events observed by LISA will be more important in constraining astrophysical models than extremely precise measurements for individual systems. The black holes to which LISA is most sensitive are in a mass range that ismore » difficult to probe using other techniques, so LISA provides an almost unique window onto these objects. In this paper we explore, using Bayesian techniques, the constraints that LISA EMRI observations can place on the mass function of black holes at low redshift. We describe a general framework for approaching inference of this type--using multiple observations in combination to constrain a parametrized source population. Assuming that the scaling of the EMRI rate with the black-hole mass is known and taking a black-hole distribution given by a simple power law, dn/dlnM=A{sub 0}(M/M{sub *}){sup {alpha}}{sub 0}, we find that LISA could measure the parameters to a precision of {Delta}(lnA{sub 0}){approx}0.08, and {Delta}({alpha}{sub 0}){approx}0.03 for a reference model that predicts {approx}1000 events. Even with as few as 10 events, LISA should constrain the slope to a precision {approx}0.3, which is the current level of observational uncertainty in the low-mass slope of the black-hole mass function. We also consider a model in which A{sub 0} and {alpha}{sub 0} evolve with redshift, but find that EMRI observations alone do not have much power to probe such an evolution.« less

  11. Assessment of Polarimetric SAR Interferometry for Improving Ship Classification based on Simulated Data

    PubMed Central

    Margarit, Gerard; Mallorqui, Jordi J.

    2008-01-01

    This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR) in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels' geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS) and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA) working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions. PMID:27873954

  12. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  13. LISA Pathfinder first results

    NASA Astrophysics Data System (ADS)

    Vetrugno, D.

    LISA Pathfinder (LPF) is an in-flight technological demonstrator designed and launched to prove the feasibility of sub-femto-g free fall of kilo-sized test masses (TM), an essential ingredient for the future gravitational wave observatory from space. Half a year after launch, the first results are available and show an incredibly well-performing instrument. The results represent a first and important step towards the long awaited construction and launch of LISA, the Laser Interferometer Space Antenna.

  14. Detection and Characterization of Micrometeoroid Impacts on LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Hourihane, S.; Littenberg, T.; Baker, J. G.; Pagane, N.; Slutsky, J. P.; Thorpe, J. I.

    2017-12-01

    LISA Pathfinder (LPF) was a joint ESA/NASA technology demonstration mission for the Laser Interferometer Space Antenna (LISA) gravitational wave observatory. LPF, the most sensitive accelerometer ever flown in space, was launched in December 2015 and successfully concluded its mission in July 2017. Due in part to LPFs success, LISA was selected by the European Space Agency for launch in the early 2030s. An ancillary benefit of LPFs capabilities made it a sensitive detector of micrometeoroid impacts. We report on the capabilities of LPF to detect and characterize impacts, and progress towards using those inferences to advance our understanding of the micrometeoroid environment in the solar system. In doing so, we assess the prospect of space-based gravitational wave observatories as micrometeoroid detection instruments.

  15. Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caprini, Chiara, E-mail: chiara.caprini@cea.fr; Hindmarsh, Mark; Huber, Stephan

    We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-ordermore » cosmological phase transitions in the early Universe.« less

  16. Incoherent averaging of phase singularities in speckle-shearing interferometry.

    PubMed

    Mantel, Klaus; Nercissian, Vanusch; Lindlein, Norbert

    2014-08-01

    Interferometric speckle techniques are plagued by the omnipresence of phase singularities, impairing the phase unwrapping process. To reduce the number of phase singularities by physical means, an incoherent averaging of multiple speckle fields may be applied. It turns out, however, that the results may strongly deviate from the expected √N behavior. Using speckle-shearing interferometry as an example, we investigate the mechanism behind the reduction of phase singularities, both by calculations and by computer simulations. Key to an understanding of the reduction mechanism during incoherent averaging is the representation of the physical averaging process in terms of certain vector fields associated with each speckle field.

  17. Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.

    PubMed

    Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K

    2011-06-10

    Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.

  18. A polarized digital shearing speckle pattern interferometry system based on temporal wavelet transformation.

    PubMed

    Feng, Ziang; Gao, Zhan; Zhang, Xiaoqiong; Wang, Shengjia; Yang, Dong; Yuan, Hao; Qin, Jie

    2015-09-01

    Digital shearing speckle pattern interferometry (DSSPI) has been recognized as a practical tool in testing strain. The DSSPI system which is based on temporal analysis is attractive because of its ability to measure strain dynamically. In this paper, such a DSSPI system with Wollaston prism has been built. The principles and system arrangement are described and the preliminary experimental result of the displacement-derivative test of an aluminum plate is shown with the wavelet transformation method and the Fourier transformation method. The simulations have been conducted with the finite element method. The comparison of the results shows that quantitative measurement of displacement-derivative has been realized.

  19. Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.

    PubMed

    Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu

    2018-03-10

    This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.

  20. Measurement of fluid properties using rapid-double-exposure and time-average holographic interferometry

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1984-01-01

    The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed.

  1. Instrument Pointing Control System for the Stellar Interferometry Mission - Planet Quest

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul B.; Kang, Bryan

    2006-01-01

    This paper describes the high precision Instrument Pointing Control System (PCS) for the Stellar Interferometry Mission (SIM) - Planet Quest. The PCS system provides front-end pointing, compensation for spacecraft motion, and feedforward stabilization, which are needed for proper interference. Optical interferometric measurements require very precise pointing (0.03 as, 1-(sigma) radial) for maximizing the interference pattern visibility. This requirement is achieved by fine pointing control of articulating pointing mirrors with feedback from angle tracking cameras. The overall pointing system design concept is presentcd. Functional requirements and an acquisition concept are given. Guide and Science pointing control loops are discussed. Simulation analyses demonstrate the feasibility of the design.

  2. Application of optical interferometry in focused acoustic field measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yuebing; Sun, Min; Cao, Yonggang; Zhu, Jiang

    2018-07-01

    Optical interferometry has been successfully applied in measuring acoustic pressures in plane-wave fields and spherical-wave fields. In this paper, the "effective" refractive index for focused acoustic fields was developed, through numerical simulation and experiments, the feasibility of the optical method in measuring acoustic fields of focused transducers was proved. Compared with the results from a membrane hydrophone, it was concluded that the optical method has good spatial resolution and is suitable for detecting focused fields with fluctuant distributions. The influences of a few factors (the generated lamb wave, laser beam directivity, etc.) were analyzed, and corresponding suggestions were proposed for effective application of this technology.

  3. Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime

    NASA Technical Reports Server (NTRS)

    Amaro, Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Amanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; hide

    2012-01-01

    This document introduces the exciting and fundamentally new science and astronomy that the European New Gravitational Wave Observatory (NGO) mission (derived from the previous LISA proposal) will deliver. The mission (which we will refer to by its informal name eLISA ) will survey for the first time the low-frequency gravitational wave band (about 0.1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The measurements described here will address the basic scientific goals that have been captured in ESA s New Gravitational Wave Observatory Science Requirements Document ; they are presented here so that the wider scientific community can have access to them. The eLISA mission will discover and study a variety of cosmic events and systems with high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier, less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and compact stars in orbits just skimming the horizons of massive black holes in galactic nuclei of the present era; extremely compact white dwarf binaries in our Galaxy, a rich source of information about binary evolution and about future Type Ia supernovae; and possibly most interesting of all, the uncertain and unpredicted sources, for example relics of inflation and of the symmetry-breaking epoch directly after the Big Bang. eLISA s measurements will allow detailed studies of these signals with high signal-to-noise ratio, addressing most of the key scientific questions raised by ESA s Cosmic Vision programme in the areas of astrophysics and cosmology. They will also provide stringent tests of general relativity in the strong-field dynamical regime, which cannot be probed in any other way. This document not only describes the science but also gives an overview on the mission design and orbits. LISA s heritage in the eLISA design will be clear to those familiar with the previous proposal, as will its incorporation of key elements of hardware from the LISA Pathfinder mission, scheduled for launch by ESA in 2014. But eLISA is fundamentally a new mission, one that will pioneer the completely new science of low-frequency gravitational wave astronomy. 4 of

  4. Numerical Relativity Simulations for Black Hole Merger Astrophysics

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2010-01-01

    Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.

  5. Digital Moiré based transient interferometry and its application in optical surface measurement

    NASA Astrophysics Data System (ADS)

    Hao, Qun; Tan, Yifeng; Wang, Shaopu; Hu, Yao

    2017-10-01

    Digital Moiré based transient interferometry (DMTI) is an effective non-contact testing methods for optical surfaces. In DMTI system, only one frame of real interferogram is experimentally captured for the transient measurement of the surface under test (SUT). When combined with partial compensation interferometry (PCI), DMTI is especially appropriate for the measurement of aspheres with large apertures, large asphericity or different surface parameters. Residual wavefront is allowed in PCI, so the same partial compensator can be applied to the detection of multiple SUTs. Excessive residual wavefront aberration results in spectrum aliasing, and the dynamic range of DMTI is limited. In order to solve this problem, a method based on wavelet transform is proposed to extract phase from the fringe pattern with spectrum aliasing. Results of simulation demonstrate the validity of this method. The dynamic range of Digital Moiré technology is effectively expanded, which makes DMTI prospective in surface figure error measurement for intelligent fabrication of aspheric surfaces.

  6. On-line surface inspection using cylindrical lens-based spectral domain low-coherence interferometry.

    PubMed

    Tang, Dawei; Gao, Feng; Jiang, X

    2014-08-20

    We present a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques by using cylindrical lenses as the objective lenses in a Michelson interferometric configuration to enable the measurement of long profiles. Combined with a modern high-speed CCD camera, general-purpose graphics processing unit, and multicore processors computing technology, fast measurement can be achieved. By translating the tested sample during the measurement procedure, real-time surface inspection was implemented, which is proved by the large-scale 3D surface measurement in this paper. ZEMAX software is used to simulate the SD-LCI system and analyze the alignment errors. Two step height surfaces were measured, and the captured interferograms were analyzed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer.

  7. Validation of simultaneous reverse optimization reconstruction algorithm in a practical circular subaperture stitching interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Dong; Liu, Yu; Liu, Jingxiao; Li, Jingsong; Yu, Benli

    2017-11-01

    We demonstrate the validity of the simultaneous reverse optimization reconstruction (SROR) algorithm in circular subaperture stitching interferometry (CSSI), which is previously proposed for non-null aspheric annular subaperture stitching interferometry (ASSI). The merits of the modified SROR algorithm in CSSI, such as auto retrace error correction, no need of overlap and even permission of missed coverage, are analyzed in detail in simulations and experiments. Meanwhile, a practical CSSI system is proposed for this demonstration. An optical wedge is employed to deflect the incident beam for subaperture scanning by its rotation and shift instead of the six-axis motion-control system. Also the reference path can provide variable Zernike defocus for each subaperture test, which would decrease the fringe density. Experiments validating the SROR algorithm in this CSSI is implemented with cross validation by testing of paraboloidal mirror, flat mirror and astigmatism mirror. It is an indispensable supplement in SROR application in general subaperture stitching interferometry.

  8. High speed digital holographic interferometry for hypersonic flow visualization

    NASA Astrophysics Data System (ADS)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  9. Suppressing ghost beams: Backlink options for LISA

    NASA Astrophysics Data System (ADS)

    Isleif, K.-S.; Gerberding, O.; Penkert, D.; Fitzsimons, E.; Ward, H.; Robertson, D.; Livas, J.; Mueller, G.; Reiche, J.; Heinzel, G.; Danzmann, K.

    2017-05-01

    In this article we discuss possible design options for the optical phase reference system, the so called backlink, between two moving optical benches in a LISA satellite. The candidates are based on two approaches: Fiber backlinks, with additional features like mode cleaning cavities and Faraday isolators, and free beam backlinks with angle compensation techniques. We will indicate dedicated ghost beam mitigation strategies for the design options and we will point out critical aspects in case of an implementation in LISA.

  10. Advanced Research Projects Agency - Energy (ARPA-E): Background, Status, and Selected Issues for Congress

    DTIC Science & Technology

    2009-04-29

    in 2007. It effectively began operation in February 2008 when its first director, Lisa Porter, began to manage the organization. IARPA is considered...47 Personal Communication with Lisa Porter, Director, IARPA, January 23, 2009. Sally Adde, “Q&A With: IARPA Director Lisa Porter,” IEEE...continued) 109-39 (Washington: GPO, 2006). 50 John M. Broder and Matthew L. Wald , “Big Science Role Is Seen in Global Warming Cure,” New

  11. LISA technology development using the UF precision torsion pendulum

    NASA Astrophysics Data System (ADS)

    Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-04-01

    LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the fall of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements that may improve the performance and/or reduce the cost of the LISA GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.

  12. Noncompetitive Homogeneous Detection of Small Molecules Using Synthetic Nanopeptamer-Based Luminescent Oxygen Channeling.

    PubMed

    Lassabe, Gabriel; Kramer, Karl; Hammock, Bruce D; González-Sapienza, Gualberto; González-Techera, Andrés

    2018-05-15

    Our group has previously developed immunoassays for noncompetitive detection of small molecules based on the use of phage borne anti-immunocomplex peptides. Recently, we substituted the phage particles by biotinylated synthetic anti-immunocomplex peptides complexed with streptavidin and named these constructs nanopeptamers. In this work, we report the results of combining AlphaLisa, a commercial luminescent oxygen channeling bead system, with nanopeptamers for the development of a noncompetitive homogeneous assay for the detection of small molecules. The signal generation of AlphaLisa assays relies on acceptor-donor bead proximity induced by the presence of the analyte (a macromolecule) simultaneously bound by antibodies immobilized on the surface of these beads. In the developed assay, termed as nanoAlphaLisa, bead proximity is sustained by the presence of a small model molecule (atrazine, MW = 215) using an antiatrazine antibody captured on the acceptor bead and an atrazine nanopeptamer on the donor bead. Atrazine is one of the most used pesticides worldwide, and its monitoring in water has relevant human health implications. NanoAlphaLisa allowed the homogeneous detection of atrazine down to 0.3 ng/mL in undiluted water samples in 1 h, which is 10-fold below the accepted limit in drinking water. NanoAlphaLisa has the intrinsic advantages for automation and high-throughput, simple, and fast homogeneous detection of target analytes that AlphaLisa assay provides.

  13. Nano-LISA for in vitro diagnostic applications

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher; Glickman, Randolph D.; Elliott, Rowe; Barsalou, Norman

    2011-03-01

    We previously reported the detection of bacterial antigen with immunoaffinity reactions using laser optoacoustic spectroscopy and antibody-coupled gold nanorods (Ab-NR) as a contrast agent specifically targeted to the antigen of interest. The Nano-LISA (Nanoparticle Linked Immunosorbent Assay) method has been adapted to detect three very common blood-borne viral infectious agents, i.e. human T-lymphotropic virus (HTLV), human immunodeficiency virus (HIV) and hepatitis-B (Hep-B). These agents were used in a model test panel to illustrate the performance of the Nano-LISA technique. A working laboratory prototype of a Nano-LISA microplate reader-sensor was assembled and tested against the panel containing specific antigens of each of the infectious viral agents. Optoacoustic (OA) responses generated by the samples were detected using the probe beam deflection technique, an all-optical, non-contact technique. A LabView graphical user interface was developed for control of the instrument and real-time display of the test results. The detection limit of Nano-LISA is at least 1 ng/ml of viral antigen, and can reach 10 pg/ml, depending on the binding affinity of the specific detection antibody used to synthesize the Ab-NR. The method has sufficient specificity, i.e. the detection reagents do not cross-react with noncomplementary antigens. Thus, the OA microplate reader, incorporating NanoLISA, has adequate detection sensitivity and specificity for use in clinical in vitro diagnostic testing.

  14. CFRP Dimensional Stability Investigations for Use on the LISA Mission Telescope

    NASA Technical Reports Server (NTRS)

    Sanjuan, J.; Korytov, D.; Spector, A.; Mueller, G.; Preston, A.; Livas, J.; Freise, A.; Dixon, G.

    2011-01-01

    The Laser Interferometer Space Antenna (LISA) is a mission designed to detect low frequency gravitational-waves. In order for LISA to succeed in its goal of direct measurement of gravitational waves, many subsystems must work together to measure the distance between proof masses on adjacent spacecraft. One such subsystem, the telescope, plays a critical role as it is the laser transmission and reception link between spacecraft. Not only must the material that makes up the telescope support structure be strong, stiff and light, but it must have a dimensional stability of better than 1 pm Hz(exp -1/2) at 3 mHz and the distance between the primary and the secondary mirrors must change by less than 2.5 micron over the mission lifetime. CFRP is the current baseline materiaL however, it has not been tested to the pico-meter level as required by the LISA mission. In this paper we present dimensional stability results, outgassing effects occurring in the cavity and discuss its feasibility for use as the telescope spacer for the LISA spacecraft.

  15. Actuation crosstalk in free-falling systems: Torsion pendulum results for the engineering model of the LISA pathfinder gravitational reference sensor

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Cavalleri, A.; De Laurentis, M.; De Marchi, F.; De Rosa, R.; Di Fiore, L.; Dolesi, R.; Finetti, N.; Garufi, F.; Grado, A.; Hueller, M.; Marconi, L.; Milano, L.; Minenkov, Y.; Pucacco, G.; Stanga, R.; Vetrugno, D.; Visco, M.; Vitale, S.; Weber, W. J.

    2018-01-01

    In this paper we report on measurements on actuation crosstalk, relevant to the gravitational reference sensors for LISA Pathfinder and LISA. In these sensors, a Test Mass (TM) falls freely within a system of electrodes used for readout and control. These measurements were carried out on ground with a double torsion pendulum that allowed us to estimate both the torque injected into the sensor when a control force is applied and, conversely, the force leaking into the translational degree of freedom due to the applied torque.The values measured on our apparatus (the engineering model of the LISA Pathfinder sensor) agree to within 0.2% (over a maximum measured crosstalk of 1%) with predictions of a mathematical model when measuring force to torque crosstalk, while it is somewhat larger than expected (up to 3.5%) when measuring torque to force crosstalk. However, the values in the relevant range, i.e. when the TM is well centered ( ± 10 μm) in the sensor, remain smaller than 0.2%, satisfying the LISA Pathfinder requirements.

  16. Sky Localization of Complete Inspiral-Merger-Ringdown Signals for Nonspinning Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Lang, Ryan N.; Baker, John G.; Thorpe, James Ira

    2011-01-01

    We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, including for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. For an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2 x l0(exp 6) Stellar Mass at a redshift of z = 1 with random orientations and sky positions, we find median sky localization errors of approximately approx. 3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well-determined parameters.

  17. The Role of Mental Models in Dynamic Decision-Making

    DTIC Science & Technology

    2009-03-01

    Humansystems® Incorporated 111 Farquhar St., Guelph, ON N1H 3N4 Project Manager : Lisa A. Rehak PWGSC Contract No.: W7711-078110/001/TOR Call...simulate the processes that people use to manage complex systems. These analogies, moreover, represent one way to help people to form more accurate...make complex decisions. Control theory’s primary emphasis is on the role of feedback while managing a complex system. What is common to all of these

  18. The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band

    NASA Astrophysics Data System (ADS)

    Tang, Yike; Haiman, Zoltán; MacFadyen, Andrew

    2018-05-01

    We present the results of 2D, moving-mesh, viscous hydrodynamical simulations of an accretion disc around a merging supermassive black hole binary (SMBHB). The simulation is pseudo-Newtonian, with the BHs modelled as point masses with a Paczynski-Wiita potential, and includes viscous heating, shock heating, and radiative cooling. We follow the gravitational inspiral of an equal-mass binary with a component mass Mbh = 106 M⊙ from an initial separation of 60rg (where rg ≡ GMbh/c2 is the gravitational radius) to the merger. We find that a central, low-density cavity forms around the binary, as in previous work, but that the BHs capture gas from the circumbinary disc and accrete efficiently via their own minidiscs, well after their inspiral outpaces the viscous evolution of the disc. The system remains luminous, displaying strong periodicity at twice the binary orbital frequency throughout the entire inspiral process, all the way to the merger. In the soft X-ray band, the thermal emission is dominated by the inner edge of the circumbinary disc with especially clear periodicity in the early inspiral. By comparison, harder X-ray emission is dominated by the minidiscs, and the light curve is initially more noisy but develops a clear periodicity in the late inspiral stage. This variability pattern should help identify the electromagnetic counterparts of SMBHBs detected by the space-based gravitational-wave detector LISA.

  19. A multi-layered active target for the study of neutron-unbound nuclides at NSCL

    NASA Astrophysics Data System (ADS)

    Freeman, Jessica; Gueye, Paul; Redpath, Thomas; MoNA Collaboration

    2017-01-01

    The characteristics of neutron-unbound nuclides were investigated using a multi-layered Si/Be active target designed for use with the MoNA/LISA setup at the National Superconducting Cyclotron (NSCL). The setup consists of the MoNA/LISA arrays (for neutron detection) and a superconducting sweeper magnet (for charged separation) to identify products following the decay of neutron unbound states. The segmented target consisted of three 700 mg/cm2 beryllium targets and four 0.14 mm thick 62x62 mm2 silicon detectors. As a commissioning experiment for the target the decay of two-neutron unbound 26O populated in a one-proton removal reaction from a radioactive 27F beam was performed. The 27F secondary radioactive beam from the NSCL's Coupled Cyclotron Facility was produced from the fragmentation of a 140 MeV/u 48Ca beam incident on a thick beryllium target and then cleanly selected by the A1900 fragment separator. The energy loss and position spectra of the incoming beam and reaction products were used to calibrate the Silicon detectors to within 1.5% in both energy and position. A dedicated Geant4 model of the target was developed to simulate the energy loss within the target. A description of the experimental setup, simulation work, and energy and position calibration will be presented. DoE/NNSA - DE-NA0000979.

  20. SWOT Oceanography and Hydrology Data Product Simulators

    NASA Technical Reports Server (NTRS)

    Peral, Eva; Rodriguez, Ernesto; Fernandez, Daniel Esteban; Johnson, Michael P.; Blumstein, Denis

    2013-01-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would demonstrate a new measurement technique using radar interferometry to obtain wide-swath measurements of water elevation at high resolution over ocean and land, addressing the needs of both the hydrology and oceanography science communities. To accurately evaluate the performance of the proposed SWOT mission, we have developed several data product simulators at different levels of fidelity and complexity.

  1. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  2. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.

  3. Accreting Double White Dwarf Binaries: Implications for LISA

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-09-01

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna (LISA) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ˜2700 of these systems will be observable with a negative chirp of 0.1 yr-2 by a space-based GW detector like LISA. We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.

  4. How states of mind change in psychotherapy: an intensive case analysis of Lisa's case using the Grid of Problematic States.

    PubMed

    Nicolo, Giuseppe; Dimaggio, Giancarlo; Procacci, Michele; Semerari, Antonio; Carcione, Antonino; Pedone, Roberto

    2008-11-01

    This study uses the Grid of Problematic States (GPS) to examine Lisa's case, one of the most successful in the York Psychotherapy Depression Project. This study tried to assess whether the contents of mental experience form stable clusters consistent with a diagnosis of depression. It was possible with the GPS to pinpoint problematic states typical of depression and trace the transitional states occurring in Lisa between two different mental states: depressive and well-being. The GPS analysis suggested that the treatment successfully managed to deal with symptoms and to change the patient's thought themes and emotions. At the end of treatment, Lisa was less sad and displayed some anger, and a state of being nurtured emerged.

  5. Using LISA to Learn How Pairs of Black Holes Formed

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Artists impression of the European Space Agencys Laser Interferometer Space Antenna, currently planned for a 2034 launch. [NASA]How are black-hole binaries built? Observations of gravitational waves from these systems made using the European Space Agencys upcoming mission, the Laser Interferometer Space Antenna (LISA) may be able to reveal their origins.Formation ChannelsThere are two primary placeswhere stellar-mass black-hole binaries are thought to form:In isolation in the galactic field, as the components of a stellar binary independently evolve into black holes but remain bound to each other.In dense stellar environments like globular clusters, where the high density of already-formed black holes can cause a pair to dynamically interact and form a binary before being ejected from the cluster.Can we differentiate between these origins based on future detections of gravitational waves from black-hole binaries? A team of scientists led by Katelyn Breivik (CIERA, Northwestern University) thinks that we can!The gravitational-wave spectrum and how we detect it (click for a closer look!). While ground-based interferometers like LIGO detect black-hole binaries in the final moments before merger, LISAs lower frequency band will allow it to detect binaries earlier in their inspiral. [NASA Goddard SFC]Differentiation by EccentricityBreivik and collaborators believe that the key clue is the binarys eccentricity. Gravitational-wave emission will eventually circularize all black-hole binaries during their inspiral. But in the first formation scenario, binary evolution processes like tidal circularization and mass transfer will reduce the binarys eccentricity early on whereas in the second scenario, the binaries that form in globular clusters may retain eccentricity in their orbits long enough that we can detect it.Ground-based interferometers wont be up to this task; by the time the binary orbits shrink enough to evolve into the LIGO frequency band, the orbits wont have measurable eccentricity anymore. But the upcoming space-based LISA mission, which will operate in a lower frequency band, might be able to pick up this signature.To determine if LISA can pull it off, Breivik and collaborators simulate two populations of binary black holes: one evolved in isolation in galactic fields, and the other formed dynamically in globular clusters and then ejected. The authors then explore the evolution of these populations masses and eccentricities as their orbits narrow into the LISA-detectable frequency band.Eccentricity evolution tracks as a function of gravitational-wave frequency for black-hole binaries formed in dynamical scenarios (black) and in isolation (blue for those with a common-envelope episode, green for those without). Eccentricities above 10-2 are measurable for all binaries; those above 10-3 are measurable for 90%. LISAs frequency band is shown in grey. [Breivik et al. 2016]Separating PopulationsBreivik and collaborators find that LISA will be able to make several important distinctions. First, if LISA detects binary black holes with eccentricities of e 0.01 at frequencies above 10-2 Hz, we can be fairly certainthat these originated from dynamical processes in dense stellar environments.For binary black holes detected with eccentricities of e 0.01 at lower frequencies, they could either have formed in dense stellar environments or they could have formed in isolation. Based on this studys results, however, those with measurable eccentricities that formed in isolation mostlikely originated from a common-envelope formation. Measuring eccentricities of such systems in the future could provide constraints on the physics of how this formation mechanism works.Though the field of gravitational-wave astronomy is only just beginning, its future is promising! Theoretical studies like this one will help us to extracta greater understanding from the observations we can expect down the road.BonusCheck out this beautiful simulationfrom Northwestern Visualization and Carl Rodriguez (a co-author on the above study) that shows what the formation of a binary black hole in a globular cluster might look like!http://aasnova.org/wp-content/uploads/2016/11/accelerated_nbody_hd.mp4CitationKatelyn Breivik et al 2016 ApJL 830 L18. doi:10.3847/2041-8205/830/1/L18

  6. Challenges in the Measurement and Data-Processing Chain of the LISA Mission

    NASA Astrophysics Data System (ADS)

    Gath, Peter F.; Schulte, Hans Reiner; Weise, Dennis

    2010-03-01

    The LISA Mission (Laser Interferometer Space Antenna) is currently under mission formulation with a launch date planned in 2020. The purpose of the mission is the observation of gravitational waves at frequencies between 0.1 mHz and 1 Hz by measuring distance fluctuations between inertial reference points, represented by cubic proof masses. In order to provide a sufficient sensitivity of the instrument, distance fluctuations between two inertial reference points must be measured with a strain accuracy of around 10-20 Hz-1/2. This is achieved by setting up a laser interferometer with a base-length of 5ṡ106 km and a path-length measurement noise in the order of 10 pm Hz-1/2. For a correct evaluation of the data on the ground, it is essential that the science data telemetry preserves all required frequency domain information. That is, any on-board data-processing and down-sampling must be done with great care in order not to introduce aliasing or other artifacts into the data stream. As an additional complication, most of the optical metrology data is dominated by laser phase noise which is about eight orders of magnitude larger than the required instrument sensitivity. However, by applying a method called “time-delayed interferometry” during the ground data processing, this laser phase noise can be eliminated from the data. This method has already been demonstrated in a detailed simulation environment, but it requires a very careful filtering, synchronization, and interpolation of the individual data streams. Last but not least, a calibration of system parameters is necessary in many areas of the LISA measurement system. The system design must therefore ensure that all data required for these calibrations is available on-ground in a quality that allows a successful computation of the calibration coefficients within a reasonable time-frame. The data streams do not only include data from the optical metrology system, but also from the drag-free and attitude control system which are used to derive other information, such as the charge state of the proof mass. This yields a strong coupling between the different disciplines since data that is only used for housekeeping purposes in other missions becomes an essential part of the science data stream for the LISA mission. This paper gives an overview of the LISA measurement and data-processing chain. It highlights the most challenging areas that have been identified so far and describes the intended solution methods.

  7. Recovering the time-variable gravitational field using satellite gradiometry: requirements and gradiometer concept

    NASA Astrophysics Data System (ADS)

    Douch, Karim; Müller, Jürgen; Heinzel, Gerhard; Wu, Hu

    2017-04-01

    The successful GRACE mission and its far-reaching benefits have highlighted the interest to continue and extend the mapping of the Earth's time-variable gravitational field with follow-on missions and ideally a higher spatiotemporal resolution. Here, we would like to put forward satellite gravitational gradiometry as an alternative solution to satellite-to-satellite tracking for future missions. Besides the higher sensitivity to smaller scales compared to GRACE-like missions, a gradiometry mission would only require one satellite and would provide a direct estimation of a functional of the gravitational field. GOCE, the only gradiometry mission launched so far, was not sensitive enough to map the time-variable part of the gravity field. However, the unprecedented precision of the state-of-the-art optical metrology system on-board the LISA PATHFINDER satellite has opened the way to more performant space inertial sensors. We will therefore examine whether it is technically possible to go beyond GOCE performances and to quantify to what extent the time-variable gravitational field could be determined. First, we derive the requirements on the knowledge of the attitude and the position of the satellite and on the measured gradients in terms of sensitivity and calibration accuracy for a typical repeat low-orbit. We conclude in particular that a noise level smaller than 0.1 mE/√Hz- is required in the measurement bandwidth [5x10-4 ; 10-2]Hz so as to be sensitive to the time-variable gravity signal. We introduce then the design and characteristics of the new gradiometer concept and give an assessment of its noise budget. Contrary to the GOCE electrostatic gradiometer, the position of the test-mass in the accelerometer is measured here by laser interferometry rather than by a capacitive readout system, which improves the overall measurement chain. Finally, the first results of a performance analysis carried out thanks to an end-to-end simulator are discussed and compared to the previously defined requirements.

  8. Lisa's Lemonade Stand: Exploring Algebraic Ideas.

    ERIC Educational Resources Information Center

    Billings, Esther M. H.; Lakatos, Tracy

    2003-01-01

    Presents an activity, "Lisa's Lemonade Stand," that actively engages students in algebraic thinking as they analyze change by investigating relationships between variables and gain experience describing and representing these relationships graphically. (YDS)

  9. Mysterious quantum Cheshire cat: an illusion

    NASA Astrophysics Data System (ADS)

    Michielsen, K.; Lippert, Th.; De Raedt, H.

    2015-09-01

    We provide a mystery-free explanation for the experimentally observed facts in the neutron interferometry quantum Cheshire cat experiment of Denkmayr et al. [Nat. Comm. 5, 4492, 2014] in terms of a discrete-event simulation model, demonstrating that the quantum Cheshire cat is an illusion.

  10. Atomic Interferometric Gravitational-Wave Space Observatory (AIGSO)

    NASA Astrophysics Data System (ADS)

    Gao, Dong-Feng; Wang, Jin; Zhan, Ming-Sheng

    2018-01-01

    We propose a space-borne gravitational-wave detection scheme, called atom interferometric gravitational-wave space observatory (AIGSO). It is motivated by the progress in the atomic matter-wave interferometry, which solely utilizes the standing light waves to split, deflect and recombine the atomic beam. Our scheme consists of three drag-free satellites orbiting the Earth. The phase shift of AIGSO is dominated by the Sagnac effect of gravitational-waves, which is proportional to the area enclosed by the atom interferometer, the frequency and amplitude of gravitational-waves. The scheme has a strain sensitivity < {10}-20/\\sqrt{{Hz}} in the 100 mHz-10 Hz frequency range, which fills in the detection gap between space-based and ground-based laser interferometric detectors. Thus, our proposed AIGSO can be a good complementary detection scheme to the space-borne laser interferometric schemes, such as LISA. Considering the current status of relevant technology readiness, we expect our AIGSO to be a promising candidate for the future space-based gravitational-wave detection plan. Supported by the National Key Research Program of China under Grant No. 2016YFA0302002, the National Science Foundation of China under Grant Nos. 11227803 and 91536221, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB21010100

  11. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)

    NASA Astrophysics Data System (ADS)

    Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-Wey; Graham, Peter W.; Kasevich, Mark A.; Saif, Babak; Rajendran, Surjeet; Bouyer, Philippe; Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva

    2011-07-01

    We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of {<10^{-18}/sqrt{Hz}} in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ({lesssim100 m}) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.

  12. The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Preto, Miguel

    2011-05-01

    One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an 'extreme-mass ratio inspiral' (EMRI). The small object, typically a stellar black hole, emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map spacetime around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic centre revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp, or core) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation N-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M• <~ 5 × 106 Modot (i.e. nuclei in the range of LISA). We then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components. Given the most recent stellar mass normalization for the inner parsec of the Galactic centre, SMS has the significant impact of boosting the EMRI rates by a factor of ~10 in comparison to what would result from a 7/4-Bahcall and Wolf cusp resulting in ~250 events per Gyr per Milky Way type galaxy. Such an intrinsic rate should translate roughly into ~102-7 × 102 sbh's (EMRIs detected by LISA over a mission lifetime of 2 or 5 years, respectively), depending on the detailed assumptions regarding LISA detection capabilities.

  13. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results.

    PubMed

    Armano, M; Audley, H; Auger, G; Baird, J T; Bassan, M; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Caleno, M; Carbone, L; Cavalleri, A; Cesarini, A; Ciani, G; Congedo, G; Cruise, A M; Danzmann, K; de Deus Silva, M; De Rosa, R; Diaz-Aguiló, M; Di Fiore, L; Diepholz, I; Dixon, G; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fichter, W; Fitzsimons, E D; Flatscher, R; Freschi, M; García Marín, A F; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Guzmán, F; Grado, A; Grimani, C; Grynagier, A; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hoyland, D; Hueller, M; Inchauspé, H; Jennrich, O; Jetzer, P; Johann, U; Johlander, B; Karnesis, N; Kaune, B; Korsakova, N; Killow, C J; Lobo, J A; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Madden, S; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Monsky, A; Nicolodi, D; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Raïs, B; Ramos-Castro, J; Reiche, J; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sanjuán, J; Sarra, P; Schleicher, A; Shaul, D; Slutsky, J; Sopuerta, C F; Stanga, R; Steier, F; Sumner, T; Texier, D; Thorpe, J I; Trenkel, C; Tröbs, M; Tu, H B; Vetrugno, D; Vitale, S; Wand, V; Wanner, G; Ward, H; Warren, C; Wass, P J; Wealthy, D; Weber, W J; Wissel, L; Wittchen, A; Zambotti, A; Zanoni, C; Ziegler, T; Zweifel, P

    2016-06-10

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1  fm s^{-2}/sqrt[Hz], or (0.54±0.01)×10^{-15}  g/sqrt[Hz], with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3)  fm/sqrt[Hz], about 2 orders of magnitude better than requirements. At f≤0.5  mHz we observe a low-frequency tail that stays below 12  fm s^{-2}/sqrt[Hz] down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

  14. Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results

    NASA Technical Reports Server (NTRS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Thorpe, J. I.

    2016-01-01

    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(exp -2)/square root of Hz, or (0.54 +/- 0.01) x 10(exp -15) g/square root of Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm square root of Hz, about 2 orders of magnitude better than requirements. At f less than or equal to 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(exp -2)/square root of Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

  15. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  16. Measurement of fluid properties using rapid-double-exposure and time-average holographic interferometry

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1984-01-01

    The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three-dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed. Previously announced in STAR as N84-21849

  17. Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes.

    PubMed

    Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong

    2008-10-01

    We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.

  18. Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices.

    PubMed

    Bachim, Brent L; Gaylord, Thomas K

    2005-01-20

    A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique's ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.

  19. KSC-06pd1109

    NASA Image and Video Library

    2006-06-15

    KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Piers Sellers takes his turn in an M-113, which is an armored personnel carrier. Behind him are Mission Specialists Lisa Nowak and Thomas Reiter from Germany, who represents the European Space Agency. The STS-121 crew is taking turns driving the M-113 as part of Terminal Countdown Demonstration Test activities, which include emergency egress training from the pad and a simulated countdown. Mission STS-121 is designated for launch on July 1. Photo credit: NASA/Kim Shiflett

  20. 77 FR 64587 - Information Collection Available for Public Comments and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... INFORMATION CONTACT: Lisa Simmons, Maritime Administration, 1200 New Jersey Avenue SE., Washington, DC 20590. Telephone: 202-366- 2321; FAX: 202-366-7901; or E-MAIL: lisa[email protected] . Copies of this...

  1. Clip and Save.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    2003-01-01

    Focuses on the facial expression in the "Mona Lisa" by Leonardo da Vinci. Offers background information on da Vinci as well as learning activities for students. Includes a reproduction of the "Mona Lisa" and information about the painting. (CMK)

  2. Optical Bench Interferometer - From LISA Pathfinder to NGO/eLISA

    NASA Astrophysics Data System (ADS)

    Taylor, A.; d'Arcio, L.; Bogenstahl, J.; Danzmann, K.; Diekmann, C.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Hennig, J.-S.; Hogenhuis, H.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Tröbs, M.; Ward, H.; Weise, D.

    2013-01-01

    We present a short summary of some optical bench construction and alignment developments that build on experience gained during the LISA Pathfinder optical bench assembly. These include evolved fibre injectors, a new beam vector measurement system, and thermally stable mounting hardware. The beam vector measurement techniques allow the alignment of beams to targets with absolute accuracy of a few microns and 20 microradians. We also describe a newly designed ultra-low-return beam dump that is expected to be a crucial element in the control of ghost beams on the optical benches.

  3. LISA and NASA's Physics of the Cosmos Theme

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    In the past year, the LISA Project at NASA has completed a major review and has thoroughly reviewed its cost estimates. This talk will summarize the conclusions of the Beyond Einstein Program Assessment, and review the main conclusions of the cost estimation work done at NASA, including reduced mission concepts. Astro2010, the decadal review which sets priorities for astronomy and astrophysics projects in the U.S., is getting organized. Preparing for and participating in Astro2010 will be a crucial activity for the NASA side of the LISA Project in thc next 18 months.

  4. From LPF to eLISA: new approach in payload software

    NASA Astrophysics Data System (ADS)

    Gesa, Ll.; Martin, V.; Conchillo, A.; Ortega, J. A.; Mateos, I.; Torrents, A.; Lopez-Zaragoza, J. P.; Rivas, F.; Lloro, I.; Nofrarias, M.; Sopuerta, CF.

    2017-05-01

    eLISA will be the first observatory in space to explore the Gravitational Universe. It will gather revolutionary information about the dark universe. This implies a robust and reliable embedded control software and hardware working together. With the lessons learnt with the LISA Pathfinder payload software as baseline, we will introduce in this short article the key concepts and new approaches that our group is working on in terms of software: multiprocessor, self-modifying-code strategies, 100% hardware and software monitoring, embedded scripting, Time and Space Partition among others.

  5. What can we learn about cosmic structure from gravitational waves?

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2003-01-01

    Observations of low frequency gravitational waves by the space-based LISA mission will open a new observational window on the early universe and the emergence of structure. LISA will observe the dynamical coalescence of massive black hole binaries at high redshifts, giving an unprecedented look at the merger history of galaxies and the reionization epoch. LISA will also observe gravitational waves from the collapse of supermassive stars to form black holes, and will map the spacetime in the central regions of galaxy cusps at high precision.

  6. The Breadboard model of the LISA telescope assembly

    NASA Astrophysics Data System (ADS)

    Lucarelli, S.; Scheulen, D.; Kemper, D.; Sippel, R.; Verlaan, A.; Hogenhuis, H.; Ende, D.

    2017-11-01

    The primary goal of the LISA mission is the detection of gravitational waves from astronomical sources in a frequency range of 10-4 to 1 Hz. This requires operational stabilities in the picometer range as well as highly predictable mechanical distortions upon cooling down, outgassing in space, and gravity release. In March 2011 ESA announced a new way forward for the Lclass candidate missions, including LISA. ESA and the scientific community are now studying options for European-only missions that offer a significant reduction of the costs, while maintaining their core science objectives. In this context LISA has become the New Gravitational wave Observatory (NGO). Despite this reformulation, the need for dimensional stability in the picometer range remains valid, and ESA have continued the corresponding LISA Technology Development Activities (TDA's) also in view of NGO. In such frame Astrium GmbH and xperion (Friedrichshafen, Germany) have designed and manufactured an ultra-stable CFRP breadboard of the LISA telescope in order to experimentally demonstrate that the structure and the M1 & M2 mirror mounts are fulfilling the LISA requirements in the mission operational thermal environment. Suitable techniques to mount the telescope mirrors and to support the M1 & M2 mirrors have been developed, with the aim of measuring a system CTE of less than 10-7 K-1 during cooling down to -80°C. Additionally to the stringent mass and stiffness specifications, the required offset design makes the control of relative tilts and lateral displacements between the M1 and M2 mirrors particularly demanding. The thermo-elastic performance of the telescope assembly is going to be experimentally verified by TNO (Delft, The Netherlands) starting from the second half of 2012. This paper addresses challenges faced in the design phase, shows the resulting hardware and present first outcomes of the test campaign performed at TNO.

  7. The Breadboard Model of the LISA Telescope Assembly

    NASA Astrophysics Data System (ADS)

    Lucarelli, Stefano; Scheulen, Dietmar; Kemper, Daniel; Sippel, Rudolf; Ende, David

    2012-07-01

    The primary goal of the LISA mission is the detection of gravitational waves from astronomical sources in a frequency range of 10-4 to 1 Hz. This requires operational stabilities in the picometer range as well as highly predictable mechanical distortions upon cooling down, outgassing in space, and gravity release. In March 2011 ESA announced a new way forward for the L-class candidate missions, including LISA. ESA and the scientific community are now studying options for European-only missions that offer a significant reduction of the costs, while maintaining their core science objectives. In the context of this reformulation exercise LISA has become the New Gravitational wave Observatory (NGO) [1]. Despite this reformulation, the need for dimensional stability in the picometer range remains valid, and ESA have continued the corresponding LISA Technology Development Activities (TDA’s) also in view of NGO. In such frame Astrium GmbH and xperion (Immenstaad/Friedrichshafen, Germany) have designed and manufactured an ultra-stable CFRP breadboard of the LISA telescope in order to experimentally demonstrate that the structure and the M1 & M2 mirror mounts are fulfilling the LISA requirements in the mission operational thermal environment. Suitable techniques to mount the telescope mirrors and to support the M1 & M2 mirrors have been developed, with the aim of measuring a system CTE of less than 10-7 K-1 during cooling down to -80 °C. Additionally to the stringent mass and stiffness specifications, the required offset design makes the control of relative tilts and lateral displacements between the M1 and M2 mirrors particularly demanding. The thermo-elastic performance of the telescope assembly is going to be experimentally verified by TNO (Delft, The Netherlands) starting from the second half of 2012. This paper addresses challenges faced in the design phase, and shows the resulting hardware.

  8. Colloid micro-Newton thruster development for the ST7-DRS and LISA missions

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Gamero-Castano, Manuel; Hruby, Vlad; Spence, Doug; Demmons, Nate; McCormick, Ryan; Roy, Tom

    2005-01-01

    We present recent progress and development of the Busek Colloid Micro-Newton Thruster (CMNT) for the Space Technology 7 Disturbance Reduction System (ST7-DRS) and Laser Interferometer Space Antenna (LISA) Missions.

  9. 76 FR 8314 - Implementation Guidance for Distribution of Source Material to Exempt Persons and to General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ....S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone: 301-415-0694, e-mail: Lisa... Accession Number for the draft Part 40 implementation guidance. FOR FURTHER INFORMATION CONTACT: Lisa...

  10. Lisa Smith in MSFC's Laboratory Training Complex

    NASA Image and Video Library

    2015-02-11

    LISA SMITH, THE TRAINING TEAM LEAD IN MARSHALL'S MISSION OPERATIONS LAB, EXAMINES THE DRAWERS IN THE GLACIER MOCK-UP, A TRAINING VERSION OF A FREEZER ON THE INTERNATIONAL SPACE STATION INSTALLED IN THE MARSHALL CENTER'S LABORATORY TRAINING COMPLEX

  11. Getting Astrophysical Information from LISA Data

    NASA Technical Reports Server (NTRS)

    Stebbins, R. T.; Bender, P. L.; Folkner, W. M.

    1997-01-01

    Gravitational wave signals from a large number of astrophysical sources will be present in the LISA data. Information about as many sources as possible must be estimated from time series of strain measurements. Several types of signals are expected to be present: simple periodic signals from relatively stable binary systems, chirped signals from coalescing binary systems, complex waveforms from highly relativistic binary systems, stochastic backgrounds from galactic and extragalactic binary systems and possibly stochastic backgrounds from the early Universe. The orbital motion of the LISA antenna will modulate the phase and amplitude of all these signals, except the isotropic backgrounds and thereby give information on the directions of sources. Here we describe a candidate process for disentangling the gravitational wave signals and estimating the relevant astrophysical parameters from one year of LISA data. Nearly all of the sources will be identified by searching with templates based on source parameters and directions.

  12. Rightsizing LISA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2009-01-01

    The LISA science requirements and conceptual design have been fairly stable for over a decade. In the interest of reducing costs, the LISA Project at NASA has looked for simplifications of the architecture, at downsizing of subsystems, and at descopes of the entire mission. This is a natural activity of the formulation phase, and one that is particularly timely in the current NASA budgetary context. There is, and will continue to be, enormous pressure for cost reduction from both ESA and NASA, reviewers and the broader research community. Here, the rationale for the baseline architecture is reviewed, and recent efforts to find simplifications and other reductions that might lead to savings are reported. A few possible simplifications have been found in the LISA baseline architecture. In the interest of exploring cost sensitivity, one moderate and one aggressive descope have been evaluated; the cost savings are modest and the loss of science is not.

  13. Low-Frequency Gravitational-Wave Science with eLISA/ NGO

    NASA Technical Reports Server (NTRS)

    Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Emanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; hide

    2011-01-01

    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

  14. Reducing tilt-to-length coupling for the LISA test mass interferometer

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.

    2018-05-01

    Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of  ±25 μm rad‑1 for interfering beams with relative angles of up to  ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.

  15. An overview of the second round of the Mock LISA Data Challenges

    NASA Astrophysics Data System (ADS)

    Arnaud, K. A.; Babak, S.; Baker, J. G.; Benacquista, M. J.; Cornish, N. J.; Cutler, C.; Finn, L. S.; Larson, S. L.; Littenberg, T.; Porter, E. K.; Vallisneri, M.; Vecchio, A.; Vinet, J.-Y.; Data Challenge Task Force, The Mock LISA

    2007-10-01

    The Mock Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data-analysis tools and capabilities and of demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data. The first round of MLDCs has just been completed and the second-round data sets are being released shortly after this workshop. The second-round data sets contain radiation from an entire Galactic population of stellar-mass binary systems, from massive-black-hole binaries, and from extreme-mass-ratio inspirals. These data sets are designed to capture much of the complexity that is expected in the actual LISA data, and should provide a fairly realistic setting to test advanced data-analysis techniques, and in particular the global aspect of the analysis. Here we describe the second round of MLDCs and provide details about its implementation.

  16. LISA verification binaries with updated distances from Gaia Data Release 2

    NASA Astrophysics Data System (ADS)

    Kupfer, T.; Korol, V.; Shah, S.; Nelemans, G.; Marsh, T. R.; Ramsay, G.; Groot, P. J.; Steeghs, D. T. H.; Rossi, E. M.

    2018-06-01

    Ultracompact binaries with orbital periods less than a few hours will dominate the gravitational wave signal in the mHz regime. Until recently, 10 systems were expected have a predicted gravitational wave signal strong enough to be detectable by the Laser Interferometer Space Antenna (LISA), the so-called `verification binaries'. System parameters, including distances, are needed to provide an accurate prediction of the expected gravitational wave strength to be measured by LISA. Using parallaxes from Gaia Data Release 2 we calculate signal-to-noise ratios (SNR) for ≈50 verification binary candidates. We find that 11 binaries reach a SNR≥20, two further binaries reaching a SNR≥5 and three more systems are expected to have a SNR≈5 after four years integration with LISA. For these 16 systems we present predictions of the gravitational wave amplitude (A) and parameter uncertainties from Fisher information matrix on the amplitude (A) and inclination (ι).

  17. Partial compensation interferometry for measurement of surface parameter error of high-order aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Hao, Qun; Li, Tengfei; Hu, Yao

    2018-01-01

    Surface parameters are the properties to describe the shape characters of aspheric surface, which mainly include vertex radius of curvature (VROC) and conic constant (CC). The VROC affects the basic properties, such as focal length of an aspheric surface, while the CC is the basis of classification for aspheric surface. The deviations of the two parameters are defined as surface parameter error (SPE). Precisely measuring SPE is critical for manufacturing and aligning aspheric surface. Generally, SPE of aspheric surface is measured directly by curvature fitting on the absolute profile measurement data from contact or non-contact testing. And most interferometry-based methods adopt null compensators or null computer-generated holograms to measure SPE. To our knowledge, there is no effective way to measure SPE of highorder aspheric surface with non-null interferometry. In this paper, based on the theory of slope asphericity and the best compensation distance (BCD) established in our previous work, we propose a SPE measurement method for high-order aspheric surface in partial compensation interferometry (PCI) system. In the procedure, firstly, we establish the system of two element equations by utilizing the SPE-caused BCD change and surface shape change. Then, we can simultaneously obtain the VROC error and CC error in PCI system by solving the equations. Simulations are made to verify the method, and the results show a high relative accuracy.

  18. Silicon Carbide Telescope Investigations for the LISA Mission

    NASA Technical Reports Server (NTRS)

    Sanjuan, J.; Spannagel, R.; Braxmaier, C.; Korytov, D.; Mueller, G.; Preston, A.; Livas, J.

    2013-01-01

    Space-based gravitational wave (GW) detectors are conceived to detect GWs in the low frequency range (mili-Hertz) by measuring the distance between free-falling proof masses in spacecraft (SC) separated by 5 Gm. The reference in the last decade has been the joint ESA-NASA mission LISA. One of the key elements of LISA is the telescope since it simultaneously gathers the light coming from the far SC (approximately or equal to 100 pW) and expands, collimates and sends the outgoing beam (2 W) to the far SC. Demanding requirements have been imposed on the telescope structure: the dimensional stability of the telescope must be approximately or equal to 1pm Hz(exp-1/2) at 3 mHz and the distance between the primary and the secondary mirrors must change by less than 2.5 micrometer over the mission lifetime to prevent defocussing. In addition the telescope structure must be light, strong and stiff. For this reason a potential on-axis telescope structure for LISA consisting of a silicon carbide (SiC) quadpod structure has been designed, constructed and tested. The coefficient of thermal expansion (CTE) in the LISA expected temperature range has been measured with a 1% accuracy which allows us to predict the shrinkage/expansion of the telescope due to temperature changes, and pico-meter dimensional stability has been measured at room temperature and at the expected operating temperature for the LISA telescope (around -6[deg]C). This work is supported by NASA Grants NNX10AJ38G and NX11AO26G,

  19. Improvement of the fringe analysis algorithm for wavelength scanning interferometry based on filter parameter optimization.

    PubMed

    Zhang, Tao; Gao, Feng; Muhamedsalih, Hussam; Lou, Shan; Martin, Haydn; Jiang, Xiangqian

    2018-03-20

    The phase slope method which estimates height through fringe pattern frequency and the algorithm which estimates height through the fringe phase are the fringe analysis algorithms widely used in interferometry. Generally they both extract the phase information by filtering the signal in frequency domain after Fourier transform. Among the numerous papers in the literature about these algorithms, it is found that the design of the filter, which plays an important role, has never been discussed in detail. This paper focuses on the filter design in these algorithms for wavelength scanning interferometry (WSI), trying to optimize the parameters to acquire the optimal results. The spectral characteristics of the interference signal are analyzed first. The effective signal is found to be narrow-band (near single frequency), and the central frequency is calculated theoretically. Therefore, the position of the filter pass-band is determined. The width of the filter window is optimized with the simulation to balance the elimination of the noise and the ringing of the filter. Experimental validation of the approach is provided, and the results agree very well with the simulation. The experiment shows that accuracy can be improved by optimizing the filter design, especially when the signal quality, i.e., the signal noise ratio (SNR), is low. The proposed method also shows the potential of improving the immunity to the environmental noise by adapting the signal to acquire the optimal results through designing an adaptive filter once the signal SNR can be estimated accurately.

  20. Numerical simulations of imaging satellites with optical interferometry

    NASA Astrophysics Data System (ADS)

    Ding, Yuanyuan; Wang, Chaoyan; Chen, Zhendong

    2015-08-01

    Optical interferometry imaging system, which is composed of multiple sub-apertures, is a type of sensor that can break through the aperture limit and realize the high resolution imaging. This technique can be utilized to precisely measure the shapes, sizes and position of astronomical objects and satellites, it also can realize to space exploration and space debris, satellite monitoring and survey. Fizeau-Type optical aperture synthesis telescope has the advantage of short baselines, common mount and multiple sub-apertures, so it is feasible for instantaneous direct imaging through focal plane combination.Since 2002, the researchers of Shanghai Astronomical Observatory have developed the study of optical interferometry technique. For array configurations, there are two optimal array configurations proposed instead of the symmetrical circular distribution: the asymmetrical circular distribution and the Y-type distribution. On this basis, two kinds of structure were proposed based on Fizeau interferometric telescope. One is Y-type independent sub-aperture telescope, the other one is segmented mirrors telescope with common secondary mirror.In this paper, we will give the description of interferometric telescope and image acquisition. Then we will mainly concerned the simulations of image restoration based on Y-type telescope and segmented mirrors telescope. The Richardson-Lucy (RL) method, Winner method and the Ordered Subsets Expectation Maximization (OS-EM) method are studied in this paper. We will analyze the influence of different stop rules too. At the last of the paper, we will present the reconstruction results of images of some satellites.

  1. Disturbance Reduction System Thrusters Stabilize LISA Pathfinder

    NASA Image and Video Library

    2015-12-03

    The LISA Pathfinder spacecraft is on its way to space, having successfully launched from Kourou, French Guiana Dec. 3, 2015. On board is the state-of-the-art Disturbance Reduction System DRS, a thruster technology developed at NASA JPL.

  2. Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Bingjing; Zhao, Jianlin, E-mail: jlzhao@nwpu.edu.cn; Wang, Jun

    2013-11-21

    We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipationmore » performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.« less

  3. Black Hole Mergers and Recoils in Low-Mass Galaxies

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Kelley, Luke; Koss, Michael; Satyapal, Shobita

    2018-01-01

    Mergers between massive black holes (BHs) in the intermediate-mass range are one of the most promising sources of gravitational waves (GWs) detectable with LISA. These highly energetic GW events could be observed out to very high redshift, in the epoch where massive BH seeds are thought to form. Despite recent progress, however, much is still not known about the low-mass BH population even in the local Universe. The rates of BH binary formation, inspiral, and merger are also highly uncertain across the BH mass scale. To address these pressing issues in advance of LISA, cosmological hydrodynamics simulations and semi-analytic modeling are being used to model the formation and evolution of BH binaries, and the GW signals they produce. Efforts are also underway to understand the electromagnetic (EM) signatures of the BH binary population. These have proven largely elusive thus far, but an increasing population of BH pairs has been found, and advances in the coming years will provide important comparisons for models of GW sources. Moreover, asymmetry in the GW emission from BH mergers imparts a recoil kick to the merged BH, which in extreme cases can eject the BH from its host galaxy. This creates additional uncertainty in the BH merger rate, but the remnant recoiling BH could be observed as an offset quasar. Identifications of such objects would provide another EM signature of BH mergers that would help pave the way for LISA. We will review model predictions of the BH inspiral and merger rate across the mass scale. We will also describe how the EM signatures of active, merging BHs can be used to constrain theoretical merger rates. Finally, we will discuss the predicted observability of recoiling BHs and ongoing efforts to identify and confirm candidate recoils.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barack, Leor; Department of Mathematics, University of Southampton, Southampton, SO17 1BJ; Cutler, Curt

    Captures of compact objects (COs) by massive black holes (MBHs) in galactic nuclei will be an important source for LISA, the proposed space-based gravitational wave (GW) detector. However, a large fraction of captures will not be individually resolvable - either because they are too distant, have unfavorable orientation, or have too many years to go before final plunge - and so will constitute a source of 'confusion noise', obscuring other types of sources. In this paper we estimate the shape and overall magnitude of the GW background energy spectrum generated by CO captures. This energy spectrum immediately translates to amore » spectral density S{sub h}{sup capt}(f) for the amplitude of capture-generated GWs registered by LISA. The overall magnitude of S{sub h}{sup capt}(f) is linear in the CO capture rates, which are rather uncertain; therefore we present results for a plausible range of rates. S{sub h}{sup capt}(f) includes the contributions from both resolvable and unresolvable captures, and thus represents an upper limit on the confusion noise level. We then estimate what fraction of S{sub h}{sup capt}(f) is due to unresolvable sources and hence constitutes confusion noise. We find that almost all of the contribution to S{sub h}{sup capt}(f) coming from white dwarf and neutron star captures, and at least {approx}30% of the contribution from black hole captures, is from sources that cannot be individually resolved. Nevertheless, we show that the impact of capture confusion noise on the total LISA noise curve ranges from insignificant to modest, depending on the rates. Capture rates at the high end of estimated ranges would raise LISA's overall (effective) noise level [fS{sub h}{sup eff}(f)]{sup 1/2} by at most a factor {approx}2 in the frequency range 1-10 mHz, where LISA is most sensitive. While this slightly elevated noise level would somewhat decrease LISA's sensitivity to other classes of sources, we argue that, overall, this would be a pleasant problem for LISA to have: It would also imply that detection rates for CO captures were at nearly their maximum possible levels (given LISA's baseline design and the level of confusion noise from galactic white dwarf binaries). This paper also contains, as intermediate steps, several results that should be useful in further studies of LISA capture sources, including (i) a calculation of the total GW energy output from generic inspirals of COs into Kerr MBHs (ii) an approximate GW energy spectrum for a typical capture, and (iii) an estimate showing that in the population of detected capture sources, roughly half the white dwarfs and a third of the neutron stars will be detected when they still have > or approx. 10 years to go before final plunge.« less

  5. Simultaneous two-wavelength holographic interferometry in a superorbital expansion tube facility.

    PubMed

    McIntyre, T J; Wegener, M J; Bishop, A I; Rubinsztein-Dunlop, H

    1997-11-01

    A new variation of holographic interferometry has been utilized to perform simultaneous two-wavelength measurements, allowing quantitative analysis of the heavy particle and electron densities in a superorbital facility. An air test gas accelerated to 12 km/s was passed over a cylindrical model, simulating reentry conditions encountered by a space vehicle on a superorbital mission. Laser beams with two different wavelengths have been overlapped, passed through the test section, and simultaneously recorded on a single holographic plate. Reconstruction of the hologram generated two separate interferograms at different angles from which the quantitative measurements were made. With this technique, a peak electron concentration of (5.5 +/- 0.5) x 10(23) m(-3) was found behind a bow shock on a cylinder.

  6. Robust phase-shifting interferometry resistant to multiple disturbances

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Yue, Xiaobin; Li, Lulu; Zhang, Hui; He, Jianguo

    2018-04-01

    Phase-shifting interferometry (PSI) is sensitive to many disturbances, including the environmental vibration, laser instability, phase-shifting error and camera nonlinearity. A robust PSI (RPSI) based on the temporal spectrum analysis is proposed to suppress the effects of these common disturbances. RPSI retrieves wavefront phase from the temporal Fourier spectrum peak, which is identified by detecting the modulus of spectrum, and a referencing method is presented to improve the phase extracting accuracy. Simulations demonstrate the feasibility and effectiveness of RPSI. Experimental results indicate that RPSI is resistant to common disturbances in implementing PSI and achieves accuracy better than 0.03 rad in the disturbed environment. RPSI relaxes requirements on the hardware, environment and operator, and provides an easy-to-use design of an interferometer.

  7. Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm

    NASA Astrophysics Data System (ADS)

    Meng, X. F.; Peng, X.; Cai, L. Z.; Li, A. M.; Gao, Z.; Wang, Y. R.

    2009-08-01

    A hybrid cryptosystem is proposed, in which one image is encrypted to two interferograms with the aid of double random-phase encoding (DRPE) and two-step phase-shifting interferometry (2-PSI), then three pairs of public-private keys are utilized to encode and decode the session keys (geometrical parameters, the second random-phase mask) and interferograms. In the stage of decryption, the ciphered image can be decrypted by wavefront reconstruction, inverse Fresnel diffraction, and real amplitude normalization. This approach can successfully solve the problem of key management and dispatch, resulting in increased security strength. The feasibility of the proposed cryptosystem and its robustness against some types of attack are verified and analyzed by computer simulations.

  8. Recent Advances on INSAR Temporal Decorrelation: Theory and Observations Using UAVSAR

    NASA Technical Reports Server (NTRS)

    Lavalle, M.; Hensley, S.; Simard, M.

    2011-01-01

    We review our recent advances in understanding the role of temporal decorrelation in SAR interferometry and polarimetric SAR interferometry. We developed a physical model of temporal decorrelation based on Gaussian-statistic motion that varies along the vertical direction in forest canopies. Temporal decorrelation depends on structural parameters such as forest height, is sensitive to polarization and affects coherence amplitude and phase. A model of temporal-volume decorrelation valid for arbitrary spatial baseline is discussed. We tested the inversion of this model to estimate forest height from model simulations supported by JPL/UAVSAR data and lidar LVIS data. We found a general good agreement between forest height estimated from radar data and forest height estimated from lidar data.

  9. Preliminary result of the analysis of T Sagittarrii data and modeling

    NASA Astrophysics Data System (ADS)

    Menut, Jean-Luc; Chesneau, Olivier; Lopez, Bruno; Berruyer, Nicole; Graser, Uwe; Niccolini, Gilles; Dutrey, Anne; Perrin, Guy S.

    2004-10-01

    This document shows the first results of the study of the environment of the S star T Sagittarii. Observational constraints are obtained through 10 μm long baseline interferometry with MIDI at the VLTI. Models of the dust envelope are simulated with a monte-carlo radiative transfer code.

  10. Urban compaction vs city sprawl: impact of road traffic on air quality in the greater Paris

    NASA Astrophysics Data System (ADS)

    Etuman Arthur, Elessa; Isabelle, Coll; Vincent, Viguie; Nicolas, Coulombel; Julie, Prud'homme

    2017-04-01

    Urban pollution remains a major sanitary and economic concern. In France, particulate pollution is known to cause 48,000 premature deaths every year (Santé Publique France, 2016), while the economic cost of air pollution reaches almost 25 billion euros per year (CGDD, 2012). In the Greater Paris, despite strengthened emission standards, restricted traffic areas, car-sharing and incentives for electric vehicle use, road transport plays a substantial role in the exposure of inhabitants to high levels of pollutants. In this context, urban planning could possibly constitute an innovative strategy to reduce emissions from road traffic, through its actions on transport demand, travel distances, modal shift (public transportation, cycling, walking...) or even proximity to emitters. We have developed a multi-scalar modeling of urban pollution by coupling an urban economic growth model NEDUM (CIRED), a model for urban mobility (LISA), a traffic emission model (LISA) and the CHIMERE Chemistry-Transport model (CTM) for air quality simulation (LISA). The innovative aspect of this modeling system is to integrate into a classic CTM the mechanisms underlying the dynamics of an urban system. This way, we establish a quantitative and comprehensive link between a given urban scenario, the associated public and individual transport matrix, and local air quality. We then make it possible to highlight the levers of energy consumption reductions inside compact or sprawled cities. We have been working on the Ile de France region (centered on the Paris agglomeration) which relies on a broad urban structure of megacity, a high density of housing and an expanding urban peripheral zone, clearly raising the issue of transport demand, mobility and traffic congestion. Two scenarios, considering opposite urban development policies from the 1960s to 2010, have been simulated over the whole modelling chain. The first one promotes a dense and compact city while the second favors city spread, though restricted by a green belt. In our results, we compare the local air quality simulated in these scenarios with our reference situation (the current 2010 situation). The spreading or densification of the city contribute a little to the air quality and therefore a reflection on a real mix of the urban canvas is probably an influencing factor for the reduction of the motorized mobility. We should also consider more advanced scenarios (in the course of production) for the reduction of individual transport like encouraging car-pooling, which has a maximum daily trip reduction potential of 16% in urban areas (CGDD, 2014).

  11. Technology Development Roadmap: A Technology Development Roadmap for a Future Gravitational Wave Mission

    NASA Technical Reports Server (NTRS)

    Camp, Jordan; Conklin, John; Livas, Jeffrey; Klipstein, William; McKenzie, Kirk; Mueller, Guido; Mueller, Juergen; Thorpe, James Ira; Arsenovic, Peter; Baker, John; hide

    2013-01-01

    Humankind will detect the first gravitational wave (GW) signals from the Universe in the current decade using ground-based detectors. But the richest trove of astrophysical information lies at lower frequencies in the spectrum only accessible from space. Signals are expected from merging massive black holes throughout cosmic history, from compact stellar remnants orbiting central galactic engines from thousands of close contact binary systems in the Milky Way, and possibly from exotic sources, some not yet imagined. These signals carry essential information not available from electromagnetic observations, and which can be extracted with extraordinary accuracy. For 20 years, NASA, the European Space Agency (ESA), and an international research community have put considerable effort into developing concepts and technologies for a GW mission. Both the 2000 and 2010 decadal surveys endorsed the science and mission concept of the Laser Interferometer Space Antenna (LISA). A partnership of the two agencies defined and analyzed the concept for a decade. The agencies partnered on LISA Pathfinder (LPF), and ESA-led technology demonstration mission, now preparing for a 2015 launch. Extensive technology development has been carried out on the ground. Currently, the evolved Laser Interferometer Space Antenna (eLISA) concept, a LISA-like concept with only two measurement arms, is competing for ESA's L2 opportunity. NASA's Astrophysics Division seeks to be a junior partner if eLISA is selected. If eLISA is not selected, then a LISA-like mission will be a strong contender in the 2020 decadal survey. This Technology Development Roadmap (TDR) builds on the LISA concept development, the LPF technology development, and the U.S. and European ground-based technology development. The eLISA architecture and the architecture of the Mid-sized Space-based Gravitational-wave Observatory (SGO Mid)-a competitive design with three measurement arms from the recent design study for a NASA-led mission after 2020-both use the same technologies. Further, NASA participation in an ESA-led mission would likely augment the eLISA architecture with a third arm to become the SGO Mid architecture. For these reasons, this TDR for a future GW mission applies to both designs and both programmatic paths forward. It is adaptable to the different timelines and roles for an ESA-led or a NASA-led mission, and it is adaptable to available resources. Based on a mature understanding of the interaction between technology and risk, the authors of this TDR have chosen a set of objectives that are more expansive than is usual. The objectives for this roadmap are: (1) reduce technical and development risks and costs; (2) understand and, where possible, relieve system requirements and consequences; (3) increase technical insight into critical technologies; and (4) validate the design at the subsystem level. The emphasis on these objectives, particularly the latter two, is driven by outstanding programmatic decisions, namely whether a future GW mission is ESA-led or NASA-led, and availability of resources. The relative emphasis is best understood in the context of prioritization.

  12. Math and the Mona Lisa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atalay, Bulent

    2004-05-03

    Bulent Atalay discusses content from his book entitled "Math and the Mona Lisa" which covers Leonardo Da Vinci and how he combined his love of science, math, and art to draw dramatic conclusions about the natural world. He also describes how mathematics influences art and architecture.

  13. 77 FR 62490 - Performance Review Board Appointments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ...; Gutter, Karis T.; Harden, Krysta.; Hipp, Janie; Holtzman, Max T.; Jett, Carole E.; Jones, Carmen....; Chasteen, G. Taylor; Christian, Lisa A.; Clanton, Michael W.; Coffee, Richard; Farington, Kim S.; Foster....; Watts, Michael; White, John S.; White, Sharmian L.; Wilburn, Curtis; Wilusz, Lisa; Young, Benjamin...

  14. Fizeau simultaneous phase-shifting interferometry based on extended source

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng

    2016-09-01

    Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.

  15. Discrete-Event Simulation Unmasks the Quantum Cheshire Cat

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; Lippert, Thomas; Raedt, Hans De

    2017-05-01

    It is shown that discrete-event simulation accurately reproduces the experimental data of a single-neutron interferometry experiment [T. Denkmayr {\\sl et al.}, Nat. Commun. 5, 4492 (2014)] and provides a logically consistent, paradox-free, cause-and-effect explanation of the quantum Cheshire cat effect without invoking the notion that the neutron and its magnetic moment separate. Describing the experimental neutron data using weak-measurement theory is shown to be useless for unravelling the quantum Cheshire cat effect.

  16. 76 FR 67402 - Performance Review Board Appointments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ....; Harden, Krysta; Hipp, Janie; Holtzman, Max T.; Jett, Carole E.; MacMillian, Anne; Mande, Jerold; Mills...; Christian, Lisa A.; Clanton, Michael W.; Davenport, Peter; Douglas, Walt; Foster, Andrea L.; Golden, John....; White, Sharmian L.; Wilburn, Curtis; Wilusz, Lisa; Worthington, Ruth M.; Young, Benjamin; Young, Mike...

  17. Stellar binary black holes in the LISA band: a new class of standard sirens

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter; Sesana, Alberto; Klein, Antoine

    2018-04-01

    The recent Advanced LIGO detections of coalescing black hole binaries (BHBs) imply a large population of such systems emitting at milli-Hz frequencies, accessible to the Laser Interferometer Space Antenna (LISA). We show that these systems provide a new class of cosmological standard sirens. Direct LISA luminosity distance - Dl - measurements, combined with the inhomogeneous redshift - z - distribution of possible host galaxies provide an effective way to populate the Dl-z diagram at z < 0.1, thus allowing a precise local measurement of the Hubble expansion rate. To be effective, the method requires a sufficiently precise LISA distance determination and sky localization of a sizeable number of BHBs, which is best achieved for a six-link detector configuration. We find that, for a BHB population consistent with current fiducial LIGO rates, the Hubble constant H0 can be determined at the ˜5 per cent and ˜2 per cent level (68 per cent confidence), assuming two and five million kilometre arm-length, respectively.

  18. Invited article: advanced drag-free concepts for future space-based interferometers: acceleration noise performance.

    PubMed

    Gerardi, D; Allen, G; Conklin, J W; Sun, K-X; DeBra, D; Buchman, S; Gath, P; Fichter, W; Byer, R L; Johann, U

    2014-01-01

    Future drag-free missions for space-based experiments in gravitational physics require a Gravitational Reference Sensor with extremely demanding sensing and disturbance reduction requirements. A configuration with two cubical sensors is the current baseline for the Laser Interferometer Space Antenna (LISA) and has reached a high level of maturity. Nevertheless, several promising concepts have been proposed with potential applications beyond LISA and are currently investigated at HEPL, Stanford, and EADS Astrium, Germany. The general motivation is to exploit the possibility of achieving improved disturbance reduction, and ultimately understand how low acceleration noise can be pushed with a realistic design for future mission. In this paper, we discuss disturbance reduction requirements for LISA and beyond, describe four different payload concepts, compare expected strain sensitivities in the "low-frequency" region of the frequency spectrum, dominated by acceleration noise, and ultimately discuss advantages and disadvantages of each of those concepts in achieving disturbance reduction for space-based detectors beyond LISA.

  19. Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20 μ Hz

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Meshksar, N.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P. J.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zweifel, P.

    2018-02-01

    In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20 μ Hz . The Letter presents the measured differential acceleration noise figure, which is at (1.74 ±0.01 ) fm s-2/√{Hz } above 2 mHz and (6 ±1 ) ×10 fm s-2/√{Hz } at 20 μ Hz , and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Soumya D.; Nayak, Rajesh K.

    The space based gravitational wave detector LISA (Laser Interferometer Space Antenna) is expected to observe a large population of Galactic white dwarf binaries whose collective signal is likely to dominate instrumental noise at observational frequencies in the range 10{sup -4} to 10{sup -3} Hz. The motion of LISA modulates the signal of each binary in both frequency and amplitude--the exact modulation depending on the source direction and frequency. Starting with the observed response of one LISA interferometer and assuming only Doppler modulation due to the orbital motion of LISA, we show how the distribution of the entire binary population inmore » frequency and sky position can be reconstructed using a tomographic approach. The method is linear and the reconstruction of a delta-function distribution, corresponding to an isolated binary, yields a point spread function (psf). An arbitrary distribution and its reconstruction are related via smoothing with this psf. Exploratory results are reported demonstrating the recovery of binary sources, in the presence of white Gaussian noise.« less

  1. The Retreat from Locative Overgeneralisation Errors: A Novel Verb Grammaticality Judgment Study

    PubMed Central

    Bidgood, Amy; Ambridge, Ben; Pine, Julian M.; Rowland, Caroline F.

    2014-01-01

    Whilst some locative verbs alternate between the ground- and figure-locative constructions (e.g. Lisa sprayed the flowers with water/Lisa sprayed water onto the flowers), others are restricted to one construction or the other (e.g. *Lisa filled water into the cup/*Lisa poured the cup with water). The present study investigated two proposals for how learners (aged 5–6, 9–10 and adults) acquire this restriction, using a novel-verb-learning grammaticality-judgment paradigm. In support of the semantic verb class hypothesis, participants in all age groups used the semantic properties of novel verbs to determine the locative constructions (ground/figure/both) in which they could and could not appear. In support of the frequency hypothesis, participants' tolerance of overgeneralisation errors decreased with each increasing level of verb frequency (novel/low/high). These results underline the need to develop an integrated account of the roles of semantics and frequency in the retreat from argument structure overgeneralisation. PMID:24830412

  2. Porting Gravitational Wave Signal Extraction to Parallel Virtual Machine (PVM)

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Thompson, David E.; Redmon, Jeffery

    2009-01-01

    Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA mission to be launched around 2012. The Gravitational Wave detection is fundamentally the determination of frequency, source parameters, and waveform amplitude derived in a specific order from the interferometric time-series of the rotating LISA spacecrafts. The LISA Science Team has developed a Mock LISA Data Challenge intended to promote the testing of complicated nested search algorithms to detect the 100-1 millihertz frequency signals at amplitudes of 10E-21. However, it has become clear that, sequential search of the parameters is very time consuming and ultra-sensitive; hence, a new strategy has been developed. Parallelization of existing sequential search algorithms of Gravitational Wave signal identification consists of decomposing sequential search loops, beginning with outermost loops and working inward. In this process, the main challenge is to detect interdependencies among loops and partitioning the loops so as to preserve concurrency. Existing parallel programs are based upon either shared memory or distributed memory paradigms. In PVM, master and node programs are used to execute parallelization and process spawning. The PVM can handle process management and process addressing schemes using a virtual machine configuration. The task scheduling and the messaging and signaling can be implemented efficiently for the LISA Gravitational Wave search process using a master and 6 nodes. This approach is accomplished using a server that is available at NASA Ames Research Center, and has been dedicated to the LISA Data Challenge Competition. Historically, gravitational wave and source identification parameters have taken around 7 days in this dedicated single thread Linux based server. Using PVM approach, the parameter extraction problem can be reduced to within a day. The low frequency computation and a proxy signal-to-noise ratio are calculated in separate nodes that are controlled by the master using message and vector of data passing. The message passing among nodes follows a pattern of synchronous and asynchronous send-and-receive protocols. The communication model and the message buffers are allocated dynamically to address rapid search of gravitational wave source information in the Mock LISA data sets.

  3. In-orbit performance of the LISA Pathfinder drag-free and attitude control system

    NASA Astrophysics Data System (ADS)

    Schleicher, A.; Ziegler, T.; Schubert, R.; Brandt, N.; Bergner, P.; Johann, U.; Fichter, W.; Grzymisch, J.

    2018-04-01

    LISA Pathfinder is a technology demonstrator mission that was funded by the European Space Agency and that was launched on December 3, 2015. LISA Pathfinder has been conducting experiments to demonstrate key technologies for the gravitational wave observatory LISA in its operational orbit at the L1 Lagrange point of the Earth-Sun system until final switch off on July 18, 2017. These key technologies include the inertial sensors, the optical metrology system, a set of µ-propulsion cold gas thrusters and in particular the high performance drag-free and attitude control system (DFACS) that controls the spacecraft in 15 degrees of freedom during its science phase. The main goal of the DFACS is to shield the two test masses inside the inertial sensors from all external disturbances to achieve a residual differential acceleration between the two test masses of less than 3 × 10-14 m/s2/√Hz over the frequency bandwidth of 1-30 mHz. This paper focuses on two important aspects of the DFACS that has been in use on LISA Pathfinder: the DFACS Accelerometer mode and the main DFACS Science mode. The Accelerometer mode is used to capture the test masses after release into free flight from the mechanical grabbing mechanism. The main DFACS Science Mode is used for the actual drag-free science operation. The DFACS control system has very strong interfaces with the LISA Technology Package payload which is a key aspect to master the design, development, and analysis of the DFACS. Linear as well as non-linear control methods are applied. The paper provides pre-flight predictions for the performance of both control modes and compares these predictions to the performance that is currently achieved in-orbit. Some results are also discussed for the mode transitions up to science mode, but the focus of the paper is on the Accelerometer mode performance and on the performance of the Science mode in steady state. Based on the achieved results, some lessons learnt are formulated to extend the results to the drag-free control system to be designed for future space-based gravity wave observatories like LISA.

  4. Gravitational waves from a first-order electroweak phase transition: a brief review

    NASA Astrophysics Data System (ADS)

    Weir, David J.

    2018-01-01

    We review the production of gravitational waves by an electroweak first-order phase transition. The resulting signal is a good candidate for detection at next-generation gravitational wave detectors, such as LISA. Detection of such a source of gravitational waves could yield information about physics beyond the Standard Model that is complementary to that accessible to current and near-future collider experiments. We summarize efforts to simulate and model the phase transition and the resulting production of gravitational waves. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  5. Detection strategies for extreme mass ratio inspirals

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.

    2011-05-01

    The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near-horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these extreme mass ratio inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for tens of thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between genetic algorithms and Markov chain Monte Carlo techniques, along with several time-saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.

  6. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This discussion examines these gravitational patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. The focus is on recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by the space-based gravitational wave detector LISA.

  7. Binary Black Holes, Numerical Relativity, and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA

  8. Cosmic Messengers: Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein s equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. . This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will. be observed by LISA.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, Ludovico; Ciani, Giacomo; Dolesi, Rita

    We have measured surface-force noise on a hollow replica of a LISA proof mass surrounded by its capacitive motion sensor. Forces are detected through the torque exerted on the proof mass by means of a torsion pendulum in the 0.1-30 mHz range. The sensor and electronics have the same design as for the flight hardware, including 4 mm gaps around the proof mass. The measured upper limit for forces would allow detection of a number of galactic binaries signals with signal-to-noise ratio up to {approx_equal}40 for 1 yr integration. We also discuss how LISA Pathfinder will substantially improve this limit,more » approaching the LISA performance.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartolo, Nicola; Guzzetti, Maria Chiara; Liguori, Michele

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modesmore » expected from any inflationary background.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavridis, Adamantios; Arun, K. G.; Will, Clifford M.

    Spin induced precessional modulations of gravitational wave signals from supermassive black hole binaries can improve the estimation of luminosity distance to the source by space based gravitational wave missions like the Laser Interferometer Space Antenna (LISA). We study how this impacts the ability of LISA to do cosmology, specifically, to measure the dark energy equation of state (EOS) parameter w. Using the {lambda}CDM model of cosmology, we show that observations of precessing binaries with mass ratio 10 ratio 1 by LISA, combined with a redshift measurement, can improve the determination of w up to an order of magnitude with respectmore » to the nonprecessing case depending on the total mass and the redshift.« less

  12. Design issues for LISA inertial sensors

    NASA Astrophysics Data System (ADS)

    Vitale, Stefano; Speake, Clive

    1998-12-01

    In this paper we discuss a few design issues of the inertial sensor for LISA. These issues include the role of the stiffness and the losses that are introduced by the readout and by other parasitic sources. A possible plan for testing those effects on ground is also discussed.

  13. Continuous Glucose Monitoring Enables the Detection of Losses in Infusion Set Actuation (LISAs)

    PubMed Central

    Howsmon, Daniel P.; Cameron, Faye; Baysal, Nihat; Ly, Trang T.; Forlenza, Gregory P.; Maahs, David M.; Buckingham, Bruce A.; Hahn, Juergen; Bequette, B. Wayne

    2017-01-01

    Reliable continuous glucose monitoring (CGM) enables a variety of advanced technology for the treatment of type 1 diabetes. In addition to artificial pancreas algorithms that use CGM to automate continuous subcutaneous insulin infusion (CSII), CGM can also inform fault detection algorithms that alert patients to problems in CGM or CSII. Losses in infusion set actuation (LISAs) can adversely affect clinical outcomes, resulting in hyperglycemia due to impaired insulin delivery. Prolonged hyperglycemia may lead to diabetic ketoacidosis—a serious metabolic complication in type 1 diabetes. Therefore, an algorithm for the detection of LISAs based on CGM and CSII signals was developed to improve patient safety. The LISA detection algorithm is trained retrospectively on data from 62 infusion set insertions from 20 patients. The algorithm collects glucose and insulin data, and computes relevant fault metrics over two different sliding windows; an alarm sounds when these fault metrics are exceeded. With the chosen algorithm parameters, the LISA detection strategy achieved a sensitivity of 71.8% and issued 0.28 false positives per day on the training data. Validation on two independent data sets confirmed that similar performance is seen on data that was not used for training. The developed algorithm is able to effectively alert patients to possible infusion set failures in open-loop scenarios, with limited evidence of its extension to closed-loop scenarios. PMID:28098839

  14. Continuous Glucose Monitoring Enables the Detection of Losses in Infusion Set Actuation (LISAs).

    PubMed

    Howsmon, Daniel P; Cameron, Faye; Baysal, Nihat; Ly, Trang T; Forlenza, Gregory P; Maahs, David M; Buckingham, Bruce A; Hahn, Juergen; Bequette, B Wayne

    2017-01-15

    Reliable continuous glucose monitoring (CGM) enables a variety of advanced technology for the treatment of type 1 diabetes. In addition to artificial pancreas algorithms that use CGM to automate continuous subcutaneous insulin infusion (CSII), CGM can also inform fault detection algorithms that alert patients to problems in CGM or CSII. Losses in infusion set actuation (LISAs) can adversely affect clinical outcomes, resulting in hyperglycemia due to impaired insulin delivery. Prolonged hyperglycemia may lead to diabetic ketoacidosis-a serious metabolic complication in type 1 diabetes. Therefore, an algorithm for the detection of LISAs based on CGM and CSII signals was developed to improve patient safety. The LISA detection algorithm is trained retrospectively on data from 62 infusion set insertions from 20 patients. The algorithm collects glucose and insulin data, and computes relevant fault metrics over two different sliding windows; an alarm sounds when these fault metrics are exceeded. With the chosen algorithm parameters, the LISA detection strategy achieved a sensitivity of 71.8% and issued 0.28 false positives per day on the training data. Validation on two independent data sets confirmed that similar performance is seen on data that was not used for training. The developed algorithm is able to effectively alert patients to possible infusion set failures in open-loop scenarios, with limited evidence of its extension to closed-loop scenarios.

  15. Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals

    NASA Astrophysics Data System (ADS)

    Babak, Stanislav; Gair, Jonathan; Sesana, Alberto; Barausse, Enrico; Sopuerta, Carlos F.; Berry, Christopher P. L.; Berti, Emanuele; Amaro-Seoane, Pau; Petiteau, Antoine; Klein, Antoine

    2017-05-01

    The space-based Laser Interferometer Space Antenna (LISA) will be able to observe the gravitational-wave signals from systems comprised of a massive black hole and a stellar-mass compact object. These systems are known as extreme-mass-ratio inspirals (EMRIs) and are expected to complete ˜1 04- 1 05 cycles in band, thus allowing exquisite measurements of their parameters. In this work, we attempt to quantify the astrophysical uncertainties affecting the predictions for the number of EMRIs detectable by LISA, and find that competing astrophysical assumptions produce a variance of about three orders of magnitude in the expected intrinsic EMRI rate. However, we find that irrespective of the astrophysical model, at least a few EMRIs per year should be detectable by the LISA mission, with up to a few thousands per year under the most optimistic astrophysical assumptions. We also investigate the precision with which LISA will be able to extract the parameters of these sources. We find that typical fractional statistical errors with which the intrinsic parameters (redshifted masses, massive black hole spin and orbital eccentricity) can be recovered are ˜10-6- 10-4 . Luminosity distance (which is required to infer true masses) is inferred to about 10% precision and sky position is localized to a few square degrees, while tests of the multipolar structure of the Kerr metric can be performed to percent-level precision or better.

  16. Multi-static MIMO along track interferometry (ATI)

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2016-05-01

    Along-track interferometry (ATI) has the ability to generate high-quality synthetic aperture radar (SAR) images and concurrently detect and estimate the positions of ground moving target indicators (GMTI) with moderate processing requirements. This paper focuses on several different ATI system configurations, with an emphasis on low-cost configurations employing no active electronic scanned array (AESA). The objective system has two transmit phase centers and four receive phase centers and supports agile adaptive radar behavior. The advantages of multistatic, multiple input multiple output (MIMO) ATI system configurations are explored. The two transmit phase centers can employ a ping-pong configuration to provide the multistatic behavior. For example, they can toggle between an up and down linear frequency modulated (LFM) waveform every other pulse. The four receive apertures are considered in simple linear spatial configurations. Simulated examples are examined to understand the trade space and verify the expected results. Finally, actual results are collected with the Space Dynamics Laboratorys (SDL) FlexSAR system in diverse configurations. The theory, as well as the simulated and actual SAR results, are presented and discussed.

  17. Direct-phase and amplitude digitalization based on free-space interferometry

    NASA Astrophysics Data System (ADS)

    Kleiner, Vladimir; Rudnitsky, Arkady; Zalevsky, Zeev

    2017-12-01

    A novel ADC configuration that can be characterized as a photonic-domain flash analog-to-digital convertor operating based upon free-space interferometry is proposed and analysed. The structure can be used as the front-end of a coherent receiver as well as for other applications. Two configurations are considered: the first, ‘direct free-space interference’, allows simultaneous measuring of the optical phase and amplitude; the second, ‘extraction of the ac component of interference by means of pixel-by-pixel balanced photodetection’, allows only phase digitization but with significantly higher sensitivity. For both proposed configurations, we present Monte Carlo estimations of the performance limitations, due to optical noise and photo-current noise, at sampling rates of 60 giga-samples per second. In terms of bit resolution, we simulated multiple cases with growing complexity of up to 4 bits for the amplitude and up to 6 bits for the phase. The simulations show that the digitization errors in the optical domain can be reduced to levels close to the quantization noise limits. Preliminary experimental results validate the fundamentals of the proposed idea.

  18. 76 FR 60799 - Senior Executive Services (SES) Performance Review Board: Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ...-8700; telephone 202-712-0010; FAX 202-216- 3392; Internet E-mail address: [email protected] (for E-mail... General for Investigations. Robert S. Ross, Assistant Inspector General for Management. Lisa S. Goldfluss... Dempsey, Deputy Assistant Inspector General for Audit. Lisa Risley, Deputy Assistant Inspector General for...

  19. 78 FR 64292 - Community Development Financial Institutions Fund Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    .... ADDRESSES: Direct all comments to Lisa Jones, CDFI Bond Guarantee Program Manager, at the Community... should be directed to Lisa Jones, CDFI Bond Guarantee Program Manager, at the Community Development... on respondents, including through the use of technology; and (e) estimates of capital or start-up...

  20. 76 FR 14392 - GeoLogics Corporation; Transfer of Data

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... of LISA from remote locations, i.e., Denver field office, reduce inefficiencies created by the... (7502P), Office of Pesticide Programs, 20460-0001; telephone number: (703) 305-8338; e-mail address... Laboratory lnformation and Study Audit (LISA) to aid them in targeting future inspections and tracking and...

  1. 77 FR 53233 - Renewable Energy and Related Services: Recent Developments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... located in the United States International Trade Commission Building, 500 E Street SW., Washington, DC... Commission, 500 E Street SW., Washington, DC 20436. The public record for this investigation may be viewed on... INFORMATION CONTACT: Project Leader Lisa Alejandro (202- 205-3486 or Lisa[email protected] ) or Deputy...

  2. 76 FR 38673 - Establishment of the 21st Century Conservation Service Corps Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ..., address, telephone, e-mail, and fax number. DATES: Written nominations must be received by August 1, 2011... Interior, Thomas J. Vilsack, Department of Agriculture, Lisa P. Jackson, Environmental Protection Agency... Ken Salazar, Department of the Interior, Thomas J. Vilsack, Department of Agriculture, Lisa P. Jackson...

  3. 78 FR 41362 - Ontonagon Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... will be held at the Kenton Ranger District Office, 4810 E. M28, Kenton, Michigan. Written comments may... FURTHER INFORMATION CONTACT: Lisa Klaus, RAC Coordinator, USDA, Ottawa National Forest Headquarters, E6248... agenda. Written comments and requests for time for oral comments must be sent to Lisa Klaus, Ottawa...

  4. Frequency selection for coda wave interferometry in concrete structures.

    PubMed

    Fröjd, Patrik; Ulriksen, Peter

    2017-09-01

    This study contributes to the establishment of frequency recommendations for use in coda wave interferometry structural health monitoring (SHM) systems for concrete structures. To this end, codas with widely different central frequencies were used to detect boreholes with different diameters in a large concrete floor slab, and to track increasing damage in a small concrete beam subjected to bending loads. SHM results were obtained for damage that can be simulated by drilled holes on the scale of a few mm or microcracks due to bending. These results suggest that signals in the range of 50-150kHz are suitable in large concrete structures where it is necessary to account for the high attenuation of high-frequency signals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Ocean acoustic interferometry.

    PubMed

    Brooks, Laura A; Gerstoft, Peter

    2007-06-01

    Ocean acoustic interferometry refers to an approach whereby signals recorded from a line of sources are used to infer the Green's function between two receivers. An approximation of the time domain Green's function is obtained by summing, over all source positions (stacking), the cross-correlations between the receivers. Within this paper a stationary phase argument is used to describe the relationship between the stacked cross-correlations from a line of vertical sources, located in the same vertical plane as two receivers, and the Green's function between the receivers. Theory and simulations demonstrate the approach and are in agreement with those of a modal based approach presented by others. Results indicate that the stacked cross-correlations can be directly related to the shaded Green's function, so long as the modal continuum of any sediment layers is negligible.

  6. Improvement of depth resolution in depth-resolved wavenumber-scanning interferometry using wavenumber-domain least-squares algorithm: comparison and experiment.

    PubMed

    Bai, Yulei; Jia, Quanjie; Zhang, Yun; Huang, Qiquan; Yang, Qiyu; Ye, Shuangli; He, Zhaoshui; Zhou, Yanzhou; Xie, Shengli

    2016-05-01

    It is important to improve the depth resolution in depth-resolved wavenumber-scanning interferometry (DRWSI) owing to the limited range of wavenumber scanning. In this work, a new nonlinear iterative least-squares algorithm called the wavenumber-domain least-squares algorithm (WLSA) is proposed for evaluating the phase of DRWSI. The simulated and experimental results of the Fourier transform (FT), complex-number least-squares algorithm (CNLSA), eigenvalue-decomposition and least-squares algorithm (EDLSA), and WLSA were compared and analyzed. According to the results, the WLSA is less dependent on the initial values, and the depth resolution δz is approximately changed from δz to δz/6. Thus, the WLSA exhibits a better performance than the FT, CNLSA, and EDLSA.

  7. Coda-wave and ambient noise interferometry using an offset vertical array at Iwanuma site, northeast Japan

    NASA Astrophysics Data System (ADS)

    Minami, K.; Yamamoto, M.; Nishimura, T.; Nakahara, H.; Shiomi, K.

    2013-12-01

    Seismic interferometry using vertical borehole arrays is a powerful tool to estimate the shallow subsurface structure and its time lapse changes. However, the wave fields surrounding borehole arrays are non-isotropic due to the existence of ground surface and non-uniform distribution of sources, and do not meet the requirements of the seismic interferometry in a strict sense. In this study, to examine differences between wave fields of coda waves and ambient noise, and to estimate their effects on the results of seismic interferometry, we conducted a temporal seismic experiment using zero-offset and offset vertical arrays. We installed two 3-components seismometers (hereafter called Surface1 and Surface2) at the ground surface in the vicinity of NIED Iwanuma site (Miyagi Pref., Japan). Surface1 is placed just above the Hi-net downhole seismometer whose depth is 101 m, and Surface2 is placed 70 m away from Surface1. To extract the wave propagation between these 3 seismometers, we compute the cross-correlation functions (CCFs) of coda-wave and ambient noise for each pair of the zero-offset vertical (Hi-net-Surface1), finite-offset vertical (Hi-net-Surface2), and horizontal (Surface1-Surface2) arrays. We use the frequency bands of 4-8, 8-16 Hz in the CCF computation. The characteristics of obtained CCFs are summarized as follows; (1) in all frequency bands, the peak lag times of CCFs from coda waves are almost the same between the vertical and offset-vertical arrays irrespective of different inter-station distance, and those for the horizontal array are around 0 s. (2) the peak lag times of CCFs from ambient noise show slight differences, that is, those obtained from the vertical array are earlier than those from the offset-vertical array, and those from the horizontal array are around 0.05 s. (3) the peak lag times of CCFs for the vertical array obtained from ambient noise analyses are earlier than those from the coda-wave analyses. These results indicate that wave fields of coda-wave are mainly composed of vertically propagating waves, while those of ambient noise are composed of both vertically and horizontally propagating waves. To explain these characteristics of the CCFs obtained from different wave fields, we conducted a numerical simulation of interferometry based on the concept of stationary phase. Here, we assume isotropic upward incidence of SV-wave into a homogeneous half-space, and compute CCFs for the zero-offset and finite-offset vertical arrays by taking into account the reflection and conversion of P-SV waves at the free surface. Due to the effectively non-isotropic wave field, the simulated CCF for the zero-offset vertical array shows slight delay in peak lag time and its amplitudes decrease in the acausal part. On the other hand, the simulated CCF for finite-offset vertical array shows amplitude decrease and no peak lag time shift. These results are consistent with the difference in peak lag times obtained from coda-wave and ambient noise analyses. Our observations and theoretical consideration suggest that the careful consideration of wave fields is important in the application of seismic interferometry to borehole array data.

  8. Mechanical design optimization of a single-axis MOEMS accelerometer based on a grating interferometry cavity for ultrahigh sensitivity

    NASA Astrophysics Data System (ADS)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan; Yang, Guoguang

    2016-08-01

    The ultrahigh static displacement-acceleration sensitivity of a mechanical sensing chip is essential primarily for an ultrasensitive accelerometer. In this paper, an optimal design to implement to a single-axis MOEMS accelerometer consisting of a grating interferometry cavity and a micromachined sensing chip is presented. The micromachined sensing chip is composed of a proof mass along with its mechanical cantilever suspension and substrate. The dimensional parameters of the sensing chip, including the length, width, thickness and position of the cantilevers are evaluated and optimized both analytically and by finite-element-method (FEM) simulation to yield an unprecedented acceleration-displacement sensitivity. Compared with one of the most sensitive single-axis MOEMS accelerometers reported in the literature, the optimal mechanical design can yield a profound sensitivity improvement with an equal footprint area, specifically, 200% improvement in displacement-acceleration sensitivity with moderate resonant frequency and dynamic range. The modified design was microfabricated, packaged with the grating interferometry cavity and tested. The experimental results demonstrate that the MOEMS accelerometer with modified design can achieve the acceleration-displacement sensitivity of about 150μm/g and acceleration sensitivity of greater than 1500V/g, which validates the effectiveness of the optimal design.

  9. Multi-link laser interferometry architecture for interspacecraft displacement metrology

    NASA Astrophysics Data System (ADS)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.

    2018-03-01

    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  10. Research on effects of phase error in phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Wang, Zhao; Zhao, Hong; Tian, Ailing; Liu, Bingcai

    2007-12-01

    Referring to phase-shifting interferometry technology, the phase shifting error from the phase shifter is the main factor that directly affects the measurement accuracy of the phase shifting interferometer. In this paper, the resources and sorts of phase shifting error were introduction, and some methods to eliminate errors were mentioned. Based on the theory of phase shifting interferometry, the effects of phase shifting error were analyzed in detail. The Liquid Crystal Display (LCD) as a new shifter has advantage as that the phase shifting can be controlled digitally without any mechanical moving and rotating element. By changing coded image displayed on LCD, the phase shifting in measuring system was induced. LCD's phase modulation characteristic was analyzed in theory and tested. Based on Fourier transform, the effect model of phase error coming from LCD was established in four-step phase shifting interferometry. And the error range was obtained. In order to reduce error, a new error compensation algorithm was put forward. With this method, the error can be obtained by process interferogram. The interferogram can be compensated, and the measurement results can be obtained by four-step phase shifting interferogram. Theoretical analysis and simulation results demonstrate the feasibility of this approach to improve measurement accuracy.

  11. Analysis of field of view limited by a multi-line X-ray source and its improvement for grating interferometry.

    PubMed

    Du, Yang; Huang, Jianheng; Lin, Danying; Niu, Hanben

    2012-08-01

    X-ray phase-contrast imaging based on grating interferometry is a technique with the potential to provide absorption, differential phase contrast, and dark-field signals simultaneously. The multi-line X-ray source used recently in grating interferometry has the advantage of high-energy X-rays for imaging of thick samples for most clinical and industrial investigations. However, it has a drawback of limited field of view (FOV), because of the axial extension of the X-ray emission area. In this paper, we analyze the effects of axial extension of the multi-line X-ray source on the FOV and its improvement in terms of Fresnel diffraction theory. Computer simulation results show that the FOV limitation can be overcome by use of an alternative X-ray tube with a specially designed multi-step anode. The FOV of this newly designed X-ray source can be approximately four times larger than that of the multi-line X-ray source in the same emission area. This might be beneficial for the applications of X-ray phase contrast imaging in materials science, biology, medicine, and industry.

  12. 2D strain mapping using scanning transmission electron microscopy Moiré interferometry and geometrical phase analysis.

    PubMed

    Pofelski, A; Woo, S Y; Le, B H; Liu, X; Zhao, S; Mi, Z; Löffler, S; Botton, G A

    2018-04-01

    A strain characterization technique based on Moiré interferometry in a scanning transmission electron microscope (STEM) and geometrical phase analysis (GPA) method is demonstrated. The deformation field is first captured in a single STEM Moiré hologram composed of multiple sets of periodic fringes (Moiré patterns) generated from the interference between the periodic scanning grating, fixing the positions of the electron probe on the sample, and the crystal structure. Applying basic principles from sampling theory, the Moiré patterns arrangement is then simulated using a STEM electron micrograph reference to convert the experimental STEM Moiré hologram into information related to the crystal lattice periodicities. The GPA method is finally applied to extract the 2D relative strain and rotation fields. The STEM Moiré interferometry enables the local information to be de-magnified to a large length scale, comparable to what can be achieved in dark-field electron holography. The STEM Moiré GPA method thus extends the conventional high-resolution STEM GPA capabilities by providing comparable quantitative 2D strain mapping with a larger field of view (up to a few microns). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission response and the reflection response for a 1D multilayer structure, and next 3D approach (Wapenaar 2004). As a result of this seismic interferometry experiment the 3D reflectivity model (frequencies and resolution ranges) was obtained. We proved also that the seismic interferometry approach can be applied in asynchronous seismic auscultation. The reflections detected in the virtual seismic sections are in agreement with the geological features encountered during the excavation of the tunnel and also with the petrophysical properties and parameters measured in previous geophysical borehole logging. References Claerbout J.F., 1968. Synthesis of a layered medium from its acoustic transmision response. Geophysics, 33, 264-269 Flavio Poletto, Piero Corubolo and Paolo Comeli.2010. Drill-bit seismic interferometry whith and whitout pilot signals. Geophysical Prospecting, 2010, 58, 257-265. Wapenaar, K., J. Thorbecke, and D. Draganov, 2004, Relations between reflection and transmission responses of three-dimensional inhomogeneous media: Geophysical Journal International, 156, 179-194.

  14. COSMIC probes into compact binary formation and evolution

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  15. Strengthening Statistics Graduate Programs with Statistical Collaboration--The Case of Hawassa University, Ethiopia

    ERIC Educational Resources Information Center

    Goshu, Ayele Taye

    2016-01-01

    This paper describes the experiences gained from the established statistical collaboration canter at Hawassa University in May 2015 as part of LISA 2020 [Laboratory for Interdisciplinary Statistical Analysis] network. The center has got similar setup as LISA of Virginia Tech. Statisticians are trained on how to become more effective scientific…

  16. Scope Notes for LISA Subject Headings.

    ERIC Educational Resources Information Center

    Browne, Glenda

    1992-01-01

    Reports on a study that examined scope notes added to subject headings in the Library and Information Science Abstracts (LISA) Online User Manual. Types of messages conveyed by scope notes and word patterns within the notes are identified, and comparisons between the 1982 and 1987 editions of the manual are made. (16 references) (MES)

  17. 78 FR 9415 - Endangered and Threatened Species; Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... Species Act, as amended (Act). FOR FURTHER INFORMATION CONTACT: Ms. Lisa Mandell, U.S. Fish and Wildlife... 55437-1458; (612) 713- 5343 (phone) or lisa[email protected] (email). SUPPLEMENTARY INFORMATION: We have... TOMASI, THOMAS E 195082 12/5/2012 12/31/2014 TRAGUS ENVIRONMENTAL CONSULTING, INC 105320 3/5/2012 12/31...

  18. 75 FR 59327 - Seventh Meeting-RTCA Special Committee 217: Joint With EUROCAE WG-44 Terrain and Airport Mapping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Headquarters, Wilbur Wright Room, 55 Invernes Drive East, Englewood, Colorado, 80112, USA, John Kasten, E-mail: [email protected] , telephone (303) 328-4535, mobile (303) 260-9652. Alternate Contact, Lisa Haskell, E- mail: lisa[email protected] , telephone (303) 328-6891. FOR FURTHER INFORMATION CONTACT...

  19. 77 FR 73391 - Approval of Air Quality Implementation Plans; California; Eastern Kern, Imperial County, Placer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    .... Federal eRulemaking Portal: www.regulations.gov . Follow the on- line instructions. 2. Email: R9airpermits... FURTHER INFORMATION CONTACT: Lisa Beckham, Permits Office (AIR-3), U.S. Environmental Protection Agency, Region IX, (415) 972-3811, beckham.lisa@epa.gov . SUPPLEMENTARY INFORMATION: This document proposes to...

  20. 76 FR 2882 - Ontonagon Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... should be sent to Lisa Klaus, Ottawa National Forest, E6248 U.S. Hwy. 2, Ironwood, MI 49938. Comments may also be sent via e-mail to [email protected] or via facsimile to 906-932-0122. All comments, including..., MI 49938. FOR FURTHER INFORMATION CONTACT: Lisa Klaus, RAC coordinator, USDA, Ottawa National Forest...

  1. 75 FR 18783 - Middle East Public Health Mission; Application Deadline Extended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ..., Baltimore U.S. Export Assistance Center, Tel: 410- 962-4518, Fax: 410-962-4529, E-mail: [email protected] . Ms. Lisa C. Huot, U.S. Department of Commerce, Washington, DC 20230, Tel: 202-482-2796, Fax: 202-482-0115, E-Mail: Lisa[email protected] . Sean Timmins, Global Trade Programs, Commercial Service...

  2. 75 FR 45091 - Ontonagon Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Lisa Klaus, Ottawa National Forest, E6248 U.S. Hwy. 2, Ironwood, MI 49938. Comments may also be sent via e-mail to [email protected] or via facsimile to 906-932-0122. All comments, including names and.... FOR FURTHER INFORMATION CONTACT: Lisa Klaus, RAC coordinator, USDA, Ottawa National Forest, E6248 U.S...

  3. 76 FR 22077 - Gogebic Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... building to view comments. FOR FURTHER INFORMATION CONTACT: Lisa Klaus, RAC coordinator, USDA, Ottawa National Forest, E6248 U.S. Hwy. 2, Ironwood, MI, (906) 932- 1330, ext. 328; e-mail [email protected] scheduled on the agenda. Written comments and requests for time for oral comments must be sent to Lisa Klaus...

  4. 78 FR 13893 - Certain Radio Frequency Identification (“RFID”) Products and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... CONTACT: Lisa R. Barton, Acting Secretary to the Commission, U.S. International Trade Commission, 500 E.... International Trade Commission, 500 E Street SW., Washington, DC 20436, telephone (202) 205-2000. General...)). By order of the Commission. Issued: February 25, 2013. Lisa R. Barton, Acting Secretary to the...

  5. 78 FR 37277 - CDFI Bond Guarantee Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... the CDFI Fund in the following format: no more than 40 single-sided pages; double spaced; 12 font size... mail to the attention of Lisa Jones, Program Manager, CDFI Bond Guarantee Program, CDFI Fund, U.S... to the attention of Lisa Jones, Program Manager, CDFI Bond Guarantee Program, CDFI Fund, 1801-6215...

  6. Full quantum mechanical analysis of atomic three-grating Mach–Zehnder interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanz, A.S., E-mail: asanz@iff.csic.es; Davidović, M.; Božić, M.

    2015-02-15

    Atomic three-grating Mach–Zehnder interferometry constitutes an important tool to probe fundamental aspects of the quantum theory. There is, however, a remarkable gap in the literature between the oversimplified models and robust numerical simulations considered to describe the corresponding experiments. Consequently, the former usually lead to paradoxical scenarios, such as the wave–particle dual behavior of atoms, while the latter make difficult the data analysis in simple terms. Here these issues are tackled by means of a simple grating working model consisting of evenly-spaced Gaussian slits. As is shown, this model suffices to explore and explain such experiments both analytically and numerically,more » giving a good account of the full atomic journey inside the interferometer, and hence contributing to make less mystic the physics involved. More specifically, it provides a clear and unambiguous picture of the wavefront splitting that takes place inside the interferometer, illustrating how the momentum along each emerging diffraction order is well defined even though the wave function itself still displays a rather complex shape. To this end, the local transverse momentum is also introduced in this context as a reliable analytical tool. The splitting, apart from being a key issue to understand atomic Mach–Zehnder interferometry, also demonstrates at a fundamental level how wave and particle aspects are always present in the experiment, without incurring in any contradiction or interpretive paradox. On the other hand, at a practical level, the generality and versatility of the model and methodology presented, makes them suitable to attack analogous problems in a simple manner after a convenient tuning. - Highlights: • A simple model is proposed to analyze experiments based on atomic Mach–Zehnder interferometry. • The model can be easily handled both analytically and computationally. • A theoretical analysis based on the combination of the position and momentum representations is considered. • Wave and particle aspects are shown to coexist within the same experiment, thus removing the old wave-corpuscle dichotomy. • A good agreement between numerical simulations and experimental data is found without appealing to best-fit procedures.« less

  7. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2014-10-01

    Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.

  8. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Killow, C. J.; Korsakova, N.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C.; Sumner, T. J.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.; LISA Pathfinder Collaboration

    2017-04-01

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm s-2 Hz-1 /2 across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  9. Demonstration of AC and DC charge control for the LISA test masses

    NASA Astrophysics Data System (ADS)

    Olatunde, Taiwo Janet

    2018-01-01

    Taiwo Olatunde, Stephen Apple, Andrew Chilton, Samantha Parry, Peter Wass, Guido Mueller, John W. Conklin The residual test mass acceleration in LISA must be below 3 fm/s2/√Hz at all frequencies between 0.1 and 3 mHz. Test mass charge coupled with stray electrical potentials and external electromagnetic fields is a well-known source of acceleration noise. LISA Pathfinder uses Hg lamps emitting mostly around 254 nm to discharge the test masses via photoemission, but a future LISA mission launched around 2030 will likely replace the lamps with newer UV LEDs with lower mass, better power efficiency, smaller size and higher bandwidth. This presentation will discuss charge control demonstrated on the torsion pendulum in AC and DC modes at the University of Florida using latest generation UV LEDs producing light at 240 nm with energy above the work function of pure Au. Initial results of Au quantum efficiency measurements (number of emitted electrons per incident photons) which is critical for bi-polar charge control will also be presented.

  10. Prospects for Multiband Gravitational-Wave Astronomy after GW150914

    NASA Astrophysics Data System (ADS)

    Sesana, Alberto

    2016-06-01

    The black hole binary (BHB) coalescence rates inferred from the Advanced LIGO detection of GW150914 imply an unexpectedly loud gravitational-wave (GW) sky at millihertz frequencies accessible to the Evolved Laser Interferometer Space Antenna (eLISA), with several outstanding consequences. First, up to thousands of BHBs will be individually resolvable by eLISA; second, millions of nonresolvable BHBs will build a confusion noise detectable with a signal-to-noise ratio of a few to hundreds; third—and perhaps most importantly—up to hundreds of BHBs individually resolvable by eLISA will coalesce in the Advanced LIGO band within 10 y. eLISA observations will tell Advanced LIGO and all electromagnetic probes weeks in advance when and where these BHB coalescences will occur, with uncertainties of <10 s and <1 deg2 . This will allow the prepointing of telescopes to realize coincident GW and multiwavelength electromagnetic observations of BHB mergers. Time coincidence is critical, because a prompt emission associated to a BHB merger will likely have a duration comparable to the dynamical time scale of the systems and is possible only with low-frequency GW alerts.

  11. Data Analysis for the LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2009-01-01

    The LTP (LISA Technology Package) is the core part of the Laser Interferometer Space Antenna (LISA) Pathfinder mission. The main goal of the mission is to study the sources of any disturbances that perturb the motion of the freely-falling test masses from their geodesic trajectories as well as 10 test various technologies needed for LISA. The LTP experiment is designed as a sequence of experimental runs in which the performance of the instrument is studied and characterized under different operating conditions. In order to best optimize subsequent experimental runs, each run must be promptly analysed to ensure that the following ones make best use of the available knowledge of the instrument ' In order to do this, all analyses must be designed and tested in advance of the mission and have sufficient built-in flexibility to account for unexpected results or behaviour. To support this activity, a robust and flexible data analysis software package is also required. This poster presents two of the main components that make up the data analysis effort: the data analysis software and the mock-data challenges used to validate analysis procedures and experiment designs.

  12. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder.

    PubMed

    Armano, M; Audley, H; Auger, G; Baird, J T; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Cruise, M; Danzmann, K; de Deus Silva, M; Diepholz, I; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fitzsimons, E D; Flatscher, R; Freschi, M; Gallegos, J; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Grimani, C; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hueller, M; Huesler, J; Inchauspé, H; Jennrich, O; Jetzer, P; Johlander, B; Karnesis, N; Kaune, B; Killow, C J; Korsakova, N; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Madden, S; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Moroni, A; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Ramos-Castro, J; Reiche, J; Romera Perez, J A; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sarra, P; Schleicher, A; Slutsky, J; Sopuerta, C; Sumner, T J; Texier, D; Thorpe, J I; Trenkel, C; Vetrugno, D; Vitale, S; Wanner, G; Ward, H; Wass, P J; Wealthy, D; Weber, W J; Wittchen, A; Zanoni, C; Ziegler, T; Zweifel, P

    2017-04-28

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0  fm s^{-2} Hz^{-1/2} across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  13. Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20  μHz.

    PubMed

    Armano, M; Audley, H; Baird, J; Binetruy, P; Born, M; Bortoluzzi, D; Castelli, E; Cavalleri, A; Cesarini, A; Cruise, A M; Danzmann, K; de Deus Silva, M; Diepholz, I; Dixon, G; Dolesi, R; Ferraioli, L; Ferroni, V; Fitzsimons, E D; Freschi, M; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Grimani, C; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hoyland, D; Hueller, M; Inchauspé, H; Jennrich, O; Jetzer, P; Karnesis, N; Kaune, B; Korsakova, N; Killow, C J; Lobo, J A; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Mance, D; Meshksar, N; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Ramos-Castro, J; Reiche, J; Robertson, D I; Rivas, F; Russano, G; Slutsky, J; Sopuerta, C F; Sumner, T; Texier, D; Thorpe, J I; Vetrugno, D; Vitale, S; Wanner, G; Ward, H; Wass, P J; Weber, W J; Wissel, L; Wittchen, A; Zweifel, P

    2018-02-09

    In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20  μHz. The Letter presents the measured differential acceleration noise figure, which is at (1.74±0.05)  fm s^{-2}/sqrt[Hz] above 2 mHz and (6±1)×10  fm s^{-2}/sqrt[Hz] at 20  μHz, and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency.

  14. Metals in sediments and fish from Sea Lots and Point Lisas harbors, Trinidad and Tobago

    USGS Publications Warehouse

    Mohammed, Azad; May, Thomas; Echols, Kathy; Walther, Mike; Manoo, Anton; Maraj, Dexter; Agard, John; Orazio, Carl

    2012-01-01

    Concentrations of heavy metals were determined in nearshore marine sediments and fish tissue from Sea Lots area on the west coast, at Caroni Lagoon National Park, and in the Point Lisas harbor, Trinidad. The most dominant metals found in sediments were Al, Fe and Zn with mean concentrations highest at Sea Lots (Al-39420 μg/g; Fe-45640 μg/g; Zn-245 μg/g), when compared to sediments from Point Lisas (Al-11936 μg/g; Fe-30171 μg/g; Zn-69 μg/g) and Caroni (Al-0400 μg/g; Fe-19000 μg/g; Zn-32 μg/g), High concentration of Cu, Al, Fe and Zn were also detected in fish tissue from Point Lisas and Caroni. Metal concentrations in fish tissue showed significant correlation with sediment metals concentration, which suggests that tissue levels are influenced by sediment concentration. Of the metals, only Zn, Hg and Cu had a bioaccumulation factor (BAF) greater than one, which suggests a high bioaccumulation potential for these metals.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowder, Jeff; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109; Cornish, Neil J.

    Low frequency gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA), will have to contend with large foregrounds produced by millions of compact galactic binaries in our galaxy. While these galactic signals are interesting in their own right, the unresolved component can obscure other sources. The science yield for the LISA mission can be improved if the brighter and more isolated foreground sources can be identified and regressed from the data. Since the signals overlap with one another, we are faced with a 'cocktail party' problem of picking out individual conversations in a crowded room. Here we presentmore » and implement an end-to-end solution to the galactic foreground problem that is able to resolve tens of thousands of sources from across the LISA band. Our algorithm employs a variant of the Markov chain Monte Carlo (MCMC) method, which we call the blocked annealed Metropolis-Hastings (BAM) algorithm. Following a description of the algorithm and its implementation, we give several examples ranging from searches for a single source to searches for hundreds of overlapping sources. Our examples include data sets from the first round of mock LISA data challenges.« less

  16. Testing new technologies for the LISA Gravitational Reference Senso

    NASA Astrophysics Data System (ADS)

    Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido

    2015-01-01

    LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement of < 3×10-15 m/sec2Hz1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the summer of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchio, Alberto; Wickham, Elizabeth D.L.

    The Laser Interferometer Space Antenna (LISA) is expected to provide the largest observational sample of binary systems of faint subsolar mass compact objects, in particular, white-dwarfs, whose radiation is monochromatic over most of the LISA observational window. Current astrophysical estimates suggest that the instrument will be able to resolve {approx}10{sup 4} such systems, with a large fraction of them at frequencies > or approx. 3 mHz, where the wavelength of gravitational waves becomes comparable to or shorter than the LISA armlength. This affects the structure of the so-called LISA transfer function which cannot be treated as constant in this frequencymore » range: it introduces characteristic phase and amplitude modulations that depend on the source location in the sky and the emission frequency. Here we investigate the effect of the LISA transfer function on detection and parameter estimation for monochromatic sources. For signal detection we show that filters constructed by approximating the transfer function as a constant (long-wavelength approximation) introduce a negligible loss of signal-to-noise ratio--the fitting factor always exceeds 0.97--for f{<=}10 mHz, therefore in a frequency range where one would actually expect the approximation to fail. For parameter estimation, we conclude that in the range 3 mHz < or approx. f < or approx. 30 mHz the errors associated with parameter measurements differ from {approx_equal}5% up to a factor {approx}10 (depending on the actual source parameters and emission frequency) with respect to those computed using the long-wavelength approximation.« less

  18. Spherical grating based x-ray Talbot interferometry.

    PubMed

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-11-01

    Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh-Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.

  19. Spherical grating based x-ray Talbot interferometry

    PubMed Central

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications. PMID:26520741

  20. Spherical grating based x-ray Talbot interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme formore » a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and improves both signal visibility and dose utilization for pre-clinical and clinical applications.« less

  1. Laser modulator for LISA pathfinder

    NASA Astrophysics Data System (ADS)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU together with a summary of the results of the Laser Modulator engineering model test campaign.

  2. LISA Pathfinder and eLISA news

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira; Mueller, Guido

    2014-01-01

    Two important gatherings of the space-based gravitational-wave detector community were held in Zurich, Switzerland this past March. The first was a meeting of the Science Working Team for LISA Pathfinder (LPF), a dedicated technology demonstrator mission for a future LISA-like gravitational wave observatory. LPF is entering an extremely exciting phase with launch less than 15 months away. All flight components for both the European science payload, known as the LISA Technology Package (LTP), and the NASA science payload, known as the Space Technology 7 Disturbance Reduction System (ST7-DRS), have been delivered and are undergoing integration. The final flight component for the spacecraft bus, a cold-gas thruster based on the successful GAIA design, will be delivered later this year. Current focus is on completing integration of the science payload (see Figures 1 and 2) and preparation for operations and data analysis. After a launch in Summer 2015, LPF will take approximately 90 days to reach its operational orbit around the Earth-Sun Lagrange point (L1), where it will begin science operations. After 90 days of LTP operations followed by 90 days of DRS operations, LPF will have completed its prime mission of paving the way for a space-based observatory of gravitational waves in the milliHertz band. Immediately following the meeting of the LPF team, the eLISA consortium held its third progress meeting. The consortium (www.elisascience.org) is the organizing body of the European space-based gravitational-wave community, and it was responsible for the "The Gravitational Universe" whitepaper that resulted in the November 2013 election of a gravitational-wave science theme for ESA's Cosmic Visions L3 opportunity. In preparation for an L3 mission concept call, which is expected later this decade, and for launch in the mid 2030s, the eLISA consortium members are coordinating technology development and mission study activities which will build on the LPF results. The final mission concept is expected to include some international (non-European) contributions, and NASA has expressed an interest in participating in this ground-breaking mission. The US research community supports such a collaboration, or any other mission scenario that achieves the high-priority science of a space-based gravitational-wave observatory at the earliest possible date.

  3. Physical and non-physical energy in scattered wave source-receiver interferometry.

    PubMed

    Meles, Giovanni Angelo; Curtis, Andrew

    2013-06-01

    Source-receiver interferometry allows Green's functions between sources and receivers to be estimated by means of convolution and cross-correlation of other wavefields. Source-receiver interferometry has been observed to work surprisingly well in practical applications when theoretical requirements (e.g., complete enclosing boundaries of other sources and receivers) are contravened: this paper contributes to explain why this may be true. Commonly used inter-receiver interferometry requires wavefields to be generated around specific stationary points in space which are controlled purely by medium heterogeneity and receiver locations. By contrast, application of source-receiver interferometry constructs at least kinematic information about physically scattered waves between a source and a receiver by cross-convolution of scattered waves propagating from and to any points on the boundary. This reduces the ambiguity in interpreting wavefields generated using source-receiver interferometry with only partial boundaries (as is standard in practical applications), as it allows spurious or non-physical energy in the constructed Green's function to be identified and ignored. Further, source-receiver interferometry (which includes a step of inter-receiver interferometry) turns all types of non-physical or spurious energy deriving from inter-receiver interferometry into what appears to be physical energy. This explains in part why source-receiver interferometry may perform relatively well compared to inter-receiver interferometry when constructing scattered wavefields.

  4. Modeling Flows Around Merging Black Hole Binaries

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  5. Local denoising of digital speckle pattern interferometry fringes by multiplicative correlation and weighted smoothing splines.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2005-05-10

    We evaluate the use of smoothing splines with a weighted roughness measure for local denoising of the correlation fringes produced in digital speckle pattern interferometry. In particular, we also evaluate the performance of the multiplicative correlation operation between two speckle patterns that is proposed as an alternative procedure to generate the correlation fringes. It is shown that the application of a normalization algorithm to the smoothed correlation fringes reduces the excessive bias generated in the previous filtering stage. The evaluation is carried out by use of computer-simulated fringes that are generated for different average speckle sizes and intensities of the reference beam, including decorrelation effects. A comparison with filtering methods based on the continuous wavelet transform is also presented. Finally, the performance of the smoothing method in processing experimental data is illustrated.

  6. Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry

    NASA Astrophysics Data System (ADS)

    Mowla, Alireza; Taimre, Thomas; Lim, Yah L.; Bertling, Karl; Wilson, Stephen J.; Prow, Tarl W.; Soyer, H. P.; Rakić, Aleksandar D.

    2016-04-01

    We propose a compact, self-aligned, low-cost, and versatile infrared diffuse-reflectance laser imaging system using a laser feedback interferometry technique with possible applications in in vivo biological tissue imaging and skin cancer detection. We examine the proposed technique experimentally using a three-layer agar skin phantom. A cylindrical region with a scattering rate lower than that of the surrounding normal tissue was used as a model for a non-melanoma skin tumour. The same structure was implemented in a Monte Carlo computational model. The experimental results agree well with the Monte Carlo simulations validating the theoretical basis of the technique. Results prove the applicability of the proposed technique for biological tissue imaging, with the capability of depth sectioning and a penetration depth of well over 1.2 mm into the skin phantom.

  7. Explicit Filtering Based Low-Dose Differential Phase Reconstruction Algorithm with the Grating Interferometry.

    PubMed

    Jiang, Xiaolei; Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang

    2015-01-01

    X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm.

  8. Explicit Filtering Based Low-Dose Differential Phase Reconstruction Algorithm with the Grating Interferometry

    PubMed Central

    Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang

    2015-01-01

    X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm. PMID:26089971

  9. Network Science Experimentation Vision

    DTIC Science & Technology

    2015-09-01

    Brian Rivera, Kevin Chan, Lisa Scott, Reginald Hobbs, Alice Leung, Will Dron , and Ritu Chadha Approved for public...release; distribution is unlimited. NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the...Kott, Brian Rivera, Kevin Chan, Lisa Scott, and Reginald Hobbs Computational and Information Sciences Directorate, ARL Alice Leung and Will Dron

  10. Strengthening Statistics Graduate Programs with Statistical Collaboration--The Case of Hawassa University, Ethiopia

    ERIC Educational Resources Information Center

    Goshu, Ayele Taye

    2016-01-01

    This paper describes the experiences gained from the established statistical collaboration center at Hawassa University as part of LISA 2020 network. The center has got similar setup as LISA at Virginia Tech. Statisticians are trained on how to become more effective scientific collaborators with researchers. The services are being delivered since…

  11. "Multiplication Is for White People": An Interview with Lisa Delpit

    ERIC Educational Resources Information Center

    Sokolower, Jody

    2012-01-01

    In the introduction to her new book, ""Multiplication Is for White People": Raising Expectations for Other People's Children," Lisa Delpit describes her response when Diane Ravitch asked her why she hasn't spoken out against the devastation of public schools in her home state of Louisiana and the efforts to make New Orleans the national model. She…

  12. Simple Enough--Even for Web Virgins: Lisa Mitten's Access to Native American Web Sites. Web Site Review Essay.

    ERIC Educational Resources Information Center

    Belgarde, Mary Jiron

    1998-01-01

    A mixed-blood Mohawk urban Indian and university librarian, Lisa Mitten provides access to Web sites with solid information about American Indians. Links are provided to 10 categories--Native nations, Native organizations, Indian education, Native media, powwows and festivals, Indian music, Native arts, Native businesses, and Indian-oriented home…

  13. 76 FR 66081 - Proposed Information Collection; Nomination of Properties for Listing on the National Register of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ..., 1201 Eye St., NW., MS 1242, Washington, DC 20005 (mail); or [email protected] (e-mail). Please reference Information Collection 1024- 0018. FOR FURTHER INFORMATION CONTACT: Lisa Deline, NPS Historian, National Register of Historic Places, 1201 Eye St., NW, 20005. You may send an e-mail to Lisa[email protected

  14. 75 FR 28853 - Quarterly Publication of Individuals, Who Have Chosen To Expatriate, as Required by Section 6039G

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    .... HECKNER MICHAEL JOHANNES HELLMAN LISA JANE HELLMAN-MERZBACHER JESSICA HENTSCH NIKOLAI HO EUNICE YUK LING... JENNIFER LADANYI HANS GEORG LAMPE ARNO LAUREYNS VEERLE A LEBECH LISA MARGARET LEE YOONBOK STEPHEN LEHMANN... JAMES JOHN MORANT JR PAUL MU DEJUN MULLER SIGRID SIMONS NEDOLUHA DAVID A NEDOLUHA PATRICIA E NEDOLUHA...

  15. 76 FR 78150 - Ophthalmic and Topical Dosage Form New Animal Drugs; Hydrocortisone Aceponate, Miconazole Nitrate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... December 16, 2011. FOR FURTHER INFORMATION CONTACT: Lisa M. Troutman, Center for Veterinary Medicine (HFV...: lisa[email protected] . SUPPLEMENTARY INFORMATION: Virbac AH, Inc., 3200 Meacham Blvd., Fort Worth... approval. In accordance with the freedom of information provisions of 21 CFR part 20 and 21 CFR 514.11(e)(2...

  16. 75 FR 38979 - Endangered and Threatened Species; Initiation of a 5-Year Review of the Eastern Distinct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... correction is effective July 7, 2010. FOR FURTHER INFORMATION CONTACT: Dr. Lisa Rotterman (907-271-1692), lisa[email protected] . SUPPLEMENTARY INFORMATION: Background On June 29, 2010, NMFS published a... lion (75 FR 37385). NMFS inadvertently gave incorrect e-mail and fax information. The correct email is...

  17. Supporting Young English Learners in the United States

    ERIC Educational Resources Information Center

    Barrow, Lisa; Markman-Pithers, Lisa

    2016-01-01

    Simply put, children with poor English skills are less likely to succeed in school and beyond. What's the best way to teach English to young children who aren't native English speakers? In this article, Lisa Barrow and Lisa Markman-Pithers examine the state of English learner education in the United States and review the evidence behind different…

  18. Experimental verification of arm-locking for LISA using electronic phase delay [rapid communication

    NASA Astrophysics Data System (ADS)

    Thorpe, J. I.; Mueller, G.

    2005-07-01

    We present results of an electronic model of arm-locking, a proposed technique for reducing the laser phase noise in the laser interferometer space antenna (LISA). The model is based on a delay of 500 ms, achieved using the electronic phase delay (EPD) method. The observed behavior is consistent with predictions.

  19. The Mona Lisa of modern science.

    PubMed

    Kemp, Martin

    2003-01-23

    No molecule in the history of science has reached the iconic status of the double helix of DNA. Its image has been imprinted on all aspects of society, from science, art, music, cinema, architecture and advertising. This review of the Mona Lisa of science examines the evolution of its form at the hands of both science and art.

  20. Development of a US Gravitational Wave Laser System for LISA

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.; Numata, Kenji

    2015-01-01

    A highly stable and robust laser system is a key component of the space-based LISA mission architecture.In this talk I will describe our plans to demonstrate a TRL 5 LISA laser system at Goddard Space Flight Center by 2016.The laser system includes a low-noise oscillator followed by a power amplifier. The oscillator is a low-mass, compact 10mW External Cavity Laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendorRedfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2W output, built at Goddard. I will show noiseand reliability data for the full laser system, and describe our plans to reach TRL 5 by 2016.

  1. Supermassive Black Holes as Revealed by LISA: How Gravitational Wave Astronomy Will be a Game Changer

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly

    2018-04-01

    Astronomers now know that supermassive black holes are in nearly every galaxy.Though these black holes are an observational certainty, nearly every aspect of their evolution -- from their birth, to their fuel source, to their basic dynamics -- is a matter of lively debate. Fortunately, LISA, a space-based gravitational wave observatory set to launch in 2034, will revolutionize this field by providing data that is complementary to electromagnetic observations as well as data in regimes that are electromagnetically dark. This talk will touch on our current understanding of how SMBHs form, evolve, and alter their galaxy host, and will outline the theoretical, computational and observational work needed to make the most of LISA observations.

  2. LISA Pathfinder Spacecraft Artist Concept

    NASA Image and Video Library

    2015-12-03

    This artist's concept shows ESA's LISA Pathfinder spacecraft, which launched on Dec. 3, 2015, from Kourou, French Guiana, will help pave the way for a mission to detect gravitational waves. LISA Pathfinder, led by the European Space Agency (ESA), is designed to test technologies that could one day detect gravitational waves. Gravitational waves, predicted by Einstein's theory of general relativity, are ripples in spacetime produced by any accelerating body. But the waves are so weak that Earth- or space-based observatories would likely only be able to directly detect such signals coming from massive astronomical systems, such as binary black holes or exploding stars. Detecting gravitational waves would be an important piece in the puzzle of how our universe began. http://photojournal.jpl.nasa.gov/catalog/PIA20196

  3. Verification of polarising optics for the LISA optical bench.

    PubMed

    Dehne, Marina; Tröbs, Michael; Heinzel, Gerhard; Danzmann, Karsten

    2012-12-03

    The Laser Interferometer Space Antenna (LISA) is a space-based interferometric gravitational wave detector. In the current baseline design for the optical bench, the use of polarising optics is foreseen to separate optical beams. Therefore it is important to investigate the influence of polarising components on the interferometer sensitivity and validate that the required picometre stability in the low-frequency band (1 mHz - 1 Hz) is achievable. This paper discusses the design of the experiment and the implemented stabilisation loops. A displacement readout fulfilling the requirement in the whole frequency band is presented. Alternatively, we demonstrate improvement of the noise performance by implementing various algorithms in data post-processing, which leads to an additional robustness for the LISA mission.

  4. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    PubMed Central

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus

    2012-01-01

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption contrast. Talbot interferometry with a plane wave increased detectability for 0.1-mm tumor and glandular structures by a factor of 3–4 at equal dose, whereas absorption contrast was the preferred method for structures larger than ∼0.5 mm. Microcalcifications are small, but differ from soft tissue in atomic number more than density, which is favored by absorption contrast, and Talbot interferometry was barely beneficial at all within the resolution limit of the system. Further, Talbot interferometry favored detection of “sharp” as opposed to “smooth” structures, and discrimination tasks by about 50% compared to detection tasks. The technique was relatively insensitive to spectrum bandwidth, whereas the projected source size was more important. If equal photon economy was added as a restriction, phase-contrast efficiency was reduced so that the benefit for detection tasks almost vanished compared to absorption contrast, but discrimination tasks were still improved close to a factor of 2 at the resolution limit. Conclusions: Cascaded-systems analysis enables comprehensive and intuitive evaluation of phase-contrast efficiency in relation to absorption contrast under requirements of equal dose, equal geometry, and equal photon economy. The benefit of Talbot interferometry was highly dependent on task, in particular detection versus discrimination tasks, and target size, shape, and material. Requiring equal photon economy weakened the benefit of Talbot interferometry in mammography. PMID:22957600

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto

    Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here themore » possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a {Lambda}CDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2{sigma} error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.« less

  6. Positioning the actual interference fringe pattern on the tooth flank in measuring gear tooth flanks by laser interferometry

    NASA Astrophysics Data System (ADS)

    Fang, Suping; Wang, Leijie; Liu, Shiqiao; Komori, Masaharu; Kubo, Aizoh

    2011-05-01

    In measuring form deviation of gear tooth flanks by laser interferometry, the collected interference fringe pattern (IFP) is badly distorted, in the case of shape, relative to the actual tooth flank. Meanwhile, a clear and definite mapping relationship between the collected IFP and the actual tooth flank is indispensable for both transforming phase differences into deviation values and positioning the measurement result on the actual tooth flank. In order to solve these problems, this paper proposes a method using the simulation tooth image as a bridge connecting the actual tooth flank and the collected IFP. The mapping relationship between the simulation tooth image and the actual tooth flank has been obtained by ray tracing methods [Fang et al., Appl. Opt. 49(33), 6409-6415 (2010)]. This paper mainly discusses how to build the relationship between the simulation tooth image and the collected IFP by using a matching algorithm of two characteristic point sets. With the combination of the two above-mentioned assistant mapping relationships, the mapping relationship between the collected IFP and the actual tooth flank can be built; the collected IFP can be positioned on the actual tooth flank. Finally, the proposed method is employed in a measurement of the form deviation of a gear tooth flank and the result proves the feasibility of the proposed method.

  7. Detection of low tension cosmic superstrings

    NASA Astrophysics Data System (ADS)

    Chernoff, David F.; Tye, S.-H. Henry

    2018-05-01

    Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ < 10‑11.9 (LIGO cusp), G μ<10‑11.2 (LISA cusp), G μ < 10‑10.6 (LISA kink); we forecast experimentally accessible gravitational wave bursts for G μ>10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).

  8. Improved Calibration of Modeled Discharge and Storage Change in the Atchafalaya Floodplain Using SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Jung, Hahn Chul; Jasinski, Michael; Kim, Jin-Woo; Shum, C. K.; Bates, Paul; Neal, Jeffrey; Lee, Hyongki; Alsdorf, Doug

    2011-01-01

    This study focuses on the feasibility of using SAR interferometry to support 2D hydrodynamic model calibration and provide water storage change in the floodplain. Two-dimensional (2D) flood inundation modeling has been widely studied using storage cell approaches with the availability of high resolution, remotely sensed floodplain topography. The development of coupled 1D/2D flood modeling has shown improved calculation of 2D floodplain inundation as well as channel water elevation. Most floodplain model results have been validated using remote sensing methods for inundation extent. However, few studies show the quantitative validation of spatial variations in floodplain water elevations in the 2D modeling since most of the gauges are located along main river channels and traditional single track satellite altimetry over the floodplain are limited. Synthetic Aperture Radar (SAR) interferometry recently has been proven to be useful for measuring centimeter-scale water elevation changes over the floodplain. In the current study, we apply the LISFLOOD hydrodynamic model to the central Atchafalaya River Basin, Louisiana, during a 62 day period from 1 April to 1 June 2008 using two different calibration schemes for Manning's n. First, the model is calibrated in terms of water elevations from a single in situ gauge that represents a more traditional approach. Due to the gauge location in the channel, the calibration shows more sensitivity to channel roughness relative to floodplain roughness. Second, the model is calibrated in terms of water elevation changes calculated from ALOS PALSAR interferometry during 46 days of the image acquisition interval from 16 April 2008 to 1 June 2009. Since SAR interferometry receives strongly scatters in floodplain due to double bounce effect as compared to specular scattering of open water, the calibration shows more dependency to floodplain roughness. An iterative approach is used to determine the best-fit Manning's n for the two different calibration approaches. Results suggest similar floodplain roughness but slightly different channel roughness. However, application of SAR interferometry provides a unique view of the floodplain flow gradients, not possible with a single gauge calibration. These gradients, allow improved computation of water storage change over the 46-day simulation period. Overall, the results suggest that the use of 2D SAR water elevation changes in the Atchafalaya basin offers improved understanding and modeling of floodplain hydrodynamics.

  9. Baseline-dependent sampling and windowing for radio interferometry: data compression, field-of-interest shaping, and outer field suppression

    NASA Astrophysics Data System (ADS)

    Atemkeng, M.; Smirnov, O.; Tasse, C.; Foster, G.; Keimpema, A.; Paragi, Z.; Jonas, J.

    2018-07-01

    Traditional radio interferometric correlators produce regular-gridded samples of the true uv-distribution by averaging the signal over constant, discrete time-frequency intervals. This regular sampling and averaging then translate to be irregular-gridded samples in the uv-space, and results in a baseline-length-dependent loss of amplitude and phase coherence, which is dependent on the distance from the image phase centre. The effect is often referred to as `decorrelation' in the uv-space, which is equivalent in the source domain to `smearing'. This work discusses and implements a regular-gridded sampling scheme in the uv-space (baseline-dependent sampling) and windowing that allow for data compression, field-of-interest shaping, and source suppression. The baseline-dependent sampling requires irregular-gridded sampling in the time-frequency space, i.e. the time-frequency interval becomes baseline dependent. Analytic models and simulations are used to show that decorrelation remains constant across all the baselines when applying baseline-dependent sampling and windowing. Simulations using MeerKAT telescope and the European Very Long Baseline Interferometry Network show that both data compression, field-of-interest shaping, and outer field-of-interest suppression are achieved.

  10. The current ability to test theories of gravity with black hole shadows

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano

    2018-04-01

    Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.

  11. 75 FR 78240 - Notice of Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ..., proposes to establish a tolerance in 40 CFR part 180 for residues of the fungicide flutriafol, [( )-[alpha]-(2-fluorophenyl)-[alpha]- (4-fluorophenyl)-1H-1,2,4-triazole-1-ethanol], including its metabolites... has been submitted to the Agency. Contact: Lisa Jones, (703) 308-9424; e-mail address: jones.lisa@epa...

  12. 78 FR 66909 - Sabine Pass Liquefaction, LLC; Sabine Pass LNG, L.P.; Notice of Application to Amend...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ..., or call (713) 375-5000, or by email [email protected] . Or contact Lisa M. Tonery, Partner, Fulbright & Jaworski LLP, 666 Fifth Avenue, New York, NY 10103, or call (212)318-3009, or by email lisa...) and place it into the Commission's public record (eLibrary) for this proceeding; or issue a Notice of...

  13. Semantics versus Statistics in the Retreat from Locative Overgeneralization Errors

    ERIC Educational Resources Information Center

    Ambridge, Ben; Pine, Julian M.; Rowland, Caroline F.

    2012-01-01

    The present study investigated how children learn that some verbs may appear in the figure-locative but not the ground-locative construction (e.g., "Lisa poured water into the cup"; "*Lisa poured the cup with water"), with some showing the opposite pattern (e.g., "*Bart filled water into the cup"; "Bart filled the cup with water"), and others…

  14. An experiment to test in-field pointing for Elisa

    NASA Astrophysics Data System (ADS)

    Brugger, Christina; Broll, Bernhard; Fitzsimons, Ewan; Johann, Ulrich; Jonke, Wouter; Lucarelli, Stefano; Nikolov, Susanne; Voert, Martijn; Weise, Dennis; Witvoet, Gert

    2017-11-01

    The evolved Laser Interferometer Space Antenna (eLISA) Mission is being developed to detect and characterise gravitational waves by measuring pathlength changes between free flying inertial test masses over a baseline of order 1 Gm. Here the observed astrophysical events and objects lie in a frequency range between 30 μHz and 1 Hz (the LISA measurement band, LMB).

  15. 78 FR 38703 - LNG Development Company (d/b/a Oregon LNG); Oregon Pipeline Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...://www.ferc.gov using the ``eLibrary'' link. Enter the docket number excluding the last three digits in..., Vancouver, WA 98662, (503) 298-4967, [email protected] or Lisa M. Tonery, Fulbright & Jaworski LLP, 666 Fifth Avenue, New York, NY 10103, (212) 318-3009, lisa[email protected] . On July 16, 2012...

  16. Complicating Culture and Difference: Situating Asian American Youth Identities in Lisa Yee's "Millicent Min," "Girl Genius" and "Stanford Wong Flunks Big-Time"

    ERIC Educational Resources Information Center

    Endo, Rachel

    2009-01-01

    This review situates how culture, difference, and identity are discursively constructed in "Millicent Min, Girl Genius" and "Stanford Wong Flunks Big-Time," two award-winning books written by critically acclaimed Asian American author Lisa Yee. Using contextual literacy approaches, the characters, cultural motifs, and physical settings in these…

  17. Lisa B Signorello, ScD, ScM | Division of Cancer Prevention

    Cancer.gov

    Lisa Signorello is the Director and Chief of the Cancer Prevention Fellowship Program (CPFP) Branch in the National Cancer Institute's Division of Cancer Prevention. Dr. Signorello served as Deputy Director of the CPFP from August 2014 to November 2017 and came to the NCI after having held academic positions at the Harvard School of Public Health, Harvard Medical School, and

  18. Prospects for Multiband Gravitational-Wave Astronomy after GW150914.

    PubMed

    Sesana, Alberto

    2016-06-10

    The black hole binary (BHB) coalescence rates inferred from the Advanced LIGO detection of GW150914 imply an unexpectedly loud gravitational-wave (GW) sky at millihertz frequencies accessible to the Evolved Laser Interferometer Space Antenna (eLISA), with several outstanding consequences. First, up to thousands of BHBs will be individually resolvable by eLISA; second, millions of nonresolvable BHBs will build a confusion noise detectable with a signal-to-noise ratio of a few to hundreds; third-and perhaps most importantly-up to hundreds of BHBs individually resolvable by eLISA will coalesce in the Advanced LIGO band within 10 y. eLISA observations will tell Advanced LIGO and all electromagnetic probes weeks in advance when and where these BHB coalescences will occur, with uncertainties of <10  s and <1  deg^{2}. This will allow the prepointing of telescopes to realize coincident GW and multiwavelength electromagnetic observations of BHB mergers. Time coincidence is critical, because a prompt emission associated to a BHB merger will likely have a duration comparable to the dynamical time scale of the systems and is possible only with low-frequency GW alerts.

  19. Chip based MEMS Ion Thruster to significantly enhance Cold Gas Thruster Lifetime for LISA

    NASA Astrophysics Data System (ADS)

    Tajmar, M.; Laufer, P.; Bock, D.

    2017-05-01

    Micropropulsion is a key component for ultraprecise attitude and orbit control required by the eLISA mission. LISA pathfinder uses cold gas micro thrusters that are accurate but require large tanks due to their very low specific impulse, which in turn limits the possible mission duration of the follow up eLISA mission. Recently, we developed a compact MEMS ion thruster on the chip with a size of only 1cm2 that can be simply attached to a gas feeding line like the one used for cold gas thrusters. It provides a specific impulse greater than 1000 s and only requires a single DC voltage. Since the operating principle is based on field emission, very low thrust noises similar to FEEP thrusters are expected but with gas propellants. The MEMS ion thruster chip could be mounted in parallel to the existing gold gas system providing high Isp and therefore long mission durations while leaving the cold gas system in place. To enable a possible mission extension, the MEMS ion thruster could take over from the cold gas system as a backup while maintaining the existing micropropulsion thruster system with its heritage therefore minimum risk.

  20. Sub-pm{{\\sqrt{Hz}^{-1}}} non-reciprocal noise in the LISA backlink fiber

    NASA Astrophysics Data System (ADS)

    Fleddermann, Roland; Diekmann, Christian; Steier, Frank; Tröbs, Michael; Heinzel, Gerhard; Danzmann, Karsten

    2018-04-01

    The future space-based gravitational wave detector laser interferometer space antenna (LISA) requires bidirectional exchange of light between its two optical benches on board of each of its three satellites. The current baseline foresees a polarization-maintaining single-mode fiber for this backlink connection. Phase changes which are common in both directions do not enter the science measurement, but differential (‘non-reciprocal’) phase fluctuations directly do and must thus be guaranteed to be small enough. We have built a setup consisting of a Zerodur baseplate with fused silica components attached to it using hydroxide-catalysis bonding and demonstrated the reciprocity of a polarization-maintaining single-mode fiber at the 1 pm \\sqrt{Hz}-1 level as is required for LISA. We used balanced detection to reduce the influence of parasitic optical beams on the reciprocity measurement and a fiber length stabilization to avoid nonlinear effects in our phase measurement system (phase meter). For LISA, a different phase meter is planned to be used that does not show this nonlinearity. We corrected the influence of beam angle changes and temperature changes on the reciprocity measurement in post-processing.

  1. Opto-mechanical architecture of the LISA instrument

    NASA Astrophysics Data System (ADS)

    Weise, Dennis; Marenaci, Pierangelo; Weimer, Peter; Berger, Marcel; Schulte, Hans R.; Gath, Peter; Johann, Ulrich

    2017-11-01

    We report on the latest iteration of the baseline opto-mechanical architecture of the LISA instru- ment, which has been developed within the current LISA Mission Formulation study under ESA con- tract. The collective features of the current architec- ture have been consolidated in an extensive trade of various alternative payload configurations, including variants with only one active proof mass per space- craft and the application of "In-Field Pointing" for accommodation of constellation breathing. With respect to the original configuration [1], the newly established architecture most notably distin- guishes itself by the use of an off-axis telescope and a "non-frequency-swap" science interferometer for stray light mitigation, as well as the implementa- tion of ancillary pathlength metrology in terms of an "Optical Truss" and Point Ahead Angle sensing.

  2. Performance comparison of MoNA and LISA neutron detectors

    NASA Astrophysics Data System (ADS)

    Purtell, Kimberly; Rethman, Kaitlynne; Haagsma, Autumn; Finck, Joseph; Smith, Jenna; Snyder, Jesse

    2010-11-01

    In 2002 eight primarily undergraduate institutions constructed and tested the Modular Neutron Array (MoNA) which has been used to detect high energy neutrons at the National Superconducting Cyclotron Laboratory (NSCL). Nine institutions have now designed, constructed and tested the Large-area multi-Institutional Scintillator Array (LISA) neutron detector which will be used at the NSCL and the future Facility for Rare Isotope Beams (FRIB). Both detectors are comprised of 144 detector modules. Each module is a 200 x 10 x 10 cm^3 bar organic plastic scintillator with a photomultiplier tube mounted on each end. Using cosmic rays and a gamma source, we compared the performance of MoNA and LISA by using the same electronics to check light attenuation, position resolution, rise times, and cosmic ray peak widths. Results will be presented.

  3. LISA Sources in Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Chatterjee, Sourav; Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Rasio, Frederic A.

    2018-05-01

    We explore the formation of double-compact-object binaries in Milky Way (MW) globular clusters (GCs) that may be detectable by the Laser Interferometer Space Antenna (LISA). We use a set of 137 fully evolved GC models that, overall, effectively match the properties of the observed GCs in the MW. We estimate that, in total, the MW GCs contain ˜21 sources that will be detectable by LISA. These detectable sources contain all combinations of black hole (BH), neutron star, and white dwarf components. We predict ˜7 of these sources will be BH-BH binaries. Furthermore, we show that some of these BH-BH binaries can have signal-to-noise ratios large enough to be detectable at the distance of the Andromeda galaxy or even the Virgo cluster.

  4. LISA Sources in Milky Way Globular Clusters.

    PubMed

    Kremer, Kyle; Chatterjee, Sourav; Breivik, Katelyn; Rodriguez, Carl L; Larson, Shane L; Rasio, Frederic A

    2018-05-11

    We explore the formation of double-compact-object binaries in Milky Way (MW) globular clusters (GCs) that may be detectable by the Laser Interferometer Space Antenna (LISA). We use a set of 137 fully evolved GC models that, overall, effectively match the properties of the observed GCs in the MW. We estimate that, in total, the MW GCs contain ∼21 sources that will be detectable by LISA. These detectable sources contain all combinations of black hole (BH), neutron star, and white dwarf components. We predict ∼7 of these sources will be BH-BH binaries. Furthermore, we show that some of these BH-BH binaries can have signal-to-noise ratios large enough to be detectable at the distance of the Andromeda galaxy or even the Virgo cluster.

  5. A review of recent work in sub-nanometre displacement measurement using optical and X-ray interferometry.

    PubMed

    Peggs, G N; Yacoot, A

    2002-05-15

    This paper reviews recent work in the field of displacement measurement using optical and X-ray interferometry at the sub-nanometre level of accuracy. The major sources of uncertainty in optical interferometry are discussed and a selection of recent designs of ultra-precise, optical-interferometer-based, displacement measuring transducers presented. The use of X-ray interferometry and its combination with optical interferometry is discussed.

  6. Bibliography of spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.

  7. Speckle interferometry of asteroids

    NASA Technical Reports Server (NTRS)

    Drummond, Jack

    1988-01-01

    This final report for NASA Contract NAGw-867 consists of abstracts of the first three papers in a series of four appearing in Icarus that were funded by the preceding contract NAGw-224: (1) Speckle Interferometry of Asteroids I. 433 Eros; (2) Speckle Interferometry of Asteroids II. 532 Herculina; (3) Speckle Interferometry of Asteroids III. 511 Davida and its Photometry; and the fourth abstract attributed to NAGw-867, (4) Speckle Interferometry of Asteroids IV. Reconstructed images of 4 Vesta; and a review of the results from the asteroid interferometry program at Steward Observatory prepared for the Asteroids II book, (5) Speckle Interferometry of Asteroids. Two papers on asteroids, indirectly related to speckle interferometry, were written in part under NAGw-867. One is in press and its abstract is included here: Photometric Geodesy of Main-Belt Asteroids. II. Analysis of Lightcurves for Poles, Periods and Shapes; and the other paper, Triaxial Ellipsoid Dimensions and Rotational Pole of 2 Pallas from Two Stellar Occultations, is included in full.

  8. System modelling for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Diaz-Aguiló, Marc; Grynagier, Adrien; Rais, Boutheina

    LISA Pathfinder is the technology demonstrator for LISA, a space-borne gravitational waves observatory. The goal of the mission is to characterise the dynamics of the LISA Technology Package (LTP) to prove that on-board experimental conditions are compatible with the de-tection of gravitational waves. The LTP is a drag-free dynamics experiment which includes a control loop with sensors (interferometric and capacitive), actuators (capacitive actuators and thrusters), controlled disturbances (magnetic coils, heaters) and which is subject to various endogenous or exogenous noise sources such as infrared pressure or solar wind. The LTP experiment features new hardware which was never flown in space. The mission has a tight operation timeline as it is constrained to about 100 days. It is therefore vital to have efficient and precise means of investigation and diagnostics to be used during the on-orbit operations. These will be conducted using the LTP Data Analysis toolbox (LTPDA) which allows for simulation, parameter identification and various analyses (covariance analysis, state estimation) given an experimental model. The LTPDA toolbox therefore contains a series of models which are state-space representations of each component in the LTP. The State-Space Models (SSM) are objects of a state-space class within the LTPDA toolbox especially designed to address all the requirements of this tool. The user has access to a set of linear models which represent every satellite subsystem; the models are available in different forms representing 1D, 2D and 3D systems, each with settable symbolic and numeric parameters. To limit the possible errors, the models can be automatically linked to produce composite systems and closed-loops of the LTP. Finally, for the sake of completeness, accuracy and maintainability of the tool, the models contain all the physical information they mimic (i.e. variable units, description of parameters, description of inputs/outputs, etc). Models developed for this work include the fixed-point linearized equations of motion for the LTP and the linear models for sensors and actuators with their noise modelling blocks issued from the analysis of the individual actuators. The drag-free controller model includes the dis-crete delays expected in the hardware. In this work we briefly describe the software architecture, in order to concentrate then on the physical description of the models. This is supported by an overview of different user scenarios and some examples of model analysis that highlight the advantages of this high-level programming engineering toolbox for space mission data analysis and calibration.

  9. Quantitative phase imaging using four interferograms with special phase shifts by dual-wavelength in-line phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming; Han, Hao

    2018-05-01

    A new approach of quantitative phase imaging using four interferograms with special phase shifts in dual-wavelength in-line phase-shifting interferometry is presented. In this method, positive negative 2π phase shifts are employed to easily separate the incoherent addition of two single-wavelength interferograms by combining the phase-shifting technique with the subtraction procedure, then the quantitative phase at one of both wavelengths can be achieved based on two intensities without the corresponding dc terms by the use of the character of the trigonometric function. The quantitative phase of the other wavelength can be retrieved from two dc-term suppressed intensities obtained by employing the two-step phase-shifting technique or the filtering technique in the frequency domain. The proposed method is illustrated with theory, and its effectiveness is demonstrated by simulation experiments of the spherical cap and the HeLa cell, respectively.

  10. Denoising by coupled partial differential equations and extracting phase by backpropagation neural networks for electronic speckle pattern interferometry.

    PubMed

    Tang, Chen; Lu, Wenjing; Chen, Song; Zhang, Zhen; Li, Botao; Wang, Wenping; Han, Lin

    2007-10-20

    We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.

  11. Projection Moire Interferometry Measurements of Micro Air Vehicle Wings

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-01-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  12. Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2003-12-10

    We evaluate the use of a smoothed space-frequency distribution (SSFD) to retrieve optical phase maps in digital speckle pattern interferometry (DSPI). The performance of this method is tested by use of computer-simulated DSPI fringes. Phase gradients are found along a pixel path from a single DSPI image, and the phase map is finally determined by integration. This technique does not need the application of a phase unwrapping algorithm or the introduction of carrier fringes in the interferometer. It is shown that a Wigner-Ville distribution with a smoothing Gaussian kernel gives more-accurate results than methods based on the continuous wavelet transform. We also discuss the influence of filtering on smoothing of the DSPI fringes and some additional limitations that emerge when this technique is applied. The performance of the SSFD method for processing experimental data is then illustrated.

  13. Frequency-scanning interferometry using a time-varying Kalman filter for dynamic tracking measurements.

    PubMed

    Jia, Xingyu; Liu, Zhigang; Tao, Long; Deng, Zhongwen

    2017-10-16

    Frequency scanning interferometry (FSI) with a single external cavity diode laser (ECDL) and time-invariant Kalman filtering is an effective technique for measuring the distance of a dynamic target. However, due to the hysteresis of the piezoelectric ceramic transducer (PZT) actuator in the ECDL, the optical frequency sweeps of the ECDL exhibit different behaviors, depending on whether the frequency is increasing or decreasing. Consequently, the model parameters of Kalman filter appear time varying in each iteration, which produces state estimation errors with time-invariant filtering. To address this, in this paper, a time-varying Kalman filter is proposed to model the instantaneous movement of a target relative to the different optical frequency tuning durations of the ECDL. The combination of the FSI method with the time-varying Kalman filter was theoretically analyzed, and the simulation and experimental results show the proposed method greatly improves the performance of dynamic FSI measurements.

  14. The photosphere of red supergiant stars as seen by optical interferometry

    NASA Astrophysics Data System (ADS)

    Montargès, M.; Kervella, P.; Perrin, G.; Chiavassa, A.; Norris, R.; Ridgway, S. T.; Decin, L.

    2017-12-01

    During the end of their lives, massive stars become red supergiant (RSG) stars. At this stage, they are forging heavy elements in their cores that are transported up to the photosphere thanks to convection and expelled to the interstellar medium through the star's mass loss. Cooling in the outer atmosphere causes these elements to become molecules and dust that are the building blocks of future planetary systems and eventually life. One of the scenarios to explain the launch of material from the photosphere involves convection that leads to an increased scale height and facilitates mass ejection. We present here observations of several bright features on the surface of nearby RSG stars using near infrared (NIR) interferometry. They are interpreted as being the top of convective cells. We compare them with 3D convective simulation predictions. These inhomogeneities are bright and large enough to cause a photocenter displacement that might bias parallax measurements.

  15. Image Steganography for Hidden Communication

    DTIC Science & Technology

    2000-04-01

    ARMY RESEARCH LABORATORY Image Steganography for Hidden Communication by Lisa M. Marvel sx:8 lÄPSilll msmmmmsi IH :’:-:’X^:-:-:-:o-x...2000 Image Steganography for Hidden Communication Lisa M. Marvel Information Science and Technology Directorate, ARL Approved for public release...Capacity for Image Steganography 14 3.4 Summary 1’ 4. Spread Spectrum Image Steganography (SSIS) 19 4.1 Modulation 21 4.1.1 Sign-Detector System

  16. Availability of Communications for the NATO Air Command and Control System in the Central Region and 5ATAF

    DTIC Science & Technology

    1991-10-01

    Ground LINKI LISA (Note 1) LISA Environment Data LINK 3 (also supporting mission (single multi- Unks LINK 6 management, ontrol, functional LINK 7 status...LINK 7 status reports, C2RM, message MBDL and sensors) catalogue) ATDL-1 ATDL-1 (Note 2) LINK 11B (Note 3) LINKI 1B ACCS Ground- LINK 4 (interim Air

  17. Formative assessment and equity: An exploration of opportunities for eliciting, recognizing, and responding within science classroom conversations

    NASA Astrophysics Data System (ADS)

    Morrison, Deb

    Educational inequity can be seen in both student participation and achievement outcomes. In science education, as in many other areas of education, disparities in equity of achievement (NCES, 2011) and equity of participation in science learning environments (Brown & Ryoo, 2008; Calabrese Barton, 2003) have been well documented. Some of these studies highlight the need to understand the components of effective science classroom talk as a way to bridge everyday and scientific discourse practices, to engage students in the intellectual work of sense-making in science. The National Research Council ([NRC]; 2012) specifically named the everyday to scientific connections of science classroom discourse as a focus for work on science learning equity. Formative assessment practices in science classrooms may provide an entree for teachers to improve their connections between everyday and science classroom discourses (Black & Wiliam, 1998b). In this study I examined science classroom conversations during formative assessment discussions in 10th grade biology contexts to determine where opportunities might exist to improve science learning. I engaged a theoretical framework focused on discourse (Gee, 2012) and classroom talk (Michaels, O'Connor, & Resnick, 2008) to socially situate student-teacher interactions in a community of learners (Rogoff, 1994). I used qualitative analysis (Gee, 2011; Carspecken, 1996) to locate patterns of talk during whole class and small group discussions of two science teachers, Robyn and Lisa, as they engaged in a two-year professional development focused on formative assessment. Both teachers' classroom conversation practices showed a number of opportunities to promote equity. Robyn and Lisa used common formative assessment tools to reorganize the way that students participated in their classroom conversations, allowing students individual thinking time prior to classroom talk. While Robyn often expanded reasoning herself, Lisa tended to press students for reasoning instead. Robyn and Lisa linked everyday to scientific language in their classrooms. Additionally, Lisa built on students' everyday experiences in her talk with students. Both teachers framed students' science ideas as misconceptions, however, Robyn did this more often than Lisa. Finally, this study suggested ways in which teachers may be further supported to increase these practices.

  18. Seperating Long-term Hydrological Loading and Tectonic Deformation Observed with Multi-temporal SAR Interferometry and GPS in Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    LI, G.; Lin, H.

    2014-12-01

    From 2000 till present, most endorheic lakes in Tibetan plateau experienced quick increasing. Several largest lakes, gathered several meters depth water during one decade. Such massive mass increasing will lead to elastic and visco-elastic deformation of the ground. Qinghai-Tibetan Plateau is one the most active tectonic places in the world; monitoring its ground deformation is essential, when loading effect is a nuisance item. Due to the sparse distribution of GPS sites and most are roving sites, it is hard to distinguish tectonic component from mass loading effect. In this research we took Selin Co Lake located at Nujiang-Bangoin suture zone and evaluated long time ground deformation at hundred kilometers scale by multi-temporal SAR interferometry and simulate the ground deformation by loading history evaluated by multi mission satellite altimetry and optical images observation. At Nujiang-Bangoin suture zone, where GPS presented the maximum ground subsidence in Qinghai-Tibetan Plateau of 3.6mm/a which was found at the shore of Selin Co Lake from 1999 to 2011, when it experienced water level increasing of 0.7m/a. A model of elastic plate lying over Newtonian viscous half-space matches well with the results of multi-temporal SAR interferometry and GPS observations. We concluded that near Selin Co Lake area, ground deformation is composed by both tectonic and hydrological loading part. As SAR image coverage is much smaller than tectonic scale, we contribute the deformation detected by InSAR to loading effect. After evaluating and removing the hydrological loading effect, we founds that Nujiang-Bangoin suture zone did not experience quick subsidence, but only limited to 0.5mm/a. Selin Co Lake's quick volume increasing caused 3mm/a subsidence rate to the nearest GPS site. The Second nearest site showed the 1.4mm/a subsidence totally, which were composed by 1.05mm/a hydrological loading effect and the rest was tectonic. We also found that Young's Modulus is the most essential parameter for loading effect simulation, and our simulation gave the similar Young's Modulus as the previous seismic tomographic INDEPTH III program did. Therefore with accurate seismic tomographic results and loading history detected by remote sensing could accurately simulate ground deformation caused by hydrological loading.

  19. Elisa technology consolidation study overview

    NASA Astrophysics Data System (ADS)

    Fitzsimons, E. D.; Brandt, N.; Johann, U.; Kemble, S.; Schulte, H.-R.; Weise, D.; Ziegler, T.

    2017-11-01

    The eLISA (evolved Laser Interferometer Space Antenna) mission is an ESA L3 concept mission intended to detect and characterise gravitational radiation emitted from astrophysical sources [1]. Current designs for eLISA [2] are based on the ESA study conducted in 2011 to reformulate the original ESA/NASA LISA concept [3] into an ESA-only L1 candidate named NGO (New Gravitational Observatory) [4]. During this brief reformulation period, a number of significant changes were made to the baseline LISA design in order to create a more costeffective mission. Some of the key changes implemented during this reformulation were: • A reduction in the inter satellite distance (the arm length) from 5 Gm to 1 Gm. • A reduction in the diameter of the telescope from 40 cm to 20 cm. • A reduction in the required laser power by approximately 40%. • Implementation of only 2 laser arms instead of 3. Many further simplifications were then enabled by these main design changes including the elimination of payload items in the two spacecraft (S/C) with no laser-link between them (the daughter S/C), a reduction in the size and complexity of the optical bench and the elimination of the Point Ahead Angle Mechanism (PAAM), which corrects for variations in the pointing direction to the far S/C caused by orbital dynamics [4] [5]. In the run-up to an L3 mission definition phase later in the decade, it is desirable to review these design choices and analyse the inter-dependencies and scaling between the key mission parameters with the goal of better understanding the parameter space and ensuring that in the final selection of the eLISA mission parameters the optimal balance between cost, complexity and science return can be achieved.

  20. Less invasive surfactant administration in extremely preterm infants: impact on mortality and morbidity.

    PubMed

    Klebermass-Schrehof, Katrin; Wald, Martin; Schwindt, Jens; Grill, Agnes; Prusa, Andrea-Romana; Haiden, Nadja; Hayde, Michael; Waldhoer, Thomas; Fuiko, Renate; Berger, Angelika

    2013-01-01

    A new mode of surfactant administration without intubation - less invasive surfactant administration (LISA) - has recently been described for premature infants. We report single-center outcome data of extremely premature infants who have been managed by LISA in our department. Mortality and morbidity rates of the cohort were compared to historical controls from our own center and to data of the Vermont-Oxford Neonatal Network (VONN). All infants born at 23-27 weeks' gestational age during 01/2009 and 06/2011 (n = 224) were managed by LISA and included in the study group. LISA was tolerated by 94% of all infants. 68% of infants stayed on continuous positive airway pressure on day 3. The rate of mechanical ventilation was 35% within the first week and 59% during the entire hospital stay. Compared to historical controls, we found significantly higher survival rates (75.8 vs. 64.1%) and significantly less intraventricular hemorrhage (IVH) (28.1 vs. 45.9%), severe IVH (13.1 vs. 23.9%) and cystic periventricular leukomalacia (1.2 vs. 5.6%); only persistent ductus arteriousus (PDA) (74.7 vs. 52.6%) and retinopathy of prematurity (ROP) (40.5 vs. 21.1%) occurred significantly more often. Compared to VONN data, we found significantly less chronic lung disease (20.6 vs. 46.4%), severe cerebral lesions (IVH 3/4 + cystic PVL; 9.4 vs. 16.1%) and ROP (all grades) (40.5 vs. 56.5%); only PDA (74.7 vs. 63.1%) and severe ROP (> grade 2) (24.1 vs. 14.1%) occurred significantly more often in our cohort. Surfactant can be effectively and safely delivered via LISA and this is associated with low rates of mechanical ventilation and various adverse outcomes in extremely premature infants. Copyright © 2013 S. Karger AG, Basel.

  1. Accreting Double White Dwarf Binaries: Implications for LISA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.

    We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna ( LISA ) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr{sup −2} by a space-based GW detector like LISAmore » . We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.« less

  2. Probing Planckian Corrections at the Horizon Scale with LISA Binaries

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Pani, Paolo; Cardoso, Vitor; Abdelsalhin, Tiziano; Gualtieri, Leonardo; Ferrari, Valeria

    2018-02-01

    Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely, the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows us to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.

  3. Probing Planckian Corrections at the Horizon Scale with LISA Binaries.

    PubMed

    Maselli, Andrea; Pani, Paolo; Cardoso, Vitor; Abdelsalhin, Tiziano; Gualtieri, Leonardo; Ferrari, Valeria

    2018-02-23

    Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely, the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows us to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.

  4. Engineering the LISA Project: Systems Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Evans, Jordan P.

    2006-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA mission to detect and measure gravitational waves with periods from 1 s to 10000 s. The systems engineering challenges of developing a giant interferometer, 5 million kilometers on a side, an: numerous. Some of the key challenges are presented in this paper. The organizational challenges imposed by sharing the engineering function between three centers (ESA ESTEC, NASA GSFC, and JPL) across nine time zones are addressed. The issues and approaches to allocation of the acceleration noise and measurement sensitivity budget terms across a traditionally decomposed system are discussed. Additionally, using LISA to detect gravitational waves for the first time presents significant data analysis challenges, many of which drive the project system design. The approach to understanding the implications of science data analysis on the system is also addressed.

  5. ON THE COMPLEMENTARITY OF PULSAR TIMING AND SPACE LASER INTERFEROMETRY FOR THE INDIVIDUAL DETECTION OF SUPERMASSIVE BLACK HOLE BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spallicci, Alessandro D. A. M., E-mail: spallicci@cnrs-orleans.fr

    2013-02-20

    Gravitational waves coming from supermassive black hole binaries (SMBHBs) are targeted by both the Pulsar Timing Array (PTA) and Space Laser Interferometry (SLI). The possibility of a single SMBHB being tracked first by PTA, through inspiral, and later by SLI, up to merger and ring-down, has been previously suggested. Although the bounding parameters are drawn by the current PTA or the upcoming Square Kilometer Array (SKA), and by the New Gravitational Observatory (NGO), derived from the Laser Interferometer Space Antenna (LISA), this paper also addresses sequential detection beyond specific project constraints. We consider PTA-SKA, which is sensitive from 10{sup -9}more » to p Multiplication-Sign 10{sup -7} Hz (p = 4, 8), and SLI, which operates from s Multiplication-Sign 10{sup -5} up to 1 Hz (s = 1, 3). An SMBHB in the range of 2 Multiplication-Sign 10{sup 8}-2 Multiplication-Sign 10{sup 9} M {sub Sun} (the masses are normalized to a (1 + z) factor, the redshift lying between z = 0.2 and z = 1.5) moves from the PTA-SKA to the SLI band over a period ranging from two months to fifty years. By combining three supermassive black hole (SMBH)-host relations with three accretion prescriptions, nine astrophysical scenarios are formed. They are then related to three levels of pulsar timing residuals (50, 5, 1 ns), generating 27 cases. For residuals of 1 ns, sequential detection probability will never be better than 4.7 Multiplication-Sign 10{sup -4} yr{sup -2} or 3.3 Multiplication-Sign 10{sup -6} yr{sup -2} (per year to merger and per year of survey), according to the best and worst astrophysical scenarios, respectively; put differently this means one sequential detection every 46 or 550 years for an equivalent maximum time to merger and duration of the survey. The chances of sequential detection are further reduced by increasing values of the s parameter (they vanish for s = 10) and of the SLI noise, and by decreasing values of the remnant spin. The spread in the predictions diminishes when timing precision is improved or the SLI low-frequency cutoff is lowered. So while transit times and the SLI signal-to-noise ratio (S/N) may be adequate, the likelihood of sequential detection is severely hampered by the current estimates on the number-just a handful-of individual inspirals observable by PTA-SKA, and to a lesser extent by the wide gap between the pulsar timing and space interferometry bands, and by the severe requirements on pulsar timing residuals. Optimization of future operational scenarios for SKA and SLI is briefly dealt with, since a detection of even a single event would be of paramount importance for the understanding of SMBHBs and of the astrophysical processes connected to their formation and evolution.« less

  6. Investigating the Origin of Natural and Anthropogenic Deformation across the Nile Delta Using Radar Interferometry, GRACE, Modeling, and Field data

    NASA Astrophysics Data System (ADS)

    Gebremichael, E.; Sultan, M.; Becker, R.; El Bastawesy, M.; Cherif, O.; Emil, M.; Ahmed, M.; Fathy, K.; Karki, S.; Chouinard, K.

    2016-12-01

    We applied an integrated approach (radar interferometry, flood simulation, GRACE, GIS) to investigate the nature and distribution of land deformation in the Nile Delta and to identify the natural and anthropogenic controlling factors. Our methodology involved: (1) applying persistent scatterer interferometry (PSI) across the entire Delta (scenes: 108 level 0 scenes; Tracks: 4 tracks; time period: 2003-2010); (2) correcting the interferometry output for various phase contributing errors (e.g., atmosphere, orbit, etc.) and calibrating/validating the output against 3 GNSS GPS stations (2 in Alexandria, 1 in Helwan); (3) conducting spatial correlation (in a GIS environment) of the radar outputs with relevant remote sensing, subsurface, and geologic datasets; (4) simulating flood depth and inundation to investigate the spatial extent and depth of the Holocene sediments using the HEC-RAS software (inputs: DEM and monthly discharge data; period: 1871-1902), (5) identifying subsurface structures by processing 712 gridded field gravity data points in Geosoft Oasis Montaj software (Bouguer anomaly analysis), and (6) analyzing monthly (2002-2015) GRACE-derived TWS solutions (0.5° x 0.5° CSR mascons). Our findings include: (1) three main structural trends (E-W, NW-SE and NE-SW trending) were mapped across the Delta, (2) areas of high subsidence coincide with the distribution of relatively thick recent sediments (<3000 years), probably due to sediment compaction, in three settings: (a) areas susceptible to flooding from the Damietta and Rosetta branches (e.g., east Damietta branch; latitude 30.8° to 31.2°; longitude 31.2° to 31.6°), (b) areas susceptible to sediment deposition at bifurcation locations of primary channels (e.g., near Cairo) and, (c) areas where mapped faults intersect Damietta and Rosetta channels, change their course, and cause ponding of surface water and sediment deposition, (3) extraction of gas from the Abu Madi gas field in north central delta contributes to observed subsidence (mean rate: 4.4 mm/yr) and high TWS depletion (3.3 mm/yr), and (4) excessive extraction of groundwater from areas west of the Nile Valley, areas where newly reclaimed land are irrigated by groundwater is causing high subsidence rates (mean rate: 5.4 mm/yr) and TWS depletion (2.9 mm/yr).

  7. CubeSat Packaged Electrospray Thruster Evaluation for Enhanced Operationally Responsive Space Capabilities

    DTIC Science & Technology

    2011-03-24

    These satellites can perform many missions including: close formation flying with other CubeSats, and possible docking with a large satellite to...in 2008 to fly on the NASA LISA mission. LISA, the Laser Interferometer Space Antenna, is a joint NASA–ESA mission to observe astrophysical and...for mass spectrometry of large organic molecules popularized the technology and made components such as needles or other components readily

  8. A Communication Protocol for CyAMS and the Cyber Fighter Associate Interface

    DTIC Science & Technology

    2015-05-01

    by David Harman , Scott Brown, Brian Henz, and Lisa M Marvel Approved for public release; distribution unlimited...Laboratory A Communication Protocol for CyAMS and the Cyber Fighter Associate Interface by David Harman College Qualified Leaders Student...CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Harman , Scott Brown, Brian Henz, and Lisa M Marvel 5d. PROJECT

  9. UNC Pembroke Laser Scanning Confocal Microscopy Facility

    DTIC Science & Technology

    2016-04-29

    cultures. INVASIVE FIRE ANTS Professor Lisa Kelly of UNC Pembroke has been trained on the new confocal system. Dr. Kelly’s research...interest in the trophic ecology of the invasive fire ant has begun to benefit from the wide field view and long working distances of a confocal imaging...of protein clearance pathways in living brain tissue cultures. INVASIVE FIRE ANTS Professor Lisa Kelly of UNC Pembroke has been trained on

  10. Toward a Space based Gravitational Wave Observatory

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2015-01-01

    A space-based GW observatory will produce spectacular science. The LISA mission concept: (a) Long history, (b) Very well-studied, including de-scopes, (c) NASAs Astrophysics Strategic Plan calls for a minority role in ESAs L3 mission opportunity. To that end, NASA is Participating in LPF and ST7 Developing appropriate technology for a LISA-like mission Preparing to seek an endorsement for L3 participation from the 2020 decadal review.

  11. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors.

    PubMed

    Vitale, Salvatore

    2016-07-29

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  12. Nested-PCR and a new ELISA-based NovaLisa test kit for malaria diagnosis in an endemic area of Thailand.

    PubMed

    Thongdee, Pimwan; Chaijaroenkul, Wanna; Kuesap, Jiraporn; Na-Bangchang, Kesara

    2014-08-01

    Microscopy is considered as the gold standard for malaria diagnosis although its wide application is limited by the requirement of highly experienced microscopists. PCR and serological tests provide efficient diagnostic performance and have been applied for malaria diagnosis and research. The aim of this study was to investigate the diagnostic performance of nested PCR and a recently developed an ELISA-based new rapid diagnosis test (RDT), NovaLisa test kit, for diagnosis of malaria infection, using microscopic method as the gold standard. The performance of nested-PCR as a malaria diagnostic tool is excellent with respect to its high accuracy, sensitivity, specificity, and ability to discriminate Plasmodium species. The sensitivity and specificity of nested-PCR compared with the microscopic method for detection of Plasmodium falciparum, Plasmodium vivax, and P. falciparum/P. vivax mixed infection were 71.4 vs 100%, 100 vs 98.7%, and 100 vs 95.0%, respectively. The sensitivity and specificity of the ELISA-based NovaLisa test kit compared with the microscopic method for detection of Plasmodium genus were 89.0 vs 91.6%, respectively. NovaLisa test kit provided comparable diagnostic performance. Its relatively low cost, simplicity, and rapidity enables large scale field application.

  13. Drag-Free Performance of the ST7 Disturbance Reduction System Flight Experiment on the LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman; O'Donnell, James, Jr.; Hsu, Oscar; Ziemer, John; Dunn, Charles

    2017-01-01

    The Space Technology-7 Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft. LISA Pathfinder launched from Kourou, French Guiana on December 3, 2015. The DRS is tasked to validate two specific technologies: colloidal micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free control flight. This validation is performed using highly sensitive drag-free sensors, which are provided by the LISA Technology Package of the European Space Agency. The Disturbance Reduction System is required to maintain the spacecrafts position with respect to a free-floating test mass to better than 10nmHz, along its sensitive axis (axis in optical metrology). It also has a goal of limiting the residual accelerations of any of the two test masses to below 30 (1 + [f3 mHz]) fmsHz, over the frequency range of 1 to 30 mHz.This paper briefly describes the design and the expected on-orbit performance of the control system for the two modes wherein the drag-free performance requirements are verified. The on-orbit performance of these modes are then compared to the requirements, as well as to the expected performance, and discussed.

  14. Space Interferometry Science Working Group

    NASA Astrophysics Data System (ADS)

    Ridgway, Stephen T.

    1992-12-01

    Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.

  15. Robust interferometry against imperfections based on weak value amplification

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Huang, Jing-Zheng; Zeng, Guihua

    2018-06-01

    Optical interferometry has been widely used in various high-precision applications. Usually, the minimum precision of an interferometry is limited by various technical noises in practice. To suppress such kinds of noises, we propose a scheme which combines the weak measurement with the standard interferometry. The proposed scheme dramatically outperforms the standard interferometry in the signal-to-noise ratio and the robustness against noises caused by the optical elements' reflections and the offset fluctuation between two paths. A proof-of-principle experiment is demonstrated to validate the amplification theory.

  16. Large-angle x-ray scatter in Talbot-Lau interferometry for breast imaging

    PubMed Central

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew

    2014-01-01

    Monte Carlo simulations were used to investigate large-angle x-ray scatter at design energy of 25 keV during small field of view (9.6 cm × 5 cm) differential phase contrast imaging of the breast using Talbot-Lau interferometry. Homogenous, adipose and fibroglandular breasts of uniform thickness ranging from 2 to 8 cm encompassing the field of view were modeled. Theoretically determined transmission efficiencies of the gratings were used to validate the Monte Carlo simulations, followed by simulations to determine the x-ray scatter reaching the detector. The recorded x-ray scatter was classified into x-ray photons that underwent at least one Compton interaction (incoherent scatter) and Rayleigh interaction alone (coherent scatter) for further analysis. Monte Carlo based estimates of transmission efficiencies showed good correspondence (r2 > 0.99) with theoretical estimates. Scatter-to-primary ratio increased with increasing breast thickness, ranging from 0.11 to 0.22 for 2 to 8 cm thick adipose breasts and from 0.12 to 0.28 for 2 to 8 cm thick fibroglandular breasts. The analyzer grating reduced incoherent scatter by ~18% for 2 cm thick adipose breast and by ~35% for 8 cm thick fibroglandular breast. Coherent scatter was the dominant contributor to the total scatter. Coherent-to-incoherent scatter ratio ranged from 2.2 to 3.1 for 2 to 8 cm thick adipose breasts and from 2.7 to 3.4 for 2 to 8 cm thick fibroglandular breasts. PMID:25295630

  17. Factors that Influence Physician Identification of Potential Opioid Misusers

    DTIC Science & Technology

    2013-05-30

    Shawn M. FWI-l20120134E Mannina, Lisa M. Bebarta, Vikhyat S. oe. I ,o.;:,l\\ 1\\IUIVIUI:ti Ganem, Victoria J. Carey , Katherine R. or. VVUHI\\ Ul\\111 1...opioid misusers Lisa M. Manina, Shawn M. Varney, Vikhyat S. Bebarta, Katherine R. Carey , Victoria J. Ganem, Rosemarie G. Ramos Background...Varney SM, Bebarta VS, Carey KR, Ganem VJ, Ramos RG Department of Emergency Medicine, San Antonio Military Medical Center, San Antonio, TX

  18. Weak-light Phase-locking for LISA

    NASA Technical Reports Server (NTRS)

    McNamara, Paul W.

    2004-01-01

    The long armlengths of the LISA interferometer, and the finite aperture of the telescope, leads to an optical power attenuation of approximately equal to 10(exp -10) of the transmitted to received light. Simple reflection at the end of the arm is therefore not an optimum interferometric design. Instead, a local laser is offset phase-locked to the weak incoming beam, transferring the phase information of the incoming to the outgoing light. This paper reports on an experiment to characterize a weak light phase-locking scheme suitable for LISA in which a diode-pumped, Nd:YAG, non-planar ring oscillator (NPRO) is offset phase-locked to a low power (13pW) frequency stabilised master NPRO. Preliminary results of the relative phase noise of the slave laser shows shot noise limited performance above 0.4 Hz. Excess noise is observed at lower frequencies, most probably due to thermal effects in the optical arrangement and phase sensing electronics.

  19. Lifetime testing UV LEDs for use in the LISA charge management system

    NASA Astrophysics Data System (ADS)

    Hollington, D.; Baird, J. T.; Sumner, T. J.; Wass, P. J.

    2017-10-01

    As a future charge management light source, UV light-emitting diodes (UV LEDs) offer far superior performance in a range of metrics compared to the mercury lamps used in the past. As part of a qualification program a number of short wavelength UV LEDs have been subjected to a series of lifetime tests for potential use on the laser interferometer space antenna (LISA) mission. These tests were performed at realistic output levels for both fast and continuous discharging in either a DC or pulsed mode of operation and included a DC fast discharge test spanning 50 days, a temperature dependent pulsed fast discharge test spanning 21 days and a pulsed continuous discharge test spanning 507 days. Two types of UV LED have demonstrated lifetimes equivalent to over 25 years of realistic mission usage with one type providing a baseline for LISA and the other offering a backup solution.

  20. Dynamic Control System Performance during Commissioning of the Space Technology 7-Disturbance Reduction System Experiment of LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Hsu, Oscar; Maghami, Peiman; O’Donnell, James R., Jr.; Ziemer, John; Romero-Wolf, Andrew

    2017-01-01

    The Space Technology-7 Disturbance Reduction System (DRS) launched aboard the European Space Agency's LISA Pathfinder spacecraft on December 3, 2015, after more than a decade in development. DRS consists of three primary components: an Integrated Avionics Unit (IAU), Colloidal MicroNewton Thrusters, and Dynamic Control System (DCS) algorithms implemented on the IAU. During the portions of the mission in which the DRS was under control, the DCS was responsible for controlling the spacecraft and the free-floating test masses that were part of the LISA Test Package. The commissioning period was originally divided into two periods: before propulsion separation and after propulsion separation. A recommissioning period was added after an anomaly occurred in the thruster system. The paper will describe the activities used to commission DRS, present results from the commissioning of the DCS and the recommissioning activities per-formed after the thruster anomaly.

  1. Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Welter, Gary L.

    2012-01-01

    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of 106 km and Earth-trailing distance ranging from approx. 12deg to 20deg over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to approx. +/-0:1deg, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions.

  2. Preliminary Investigations of an Optical Assembly Tracking Mechanism for LISA

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira; Stebbins, Robin

    2010-01-01

    After injection into their specific orbits, the position of the LISA spacecraft are not actively controlled. Rather the spacecraft are allowed to passively follow their trajectories and the roughly equilateral triangular constellation is preserved. Slight variations in the orbits cause the constellation to experience both periodic and secular variations, one consequence of which is a variation in the interior angles of the constellation on the order of one degree. This variation is larger than the field of view of the LISA telescope, requiring a mechanism for each spacecraft to maintain pointing to its two companions. This Optical Assembly Tracking Mechanism (OATM) will be used to accommodate these variations while maintaining pointing at the ten nanoradian level to the far spacecraft. Here we report on a possible design for the OATM as well as initial results from a test campaign of a piezo-inchworm actuator used to drive the mechanism.

  3. Dynamic Control System Performance during Commissioning of the Space Technology 7-Disturbance Reduction System Experiment of LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Hsu, Oscar; Maghami, Peiman; O’Donnell, James R., Jr.; Ziemer, John; Romero-Wolf, Andrew

    2017-01-01

    The Space Technology-7 Disturbance Reduction System (DRS) launched aboard the European Space Agencys LISA Pathfinder spacecraft on December 3, 2015, after more than a decade in development. DRS consists of three prima-ry components: an Integrated Avionics Unit (IAU), Colloidal MicroNewton Thrusters, and Dynamic Control System (DCS) algorithms implemented on the IAU. During the portions of the mission in which the DRS was under control, the DCS was responsible for controlling the spacecraft and the free-floating test masses that were part of the LISA Test Package. The commissioning period was originally divided into two periods: before propulsion separation and after pro-pulsion separation. A recommissioning period was added after an anomaly oc-curred in the thruster system. The paper will describe the activities used to com-mission DRS, present results from the commissioning of the DCS and the re-commissioning activities performed after the thruster anomaly.

  4. First stage of LISA data processing. II. Alternative filtering dynamic models for LISA

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Heinzel, Gerhard; Danzmann, Karsten

    2015-08-01

    Space-borne gravitational wave detectors, such as (e)LISA, are designed to operate in the low-frequency band (mHz to Hz), where there is a variety of gravitational wave sources of great scientific value [arXiv:1305.5720 and S. Babak et al., Classical Quantum Gravity 28, 114001 (2011)]. To achieve the extraordinary sensitivity of these detectors, the precise synchronization of the clocks on the separate spacecraft and the accurate determination of the interspacecraft distances are important ingredients. In our previous paper [Y. Wang et al., Phys. Rev. D 90, 064016 (2014)], we have described a hybrid-extend Kalman filter with a full state vector to do this job. In this paper, we explore several different state vectors and their corresponding (phenomenological) dynamic models to reduce the redundancy in the full state vector, to accelerate the algorithm, and to make the algorithm easily extendable to more complicated scenarios.

  5. DaVinci's Mona Lisa entering the next dimension.

    PubMed

    Carbon, Claus-Christian; Hesslinger, Vera M

    2013-01-01

    For several of Leonardo da Vinci's paintings, such as The Virgin and Child with St Anne or the Mona Lisa, there exist copies produced by his own studio. In case of the Mona Lisa, a quite exceptional, rediscovered studio copy was presented to the public in 2012 by the Prado Museum in Madrid. Not only does it mirror its famous counterpart superficially; it also features the very same corrections to the lower layers, which indicates that da Vinci and the 'copyist' must have elaborated their panels simultaneously. On the basis of subjective (thirty-two participants estimated painter-model constellations) as well as objective data (analysis of trajectories between landmarks of both paintings), we revealed that both versions differ slightly in perspective. We reconstructed the original studio setting and found evidence that the disparity between both paintings mimics human binocular disparity. This points to the possibility that the two Giocondas together might represent the first stereoscopic image in world history.

  6. 2006 Interferometry Imaging Beauty Contest

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Ireland, Michael; Monnier, John D.; Thiebaut, Eric; Rengaswamy, Sridharan; Baron, Fabien; Young, John S.; Kraus, Stefan; hide

    2006-01-01

    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Five different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formatted in the OI-FITS format. The data are calibrated power spectra and bispectra measured with an array intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  7. Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system

    NASA Astrophysics Data System (ADS)

    Wang, Qingquan; Yu, Yingjie; Mou, Kebing

    2017-10-01

    This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error.

  8. Numerical investigation of nonlinear interactions between multimodal guided waves and delamination in composite structures

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng

    2017-04-01

    This paper presents a numerical investigation of the nonlinear interactions between multimodal guided waves and delamination in composite structures. The elastodynamic wave equations for anisotropic composite laminate were formulated using an explicit Local Interaction Simulation Approach (LISA). The contact dynamics was modeled using the penalty method. In order to capture the stick-slip contact motion, a Coulomb friction law was integrated into the computation procedure. A random gap function was defined for the contact pairs to model distributed initial closures or openings to approximate the nature of rough delamination interfaces. The LISA procedure was coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized computation on powerful graphic cards. Several guided wave modes centered at various frequencies were investigated as the incident wave. Numerical case studies of different delamination locations across the thickness were carried out. The capability of different wave modes at various frequencies to trigger the Contact Acoustic Nonlinearity (CAN) was studied. The correlation between the delamination size and the signal nonlinearity was also investigated. Furthermore, the influence from the roughness of the delamination interfaces was discussed as well. The numerical investigation shows that the nonlinear features of wave delamination interactions can enhance the evaluation capability of guided wave Structural Health Monitoring (SHM) system. This paper finishes with discussion, concluding remarks, and suggestions for future work.

  9. Dynamic Control System Mode Performance of the Space Technology-7 Disturbance Reduction System

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Hsu, Oscar; Maghami, Peiman

    2017-01-01

    The Space Technology-7 (ST-7) Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft, launched on December 3, 2015. DRS consists of three primary components: Colloidal MicroNewton Thrusters (CMNTs), an Integrated Avionics Unit (IAU), and flight-software implementing the Command and Data Handling (C&DH) and Dynamic Control System (DCS) algorithms. The CMNTs were designed to provide thrust from 5 to 30 micro Newton, with thrust controllability and resolution of 0.1 micro Newton and thrust noise of 0.1 micro Newton/(square root of (Hz)) in the measurement band from 1-30 mHz. The IAU hosts the C&DH and DCS flight software, as well as interfaces with both the CMNT electronics and the LISA Pathfinder spacecraft. When in control, the DCS uses star tracker attitude data and capacitive or optically-measured position and attitude information from LISA Pathfinder and the LISA Technology Package (LTP) to control the attitude and position of the spacecraft and the two test masses inside the LTP. After completion of the nominal ESA LISA Pathfinder mission, the DRS experiment was commissioned followed by its nominal mission. DRS operations extended over the next five months, interspersed with station keeping, anomaly resolution, and periods where control was handed back to LISA Pathfinder for them to conduct further experiments. The primary DRS mission ended on December 6, 2016, with the experiment meeting all of its Level 1 requirements. The DCS, developed at the NASA Goddard Space Flight Center, consists of five spacecraft control modes and six test mass control modes, combined into six 'DRS Mission Modes'. Attitude Control and Zero-G were primarily used to control the spacecraft during initial handover and during many of the CMNT characterization experiments. The other Mission Modes, Drag Free Low Force, 18-DOF Transitional, and 18-DOF, were used to provide drag-free control of the spacecraft about the test masses. This paper will discuss the performance of these DCS spacecraft and test mass control modes. Flight data will be shown from each mode throughout the mission, both from nominal operations and during various flight experiments. The DCS team also made some changes to controller, filter, and limit parameters during operations; the motivation and results of these changes will be shown and discussed.

  10. Time-Resolved Neutron Interferometry and the Mechanism of Electromechanical Coupling in Voltage-Gated Ion Channels.

    PubMed

    Blasie, J Kent

    2018-01-01

    The mechanism of electromechanical coupling for voltage-gated ion channels (VGICs) involved in neurological signal transmission, primarily Nav- and Kv-channels, remains unresolved. Anesthetics have been shown to directly impact this mechanism, at least for Kv-channels. Molecular dynamics computer simulations can now predict the structures of VGICs embedded within a hydrated phospholipid bilayer membrane as a function of the applied transmembrane voltage, but significant assumptions are still necessary. Nevertheless, these simulations are providing new insights into the mechanism of electromechanical coupling at the atomic level in 3-D. We show that time-resolved neutron interferometry can be used to investigate directly the profile structure of a VGIC, vectorially oriented within a single hydrated phospholipid bilayer membrane at the solid-liquid interface, as a function of the applied transmembrane voltage in the absence of any assumptions or potentially perturbing modifications of the VGIC protein and/or the host membrane. The profile structure is a projection of the membrane's 3-D structure onto the membrane normal and, in the absence of site-directed deuterium labeling, is provided at substantially lower spatial resolution than the atomic level. Nevertheless, this novel approach can be used to directly test the validity of the predictions from molecular dynamics simulations. We describe the key elements of our novel experimental approach, including why each is necessary and important to providing the essential information required for this critical comparison of "simulation" vs "experiment." In principle, the approach could be extended to higher spatial resolution and to include the effects of anesthetics on the electromechanical coupling mechanism in VGICs. © 2018 Elsevier Inc. All rights reserved.

  11. Multimode simulations of a wide field of view double-Fourier far-infrared spatio-spectral interferometer

    NASA Astrophysics Data System (ADS)

    Bracken, Colm P.; Lightfoot, John; O'Sullivan, Creidhe; Murphy, J. Anthony; Donohoe, Anthony; Savini, Giorgio; Juanola-Parramon, Roser; The Fisica Consortium, On Behalf Of

    2018-01-01

    In the absence of 50-m class space-based observatories, subarcsecond astronomy spanning the full far-infrared wavelength range will require space-based long-baseline interferometry. The long baselines of up to tens of meters are necessary to achieve subarcsecond resolution demanded by science goals. Also, practical observing times command a field of view toward an arcminute (1‧) or so, not achievable with a single on-axis coherent detector. This paper is concerned with an application of an end-to-end instrument simulator PyFIInS, developed as part of the FISICA project under funding from the European Commission's seventh Framework Programme for Research and Technological Development (FP7). Predicted results of wide field of view spatio-spectral interferometry through simulations of a long-baseline, double-Fourier, far-infrared interferometer concept are presented and analyzed. It is shown how such an interferometer, illuminated by a multimode detector can recover a large field of view at subarcsecond angular resolution, resulting in similar image quality as that achieved by illuminating the system with an array of coherent detectors. Through careful analysis, the importance of accounting for the correct number of higher-order optical modes is demonstrated, as well as accounting for both orthogonal polarizations. Given that it is very difficult to manufacture waveguide and feed structures at sub-mm wavelengths, the larger multimode design is recommended over the array of smaller single mode detectors. A brief note is provided in the conclusion of this paper addressing a more elegant solution to modeling far-infrared interferometers, which holds promise for improving the computational efficiency of the simulations presented here.

  12. Drag-Free Performance of the ST7 Disturbance Reduction System Flight Experiment on the LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; O'Donnell, James R.; Hsu, Oscar H.; Ziemer, John K.; Dunn, Charles E.

    2017-01-01

    The Space Technology-7 Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft. LISA Pathfinder launched from Kourou, French Guiana on December 3, 2015. The DRS is tasked to validate two specific technologies: colloidal micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free controlflight. This validation is performed using highly sensitive drag-free sensors, which are provided by the LISA Technology Package of the European Space Agency. The Disturbance Reduction System is required to maintain the spacecrafts position with respect to a free-floating test mass to better than 10nm/(square root of Hz), along its sensitive axis (axis in optical metrology). It also has a goal of limiting the residual accelerations of any of the two test masses to below 30 x 10(exp -14) (1 + ([f/3 mHz](exp 2))) m/sq s/(square root of Hz), over the frequency range of 1 to 30 mHz.This paper briefly describes the design and the expected on-orbit performance of the control system for the two modes wherein the drag-free performance requirements are verified. The on-orbit performance of these modes are then compared to the requirements, as well as to the expected performance, and discussed.

  13. An application of holographic interferometry for dynamic vibration analysis of a jet engine turbine compressor rotor

    NASA Astrophysics Data System (ADS)

    Fein, Howard

    2003-09-01

    Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under dynamic stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of jet engine turbine, rotor, vane, and compressor structures has always required advanced instrumentation for data collection in either simulated flight operation test or computer-based modeling and simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data in a noninvasive, noncontact environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced jet engine turbine and compressor rotor structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy of mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of turbine rotor and compressor structures for high stress applications. Aircraft engine applications in particular most consider operational environments where extremes in vibration and impulsive as well as continuous mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of turbine rotor components. Holographic techniques are nondestructive, real-time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as critical operational parameters of turbine structural components or unit turbine components fabricated from advanced and exotic new materials or using new fabrication methods. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects.

  14. Application of Hybrid Along-Track Interferometry/Displaced Phase Center Antenna Method for Moving Human Target Detection in Forest Environments

    DTIC Science & Technology

    2016-10-01

    ARL-TR-7846 ● OCT 2016 US Army Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center...Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center Antenna Method for Moving Human Target Detection...TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE Application of Hybrid Along-Track Interferometry/ Displaced

  15. Optical Interferometry Motivation and History

    NASA Technical Reports Server (NTRS)

    Lawson, Peter

    2006-01-01

    A history and motivation of stellar interferometry is presented. The topics include: 1) On Tides, Organ Pipes, and Soap Bubbles; 2) Armand Hippolyte Fizeau (1819-1896); 3) Fizeau Suggests Stellar Interferometry 1867; 4) Edouard Stephan (1837-1923); 5) Foucault Refractor; 6) Albert A. Michelson (1852-1931); 7) On the Application of Interference Methods to Astronomy (1890); 8) Moons of Jupiter (1891); 9) Other Applications in 19th Century; 10) Timeline of Interferometry to 1938; 11) 30 years goes by; 12) Mount Wilson Observatory; 13) Michelson's 20 ft Interferometer; 14) Was Michelson Influenced by Fizeau? 15) Work Continues in the 1920s and 30s; 16) 50 ft Interferometer (1931-1938); 17) Light Paths in the 50 ft Interferometer; 18) Ground-level at the 50 ft; 19) F.G. Pease (1881-1938); 20) Timeline of Optical Interferometry to 1970; 21) A New Type of Stellar Interferometer (1956); 22) Intensity Interferometer (1963- 1976; 23) Robert Hanbury Brown; 24) Interest in Optical Interferometry in the 1960s; 25) Interferometry in the Early 1970s; and 26) A New Frontier is Opened up in 1974.

  16. University of Florida Torsion Pendulum for Testing Key LISA Technology

    NASA Astrophysics Data System (ADS)

    Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo Janet; Hillsberry, Daniel; Parry, Samantha; Ciani, Giacomo; Wass, Peter; Mueller, Guido; Conklin, John

    2018-01-01

    This presentation will describe the design and performance of a new torsion pendulum at the University of Florida used for testing inertial sensors and associated technologies for use in space – based gravitational wave observatories and geodesy missions. In particular this new torsion pendulum facility is testing inertial sensors and associated technology for the upcoming LISA (laser interferometer space antenna) space-based gravitational wave observatory mission. The torsion pendulum apparatus is comprised of a suspended cross bar assembly that has LISA test mass mockups at each of its ends. Two of the test mass mockups are enclosed by capacitive sensors which provide actuation and position sensing. The entire assembly is housed in a vacuum chamber. The pendulum cross-bar converts rotational motion of the test masses about the suspension fiber axis into translational motion. The 22 cm cross bar arm length along with the extremely small torsional spring constant of the suspension fiber results in a near free fall condition in the translational degree-of-freedom orthogonal to both the member and the suspension fiber. The test masses are electrically isolated from the pendulum assembly and their charge is controlled via photoemission using fiber coupled UV LEDS. Position of the test masses is measured using both capacitive and interferometric readout. The broadband sensitivity of the capacitive readout and laser interferometer readout is 30 nm/√Hz and 0.5 nm/√Hz respectively. The performance of the pendulum measured in equivalent acceleration noise acting on a LISA test mass is approximately 3 × 10-13 ms-2/√Hz at 2 mHz. This presentation will also discuss the design and fabrication of a flight-like gravitational reference sensor that will soon be integrated into the torsion pendulum facility. This flight-like GRS will allow for noise performance measurements in a more LISA-like configuration.

  17. Feasibility of satellite interferometry for surveillance, navigation, and traffic control

    NASA Technical Reports Server (NTRS)

    Gopalapillai, S.; Ruck, G. T.; Mourad, A. G.

    1976-01-01

    The feasibility of using a satellite borne interferometry system for surveillance, navigation, and traffic control applications was investigated. The evaluation was comprised of: (1) a two part systems analysis (software and hardware); (2) a survey of competitive navigation systems (both experimental and planned); (3) a comparison of their characteristics and capabilities with those of an interferometry system; and (4) a limited survey of potential users to determine the variety of possible applications for the interferometry system and the requirements which it would have to meet. Five candidate or "strawman" interferometry systems for various applications with various capabilities were configured (on a preliminary basis) and were evaluated. It is concluded that interferometry in conjunction with a geostationary satellite has an inherent ability to provide both a means for navigation/position location and communication. It offers a very high potential for meeting a large number of user applications and requirements for navigation and related functions.

  18. Estimation of phase derivatives using discrete chirp-Fourier-transform-based method.

    PubMed

    Gorthi, Sai Siva; Rastogi, Pramod

    2009-08-15

    Estimation of phase derivatives is an important task in many interferometric measurements in optical metrology. This Letter introduces a method based on discrete chirp-Fourier transform for accurate and direct estimation of phase derivatives, even in the presence of noise. The method is introduced in the context of the analysis of reconstructed interference fields in digital holographic interferometry. We present simulation and experimental results demonstrating the utility of the proposed method.

  19. Research on Inversion Models for Forest Height Estimation Using Polarimetric SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Duan, B.; Zou, B.

    2017-09-01

    The forest height is an important forest resource information parameter and usually used in biomass estimation. Forest height extraction with PolInSAR is a hot research field of imaging SAR remote sensing. SAR interferometry is a well-established SAR technique to estimate the vertical location of the effective scattering center in each resolution cell through the phase difference in images acquired from spatially separated antennas. The manipulation of PolInSAR has applications ranging from climate monitoring to disaster detection especially when used in forest area, is of particular interest because it is quite sensitive to the location and vertical distribution of vegetation structure components. However, some of the existing methods can't estimate forest height accurately. Here we introduce several available inversion models and compare the precision of some classical inversion approaches using simulated data. By comparing the advantages and disadvantages of these inversion methods, researchers can find better solutions conveniently based on these inversion methods.

  20. Imaging of transient surface acoustic waves by full-field photorefractive interferometry.

    PubMed

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  1. Large radius of curvature measurement based on the evaluation of interferogram-quality metric in non-null interferometry

    NASA Astrophysics Data System (ADS)

    Yang, Zhongming; Dou, Jiantai; Du, Jinyu; Gao, Zhishan

    2018-03-01

    Non-null interferometry could use to measure the radius of curvature (ROC), we have presented a virtual quadratic Newton rings phase-shifting moiré-fringes measurement method for large ROC measurement (Yang et al., 2016). In this paper, we propose a large ROC measurement method based on the evaluation of the interferogram-quality metric by the non-null interferometer. With the multi-configuration model of the non-null interferometric system in ZEMAX, the retrace errors and the phase introduced by the test surface are reconstructed. The interferogram-quality metric is obtained by the normalized phase-shifted testing Newton rings with the spherical surface model in the non-null interferometric system. The radius curvature of the test spherical surface can be obtained until the minimum of the interferogram-quality metric is found. Simulations and experimental results are verified the feasibility of our proposed method. For a spherical mirror with a ROC of 41,400 mm, the measurement accuracy is better than 0.13%.

  2. Polarization interferometry for real-time spectroscopic plasmonic sensing.

    PubMed

    Otto, Lauren M; Mohr, Daniel A; Johnson, Timothy W; Oh, Sang-Hyun; Lindquist, Nathan C

    2015-03-07

    We present quantitative, spectroscopic polarization interferometry phase measurements on plasmonic surfaces for sensing applications. By adding a liquid crystal variable wave plate in our beam path, we are able to measure phase shifts due to small refractive index changes on the sensor surface. By scanning in a quick sequence, our technique is extended to demonstrate real-time measurements. While this optical technique is applicable to different sensor geometries-e.g., nanoparticles, nanogratings, or nanoapertures-the plasmonic sensors we use here consist of an ultrasmooth gold layer with buried linear gratings. Using these devices and our phase measurement technique, we calculate a figure of merit that shows improvement over measuring only surface plasmon resonance shifts from a reflected intensity spectrum. To demonstrate the general-purpose versatility of our phase-resolved measurements, we also show numerical simulations with another common device architecture: periodic plasmonic slits. Since our technique inherently measures both the intensity and phase of the reflected or transmitted light simultaneously, quantitative sensor device characterization is possible.

  3. Proposal for quantum many-body simulation and torsional matter-wave interferometry with a levitated nanodiamond

    NASA Astrophysics Data System (ADS)

    Ma, Yue; Hoang, Thai M.; Gong, Ming; Li, Tongcang; Yin, Zhang-qi

    2017-08-01

    Hybrid spin-mechanical systems have great potential in sensing, macroscopic quantum mechanics, and quantum information science. In order to induce strong coupling between an electron spin and the center-of-mass motion of a mechanical oscillator, a large magnetic gradient usually is required, which is difficult to achieve. Here we show that strong coupling between the electron spin of a nitrogen-vacancy (NV) center and the torsional vibration of an optically levitated nanodiamond can be achieved in a uniform magnetic field. Thanks to the uniform magnetic field, multiple spins can strongly couple to the torsional vibration at the same time. We propose utilizing this coupling mechanism to realize the Lipkin-Meshkov-Glick (LMG) model by an ensemble of NV centers in a levitated nanodiamond. The quantum phase transition in the LMG model and finite number effects can be observed with this system. We also propose generating torsional superposition states and realizing torsional matter-wave interferometry with spin-torsional coupling.

  4. Progress Towards a Space-Based Gravitational-Wave Observatory Since 2010

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2015-01-01

    Laser Interferometer Space Antenna (LISA): Focus of all work since 1993; Unchanged since 1997; Project in Phase A since 2004; Extensive formulation work and products; Reviewed and recommended in many major reviews: AANM (NRC, 2001), TRIP (HQ, 2003), Connecting Quarks with the Cosmos (NRC, 2003), AETD (GSFC, 2005). Beyond Einstein Program: (NRC, 2007), NWNH (NRC, 2010): Second in large space projects after WFIRST. Recommended for a new start. Contingent on Lisa Pathfinder success and a roughly 50-50 European partnership.

  5. Testing and Characterization of a Prototype Telescope for the Evolved Laser Interferometer Space Antenna (eLISA)

    NASA Technical Reports Server (NTRS)

    Sankar, S.; Livas, J.

    2016-01-01

    We describe our efforts to fabricate, test and characterize a prototype telescope for the eLISA mission. Much of our work has centered on the modeling and measurement of scattered light performance. This work also builds on a previous demonstration of a high dimensional stability metering structure using particular choices of materials and interfaces. We will discuss ongoing plans to merge these two separate demonstrations into a single telescope design demonstrating both stray light and dimensional stability requirements simultaneously.

  6. Massive Black Holes and the Laser Interferometer Space Antenna (LISA)

    NASA Technical Reports Server (NTRS)

    Blender, Peter L.; Hils, Dieter; Stebbins, Robin T.

    1998-01-01

    The goals of the USA mission include both astrophysical investigations and fundamental physics tests. The main astrophysical questions concern the space density, growth, mass function, and surroundings of massive black holes. Thus the crucial issue for the USA mission is the likelihood of observing signals from such sources. Four possible sources of this kind are discussed briefly in this paper. It appears plausible, or even likely. that one or more of these types of sources can be detected and studied by LISA.

  7. Traumatic Brain Injury Screening: Preliminary Findings in a US Army Brigade Combat Team

    DTIC Science & Technology

    2009-01-01

    Screening: Preliminary Findings in a US Army Brigade Combat Team Heidi Terrio, MD, MPH; Lisa A. Brenner, PhD; Brian J. Ivins, MS; John M. Cho, MD; Katherine...Sheila Saliman and Lisa Betthauser is greatly appreciated. Corresponding author: Heidi Terrio, MD, MPH, 1853 O’Connell Blvd, Bldg 1042, Room 107, Fort...more mild TBI symptoms among injured soldiers with and without TBI (n = 1208)∗,† Parameter Adjusted 95% CI adjusted Variable estimate (β) SE β Wald P

  8. Bench to Bedside: Understanding Symptom Response to Acupuncture Treatment and Designing a Successful Acupuncture Treatment Program

    DTIC Science & Technology

    2016-10-01

    AUTHOR(S) Lisa Conboy 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail:Lisa.Conboy@mcphs.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) MCPHS University 179 AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 179 Longwood Ave Boston, MA 02115-5804 9. SPONSORING...has been codified and work will begin on this paper in the next. 15. SUBJECT TERMS Gulf War Illness, Complex Medical Illness, Acupuncture

  9. KSC-07pd1291

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Breaking the ribbon are (left to right) Dan LeBlanc, chief operating officer of the KSC Visitor Complex; Lt. Governor of Florida Jeff Kottkamp; former astronauts John Young and Bob Crippen; Center Director Bill Parsons; KSC Director of External Relations Lisa Malone; and former astronaut Buzz Aldrin. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  10. Holographic analysis as an inspection method for welded thin-wall tubing

    NASA Technical Reports Server (NTRS)

    Brooks, Lawrence; Mulholland, John; Genin, Joseph; Matthews, Larryl

    1990-01-01

    The feasibility of using holographic interferometry for locating flaws in welded tubing is explored. Two holographic techniques are considered: traditional holographic interferometry and electronic speckle pattern interferometry. Several flaws including cold laps, discontinuities, and tube misalignments are detected.

  11. Phase-Shift Interferometry with a Digital Photocamera

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe

    2007-01-01

    A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)

  12. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  13. Optical Telescope System-Level Design Considerations for a Space-Based Gravitational Wave Mission

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Sankar, Shannon R.

    2016-01-01

    The study of the Universe through gravitational waves will yield a revolutionary new perspective on the Universe, which has been intensely studied using electromagnetic signals in many wavelength bands. A space-based gravitational wave observatory will enable access to a rich array of astrophysical sources in the measurement band from 0.1 to 100 mHz, and nicely complement observations from ground-based detectors as well as pulsar timing arrays by sampling a different range of compact object masses and astrophysical processes. The observatory measures gravitational radiation by precisely monitoring the tiny change in the proper distance between pairs of freely falling proof masses. These masses are separated by millions of kilometers and, using a laser heterodyne interferometric technique, the change in their proper separation is detected to approx. 10 pm over timescales of 1000 seconds, a fractional precision of better than one part in 10(exp 19). Optical telescopes are essential for the implementation of this precision displacement measurement. In this paper we describe some of the key system level design considerations for the telescope subsystem in a mission context. The reference mission for this purpose is taken to be the enhanced Laser Interferometry Space Antenna mission (eLISA), a strong candidate for the European Space Agency's Cosmic Visions L3 launch opportunity in 2034. We will review the flow-down of observatory level requirements to the telescope subsystem, particularly pertaining to the effects of telescope dimensional stability and scattered light suppression, two performance specifications which are somewhat different from the usual requirements for an image forming telescope.

  14. An interview with Alfredo Falcone and Lisa Salvatore: RECOURSE and trifluridine/tipiracil in metastatic colorectal cancer.

    PubMed

    Falcone, Alfredo; Salvatore, Lisa

    2016-09-01

    Professor Alfredo Falcone and Dr Lisa Salvatore speak to Roshaine Gunawardana, Managing Commissioning Editor: Professor Alfredo Falcone is the Director of the Department of Oncology and the Specialization School at the University Hospital of Pisa, Italy. He trained in Pisa and Genoa, Italy, and has held major positions in Italian oncology since 2000. He currently has more than 300 publications, including papers in peer-reviewed international and national journals, book chapters, and more than 600 abstracts of presentations to international and national conferences. The majority of his papers regard clinical and translational research, with a particular focus on metastatic colorectal cancer. Dr Lisa Salvatore is a medical oncologist in the Department of Translational Research and New Technologies in Medicine and Surgery at the University of Pisa. She has been an author on about 40 publications in major peer-reviewed publications and has made numerous presentations in national and international conferences. Her main interest is focused on clinical and translational research in metastatic colorectal cancer.

  15. Measuring fN force variations in the presence of constant nN forces: a torsion pendulum ground test of the LISA Pathfinder free-fall mode

    NASA Astrophysics Data System (ADS)

    Russano, G.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Gibert, F.; Giusteri, R.; Hueller, M.; Liu, L.; Pivato, P.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Weber, W. J.

    2018-02-01

    LISA Pathfinder is a differential accelerometer with the main goal being to demonstrate the near perfect free-fall of reference test masses, as is needed for an orbiting gravitational wave observatory, with a target sensitivity of 30 fm s‑2 Hz-1/2 at 1 mHz. Any lasting background differential acceleration between the two test masses must be actively compensated, and noise associated with the applied actuation force can be a dominant source of noise. To remove this actuation, and the associated force noise, a ‘free-fall’ actuation control scheme has been designed; actuation is limited to brief impulses, with both test masses in free-fall in the time between the impulses, allowing measurement of the remaining acceleration noise sources. In this work, we present an on-ground torsion pendulum testing campaign of this technique and associated data analysis algorithms at a level nearing the sub-femto-g/\\sqrtHz performance required for LISA Pathfinder.

  16. The Laser Interferometer Space Antenna: A space-based Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    Thorpe, James Ira; McNamara, Paul

    2018-01-01

    After decades of persistence, scientists have recently developed facilities which can measure the vibrations of spacetime caused by astrophysical cataclysms such as the mergers of black holes and neutron stars. The first few detections have presented some interesting astrophysical questions and it is clear that with an increase in the number and capability of ground-based facilities, gravitational waves will become an important tool for astronomy. A space-based observatory will complement these efforts by providing access to the milliHertz gravitational wave band, which is expected to be rich in both number and variety of sources. The European Space Agency (ESA) has recently selected the Laser Interferometer Space Antenna (LISA) as a Large-Class mission in its Cosmic Visions Programme. The modern LISA retains the basic design features of previous incarnations and, like its predecessors is expected to be a collaboration between ESA, NASA, and a number of European States. In this poster, we present an overview of the current LISA design, its scientific capabilities, and the timeline to launch.

  17. Detection of Micrometeoroids with LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Thorpe, Ira; Littenberg, Tyson; Janchez, Diego; Baker, John; The LISA Pathfinder Team Team

    2017-01-01

    The LISA Pathfinder mission (LPF), a joint ESA/NASA technology demonstration mission currently operating at the Sun-Earth L1 point, contains the most precise accelerometry system ever flown. Analysis suggests that LPF should have sufficient sensitivity to detect impacts of small micrometeoroids and dust through their transfer of momentum to the spacecraft. Moreover, LPF's ability to fully resolve both the linear and angular momentum transfer in three dimensions allows a magnitude, direction, and location to be estimated for each impact. We present preliminary results from a systematic search of the LISA Pathfinder data for such impacts and discuss the prospects for using these and future results to inform models of the formation and evolution of dust populations in the inner solar system. These models have wide applicability to both pure and applied space science, ranging from the physics of planet formation and dynamics of minor Solar System bodies to estimates of the micrometeorite hazard for future spacecraft. 2017 NASA Science Innovation Fund.

  18. A torsion pendulum test of the Lisa Pathfinder free-fall mode

    NASA Astrophysics Data System (ADS)

    Russano, Giuliana; Dolesi, Rita; Cavalleri, Antonella; Hueller, Mauro; Vitale, Stefano; Weber, William Joseph; Tu, HaiBo

    The LISA Pathfinder geodesic explorer mission for gravitational wave astronomy aims to demonstrate the proof of a low acceleration noise level. The relative acceleration between two test masses free falling in orbit is perturbed by the presence of a larger constant relative acceleration that must be actively compensated in order to keep the test particles centered inside an orbiting apparatus. The actuation force applied to compensate this effect introduces a dominant source of force noise. To suppress this noise source, a “free-fall” actuation control scheme has been designed: actuation is limited to brief impulses, with test masses in free fall in between two “kicks”, with this actuation-free motion then analyzed for the remaining sources of acceleration ultra noise. In this work, we will discuss and present preliminary data for an on-ground torsion pendulum experiment to test this technique, and the associated analysis algorithms, at a level nearing the sub-femto-g/sqrt(Hz) performance required for LISA Pathfinder.

  19. Gravitational-wave cosmography with LISA and the Hubble tension

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Seto, Naoki

    2017-04-01

    We propose that stellar-mass binary black holes like GW150914 will become a tool to explore the local Universe within ˜100 Mpc in the era of the Laser Interferometer Space Antenna (LISA). High calibration accuracy and annual motion of LISA could enable us to localize up to ≈60 binaries more accurately than the error volume of ≈100 Mpc3 without electromagnetic counterparts under moderately optimistic assumptions. This accuracy will give us a fair chance to determine the host object solely by gravitational waves. By combining the luminosity distance extracted from gravitational waves with the cosmological redshift determined from the host, the local value of the Hubble parameter will be determined up to a few % without relying on the empirically constructed distance ladder. Gravitational-wave cosmography would pave the way for resolution of the disputed Hubble tension, where the local and global measurements disagree in the value of the Hubble parameter at 3.4 σ level, which amounts to ≈9 %.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano

    The scientific objectives of the LISA Technology Package experiment on board of the LISA Pathfinder mission demand accurate calibration and validation of the data analysis tools in advance of the mission launch. The level of confidence required in the mission outcomes can be reached only by intensively testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-correlated stationary noise time series was set up. A multichannel time series with the desired cross-correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure comprises a noisemore » coloring, multichannel filter designed via a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain. The common problem of initial transients in a filtered time series is solved with a proper initialization of the filter recursion equations. The noise generator performance was tested in a two-dimensional case study of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.« less

  1. The Centennial of GR: Looking forward to Black Hole Mergers at Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.

    2015-01-01

    Einstein's theory of gravity has fundamentally altered mankind's conception of the Universe and its contents. Once outlandish notions such as the Universe expanding from a mere speck to its current vast size, or stars collapsing to form black holes are now well supported pillars of modern astronomy. Gravity is the dominant force that shapes the Universe, and gravity is behind all extremely energetic astrophysical phenomena. However, we are currently blind to the most powerful events in nature - bursts of pure gravitational wave energy from the collision of two black holes. A Laser Interferometer Space Antenna (LISA) will be able to record these collisions throughout the Universe, and provide unique insights into the co-evolution of galaxies and massive black holes. Motivated by the GR centennial, I'll take a look back at the rich and turbulent history of the LISA mission, and a look forward to the incredible science potential of its current incarnation as the European L3 eLISA mission.

  2. A double torsion pendulum with two cascade soft degrees of freedom

    NASA Astrophysics Data System (ADS)

    Marconi, L.; Stanga, R.; Bassan, M.

    2012-06-01

    We report on a double torsion pendulum, where motion along two degrees of freedom (DoFs) is almost free. The Test Mass (TM) is enclosed in a replica of the LISA-Pathfinder electrostatic readout and actuation system. This apparatus is designed to perform extensive ground testing of undesired effects such as leakage of the readout noise from one DoF to another, or actuation cross talks with closed feedback loop. Such investigation is relevant to the noise budget of LISA and LISA-Pathfinder missions, as the TM will be sensitive to weak forces along all 6 degrees of freedom (DoFs). The instrument being developed in Firenze is capable of measuring the forces and stiffnesses acting simultaneously along the 2 soft DoFs. We have completed an upgrade of the apparatus to a definitive configuration and we report on both advances in the commissioning tests and on measurements of residual charge, with the first DoF released.

  3. Probing Black Holes With Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.

    2006-09-01

    Gravitational radiation can provide unique insights into the dynamics and evolution of black holes. Gravitational waveforms encode detailed information about the spacetime geometry, much as the sounds made by a musical instrument reflect the geometry of the instrument. The LISA gravitational wave observatory will be able to record black holes colliding out to the edge of the visible Universe, with an expected event rate of tens to thousands per year. LISA has unmatched capabilities for studying the role of black holes in galactic evolution, in particular, by studying the mergers of seed black holes at very high redshift, z > 5. Merger events at lower redshift will be detected at extremely high signal-to-noise, allowing for precision tests of the black hole paradigm. Below z=1 LISA will be able to record stellar remnants falling into supermassive black holes. These extreme mass ratio inspiral events will yield insights into the dynamics of galactic cusps, and the brighter events will provide incredibly precise tests of strong field, dynamical gravity.

  4. An Analysis of Coupling between the x1 and x12 Interferometers for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Howard, Brittany

    2017-01-01

    Due to tolerances in the manufacturing process, noise from the jittering of the spacecraft housing LISA Pathfinder (LPF) is appearing in the differential measurement between its two test masses (TM's). This phenomenon manifests as a small but measurable coupling between the readouts of LPF's two heterodyne interferometers, x1 and x12. In this study, two LISA Pathfinder experiments are analyzed using three methods in an effort to characterize and quantify the coupling as well as to potentially identify its source. The main question considered is this: does the coupling change with the absolute displacement between the TM's? As a result of this work, reliable values for coupling between LPF's x1 and x12 interferometers are found, and they are seen to depend on the absolute displacement between the test masses to some degree. Completed at the Albert Einstein Institute for Gravitational Physics under the International REU program from the University of Florida.

  5. UV-LED-based charge control for LISA

    NASA Astrophysics Data System (ADS)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2014-03-01

    The test masses inside the LISA gravitational reference sensors (GRS) must maintain almost pure geodesic motion for gravitational waves to be successfully detected. The residual accelerations have to stay below 3fm/s2/rtHz at all frequencies between 0.1 and 3 mHz. One of the well known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electro-magnetic fields. The LISA pathfinder (LPF) will use Hg-discharge lamps emitting mostly around 253 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. UV-LEDs have a lower mass, a better power efficiency, and are smaller than their Hg counterparts. Furthermore, the latest generation produces light at 240 nm, with energy well above the work function of pure gold. I will describe a preliminary design for effective charge control through photoelectric effect by using these LEDs. The effectiveness of this method is verified by taking Quantum Efficiency (QE) measurements which relate the number of electrons emitted to the number of photons incident on the Au test mass surface. This presentation addresses our initial results and future plans which includes implementation and testing in the UF torsion pendulum and space-qualification in a small satellite mission which will launch in the summer of 2014, through a collaboration with Stanford, KACST, and NASA Ames Research Center.

  6. LISA Pathfinder: First steps to observing gravitational waves from space

    NASA Astrophysics Data System (ADS)

    McNamara, Paul; LISA Pathfinder Collaboration

    2017-01-01

    With the first direct detection of gravitational waves a little over a year ago, the gravitational window to the Universe has been opened. The gravitational wave spectrum spans many orders of magnitude in frequency, with several of the most interesting astronomical sources emitting gravitational waves at frequencies only observable from space The European Space Agency (ESA) has been active in the field of space-borne gravitational wave detection for many years, and in 2013 selected the Gravitational Universe as the science theme for the third large class mission in the Cosmic Vision science programme. In addition, ESA took the step of developing the LISA Pathfinder mission to demonstrate the critical technologies required for a future mission. The goal of the LISA Pathfinder mission is to place a test body in free fall such that any external forces (acceleration) are reduced to levels lower than those expected from the passage of a gravitational wave LISA Pathfinder was launched on the 3rd December 2015 from the European Spaceport in Kourou, French Guiana. After a series of 6 apogee raising manoeuvres, the satellite left earth orbit, and travelled to its final science orbit around the first Sun-Earth Lagrange point (L1). Following a relatively short commissioning phase, science operations began on 1st March 2016. In the following 3 months over 100 experiments and over 1500hours of noise measurements have been performed, demonstrating that the observation of gravitational waves from space can be realised.

  7. The Lightweight Integrated Solar Array and Transceiver (LISA-T): Second Generation Advancements and the Future of SmallSat Power Generation

    NASA Technical Reports Server (NTRS)

    Carr, John A.; Boyd, Darren; Martinez, Armando; SanSoucie, Michael; Johnson, Les; Laue, Greg; Farmer, Brandon; Smith, Joseph C.; Robertson, Barrett; Johnson, Mark

    2016-01-01

    This paper describes the second generation advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. LISA-T is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C simplicity. In both cases, power generation ranges from tens of watts to several hundred with an expected specific power >250W/kg and a stowed power density >200kW/m(sub 3). Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, both UHF (ultra high frequency) and S-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for omnidirectional communications and electronically steered phase arrays.

  8. Algorithms and Array Design Criteria for Robust Imaging in Interferometry

    NASA Astrophysics Data System (ADS)

    Kurien, Binoy George

    Optical interferometry is a technique for obtaining high-resolution imagery of a distant target by interfering light from multiple telescopes. Image restoration from interferometric measurements poses a unique set of challenges. The first challenge is that the measurement set provides only a sparse-sampling of the object's Fourier Transform and hence image formation from these measurements is an inherently ill-posed inverse problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the Fourier samples. We develop array design conditions for unique Fourier phase recovery, as well as a comprehensive algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which together achieve reliable image reconstruction in spite of these challenges. Within this framework, we see that classical interferometric observables such as the bispectrum and closure phase can limit sensitivity, and that generalized notions of these observables can improve both theoretical and empirical performance. Our framework leverages techniques from lattice theory to resolve integer phase ambiguities in the interferometric phase measurements, and from graph theory, to select a reliable set of generalized observables. We analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures and corroborate this analysis with simulation results. We apply techniques from the field of compressed sensing to perform image reconstruction from the estimates of the object's Fourier coefficients. The end result is a comprehensive strategy to achieve well-posed and easily-predictable reconstruction performance in optical interferometry.

  9. Disks and cones: interferometry of the dusty and molecular material of AGN on parsec sales

    NASA Astrophysics Data System (ADS)

    Tristam, Konrad R. W.

    2016-08-01

    The central engine of Active Galactic Nuclei (AGN) is surrounded by dense molecular and dusty material on parsec scales. Typically referred to as the ""dusty torus"", this material is a key ingredient of AGN because it (1) provides the angle dependent obscuration of the central engine and (2) most likely plays an important role for the accretion of the material onto the supermassive black hole. Observations using interferometry in the infrared have, in the last ten years, resolved and characterised the thermal emission from the dust heated by the AGN beyond simple fits of the spectral energy distribution, leading to a great leap forward in our view of the dusty material surrounding AGN. In general the torus is parsec-sized, with a large scatter in extension between individual objects. Our studies have led to the surprising discovery that the dust emission is clearly separated into two distinct components: an inner disk-like emission region which is surrounded by a polar elongated emitter. I will demonstrate these discoveries using the results obtained for the Circinus galaxy, and discuss how the results for this galaxy compare to other well studied sources. While putting strong constraints on torus models, our findings are in good qualitative agreement with recent hydrodynamic simulations of AGN tori. The next big step forward can be expected from sub-mm interferometry and I will give a short glimpse at the results from our recent ALMA observations of the outer torus in the Circinus galaxy.

  10. The Lightweight Integrated Solar Array and anTenna (LISA-T) Big Power for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing a space power system using lightweight, flexible photovoltaic devices originally developed for use here on Earth to provide low cost power for spacecraft. The Lightweight Integrated Solar Array and anTenna (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. The LISA-T system is deployable, building upon NASA's expertise in developing thin-film deployable solar sails such the one being developed for the Near Earth Asteroid Scout project which will fly in 2018. One of the biggest challenges for the NEA Scout, and most other spacecraft, is power. There simply isn't enough of it available, thus limiting the range of operation of the spacecraft from the Sun (due to the small surface area available for using solar cells), the range of operation from the Earth (low available power with inherently small antenna sizes tightly constrain the bandwidth for communication), and the science (you can only power so many instruments with limited power). The LISA-T has the potential to mitigate each of these limitations, especially for small spacecraft. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between their need for power and robust communications with the requirements of the science or engineering payload they are developed to fly. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft and CubeSats. The problem is that these CubeSats can usually only generate between 7W and 50W of power. The power that can be generated by the LISA-T ranges from tens of watts to several hundred watts, at a much higher mass and stowage efficiency. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C simplicity. Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, UHF (ultrahigh frequency), S-band, and X-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for more capable multi-element antenna designs such as those needed for spherical coverage and electronically steered phase arrays.

  11. The Lightweight Integrated Solar Array and anTenna (LISA-T) - Big Power for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Boyd, Darren

    2017-01-01

    NASA is developing a space power system using lightweight, flexible photovoltaic devices originally developed for use here on Earth to provide low cost power for spacecraft. The Lightweight Integrated Solar Array and anTenna (LISA-T) is a launch-stowed, orbit-deployed array on which thin-film photovoltaic and antenna elements are embedded. The LISA-T system is deployable, building upon NASA's expertise in developing thin-film deployable solar sails such the one being developed for the Near Earth Asteroid Scout project which will fly in 2018. One of the biggest challenges for the NEA Scout, and most other spacecraft, is power. There simply isn't enough of it available, thus limiting the range of operation of the spacecraft from the Sun (due to the small surface area available for using solar cells), the range of operation from the Earth (low available power with inherently small antenna sizes tightly constrain the bandwidth for communication), and the science (you can only power so many instruments with limited power). The LISA-T has the potential to mitigate each of these limitations. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between their need for power and robust communications with the requirements of the science or engineering payload they are developed to fly. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft and CubeSats. The problem is that these CubeSats can usually only generate between 7 watts and 50 watts of power. The power that can be generated by the LISA-T ranges from tens of watts to several hundred watts. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C (Guidance, Navigation and Control) simplicity. In both cases, power generation ranges from tens of watts to several hundred with an expected specific power greater than 250 watts per kilogram and a stowed power density greater than 200 kilowatts per cubic meter. Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, both UHF (ultra high frequency) and S-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for omnidirectional communications and electronically steered phase arrays.

  12. LISA telescope spacer design investigations

    NASA Astrophysics Data System (ADS)

    Sanjuan, Josep; Mueller, Guido; Livas, Jeffrey; Preston, Alix; Arsenovic, Petar; Castellucci, Kevin; Generie, Joseph; Howard, Joseph; Stebbins, Robin

    The Laser Interferometer Space Antenna (LISA) is a space-based gravitational wave observa-tory with the goal of observing Gravitational Waves (GWs) from astronomical sources in a frequency range from 30 µHz to 0.1 Hz. The detection of GWs at such low frequency requires measurements of distances at the pico-meter level between bodies separated by 5 million kilo-meters. The LISA mission consists of three identical spacecraft (SC) separated by 5 × 106 km forming an equilateral triangle. Each SC contains two optical assemblies and two vacuum en-closures housing one proof mass (PM) in geodesic (free fall) motion each. The two assemblies on one SC are each pointing towards an identical assembly on each of the other two SC to form a non-equal arm interferometer. The measurement of the GW strain is done by measuring the change in the length of the optical path between the PMs of one arm relative to the other arms caused by the pass of a GW. An important element of the Interferometric Measurement System (IMS) is the telescope which, on one hand, gathers the light coming from the far SC (˜100 pW) and, on the other hand, expands and collimates the small outgoing beam ( 1 W) and sends it to the far SC. Due to the very demanding sensitivity requirements care must be taken in the design and validation of the telescope not to degrade the IMS performance. For instance, the diameter of the telescope sets the the shot noise of the IMS and depends critically on the diameter of the primary and the divergence angle of the outgoing beam. As the telescope is rather fast telescope, the divergence angle is a critical function of the overall separation between the primary and secondary. Any long term changes of the distance of more than a a few micro-meter would be detrimental to the LISA mission. Similarly challenging are the requirements on the in-band path-length noise for the telescope which has to be kept below 1 pm Hz-1/2 in the LISA band. Different configurations (on-axis/off axis) and materials such as Silicon Carbide (SiC) and Carbon Fiber Reinforced Plastic (CFRP) are considered to be used in the telescope spacer structure. We will describe our experimental efforts to understand and quantify the behavior of different materials and also discuss a first investigation of a specific on-axis SiC telescope spacer for LISA. This work is supported by NASA contract 00069955.

  13. Interference, focusing and excitation of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kandes, M. C.; Fahy, B. M.; Williams, S. R.; Tally, C. H., IV; Bromley, M. W. J.

    2011-05-01

    One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. Performed on computational resources via NSF grants PHY-0970127, CHE-0947087 and DMS-0923278.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S.

    The black hole in the center of the Galaxy, associated with the compact source Sagittarius A* (Sgr A*), is predicted to cast a shadow upon the emission of the surrounding plasma flow, which encodes the influence of general relativity (GR) in the strong-field regime. The Event Horizon Telescope (EHT) is a Very Long Baseline Interferometry (VLBI) network with a goal of imaging nearby supermassive black holes (in particular Sgr A* and M87) with angular resolution sufficient to observe strong gravity effects near the event horizon. General relativistic magnetohydrodynamic (GRMHD) simulations show that radio emission from Sgr A* exhibits variability onmore » timescales of minutes, much shorter than the duration of a typical VLBI imaging experiment, which usually takes several hours. A changing source structure during the observations, however, violates one of the basic assumptions needed for aperture synthesis in radio interferometry imaging to work. By simulating realistic EHT observations of a model movie of Sgr A*, we demonstrate that an image of the average quiescent emission, featuring the characteristic black hole shadow and photon ring predicted by GR, can nonetheless be obtained by observing over multiple days and subsequent processing of the visibilities (scaling, averaging, and smoothing) before imaging. Moreover, it is shown that this procedure can be combined with an existing method to mitigate the effects of interstellar scattering. Taken together, these techniques allow the black hole shadow in the Galactic center to be recovered on the reconstructed image.« less

  15. Quantitative assessment of soft tissue deformation using digital speckle pattern interferometry: studies on phantom breast models.

    PubMed

    Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R

    2017-01-01

    Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)-based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed.

  16. Data Series Subtraction with Unknown and Unmodeled Background Noise

    NASA Technical Reports Server (NTRS)

    Vitale, Stefano; Congedo, Giuseppe; Dolesi, Rita; Ferroni, Valerio; Hueller, Mauro; Vetrugno, Daniele; Weber, William Joseph; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; hide

    2014-01-01

    LISA Pathfinder (LPF), the precursor mission to a gravitational wave observatory of the European Space Agency, will measure the degree to which two test masses can be put into free fall, aiming to demonstrate a suppression of disturbance forces corresponding to a residual relative acceleration with a power spectral density (PSD) below (30 fm/sq s/Hz)(sup 2) around 1 mHz. In LPF data analysis, the disturbance forces are obtained as the difference between the acceleration data and a linear combination of other measured data series. In many circumstances, the coefficients for this linear combination are obtained by fitting these data series to the acceleration, and the disturbance forces appear then as the data series of the residuals of the fit. Thus the background noise or, more precisely, its PSD, whose knowledge is needed to build up the likelihood function in ordinary maximum likelihood fitting, is here unknown, and its estimate constitutes instead one of the goals of the fit. In this paper we present a fitting method that does not require the knowledge of the PSD of the background noise. The method is based on the analytical marginalization of the posterior parameter probability density with respect to the background noise PSD, and returns an estimate both for the fitting parameters and for the PSD. We show that both these estimates are unbiased, and that, when using averaged Welchs periodograms for the residuals, the estimate of the PSD is consistent, as its error tends to zero with the inverse square root of the number of averaged periodograms. Additionally, we find that the method is equivalent to some implementations of iteratively reweighted least-squares fitting. We have tested the method both on simulated data of known PSD and on data from several experiments performed with the LISA Pathfinder end-to-end mission simulator.

  17. Towards the LISA backlink: experiment design for comparing optical phase reference distribution systems

    NASA Astrophysics Data System (ADS)

    Isleif, Katharina-Sophie; Bischof, Lea; Ast, Stefan; Penkert, Daniel; Schwarze, Thomas S.; Fernández Barranco, Germán; Zwetz, Max; Veith, Sonja; Hennig, Jan-Simon; Tröbs, Michael; Reiche, Jens; Gerberding, Oliver; Danzmann, Karsten; Heinzel, Gerhard

    2018-04-01

    LISA is a proposed space-based laser interferometer detecting gravitational waves by measuring distances between free-floating test masses housed in three satellites in a triangular constellation with laser links in-between. Each satellite contains two optical benches that are articulated by moving optical subassemblies for compensating the breathing angle in the constellation. The phase reference distribution system, also known as backlink, forms an optical bi-directional path between the intra-satellite benches. In this work we discuss phase reference implementations with a target non-reciprocity of at most 2π μrad \\sqrtHz-1 , equivalent to 1 pm \\sqrtHz-1 for a wavelength of 1064 nm in the frequency band from 0.1 mHz to 1 Hz. One phase reference uses a steered free beam connection, the other one a fiber together with additional laser frequencies. The noise characteristics of these implementations will be compared in a single interferometric set-up with a previously successfully tested direct fiber connection. We show the design of this interferometer created by optical simulations including ghost beam analysis, component alignment and noise estimation. First experimental results of a free beam laser link between two optical set-ups that are co-rotating by  ±1° are presented. This experiment demonstrates sufficient thermal stability during rotation of less than 10‑4 K \\sqrtHz-1 at 1 mHz and operation of the free beam steering mirror control over more than 1 week.

  18. PETER: A Hardware Simulator for the Test Mass-GRS System of LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Marconi, L.; Stanga, R.; Bassan, M.; De Marchi, F.; Pucacco, G.; Visco, M.; Di Fiore, L.; De Rosa, R.; Garufi, F.

    2013-01-01

    Each LISA PathFinder test mass (TM) will be sensitive to forces along all its 6 Degrees of Freedom (DoFs). Extensive ground testing is required in order to evaluate the influence of cross-talks from the read-out and actuator channels. In the INFN laboratory of Firenze we have developed a facility for a good representation of the free fall conditions of the TM on flight. A hollow replica of a TM hanging from a double torsion pendulum can move inside a Gravitational Reference Sensor (GRS) with quasi free fall condition on two Dofs, in the frequency band (0.1 ÷ 100)mHz. On both DoFs, the target residual accelerations (yet to be achieved) at the low end frequency range are ≤ 3 × 10-13ms-2, limited by the thermal noise of the fibres. At higher frequencies, the sensitivity is limited by the readout noise of the readout, a replica of the flight electronics. After a long commissioning, we are now in operating conditions, and can carry out a series of experiments to better qualify the interaction between TM and GRS. In this paper we will show some significant qualification measurements and a first scientific measurements, i.e. the measurement and compensation of the DC bias in the GRS using two independent channels, as well as a measurement of the residual acceleration of the translational DoF, with the feedback loop closed on the rotational one, and viceversa.

  19. Digital Holographic Interferometry for Airborne Particle Characterization

    DTIC Science & Technology

    2015-03-19

    Interferometry and polarimetry for aerosol particle characterization, Bioaerosols: Characterization and Environmental Impact, Austin, TX (2014) [organizer...and conference chair]. 6. Invited talk: Holographic Interferometry and polarimetry for aerosol particle characterization, Optical...Stokes parameters, NATO Advanced Science Institute on Special Detection Technique ( Polarimetry ) and Remote Sensing, Kyiv, Ukraine (2010). (c

  20. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    ERIC Educational Resources Information Center

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-01-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of…

Top