ZOOM Lite: next-generation sequencing data mapping and visualization software
Zhang, Zefeng; Lin, Hao; Ma, Bin
2010-01-01
High-throughput next-generation sequencing technologies pose increasing demands on the efficiency, accuracy and usability of data analysis software. In this article, we present ZOOM Lite, a software for efficient reads mapping and result visualization. With a kernel capable of mapping tens of millions of Illumina or AB SOLiD sequencing reads efficiently and accurately, and an intuitive graphical user interface, ZOOM Lite integrates reads mapping and result visualization into a easy to use pipeline on desktop PC. The software handles both single-end and paired-end reads, and can output both the unique mapping result or the top N mapping results for each read. Additionally, the software takes a variety of input file formats and outputs to several commonly used result formats. The software is freely available at http://bioinfor.com/zoom/lite/. PMID:20530531
Development of Extravehicular Visor Assembly (EVVA)
NASA Technical Reports Server (NTRS)
Davis, Kristine
2017-01-01
For the next generation of NASA's space suits, being able to enable an architecture for microgravity and planetary capabilities is required. To support these future missions, we will need exemplary support hardware to be designed, such as a new extravehicular visor assembly (EVVA). This EVVA will carry out its heritage mission of protecting the astronauts' eyes from harmful radiation, giving needed shade, and providing thermal protection, while also incorporating new designs that maximize overhead visibility and incorporate new technology. It will be designed to adapt with xEMU lite, a next-generation suit architecture Completed market research and literature reviews center dotSet up a NASA@Workchallenge "Incorporating Active TintableElectronic Coatings into Next Generation Space Suit Visor." center dotContacted Boeing and AlphaMicron to understand COTS solutions on the market and how they could be applied to the space suit design. oFound that there are many advantages to an active coating because of reduced mechanisms, an inherent dust tolerant design, and auto-sense capabilities. However, the COTS designs are not currently compatible with the xEMU lite form factor, the space environment, and the xEMU lite power requirement. COTS designs can also fail in the off/transparent state. center dotPursuing low TRL funding sources for future development for exploration EVA space suit Boeing 787
SSUSI-Lite: a far-ultraviolet hyper-spectral imager for space weather remote sensing
NASA Astrophysics Data System (ADS)
Ogorzalek, Bernard; Osterman, Steven; Carlsson, Uno; Grey, Matthew; Hicks, John; Hourani, Ramsey; Kerem, Samuel; Marcotte, Kathryn; Parker, Charles; Paxton, Larry J.
2015-09-01
SSUSI-Lite is a far-ultraviolet (115-180nm) hyperspectral imager for monitoring space weather. The SSUSI and GUVI sensors, its predecessors, have demonstrated their value as space weather monitors. SSUSI-Lite is a refresh of the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) design that has flown on the Defense Meteorological Satellite Program (DMSP) spacecraft F16 through F19. The refresh updates the 25-year-old design and insures that the next generation of SSUSI/GUVI sensors can be accommodated on any number of potential platforms. SSUSI-Lite maintains the same optical layout as SSUSI, includes updates to key functional elements, and reduces the sensor volume, mass, and power requirements. SSUSI-Lite contains an improved scanner design that results in precise mirror pointing and allows for variable scan profiles. The detector electronics have been redesigned to employ all digital pulse processing. The largest decrease in volume, mass, and power has been obtained by consolidating all control and power electronics into one data processing unit.
The Implementation of Satellite Attitude Control System Software Using Object Oriented Design
NASA Technical Reports Server (NTRS)
Reid, W. Mark; Hansell, William; Phillips, Tom; Anderson, Mark O.; Drury, Derek
1998-01-01
NASA established the Small Explorer (SNMX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions. The SMEX program has produced five satellites, three of which have been successfully launched. The remaining two spacecraft are scheduled for launch within the coming year. NASA has recently developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS) software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS software architecture. Next, the context in which the software resides is explained. The paper describes the principles of encapsulation, inheritance, and polymorphism with respect to the implementation of an ACS software system. This paper will also discuss the design of several ACS software components. Specifically, object-oriented designs are presented for sensor data processing, attitude determination, attitude control, and failure detection. Finally, this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects.
LiteBIRD: mission overview and design tradeoffs
NASA Astrophysics Data System (ADS)
Matsumura, T.; Akiba, Y.; Borrill, J.; Chinone, Y.; Dobbs, M.; Fuke, H.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hazumi, M.; Holzapfel, W.; Hori, Y.; Inatani, J.; Inoue, M.; Inoue, Y.; Ishidoshiro, K.; Ishino, H.; Ishitsuka, H.; Karatsu, K.; Kashima, S.; Katayama, N.; Kawano, I.; Kibayashi, A.; Kibe, Y.; Kimura, K.; Kimura, N.; Komatsu, E.; Kozu, M.; Koga, K.; Lee, A.; Matsuhara, H.; Mima, S.; Mitsuda, K.; Mizukami, K.; Morii, H.; Morishima, T.; Nagai, M.; Nagata, R.; Nakamura, S.; Naruse, M.; Namikawa, T.; Natsume, K.; Nishibori, T.; Nishijo, K.; Nishino, H.; Noda, A.; Noguchi, T.; Ogawa, H.; Oguri, S.; Ohta, I. S.; Okada, N.; Otani, C.; Richards, P.; Sakai, S.; Sato, N.; Sato, Y.; Segawa, Y.; Sekimoto, Y.; Shinozaki, K.; Sugita, H.; Suzuki, A.; Suzuki, T.; Tajima, O.; Takada, S.; Takakura, S.; Takei, Y.; Tomaru, T.; Uzawa, Y.; Wada, T.; Watanabe, H.; Yamada, Y.; Yamaguchi, H.; Yamasaki, N.; Yoshida, M.; Yoshida, T.; Yotsumoto, K.
2014-08-01
We present the mission design of LiteBIRD, a next generation satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation (CMB) detection. The science goal of LiteBIRD is to measure the CMB polarization with the sensitivity of δr = 0:001, and this allows testing the major single-field slow-roll inflation models experimentally. The LiteBIRD instrumental design is purely driven to achieve this goal. At the earlier stage of the mission design, several key instrumental specifications, e.g. observing band, optical system, scan strategy, and orbit, need to be defined in order to process the rest of the detailed design. We have gone through the feasibility studies for these items in order to understand the tradeoffs between the requirements from the science goal and the compatibilities with a satellite bus system. We describe the overview of LiteBIRD and discuss the tradeoffs among the choices of scientific instrumental specifications and strategies. The first round of feasibility studies will be completed by the end of year 2014 to be ready for the mission definition review and the target launch date is in early 2020s.
SSUSI-lite: next generation far-ultraviolet sensor for characterizing geospace
NASA Astrophysics Data System (ADS)
Paxton, Larry J.; Hicks, John E.; Grey, Matthew P.; Parker, Charles W.; Hourani, Ramsay S.; Marcotte, Kathryn M.; Carlsson, Uno P.; Kerem, Samuel; Osterman, Steven N.; Maas, Bryan J.; Ogorzalek, Bernard S.
2016-10-01
SSUSI-Lite is an update of an existing sensor, SSUSI. The current generation of Defense Meteorological Satellite Program (DMSP) satellites (Block 5D3) includes a hyperspectral, cross-tracking imaging spectrograph known as the Special Sensor Ultraviolet Spectrographic Imager (SSUSI). SSUSI has been part of the DMSP program since 1990. SSUSI is designed to provide space weather information such as: auroral imagery, ionospheric electron density profiles, and neutral density composition changes. The sensors that are flying today (see http://ssusi.jhuapl.edu) were designed in 1990 - 1992. There have been some significant improvements in flight hardware since then. The SSUSI-Lite instrument is more capable than SSUSI yet consumes ½ the power and is ½ the mass. The total package count (and as a consequence, integration cost and difficulty) was reduced from 7 to 2. The scan mechanism was redesigned and tested and is a factor of 10 better. SSUSI-Lite can be flown as a hosted payload or a rideshare - it only needs about 10 watts and weighs under 10 kg. We will show results from tests of an interesting intensified position sensitive anode pulse counting detector system. We use this approach because the SSUSI sensor operates in the far ultraviolet - from about 110 to 180 nm or 0.11 to 0.18 microns.
Test Generation for Highly Sequential Circuits
1989-08-01
Sequential CircuitsI Abhijit Ghosh, Srinivas Devadas , and A. Richard Newton Abstract We address the problem of generating test sequences for stuck-at...Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720. Devadas : Department of Electrical Engineering and Computer...attn1 b ~een propagatedl to ltne nnext state lites aloine. then we obtain tine fnalty Is as bit. valunes is called A miniteri state. Iti genecral. a
A Next-Generation Sequencing Primer—How Does It Work and What Can It Do?
Alekseyev, Yuriy O.; Fazeli, Roghayeh; Yang, Shi; Basran, Raveen; Miller, Nancy S.
2018-01-01
Next-generation sequencing refers to a high-throughput technology that determines the nucleic acid sequences and identifies variants in a sample. The technology has been introduced into clinical laboratory testing and produces test results for precision medicine. Since next-generation sequencing is relatively new, graduate students, medical students, pathology residents, and other physicians may benefit from a primer to provide a foundation about basic next-generation sequencing methods and applications, as well as specific examples where it has had diagnostic and prognostic utility. Next-generation sequencing technology grew out of advances in multiple fields to produce a sophisticated laboratory test with tremendous potential. Next-generation sequencing may be used in the clinical setting to look for specific genetic alterations in patients with cancer, diagnose inherited conditions such as cystic fibrosis, and detect and profile microbial organisms. This primer will review DNA sequencing technology, the commercialization of next-generation sequencing, and clinical uses of next-generation sequencing. Specific applications where next-generation sequencing has demonstrated utility in oncology are provided. PMID:29761157
NPS Cubesat Launcher-Lite Sequencer
2009-06-01
AND SUBTITLE NPS Cubesat Launcher-Lite Sequencer 6. AUTHOR(S) Harris, Anthony D. 5. FUNDING NUMBERS RSPXL 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY...international nanosatellite manufacturers. On April 28, 2009, Indian Space Research Organization launched 8 nanosatellites on the Polar Satellite Launch
How well can future CMB missions constrain cosmic inflation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jérôme; Vennin, Vincent; Ringeval, Christophe, E-mail: jmartin@iap.fr, E-mail: christophe.ringeval@uclouvain.be, E-mail: vennin@iap.fr
2014-10-01
We study how the next generation of Cosmic Microwave Background (CMB) measurement missions (such as EPIC, LiteBIRD, PRISM and COrE) will be able to constrain the inflationary landscape in the hardest to disambiguate situation in which inflation is simply described by single-field slow-roll scenarios. Considering the proposed PRISM and LiteBIRD satellite designs, we simulate mock data corresponding to five different fiducial models having values of the tensor-to-scalar ratio ranging from 10{sup -1} down to 10{sup -7}. We then compute the Bayesian evidences and complexities of all Encyclopædia Inflationaris models in order to assess the constraining power of PRISM alone andmore » LiteBIRD complemented with the Planck 2013 data. Within slow-roll inflation, both designs have comparable constraining power and can rule out about three quarters of the inflationary scenarios, compared to one third for Planck 2013 data alone. However, we also show that PRISM can constrain the scalar running and has the capability to detect a violation of slow roll at second order. Finally, our results suggest that describing an inflationary model by its potential shape only, without specifying a reheating temperature, will no longer be possible given the accuracy level reached by the future CMB missions.« less
Gong, Jun; Pan, Kathy; Fakih, Marwan; Pal, Sumanta; Salgia, Ravi
2018-03-20
Advancements in next-generation sequencing have greatly enhanced the development of biomarker-driven cancer therapies. The affordability and availability of next-generation sequencers have allowed for the commercialization of next-generation sequencing platforms that have found widespread use for clinical-decision making and research purposes. Despite the greater availability of tumor molecular profiling by next-generation sequencing at our doorsteps, the achievement of value-based care, or improving patient outcomes while reducing overall costs or risks, in the era of precision oncology remains a looming challenge. In this review, we highlight available data through a pre-established and conceptualized framework for evaluating value-based medicine to assess the cost (efficiency), clinical benefit (effectiveness), and toxicity (safety) of genomic profiling in cancer care. We also provide perspectives on future directions of next-generation sequencing from targeted panels to whole-exome or whole-genome sequencing and describe potential strategies needed to attain value-based genomics.
Gong, Jun; Pan, Kathy; Fakih, Marwan; Pal, Sumanta; Salgia, Ravi
2018-01-01
Advancements in next-generation sequencing have greatly enhanced the development of biomarker-driven cancer therapies. The affordability and availability of next-generation sequencers have allowed for the commercialization of next-generation sequencing platforms that have found widespread use for clinical-decision making and research purposes. Despite the greater availability of tumor molecular profiling by next-generation sequencing at our doorsteps, the achievement of value-based care, or improving patient outcomes while reducing overall costs or risks, in the era of precision oncology remains a looming challenge. In this review, we highlight available data through a pre-established and conceptualized framework for evaluating value-based medicine to assess the cost (efficiency), clinical benefit (effectiveness), and toxicity (safety) of genomic profiling in cancer care. We also provide perspectives on future directions of next-generation sequencing from targeted panels to whole-exome or whole-genome sequencing and describe potential strategies needed to attain value-based genomics. PMID:29644010
Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.
Elingaramil, Sauli; Li, Xiaolong; He, Nongyue
2013-07-01
Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.
A Window Into Clinical Next-Generation Sequencing-Based Oncology Testing Practices.
Nagarajan, Rakesh; Bartley, Angela N; Bridge, Julia A; Jennings, Lawrence J; Kamel-Reid, Suzanne; Kim, Annette; Lazar, Alexander J; Lindeman, Neal I; Moncur, Joel; Rai, Alex J; Routbort, Mark J; Vasalos, Patricia; Merker, Jason D
2017-12-01
- Detection of acquired variants in cancer is a paradigm of precision medicine, yet little has been reported about clinical laboratory practices across a broad range of laboratories. - To use College of American Pathologists proficiency testing survey results to report on the results from surveys on next-generation sequencing-based oncology testing practices. - College of American Pathologists proficiency testing survey results from more than 250 laboratories currently performing molecular oncology testing were used to determine laboratory trends in next-generation sequencing-based oncology testing. - These presented data provide key information about the number of laboratories that currently offer or are planning to offer next-generation sequencing-based oncology testing. Furthermore, we present data from 60 laboratories performing next-generation sequencing-based oncology testing regarding specimen requirements and assay characteristics. The findings indicate that most laboratories are performing tumor-only targeted sequencing to detect single-nucleotide variants and small insertions and deletions, using desktop sequencers and predesigned commercial kits. Despite these trends, a diversity of approaches to testing exists. - This information should be useful to further inform a variety of topics, including national discussions involving clinical laboratory quality systems, regulation and oversight of next-generation sequencing-based oncology testing, and precision oncology efforts in a data-driven manner.
Hoogestraat, Daniel R.; Abbott, April N.; SenGupta, Dhruba J.; Cummings, Lisa A.; Butler-Wu, Susan M.; Stephens, Karen; Cookson, Brad T.; Hoffman, Noah G.
2014-01-01
Some bacterial infections involve potentially complex mixtures of species that can now be distinguished using next-generation DNA sequencing. We present a case of mastoiditis where Gram stain, culture, and molecular diagnosis were nondiagnostic or discrepant. Next-generation sequencing implicated coinfection of Fusobacterium nucleatum and Actinomyces israelii, resolving these diagnostic discrepancies. PMID:24574281
Habitat-Lite: A GSC case study based on free text terms for environmental metadata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyrpides, Nikos; Hirschman, Lynette; Clark, Cheryl
2008-04-01
There is an urgent need to capture metadata on the rapidly growing number of genomic, metagenomic and related sequences, such as 16S ribosomal genes. This need is a major focus within the Genomic Standards Consortium (GSC), and Habitat is a key metadata descriptor in the proposed 'Minimum Information about a Genome Sequence' (MIGS) specification. The goal of the work described here is to provide a light-weight, easy-to-use (small) set of terms ('Habitat-Lite') that captures high-level information about habitat while preserving a mapping to the recently launched Environment Ontology (EnvO). Our motivation for building Habitat-Lite is to meet the needs ofmore » multiple users, such as annotators curating these data, database providers hosting the data, and biologists and bioinformaticians alike who need to search and employ such data in comparative analyses. Here, we report a case study based on semi-automated identification of terms from GenBank and GOLD. We estimate that the terms in the initial version of Habitat-Lite would provide useful labels for over 60% of the kinds of information found in the GenBank isolation-source field, and around 85% of the terms in the GOLD habitat field. We present a revised version of Habitat-Lite and invite the community's feedback on its further development in order to provide a minimum list of terms to capture high-level habitat information and to provide classification bins needed for future studies.« less
2016-07-06
1 Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes Christopher P...development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the...padlock and molecular inversion probes as upfront enrichment steps for use with NGS showed the specificity and multiplexability of these techniques
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing technologies were used to rapidly and efficiently sequence the genome of the domestic turkey (Meleagris gallopavo). The current genome assembly (~1.1 Gb) includes 917 Mb of sequence assigned to chromosomes. Innate heterozygosity of the sequenced bird allowed discovery of...
RepeatsDB-lite: a web server for unit annotation of tandem repeat proteins.
Hirsh, Layla; Paladin, Lisanna; Piovesan, Damiano; Tosatto, Silvio C E
2018-05-09
RepeatsDB-lite (http://protein.bio.unipd.it/repeatsdb-lite) is a web server for the prediction of repetitive structural elements and units in tandem repeat (TR) proteins. TRs are a widespread but poorly annotated class of non-globular proteins carrying heterogeneous functions. RepeatsDB-lite extends the prediction to all TR types and strongly improves the performance both in terms of computational time and accuracy over previous methods, with precision above 95% for solenoid structures. The algorithm exploits an improved TR unit library derived from the RepeatsDB database to perform an iterative structural search and assignment. The web interface provides tools for analyzing the evolutionary relationships between units and manually refine the prediction by changing unit positions and protein classification. An all-against-all structure-based sequence similarity matrix is calculated and visualized in real-time for every user edit. Reviewed predictions can be submitted to RepeatsDB for review and inclusion.
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing technology such as genotyping-by-sequencing (GBS) made low-cost, but often low-coverage, whole-genome sequencing widely available. Extensive inbreeding in crop plants provides an untapped, high quality source of phased haplotypes for imputing missing genotypes. We introduc...
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing technologies are able to produce high-throughput short sequence reads in a cost-effective fashion. The emergence of these technologies has not only facilitated genome sequencing but also changed the landscape of life sciences. Here I survey their major applications ranging...
Next generation sequencers: methods and applications in food-borne pathogens
USDA-ARS?s Scientific Manuscript database
Next generation sequencers are able to produce millions of short sequence reads in a high-throughput, low-cost way. The emergence of these technologies has not only facilitated genome sequencing but also started to change the landscape of life sciences. This chapter will survey their methods and app...
USDA-ARS?s Scientific Manuscript database
Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...
USDA-ARS?s Scientific Manuscript database
Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...
JVM: Java Visual Mapping tool for next generation sequencing read.
Yang, Ye; Liu, Juan
2015-01-01
We developed a program JVM (Java Visual Mapping) for mapping next generation sequencing read to reference sequence. The program is implemented in Java and is designed to deal with millions of short read generated by sequence alignment using the Illumina sequencing technology. It employs seed index strategy and octal encoding operations for sequence alignments. JVM is useful for DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a desktop application, which supports reads capacity from 1 MB to 10 GB.
Next Generation Sequencing at the University of Chicago Genomics Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faber, Pieter
2013-04-24
The University of Chicago Genomics Core provides University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation sequencing, Sanger sequencing / genotyping and micro-arrays (gene expression, genotyping, and methylation). The current presentation will highlight our capabilities in the area of ultra-high throughput sequencing analysis.
Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni
2013-01-01
Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID:23950653
Next-generation sequencing for targeted discovery of rare mutations in rice
USDA-ARS?s Scientific Manuscript database
Advances in DNA sequencing (i.e., next-generation sequencing, NGS) have greatly increased the power and efficiency of detecting rare mutations in large mutant populations. Targeting Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach for identifying gene mutations resulting fro...
Gürtler, Nicolas; Röthlisberger, Benno; Ludin, Katja; Schlegel, Christoph; Lalwani, Anil K
2017-07-01
Identification of the causative mutation using next-generation sequencing in autosomal-dominant hereditary hearing impairment, as mutation analysis in hereditary hearing impairment by classic genetic methods, is hindered by the high heterogeneity of the disease. Two Swiss families with autosomal-dominant hereditary hearing impairment. Amplified DNA libraries for next-generation sequencing were constructed from extracted genomic DNA, derived from peripheral blood, and enriched by a custom-made sequence capture library. Validated, pooled libraries were sequenced on an Illumina MiSeq instrument, 300 cycles and paired-end sequencing. Technical data analysis was performed with SeqMonk, variant analysis with GeneTalk or VariantStudio. The detection of mutations in genes related to hearing loss by next-generation sequencing was subsequently confirmed using specific polymerase-chain-reaction and Sanger sequencing. Mutation detection in hearing-loss-related genes. The first family harbored the mutation c.5383+5delGTGA in the TECTA-gene. In the second family, a novel mutation c.2614-2625delCATGGCGCCGTG in the WFS1-gene and a second mutation TCOF1-c.1028G>A were identified. Next-generation sequencing successfully identified the causative mutation in families with autosomal-dominant hereditary hearing impairment. The results helped to clarify the pathogenic role of a known mutation and led to the detection of a novel one. NGS represents a feasible approach with great potential future in the diagnostics of hereditary hearing impairment, even in smaller labs.
Campbell, Catherine
2018-01-22
Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Catherine
Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Next generation sequencing provides rapid access to the genome of wheat stripe rust
USDA-ARS?s Scientific Manuscript database
Background: The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST) is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS) has ra...
The invention of new approaches to DNA sequencing commonly referred to as next generation sequencing technologies is revolutionizing the study of microbial diversity. In this chapter, we discuss the characterization of microbial population structures in recreational waters and p...
ERIC Educational Resources Information Center
Bowling, Bethany; Zimmer, Erin; Pyatt, Robert E.
2014-01-01
Although the development of next-generation (NextGen) sequencing technologies has revolutionized genomic research and medicine, the incorporation of these topics into the classroom is challenging, given an implied high degree of technical complexity. We developed an easy-to-implement, interactive classroom activity investigating the similarities…
Caruccio, Nicholas
2011-01-01
DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.
Next-Generation Sequencing in the Mycology Lab.
Zoll, Jan; Snelders, Eveline; Verweij, Paul E; Melchers, Willem J G
New state-of-the-art techniques in sequencing offer valuable tools in both detection of mycobiota and in understanding of the molecular mechanisms of resistance against antifungal compounds and virulence. Introduction of new sequencing platform with enhanced capacity and a reduction in costs for sequence analysis provides a potential powerful tool in mycological diagnosis and research. In this review, we summarize the applications of next-generation sequencing techniques in mycology.
USDA-ARS?s Scientific Manuscript database
Advances in Next Generation Sequencing (NGS) allow for rapid development of genomics resources needed to generate molecular diagnostics assays for infectious agents. NGS approaches are particularly helpful for organisms that cannot be cultured, such as the downy mildew pathogens, a group of biotrop...
2013-01-01
Background Next generation sequencing technologies have greatly advanced many research areas of the biomedical sciences through their capability to generate massive amounts of genetic information at unprecedented rates. The advent of next generation sequencing has led to the development of numerous computational tools to analyze and assemble the millions to billions of short sequencing reads produced by these technologies. While these tools filled an important gap, current approaches for storing, processing, and analyzing short read datasets generally have remained simple and lack the complexity needed to efficiently model the produced reads and assemble them correctly. Results Previously, we presented an overlap graph coarsening scheme for modeling read overlap relationships on multiple levels. Most current read assembly and analysis approaches use a single graph or set of clusters to represent the relationships among a read dataset. Instead, we use a series of graphs to represent the reads and their overlap relationships across a spectrum of information granularity. At each information level our algorithm is capable of generating clusters of reads from the reduced graph, forming an integrated graph modeling and clustering approach for read analysis and assembly. Previously we applied our algorithm to simulated and real 454 datasets to assess its ability to efficiently model and cluster next generation sequencing data. In this paper we extend our algorithm to large simulated and real Illumina datasets to demonstrate that our algorithm is practical for both sequencing technologies. Conclusions Our overlap graph theoretic algorithm is able to model next generation sequencing reads at various levels of granularity through the process of graph coarsening. Additionally, our model allows for efficient representation of the read overlap relationships, is scalable for large datasets, and is practical for both Illumina and 454 sequencing technologies. PMID:24564333
Gao, M L; Zhong, X M; Ma, X; Ning, H J; Zhu, D; Zou, J Z
2016-06-02
To make genetic diagnosis of Alagille syndrome (ALGS) patients using target gene sequence capture and next generation sequencing technology. Target gene sequence capture and next generation sequencing were used to detect ALGS gene of 4 patients. They were hospitalized at the Affiliated Hospital, Capital Institute of Pediatrics between January 2014 and December 2015, referred to clinical diagnosis of ALGS typical and atypical respectively in 2 cases. Blood samples were collected from patients and their parents and genomic DNA was extracted from lymphocytes. Target gene sequence capture and next generation sequencing was detected. Sanger sequencing was used to confirm the results of the patients and their parents. Cholestasis, heart defects, inverted triangular face and butterfly vertebrae were presented as main clinical features in 4 male patients. The first hospital visiting ages ranged from 3 months and 14 days to 3 years and 1 month. The age of onset ranged from 3 days to 42 days (median 23 days). According to the clinical diagnostic criteria of ALGS, patient 1 and patient 2 were considered as typical ALGS. The other 2 patients were considered as atypical ALGS. Four Jagged 1(JAG1) pathogenic mutations were detected. Three different missense mutations were detected in patient 1 to patient 3 with ALGS(c.839C>T(p.W280X), c. 703G>A(p.R235X), c. 1720C>T(p.V574M)). The JAG1 mutation of patient 3 was first reported. Patient 4 had one novel insertion mutation (c.1779_1780insA(p.Ile594AsnfsTer23)). Parental analysis verified that the JAG1 missense mutation of 3 patients were de novo. The results of sanger sequencing was consistent with the results of the next generation sequencing. Target gene sequence capture combined with next generation sequencing can detect two pathogenic genes in ALGS and test genes of other related diseases in infantile cholestatic diseases simultaneously and presents a high throughput, high efficiency and low cost. It may provide molecular diagnosis and treatment for clinicians with good clinical application prospects.
Advanced Applications of Next-Generation Sequencing Technologies to Orchid Biology.
Yeh, Chuan-Ming; Liu, Zhong-Jian; Tsai, Wen-Chieh
2018-01-01
Next-generation sequencing technologies are revolutionizing biology by permitting, transcriptome sequencing, whole-genome sequencing and resequencing, and genome-wide single nucleotide polymorphism profiling. Orchid research has benefited from this breakthrough, and a few orchid genomes are now available; new biological questions can be approached and new breeding strategies can be designed. The first part of this review describes the unique features of orchid biology. The second part provides an overview of the current next-generation sequencing platforms, many of which are already used in plant laboratories. The third part summarizes the state of orchid transcriptome and genome sequencing and illustrates current achievements. The genetic sequences currently obtained will not only provide a broad scope for the study of orchid biology, but also serves as a starting point for uncovering the mystery of orchid evolution.
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Next-generation sequencing projects commonly commence by aligning reads to a reference genome assembly. While improvements in alignment algorithms and computational hardware have greatly enhanced the efficiency and accuracy of alignments, a significant percentage of reads often remain u...
NASA Astrophysics Data System (ADS)
Bender, Amy N.; Cliche, Jean-François; de Haan, Tijmen; Dobbs, Matt A.; Gilbert, Adam J.; Montgomery, Joshua; Rowlands, Neil; Smecher, Graeme M.; Smith, Ken; Wilson, Andrew
2014-07-01
Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This is achieved by increasing the system bandwidth, reducing the dynamic range requirements though active feedback, and digital synthesis of voltage biases with a novel polyphase filter algorithm. In addition, a version of the new fMux readout includes features such as low power consumption and radiation-hard components making it viable for future space-based millimeter telescopes such as the LiteBIRD satellite.
Ai, Jing-Wen; Li, Yang; Cheng, Qi; Cui, Peng; Wu, Hong-Long; Xu, Bin; Zhang, Wen-Hong
2018-06-01
A 45-year-old man who complained of continuous fever and multiple hepatic masses was admitted to our hospital. Repeated MRI manifestations were similar while each radiological report suggested contradictory diagnosis pointing to infections or malignances respectively. Pathologic examination of the liver tissue showed no direct evidence of either infections or tumor. We performed next-generation sequencing on the liver tissue and peripheral blood to further investigate the possible etiology. High throughput sequencing was performed on the liver lesion tissues using BGISEQ-100 platform, and data was mapped to the Microbial Genome Databases after filtering low quality data and human reads. We identified a total of 299 sequencing reads of Mycobacterium tuberculosis (M. tuberculosis) complex sequences from the liver tissue, including 8, 229 of 4,424,435 of the M. tuberculosis nucleotide sequences, and Mycobacterium africanum, Mycobacterium bovis, and Mycobacterium canettii were also detected due to the 99.9% identical rate among these strains. No specific Mycobacterial tuberculosis nucleotide sequence was detected in the sample of peripheral blood. Patient's symptom quickly recovered after anti-tuberculosis treatment and repeated Ziehl-Neelsen staining of the liver tissue finally identified small numbers of positive bacillus. The diagnosis of this patient was difficult to establish before the next-generation sequencing because of contradictive radiological results and negative pathological findings. More sensitive diagnostic methods are urgently needed. This is the first case reporting hepatic tuberculosis confirmed by the next-generation sequencing, and marks the promising potential of the application of the next-generation sequencing in the diagnosis of hepatic lesions with unknown etiology. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Next generation sequencing (NGS) technology was used to analyze the occurrence of viruses in Sorghum almum plants in Florida exhibiting mosaic symptoms. Total RNA was extracted from symptomatic leaves and used as a template for cDNA library preparation. The resulting library was sequenced on an Illu...
Design of association studies with pooled or un-pooled next-generation sequencing data.
Kim, Su Yeon; Li, Yingrui; Guo, Yiran; Li, Ruiqiang; Holmkvist, Johan; Hansen, Torben; Pedersen, Oluf; Wang, Jun; Nielsen, Rasmus
2010-07-01
Most common hereditary diseases in humans are complex and multifactorial. Large-scale genome-wide association studies based on SNP genotyping have only identified a small fraction of the heritable variation of these diseases. One explanation may be that many rare variants (a minor allele frequency, MAF <5%), which are not included in the common genotyping platforms, may contribute substantially to the genetic variation of these diseases. Next-generation sequencing, which would allow the analysis of rare variants, is now becoming so cheap that it provides a viable alternative to SNP genotyping. In this paper, we present cost-effective protocols for using next-generation sequencing in association mapping studies based on pooled and un-pooled samples, and identify optimal designs with respect to total number of individuals, number of individuals per pool, and the sequencing coverage. We perform a small empirical study to evaluate the pooling variance in a realistic setting where pooling is combined with exon-capturing. To test for associations, we develop a likelihood ratio statistic that accounts for the high error rate of next-generation sequencing data. We also perform extensive simulations to determine the power and accuracy of this method. Overall, our findings suggest that with a fixed cost, sequencing many individuals at a more shallow depth with larger pool size achieves higher power than sequencing a small number of individuals in higher depth with smaller pool size, even in the presence of high error rates. Our results provide guidelines for researchers who are developing association mapping studies based on next-generation sequencing. (c) 2010 Wiley-Liss, Inc.
Wu, Wei; Lu, Chao-Xia; Wang, Yi-Ning; Liu, Fang; Chen, Wei; Liu, Yong-Tai; Han, Ye-Chen; Cao, Jian; Zhang, Shu-Yang; Zhang, Xue
2015-07-10
MYBPC3 dysfunctions have been proven to induce dilated cardiomyopathy, hypertrophic cardiomyopathy, and/or left ventricular noncompaction; however, the genotype-phenotype correlation between MYBPC3 and restrictive cardiomyopathy (RCM) has not been established. The newly developed next-generation sequencing method is capable of broad genomic DNA sequencing with high throughput and can help explore novel correlations between genetic variants and cardiomyopathies. A proband from a multigenerational family with 3 live patients and 1 unrelated patient with clinical diagnoses of RCM underwent a next-generation sequencing workflow based on a custom AmpliSeq panel, including 64 candidate pathogenic genes for cardiomyopathies, on the Ion Personal Genome Machine high-throughput sequencing benchtop instrument. The selected panel contained a total of 64 genes that were reportedly associated with inherited cardiomyopathies. All patients fulfilled strict criteria for RCM with clinical characteristics, echocardiography, and/or cardiac magnetic resonance findings. The multigenerational family with 3 adult RCM patients carried an identical nonsense MYBPC3 mutation, and the unrelated patient carried a missense mutation in the MYBPC3 gene. All of these results were confirmed by the Sanger sequencing method. This study demonstrated that MYBPC3 gene mutations, revealed by next-generation sequencing, were associated with familial and sporadic RCM patients. It is suggested that the next-generation sequencing platform with a selected panel provides a highly efficient approach for molecular diagnosis of hereditary and idiopathic RCM and helps build new genotype-phenotype correlations. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Detection of Bacillus anthracis DNA in Complex Soil and Air Samples Using Next-Generation Sequencing
Be, Nicholas A.; Thissen, James B.; Gardner, Shea N.; McLoughlin, Kevin S.; Fofanov, Viacheslav Y.; Koshinsky, Heather; Ellingson, Sally R.; Brettin, Thomas S.; Jackson, Paul J.; Jaing, Crystal J.
2013-01-01
Bacillus anthracis is the potentially lethal etiologic agent of anthrax disease, and is a significant concern in the realm of biodefense. One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis. We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis. We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing. Our results, in combination with the capacity of sequencing for providing insights into the genomic characteristics of complex and novel organisms, suggest that these platforms should be considered important components of a biosurveillance strategy. PMID:24039948
Fu, Xiaona; Liu, Aijie; Yang, Haipo; Wei, Cuijie; Ding, Juan; Wang, Shuang; Wang, Jingmin; Yuan, Yun; Jiang, Yuwu; Xiong, Hui
2015-10-01
To elucidate the usefulness of next generation sequencing for diagnosis of inherited myopathy, and to analyze the relevance between clinical phenotype and genotype in inherited myopathy. Related genes were selected for SureSelect target enrichment system kit (Panel Version 1 and Panel Version 2). A total of 134 patients who were diagnosed as inherited myopathy clinically underwent next generation sequencing in Department of Pediatrics, Peking University First Hospital from January 2013 to June 2014. Clinical information and gene detection result of the patients were collected and analyzed. Seventy-seven of 134 patients (89 males and 45 females, visiting ages from 6-month-old to 26-year-old, average visiting age was 6 years and 1 month) underwent next generation sequencing by Panel Version 1 in 2013, and 57 patients underwent next generation sequencing by Panel Version 2 in 2014. The gene detection revealed that 74 patients had pathogenic gene mutations, and the positive rate of genetic diagnosis was 55.22%. One patient was diagnosed as metabolic myopathy. Five patients were diagnosed as congenital myopathy; 68 were diagnosed as muscular dystrophy, including 22 with congenital muscular dystrophy 1A (MDC1A), 11 with Ullrich congenital muscular dystrophy (UCMD), 6 with Bethlem myopathy (BM), 12 with Duchenne muscular dystrophy (DMD) caused by point mutations in DMD gene, 5 with LMNA-related congenital muscular dystrophy (L-CMD), 1 with Emery-Dreifuss muscular dystrophy (EDMD), 7 with alpha-dystroglycanopathy (α-DG) patients, and 4 with limb-girdle muscular dystrophy (LGMD) patients. Next generation sequencing plays an important role in diagnosis of inherited myopathy. Clinical and biological information analysis was essential for screening pathogenic gene of inherited myopathy.
A Concise Atlas of Thyroid Cancer Next-Generation Sequencing Panel ThyroSeq v.2
Alsina, Jorge; Alsina, Raul; Gulec, Seza
2017-01-01
The next-generation sequencing technology allows high out-put genomic analysis. An innovative assay in thyroid cancer, ThyroSeq® was developed for targeted mutation detection by next generation sequencing technology in fine needle aspiration and tissue samples. ThyroSeq v.2 next generation sequencing panel offers simultaneous sequencing and detection in >1000 hotspots of 14 thyroid cancer-related genes and for 42 types of gene fusions known to occur in thyroid cancer. ThyroSeq is being increasingly used to further narrow the indeterminate category defined by cytology for thyroid nodules. From a surgical perspective, genomic profiling also provides prognostic and predictive information and closely relates to determination of surgical strategy. Both the genomic analysis technology and the informatics for the cancer genome data base are rapidly developing. In this paper, we have gathered existing information on the thyroid cancer-related genes involved in the initiation and progression of thyroid cancer. Our goal is to assemble a glossary for the current ThyroSeq genomic panel that can help elucidate the role genomics play in thyroid cancer oncogenesis. PMID:28117295
Detection of a divergent variant of grapevine virus F by next-generation sequencing.
Molenaar, Nicholas; Burger, Johan T; Maree, Hans J
2015-08-01
The complete genome sequence of a South African isolate of grapevine virus F (GVF) is presented. It was first detected by metagenomic next-generation sequencing of field samples and validated through direct Sanger sequencing. The genome sequence of GVF isolate V5 consists of 7539 nucleotides and contains a poly(A) tail. It has a typical vitivirus genome arrangement that comprises five open reading frames (ORFs), which share only 88.96 % nucleotide sequence identity with the existing complete GVF genome sequence (JX105428).
Uribe-Convers, Simon; Duke, Justin R.; Moore, Michael J.; Tank, David C.
2014-01-01
• Premise of the study: We present an alternative approach for molecular systematic studies that combines long PCR and next-generation sequencing. Our approach can be used to generate templates from any DNA source for next-generation sequencing. Here we test our approach by amplifying complete chloroplast genomes, and we present a set of 58 potentially universal primers for angiosperms to do so. Additionally, this approach is likely to be particularly useful for nuclear and mitochondrial regions. • Methods and Results: Chloroplast genomes of 30 species across angiosperms were amplified to test our approach. Amplification success varied depending on whether PCR conditions were optimized for a given taxon. To further test our approach, some amplicons were sequenced on an Illumina HiSeq 2000. • Conclusions: Although here we tested this approach by sequencing plastomes, long PCR amplicons could be generated using DNA from any genome, expanding the possibilities of this approach for molecular systematic studies. PMID:25202592
2013-01-01
Background The revolution in DNA sequencing technology continues unabated, and is affecting all aspects of the biological and medical sciences. The training and recruitment of the next generation of researchers who are able to use and exploit the new technology is severely lacking and potentially negatively influencing research and development efforts to advance genome biology. Here we present a cross-disciplinary course that provides undergraduate students with practical experience in running a next generation sequencing instrument through to the analysis and annotation of the generated DNA sequences. Results Many labs across world are installing next generation sequencing technology and we show that the undergraduate students produce quality sequence data and were excited to participate in cutting edge research. The students conducted the work flow from DNA extraction, library preparation, running the sequencing instrument, to the extraction and analysis of the data. They sequenced microbes, metagenomes, and a marine mammal, the Californian sea lion, Zalophus californianus. The students met sequencing quality controls, had no detectable contamination in the targeted DNA sequences, provided publication quality data, and became part of an international collaboration to investigate carcinomas in carnivores. Conclusions Students learned important skills for their future education and career opportunities, and a perceived increase in students’ ability to conduct independent scientific research was measured. DNA sequencing is rapidly expanding in the life sciences. Teaching undergraduates to use the latest technology to sequence genomic DNA ensures they are ready to meet the challenges of the genomic era and allows them to participate in annotating the tree of life. PMID:24007365
A vertebrate case study of the quality of assemblies derived from next-generation sequences
2011-01-01
The unparalleled efficiency of next-generation sequencing (NGS) has prompted widespread adoption, but significant problems remain in the use of NGS data for whole genome assembly. We explore the advantages and disadvantages of chicken genome assemblies generated using a variety of sequencing and assembly methodologies. NGS assemblies are equivalent in some ways to a Sanger-based assembly yet deficient in others. Nonetheless, these assemblies are sufficient for the identification of the majority of genes and can reveal novel sequences when compared to existing assembly references. PMID:21453517
Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology
Barba, Marina; Czosnek, Henryk; Hadidi, Ahmed
2014-01-01
Next-generation high throughput sequencing technologies became available at the onset of the 21st century. They provide a highly efficient, rapid, and low cost DNA sequencing platform beyond the reach of the standard and traditional DNA sequencing technologies developed in the late 1970s. They are continually improved to become faster, more efficient and cheaper. They have been used in many fields of biology since 2004. In 2009, next-generation sequencing (NGS) technologies began to be applied to several areas of plant virology including virus/viroid genome sequencing, discovery and detection, ecology and epidemiology, replication and transcription. Identification and characterization of known and unknown viruses and/or viroids in infected plants are currently among the most successful applications of these technologies. It is expected that NGS will play very significant roles in many research and non-research areas of plant virology. PMID:24399207
Next generation sequencing applications for microRNA biomarker discovery in toxicological studies
Next Generation Sequencing (NGS) technology will be reviewed for its base pair resolution, wide dynamic range, and insights into the genome and transcriptome, with special focus upon the biomarker potential of microRNAs (miRNAs). The first part of this presentation reviews commo...
iBIOMES Lite: Summarizing Biomolecular Simulation Data in Limited Settings
2015-01-01
As the amount of data generated by biomolecular simulations dramatically increases, new tools need to be developed to help manage this data at the individual investigator or small research group level. In this paper, we introduce iBIOMES Lite, a lightweight tool for biomolecular simulation data indexing and summarization. The main goal of iBIOMES Lite is to provide a simple interface to summarize computational experiments in a setting where the user might have limited privileges and limited access to IT resources. A command-line interface allows the user to summarize, publish, and search local simulation data sets. Published data sets are accessible via static hypertext markup language (HTML) pages that summarize the simulation protocols and also display data analysis graphically. The publication process is customized via extensible markup language (XML) descriptors while the HTML summary template is customized through extensible stylesheet language (XSL). iBIOMES Lite was tested on different platforms and at several national computing centers using various data sets generated through classical and quantum molecular dynamics, quantum chemistry, and QM/MM. The associated parsers currently support AMBER, GROMACS, Gaussian, and NWChem data set publication. The code is available at https://github.com/jcvthibault/ibiomes. PMID:24830957
Whole-genome sequencing for comparative genomics and de novo genome assembly.
Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C
2015-01-01
Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).
Copy number variation of individual cattle genomes using next-generation sequencing
USDA-ARS?s Scientific Manuscript database
Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...
Individualized cattle copy number and segmental duplication maps using next generation sequencing
USDA-ARS?s Scientific Manuscript database
Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...
Copy number variation of individual cattle genomes using next-generation sequencing
USDA-ARS?s Scientific Manuscript database
Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often difficult to track. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angu...
Practical applications of next-generation sequencing for food-safety research
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing (NGS) is a transformative technology that is revolutionizing the biological sciences. However, many researchers remain uncertain as to the best ways to harness the power of NGS and apply it to their own research questions. Here we highlight three case studies of how NGS ...
Using next generation sequencing for multiplexed trait-linked markers in wheat
USDA-ARS?s Scientific Manuscript database
With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat (Triticum aestivum L.) that can be effectively used...
Early detection of non-native fishes using next-generation DNA sequencing of fish larvae
Our objective was to evaluate the use of fish larvae for early detection of non-native fishes, comparing traditional and molecular taxonomy based on next-generation DNA sequencing to investigate potential efficiencies. Our approach was to intensively sample a Great Lakes non-nati...
The role of next generation sequencing for the development and testing of veterinary biologics
USDA-ARS?s Scientific Manuscript database
Next generation sequencing technology has become widely available and it offers many new opportunities in vaccine technology. Both human and veterinary medicine has numerous examples of adventitious agents being found in live vaccines. In veterinary medicine a continuing trend is the use of viral ...
USDA-ARS?s Scientific Manuscript database
Early stage infections caused by fungal/oomycete spores can remain undetected until signs or symptoms develop. Serological and molecular techniques are currently used for detecting these pathogens. Next-generation sequencing (NGS) has potential as a diagnostic tool, due to the capacity to target mul...
USDA-ARS?s Scientific Manuscript database
Using next-generation-sequencing technology to assess entire transcriptomes requires high quality starting RNA. Currently, RNA quality is routinely judged using automated microfluidic gel electrophoresis platforms and associated algorithms. Here we report that such automated methods generate false-n...
Targeted enrichment strategies for next-generation plant biology
Richard Cronn; Brian J. Knaus; Aaron Liston; Peter J. Maughan; Matthew Parks; John V. Syring; Joshua Udall
2012-01-01
The dramatic advances offered by modem DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome...
Shen, Li; Shao, Ningyi; Liu, Xiaochuan; Nestler, Eric
2014-04-15
Understanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge. We have developed ngs.plot - a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready. We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data.
2014-01-01
Background Understanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge. Results We have developed ngs.plot – a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready. Conclusions We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data. PMID:24735413
Fumagalli, Caterina; Vacirca, Davide; Rappa, Alessandra; Passaro, Antonio; Guarize, Juliana; Rafaniello Raviele, Paola; de Marinis, Filippo; Spaggiari, Lorenzo; Casadio, Chiara; Viale, Giuseppe; Barberis, Massimo; Guerini-Rocco, Elena
2018-03-13
Molecular profiling of advanced non-small cell lung cancers (NSCLC) is essential to identify patients who may benefit from targeted treatments. In the last years, the number of potentially actionable molecular alterations has rapidly increased. Next-generation sequencing allows for the analysis of multiple genes simultaneously. To evaluate the feasibility and the throughput of next-generation sequencing in clinical molecular diagnostics of advanced NSCLC. A single-institution cohort of 535 non-squamous NSCLC was profiled using a next-generation sequencing panel targeting 22 actionable and cancer-related genes. 441 non-squamous NSCLC (82.4%) harboured at least one gene alteration, including 340 cases (63.6%) with clinically relevant molecular aberrations. Mutations have been detected in all but one gene ( FGFR1 ) of the panel. Recurrent alterations were observed in KRAS , TP53 , EGFR , STK11 and MET genes, whereas the remaining genes were mutated in <5% of the cases. Concurrent mutations were detected in 183 tumours (34.2%), mostly impairing KRAS or EGFR in association with TP53 alterations. The study highlights the feasibility of targeted next-generation sequencing in clinical setting. The majority of NSCLC harboured mutations in clinically relevant genes, thus identifying patients who might benefit from different targeted therapies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Next-generation sequencing for endocrine cancers: Recent advances and challenges.
Suresh, Padmanaban S; Venkatesh, Thejaswini; Tsutsumi, Rie; Shetty, Abhishek
2017-05-01
Contemporary molecular biology research tools have enriched numerous areas of biomedical research that address challenging diseases, including endocrine cancers (pituitary, thyroid, parathyroid, adrenal, testicular, ovarian, and neuroendocrine cancers). These tools have placed several intriguing clues before the scientific community. Endocrine cancers pose a major challenge in health care and research despite considerable attempts by researchers to understand their etiology. Microarray analyses have provided gene signatures from many cells, tissues, and organs that can differentiate healthy states from diseased ones, and even show patterns that correlate with stages of a disease. Microarray data can also elucidate the responses of endocrine tumors to therapeutic treatments. The rapid progress in next-generation sequencing methods has overcome many of the initial challenges of these technologies, and their advantages over microarray techniques have enabled them to emerge as valuable aids for clinical research applications (prognosis, identification of drug targets, etc.). A comprehensive review describing the recent advances in next-generation sequencing methods and their application in the evaluation of endocrine and endocrine-related cancers is lacking. The main purpose of this review is to illustrate the concepts that collectively constitute our current view of the possibilities offered by next-generation sequencing technological platforms, challenges to relevant applications, and perspectives on the future of clinical genetic testing of patients with endocrine tumors. We focus on recent discoveries in the use of next-generation sequencing methods for clinical diagnosis of endocrine tumors in patients and conclude with a discussion on persisting challenges and future objectives.
Droplet Digital™ PCR Next-Generation Sequencing Library QC Assay.
Heredia, Nicholas J
2018-01-01
Digital PCR is a valuable tool to quantify next-generation sequencing (NGS) libraries precisely and accurately. Accurately quantifying NGS libraries enable accurate loading of the libraries on to the sequencer and thus improve sequencing performance by reducing under and overloading error. Accurate quantification also benefits users by enabling uniform loading of indexed/barcoded libraries which in turn greatly improves sequencing uniformity of the indexed/barcoded samples. The advantages gained by employing the Droplet Digital PCR (ddPCR™) library QC assay includes the precise and accurate quantification in addition to size quality assessment, enabling users to QC their sequencing libraries with confidence.
Zhang, Ran; Yin, Yinliang; Zhang, Yujun; Li, Kexin; Zhu, Hongxia; Gong, Qin; Wang, Jianwu; Hu, Xiaoxiang; Li, Ning
2012-01-01
As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species. PMID:23185606
Ordulu, Zehra; Wong, Kristen E; Currall, Benjamin B; Ivanov, Andrew R; Pereira, Shahrin; Althari, Sara; Gusella, James F; Talkowski, Michael E; Morton, Cynthia C
2014-05-01
With recent rapid advances in genomic technologies, precise delineation of structural chromosome rearrangements at the nucleotide level is becoming increasingly feasible. In this era of "next-generation cytogenetics" (i.e., an integration of traditional cytogenetic techniques and next-generation sequencing), a consensus nomenclature is essential for accurate communication and data sharing. Currently, nomenclature for describing the sequencing data of these aberrations is lacking. Herein, we present a system called Next-Gen Cytogenetic Nomenclature, which is concordant with the International System for Human Cytogenetic Nomenclature (2013). This system starts with the alignment of rearrangement sequences by BLAT or BLAST (alignment tools) and arrives at a concise and detailed description of chromosomal changes. To facilitate usage and implementation of this nomenclature, we are developing a program designated BLA(S)T Output Sequence Tool of Nomenclature (BOSToN), a demonstrative version of which is accessible online. A standardized characterization of structural chromosomal rearrangements is essential both for research analyses and for application in the clinical setting. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Gullapalli, Rama R; Desai, Ketaki V; Santana-Santos, Lucas; Kant, Jeffrey A; Becich, Michael J
2012-01-01
The Human Genome Project (HGP) provided the initial draft of mankind's DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS) techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized.[7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it's hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future.
Gullapalli, Rama R.; Desai, Ketaki V.; Santana-Santos, Lucas; Kant, Jeffrey A.; Becich, Michael J.
2012-01-01
The Human Genome Project (HGP) provided the initial draft of mankind's DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS) techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized.[7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it's hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future. PMID:23248761
MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins.
Necci, Marco; Piovesan, Damiano; Dosztányi, Zsuzsanna; Tosatto, Silvio C E
2017-05-01
Intrinsic disorder (ID) is established as an important feature of protein sequences. Its use in proteome annotation is however hampered by the availability of many methods with similar performance at the single residue level, which have mostly not been optimized to predict long ID regions of size comparable to domains. Here, we have focused on providing a single consensus-based prediction, MobiDB-lite, optimized for highly specific (i.e. few false positive) predictions of long disorder. The method uses eight different predictors to derive a consensus which is then filtered for spurious short predictions. Consensus prediction is shown to outperform the single methods when annotating long ID regions. MobiDB-lite can be useful in large-scale annotation scenarios and has indeed already been integrated in the MobiDB, DisProt and InterPro databases. MobiDB-lite is available as part of the MobiDB database from URL: http://mobidb.bio.unipd.it/. An executable can be downloaded from URL: http://protein.bio.unipd.it/mobidblite/. silvio.tosatto@unipd.it. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.
Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K
2014-01-01
Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software.
Hirche, T O; Born, T; Jungblut, S; Sczepanski, B; Kenn, K; Köhnlein, T; Hirche, H; Wagner, T O
2008-10-27
Oxy-Gen lite, a recently developed combined electrolysis and fuel cell technology, de-novo generates oxygen with high purity for medical use from distilled water and room air. However, its use in patients with chronic respiratory failure has never been evaluated. To test the clinical applicability and safety of Oxy-Gen lite technology, we enrolled 32 COPD patients with chronic hypoxemia and long-term oxygen therapy (LTOT) in a controlled, randomized, multicenter clinical trial. Standard continuous oxygen therapy with a maximal flow rate of 2 L/min was tested against pulsatile oxygen delivery by Oxy-Gen lite. Oxygen saturation at seated-rest was recorded over 30 min and used as a primary read-out parameter. Oxygen saturation was also recorded during mild physical strain (speaking out loud) or overnight's sleep. Both methods of oxygen supply established oxygen saturations within the normal range (i.e., upper plateau of the sigmoid oxyhaemoglobin dissociation curve) compared to breathing room air (p<0.0001). Mean oxygen saturation under standard continuous oxygen flow or Oxy-Gen lite technology during rest, physical strain or sleep proved statistically equivalent (95%CI<2.5% of reference saturation). The use of Oxy-Gen lite in COPD patients with hypoxemia and LTOT
Szymanski, Maciej; Karlowski, Wojciech M
2016-01-01
In eukaryotes, ribosomal 5S rRNAs are products of multigene families organized within clusters of tandemly repeated units. Accumulation of genomic data obtained from a variety of organisms demonstrated that the potential 5S rRNA coding sequences show a large number of variants, often incompatible with folding into a correct secondary structure. Here, we present results of an analysis of a large set of short RNA sequences generated by the next generation sequencing techniques, to address the problem of heterogeneity of the 5S rRNA transcripts in Arabidopsis and identification of potentially functional rRNA-derived fragments.
HLA genotyping by next-generation sequencing of complementary DNA.
Segawa, Hidenobu; Kukita, Yoji; Kato, Kikuya
2017-11-28
Genotyping of the human leucocyte antigen (HLA) is indispensable for various medical treatments. However, unambiguous genotyping is technically challenging due to high polymorphism of the corresponding genomic region. Next-generation sequencing is changing the landscape of genotyping. In addition to high throughput of data, its additional advantage is that DNA templates are derived from single molecules, which is a strong merit for the phasing problem. Although most currently developed technologies use genomic DNA, use of cDNA could enable genotyping with reduced costs in data production and analysis. We thus developed an HLA genotyping system based on next-generation sequencing of cDNA. Each HLA gene was divided into 3 or 4 target regions subjected to PCR amplification and subsequent sequencing with Ion Torrent PGM. The sequence data were then subjected to an automated analysis. The principle of the analysis was to construct candidate sequences generated from all possible combinations of variable bases and arrange them in decreasing order of the number of reads. Upon collecting candidate sequences from all target regions, 2 haplotypes were usually assigned. Cases not assigned 2 haplotypes were forwarded to 4 additional processes: selection of candidate sequences applying more stringent criteria, removal of artificial haplotypes, selection of candidate sequences with a relaxed threshold for sequence matching, and countermeasure for incomplete sequences in the HLA database. The genotyping system was evaluated using 30 samples; the overall accuracy was 97.0% at the field 3 level and 98.3% at the G group level. With one sample, genotyping of DPB1 was not completed due to short read size. We then developed a method for complete sequencing of individual molecules of the DPB1 gene, using the molecular barcode technology. The performance of the automatic genotyping system was comparable to that of systems developed in previous studies. Thus, next-generation sequencing of cDNA is a viable option for HLA genotyping.
Next-generation Sequencing-based genomic profiling: Fostering innovation in cancer care?
Fernandes, Gustavo S; Marques, Daniel F; Girardi, Daniel M; Braghiroli, Maria Ignez F; Coudry, Renata A; Meireles, Sibele I; Katz, Artur; Hoff, Paulo M
2017-10-01
With the development of next-generation sequencing (NGS) technologies, DNA sequencing has been increasingly utilized in clinical practice. Our goal was to investigate the impact of genomic evaluation on treatment decisions for heavily pretreated patients with metastatic cancer. We analyzed metastatic cancer patients from a single institution whose cancers had progressed after all available standard-of-care therapies and whose tumors underwent next-generation sequencing analysis. We determined the percentage of patients who received any therapy directed by the test, and its efficacy. From July 2013 to December 2015, 185 consecutive patients were tested using a commercially available next-generation sequencing-based test, and 157 patients were eligible. Sixty-six patients (42.0%) were female, and 91 (58.0%) were male. The mean age at diagnosis was 52.2 years, and the mean number of pre-test lines of systemic treatment was 2.7. One hundred and seventy-seven patients (95.6%) had at least one identified gene alteration. Twenty-four patients (15.2%) underwent systemic treatment directed by the test result. Of these, one patient had a complete response, four (16.7%) had partial responses, two (8.3%) had stable disease, and 17 (70.8%) had disease progression as the best result. The median progression-free survival time with matched therapy was 1.6 months, and the median overall survival was 10 months. We identified a high prevalence of gene alterations using an next-generation sequencing test. Although some benefit was associated with the matched therapy, most of the patients had disease progression as the best response, indicating the limited biological potential and unclear clinical relevance of this practice.
SCARF: maximizing next-generation EST assemblies for evolutionary and population genomic analyses.
Barker, Michael S; Dlugosch, Katrina M; Reddy, A Chaitanya C; Amyotte, Sarah N; Rieseberg, Loren H
2009-02-15
Scaffolded and Corrected Assembly of Roche 454 (SCARF) is a next-generation sequence assembly tool for evolutionary genomics that is designed especially for assembling 454 EST sequences against high-quality reference sequences from related species. The program was created to knit together 454 contigs that do not assemble during traditional de novo assembly, using a reference sequence library to orient the 454 sequences. SCARF is freely available at http://msbarker.com/software.htm, and is released under the open source GPLv3 license (http://www.opensource.org/licenses/gpl-3.0.html.
[Molecular and prenatal diagnosis of a family with Fanconi anemia by next generation sequencing].
Gong, Zhuwen; Yu, Yongguo; Zhang, Qigang; Gu, Xuefan
2015-04-01
To provide prenatal diagnosis for a pregnant woman who had given birth to a child with Fanconi anemia with combined next-generation sequencing (NGS) and Sanger sequencing. For the affected child, potential mutations of the FANCA gene were analyzed with NGS. Suspected mutation was verified with Sanger sequencing. For prenatal diagnosis, genomic DNA was extracted from cultured fetal amniotic fluid cells and subjected to analysis of the same mutations. A low-frequency frameshifting mutation c.989_995del7 (p.H330LfsX2, inherited from his father) and a truncating mutation c.3971C>T (p.P1324L, inherited from his mother) have been identified in the affected child and considered to be pathogenic. The two mutations were subsequently verified by Sanger sequencing. Upon prenatal diagnosis, the fetus was found to carry two mutations. The combined next-generation sequencing and Sanger sequencing can reduce the time for diagnosis and identify subtypes of Fanconi anemia and the mutational sites, which has enabled reliable prenatal diagnosis of this disease.
Sequencing technologies - the next generation.
Metzker, Michael L
2010-01-01
Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.
Yang, Lei; Naylor, Gavin J P
2016-01-01
We determined the complete mitochondrial genome sequence (16,760 bp) of the peacock skate Pavoraja nitida using a long-PCR based next generation sequencing method. It has 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region in the typical vertebrate arrangement. Primers, protocols, and procedures used to obtain this mitogenome are provided. We anticipate that this approach will facilitate rapid collection of mitogenome sequences for studies on phylogenetic relationships, population genetics, and conservation of cartilaginous fishes.
Fuentes-Pananá, Ezequiel M; Larios-Serrato, Violeta; Méndez-Tenorio, Alfonso; Morales-Sánchez, Abigail; Arias, Carlos F; Torres, Javier
2016-01-01
Gastric (GC) and breast (BrC) cancer are two of the most common and deadly tumours. Different lines of evidence suggest a possible causative role of viral infections for both GC and BrC. Wide genome sequencing (WGS) technologies allow searching for viral agents in tissues of patients with cancer. These technologies have already contributed to establish virus-cancer associations as well as to discovery new tumour viruses. The objective of this study was to document possible associations of viral infection with GC and BrC in Mexican patients. In order to gain idea about cost effective conditions of experimental sequencing, we first carried out an in silico simulation of WGS. The next-generation-platform IlluminaGallx was then used to sequence GC and BrC tumour samples. While we did not find viral sequences in tissues from BrC patients, multiple reads matching Epstein-Barr virus (EBV) sequences were found in GC tissues. An end-point polymerase chain reaction confirmed an enrichment of EBV sequences in one of the GC samples sequenced, validating the next-generation sequencing-bioinformatics pipeline. PMID:26910355
Fuentes-Pananá, Ezequiel M; Larios-Serrato, Violeta; Méndez-Tenorio, Alfonso; Morales-Sánchez, Abigail; Arias, Carlos F; Torres, Javier
2016-03-01
Gastric (GC) and breast (BrC) cancer are two of the most common and deadly tumours. Different lines of evidence suggest a possible causative role of viral infections for both GC and BrC. Wide genome sequencing (WGS) technologies allow searching for viral agents in tissues of patients with cancer. These technologies have already contributed to establish virus-cancer associations as well as to discovery new tumour viruses. The objective of this study was to document possible associations of viral infection with GC and BrC in Mexican patients. In order to gain idea about cost effective conditions of experimental sequencing, we first carried out an in silico simulation of WGS. The next-generation-platform IlluminaGallx was then used to sequence GC and BrC tumour samples. While we did not find viral sequences in tissues from BrC patients, multiple reads matching Epstein-Barr virus (EBV) sequences were found in GC tissues. An end-point polymerase chain reaction confirmed an enrichment of EBV sequences in one of the GC samples sequenced, validating the next-generation sequencing-bioinformatics pipeline.
Sequence information signal processor
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1999-01-01
An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.
Next-Generation Sequencing Platforms
NASA Astrophysics Data System (ADS)
Mardis, Elaine R.
2013-06-01
Automated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.
USDA-ARS?s Scientific Manuscript database
The dissection of complex traits of economic importance for the pig industry requires the availability of a significant number of genetic markers, such as SNPs. This study was conducted in order to discover thousands of porcine SNPs using next generation sequencing technologies and use those SNPs, a...
Review of General Algorithmic Features for Genome Assemblers for Next Generation Sequencers
Wajid, Bilal; Serpedin, Erchin
2012-01-01
In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence data of genes, proteins and RNA. The sequence data of the entire genome is the solution to the genome assembly problem. The scope of this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the next-generation sequencing (NGS) platforms. This article discusses the major genome assemblers that were proposed in the literature during the past decade by outlining their basic working principles. It is intended to act as a qualitative, not a quantitative, tutorial to all working on genome assemblers pertaining to the next generation of sequencers. We discuss the theoretical aspects of various genome assemblers, identifying their working schemes. We also discuss briefly the direction in which the area is headed towards along with discussing core issues on software simplicity. PMID:22768980
Suyama, Yoshihisa; Matsuki, Yu
2015-01-01
Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing de novo single-nucleotide polymorphism discovery, and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities. PMID:26593239
Refinetti, Paulo; Morgenthaler, Stephan; Ekstrøm, Per O
2016-07-01
Cycling temperature capillary electrophoresis has been optimised for mutation detection in 76% of the mitochondrial genome. The method was tested on a mixed sample and compared to mutation detection by next generation sequencing. Out of 152 fragments 90 were concordant, 51 discordant and in 11 were semi-concordant. Dilution experiments show that cycling capillary electrophoresis has a detection limit of 1-3%. The detection limit of routine next generation sequencing was in the ranges of 15 to 30%. Cycling temperature capillary electrophoresis detect and accurate quantify mutations at a fraction of the cost and time required to perform a next generation sequencing analysis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
[Hot topics of circulating tumor DNA testing in breast cancer].
Liu, Y H; Zhou, B; Xu, L; Xin, L
2017-02-01
The progress of gene detection technologies represented by next generation sequencing (NGS) and digital PCR laid a foundation for studies of circulating tumor DNA (ctDNA) in breast cancer. In 2014, the NGS workgroup organized by the College of American Pathologists (CAP) published the College of American Pathologists ' Laboratory Standards for Next - Generation Sequencing Clinical Tests, which provides a blueprint for the standardization of gene testing. In 2015, the Guidelines for Diagnostic Next - generation Sequencing published by the European Society of Human Genetics claimed that NGS is unacceptable in clinical practice before studies guided by guidelines are approved. Although existing studies show the benefits of ctDNA testing in disease monitoring and prognosis analyzing, we have a ways to go to normalize the procedure and build strict detection criteria.
Liu, Gary W; Livesay, Brynn R; Kacherovsky, Nataly A; Cieslewicz, Maryelise; Lutz, Emi; Waalkes, Adam; Jensen, Michael C; Salipante, Stephen J; Pun, Suzie H
2015-08-19
Peptide ligands are used to increase the specificity of drug carriers to their target cells and to facilitate intracellular delivery. One method to identify such peptide ligands, phage display, enables high-throughput screening of peptide libraries for ligands binding to therapeutic targets of interest. However, conventional methods for identifying target binders in a library by Sanger sequencing are low-throughput, labor-intensive, and provide a limited perspective (<0.01%) of the complete sequence space. Moreover, the small sample space can be dominated by nonspecific, preferentially amplifying "parasitic sequences" and plastic-binding sequences, which may lead to the identification of false positives or exclude the identification of target-binding sequences. To overcome these challenges, we employed next-generation Illumina sequencing to couple high-throughput screening and high-throughput sequencing, enabling more comprehensive access to the phage display library sequence space. In this work, we define the hallmarks of binding sequences in next-generation sequencing data, and develop a method that identifies several target-binding phage clones for murine, alternatively activated M2 macrophages with a high (100%) success rate: sequences and binding motifs were reproducibly present across biological replicates; binding motifs were identified across multiple unique sequences; and an unselected, amplified library accurately filtered out parasitic sequences. In addition, we validate the Multiple Em for Motif Elicitation tool as an efficient and principled means of discovering binding sequences.
Keller, A; Danner, N; Grimmer, G; Ankenbrand, M; von der Ohe, K; von der Ohe, W; Rost, S; Härtel, S; Steffan-Dewenter, I
2015-03-01
The identification of pollen plays an important role in ecology, palaeo-climatology, honey quality control and other areas. Currently, expert knowledge and reference collections are essential to identify pollen origin through light microscopy. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach, but the assessment of mixed pollen samples originating from multiple plant species is still a tedious and error-prone task. Next-generation sequencing has been proposed to avoid this hindrance. In this study we assessed mixed pollen probes through next-generation sequencing of amplicons from the highly variable, species-specific internal transcribed spacer 2 region of nuclear ribosomal DNA. Further, we developed a bioinformatic workflow to analyse these high-throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. We assessed in total 16 mixed pollen samples, 14 originated from honeybee colonies and two from solitary bee nests. The sequencing technique resulted in higher taxon richness (deeper assignments and more identified taxa) compared to light microscopy. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Simulation analyses of taxon specificity and sensitivity indicate that 96% of taxa present in the database are correctly identifiable at the genus level and 70% at the species level. Next-generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialised palynological expert knowledge. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes.
Kwok, Hin; Chiang, Alan Kwok Shing
2016-02-24
Genomic sequences of Epstein-Barr virus (EBV) have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS) and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases.
NGS Catalog: A Database of Next Generation Sequencing Studies in Humans
Xia, Junfeng; Wang, Qingguo; Jia, Peilin; Wang, Bing; Pao, William; Zhao, Zhongming
2015-01-01
Next generation sequencing (NGS) technologies have been rapidly applied in biomedical and biological research since its advent only a few years ago, and they are expected to advance at an unprecedented pace in the following years. To provide the research community with a comprehensive NGS resource, we have developed the database Next Generation Sequencing Catalog (NGS Catalog, http://bioinfo.mc.vanderbilt.edu/NGS/index.html), a continually updated database that collects, curates and manages available human NGS data obtained from published literature. NGS Catalog deposits publication information of NGS studies and their mutation characteristics (SNVs, small insertions/deletions, copy number variations, and structural variants), as well as mutated genes and gene fusions detected by NGS. Other functions include user data upload, NGS general analysis pipelines, and NGS software. NGS Catalog is particularly useful for investigators who are new to NGS but would like to take advantage of these powerful technologies for their own research. Finally, based on the data deposited in NGS Catalog, we summarized features and findings from whole exome sequencing, whole genome sequencing, and transcriptome sequencing studies for human diseases or traits. PMID:22517761
Johnston, Christine; Magaret, Amalia; Roychoudhury, Pavitra; Greninger, Alexander L; Cheng, Anqi; Diem, Kurt; Fitzgibbon, Matthew P; Huang, Meei-Li; Selke, Stacy; Lingappa, Jairam R; Celum, Connie; Jerome, Keith R; Wald, Anna; Koelle, David M
2017-10-01
Understanding the variability in circulating herpes simplex virus type 2 (HSV-2) genomic sequences is critical to the development of HSV-2 vaccines. Genital lesion swabs containing ≥ 10 7 log 10 copies HSV DNA collected from Africa, the USA, and South America underwent next-generation sequencing, followed by K-mer based filtering and de novo genomic assembly. Sites of heterogeneity within coding regions in unique long and unique short (U L _U S ) regions were identified. Phylogenetic trees were created using maximum likelihood reconstruction. Among 46 samples from 38 persons, 1468 intragenic base-pair substitutions were identified. The maximum nucleotide distance between strains for concatenated U L_ U S segments was 0.4%. Phylogeny did not reveal geographic clustering. The most variable proteins had non-synonymous mutations in < 3% of amino acids. Unenriched HSV-2 DNA can undergo next-generation sequencing to identify intragenic variability. The use of clinical swabs for sequencing expands the information that can be gathered directly from these specimens. Copyright © 2017 Elsevier Inc. All rights reserved.
Library construction for next-generation sequencing: Overviews and challenges
Head, Steven R.; Komori, H. Kiyomi; LaMere, Sarah A.; Whisenant, Thomas; Van Nieuwerburgh, Filip; Salomon, Daniel R.; Ordoukhanian, Phillip
2014-01-01
High-throughput sequencing, also known as next-generation sequencing (NGS), has revolutionized genomic research. In recent years, NGS technology has steadily improved, with costs dropping and the number and range of sequencing applications increasing exponentially. Here, we examine the critical role of sequencing library quality and consider important challenges when preparing NGS libraries from DNA and RNA sources. Factors such as the quantity and physical characteristics of the RNA or DNA source material as well as the desired application (i.e., genome sequencing, targeted sequencing, RNA-seq, ChIP-seq, RIP-seq, and methylation) are addressed in the context of preparing high quality sequencing libraries. In addition, the current methods for preparing NGS libraries from single cells are also discussed. PMID:24502796
Doyle, Stephen R; Griffith, Ian S; Murphy, Nick P; Strugnell, Jan M
2015-01-01
The complete mitochondrial genome of the Eastern Rock lobster, Sagmariasus verreauxi, is reported for the first time. Using low-coverage, long read MiSeq next generation sequencing, we constructed and determined the mtDNA genome organization of the 15,470 bp sequence from two isolates from Eastern Tasmania, Australia and Northern New Zealand, and identified 46 polymorphic nucleotides between the two sequences. This genome sequence and its genetic polymorphisms will likely be useful in understanding the distribution and population connectivity of the Eastern Rock Lobster, and in the fisheries management of this commercially important species.
Jimenez, Nelson Lopez; Flannick, Jason; Yahyavi, Mani; Li, Jiang; Bardakjian, Tanya; Tonkin, Leath; Schneider, Adele; Sherr, Elliott H; Slavotinek, Anne M
2011-12-28
Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.
2011-01-01
Background Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. Methods We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. Results We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Conclusions Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M. PMID:22204637
Wei, Xiaoming; Sun, Yan; Xie, Jiansheng; Shi, Quan; Qu, Ning; Yang, Guanghui; Cai, Jun; Yang, Yi; Liang, Yu; Wang, Wei; Yi, Xin
2012-11-20
Targeted enrichment and next-generation sequencing (NGS) have been employed for detection of genetic diseases. The purpose of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection of hereditary hearing loss, and identify inherited mutations involved in human deafness accurately and economically. To make genetic diagnosis of hereditary hearing loss simple and timesaving, we designed a 0.60 MB array-based chip containing 69 nuclear genes and mitochondrial genome responsible for human deafness and conducted NGS toward ten patients with five known mutations and a Chinese family with hearing loss (never genetically investigated). Ten patients with five known mutations were sequenced using next-generation sequencing to validate the sensitivity of the method. We identified four known mutations in two nuclear deafness causing genes (GJB2 and SLC26A4), one in mitochondrial DNA. We then performed this method to analyze the variants in a Chinese family with hearing loss and identified compound heterozygosity for two novel mutations in gene MYO7A. The compound heterozygosity identified in gene MYO7A causes Usher Syndrome 1B with severe phenotypes. The results support that the combination of enrichment of targeted genes and next-generation sequencing is a valuable molecular diagnostic tool for hereditary deafness and suitable for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of Next-Generation Exome Sequencing Depth for Discovery of Diagnostic Variants.
Kim, Kyung; Seong, Moon-Woo; Chung, Won-Hyong; Park, Sung Sup; Leem, Sangseob; Park, Won; Kim, Jihyun; Lee, KiYoung; Park, Rae Woong; Kim, Namshin
2015-06-01
Sequencing depth, which is directly related to the cost and time required for the generation, processing, and maintenance of next-generation sequencing data, is an important factor in the practical utilization of such data in clinical fields. Unfortunately, identifying an exome sequencing depth adequate for clinical use is a challenge that has not been addressed extensively. Here, we investigate the effect of exome sequencing depth on the discovery of sequence variants for clinical use. Toward this, we sequenced ten germ-line blood samples from breast cancer patients on the Illumina platform GAII(x) at a high depth of ~200×. We observed that most function-related diverse variants in the human exonic regions could be detected at a sequencing depth of 120×. Furthermore, investigation using a diagnostic gene set showed that the number of clinical variants identified using exome sequencing reached a plateau at an average sequencing depth of about 120×. Moreover, the phenomena were consistent across the breast cancer samples.
2012-01-01
Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison. PMID:22908993
Droege, Marcus; Hill, Brendon
2008-08-31
The Genome Sequencer FLX System (GS FLX), powered by 454 Sequencing, is a next-generation DNA sequencing technology featuring a unique mix of long reads, exceptional accuracy, and ultra-high throughput. It has been proven to be the most versatile of all currently available next-generation sequencing technologies, supporting many high-profile studies in over seven applications categories. GS FLX users have pursued innovative research in de novo sequencing, re-sequencing of whole genomes and target DNA regions, metagenomics, and RNA analysis. 454 Sequencing is a powerful tool for human genetics research, having recently re-sequenced the genome of an individual human, currently re-sequencing the complete human exome and targeted genomic regions using the NimbleGen sequence capture process, and detected low-frequency somatic mutations linked to cancer.
An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data
Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M.; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A. V. S. K.; Varshney, Rajeev K.
2014-01-01
Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software. PMID:25003610
Next-Generation Technologies for Multiomics Approaches Including Interactome Sequencing
Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko
2015-01-01
The development of high-speed analytical techniques such as next-generation sequencing and microarrays allows high-throughput analysis of biological information at a low cost. These techniques contribute to medical and bioscience advancements and provide new avenues for scientific research. Here, we outline a variety of new innovative techniques and discuss their use in omics research (e.g., genomics, transcriptomics, metabolomics, proteomics, and interactomics). We also discuss the possible applications of these methods, including an interactome sequencing technology that we developed, in future medical and life science research. PMID:25649523
Ancient DNA studies: new perspectives on old samples
2012-01-01
In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field. PMID:22697611
A statistical method for the detection of variants from next-generation resequencing of DNA pools.
Bansal, Vikas
2010-06-15
Next-generation sequencing technologies have enabled the sequencing of several human genomes in their entirety. However, the routine resequencing of complete genomes remains infeasible. The massive capacity of next-generation sequencers can be harnessed for sequencing specific genomic regions in hundreds to thousands of individuals. Sequencing-based association studies are currently limited by the low level of multiplexing offered by sequencing platforms. Pooled sequencing represents a cost-effective approach for studying rare variants in large populations. To utilize the power of DNA pooling, it is important to accurately identify sequence variants from pooled sequencing data. Detection of rare variants from pooled sequencing represents a different challenge than detection of variants from individual sequencing. We describe a novel statistical approach, CRISP [Comprehensive Read analysis for Identification of Single Nucleotide Polymorphisms (SNPs) from Pooled sequencing] that is able to identify both rare and common variants by using two approaches: (i) comparing the distribution of allele counts across multiple pools using contingency tables and (ii) evaluating the probability of observing multiple non-reference base calls due to sequencing errors alone. Information about the distribution of reads between the forward and reverse strands and the size of the pools is also incorporated within this framework to filter out false variants. Validation of CRISP on two separate pooled sequencing datasets generated using the Illumina Genome Analyzer demonstrates that it can detect 80-85% of SNPs identified using individual sequencing while achieving a low false discovery rate (3-5%). Comparison with previous methods for pooled SNP detection demonstrates the significantly lower false positive and false negative rates for CRISP. Implementation of this method is available at http://polymorphism.scripps.edu/~vbansal/software/CRISP/.
Review of general algorithmic features for genome assemblers for next generation sequencers.
Wajid, Bilal; Serpedin, Erchin
2012-04-01
In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence data of genes, proteins and RNA. The sequence data of the entire genome is the solution to the genome assembly problem. The scope of this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the next-generation sequencing (NGS) platforms. This article discusses the major genome assemblers that were proposed in the literature during the past decade by outlining their basic working principles. It is intended to act as a qualitative, not a quantitative, tutorial to all working on genome assemblers pertaining to the next generation of sequencers. We discuss the theoretical aspects of various genome assemblers, identifying their working schemes. We also discuss briefly the direction in which the area is headed towards along with discussing core issues on software simplicity. Copyright © 2012 Beijing Institute of Genomics, Chinese Academy of Sciences. Published by Elsevier Ltd. All rights reserved.
Valtcheva, Nadejda; Lang, Franziska M; Noske, Aurelia; Samartzis, Eleftherios P; Schmidt, Anna-Maria; Bellini, Elisa; Fink, Daniel; Moch, Holger; Rechsteiner, Markus; Dedes, Konstantin J; Wild, Peter J
2017-01-19
Endometrioid adenocarcinoma of the uterus and ovarian endometrioid carcinoma share many morphological and molecular features. Differentiation between simultaneous primary carcinomas and ovarian metastases of an endometrial cancer may be very challenging but is essential for prognostic and therapeutic considerations. In the present case study of a 33 year-old patient we used targeted amplicon next-generation re-sequencing for clarifying the origin of synchronous endometrioid cancer of the corpus uteri and the left ovary. The patient developed a metachronous lung metastasis of an endometrioid adenocarcinoma four years after hyster- and adnexectomy, vaginal brachytherapy and treatment with the synthetic steroid tibolone. Removal of the metastasis and megestrol treatment for seven years led to a complete remission. A total of 409 genes from the Ampliseq Comprehensive Cancer Panel (Ion Torrent, Thermo Fisher) were analysed by next generation sequencing and mutations in 10 genes, including ARID1A, CTNNB1, PIK3CA and PTEN were identified and confirmed by Sanger sequencing. Primary endometrial as well as ovarian cancer showed an identical mutational profile, suggesting the presence of an ovarian metastasis of the endometrial cancer, rather than a simultaneous endometrial and ovarian cancer. The metachronous lung metastasis showed a different mutational profile compared to the primary cancer. Immunohistochemical staining of the corresponding proteins suggested that the tumour development was driven by alterations in the protein function rather than by changes of the protein abundance in the cell. Our results have demonstrated next generation sequencing as a valuable tool in the differentiation of synchronous primary tumours and metastases, which has an important impact on the clinical decision making process. Similar to breast cancer, targeted therapies based on mutational tumour profiling will become increasingly important in endometrial and ovarian cancer. In summary, our results support the usage of next generation sequencing as a supplementary diagnostic tool, assisting in personalized precision medicine.
Genome assembly reborn: recent computational challenges
2009-01-01
Research into genome assembly algorithms has experienced a resurgence due to new challenges created by the development of next generation sequencing technologies. Several genome assemblers have been published in recent years specifically targeted at the new sequence data; however, the ever-changing technological landscape leads to the need for continued research. In addition, the low cost of next generation sequencing data has led to an increased use of sequencing in new settings. For example, the new field of metagenomics relies on large-scale sequencing of entire microbial communities instead of isolate genomes, leading to new computational challenges. In this article, we outline the major algorithmic approaches for genome assembly and describe recent developments in this domain. PMID:19482960
Chen, Guiqian; Qiu, Yuan; Zhuang, Qingye; Wang, Suchun; Wang, Tong; Chen, Jiming; Wang, Kaicheng
2018-05-09
Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.
Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification
Kamps, Rick; Brandão, Rita D.; van den Bosch, Bianca J.; Paulussen, Aimee D. C.; Xanthoulea, Sofia; Blok, Marinus J.; Romano, Andrea
2017-01-01
Next-generation sequencing (NGS) technology has expanded in the last decades with significant improvements in the reliability, sequencing chemistry, pipeline analyses, data interpretation and costs. Such advances make the use of NGS feasible in clinical practice today. This review describes the recent technological developments in NGS applied to the field of oncology. A number of clinical applications are reviewed, i.e., mutation detection in inherited cancer syndromes based on DNA-sequencing, detection of spliceogenic variants based on RNA-sequencing, DNA-sequencing to identify risk modifiers and application for pre-implantation genetic diagnosis, cancer somatic mutation analysis, pharmacogenetics and liquid biopsy. Conclusive remarks, clinical limitations, implications and ethical considerations that relate to the different applications are provided. PMID:28146134
“Shovel-ready” Sequences as a Stimulus for the Next Generation of Life Scientists
Boyle, Michael D.
2010-01-01
Genomics and bioinformatics are dynamic fields well-suited for capturing the imagination of undergraduates in both research laboratories and classrooms. Currently, raw nucleotide sequence is being provided, as part of several genomics research initiatives, for undergraduate research and teaching. These initiatives could be easily extended and much more effective if the source of the sequenced material and the subsequent focus of the data analysis were aligned with the research interests of individual faculty at undergraduate institutions. By judicious use of surplus capacity in existing nucleotide sequencing cores, raw sequence data could be generated to support ongoing research efforts involving undergraduates. This would allow these students to participate actively in discovery research, with a goal of making novel contributions to their field through original research while nurturing the next generation of talented research scientists. PMID:23653696
"Shovel-ready" Sequences as a Stimulus for the Next Generation of Life Scientists.
Boyle, Michael D
2010-01-01
Genomics and bioinformatics are dynamic fields well-suited for capturing the imagination of undergraduates in both research laboratories and classrooms. Currently, raw nucleotide sequence is being provided, as part of several genomics research initiatives, for undergraduate research and teaching. These initiatives could be easily extended and much more effective if the source of the sequenced material and the subsequent focus of the data analysis were aligned with the research interests of individual faculty at undergraduate institutions. By judicious use of surplus capacity in existing nucleotide sequencing cores, raw sequence data could be generated to support ongoing research efforts involving undergraduates. This would allow these students to participate actively in discovery research, with a goal of making novel contributions to their field through original research while nurturing the next generation of talented research scientists.
Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants
Unamba, Chibuikem I. N.; Nag, Akshay; Sharma, Ram K.
2015-01-01
Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping. PMID:26734016
Next-generation digital information storage in DNA.
Church, George M; Gao, Yuan; Kosuri, Sriram
2012-09-28
Digital information is accumulating at an astounding rate, straining our ability to store and archive it. DNA is among the most dense and stable information media known. The development of new technologies in both DNA synthesis and sequencing make DNA an increasingly feasible digital storage medium. We developed a strategy to encode arbitrary digital information in DNA, wrote a 5.27-megabit book using DNA microchips, and read the book by using next-generation DNA sequencing.
2016-06-13
syndrome ; JCV 5 JC polyomavirus; NGS 5 next- generation sequencing; PML 5 progressive multifocal leukoencephalopathy. Ascertainment of the etiology of...Hunt-like syndrome and focal pachymeningitis. A 69-year-old man developed left-sided ptosis and Figure 1 Heatmap shows the top microbial species in each...The symptoms were followed by decreased vision, diplopia, ophthalmoplegia, and facial numbness. He was diagnosed with Tolosa-Hunt syndrome and treated
Brancaccio, Rosario N; Robitaille, Alexis; Dutta, Sankhadeep; Cuenin, Cyrille; Santare, Daiga; Skenders, Girts; Leja, Marcis; Fischer, Nicole; Giuliano, Anna R; Rollison, Dana E; Grundhoff, Adam; Tommasino, Massimo; Gheit, Tarik
2018-05-07
With the advent of new molecular tools, the discovery of new papillomaviruses (PVs) has accelerated during the past decade, enabling the expansion of knowledge about the viral populations that inhabit the human body. Human PVs (HPVs) are etiologically linked to benign or malignant lesions of the skin and mucosa. The detection of HPV types can vary widely, depending mainly on the methodology and the quality of the biological sample. Next-generation sequencing is one of the most powerful tools, enabling the discovery of novel viruses in a wide range of biological material. Here, we report a novel protocol for the detection of known and unknown HPV types in human skin and oral gargle samples using improved PCR protocols combined with next-generation sequencing. We identified 105 putative new PV types in addition to 296 known types, thus providing important information about the viral distribution in the oral cavity and skin. Copyright © 2018. Published by Elsevier Inc.
Metagenome assembly through clustering of next-generation sequencing data using protein sequences.
Sim, Mikang; Kim, Jaebum
2015-02-01
The study of environmental microbial communities, called metagenomics, has gained a lot of attention because of the recent advances in next-generation sequencing (NGS) technologies. Microbes play a critical role in changing their environments, and the mode of their effect can be solved by investigating metagenomes. However, the difficulty of metagenomes, such as the combination of multiple microbes and different species abundance, makes metagenome assembly tasks more challenging. In this paper, we developed a new metagenome assembly method by utilizing protein sequences, in addition to the NGS read sequences. Our method (i) builds read clusters by using mapping information against available protein sequences, and (ii) creates contig sequences by finding consensus sequences through probabilistic choices from the read clusters. By using simulated NGS read sequences from real microbial genome sequences, we evaluated our method in comparison with four existing assembly programs. We found that our method could generate relatively long and accurate metagenome assemblies, indicating that the idea of using protein sequences, as a guide for the assembly, is promising. Copyright © 2015 Elsevier B.V. All rights reserved.
Next generation sequencing as a useful tool in the diagnostics of mosaicism in Alport syndrome.
Beicht, Sonja; Strobl-Wildemann, Gertrud; Rath, Sabine; Wachter, Oliver; Alberer, Martin; Kaminsky, Elke; Weber, Lutz T; Hinrichsen, Tanja; Klein, Hanns-Georg; Hoefele, Julia
2013-09-10
Alport syndrome (ATS) is a progressive hereditary nephropathy characterized by hematuria and/or proteinuria with structural defects of the glomerular basement membrane. It can be associated with extrarenal manifestations (high-tone sensorineural hearing loss and ocular abnormalities). Somatic mutations in COL4A5 (X-linked), COL4A3 and COL4A4 genes (both autosomal recessive and autosomal dominant) cause Alport syndrome. Somatic mosaicism in Alport patients is very rare. The reason for this may be due to the difficulty of detection. We report the case of a boy and his mother who presented with Alport syndrome. Mutational analysis showed the novel hemizygote pathogenic mutation c.2396-1G>A (IVS29-1G>A) at the splice acceptor site of the intron 29 exon 30 boundary of the COL4A5 gene in the boy. The mutation in the mother would not have been detected by Sanger sequencing without the knowledge of the mutational analysis result of her son. Further investigation of the mother using next generation sequencing showed somatic mosaicism and implied potential germ cell mosaicism. The mutation in the mother has most likely occurred during early embryogenesis. Analysis of tissue of different embryonic origin in the mother confirmed mosaicism in both mesoderm and ectoderm. Low grade mosaicism is very difficult to detect by Sanger sequencing. Next generation sequencing is increasingly used in the diagnostics and might improve the detection of mosaicism. In the case of definite clinical symptoms of ATS and missing detection of a mutation by Sanger sequencing, mutational analysis should be performed by next generation sequencing. Copyright © 2013 Elsevier B.V. All rights reserved.
Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S; Williams, Steven A
2016-03-01
The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world's most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other eukaryotic pathogens.
Reiman, Anne; Pandey, Sarojini; Lloyd, Kate L; Dyer, Nigel; Khan, Mike; Crockard, Martin; Latten, Mark J; Watson, Tracey L; Cree, Ian A; Grammatopoulos, Dimitris K
2016-11-01
Background Detection of disease-associated mutations in patients with familial hypercholesterolaemia is crucial for early interventions to reduce risk of cardiovascular disease. Screening for these mutations represents a methodological challenge since more than 1200 different causal mutations in the low-density lipoprotein receptor has been identified. A number of methodological approaches have been developed for screening by clinical diagnostic laboratories. Methods Using primers targeting, the low-density lipoprotein receptor, apolipoprotein B, and proprotein convertase subtilisin/kexin type 9, we developed a novel Ion Torrent-based targeted re-sequencing method. We validated this in a West Midlands-UK small cohort of 58 patients screened in parallel with other mutation-targeting methods, such as multiplex polymerase chain reaction (Elucigene FH20), oligonucleotide arrays (Randox familial hypercholesterolaemia array) or the Illumina next-generation sequencing platform. Results In this small cohort, the next-generation sequencing method achieved excellent analytical performance characteristics and showed 100% and 89% concordance with the Randox array and the Elucigene FH20 assay. Investigation of the discrepant results identified two cases of mutation misclassification of the Elucigene FH20 multiplex polymerase chain reaction assay. A number of novel mutations not previously reported were also identified by the next-generation sequencing method. Conclusions Ion Torrent-based next-generation sequencing can deliver a suitable alternative for the molecular investigation of familial hypercholesterolaemia patients, especially when comprehensive mutation screening for rare or unknown mutations is required.
Next generation sequencing (NGS): a golden tool in forensic toolkit.
Aly, S M; Sabri, D M
The DNA analysis is a cornerstone in contemporary forensic sciences. DNA sequencing technologies are powerful tools that enrich molecular sciences in the past based on Sanger sequencing and continue to glowing these sciences based on Next generation sequencing (NGS). Next generation sequencing has excellent potential to flourish and increase the molecular applications in forensic sciences by jumping over the pitfalls of the conventional method of sequencing. The main advantages of NGS compared to conventional method that it utilizes simultaneously a large number of genetic markers with high-resolution of genetic data. These advantages will help in solving several challenges such as mixture analysis and dealing with minute degraded samples. Based on these new technologies, many markers could be examined to get important biological data such as age, geographical origins, tissue type determination, external visible traits and monozygotic twins identification. It also could get data related to microbes, insects, plants and soil which are of great medico-legal importance. Despite the dozens of forensic research involving NGS, there are requirements before using this technology routinely in forensic cases. Thus, there is a great need to more studies that address robustness of these techniques. Therefore, this work highlights the applications of forensic sciences in the era of massively parallel sequencing.
Standardization and quality management in next-generation sequencing.
Endrullat, Christoph; Glökler, Jörn; Franke, Philipp; Frohme, Marcus
2016-09-01
DNA sequencing continues to evolve quickly even after > 30 years. Many new platforms suddenly appeared and former established systems have vanished in almost the same manner. Since establishment of next-generation sequencing devices, this progress gains momentum due to the continually growing demand for higher throughput, lower costs and better quality of data. In consequence of this rapid development, standardized procedures and data formats as well as comprehensive quality management considerations are still scarce. Here, we listed and summarized current standardization efforts and quality management initiatives from companies, organizations and societies in form of published studies and ongoing projects. These comprise on the one hand quality documentation issues like technical notes, accreditation checklists and guidelines for validation of sequencing workflows. On the other hand, general standard proposals and quality metrics are developed and applied to the sequencing workflow steps with the main focus on upstream processes. Finally, certain standard developments for downstream pipeline data handling, processing and storage are discussed in brief. These standardization approaches represent a first basis for continuing work in order to prospectively implement next-generation sequencing in important areas such as clinical diagnostics, where reliable results and fast processing is crucial. Additionally, these efforts will exert a decisive influence on traceability and reproducibility of sequence data.
Zhou, Bin; Lin, Xudong; Wang, Wei; Halpin, Rebecca A.; Bera, Jayati; Stockwell, Timothy B.; Barr, Ian G.
2014-01-01
Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and the rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs, and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented negative-sense RNA genome from any IBV strain in a single tube/well (IBV genomic amplification [IBV-GA]). Amplicons for >1,000 diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse-genetics plasmids, which can be used for the rescue of recombinant viruses and/or the creation of vaccine seed stock. PMID:24501036
DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.
Sucher, Nikolaus J; Hennell, James R; Carles, Maria C
2012-01-01
DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.
Next-generation sequencing in schizophrenia and other neuropsychiatric disorders.
Schreiber, Matthew; Dorschner, Michael; Tsuang, Debby
2013-10-01
Schizophrenia is a debilitating lifelong illness that lacks a cure and poses a worldwide public health burden. The disease is characterized by a heterogeneous clinical and genetic presentation that complicates research efforts to identify causative genetic variations. This review examines the potential of current findings in schizophrenia and in other related neuropsychiatric disorders for application in next-generation technologies, particularly whole-exome sequencing (WES) and whole-genome sequencing (WGS). These approaches may lead to the discovery of underlying genetic factors for schizophrenia and may thereby identify and target novel therapeutic targets for this devastating disorder. © 2013 Wiley Periodicals, Inc.
Next-Generation Sequencing of Antibody Display Repertoires
Rouet, Romain; Jackson, Katherine J. L.; Langley, David B.; Christ, Daniel
2018-01-01
In vitro selection technology has transformed the development of therapeutic monoclonal antibodies. Using methods such as phage, ribosome, and yeast display, high affinity binders can be selected from diverse repertoires. Here, we review strategies for the next-generation sequencing (NGS) of phage- and other antibody-display libraries, as well as NGS platforms and analysis tools. Moreover, we discuss recent examples relating to the use of NGS to assess library diversity, clonal enrichment, and affinity maturation. PMID:29472918
Polygenic Versus Monogenic Causes of Hypercholesterolemia Ascertained Clinically.
Wang, Jian; Dron, Jacqueline S; Ban, Matthew R; Robinson, John F; McIntyre, Adam D; Alazzam, Maher; Zhao, Pei Jun; Dilliott, Allison A; Cao, Henian; Huff, Murray W; Rhainds, David; Low-Kam, Cécile; Dubé, Marie-Pierre; Lettre, Guillaume; Tardif, Jean-Claude; Hegele, Robert A
2016-12-01
Next-generation sequencing technology is transforming our understanding of heterozygous familial hypercholesterolemia, including revision of prevalence estimates and attribution of polygenic effects. Here, we examined the contributions of monogenic and polygenic factors in patients with severe hypercholesterolemia referred to a specialty clinic. We applied targeted next-generation sequencing with custom annotation, coupled with evaluation of large-scale copy number variation and polygenic scores for raised low-density lipoprotein cholesterol in a cohort of 313 individuals with severe hypercholesterolemia, defined as low-density lipoprotein cholesterol >5.0 mmol/L (>194 mg/dL). We found that (1) monogenic familial hypercholesterolemia-causing mutations detected by targeted next-generation sequencing were present in 47.3% of individuals; (2) the percentage of individuals with monogenic mutations increased to 53.7% when copy number variations were included; (3) the percentage further increased to 67.1% when individuals with extreme polygenic scores were included; and (4) the percentage of individuals with an identified genetic component increased from 57.0% to 92.0% as low-density lipoprotein cholesterol level increased from 5.0 to >8.0 mmol/L (194 to >310 mg/dL). In a clinically ascertained sample with severe hypercholesterolemia, we found that most patients had a discrete genetic basis detected using a comprehensive screening approach that includes targeted next-generation sequencing, an assay for copy number variations, and polygenic trait scores. © 2016 American Heart Association, Inc.
Signature of genetic associations in oral cancer.
Sharma, Vishwas; Nandan, Amrita; Sharma, Amitesh Kumar; Singh, Harpreet; Bharadwaj, Mausumi; Sinha, Dhirendra Narain; Mehrotra, Ravi
2017-10-01
Oral cancer etiology is complex and controlled by multi-factorial events including genetic events. Candidate gene studies, genome-wide association studies, and next-generation sequencing identified various chromosomal loci to be associated with oral cancer. There is no available review that could give us the comprehensive picture of genetic loci identified to be associated with oral cancer by candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based approaches. A systematic literature search was performed in the PubMed database to identify the loci associated with oral cancer by exclusive candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based study approaches. The information of loci associated with oral cancer is made online through the resource "ORNATE." Next, screening of the loci validated by candidate gene studies and next-generation sequencing approach or by two independent studies within candidate gene studies or next-generation sequencing approaches were performed. A total of 264 loci were identified to be associated with oral cancer by candidate gene studies, genome-wide association studies, and next-generation sequencing approaches. In total, 28 loci, that is, 14q32.33 (AKT1), 5q22.2 (APC), 11q22.3 (ATM), 2q33.1 (CASP8), 11q13.3 (CCND1), 16q22.1 (CDH1), 9p21.3 (CDKN2A), 1q31.1 (COX-2), 7p11.2 (EGFR), 22q13.2 (EP300), 4q35.2 (FAT1), 4q31.3 (FBXW7), 4p16.3 (FGFR3), 1p13.3 (GSTM1-GSTT1), 11q13.2 (GSTP1), 11p15.5 (H-RAS), 3p25.3 (hOGG1), 1q32.1 (IL-10), 4q13.3 (IL-8), 12p12.1 (KRAS), 12q15 (MDM2), 12q13.12 (MLL2), 9q34.3 (NOTCH1), 17p13.1 (p53), 3q26.32 (PIK3CA), 10q23.31 (PTEN), 13q14.2 (RB1), and 5q14.2 (XRCC4), were validated to be associated with oral cancer. "ORNATE" gives a snapshot of genetic loci associated with oral cancer. All 28 loci were validated to be linked to oral cancer for which further fine-mapping followed by gene-by-gene and gene-environment interaction studies is needed to confirm their involvement in modifying oral cancer.
Beigh, Mohammad Muzafar
2016-01-01
Humans have predicted the relationship between heredity and diseases for a long time. Only in the beginning of the last century, scientists begin to discover the connotations between different genes and disease phenotypes. Recent trends in next-generation sequencing (NGS) technologies have brought a great momentum in biomedical research that in turn has remarkably augmented our basic understanding of human biology and its associated diseases. State-of-the-art next generation biotechnologies have started making huge strides in our current understanding of mechanisms of various chronic illnesses like cancers, metabolic disorders, neurodegenerative anomalies, etc. We are experiencing a renaissance in biomedical research primarily driven by next generation biotechnologies like genomics, transcriptomics, proteomics, metabolomics, lipidomics etc. Although genomic discoveries are at the forefront of next generation omics technologies, however, their implementation into clinical arena had been painstakingly slow mainly because of high reaction costs and unavailability of requisite computational tools for large-scale data analysis. However rapid innovations and steadily lowering cost of sequence-based chemistries along with the development of advanced bioinformatics tools have lately prompted launching and implementation of large-scale massively parallel genome sequencing programs in different fields ranging from medical genetics, infectious biology, agriculture sciences etc. Recent advances in large-scale omics-technologies is bringing healthcare research beyond the traditional “bench to bedside” approach to more of a continuum that will include improvements, in public healthcare and will be primarily based on predictive, preventive, personalized, and participatory medicine approach (P4). Recent large-scale research projects in genetic and infectious disease biology have indicated that massively parallel whole-genome/whole-exome sequencing, transcriptome analysis, and other functional genomic tools can reveal large number of unique functional elements and/or markers that otherwise would be undetected by traditional sequencing methodologies. Therefore, latest trends in the biomedical research is giving birth to the new branch in medicine commonly referred to as personalized and/or precision medicine. Developments in the post-genomic era are believed to completely restructure the present clinical pattern of disease prevention and treatment as well as methods of diagnosis and prognosis. The next important step in the direction of the precision/personalized medicine approach should be its early adoption in clinics for future medical interventions. Consequently, in coming year’s next generation biotechnologies will reorient medical practice more towards disease prediction and prevention approaches rather than curing them at later stages of their development and progression, even at wider population level(s) for general public healthcare system. PMID:28930123
ReQON: a Bioconductor package for recalibrating quality scores from next-generation sequencing data
2012-01-01
Background Next-generation sequencing technologies have become important tools for genome-wide studies. However, the quality scores that are assigned to each base have been shown to be inaccurate. If the quality scores are used in downstream analyses, these inaccuracies can have a significant impact on the results. Results Here we present ReQON, a tool that recalibrates the base quality scores from an input BAM file of aligned sequencing data using logistic regression. ReQON also generates diagnostic plots showing the effectiveness of the recalibration. We show that ReQON produces quality scores that are both more accurate, in the sense that they more closely correspond to the probability of a sequencing error, and do a better job of discriminating between sequencing errors and non-errors than the original quality scores. We also compare ReQON to other available recalibration tools and show that ReQON is less biased and performs favorably in terms of quality score accuracy. Conclusion ReQON is an open source software package, written in R and available through Bioconductor, for recalibrating base quality scores for next-generation sequencing data. ReQON produces a new BAM file with more accurate quality scores, which can improve the results of downstream analysis, and produces several diagnostic plots showing the effectiveness of the recalibration. PMID:22946927
Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants.
Taheri, Sima; Lee Abdullah, Thohirah; Yusop, Mohd Rafii; Hanafi, Mohamed Musa; Sahebi, Mahbod; Azizi, Parisa; Shamshiri, Redmond Ramin
2018-02-13
Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.
Transforming clinical microbiology with bacterial genome sequencing.
Didelot, Xavier; Bowden, Rory; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W
2012-09-01
Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.
Transforming clinical microbiology with bacterial genome sequencing
2016-01-01
Whole genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here we review the current status of clinical microbiology and how it has already begun to be transformed by the use of next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. The application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow. PMID:22868263
Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing
Maglio, C; Mancina, R M; Motta, B M; Stef, M; Pirazzi, C; Palacios, L; Askaryar, N; Borén, J; Wiklund, O; Romeo, S
2014-01-01
Maglio C., Mancina R. M., Motta B. M., Stef M., Pirazzi C., Palacios L., Askaryar N., Borén J., Wiklund O., Romeo S. (University of Gothenburg, Gothenburg, Sweden; University Magna Graecia of Catanzaro, Italy; University of Milan, Italy; Progenika Biopharma SA, Derio, Spain). Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing. Objectives The aim of this study was to combine clinical criteria and next-generation sequencing (pyrosequencing) to establish a diagnosis of familial hypercholesterolaemia (FH). Design, setting and subjects A total of 77 subjects with a Dutch Lipid Clinic Network score of ≥3 (possible, probable or definite FH clinical diagnosis) were recruited from the Lipid Clinic at Sahlgrenska Hospital, Gothenburg, Sweden. Next-generation sequencing was performed in all subjects using SEQPRO LIPO RS, a kit that detects mutations in the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9) and LDLR adapter protein 1 (LDLRAP1) genes; copy-number variations in the LDLR gene were also examined. Results A total of 26 mutations were detected in 50 subjects (65% success rate). Amongst these, 23 mutations were in the LDLR gene, two in the APOB gene and one in the PCSK9 gene. Four mutations with unknown pathogenicity were detected in LDLR. Of these, three mutations (Gly505Asp, Ile585Thr and Gln660Arg) have been previously reported in subjects with FH, but their pathogenicity has not been proved. The fourth, a mutation in LDLR affecting a splicing site (exon 6–intron 6) has not previously been reported; it was found to segregate with high cholesterol levels in the family of the proband. Conclusions Using a combination of clinical criteria and targeted next-generation sequencing, we have achieved FH diagnosis with a high success rate. Furthermore, we identified a new splicing-site mutation in the LDLR gene. PMID:24785115
The advantages of SMRT sequencing.
Roberts, Richard J; Carneiro, Mauricio O; Schatz, Michael C
2013-07-03
Of the current next-generation sequencing technologies, SMRT sequencing is sometimes overlooked. However, attributes such as long reads, modified base detection and high accuracy make SMRT a useful technology and an ideal approach to the complete sequencing of small genomes.
2016-01-01
Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time. PMID:27959951
Eichmeier, Aleš; Komínková, Marcela; Komínek, Petr; Baránek, Miroslav
2016-01-01
Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time.
WormBase 2014: new views of curated biology
Harris, Todd W.; Baran, Joachim; Bieri, Tamberlyn; Cabunoc, Abigail; Chan, Juancarlos; Chen, Wen J.; Davis, Paul; Done, James; Grove, Christian; Howe, Kevin; Kishore, Ranjana; Lee, Raymond; Li, Yuling; Muller, Hans-Michael; Nakamura, Cecilia; Ozersky, Philip; Paulini, Michael; Raciti, Daniela; Schindelman, Gary; Tuli, Mary Ann; Auken, Kimberly Van; Wang, Daniel; Wang, Xiaodong; Williams, Gary; Wong, J. D.; Yook, Karen; Schedl, Tim; Hodgkin, Jonathan; Berriman, Matthew; Kersey, Paul; Spieth, John; Stein, Lincoln; Sternberg, Paul W.
2014-01-01
WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans. With an electronic history predating the World Wide Web, WormBase contains information ranging from the sequence and phenotype of individual alleles to genome-wide studies generated using next-generation sequencing technologies. In recent years, we have expanded the contents to include data on additional nematodes of agricultural and medical significance, bringing the knowledge of C. elegans to bear on these systems and providing support for underserved research communities. Manual curation of the primary literature remains a central focus of the WormBase project, providing users with reliable, up-to-date and highly cross-linked information. In this update, we describe efforts to organize the original atomized and highly contextualized curated data into integrated syntheses of discrete biological topics. Next, we discuss our experiences coping with the vast increase in available genome sequences made possible through next-generation sequencing platforms. Finally, we describe some of the features and tools of the new WormBase Web site that help users better find and explore data of interest. PMID:24194605
USDA-ARS?s Scientific Manuscript database
High-throughput next-generation sequencing was used to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an indivi...
Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit.
Daoud, Hussein; Luco, Stephanie M; Li, Rui; Bareke, Eric; Beaulieu, Chandree; Jarinova, Olga; Carson, Nancy; Nikkel, Sarah M; Graham, Gail E; Richer, Julie; Armour, Christine; Bulman, Dennis E; Chakraborty, Pranesh; Geraghty, Michael; Lines, Matthew A; Lacaze-Masmonteil, Thierry; Majewski, Jacek; Boycott, Kym M; Dyment, David A
2016-08-09
Rare diseases often present in the first days and weeks of life and may require complex management in the setting of a neonatal intensive care unit (NICU). Exhaustive consultations and traditional genetic or metabolic investigations are costly and often fail to arrive at a final diagnosis when no recognizable syndrome is suspected. For this pilot project, we assessed the feasibility of next-generation sequencing as a tool to improve the diagnosis of rare diseases in newborns in the NICU. We retrospectively identified and prospectively recruited newborns and infants admitted to the NICU of the Children's Hospital of Eastern Ontario and the Ottawa Hospital, General Campus, who had been referred to the medical genetics or metabolics inpatient consult service and had features suggesting an underlying genetic or metabolic condition. DNA from the newborns and parents was enriched for a panel of clinically relevant genes and sequenced on a MiSeq sequencing platform (Illumina Inc.). The data were interpreted with a standard informatics pipeline and reported to care providers, who assessed the importance of genotype-phenotype correlations. Of 20 newborns studied, 8 received a diagnosis on the basis of next-generation sequencing (diagnostic rate 40%). The diagnoses were renal tubular dysgenesis, SCN1A-related encephalopathy syndrome, myotubular myopathy, FTO deficiency syndrome, cranioectodermal dysplasia, congenital myasthenic syndrome, autosomal dominant intellectual disability syndrome type 7 and Denys-Drash syndrome. This pilot study highlighted the potential of next-generation sequencing to deliver molecular diagnoses rapidly with a high success rate. With broader use, this approach has the potential to alter health care delivery in the NICU. © 2016 Canadian Medical Association or its licensors.
Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit
Daoud, Hussein; Luco, Stephanie M.; Li, Rui; Bareke, Eric; Beaulieu, Chandree; Jarinova, Olga; Carson, Nancy; Nikkel, Sarah M.; Graham, Gail E.; Richer, Julie; Armour, Christine; Bulman, Dennis E.; Chakraborty, Pranesh; Geraghty, Michael; Lines, Matthew A.; Lacaze-Masmonteil, Thierry; Majewski, Jacek; Boycott, Kym M.; Dyment, David A.
2016-01-01
Background: Rare diseases often present in the first days and weeks of life and may require complex management in the setting of a neonatal intensive care unit (NICU). Exhaustive consultations and traditional genetic or metabolic investigations are costly and often fail to arrive at a final diagnosis when no recognizable syndrome is suspected. For this pilot project, we assessed the feasibility of next-generation sequencing as a tool to improve the diagnosis of rare diseases in newborns in the NICU. Methods: We retrospectively identified and prospectively recruited newborns and infants admitted to the NICU of the Children’s Hospital of Eastern Ontario and the Ottawa Hospital, General Campus, who had been referred to the medical genetics or metabolics inpatient consult service and had features suggesting an underlying genetic or metabolic condition. DNA from the newborns and parents was enriched for a panel of clinically relevant genes and sequenced on a MiSeq sequencing platform (Illumina Inc.). The data were interpreted with a standard informatics pipeline and reported to care providers, who assessed the importance of genotype–phenotype correlations. Results: Of 20 newborns studied, 8 received a diagnosis on the basis of next-generation sequencing (diagnostic rate 40%). The diagnoses were renal tubular dysgenesis, SCN1A-related encephalopathy syndrome, myotubular myopathy, FTO deficiency syndrome, cranioectodermal dysplasia, congenital myasthenic syndrome, autosomal dominant intellectual disability syndrome type 7 and Denys–Drash syndrome. Interpretation: This pilot study highlighted the potential of next-generation sequencing to deliver molecular diagnoses rapidly with a high success rate. With broader use, this approach has the potential to alter health care delivery in the NICU. PMID:27241786
Evaluating Variant Calling Tools for Non-Matched Next-Generation Sequencing Data
NASA Astrophysics Data System (ADS)
Sandmann, Sarah; de Graaf, Aniek O.; Karimi, Mohsen; van der Reijden, Bert A.; Hellström-Lindberg, Eva; Jansen, Joop H.; Dugas, Martin
2017-02-01
Valid variant calling results are crucial for the use of next-generation sequencing in clinical routine. However, there are numerous variant calling tools that usually differ in algorithms, filtering strategies, recommendations and thus, also in the output. We evaluated eight open-source tools regarding their ability to call single nucleotide variants and short indels with allelic frequencies as low as 1% in non-matched next-generation sequencing data: GATK HaplotypeCaller, Platypus, VarScan, LoFreq, FreeBayes, SNVer, SAMtools and VarDict. We analysed two real datasets from patients with myelodysplastic syndrome, covering 54 Illumina HiSeq samples and 111 Illumina NextSeq samples. Mutations were validated by re-sequencing on the same platform, on a different platform and expert based review. In addition we considered two simulated datasets with varying coverage and error profiles, covering 50 samples each. In all cases an identical target region consisting of 19 genes (42,322 bp) was analysed. Altogether, no tool succeeded in calling all mutations. High sensitivity was always accompanied by low precision. Influence of varying coverages- and background noise on variant calling was generally low. Taking everything into account, VarDict performed best. However, our results indicate that there is a need to improve reproducibility of the results in the context of multithreading.
Toxicogenomics and Cancer Susceptibility: Advances with Next-Generation Sequencing
Ning, Baitang; Su, Zhenqiang; Mei, Nan; Hong, Huixiao; Deng, Helen; Shi, Leming; Fuscoe, James C.; Tolleson, William H.
2017-01-01
The aim of this review is to comprehensively summarize the recent achievements in the field of toxicogenomics and cancer research regarding genetic-environmental interactions in carcinogenesis and detection of genetic aberrations in cancer genomes by next-generation sequencing technology. Cancer is primarily a genetic disease in which genetic factors and environmental stimuli interact to cause genetic and epigenetic aberrations in human cells. Mutations in the germline act as either high-penetrance alleles that strongly increase the risk of cancer development, or as low-penetrance alleles that mildly change an individual’s susceptibility to cancer. Somatic mutations, resulting from either DNA damage induced by exposure to environmental mutagens or from spontaneous errors in DNA replication or repair are involved in the development or progression of the cancer. Induced or spontaneous changes in the epigenome may also drive carcinogenesis. Advances in next-generation sequencing technology provide us opportunities to accurately, economically, and rapidly identify genetic variants, somatic mutations, gene expression profiles, and epigenetic alterations with single-base resolution. Whole genome sequencing, whole exome sequencing, and RNA sequencing of paired cancer and adjacent normal tissue present a comprehensive picture of the cancer genome. These new findings should benefit public health by providing insights in understanding cancer biology, and in improving cancer diagnosis and therapy. PMID:24875441
Next Generation Sequence Assembly with AMOS
Treangen, Todd J; Sommer, Dan D; Angly, Florent E; Koren, Sergey; Pop, Mihai
2011-01-01
A Modular Open-Source Assembler (AMOS) was designed to offer a modular approach to genome assembly. AMOS includes a wide range of tools for assembly, including lightweight de novo assemblers Minimus and Minimo, and Bambus 2, a robust scaffolder able to handle metagenomic and polymorphic data. This protocol describes how to configure and use AMOS for the assembly of Next Generation sequence data. Additionally, we provide three tutorial examples that include bacterial, viral, and metagenomic datasets with specific tips for improving assembly quality. PMID:21400694
Shum, Bennett O V; Henner, Ilya; Belluoccio, Daniele; Hinchcliffe, Marcus J
2017-07-01
The sensitivity and specificity of next-generation sequencing laboratory developed tests (LDTs) are typically determined by an analyte-specific approach. Analyte-specific validations use disease-specific controls to assess an LDT's ability to detect known pathogenic variants. Alternatively, a methods-based approach can be used for LDT technical validations. Methods-focused validations do not use disease-specific controls but use benchmark reference DNA that contains known variants (benign, variants of unknown significance, and pathogenic) to assess variant calling accuracy of a next-generation sequencing workflow. Recently, four whole-genome reference materials (RMs) from the National Institute of Standards and Technology (NIST) were released to standardize methods-based validations of next-generation sequencing panels across laboratories. We provide a practical method for using NIST RMs to validate multigene panels. We analyzed the utility of RMs in validating a novel newborn screening test that targets 70 genes, called NEO1. Despite the NIST RM variant truth set originating from multiple sequencing platforms, replicates, and library types, we discovered a 5.2% false-negative variant detection rate in the RM truth set genes that were assessed in our validation. We developed a strategy using complementary non-RM controls to demonstrate 99.6% sensitivity of the NEO1 test in detecting variants. Our findings have implications for laboratories or proficiency testing organizations using whole-genome NIST RMs for testing. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
NexGen Production â Sequencing and Analysis
Muzny, Donna
2018-01-16
Donna Muzny of the Baylor College of Medicine Human Genome Sequencing Center discusses next generation sequencing platforms and evaluating pipeline performance on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
From genomics to functional markers in the era of next-generation sequencing.
Salgotra, R K; Gupta, B B; Stewart, C N
2014-03-01
The availability of complete genome sequences, along with other genomic resources for Arabidopsis, rice, pigeon pea, soybean and other crops, has revolutionized our understanding of the genetic make-up of plants. Next-generation DNA sequencing (NGS) has facilitated single nucleotide polymorphism discovery in plants. Functionally-characterized sequences can be identified and functional markers (FMs) for important traits can be developed at an ever-increasing ease. FMs are derived from sequence polymorphisms found in allelic variants of a functional gene. Linkage disequilibrium-based association mapping and homologous recombinants have been developed for identification of "perfect" markers for their use in crop improvement practices. Compared with many other molecular markers, FMs derived from the functionally characterized sequence genes using NGS techniques and their use provide opportunities to develop high-yielding plant genotypes resistant to various stresses at a fast pace.
Hocum, Jonah D; Battrell, Logan R; Maynard, Ryan; Adair, Jennifer E; Beard, Brian C; Rawlings, David J; Kiem, Hans-Peter; Miller, Daniel G; Trobridge, Grant D
2015-07-07
Analyzing the integration profile of retroviral vectors is a vital step in determining their potential genotoxic effects and developing safer vectors for therapeutic use. Identifying retroviral vector integration sites is also important for retroviral mutagenesis screens. We developed VISA, a vector integration site analysis server, to analyze next-generation sequencing data for retroviral vector integration sites. Sequence reads that contain a provirus are mapped to the human genome, sequence reads that cannot be localized to a unique location in the genome are filtered out, and then unique retroviral vector integration sites are determined based on the alignment scores of the remaining sequence reads. VISA offers a simple web interface to upload sequence files and results are returned in a concise tabular format to allow rapid analysis of retroviral vector integration sites.
First report of bacterial community from a Bat Guano using Illumina next-generation sequencing.
De Mandal, Surajit; Zothansanga; Panda, Amritha Kumari; Bisht, Satpal Singh; Senthil Kumar, Nachimuthu
2015-06-01
V4 hypervariable region of 16S rDNA was analyzed for identifying the bacterial communities present in Bat Guano from the unexplored cave - Pnahkyndeng, Meghalaya, Northeast India. Metagenome comprised of 585,434 raw Illumina sequences with a 59.59% G+C content. A total of 416,490 preprocessed reads were clustered into 1282 OTUs (operational taxonomical units) comprising of 18 bacterial phyla. The taxonomic profile showed that the guano bacterial community is dominated by Chloroflexi, Actinobacteria and Crenarchaeota which account for 70.73% of all sequence reads and 43.83% of all OTUs. Metagenome sequence data are available at NCBI under the accession no. SRP051094. This study is the first to characterize Bat Guano bacterial community using next-generation sequencing approach.
First report of bacterial community from a Bat Guano using Illumina next-generation sequencing
De Mandal, Surajit; Zothansanga; Panda, Amritha Kumari; Bisht, Satpal Singh; Senthil Kumar, Nachimuthu
2015-01-01
V4 hypervariable region of 16S rDNA was analyzed for identifying the bacterial communities present in Bat Guano from the unexplored cave — Pnahkyndeng, Meghalaya, Northeast India. Metagenome comprised of 585,434 raw Illumina sequences with a 59.59% G+C content. A total of 416,490 preprocessed reads were clustered into 1282 OTUs (operational taxonomical units) comprising of 18 bacterial phyla. The taxonomic profile showed that the guano bacterial community is dominated by Chloroflexi, Actinobacteria and Crenarchaeota which account for 70.73% of all sequence reads and 43.83% of all OTUs. Metagenome sequence data are available at NCBI under the accession no. SRP051094. This study is the first to characterize Bat Guano bacterial community using next-generation sequencing approach. PMID:26484190
New tool to assemble repetitive regions using next-generation sequencing data
NASA Astrophysics Data System (ADS)
Kuśmirek, Wiktor; Nowak, Robert M.; Neumann, Łukasz
2017-08-01
The next generation sequencing techniques produce a large amount of sequencing data. Some part of the genome are composed of repetitive DNA sequences, which are very problematic for the existing genome assemblers. We propose a modification of the algorithm for a DNA assembly, which uses the relative frequency of reads to properly reconstruct repetitive sequences. The new approach was implemented and tested, as a demonstration of the capability of our software we present some results for model organisms. The new implementation, using a three-layer software architecture was selected, where the presentation layer, data processing layer, and data storage layer were kept separate. Source code as well as demo application with web interface and the additional data are available at project web-page: http://dnaasm.sourceforge.net.
Ciric, Milica; Moon, Christina D; Leahy, Sinead C; Creevey, Christopher J; Altermann, Eric; Attwood, Graeme T; Rakonjac, Jasna; Gagic, Dragana
2014-05-12
In silico, secretome proteins can be predicted from completely sequenced genomes using various available algorithms that identify membrane-targeting sequences. For metasecretome (collection of surface, secreted and transmembrane proteins from environmental microbial communities) this approach is impractical, considering that the metasecretome open reading frames (ORFs) comprise only 10% to 30% of total metagenome, and are poorly represented in the dataset due to overall low coverage of metagenomic gene pool, even in large-scale projects. By combining secretome-selective phage display and next-generation sequencing, we focused the sequence analysis of complex rumen microbial community on the metasecretome component of the metagenome. This approach achieved high enrichment (29 fold) of secreted fibrolytic enzymes from the plant-adherent microbial community of the bovine rumen. In particular, we identified hundreds of heretofore rare modules belonging to cellulosomes, cell-surface complexes specialised for recognition and degradation of the plant fibre. As a method, metasecretome phage display combined with next-generation sequencing has a power to sample the diversity of low-abundance surface and secreted proteins that would otherwise require exceptionally large metagenomic sequencing projects. As a resource, metasecretome display library backed by the dataset obtained by next-generation sequencing is ready for i) affinity selection by standard phage display methodology and ii) easy purification of displayed proteins as part of the virion for individual functional analysis.
Comparison of Next-Generation Sequencing Systems
Liu, Lin; Li, Yinhu; Li, Siliang; Hu, Ni; He, Yimin; Pong, Ray; Lin, Danni; Lu, Lihua; Law, Maggie
2012-01-01
With fast development and wide applications of next-generation sequencing (NGS) technologies, genomic sequence information is within reach to aid the achievement of goals to decode life mysteries, make better crops, detect pathogens, and improve life qualities. NGS systems are typically represented by SOLiD/Ion Torrent PGM from Life Sciences, Genome Analyzer/HiSeq 2000/MiSeq from Illumina, and GS FLX Titanium/GS Junior from Roche. Beijing Genomics Institute (BGI), which possesses the world's biggest sequencing capacity, has multiple NGS systems including 137 HiSeq 2000, 27 SOLiD, one Ion Torrent PGM, one MiSeq, and one 454 sequencer. We have accumulated extensive experience in sample handling, sequencing, and bioinformatics analysis. In this paper, technologies of these systems are reviewed, and first-hand data from extensive experience is summarized and analyzed to discuss the advantages and specifics associated with each sequencing system. At last, applications of NGS are summarized. PMID:22829749
Yleaf: Software for Human Y-Chromosomal Haplogroup Inference from Next-Generation Sequencing Data.
Ralf, Arwin; Montiel González, Diego; Zhong, Kaiyin; Kayser, Manfred
2018-05-01
Next-generation sequencing (NGS) technologies offer immense possibilities given the large genomic data they simultaneously deliver. The human Y-chromosome serves as good example how NGS benefits various applications in evolution, anthropology, genealogy, and forensics. Prior to NGS, the Y-chromosome phylogenetic tree consisted of a few hundred branches, based on NGS data, it now contains many thousands. The complexity of both, Y tree and NGS data provide challenges for haplogroup assignment. For effective analysis and interpretation of Y-chromosome NGS data, we present Yleaf, a publically available, automated, user-friendly software for high-resolution Y-chromosome haplogroup inference independently of library and sequencing methods.
Using GBrowse 2.0 to visualize and share next-generation sequence data
2013-01-01
GBrowse is a mature web-based genome browser that is suitable for deployment on both public and private web sites. It supports most of genome browser features, including qualitative and quantitative (wiggle) tracks, track uploading, track sharing, interactive track configuration, semantic zooming and limited smooth track panning. As of version 2.0, GBrowse supports next-generation sequencing (NGS) data by providing for the direct display of SAM and BAM sequence alignment files. SAM/BAM tracks provide semantic zooming and support both local and remote data sources. This article provides step-by-step instructions for configuring GBrowse to display NGS data. PMID:23376193
Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T; Volk, David E
2014-06-10
Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.
Lu, Chaoxia; Wu, Wei; Xiao, Jifang; Meng, Yan; Zhang, Shuyang; Zhang, Xue
2013-06-01
To detect pathogenic mutations in Marfan syndrome (MFS) using an Ion Torrent Personal Genome Machine (PGM) and to validate the result of targeted next-generation semiconductor sequencing for the diagnosis of genetic disorders. Peripheral blood samples were collected from three MFS patients and a normal control with informed consent. Genomic DNA was isolated by standard method and then subjected to targeted sequencing using an Ion Ampliseq(TM) Inherited Disease Panel. Three multiplex PCR reactions were carried out to amplify the coding exons of 328 genes including FBN1, TGFBR1 and TGFBR2. DNA fragments from different samples were ligated with barcoded sequencing adaptors. Template preparation and emulsion PCR, and Ion Sphere Particles enrichment were carried out using an Ion One Touch system. The ion sphere particles were sequenced on a 318 chip using the PGM platform. Data from the PGM runs were processed using an Ion Torrent Suite 3.2 software to generate sequence reads. After sequence alignment and extraction of SNPs and indels, all the variants were filtered against dbSNP137. DNA sequences were visualized with an Integrated Genomics Viewer. The most likely disease-causing variants were analyzed by Sanger sequencing. The PGM sequencing has yielded an output of 855.80 Mb, with a > 100 × median sequencing depth and a coverage of > 98% for the targeted regions in all the four samples. After data analysis and database filtering, one known missense mutation (p.E1811K) and two novel premature termination mutations (p.E2264X and p.L871FfsX23) in the FBN1 gene were identified in the three MFS patients. All mutations were verified by conventional Sanger sequencing. Pathogenic FBN1 mutations have been identified in all patients with MFS, indicating that the targeted next-generation sequencing on the PGM sequencers can be applied for accurate and high-throughput testing of genetic disorders.
Nematode.net update 2011: addition of data sets and tools featuring next-generation sequencing data
Martin, John; Abubucker, Sahar; Heizer, Esley; Taylor, Christina M.; Mitreva, Makedonka
2012-01-01
Nematode.net (http://nematode.net) has been a publicly available resource for studying nematodes for over a decade. In the past 3 years, we reorganized Nematode.net to provide more user-friendly navigation through the site, a necessity due to the explosion of data from next-generation sequencing platforms. Organism-centric portals containing dynamically generated data are available for over 56 different nematode species. Next-generation data has been added to the various data-mining portals hosted, including NemaBLAST and NemaBrowse. The NemaPath metabolic pathway viewer builds associations using KOs, rather than ECs to provide more accurate and fine-grained descriptions of proteins. Two new features for data analysis and comparative genomics have been added to the site. NemaSNP enables the user to perform population genetics studies in various nematode populations using next-generation sequencing data. HelmCoP (Helminth Control and Prevention) as an independent component of Nematode.net provides an integrated resource for storage, annotation and comparative genomics of helminth genomes to aid in learning more about nematode genomes, as well as drug, pesticide, vaccine and drug target discovery. With this update, Nematode.net will continue to realize its original goal to disseminate diverse bioinformatic data sets and provide analysis tools to the broad scientific community in a useful and user-friendly manner. PMID:22139919
Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.
Oyola, Samuel O; Otto, Thomas D; Gu, Yong; Maslen, Gareth; Manske, Magnus; Campino, Susana; Turner, Daniel J; Macinnis, Bronwyn; Kwiatkowski, Dominic P; Swerdlow, Harold P; Quail, Michael A
2012-01-03
Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material.
Friis-Nielsen, Jens; Vinner, Lasse; Hansen, Thomas Arn; Richter, Stine Raith; Fridholm, Helena; Herrera, Jose Alejandro Romero; Lund, Ole; Brunak, Søren; Izarzugaza, Jose M. G.; Mourier, Tobias; Nielsen, Lars Peter
2016-01-01
Propionibacterium acnes is the most abundant bacterium on human skin, particularly in sebaceous areas. P. acnes is suggested to be an opportunistic pathogen involved in the development of diverse medical conditions but is also a proven contaminant of human clinical samples and surgical wounds. Its significance as a pathogen is consequently a matter of debate. In the present study, we investigated the presence of P. acnes DNA in 250 next-generation sequencing data sets generated from 180 samples of 20 different sample types, mostly of cancerous origin. The samples were subjected to either microbial enrichment, involving nuclease treatment to reduce the amount of host nucleic acids, or shotgun sequencing. We detected high proportions of P. acnes DNA in enriched samples, particularly skin tissue-derived and other tissue samples, with the levels being higher in enriched samples than in shotgun-sequenced samples. P. acnes reads were detected in most samples analyzed, though the proportions in most shotgun-sequenced samples were low. Our results show that P. acnes can be detected in practically all sample types when molecular methods, such as next-generation sequencing, are employed. The possibility of contamination from the patient or other sources, including laboratory reagents or environment, should therefore always be considered carefully when P. acnes is detected in clinical samples. We advocate that detection of P. acnes always be accompanied by experiments validating the association between this bacterium and any clinical condition. PMID:26818667
Ethical and legal implications of whole genome and whole exome sequencing in African populations.
Wright, Galen E B; Koornhof, Pieter G J; Adeyemo, Adebowale A; Tiffin, Nicki
2013-05-28
Rapid advances in high throughput genomic technologies and next generation sequencing are making medical genomic research more readily accessible and affordable, including the sequencing of patient and control whole genomes and exomes in order to elucidate genetic factors underlying disease. Over the next five years, the Human Heredity and Health in Africa (H3Africa) Initiative, funded by the Wellcome Trust (United Kingdom) and the National Institutes of Health (United States of America), will contribute greatly towards sequencing of numerous African samples for biomedical research. Funding agencies and journals often require submission of genomic data from research participants to databases that allow open or controlled data access for all investigators. Access to such genotype-phenotype and pedigree data, however, needs careful control in order to prevent identification of individuals or families. This is particularly the case in Africa, where many researchers and their patients are inexperienced in the ethical issues accompanying whole genome and exome research; and where an historical unidirectional flow of samples and data out of Africa has created a sense of exploitation and distrust. In the current study, we analysed the implications of the anticipated surge of next generation sequencing data in Africa and the subsequent data sharing concepts on the protection of privacy of research subjects. We performed a retrospective analysis of the informed consent process for the continent and the rest-of-the-world and examined relevant legislation, both current and proposed. We investigated the following issues: (i) informed consent, including guidelines for performing culturally-sensitive next generation sequencing research in Africa and availability of suitable informed consent documents; (ii) data security and subject privacy whilst practicing data sharing; (iii) conveying the implications of such concepts to research participants in resource limited settings. We conclude that, in order to meet the unique requirements of performing next generation sequencing-related research in African populations, novel approaches to the informed consent process are required. This will help to avoid infringement of privacy of individual subjects as well as to ensure that informed consent adheres to acceptable data protection levels with regard to use and transfer of such information.
Ethical and legal implications of whole genome and whole exome sequencing in African populations
2013-01-01
Background Rapid advances in high throughput genomic technologies and next generation sequencing are making medical genomic research more readily accessible and affordable, including the sequencing of patient and control whole genomes and exomes in order to elucidate genetic factors underlying disease. Over the next five years, the Human Heredity and Health in Africa (H3Africa) Initiative, funded by the Wellcome Trust (United Kingdom) and the National Institutes of Health (United States of America), will contribute greatly towards sequencing of numerous African samples for biomedical research. Discussion Funding agencies and journals often require submission of genomic data from research participants to databases that allow open or controlled data access for all investigators. Access to such genotype-phenotype and pedigree data, however, needs careful control in order to prevent identification of individuals or families. This is particularly the case in Africa, where many researchers and their patients are inexperienced in the ethical issues accompanying whole genome and exome research; and where an historical unidirectional flow of samples and data out of Africa has created a sense of exploitation and distrust. In the current study, we analysed the implications of the anticipated surge of next generation sequencing data in Africa and the subsequent data sharing concepts on the protection of privacy of research subjects. We performed a retrospective analysis of the informed consent process for the continent and the rest-of-the-world and examined relevant legislation, both current and proposed. We investigated the following issues: (i) informed consent, including guidelines for performing culturally-sensitive next generation sequencing research in Africa and availability of suitable informed consent documents; (ii) data security and subject privacy whilst practicing data sharing; (iii) conveying the implications of such concepts to research participants in resource limited settings. Summary We conclude that, in order to meet the unique requirements of performing next generation sequencing-related research in African populations, novel approaches to the informed consent process are required. This will help to avoid infringement of privacy of individual subjects as well as to ensure that informed consent adheres to acceptable data protection levels with regard to use and transfer of such information. PMID:23714101
The sequence and de novo assembly of the giant panda genome
Li, Ruiqiang; Fan, Wei; Tian, Geng; Zhu, Hongmei; He, Lin; Cai, Jing; Huang, Quanfei; Cai, Qingle; Li, Bo; Bai, Yinqi; Zhang, Zhihe; Zhang, Yaping; Wang, Wen; Li, Jun; Wei, Fuwen; Li, Heng; Jian, Min; Li, Jianwen; Zhang, Zhaolei; Nielsen, Rasmus; Li, Dawei; Gu, Wanjun; Yang, Zhentao; Xuan, Zhaoling; Ryder, Oliver A.; Leung, Frederick Chi-Ching; Zhou, Yan; Cao, Jianjun; Sun, Xiao; Fu, Yonggui; Fang, Xiaodong; Guo, Xiaosen; Wang, Bo; Hou, Rong; Shen, Fujun; Mu, Bo; Ni, Peixiang; Lin, Runmao; Qian, Wubin; Wang, Guodong; Yu, Chang; Nie, Wenhui; Wang, Jinhuan; Wu, Zhigang; Liang, Huiqing; Min, Jiumeng; Wu, Qi; Cheng, Shifeng; Ruan, Jue; Wang, Mingwei; Shi, Zhongbin; Wen, Ming; Liu, Binghang; Ren, Xiaoli; Zheng, Huisong; Dong, Dong; Cook, Kathleen; Shan, Gao; Zhang, Hao; Kosiol, Carolin; Xie, Xueying; Lu, Zuhong; Zheng, Hancheng; Li, Yingrui; Steiner, Cynthia C.; Lam, Tommy Tsan-Yuk; Lin, Siyuan; Zhang, Qinghui; Li, Guoqing; Tian, Jing; Gong, Timing; Liu, Hongde; Zhang, Dejin; Fang, Lin; Ye, Chen; Zhang, Juanbin; Hu, Wenbo; Xu, Anlong; Ren, Yuanyuan; Zhang, Guojie; Bruford, Michael W.; Li, Qibin; Ma, Lijia; Guo, Yiran; An, Na; Hu, Yujie; Zheng, Yang; Shi, Yongyong; Li, Zhiqiang; Liu, Qing; Chen, Yanling; Zhao, Jing; Qu, Ning; Zhao, Shancen; Tian, Feng; Wang, Xiaoling; Wang, Haiyin; Xu, Lizhi; Liu, Xiao; Vinar, Tomas; Wang, Yajun; Lam, Tak-Wah; Yiu, Siu-Ming; Liu, Shiping; Zhang, Hemin; Li, Desheng; Huang, Yan; Wang, Xia; Yang, Guohua; Jiang, Zhi; Wang, Junyi; Qin, Nan; Li, Li; Li, Jingxiang; Bolund, Lars; Kristiansen, Karsten; Wong, Gane Ka-Shu; Olson, Maynard; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian; Wang, Jun
2013-01-01
Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes. PMID:20010809
Exome-wide DNA capture and next generation sequencing in domestic and wild species.
Cosart, Ted; Beja-Pereira, Albano; Chen, Shanyuan; Ng, Sarah B; Shendure, Jay; Luikart, Gordon
2011-07-05
Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.
Xu, Jiajia; Li, Yuanyuan; Ma, Xiuling; Ding, Jianfeng; Wang, Kai; Wang, Sisi; Tian, Ye; Zhang, Hui; Zhu, Xin-Guang
2013-09-01
Setaria viridis is an emerging model species for genetic studies of C4 photosynthesis. Many basic molecular resources need to be developed to support for this species. In this paper, we performed a comprehensive transcriptome analysis from multiple developmental stages and tissues of S. viridis using next-generation sequencing technologies. Sequencing of the transcriptome from multiple tissues across three developmental stages (seed germination, vegetative growth, and reproduction) yielded a total of 71 million single end 100 bp long reads. Reference-based assembly using Setaria italica genome as a reference generated 42,754 transcripts. De novo assembly generated 60,751 transcripts. In addition, 9,576 and 7,056 potential simple sequence repeats (SSRs) covering S. viridis genome were identified when using the reference based assembled transcripts and the de novo assembled transcripts, respectively. This identified transcripts and SSR provided by this study can be used for both reverse and forward genetic studies based on S. viridis.
Benschop, Corina C G; Quaak, Frederike C A; Boon, Mathilde E; Sijen, Titia; Kuiper, Irene
2012-03-01
Forensic analysis of biological traces generally encompasses the investigation of both the person who contributed to the trace and the body site(s) from which the trace originates. For instance, for sexual assault cases, it can be beneficial to distinguish vaginal samples from skin or saliva samples. In this study, we explored the use of microbial flora to indicate vaginal origin. First, we explored the vaginal microbiome for a large set of clinical vaginal samples (n = 240) by next generation sequencing (n = 338,184 sequence reads) and found 1,619 different sequences. Next, we selected 389 candidate probes targeting genera or species and designed a microarray, with which we analysed a diverse set of samples; 43 DNA extracts from vaginal samples and 25 DNA extracts from samples from other body sites, including sites in close proximity of or in contact with the vagina. Finally, we used the microarray results and next generation sequencing dataset to assess the potential for a future approach that uses microbial markers to indicate vaginal origin. Since no candidate genera/species were found to positively identify all vaginal DNA extracts on their own, while excluding all non-vaginal DNA extracts, we deduce that a reliable statement about the cellular origin of a biological trace should be based on the detection of multiple species within various genera. Microarray analysis of a sample will then render a microbial flora pattern that is probably best analysed in a probabilistic approach.
Use of the Minion nanopore sequencer for rapid sequencing of avian influenza virus isolates
USDA-ARS?s Scientific Manuscript database
A relatively new sequencing technology, the MinION nanopore sequencer, provides a platform that is smaller, faster, and cheaper than existing Next Generation Sequence (NGS) technologies. The MinION sequences of individual strands of DNA and can produce millions of sequencing reads. The cost of the s...
A robust and cost-effective approach to sequence and analyze complete genomes of small RNA viruses
USDA-ARS?s Scientific Manuscript database
Background: Next-generation sequencing (NGS) allows ultra-deep sequencing of nucleic acids. The use of sequence-independent amplification of viral nucleic acids without utilization of target-specific primers provides advantages over traditional sequencing methods and allows detection of unsuspected ...
Yum, Soo-Young; Lee, Song-Jeon; Kim, Hyun-Min; Choi, Woo-Jae; Park, Ji-Hyun; Lee, Won-Wu; Kim, Hee-Soo; Kim, Hyeong-Jong; Bae, Seong-Hun; Lee, Je-Hyeong; Moon, Joo-Yeong; Lee, Ji-Hyun; Lee, Choong-Il; Son, Bong-Jun; Song, Sang-Hoon; Ji, Su-Min; Kim, Seong-Jin; Jang, Goo
2016-01-01
Here, we efficiently generated transgenic cattle using two transposon systems (Sleeping Beauty and Piggybac) and their genomes were analyzed by next-generation sequencing (NGS). Blastocysts derived from microinjection of DNA transposons were selected and transferred into recipient cows. Nine transgenic cattle have been generated and grown-up to date without any health issues except two. Some of them expressed strong fluorescence and the transgene in the oocytes from a superovulating one were detected by PCR and sequencing. To investigate genomic variants by the transgene transposition, whole genomic DNA were analyzed by NGS. We found that preferred transposable integration (TA or TTAA) was identified in their genome. Even though multi-copies (i.e. fifteen) were confirmed, there was no significant difference in genome instabilities. In conclusion, we demonstrated that transgenic cattle using the DNA transposon system could be efficiently generated, and all those animals could be a valuable resource for agriculture and veterinary science. PMID:27324781
Next-generation sequencing in the clinic: promises and challenges.
Xuan, Jiekun; Yu, Ying; Qing, Tao; Guo, Lei; Shi, Leming
2013-11-01
The advent of next generation sequencing (NGS) technologies has revolutionized the field of genomics, enabling fast and cost-effective generation of genome-scale sequence data with exquisite resolution and accuracy. Over the past years, rapid technological advances led by academic institutions and companies have continued to broaden NGS applications from research to the clinic. A recent crop of discoveries have highlighted the medical impact of NGS technologies on Mendelian and complex diseases, particularly cancer. However, the ever-increasing pace of NGS adoption presents enormous challenges in terms of data processing, storage, management and interpretation as well as sequencing quality control, which hinder the translation from sequence data into clinical practice. In this review, we first summarize the technical characteristics and performance of current NGS platforms. We further highlight advances in the applications of NGS technologies towards the development of clinical diagnostics and therapeutics. Common issues in NGS workflows are also discussed to guide the selection of NGS platforms and pipelines for specific research purposes. Published by Elsevier Ireland Ltd.
Jiang, Jiming
2015-04-01
Sequencing of complete plant genomes has become increasingly more routine since the advent of the next-generation sequencing technology. Identification and annotation of large amounts of noncoding but functional DNA sequences, including cis-regulatory DNA elements (CREs), have become a new frontier in plant genome research. Genomic regions containing active CREs bound to regulatory proteins are hypersensitive to DNase I digestion and are called DNase I hypersensitive sites (DHSs). Several recent DHS studies in plants illustrate that DHS datasets produced by DNase I digestion followed by next-generation sequencing (DNase-seq) are highly valuable for the identification and characterization of CREs associated with plant development and responses to environmental cues. DHS-based genomic profiling has opened a door to identify and annotate the 'dark matter' in sequenced plant genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
van den Oever, Jessica M E; van Minderhout, Ivonne J H M; Harteveld, Cornelis L; den Hollander, Nicolette S; Bakker, Egbert; van der Stoep, Nienke; Boon, Elles M J
2015-09-01
The challenge in noninvasive prenatal diagnosis for monogenic disorders lies in the detection of low levels of fetal variants in the excess of maternal cell-free plasma DNA. Next-generation sequencing, which is the main method used for noninvasive prenatal testing and diagnosis, can overcome this challenge. However, this method may not be accessible to all genetic laboratories. Moreover, shotgun next-generation sequencing as, for instance, currently applied for noninvasive fetal trisomy screening may not be suitable for the detection of inherited mutations. We have developed a sensitive, mutation-specific, and fast alternative for next-generation sequencing-mediated noninvasive prenatal diagnosis using a PCR-based method. For this proof-of-principle study, noninvasive fetal paternally inherited mutation detection was performed using cell-free DNA from maternal plasma. Preferential amplification of the paternally inherited allele was accomplished through a personalized approach using a blocking probe against maternal sequences in a high-resolution melting curve analysis-based assay. Enhanced detection of the fetal paternally inherited mutation was obtained for both an autosomal dominant and a recessive monogenic disorder by blocking the amplification of maternal sequences in maternal plasma. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Li, Haonan; Jin, Peng; Hao, Qian; Zhu, Wei; Chen, Xia; Wang, Ping
2017-11-01
Waardenburg syndrome (WS) is a rare autosomal dominant disorder associated with pigmentation abnormalities and sensorineural hearing loss. In this study, we investigated the genetic cause of WSII in a patient and evaluated the reliability of the targeted next-generation exome sequencing method for the genetic diagnosis of WS. Clinical evaluations were conducted on the patient and targeted next-generation sequencing (NGS) was used to identify the candidate genes responsible for WSII. Multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative polymerase chain reaction (qPCR) were performed to confirm the targeted NGS results. Targeted NGS detected the entire deletion of the coding sequence (CDS) of the SOX10 gene in the WSII patient. MLPA results indicated that all exons of the SOX10 heterozygous deletion were detected; no aberrant copy number in the PAX3 and microphthalmia-associated transcription factor (MITF) genes was found. Real-time qPCR results identified the mutation as a de novo heterozygous deletion. This is the first report of using a targeted NGS method for WS candidate gene sequencing; its accuracy was verified by using the MLPA and qPCR methods. Our research provides a valuable method for the genetic diagnosis of WS.
Bontems, Franck; Baerlocher, Loic; Mehenni, Sabrina; Bahechar, Ilham; Farinelli, Laurent; Dosch, Roland
2011-02-18
Fish models like medaka, stickleback or zebrafish provide a valuable resource to study vertebrate genes. However, finding genetic variants e.g. mutations in the genome is still arduous. Here we used a combination of microarray capturing and next generation sequencing to identify the affected gene in the mozartkugelp11cv (mzlp11cv) mutant zebrafish. We discovered a 31-bp deletion in macf1 demonstrating the potential of this technique to efficiently isolate mutations in a vertebrate genome. Copyright © 2011 Elsevier Inc. All rights reserved.
Next generation sequence assembly with AMOS.
Treangen, Todd J; Sommer, Dan D; Angly, Florent E; Koren, Sergey; Pop, Mihai
2011-03-01
A Modular Open-Source Assembler (AMOS) was designed to offer a modular approach to genome assembly. AMOS includes a wide range of tools for assembly, including the lightweight de novo assemblers Minimus and Minimo, and Bambus 2, a robust scaffolder able to handle metagenomic and polymorphic data. This protocol describes how to configure and use AMOS for the assembly of Next Generation sequence data. Additionally, we provide three tutorial examples that include bacterial, viral, and metagenomic datasets with specific tips for improving assembly quality. © 2011 by John Wiley & Sons, Inc.
USDA-ARS?s Scientific Manuscript database
Background: Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next generation sequencing methods provide unique approaches to a number of immuno-based research areas including antibody discovery and engineering, disease surve...
USDA-ARS?s Scientific Manuscript database
Marker assisted selection (MAS) has become widely used in perennial crop breeding programs to accelerate and enhance cultivar development via selection during the juvenile phase and parental selection prior to crossing. Next generation sequencing (NGS) has been widely used for whole genome molecular...
USDA-ARS?s Scientific Manuscript database
Marker assisted selection (MAS) is often employed in crop breeding programs to accelerate and enhance cultivar development, via selection during the juvenile phase and parental selection prior to crossing. Next generation sequencing (NGS) and its derivative technologies have been used for genome-wid...
USDA-ARS?s Scientific Manuscript database
Next generation sequencing offers new ways to identify the genetic mechanisms that underlie mutant phenotypes. The release of a reference diploid Gossypium raimondii (D5) genome and bioinformatics tools to sort tetraploid reads into subgenomes has brought cotton genetic mapping into the genomics er...
USDA-ARS?s Scientific Manuscript database
The advancement of next-generation sequencing technologies in conjunction with new bioinformatics tools enabled fine-tuning of sequence-based high resolution mapping strategies for complex genomes. Although genotyping-by-sequencing (GBS) provides a large number of markers, its application for assoc...
Masking as an effective quality control method for next-generation sequencing data analysis.
Yun, Sajung; Yun, Sijung
2014-12-13
Next generation sequencing produces base calls with low quality scores that can affect the accuracy of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking substitutes low quality base calls with 'N's (undetermined bases), whereas trimming removes low quality bases that results in a shorter read lengths. We demonstrate that masking is more effective than trimming in reducing the false-positive rate in single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing. False-positive rate and false-negative rate for small insertions and deletions did not show differences between masking and trimming. We recommend masking over trimming as a more effective preprocessing method for next generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the Sequence Read Archive (SRX450968 and SRX451773).
Genetic basis of arrhythmogenic cardiomyopathy.
Karmouch, Jennifer; Protonotarios, Alexandros; Syrris, Petros
2018-05-01
To date 16 genes have been associated with arrhythmogenic cardiomyopathy (ACM). Mutations in these genes can lead to a broad spectrum of phenotypic expression ranging from disease affecting predominantly the right or left ventricle, to biventricular subtypes. Understanding the genetic causes of ACM is important in diagnosis and management of the disorder. This review summarizes recent advances in molecular genetics and discusses the application of next-generation sequencing technology in genetic testing in ACM. Use of next-generation sequencing methods has resulted in the identification of novel causative variants and genes for ACM. The involvement of filamin C in ACM demonstrates the genetic overlap between ACM and other types of cardiomyopathy. Putative pathogenic variants have been detected in cadherin 2 gene, a protein involved in cell adhesion. Large genomic rearrangements in desmosome genes have been systematically investigated in a cohort of ACM patients. Recent studies have identified novel causes of ACM providing new insights into the genetic spectrum of the disease and highlighting an overlapping phenotype between ACM and dilated cardiomyopathy. Next-generation sequencing is a useful tool for research and genetic diagnostic screening but interpretation of identified sequence variants requires caution and should be performed in specialized centres.
Next generation sequencing applications for breast cancer research
PETRIC, ROXANA COJOCNEANU; POP, LAURA-ANCUTA; JURJ, ANCUTA; RADULY, LAJOS; DUMITRASCU, DAN; DRAGOS, NICOLAE; NEAGOE, IOANA BERINDAN
2015-01-01
For some time, cancer has not been thought of as a disease, but as a multifaceted, heterogeneous complex of genotypic and phenotypic manifestations leading to tumorigenesis. Due to recent technological progress, the outcome of cancer patients can be greatly improved by introducing in clinical practice the advantages brought about by the development of next generation sequencing techniques. Biomedical suppliers have come up with various applications which medical researchers can use to characterize a patient’s disease from molecular and genetic point of view in order to provide caregivers with rapid and relevant information to guide them in choosing the most appropriate course of treatment, with maximum efficiency and minimal side effects. Breast cancer, whose incidence has risen dramatically, is a good candidate for these novel diagnosis and therapeutic approaches, particularly when referring to specific sequencing panels which are designed to detect germline or somatic mutations in genes that are involved in breast cancer tumorigenesis and progression. Benchtop next generation sequencing machines are becoming a more common presence in the clinical setting, empowering physicians to better treat their patients, by offering early diagnosis alternatives, targeted remedies, and bringing medicine a step closer to achieving its ultimate goal, personalized therapy. PMID:26609257
A Study of Pilots’ Value Systems and Their Effect on Career Intentions
1978-09-01
needs, Maslow’s need-hierarchy comes into play3 Maslow stated that there are five basic needs: physiological, safety, love. estt:em, and self ...then again direct his atttention to the next higher level need (10370-396). Maslow also asse-ced that man strives for eventual self -actualization...life) (affectionate, tender) SELF -RESPECT 0 BEDIENT ( self - esteem ) (dutiful, respectful) SOCIAL RECOGNITION PO LITE (respect, admiration) (courteous, well
He, Ziyang; Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan
2018-04-17
By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.
LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices
Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan
2018-01-01
By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices. PMID:29673171
Exome and genome sequencing in reproductive medicine.
Normand, Elizabeth A; Alaimo, Joseph T; Van den Veyver, Ignatia B
2018-02-01
The advent of next-generation sequencing has enabled clinicians to assess many genes simultaneously and at high resolution. This is advantageous for diagnosing patients in whom a genetic disorder is suspected but who have a nonspecific or atypical phenotype or when the disorder has significant genetic heterogeneity. Herein, we describe common clinical applications of next-generation sequencing technology, as well as their respective benefits and limitations. We then discuss key considerations of variant interpretation and reporting, clinical utility, pre- and posttest genetic counseling, and ethical challenges. We will present these topics with an emphasis on their applicability to the reproductive medicine setting. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Next-Generation Sequencing: a Diagnostic One-Stop Shop for Hepatitis C?
Poljak, Mario
2016-10-01
Before starting chronic hepatitis C treatment, the viral genotype/subtype has to be accurately determined and potentially coupled with drug resistance testing. Due to the high genetic variability of the hepatitis C virus, this can be a demanding task that can potentially be streamlined by viral whole-genome sequencing using next-generation sequencing as demonstrated by an article in this issue of the Journal of Clinical Microbiology by E. Thomson, C. L. C. Ip, A. Badhan, M. T. Christiansen, W. Adamson, et al. (J Clin Microbiol. 54:2455-2469, 2016, http://dx.doi.org/10.1128/JCM.00330-16). Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Next-generation sequencing: hype and hope for development of personalized radiation therapy?
Tinhofer, Ingeborg; Niehr, Franziska; Konschak, Robert; Liebs, Sandra; Munz, Matthias; Stenzinger, Albrecht; Weichert, Wilko; Keilholz, Ulrich; Budach, Volker
2015-08-28
The introduction of next-generation sequencing (NGS) in the field of cancer research has boosted worldwide efforts of genome-wide personalized oncology aiming at identifying predictive biomarkers and novel actionable targets. Despite considerable progress in understanding the molecular biology of distinct cancer entities by the use of this revolutionary technology and despite contemporaneous innovations in drug development, translation of NGS findings into improved concepts for cancer treatment remains a challenge. The aim of this article is to describe shortly the NGS platforms for DNA sequencing and in more detail key achievements and unresolved hurdles. A special focus will be given on potential clinical applications of this innovative technique in the field of radiation oncology.
Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der
2016-05-01
In this study, the complete mitogenome sequence of hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,829 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop contains 1057 bp length is located between tRNA-Pro and tRNA-Phe. The overall base composition of P. labiosus is 28.0% for A, 29.3% for C, 15.5% for G and 27.2% for T. The complete mitogenome may provide essential and important DNA molecular data for further population, phylogenetic and evolutionary analysis for Mugilidae.
Shen, Kang-Ning; Tsai, Shiou-Yi; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique
2016-11-01
In this study, the complete mitogenome sequence of largescale mullet (Teleostei: Mugilidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome, consisting of 16,832 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs genes, and a non-coding control region of D-loop. D-loop which has a length of 1094 bp is located between tRNA-Pro and tRNA-Phe. The overall base composition of largescale mullet is 27.8% for A, 30.1% for C, 16.2% for G, and 25.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for Mugilidae.
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing (NGS) technologies are revolutionizing both medical and biological research through generation of massive SNP data sets for identifying heritable genome variation underlying key traits, from rare human diseases to important agronomic phenotypes in crop species. We evaluate...
NASA Technical Reports Server (NTRS)
Golden, Johnny L.; Martinez, James E.; Devivar, Rodrigo V.
2015-01-01
The Solar Alpha Rotary Joint (SARJ) is a mechanism of the International Space Station (ISS) that orients the solar power generating arrays toward the sun as the ISS orbits our planet. The orientation with the sun must be maintained to fully charge the ISS batteries and maintain all the other ISS electrical systems operating properly. In 2007, just a few months after full deployment, the starboard SARJ developed anomalies that warranted a full investigation including ISS Extravehicular Activity (EVA). The EVA uncovered unexpected debris that was due to degradation of a nitride layer on the SARJ bearing race. ISS personnel identified the failure root-cause and applied an aerospace grease to lubricate the area associated with the anomaly. The corrective action allowed the starboard SARJ to continue operating within the specified engineering parameters. The SARJ LITE (Lubrication Interval Test and Evaluation) program was initiated by NASA, Lockheed Martin, and Boeing to simulate the operation of the ISS SARJ for an extended time. The hardware was designed to test and evaluate the exact material components used aboard the ISS SARJ, but in a controlled area where engineers could continuously monitor the performance. After running the SARJ LITE test for an equivalent of 36+ years of continuous use, the test was opened to evaluate the metallography and lubrication. We have sampled the SARJ LITE rollers and plate to fully assess the grease used for lubrication. Chemical and thermal analysis of these samples has generated information that has allowed us to assess the location, migration, and current condition of the grease. The collective information will be key toward understanding and circumventing any performance deviations involving the ISS SARJ in the years to come.
Expanding Scales and Applications for 2D Spatial Mapping of CO2 using GreenLITE
NASA Astrophysics Data System (ADS)
Erxleben, W. H.; Dobler, J. T.; Zaccheo, T. S.; Blume, N.; Braun, M.
2015-12-01
The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system is a new measurement approach originally developed under a cooperative agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL), Atmospheric Environmental Sciences (AER) and Exelis Inc. (now part of Harris Corp.). The original system design provides 24/7 monitoring of Ground Carbon Storage (GCS) sites, in order to help ensure worker safety and verify 99% containment. The first generation was designed to cover up to 1km2 area, and employs the Exelis Continuous Wave (CW) Intensity Modulated (IM) approach to measure differential transmission. A pair of scanning transceivers was built and combined with a series of retro reflectors, and a local weather station to provide the information required for producing estimates of the atmospheric CO2 concentration over a number of overlapping lines-of-site. The information from the transceivers, and weather station, are sent remotely to a web-based processing and storage tool, which in-turn uses the data to generate estimates of the 2D spatial distribution over the area of coverage and disseminate that information near real-time via a secure web interface. Recently, in 2015, Exelis and AER have invested in the expansion of the GreenLITE transceiver system to 5 km range, enabling areas up to 25 km2 to be evaluated with this technology, and opening new possibilities for applications such as urban scale monitoring. The 5 km system is being tested in conjunction with the National Institute of Standards and Technology at the Boulder Atmospheric Observatory in August of this year. This talk will review the initial GreenLITE system, testing and deployment of that system, and the more recent development, expansion and testing of the 5 km system.
An efficient approach to BAC based assembly of complex genomes.
Visendi, Paul; Berkman, Paul J; Hayashi, Satomi; Golicz, Agnieszka A; Bayer, Philipp E; Ruperao, Pradeep; Hurgobin, Bhavna; Montenegro, Juan; Chan, Chon-Kit Kenneth; Staňková, Helena; Batley, Jacqueline; Šimková, Hana; Doležel, Jaroslav; Edwards, David
2016-01-01
There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate 'gold' reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes.
System, method and apparatus for generating phrases from a database
NASA Technical Reports Server (NTRS)
McGreevy, Michael W. (Inventor)
2004-01-01
A phrase generation is a method of generating sequences of terms, such as phrases, that may occur within a database of subsets containing sequences of terms, such as text. A database is provided and a relational model of the database is created. A query is then input. The query includes a term or a sequence of terms or multiple individual terms or multiple sequences of terms or combinations thereof. Next, several sequences of terms that are contextually related to the query are assembled from contextual relations in the model of the database. The sequences of terms are then sorted and output. Phrase generation can also be an iterative process used to produce sequences of terms from a relational model of a database.
SNP discovery through de novo deep sequencing using the next generation of DNA sequencers
USDA-ARS?s Scientific Manuscript database
The production of high volumes of DNA sequence data using new technologies has permitted more efficient identification of single nucleotide polymorphisms in vertebrate genomes. This chapter presented practical methodology for production and analysis of DNA sequence data for SNP discovery....
USDA-ARS?s Scientific Manuscript database
Current technologies with next generation sequencing have revolutionized metagenomics analysis of clinical samples. To achieve the non-selective amplification and recovery of low abundance genetic sequences, a simplified Sequence-Independent, Single-Primer Amplification (SISPA) technique in combinat...
Li, Zibo; Guo, Xinwu; Tang, Lili; Peng, Limin; Chen, Ming; Luo, Xipeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Xia, Kun; Wang, Jun
2016-10-01
Circulating cell-free DNA (cfDNA) has been considered as a potential biomarker for non-invasive cancer detection. To evaluate the methylation levels of six candidate genes (EGFR, GREM1, PDGFRB, PPM1E, SOX17, and WRN) in plasma cfDNA as biomarkers for breast cancer early detection, quantitative analysis of the promoter methylation of these genes from 86 breast cancer patients and 67 healthy controls was performed by using microfluidic-PCR-based target enrichment and next-generation bisulfite sequencing technology. The predictive performance of different logistic models based on methylation status of candidate genes was investigated by means of the area under the ROC curve (AUC) and odds ratio (OR) analysis. Results revealed that EGFR, PPM1E, and 8 gene-specific CpG sites showed significantly hypermethylation in cancer patients' plasma and significantly associated with breast cancer (OR ranging from 2.51 to 9.88). The AUC values for these biomarkers were ranging from 0.66 to 0.75. Combinations of multiple hypermethylated genes or CpG sites substantially improved the predictive performance for breast cancer detection. Our study demonstrated the feasibility of quantitative measurement of candidate gene methylation in cfDNA by using microfluidic-PCR-based target enrichment and bisulfite next-generation sequencing, which is worthy of further validation and potentially benefits a broad range of applications in clinical oncology practice. Quantitative analysis of methylation pattern of plasma cfDNA by next-generation sequencing might be a valuable non-invasive tool for early detection of breast cancer.
Grissom, Colin K; Hirshberg, Eliotte L; Dickerson, Justin B; Brown, Samuel M; Lanspa, Michael J; Liu, Kathleen D; Schoenfeld, David; Tidswell, Mark; Hite, R Duncan; Rock, Peter; Miller, Russell R; Morris, Alan H
2015-02-01
In the Fluid and Catheter Treatment Trial (FACTT) of the National Institutes of Health Acute Respiratory Distress Syndrome Network, a conservative fluid protocol (FACTT Conservative) resulted in a lower cumulative fluid balance and better outcomes than a liberal fluid protocol (FACTT Liberal). Subsequent Acute Respiratory Distress Syndrome Network studies used a simplified conservative fluid protocol (FACTT Lite). The objective of this study was to compare the performance of FACTT Lite, FACTT Conservative, and FACTT Liberal protocols. Retrospective comparison of FACTT Lite, FACTT Conservative, and FACTT Liberal. Primary outcome was cumulative fluid balance over 7 days. Secondary outcomes were 60-day adjusted mortality and ventilator-free days through day 28. Safety outcomes were prevalence of acute kidney injury and new shock. ICUs of Acute Respiratory Distress Syndrome Network participating hospitals. Five hundred three subjects managed with FACTT Conservative, 497 subjects managed with FACTT Liberal, and 1,124 subjects managed with FACTT Lite. Fluid management by protocol. Cumulative fluid balance was 1,918 ± 323 mL in FACTT Lite, -136 ± 491 mL in FACTT Conservative, and 6,992 ± 502 mL in FACTT Liberal (p < 0.001). Mortality was not different between groups (24% in FACTT Lite, 25% in FACTT Conservative and Liberal, p = 0.84). Ventilator-free days in FACTT Lite (14.9 ± 0.3) were equivalent to FACTT Conservative (14.6 ± 0.5) (p = 0.61) and greater than in FACTT Liberal (12.1 ± 0.5, p < 0.001 vs Lite). Acute kidney injury prevalence was 58% in FACTT Lite and 57% in FACTT Conservative (p = 0.72). Prevalence of new shock in FACTT Lite (9%) was lower than in FACTT Conservative (13%) (p = 0.007 vs Lite) and similar to FACTT Liberal (11%) (p = 0.18 vs Lite). FACTT Lite had a greater cumulative fluid balance than FACTT Conservative but had equivalent clinical and safety outcomes. FACTT Lite is an alternative to FACTT Conservative for fluid management in Acute Respiratory Distress Syndrome.
Sequencing, Assembly and Analysis of Human Microbial Communities
Petrosino, Joe
2018-02-02
Joe Petrosino of Baylor College of Medicine discusses using next generation sequencing technologies to study human microbial communities associated with health and disease on June 4, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Stajdohar, Miha; Rosengarten, Rafael D; Kokosar, Janez; Jeran, Luka; Blenkus, Domen; Shaulsky, Gad; Zupan, Blaz
2017-06-02
Dictyostelium discoideum, a soil-dwelling social amoeba, is a model for the study of numerous biological processes. Research in the field has benefited mightily from the adoption of next-generation sequencing for genomics and transcriptomics. Dictyostelium biologists now face the widespread challenges of analyzing and exploring high dimensional data sets to generate hypotheses and discovering novel insights. We present dictyExpress (2.0), a web application designed for exploratory analysis of gene expression data, as well as data from related experiments such as Chromatin Immunoprecipitation sequencing (ChIP-Seq). The application features visualization modules that include time course expression profiles, clustering, gene ontology enrichment analysis, differential expression analysis and comparison of experiments. All visualizations are interactive and interconnected, such that the selection of genes in one module propagates instantly to visualizations in other modules. dictyExpress currently stores the data from over 800 Dictyostelium experiments and is embedded within a general-purpose software framework for management of next-generation sequencing data. dictyExpress allows users to explore their data in a broader context by reciprocal linking with dictyBase-a repository of Dictyostelium genomic data. In addition, we introduce a companion application called GenBoard, an intuitive graphic user interface for data management and bioinformatics analysis. dictyExpress and GenBoard enable broad adoption of next generation sequencing based inquiries by the Dictyostelium research community. Labs without the means to undertake deep sequencing projects can mine the data available to the public. The entire information flow, from raw sequence data to hypothesis testing, can be accomplished in an efficient workspace. The software framework is generalizable and represents a useful approach for any research community. To encourage more wide usage, the backend is open-source, available for extension and further development by bioinformaticians and data scientists.
Iterative refinement of structure-based sequence alignments by Seed Extension
Kim, Changhoon; Tai, Chin-Hsien; Lee, Byungkook
2009-01-01
Background Accurate sequence alignment is required in many bioinformatics applications but, when sequence similarity is low, it is difficult to obtain accurate alignments based on sequence similarity alone. The accuracy improves when the structures are available, but current structure-based sequence alignment procedures still mis-align substantial numbers of residues. In order to correct such errors, we previously explored the possibility of replacing the residue-based dynamic programming algorithm in structure alignment procedures with the Seed Extension algorithm, which does not use a gap penalty. Here, we describe a new procedure called RSE (Refinement with Seed Extension) that iteratively refines a structure-based sequence alignment. Results RSE uses SE (Seed Extension) in its core, which is an algorithm that we reported recently for obtaining a sequence alignment from two superimposed structures. The RSE procedure was evaluated by comparing the correctly aligned fractions of residues before and after the refinement of the structure-based sequence alignments produced by popular programs. CE, DaliLite, FAST, LOCK2, MATRAS, MATT, TM-align, SHEBA and VAST were included in this analysis and the NCBI's CDD root node set was used as the reference alignments. RSE improved the average accuracy of sequence alignments for all programs tested when no shift error was allowed. The amount of improvement varied depending on the program. The average improvements were small for DaliLite and MATRAS but about 5% for CE and VAST. More substantial improvements have been seen in many individual cases. The additional computation times required for the refinements were negligible compared to the times taken by the structure alignment programs. Conclusion RSE is a computationally inexpensive way of improving the accuracy of a structure-based sequence alignment. It can be used as a standalone procedure following a regular structure-based sequence alignment or to replace the traditional iterative refinement procedures based on residue-level dynamic programming algorithm in many structure alignment programs. PMID:19589133
USDA-ARS?s Scientific Manuscript database
Current technologies for next generation sequencing (NGS) have revolutionized metagenomics analysis of clinical samples. One advantage of the NGS platform is the possibility to sequence the genetic material in samples without any prior knowledge of the sequence contained within. Sequence-Independent...
Targeted sequencing of plant genomes
Mark D. Huynh
2014-01-01
Next-generation sequencing (NGS) has revolutionized the field of genetics by providing a means for fast and relatively affordable sequencing. With the advancement of NGS, wholegenome sequencing (WGS) has become more commonplace. However, sequencing an entire genome is still not cost effective or even beneficial in all cases. In studies that do not require a whole-...
Multiplex Reverse Transcription-PCR for Simultaneous Surveillance of Influenza A and B Viruses
Zhou, Bin; Barnes, John R.; Sessions, October M.; Chou, Tsui-Wen; Wilson, Malania; Stark, Thomas J.; Volk, Michelle; Spirason, Natalie; Halpin, Rebecca A.; Kamaraj, Uma Sangumathi; Ding, Tao; Stockwell, Timothy B.; Ghedin, Elodie; Barr, Ian G.
2017-01-01
ABSTRACT Influenza A and B viruses are the causative agents of annual influenza epidemics that can be severe, and influenza A viruses intermittently cause pandemics. Sequence information from influenza virus genomes is instrumental in determining mechanisms underpinning antigenic evolution and antiviral resistance. However, due to sequence diversity and the dynamics of influenza virus evolution, rapid and high-throughput sequencing of influenza viruses remains a challenge. We developed a single-reaction influenza A/B virus (FluA/B) multiplex reverse transcription-PCR (RT-PCR) method that amplifies the most critical genomic segments (hemagglutinin [HA], neuraminidase [NA], and matrix [M]) of seasonal influenza A and B viruses for next-generation sequencing, regardless of viral type, subtype, or lineage. Herein, we demonstrate that the strategy is highly sensitive and robust. The strategy was validated on thousands of seasonal influenza A and B virus-positive specimens using multiple next-generation sequencing platforms. PMID:28978683
Sequencing-based diagnostics for pediatric genetic diseases: progress and potential
Tayoun, Ahmad Abou; Krock, Bryan; Spinner, Nancy B.
2016-01-01
Introduction The last two decades have witnessed revolutionary changes in clinical diagnostics, fueled by the Human Genome Project and advances in high throughput, Next Generation Sequencing (NGS). We review the current state of sequencing-based pediatric diagnostics, associated challenges, and future prospects. Areas Covered We present an overview of genetic disease in children, review the technical aspects of Next Generation Sequencing and the strategies to make molecular diagnoses for children with genetic disease. We discuss the challenges of genomic sequencing including incomplete current knowledge of variants, lack of data about certain genomic regions, mosaicism, and the presence of regions with high homology. Expert Commentary NGS has been a transformative technology and the gap between the research and clinical communities has never been so narrow. Therapeutic interventions are emerging based on genomic findings and the applications of NGS are progressing to prenatal genetics, epigenomics and transcriptomics. PMID:27388938
Recent Applications of DNA Sequencing Technologies in Food, Nutrition and Agriculture
USDA-ARS?s Scientific Manuscript database
Next-generation DNA sequencing technologies are able to produce millions of short sequence reads in a high-throughput, cost-effective fashion. The emergence of these technologies has not only facilitated genome sequencing but also changed the landscape of life sciences. This review surveys their rec...
USDA-ARS?s Scientific Manuscript database
The advent of next-generation sequencing technologies has been a boon to the cost-effective development of molecular markers, particularly in non-model species. Here, we demonstrate the efficiency of microsatellite or simple sequence repeat (SSR) marker development from short-read sequences using th...
NASA Technical Reports Server (NTRS)
Smith, David J.; Burton, Aaron; Castro-Wallace, Sarah; John, Kristen; Stahl, Sarah E.; Dworkin, Jason Peter; Lupisella, Mark L.
2016-01-01
On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human Research Program investigations, and even life detection experiments for astrobiology missions.
Carr, Ian M; Morgan, Joanne; Watson, Christopher; Melnik, Svitlana; Diggle, Christine P; Logan, Clare V; Harrison, Sally M; Taylor, Graham R; Pena, Sergio D J; Markham, Alexander F; Alkuraya, Fowzan S; Black, Graeme C M; Ali, Manir; Bonthron, David T
2013-07-01
Massively parallel ("next generation") DNA sequencing (NGS) has quickly become the method of choice for seeking pathogenic mutations in rare uncharacterized monogenic diseases. Typically, before DNA sequencing, protein-coding regions are enriched from patient genomic DNA, representing either the entire genome ("exome sequencing") or selected mapped candidate loci. Sequence variants, identified as differences between the patient's and the human genome reference sequences, are then filtered according to various quality parameters. Changes are screened against datasets of known polymorphisms, such as dbSNP and the 1000 Genomes Project, in the effort to narrow the list of candidate causative variants. An increasing number of commercial services now offer to both generate and align NGS data to a reference genome. This potentially allows small groups with limited computing infrastructure and informatics skills to utilize this technology. However, the capability to effectively filter and assess sequence variants is still an important bottleneck in the identification of deleterious sequence variants in both research and diagnostic settings. We have developed an approach to this problem comprising a user-friendly suite of programs that can interactively analyze, filter and screen data from enrichment-capture NGS data. These programs ("Agile Suite") are particularly suitable for small-scale gene discovery or for diagnostic analysis. © 2013 WILEY PERIODICALS, INC.
New Technology Drafts: Production and Improvements
Lapidus, Alla
2018-01-22
Alla Lapidus, head of the DOE Joint Genome Institute's Finishing group, gives a talk on how the DOE JGI's microbial genome sequencing pipeline has been adapted to accommodate next generation sequencing platforms at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Mind the gap; seven reasons to close fragmented genome assemblies
USDA-ARS?s Scientific Manuscript database
Like other domains of life, research into the biology of filamentous microbes has greatly benefited from the advent of whole-genome sequencing. Next-generation sequencing (NGS) technologies have revolutionized sequencing, making genomic sciences accessible to many academic laboratories including tho...
Watson, Christopher M.; Crinnion, Laura A.; Gurgel‐Gianetti, Juliana; Harrison, Sally M.; Daly, Catherine; Antanavicuite, Agne; Lascelles, Carolina; Markham, Alexander F.; Pena, Sergio D. J.; Bonthron, David T.
2015-01-01
ABSTRACT Autozygosity mapping is a powerful technique for the identification of rare, autosomal recessive, disease‐causing genes. The ease with which this category of disease gene can be identified has greatly increased through the availability of genome‐wide SNP genotyping microarrays and subsequently of exome sequencing. Although these methods have simplified the generation of experimental data, its analysis, particularly when disparate data types must be integrated, remains time consuming. Moreover, the huge volume of sequence variant data generated from next generation sequencing experiments opens up the possibility of using these data instead of microarray genotype data to identify disease loci. To allow these two types of data to be used in an integrated fashion, we have developed AgileVCFMapper, a program that performs both the mapping of disease loci by SNP genotyping and the analysis of potentially deleterious variants using exome sequence variant data, in a single step. This method does not require microarray SNP genotype data, although analysis with a combination of microarray and exome genotype data enables more precise delineation of disease loci, due to superior marker density and distribution. PMID:26037133
He, W; Zhao, S; Liu, X; Dong, S; Lv, J; Liu, D; Wang, J; Meng, Z
2013-12-04
Large-scale next-generation sequencing (NGS)-based resequencing detects sequence variations, constructs evolutionary histories, and identifies phenotype-related genotypes. However, NGS-based resequencing studies generate extraordinarily large amounts of data, making computations difficult. Effective use and analysis of these data for NGS-based resequencing studies remains a difficult task for individual researchers. Here, we introduce ReSeqTools, a full-featured toolkit for NGS (Illumina sequencing)-based resequencing analysis, which processes raw data, interprets mapping results, and identifies and annotates sequence variations. ReSeqTools provides abundant scalable functions for routine resequencing analysis in different modules to facilitate customization of the analysis pipeline. ReSeqTools is designed to use compressed data files as input or output to save storage space and facilitates faster and more computationally efficient large-scale resequencing studies in a user-friendly manner. It offers abundant practical functions and generates useful statistics during the analysis pipeline, which significantly simplifies resequencing analysis. Its integrated algorithms and abundant sub-functions provide a solid foundation for special demands in resequencing projects. Users can combine these functions to construct their own pipelines for other purposes.
Zseq: An Approach for Preprocessing Next-Generation Sequencing Data.
Alkhateeb, Abedalrhman; Rueda, Luis
2017-08-01
Next-generation sequencing technology generates a huge number of reads (short sequences), which contain a vast amount of genomic data. The sequencing process, however, comes with artifacts. Preprocessing of sequences is mandatory for further downstream analysis. We present Zseq, a linear method that identifies the most informative genomic sequences and reduces the number of biased sequences, sequence duplications, and ambiguous nucleotides. Zseq finds the complexity of the sequences by counting the number of unique k-mers in each sequence as its corresponding score and also takes into the account other factors such as ambiguous nucleotides or high GC-content percentage in k-mers. Based on a z-score threshold, Zseq sweeps through the sequences again and filters those with a z-score less than the user-defined threshold. Zseq algorithm is able to provide a better mapping rate; it reduces the number of ambiguous bases significantly in comparison with other methods. Evaluation of the filtered reads has been conducted by aligning the reads and assembling the transcripts using the reference genome as well as de novo assembly. The assembled transcripts show a better discriminative ability to separate cancer and normal samples in comparison with another state-of-the-art method. Moreover, de novo assembled transcripts from the reads filtered by Zseq have longer genomic sequences than other tested methods. Estimating the threshold of the cutoff point is introduced using labeling rules with optimistic results.
Cao, Yu; Fanning, Séamus; Proos, Sinéad; Jordan, Kieran; Srikumar, Shabarinath
2017-01-01
The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods. PMID:29033905
Chaitankar, Vijender; Karakülah, Gökhan; Ratnapriya, Rinki; Giuste, Felipe O.; Brooks, Matthew J.; Swaroop, Anand
2016-01-01
The advent of high throughput next generation sequencing (NGS) has accelerated the pace of discovery of disease-associated genetic variants and genomewide profiling of expressed sequences and epigenetic marks, thereby permitting systems-based analyses of ocular development and disease. Rapid evolution of NGS and associated methodologies presents significant challenges in acquisition, management, and analysis of large data sets and for extracting biologically or clinically relevant information. Here we illustrate the basic design of commonly used NGS-based methods, specifically whole exome sequencing, transcriptome, and epigenome profiling, and provide recommendations for data analyses. We briefly discuss systems biology approaches for integrating multiple data sets to elucidate gene regulatory or disease networks. While we provide examples from the retina, the NGS guidelines reviewed here are applicable to other tissues/cell types as well. PMID:27297499
Compression of next-generation sequencing reads aided by highly efficient de novo assembly
Jones, Daniel C.; Ruzzo, Walter L.; Peng, Xinxia
2012-01-01
We present Quip, a lossless compression algorithm for next-generation sequencing data in the FASTQ and SAM/BAM formats. In addition to implementing reference-based compression, we have developed, to our knowledge, the first assembly-based compressor, using a novel de novo assembly algorithm. A probabilistic data structure is used to dramatically reduce the memory required by traditional de Bruijn graph assemblers, allowing millions of reads to be assembled very efficiently. Read sequences are then stored as positions within the assembled contigs. This is combined with statistical compression of read identifiers, quality scores, alignment information and sequences, effectively collapsing very large data sets to <15% of their original size with no loss of information. Availability: Quip is freely available under the 3-clause BSD license from http://cs.washington.edu/homes/dcjones/quip. PMID:22904078
NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data.
Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug
2016-01-01
The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data.
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-01-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-08-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.
Okamoto, Nobuhiko; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi
2013-01-01
Next-generation sequencing (NGS) combined with enrichment of target genes enables highly efficient and low-cost sequencing of multiple genes for genetic diseases. The aim of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection in autism spectrum disorder (ASD). We assessed the performance of the bench-top Ion Torrent PGM and Illumina MiSeq platforms as optimized solutions for mutation detection, using microdroplet PCR-based enrichment of 62 ASD associated genes. Ten patients with known mutations were sequenced using NGS to validate the sensitivity of our method. The overall read quality was better with MiSeq, largely because of the increased indel-related error associated with PGM. The sensitivity of SNV detection was similar between the two platforms, suggesting they are both suitable for SNV detection in the human genome. Next, we used these methods to analyze 28 patients with ASD, and identified 22 novel variants in genes associated with ASD, with one mutation detected by MiSeq only. Thus, our results support the combination of target gene enrichment and NGS as a valuable molecular method for investigating rare variants in ASD. PMID:24066114
Characterisation and Next-generation Sequencing Analysis of Unknown Arboviruses
2012-09-01
on the development of real- time PCR detection assays for Vibrio cholerae, a water-borne bacterium responsible for severe enteric disease. From...specific sequence [22]. The length of time from harvesting virus to generating samples that are ready for sequencing takes about two weeks, which is a...two viruses, and on day 4 post infection significant and widespread cytopathic effect was observed. The viruses were harvested by ultracentrifugation
Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S; Singh, Rajesh R; Roy-Chowdhuri, Sinchita
2015-08-28
Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.
Lopez-Doriga, Adriana; Feliubadaló, Lídia; Menéndez, Mireia; Lopez-Doriga, Sergio; Morón-Duran, Francisco D; del Valle, Jesús; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Campos, Olga; Gómez, Carolina; Pineda, Marta; González, Sara; Moreno, Victor; Capellá, Gabriel; Lázaro, Conxi
2014-03-01
Next-generation sequencing (NGS) has revolutionized genomic research and is set to have a major impact on genetic diagnostics thanks to the advent of benchtop sequencers and flexible kits for targeted libraries. Among the main hurdles in NGS are the difficulty of performing bioinformatic analysis of the huge volume of data generated and the high number of false positive calls that could be obtained, depending on the NGS technology and the analysis pipeline. Here, we present the development of a free and user-friendly Web data analysis tool that detects and filters sequence variants, provides coverage information, and allows the user to customize some basic parameters. The tool has been developed to provide accurate genetic analysis of targeted sequencing of common high-risk hereditary cancer genes using amplicon libraries run in a GS Junior System. The Web resource is linked to our own mutation database, to assist in the clinical classification of identified variants. We believe that this tool will greatly facilitate the use of the NGS approach in routine laboratories.
USDA-ARS?s Scientific Manuscript database
The complete genome sequence of a Southern tomato virus (STV) isolate on tomato plants in a seed production field in Bangladesh was obtained for the first time using next generation sequencing. The identified isolate STV_BD-13 shares high degree of sequence identity (99%) with several known STV isol...
USDA-ARS?s Scientific Manuscript database
Complete genome sequence of a double-stranded RNA (dsRNA) virus, southern tomato virus (STV), on tomatoes in China, was elucidated using small RNAs deep sequencing. The identified STV_CN12 shares 99% sequence identity to other isolates from Mexico, France, Spain, and U.S. This is the first report ...
ERIC Educational Resources Information Center
Taylor, D. Leland; Campbell, A. Malcolm; Heyer, Laurie J.
2013-01-01
Next-generation sequencing technologies have greatly reduced the cost of sequencing genomes. With the current sequencing technology, a genome is broken into fragments and sequenced, producing millions of "reads." A computer algorithm pieces these reads together in the genome assembly process. PHAST is a set of online modules…
Fassan, Matteo; Rachiglio, Anna Maria; Cappellesso, Rocco; Antonello, Davide; Amato, Eliana; Mafficini, Andrea; Lambiase, Matilde; Esposito, Claudia; Bria, Emilio; Simonato, Francesca; Scardoni, Maria; Turri, Giona; Chilosi, Marco; Tortora, Giampaolo; Fassina, Ambrogio; Normanno, Nicola
2013-01-01
Identification of driver mutations in lung adenocarcinoma has led to development of targeted agents that are already approved for clinical use or are in clinical trials. Therefore, the number of biomarkers that will be needed to assess is expected to rapidly increase. This calls for the implementation of methods probing the mutational status of multiple genes for inoperable cases, for which limited cytological or bioptic material is available. Cytology specimens from 38 lung adenocarcinomas were subjected to the simultaneous assessment of 504 mutational hotspots of 22 lung cancer-associated genes using 10 nanograms of DNA and Ion Torrent PGM next-generation sequencing. Thirty-six cases were successfully sequenced (95%). In 24/36 cases (67%) at least one mutated gene was observed, including EGFR, KRAS, PIK3CA, BRAF, TP53, PTEN, MET, SMAD4, FGFR3, STK11, MAP2K1. EGFR and KRAS mutations, respectively found in 6/36 (16%) and 10/36 (28%) cases, were mutually exclusive. Nine samples (25%) showed concurrent alterations in different genes. The next-generation sequencing test used is superior to current standard methodologies, as it interrogates multiple genes and requires limited amounts of DNA. Its applicability to routine cytology samples might allow a significant increase in the fraction of lung cancer patients eligible for personalized therapy. PMID:24236184
Lo, David; Weng, Jingning; Liu, xiaohong; Yang, Juhua; He, Fen; Wang, Yun; Liu, Xuyang
2016-01-01
PURPOSE To detect the disease-causing gene in a Chinese pedigree with autosomal-recessive retinitis pigmentosa (ARRP). METHODS All subjects in this family underwent a complete ophthalmic examination. Targeted-capture next generation sequencing (NGS) was performed on the proband to detect variants. All variants were verified in the remaining family members by PCR amplification and Sanger sequencing. RESULTS All the affected subjects in this pedigree were diagnosed with retinitis pigmentosa (RP). The compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations in the Crumbs homolog 1 (CRB1) gene were identified in all the affected patients but not in the unaffected individuals in this family. These mutations were inherited from their parents, respectively. CONCLUSION The novel compound heterozygous mutations in CRB1 were identified in a Chinese pedigree with ARRP using targeted-capture next generation sequencing. After evaluating the significant heredity and impaired protein function, the compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations are the causal genes of early onset ARRP in this pedigree. To the best of our knowledge, there is no previous report regarding the compound mutations. PMID:27806333
Farhat, Maha; Shaheed, Raja A; Al-Ali, Haider H; Al-Ghamdi, Abdullah S; Al-Hamaqi, Ghadeer M; Maan, Hawraa S; Al-Mahfoodh, Zainab A; Al-Seba, Hussain Z
2018-02-01
To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires' disease. Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.
Goldberg, Brittany; Sichtig, Heike; Geyer, Chelsie; Ledeboer, Nathan
2015-01-01
ABSTRACT Next-generation DNA sequencing (NGS) has progressed enormously over the past decade, transforming genomic analysis and opening up many new opportunities for applications in clinical microbiology laboratories. The impact of NGS on microbiology has been revolutionary, with new microbial genomic sequences being generated daily, leading to the development of large databases of genomes and gene sequences. The ability to analyze microbial communities without culturing organisms has created the ever-growing field of metagenomics and microbiome analysis and has generated significant new insights into the relation between host and microbe. The medical literature contains many examples of how this new technology can be used for infectious disease diagnostics and pathogen analysis. The implementation of NGS in medical practice has been a slow process due to various challenges such as clinical trials, lack of applicable regulatory guidelines, and the adaptation of the technology to the clinical environment. In April 2015, the American Academy of Microbiology (AAM) convened a colloquium to begin to define these issues, and in this document, we present some of the concepts that were generated from these discussions. PMID:26646014
Sequencing Strategies for Population and Cancer Epidemiology Studies (SeqSPACE) Webinar Series
The Sequencing Strategies for Population and Cancer Epidemiology Studies (SeqSPACE) Webinar Series provides an opportunity for our grantees and other interested individuals to share lessons learned and practical information regarding the application of next generation sequencing to cancer epidemiology studies.
The LiteBIRD Satellite Mission: Sub-Kelvin Instrument
NASA Astrophysics Data System (ADS)
Suzuki, A.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, S.; Crill, B.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasebe, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Kashima, S.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.
2018-05-01
Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through "B-mode" (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40-235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280-402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.
Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS.
Warris, Sven; Yalcin, Feyruz; Jackson, Katherine J L; Nap, Jan Peter
2015-01-01
To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.
Bybee, Seth M; Bracken-Grissom, Heather; Haynes, Benjamin D; Hermansen, Russell A; Byers, Robert L; Clement, Mark J; Udall, Joshua A; Wilcox, Edward R; Crandall, Keith A
2011-01-01
Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach.
Bybee, Seth M.; Bracken-Grissom, Heather; Haynes, Benjamin D.; Hermansen, Russell A.; Byers, Robert L.; Clement, Mark J.; Udall, Joshua A.; Wilcox, Edward R.; Crandall, Keith A.
2011-01-01
Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach. PMID:22002916
Wymant, Chris; Colijn, Caroline; Danaviah, Siva; Essex, Max; Frost, Simon; Gall, Astrid; Gaseitsiwe, Simani; Grabowski, Mary K.; Gray, Ronald; Guindon, Stephane; von Haeseler, Arndt; Kaleebu, Pontiano; Kendall, Michelle; Kozlov, Alexey; Manasa, Justen; Minh, Bui Quang; Moyo, Sikhulile; Novitsky, Vlad; Nsubuga, Rebecca; Pillay, Sureshnee; Quinn, Thomas C.; Serwadda, David; Ssemwanga, Deogratius; Stamatakis, Alexandros; Trifinopoulos, Jana; Wawer, Maria; Brown, Andy Leigh; de Oliveira, Tulio; Kellam, Paul; Pillay, Deenan; Fraser, Christophe
2017-01-01
Abstract To characterize HIV-1 transmission dynamics in regions where the burden of HIV-1 is greatest, the “Phylogenetics and Networks for Generalised HIV Epidemics in Africa” consortium (PANGEA-HIV) is sequencing full-genome viral isolates from across sub-Saharan Africa. We report the first 3,985 PANGEA-HIV consensus sequences from four cohort sites (Rakai Community Cohort Study, n = 2,833; MRC/UVRI Uganda, n = 701; Mochudi Prevention Project, n = 359; Africa Health Research Institute Resistance Cohort, n = 92). Next-generation sequencing success rates varied: more than 80% of the viral genome from the gag to the nef genes could be determined for all sequences from South Africa, 75% of sequences from Mochudi, 60% of sequences from MRC/UVRI Uganda, and 22% of sequences from Rakai. Partial sequencing failure was primarily associated with low viral load, increased for amplicons closer to the 3′ end of the genome, was not associated with subtype diversity except HIV-1 subtype D, and remained significantly associated with sampling location after controlling for other factors. We assessed the impact of the missing data patterns in PANGEA-HIV sequences on phylogeny reconstruction in simulations. We found a threshold in terms of taxon sampling below which the patchy distribution of missing characters in next-generation sequences (NGS) has an excess negative impact on the accuracy of HIV-1 phylogeny reconstruction, which is attributable to tree reconstruction artifacts that accumulate when branches in viral trees are long. The large number of PANGEA-HIV sequences provides unprecedented opportunities for evaluating HIV-1 transmission dynamics across sub-Saharan Africa and identifying prevention opportunities. Molecular epidemiological analyses of these data must proceed cautiously because sequence sampling remains below the identified threshold and a considerable negative impact of missing characters on phylogeny reconstruction is expected. PMID:28540766
Ratmann, Oliver; Wymant, Chris; Colijn, Caroline; Danaviah, Siva; Essex, M; Frost, Simon D W; Gall, Astrid; Gaiseitsiwe, Simani; Grabowski, Mary; Gray, Ronald; Guindon, Stephane; von Haeseler, Arndt; Kaleebu, Pontiano; Kendall, Michelle; Kozlov, Alexey; Manasa, Justen; Minh, Bui Quang; Moyo, Sikhulile; Novitsky, Vladimir; Nsubuga, Rebecca; Pillay, Sureshnee; Quinn, Thomas C; Serwadda, David; Ssemwanga, Deogratius; Stamatakis, Alexandros; Trifinopoulos, Jana; Wawer, Maria; Leigh Brown, Andrew; de Oliveira, Tulio; Kellam, Paul; Pillay, Deenan; Fraser, Christophe
2017-05-25
To characterize HIV-1 transmission dynamics in regions where the burden of HIV-1 is greatest, the 'Phylogenetics and Networks for Generalised HIV Epidemics in Africa' consortium (PANGEA-HIV) is sequencing full-genome viral isolates from across sub-Saharan Africa. We report the first 3,985 PANGEA-HIV consensus sequences from four cohort sites (Rakai Community Cohort Study, n=2,833; MRC/UVRI Uganda, n=701; Mochudi Prevention Project, n=359; Africa Health Research Institute Resistance Cohort, n=92). Next-generation sequencing success rates varied: more than 80% of the viral genome from the gag to the nef genes could be determined for all sequences from South Africa, 75% of sequences from Mochudi, 60% of sequences from MRC/UVRI Uganda, and 22% of sequences from Rakai. Partial sequencing failure was primarily associated with low viral load, increased for amplicons closer to the 3' end of the genome, was not associated with subtype diversity except HIV-1 subtype D, and remained significantly associated with sampling location after controlling for other factors. We assessed the impact of the missing data patterns in PANGEA-HIV sequences on phylogeny reconstruction in simulations. We found a threshold in terms of taxon sampling below which the patchy distribution of missing characters in next-generation sequences has an excess negative impact on the accuracy of HIV-1 phylogeny reconstruction, which is attributable to tree reconstruction artifacts that accumulate when branches in viral trees are long. The large number of PANGEA-HIV sequences provides unprecedented opportunities for evaluating HIV-1 transmission dynamics across sub-Saharan Africa and identifying prevention opportunities. Molecular epidemiological analyses of these data must proceed cautiously because sequence sampling remains below the identified threshold and a considerable negative impact of missing characters on phylogeny reconstruction is expected.
GSFC Cutting Edge Avionics Technologies for Spacecraft
NASA Technical Reports Server (NTRS)
Luers, Philip J.; Culver, Harry L.; Plante, Jeannette
1998-01-01
With the launch of NASA's first fiber optic bus on SAMPEX in 1992, GSFC has ushered in an era of new technology development and insertion into flight programs. Predating such programs the Lewis and Clark missions and the New Millenium Program, GSFC has spearheaded the drive to use cutting edge technologies on spacecraft for three reasons: to enable next generation Space and Earth Science, to shorten spacecraft development schedules, and to reduce the cost of NASA missions. The technologies developed have addressed three focus areas: standard interface components, high performance processing, and high-density packaging techniques enabling lower cost systems. To realize the benefits of standard interface components GSFC has developed and utilized radiation hardened/tolerant devices such as PCI target ASICs, Parallel Fiber Optic Data Bus terminals, MIL-STD-1773 and AS1773 transceivers, and Essential Services Node. High performance processing has been the focus of the Mongoose I and Mongoose V rad-hard 32-bit processor programs as well as the SMEX-Lite Computation Hub. High-density packaging techniques have resulted in 3-D stack DRAM packages and Chip-On-Board processes. Lower cost systems have been demonstrated by judiciously using all of our technology developments to enable "plug and play" scalable architectures. The paper will present a survey of development and insertion experiences for the above technologies, as well as future plans to enable more "better, faster, cheaper" spacecraft. Details of ongoing GSFC programs such as Ultra-Low Power electronics, Rad-Hard FPGAs, PCI master ASICs, and Next Generation Mongoose processors.
Roy, Somak; Durso, Mary Beth; Wald, Abigail; Nikiforov, Yuri E; Nikiforova, Marina N
2014-01-01
A wide repertoire of bioinformatics applications exist for next-generation sequencing data analysis; however, certain requirements of the clinical molecular laboratory limit their use: i) comprehensive report generation, ii) compatibility with existing laboratory information systems and computer operating system, iii) knowledgebase development, iv) quality management, and v) data security. SeqReporter is a web-based application developed using ASP.NET framework version 4.0. The client-side was designed using HTML5, CSS3, and Javascript. The server-side processing (VB.NET) relied on interaction with a customized SQL server 2008 R2 database. Overall, 104 cases (1062 variant calls) were analyzed by SeqReporter. Each variant call was classified into one of five report levels: i) known clinical significance, ii) uncertain clinical significance, iii) pending pathologists' review, iv) synonymous and deep intronic, and v) platform and panel-specific sequence errors. SeqReporter correctly annotated and classified 99.9% (859 of 860) of sequence variants, including 68.7% synonymous single-nucleotide variants, 28.3% nonsynonymous single-nucleotide variants, 1.7% insertions, and 1.3% deletions. One variant of potential clinical significance was re-classified after pathologist review. Laboratory information system-compatible clinical reports were generated automatically. SeqReporter also facilitated quality management activities. SeqReporter is an example of a customized and well-designed informatics solution to optimize and automate the downstream analysis of clinical next-generation sequencing data. We propose it as a model that may envisage the development of a comprehensive clinical informatics solution. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
New and emerging next generation sequencing technologies have been promising in reducing sequencing costs, but not significantly for complex polyploid plant genomes such as cotton. Large and highly repetitive genome of G. hirsutum (~2.5GB) is less amenable and cost-intensive with traditional BAC-by...
Yin, Li; Yao, Jiqiang; Gardner, Brent P; Chang, Kaifen; Yu, Fahong; Goodenow, Maureen M
2012-01-01
Next Generation sequencing (NGS) applied to human papilloma viruses (HPV) can provide sensitive methods to investigate the molecular epidemiology of multiple type HPV infection. Currently a genotyping system with a comprehensive collection of updated HPV reference sequences and a capacity to handle NGS data sets is lacking. HPV-QUEST was developed as an automated and rapid HPV genotyping system. The web-based HPV-QUEST subtyping algorithm was developed using HTML, PHP, Perl scripting language, and MYSQL as the database backend. HPV-QUEST includes a database of annotated HPV reference sequences with updated nomenclature covering 5 genuses, 14 species and 150 mucosal and cutaneous types to genotype blasted query sequences. HPV-QUEST processes up to 10 megabases of sequences within 1 to 2 minutes. Results are reported in html, text and excel formats and display e-value, blast score, and local and coverage identities; provide genus, species, type, infection site and risk for the best matched reference HPV sequence; and produce results ready for additional analyses.
Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C; Quake, Stephen R; Burkholder, William F
2013-01-01
Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation.
Davey, Sue; Navarrete, Cristina; Brown, Colin
2017-06-01
Twenty-nine human platelet antigen systems have been described to date, but the majority of current genotyping methods are restricted to the identification of those most commonly associated with alloantibody production in a clinical context. This can result in a protracted investigation if causative human platelet antigens are rare or novel. A targeted next-generation sequencing approach was designed to detect all known human platelet antigens with the additional capability of identifying novel mutations in the encoding genes. A targeted enrichment, high-sensitivity HaloPlex assay was designed to sequence all exons and flanking regions of the six genes known to encode human platelet antigens. Indexed DNA libraries were prepared from 47 previously human platelet antigen-genotyped samples and subsequently combined into one of three pools for sequencing on an Illumina MiSeq platform. The generated FASTQ files were aligned and scrutinized for each human platelet antigen polymorphism using SureCall data analysis software. Forty-six samples were successfully genotyped for human platelet antigens 1 through 29bw, with an average per base coverage depth of 1144. Concordance with historical human platelet antigen genotypes was 100%. A putative novel mutation in Exon 10 of the integrin β-3 (ITGB3) gene from an unsolved case of fetal neonatal alloimmune thrombocytopenia was also detected. A next-generation sequencing-based method that can accurately define all known human platelet antigen polymorphisms was developed. With the ability to sequence up to 96 samples simultaneously, our HaloPlex design could be used for high-throughput human platelet antigen genotyping. This method is also applicable for investigating fetal neonatal alloimmune thrombocytopenia when rare or novel human platelet antigens are suspected. © 2017 AABB.
Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C.; Quake, Stephen R.; Burkholder, William F.
2013-01-01
Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation. PMID:23894273
Genome sequences of nine vesicular stomatitis virus isolates from South America
USDA-ARS?s Scientific Manuscript database
We report nine full-genome sequences of vesicular stomatitis virus obtrained by Illumina next-generation sequencing of RNA, isolated from either cattle epithelial suspensions or cell culture supernatants. Seven of these viral genomes belonged to the New Jersey serotype/species, clade III, while two...
Next-generation sequencing provides unprecedented access to genomic information in archival FFPE tissue samples. However, costs and technical challenges related to RNA isolation and enrichment limit use of whole-genome RNA-sequencing for large-scale studies of FFPE specimens. Rec...
Sequencing the Genome of the Heirloom Watermelon Cultivar Charleston Gray
USDA-ARS?s Scientific Manuscript database
The genome of the watermelon cultivar Charleston Gray, a major heirloom which has been used in breeding programs of many watermelon cultivars, was sequenced. Our strategy involved a hybrid approach using the Illumina and 454/Titanium next-generation sequencing technologies. For Illumina, shotgun g...
USDA-ARS?s Scientific Manuscript database
The mitochondrial genome of the bollworm, Helicoverpa zea, was assembled using paired-end nucleotide sequence reads generated with a next-generation sequencing platform. Assembly resulted in a mitogenome of 15,348 bp with greater than 17,000-fold average coverage. Organization of the H. zea mitogen...
O'Brien, Heath E; Gong, Yunchen; Fung, Pauline; Wang, Pauline W; Guttman, David S
2011-01-01
Next-generation genomic technology has both greatly accelerated the pace of genome research as well as increased our reliance on draft genome sequences. While groups such as the Genomics Standards Consortium have made strong efforts to promote genome standards there is a still a general lack of uniformity among published draft genomes, leading to challenges for downstream comparative analyses. This lack of uniformity is a particular problem when using standard draft genomes that frequently have large numbers of low-quality sequencing tracts. Here we present a proposal for an "enhanced-quality draft" genome that identifies at least 95% of the coding sequences, thereby effectively providing a full accounting of the genic component of the genome. Enhanced-quality draft genomes are easily attainable through a combination of small- and large-insert next-generation, paired-end sequencing. We illustrate the generation of an enhanced-quality draft genome by re-sequencing the plant pathogenic bacterium Pseudomonas syringae pv. phaseolicola 1448A (Pph 1448A), which has a published, closed genome sequence of 5.93 Mbp. We use a combination of Illumina paired-end and mate-pair sequencing, and surprisingly find that de novo assemblies with 100x paired-end coverage and mate-pair sequencing with as low as low as 2-5x coverage are substantially better than assemblies based on higher coverage. The rapid and low-cost generation of large numbers of enhanced-quality draft genome sequences will be of particular value for microbial diagnostics and biosecurity, which rely on precise discrimination of potentially dangerous clones from closely related benign strains.
Atmospheric Science Data Center
2015-07-21
L2 Lite Standard Products The TES Lite products are intended to simplify TES data usage including data /model and data/data comparisons. This product can be used for science analysis ... PGE corrected a date range issue in the originally delivered standard output. An updated set of TES L2 Lite standard products was ...
USDA-ARS?s Scientific Manuscript database
Over the past decade, Next Generation Sequencing (NGS) technologies, also called deep sequencing, have continued to evolve, increasing capacity and lower the cost necessary for large genome sequencing projects. The one of the advantage of NGS platforms is the possibility to sequence the samples with...
USDA-ARS?s Scientific Manuscript database
Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...
Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji
2010-07-01
We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.
Kim, Won-Keun; No, Jin Sun; Lee, Seung-Ho; Song, Dong Hyun; Lee, Daesang; Kim, Jeong-Ah; Gu, Se Hun; Park, Sunhye; Jeong, Seong Tae; Kim, Heung-Chul; Klein, Terry A; Wiley, Michael R; Palacios, Gustavo; Song, Jin-Won
2018-02-01
Seoul virus (SEOV) poses a worldwide public health threat. This virus, which is harbored by Rattus norvegicus and R. rattus rats, is the causative agent of hemorrhagic fever with renal syndrome (HFRS) in humans, which has been reported in Asia, Europe, the Americas, and Africa. Defining SEOV genome sequences plays a critical role in development of preventive and therapeutic strategies against the unique worldwide hantavirus. We applied multiplex PCR-based next-generation sequencing to obtain SEOV genome sequences from clinical and reservoir host specimens. Epidemiologic surveillance of R. norvegicus rats in South Korea during 2000-2016 demonstrated that the serologic prevalence of enzootic SEOV infections was not significant on the basis of sex, weight (age), and season. Viral loads of SEOV in rats showed wide dissemination in tissues and dynamic circulation among populations. Phylogenetic analyses showed the global diversity of SEOV and possible genomic configuration of genetic exchanges.
Bijwaard, Karen; Dickey, Jennifer S; Kelm, Kellie; Težak, Živana
2015-01-01
The rapid emergence and clinical translation of novel high-throughput sequencing technologies created a need to clarify the regulatory pathway for the evaluation and authorization of these unique technologies. Recently, the US FDA authorized for marketing four next generation sequencing (NGS)-based diagnostic devices which consisted of two heritable disease-specific assays, library preparation reagents and a NGS platform that are intended for human germline targeted sequencing from whole blood. These first authorizations can serve as a case study in how different types of NGS-based technology are reviewed by the FDA. In this manuscript we describe challenges associated with the evaluation of these novel technologies and provide an overview of what was reviewed. Besides making validated NGS-based devices available for in vitro diagnostic use, these first authorizations create a regulatory path for similar future instruments and assays.
Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique
2016-09-01
In this study, the complete mitogenome sequence of a cryptic species from East Australia (Mugil sp. H) belonging to the worldwide Mugil cephalus species complex (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,845 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop consists of 1067 bp length, and is located between tRNA-Pro and tRNA-Phe. The overall base composition of East Australia M. cephalus is 28.4% for A, 29.3% for C, 15.4% for G and 26.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.
Shen, Kang-Ning; Yen, Ta-Chi; Chen, Ching-Hung; Li, Huei-Ying; Chen, Pei-Lung; Hsiao, Chung-Der
2016-05-01
In this study, the complete mitogenome sequence of Northwestern Pacific 2 (NWP2) cryptic species of flathead mullet, Mugil cephalus (Teleostei: Mugilidae) has been amplified by long-range PCR and sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,686 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop was 909 bp length and was located between tRNA-Pro and tRNA-Phe. The overall base composition of NWP2 M. cephalus was 28.4% for A, 29.8% for C, 26.5% for T and 15.3% for G. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.
NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data
Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug
2016-01-01
The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data. PMID:26848255
Zhao, Min; Wang, Qingguo; Wang, Quan; Jia, Peilin; Zhao, Zhongming
2013-01-01
Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development.
2013-01-01
Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development. PMID:24564169
De Bellis, Fabien; Malapa, Roger; Kagy, Valérie; Lebegin, Stéphane; Billot, Claire; Labouisse, Jean-Pierre
2016-08-01
Using next-generation sequencing technology, new microsatellite loci were characterized in Artocarpus altilis (Moraceae) and two congeners to increase the number of available markers for genotyping breadfruit cultivars. A total of 47,607 simple sequence repeat loci were obtained by sequencing a library of breadfruit genomic DNA with an Illumina MiSeq system. Among them, 50 single-locus markers were selected and assessed using 41 samples (39 A. altilis, one A. camansi, and one A. heterophyllus). All loci were polymorphic in A. altilis, 44 in A. camansi, and 21 in A. heterophyllus. The number of alleles per locus ranged from two to 19. The new markers will be useful for assessing the identity and genetic diversity of breadfruit cultivars on a small geographical scale, gaining a better understanding of farmer management practices, and will help to optimize breadfruit genebank management.
Rapid and Easy Protocol for Quantification of Next-Generation Sequencing Libraries.
Hawkins, Steve F C; Guest, Paul C
2018-01-01
The emergence of next-generation sequencing (NGS) over the last 10 years has increased the efficiency of DNA sequencing in terms of speed, ease, and price. However, the exact quantification of a NGS library is crucial in order to obtain good data on sequencing platforms developed by the current market leader Illumina. Different approaches for DNA quantification are available currently and the most commonly used are based on analysis of the physical properties of the DNA through spectrophotometric or fluorometric methods. Although these methods are technically simple, they do not allow exact quantification as can be achieved using a real-time quantitative PCR (qPCR) approach. A qPCR protocol for DNA quantification with applications in NGS library preparation studies is presented here. This can be applied in various fields of study such as medical disorders resulting from nutritional programming disturbances.
Mack, Steven J.; Milius, Robert P.; Gifford, Benjamin D.; Sauter, Jürgen; Hofmann, Jan; Osoegawa, Kazutoyo; Robinson, James; Groeneweg, Mathijs; Turenchalk, Gregory S.; Adai, Alex; Holcomb, Cherie; Rozemuller, Erik H.; Penning, Maarten T.; Heuer, Michael L.; Wang, Chunlin; Salit, Marc L.; Schmidt, Alexander H.; Parham, Peter R.; Müller, Carlheinz; Hague, Tim; Fischer, Gottfried; Fernandez-Viňa, Marcelo; Hollenbach, Jill A; Norman, Paul J.; Maiers, Martin
2015-01-01
The development of next-generation sequencing (NGS) technologies for HLA and KIR genotyping is rapidly advancing knowledge of genetic variation of these highly polymorphic loci. NGS genotyping is poised to replace older methods for clinical use, but standard methods for reporting and exchanging these new, high quality genotype data are needed. The Immunogenomic NGS Consortium, a broad collaboration of histocompatibility and immunogenetics clinicians, researchers, instrument manufacturers and software developers, has developed the Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines. MIRING is a checklist that specifies the content of NGS genotyping results as well as a set of messaging guidelines for reporting the results. A MIRING message includes five categories of structured information – message annotation, reference context, full genotype, consensus sequence and novel polymorphism – and references to three categories of accessory information – NGS platform documentation, read processing documentation and primary data. These eight categories of information ensure the long-term portability and broad application of this NGS data for all current histocompatibility and immunogenetics use cases. In addition, MIRING can be extended to allow the reporting of genotype data generated using pre-NGS technologies. Because genotyping results reported using MIRING are easily updated in accordance with reference and nomenclature databases, MIRING represents a bold departure from previous methods of reporting HLA and KIR genotyping results, which have provided static and less-portable data. More information about MIRING can be found online at miring.immunogenomics.org. PMID:26407912
ViennaNGS: A toolbox for building efficient next- generation sequencing analysis pipelines
Wolfinger, Michael T.; Fallmann, Jörg; Eggenhofer, Florian; Amman, Fabian
2015-01-01
Recent achievements in next-generation sequencing (NGS) technologies lead to a high demand for reuseable software components to easily compile customized analysis workflows for big genomics data. We present ViennaNGS, an integrated collection of Perl modules focused on building efficient pipelines for NGS data processing. It comes with functionality for extracting and converting features from common NGS file formats, computation and evaluation of read mapping statistics, as well as normalization of RNA abundance. Moreover, ViennaNGS provides software components for identification and characterization of splice junctions from RNA-seq data, parsing and condensing sequence motif data, automated construction of Assembly and Track Hubs for the UCSC genome browser, as well as wrapper routines for a set of commonly used NGS command line tools. PMID:26236465
BioPig: Developing Cloud Computing Applications for Next-Generation Sequence Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, Karan; Wang, Zhong
Next Generation sequencing is producing ever larger data sizes with a growth rate outpacing Moore's Law. The data deluge has made many of the current sequenceanalysis tools obsolete because they do not scale with data. Here we present BioPig, a collection of cloud computing tools to scale data analysis and management. Pig is aflexible data scripting language that uses Apache's Hadoop data structure and map reduce framework to process very large data files in parallel and combine the results.BioPig extends Pig with capability with sequence analysis. We will show the performance of BioPig on a variety of bioinformatics tasks, includingmore » screeningsequence contaminants, Illumina QA/QC, and gene discovery from metagenome data sets using the Rumen metagenome as an example.« less
Next-Generation Sequencing of Coccidioides immitis Isolated during Cluster Investigation
Engelthaler, David M.; Chiller, Tom; Schupp, James A.; Colvin, Joshua; Beckstrom-Sternberg, Stephen M.; Driebe, Elizabeth M.; Moses, Tracy; Tembe, Waibhav; Sinari, Shripad; Beckstrom-Sternberg, James S.; Christoforides, Alexis; Pearson, John V.; Carpten, John; Keim, Paul; Peterson, Ashley; Terashita, Dawn
2011-01-01
Next-generation sequencing enables use of whole-genome sequence typing (WGST) as a viable and discriminatory tool for genotyping and molecular epidemiologic analysis. We used WGST to confirm the linkage of a cluster of Coccidioides immitis isolates from 3 patients who received organ transplants from a single donor who later had positive test results for coccidioidomycosis. Isolates from the 3 patients were nearly genetically identical (a total of 3 single-nucleotide polymorphisms identified among them), thereby demonstrating direct descent of the 3 isolates from an original isolate. We used WGST to demonstrate the genotypic relatedness of C. immitis isolates that were also epidemiologically linked. Thus, WGST offers unique benefits to public health for investigation of clusters considered to be linked to a single source. PMID:21291593
Bowerman, Bruce
2011-10-01
Molecular genetic investigation of the early Caenorhabditis elegans embryo has contributed substantially to the discovery and general understanding of the genes, pathways, and mechanisms that regulate and execute developmental and cell biological processes. Initially, worm geneticists relied exclusively on a classical genetics approach, isolating mutants with interesting phenotypes after mutagenesis and then determining the identity of the affected genes. Subsequently, the discovery of RNA interference (RNAi) led to a much greater reliance on a reverse genetics approach: reducing the function of known genes with RNAi and then observing the phenotypic consequences. Now the advent of next-generation DNA sequencing technologies and the ensuing ease and affordability of whole-genome sequencing are reviving the use of classical genetics to investigate early C. elegans embryogenesis.
Identifying molecular drivers of gastric cancer through next-generation sequencing.
Liang, Han; Kim, Yon Hui
2013-11-01
Gastric cancer is the second most common cause of cancer-related death in the world, representing a major global health issue. The high mortality rate is largely due to the lack of effective medical treatment for advanced stages of this disease. Recently next-generation sequencing (NGS) technology has become a revolutionary tool for cancer research, and several NGS studies in gastric cancer have been published. Here we review the insights gained from these studies regarding how use NGS to elucidate the molecular basis of gastric cancer and identify potential therapeutic targets. We also discuss the challenges and future directions of such efforts. Published by Elsevier Ireland Ltd.
Targeted therapy according to next generation sequencing-based panel sequencing.
Saito, Motonobu; Momma, Tomoyuki; Kono, Koji
2018-04-17
Targeted therapy against actionable gene mutations shows a significantly higher response rate as well as longer survival compared to conventional chemotherapy, and has become a standard therapy for many cancers. Recent progress in next-generation sequencing (NGS) has enabled to identify huge number of genetic aberrations. Based on sequencing results, patients recommend to undergo targeted therapy or immunotherapy. In cases where there are no available approved drugs for the genetic mutations detected in the patients, it is recommended to be facilitate the registration for the clinical trials. For that purpose, a NGS-based sequencing panel that can simultaneously target multiple genes in a single investigation has been used in daily clinical practice. To date, various types of sequencing panels have been developed to investigate genetic aberrations with tumor somatic genome variants (gain-of-function or loss-of-function mutations, high-level copy number alterations, and gene fusions) through comprehensive bioinformatics. Because sequencing panels are efficient and cost-effective, they are quickly being adopted outside the lab, in hospitals and clinics, in order to identify personal targeted therapy for individual cancer patients.
de la Fuente, Gabriel; Belanche, Alejandro; Girwood, Susan E.; Pinloche, Eric; Wilkinson, Toby; Newbold, C. Jamie
2014-01-01
The development of next generation sequencing has challenged the use of other molecular fingerprinting methods used to study microbial diversity. We analysed the bacterial diversity in the rumen of defaunated sheep following the introduction of different protozoal populations, using both next generation sequencing (NGS: Ion Torrent PGM) and terminal restriction fragment length polymorphism (T-RFLP). Although absolute number differed, there was a high correlation between NGS and T-RFLP in terms of richness and diversity with R values of 0.836 and 0.781 for richness and Shannon-Wiener index, respectively. Dendrograms for both datasets were also highly correlated (Mantel test = 0.742). Eighteen OTUs and ten genera were significantly impacted by the addition of rumen protozoa, with an increase in the relative abundance of Prevotella, Bacteroides and Ruminobacter, related to an increase in free ammonia levels in the rumen. Our findings suggest that classic fingerprinting methods are still valuable tools to study microbial diversity and structure in complex environments but that NGS techniques now provide cost effect alternatives that provide a far greater level of information on the individual members of the microbial population. PMID:25051490
Disclosure of Incidental Findings From Next-Generation Sequencing in Pediatric Genomic Research
Abdul-Karim, Ruqayyah; Berkman, Benjamin E.; Wendler, David; Rid, Annette; Khan, Javed; Badgett, Tom
2013-01-01
Next-generation sequencing technologies will likely be used with increasing frequency in pediatric research. One consequence will be the increased identification of individual genomic research findings that are incidental to the aims of the research. Although researchers and ethicists have raised theoretical concerns about incidental findings in the context of genetic research, next-generation sequencing will make this once largely hypothetical concern an increasing reality. Most commentators have begun to accept the notion that there is some duty to disclose individual genetic research results to research subjects; however, the scope of that duty remains unclear. These issues are especially complicated in the pediatric setting, where subjects cannot currently but typically will eventually be able to make their own medical decisions at the age of adulthood. This article discusses the management of incidental findings in the context of pediatric genomic research. We provide an overview of the current literature and propose a framework to manage incidental findings in this unique context, based on what we believe is a limited responsibility to disclose. We hope this will be a useful source of guidance for investigators, institutional review boards, and bioethicists that anticipates the complicated ethical issues raised by advances in genomic technology. PMID:23400601
Jung, Yeonjoo; Kim, Pora; Jung, Yeonhwa; Keum, Juhee; Kim, Soon-Nam; Choi, Yong Soo; Do, In-Gu; Lee, Jinseon; Choi, So-Jung; Kim, Sujin; Lee, Jong-Eun; Kim, Jhingook; Lee, Sanghyuk; Kim, Jaesang
2012-06-01
An increasing number of chromosomal aberrations is being identified in solid tumors providing novel biomarkers for various types of cancer and new insights into the mechanisms of carcinogenesis. We applied next generation sequencing technique to analyze the transcriptome of the non-small cell lung carcinoma (NSCLC) cell line H2228 and discovered a fusion transcript composed of multiple exons of ALK (anaplastic lymphoma receptor tyrosine kinase) and PTPN3 (protein tyrosine phosphatase, nonreceptor Type 3). Detailed analysis of the genomic structure revealed that a portion of genomic region encompassing Exons 10 and 11 of ALK has been translocated into the intronic region between Exons 2 and 3 of PTPN3. The key net result appears to be the null mutation of one allele of PTPN3, a gene with tumor suppressor activity. Consistently, ectopic expression of PTPN3 in NSCLC cell lines led to inhibition of colony formation. Our study confirms the utility of next generation sequencing as a tool for the discovery of somatic mutations and has led to the identification of a novel mutation in NSCLC that may be of diagnostic, prognostic, and therapeutic importance. Copyright © 2012 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Genetic diversity is an essential resource for breeders to improve new cultivars with desirable characteristics. Recently genotyping-by-sequencing (GBS), a next generation sequencing (NGS) based technology that can simplify complex genomes, has been used as a high-throughput and cost-effective molec...
USDA-ARS?s Scientific Manuscript database
The Indianmeal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a common pest of stored goods with a worldwide distribution. The complete genome sequence for a larval pathogen of this moth, the baculovirus Plodia interpunctella granulovirus (PiGV), was determined by next-generation sequenci...
High-Throughput resequencing of maize landraces at genomic regions associated with flowering time
USDA-ARS?s Scientific Manuscript database
Despite the reduction in the price of sequencing, it remains expensive to sequence and assemble whole, complex genomes of multiple samples for population studies, particularly for large genomes like those of many crop species. Enrichment of target genome regions coupled with next generation sequenci...
Open source tools to exploit DNA sequence data from livestock species
USDA-ARS?s Scientific Manuscript database
Next-Generation Sequencing (NGS) is a recent technological development that allows researchers to rapidly determine the DNA sequence of an individual. The decrease in cost of NGS has brought the technology into the realm of practical applications in livestock genomics, where it can be used to genera...
A Web-Hosted R Workflow to Simplify and Automate the Analysis of 16S NGS Data
Next-Generation Sequencing (NGS) produces large data sets that include tens-of-thousands of sequence reads per sample. For analysis of bacterial diversity, 16S NGS sequences are typically analyzed in a workflow that containing best-of-breed bioinformatics packages that may levera...
USDA-ARS?s Scientific Manuscript database
Next generation sequencing technologies and improved bioinformatics methods have provided opportunities to study sequence variability in complex polyploid transcriptomes. In this study, we used a diverse panel of twenty-two Arachis accessions representing seven Arachis hypogaea market classes, A-, B...
A Pan-HIV Strategy for Complete Genome Sequencing
Yamaguchi, Julie; Alessandri-Gradt, Elodie; Tell, Robert W.; Brennan, Catherine A.
2015-01-01
Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e., switching mechanism at 5′ end of RNA transcript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance. PMID:26699702
Complete Genome Sequences of Two Vesicular Stomatitis Virus Isolates Collected in Mexico.
Velazquez-Salinas, Lauro; Isa, Pavel; Pauszek, Steven J; Rodriguez, Luis L
2017-09-14
We report two full-genome sequences of vesicular stomatitis New Jersey virus (VSNJV) obtained by Illumina next-generation sequencing of RNA isolated from epithelial suspensions of cattle naturally infected in Mexico. These genomes represent the first full-genome sequences of vesicular stomatitis New Jersey viruses circulating in Mexico deposited in the GenBank database.
Next-Gen 3: Sequencing, Modeling, and Advanced Biofuels - Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zengler, Karsten; Palsson, Bernhard; Lewis, Nathan
Successful, scalable implementation of biofuels is dependent on the efficient and near complete utilization of diverse biomass sources. One approach is to utilize the large recalcitrant biomass fraction (or any organic waste stream) through the thermochemical conversion of organic compounds to syngas, a mixture of carbon monoxide (CO), carbon dioxide (CO 2), and hydrogen (H 2), which can subsequently be metabolized by acetogenic microorganisms to produce next-gen biofuels. The goal of this proposal was to advance the development of the acetogen Clostridium ljungdahlii as a chassis organism for next-gen biofuel production from cheap, renewable sources and to detail the interconnectivitymore » of metabolism, energy conservation, and regulation of acetogens using next-gen sequencing and next-gen modeling. To achieve this goal we determined optimization of carbon and energy utilization through differential translational efficiency in C. ljungdahlii. Furthermore, we reconstructed a next-generation model of all major cellular processes, such as macromolecular synthesis and transcriptional regulation and deployed this model to predicting proteome allocation, overflow metabolism, and metal requirements in this model acetogen. In addition we explored the evolutionary significance of tRNA operon structure using the next-gen model and determined the optimal operon structure for bioproduction. Our study substantially enhanced the knowledgebaase for chemolithoautotrophs and their potential for advanced biofuel production. It provides next-generation modeling capability, offer innovative tools for genome-scale engineering, and provide novel methods to utilize next-generation models for the design of tunable systems that produce commodity chemicals from inexpensive sources.« less
Karan, M; Evans, D S; Reilly, D; Schulte, K; Wright, C; Innes, D; Holton, T A; Nikles, D G; Dickinson, G R
2012-03-01
Khaya senegalensis (African mahogany or dry-zone mahogany) is a high-value hardwood timber species with great potential for forest plantations in northern Australia. The species is distributed across the sub-Saharan belt from Senegal to Sudan and Uganda. Because of heavy exploitation and constraints on natural regeneration and sustainable planting, it is now classified as a vulnerable species. Here, we describe the development of microsatellite markers for K. senegalensis using next-generation sequencing to assess its intra-specific diversity across its natural range, which is a key for successful breeding programs and effective conservation management of the species. Next-generation sequencing yielded 93,943 sequences with an average read length of 234 bp. The assembled sequences contained 1030 simple sequence repeats, with primers designed for 522 microsatellite loci. Twenty-one microsatellite loci were tested with 11 showing reliable amplification and polymorphism in K. senegalensis. The 11 novel microsatellites, together with one previously published, were used to assess 73 accessions belonging to the Australian K. senegalensis domestication program, sampled from across the natural range of the species. STRUCTURE analysis shows two major clusters, one comprising mainly accessions from west Africa (Senegal to Benin) and the second based in the far eastern limits of the range in Sudan and Uganda. Higher levels of genetic diversity were found in material from western Africa. This suggests that new seed collections from this region may yield more diverse genotypes than those originating from Sudan and Uganda in eastern Africa. © 2011 Blackwell Publishing Ltd.
Detection of a novel herpesvirus from bats in the Philippines.
Sano, Kaori; Okazaki, Sachiko; Taniguchi, Satoshi; Masangkay, Joseph S; Puentespina, Roberto; Eres, Eduardo; Cosico, Edison; Quibod, Niña; Kondo, Taisuke; Shimoda, Hiroshi; Hatta, Yuuki; Mitomo, Shumpei; Oba, Mami; Katayama, Yukie; Sassa, Yukiko; Furuya, Tetsuya; Nagai, Makoto; Une, Yumi; Maeda, Ken; Kyuwa, Shigeru; Yoshikawa, Yasuhiro; Akashi, Hiroomi; Omatsu, Tsutomu; Mizutani, Tetsuya
2015-08-01
Bats are natural hosts of many zoonotic viruses. Monitoring bat viruses is important to detect novel bat-borne infectious diseases. In this study, next generation sequencing techniques and conventional PCR were used to analyze intestine, lung, and blood clot samples collected from wild bats captured at three locations in Davao region, in the Philippines in 2012. Different viral genes belonging to the Retroviridae and Herpesviridae families were identified using next generation sequencing. The existence of herpesvirus in the samples was confirmed by PCR using herpesvirus consensus primers. The nucleotide sequences of the resulting PCR amplicons were 166-bp. Further phylogenetic analysis identified that the virus from which this nucleotide sequence was obtained belonged to the Gammaherpesvirinae subfamily. PCR using primers specific to the nucleotide sequence obtained revealed that the infection rate among the captured bats was 30 %. In this study, we present the partial genome of a novel gammaherpesvirus detected from wild bats. Our observations also indicate that this herpesvirus may be widely distributed in bat populations in Davao region.
Guan, Yan-Fang; Li, Gai-Rui; Wang, Rong-Jiao; Yi, Yu-Ting; Yang, Ling; Jiang, Dan; Zhang, Xiao-Ping; Peng, Yin
2012-01-01
With the development and improvement of new sequencing technology, next-generation sequencing (NGS) has been applied increasingly in cancer genomics research over the past decade. More recently, NGS has been adopted in clinical oncology to advance personalized treatment of cancer. NGS is used to identify novel and rare cancer mutations, detect familial cancer mutation carriers, and provide molecular rationale for appropriate targeted therapy. Compared to traditional sequencing, NGS holds many advantages, such as the ability to fully sequence all types of mutations for a large number of genes (hundreds to thousands) in a single test at a relatively low cost. However, significant challenges, particularly with respect to the requirement for simpler assays, more flexible throughput, shorter turnaround time, and most importantly, easier data analysis and interpretation, will have to be overcome to translate NGS to the bedside of cancer patients. Overall, continuous dedication to apply NGS in clinical oncology practice will enable us to be one step closer to personalized medicine. PMID:22980418
Camerlengo, Terry; Ozer, Hatice Gulcin; Onti-Srinivasan, Raghuram; Yan, Pearlly; Huang, Tim; Parvin, Jeffrey; Huang, Kun
2012-01-01
Next Generation Sequencing is highly resource intensive. NGS Tasks related to data processing, management and analysis require high-end computing servers or even clusters. Additionally, processing NGS experiments requires suitable storage space and significant manual interaction. At The Ohio State University's Biomedical Informatics Shared Resource, we designed and implemented a scalable architecture to address the challenges associated with the resource intensive nature of NGS secondary analysis built around Illumina Genome Analyzer II sequencers and Illumina's Gerald data processing pipeline. The software infrastructure includes a distributed computing platform consisting of a LIMS called QUEST (http://bisr.osumc.edu), an Automation Server, a computer cluster for processing NGS pipelines, and a network attached storage device expandable up to 40TB. The system has been architected to scale to multiple sequencers without requiring additional computing or labor resources. This platform provides demonstrates how to manage and automate NGS experiments in an institutional or core facility setting.
Dasa, Siva Sai Krishna; Kelly, Kimberly A.
2016-01-01
Next-generation sequencing has enhanced the phage display process, allowing for the quantification of millions of sequences resulting from the biopanning process. In response, many valuable analysis programs focused on specificity and finding targeted motifs or consensus sequences were developed. For targeted drug delivery and molecular imaging, it is also necessary to find peptides that are selective—targeting only the cell type or tissue of interest. We present a new analysis strategy and accompanying software, PHage Analysis for Selective Targeted PEPtides (PHASTpep), which identifies highly specific and selective peptides. Using this process, we discovered and validated, both in vitro and in vivo in mice, two sequences (HTTIPKV and APPIMSV) targeted to pancreatic cancer-associated fibroblasts that escaped identification using previously existing software. Our selectivity analysis makes it possible to discover peptides that target a specific cell type and avoid other cell types, enhancing clinical translatability by circumventing complications with systemic use. PMID:27186887
AMPLISAS: a web server for multilocus genotyping using next-generation amplicon sequencing data.
Sebastian, Alvaro; Herdegen, Magdalena; Migalska, Magdalena; Radwan, Jacek
2016-03-01
Next-generation sequencing (NGS) technologies are revolutionizing the fields of biology and medicine as powerful tools for amplicon sequencing (AS). Using combinations of primers and barcodes, it is possible to sequence targeted genomic regions with deep coverage for hundreds, even thousands, of individuals in a single experiment. This is extremely valuable for the genotyping of gene families in which locus-specific primers are often difficult to design, such as the major histocompatibility complex (MHC). The utility of AS is, however, limited by the high intrinsic sequencing error rates of NGS technologies and other sources of error such as polymerase amplification or chimera formation. Correcting these errors requires extensive bioinformatic post-processing of NGS data. Amplicon Sequence Assignment (AMPLISAS) is a tool that performs analysis of AS results in a simple and efficient way, while offering customization options for advanced users. AMPLISAS is designed as a three-step pipeline consisting of (i) read demultiplexing, (ii) unique sequence clustering and (iii) erroneous sequence filtering. Allele sequences and frequencies are retrieved in excel spreadsheet format, making them easy to interpret. AMPLISAS performance has been successfully benchmarked against previously published genotyped MHC data sets obtained with various NGS technologies. © 2015 John Wiley & Sons Ltd.
Tanase, Koji; Nishitani, Chikako; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Ohmiya, Akemi; Onozaki, Takashi
2012-07-02
Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. We constructed a normalized cDNA library and a 3'-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.
2012-01-01
Background Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. Results We constructed a normalized cDNA library and a 3’-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. Conclusions We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant. PMID:22747974
USDA-ARS?s Scientific Manuscript database
The tomato genome sequence was undertaken at a time when state-of-the-art sequencing methodologies were undergoing a transition to co-called next generation methodologies. The result was an international consortium undertaking a strategy merging both old and new approaches. Because biologists were...
Next-generation sequencing: the future of molecular genetics in poultry production and food safety.
Diaz-Sanchez, S; Hanning, I; Pendleton, Sean; D'Souza, Doris
2013-02-01
The era of molecular biology and automation of the Sanger chain-terminator sequencing method has led to discovery and advances in diagnostics and biotechnology. The Sanger methodology dominated research for over 2 decades, leading to significant accomplishments and technological improvements in DNA sequencing. Next-generation high-throughput sequencing (HT-NGS) technologies were developed subsequently to overcome the limitations of this first generation technology that include higher speed, less labor, and lowered cost. Various platforms developed include sequencing-by-synthesis 454 Life Sciences, Illumina (Solexa) sequencing, SOLiD sequencing (among others), and the Ion Torrent semiconductor sequencing technologies that use different detection principles. As technology advances, progress made toward third generation sequencing technologies are being reported, which include Nanopore Sequencing and real-time monitoring of PCR activity through fluorescent resonant energy transfer. The advantages of these technologies include scalability, simplicity, with increasing DNA polymerase performance and yields, being less error prone, and even more economically feasible with the eventual goal of obtaining real-time results. These technologies can be directly applied to improve poultry production and enhance food safety. For example, sequence-based (determination of the gut microbial community, genes for metabolic pathways, or presence of plasmids) and function-based (screening for function such as antibiotic resistance, or vitamin production) metagenomic analysis can be carried out. Gut microbialflora/communities of poultry can be sequenced to determine the changes that affect health and disease along with efficacy of methods to control pathogenic growth. Thus, the purpose of this review is to provide an overview of the principles of these current technologies and their potential application to improve poultry production and food safety as well as public health.
Martineau, Christine; Li, Xuejing; Lalancette, Cindy; Perreault, Thérèse; Fournier, Eric; Tremblay, Julien; Gonzales, Milagros; Yergeau, Étienne; Quach, Caroline
2018-06-13
Serratia marcescens is an environmental bacterium commonly associated with outbreaks in neonatal intensive care units (NICU). Investigation of S. marcescens outbreaks requires efficient recovery and typing of clinical and environmental isolates. In this study, we described how the use of next-generation sequencing applications, such as bacterial whole-genome sequencing (WGS) and bacterial community profiling, could improve S. marcescens outbreak investigation. Phylogenomic links and potential antibiotic resistance genes and plasmids in S. marcescens isolates were investigated using WGS, while bacterial communities and relative abundances of Serratia in environmental samples were assessed using sequencing of bacterial phylogenetic marker genes (16S rRNA and gyrB genes). Typing results obtained using WGS for the ten S. marcescens isolates recovered during a NICU outbreak investigation were highly consistent with those from pulse-field gel electrophoresis (PFGE), the current gold standard typing method for this bacterium. WGS also allowed for the identification of genes associated with antibiotic resistance in all isolates, while no plasmid was detected. Sequencing of the 16S rRNA and gyrB genes both showed higher relative abundances of Serratia in environmental sampling sites that were in close contact with infected babies. Much lower relative abundances of Serratia were observed following disinfection of a room, indicating that the protocol used was efficient. Variations in the bacterial community composition and structure following room disinfection and between sampling sites were also identified through 16S rRNA gene sequencing. Globally, results from this study highlight the potential for next-generation sequencing tools to improve and facilitate outbreak investigation. Copyright © 2018 American Society for Microbiology.
Shaukat, Shahzad; Angez, Mehar; Alam, Muhammad Masroor; Jebbink, Maarten F; Deijs, Martin; Canuti, Marta; Sharif, Salmaan; de Vries, Michel; Khurshid, Adnan; Mahmood, Tariq; van der Hoek, Lia; Zaidi, Syed Sohail Zahoor
2014-08-12
The use of sequence independent methods combined with next generation sequencing for identification purposes in clinical samples appears promising and exciting results have been achieved to understand unexplained infections. One sequence independent method, Virus Discovery based on cDNA Amplified Fragment Length Polymorphism (VIDISCA) is capable of identifying viruses that would have remained unidentified in standard diagnostics or cell cultures. VIDISCA is normally combined with next generation sequencing, however, we set up a simplified VIDISCA which can be used in case next generation sequencing is not possible. Stool samples of 10 patients with unexplained acute flaccid paralysis showing cytopathic effect in rhabdomyosarcoma cells and/or mouse cells were used to test the efficiency of this method. To further characterize the viruses, VIDISCA-positive samples were amplified and sequenced with gene specific primers. Simplified VIDISCA detected seven viruses (70%) and the proportion of eukaryotic viral sequences from each sample ranged from 8.3 to 45.8%. Human enterovirus EV-B97, EV-B100, echovirus-9 and echovirus-21, human parechovirus type-3, human astrovirus probably a type-3/5 recombinant, and tetnovirus-1 were identified. Phylogenetic analysis based on the VP1 region demonstrated that the human enteroviruses are more divergent isolates circulating in the community. Our data support that a simplified VIDISCA protocol can efficiently identify unrecognized viruses grown in cell culture with low cost, limited time without need of advanced technical expertise. Also complex data interpretation is avoided thus the method can be used as a powerful diagnostic tool in limited resources. Redesigning the routine diagnostics might lead to additional detection of previously undiagnosed viruses in clinical samples of patients.
Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca
2015-01-01
Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450
Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca
2015-01-01
Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.
Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.
Kato, Takeshi; Morisada, Naoya; Nagase, Hiroaki; Nishiyama, Masahiro; Toyoshima, Daisaku; Nakagawa, Taku; Maruyama, Azusa; Fu, Xue Jun; Nozu, Kandai; Wada, Hiroko; Takada, Satoshi; Iijima, Kazumoto
2015-10-01
CDKL5-related encephalopathy is an X-linked dominantly inherited disorder that is characterized by early infantile epileptic encephalopathy or atypical Rett syndrome. We describe a 5-year-old Japanese boy with intractable epilepsy, severe developmental delay, and Rett syndrome-like features. Onset was at 2 months, when his electroencephalogram showed sporadic single poly spikes and diffuse irregular poly spikes. We conducted a genetic analysis using an Illumina® TruSight™ One sequencing panel on a next-generation sequencer. We identified two epilepsy-associated single nucleotide variants in our case: CDKL5 p.Ala40Val and KCNQ2 p.Glu515Asp. CDKL5 p.Ala40Val has been previously reported to be responsible for early infantile epileptic encephalopathy. In our case, the CDKL5 heterozygous mutation showed somatic mosaicism because the boy's karyotype was 46,XY. The KCNQ2 variant p.Glu515Asp is known to cause benign familial neonatal seizures-1, and this variant showed paternal inheritance. Although we believe that the somatic mosaic CDKL5 mutation is mainly responsible for the neurological phenotype in the patient, the KCNQ2 variant might have some neurological effect. Genetic analysis by next-generation sequencing is capable of identifying multiple variants in a patient. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Metzger, Julia; Tonda, Raul; Beltran, Sergi; Agueda, Lídia; Gut, Marta; Distl, Ottmar
2014-07-04
Domestication has shaped the horse and lead to a group of many different types. Some have been under strong human selection while others developed in close relationship with nature. The aim of our study was to perform next generation sequencing of breed and non-breed horses to provide an insight into genetic influences on selective forces. Whole genome sequencing of five horses of four different populations revealed 10,193,421 single nucleotide polymorphisms (SNPs) and 1,361,948 insertion/deletion polymorphisms (indels). In comparison to horse variant databases and previous reports, we were able to identify 3,394,883 novel SNPs and 868,525 novel indels. We analyzed the distribution of individual variants and found significant enrichment of private mutations in coding regions of genes involved in primary metabolic processes, anatomical structures, morphogenesis and cellular components in non-breed horses and in contrast to that private mutations in genes affecting cell communication, lipid metabolic process, neurological system process, muscle contraction, ion transport, developmental processes of the nervous system and ectoderm in breed horses. Our next generation sequencing data constitute an important first step for the characterization of non-breed in comparison to breed horses and provide a large number of novel variants for future analyses. Functional annotations suggest specific variants that could play a role for the characterization of breed or non-breed horses.
Qiu, Biyuan; Ma, Tao; Peng, Chunyan; Zheng, Xiaoqin; Yang, Jiyun
2018-04-01
The diagnosis of oculocutaneous albinism (OCA) is established using clinical signs and symptoms. OCA is, however, a highly genetically heterogeneous disease with mutations identified in at least nineteen unique genes, many of which produce overlapping phenotypic traits. Thus, differentiating genetic OCA subtypes for diagnoses and genetic counseling is challenging, based on clinical presentation alone, and would benefit from a comprehensive molecular diagnostic. To develop and validate a more comprehensive, targeted, next-generation-sequencing-based diagnostic for the identification of OCA-causing variants. The genomic DNA samples from 28 OCA probands were analyzed by targeted next-generation sequencing (NGS), and the candidate variants were confirmed through Sanger sequencing. We observed mutations in the TYR, OCA2, and SLC45A2 genes in 25/28 (89%) patients with OCA. We identified 38 pathogenic variants among these three genes, including 5 novel variants: c.1970G>T (p.Gly657Val), c.1669A>C (p.Thr557Pro), c.2339-2A>C, and c.1349C>G (p.Thr450Arg) in OCA2; c.459_470delTTTTGCTGCCGA (p.Ala155_Phe158del) in SLC45A2. Our findings expand the mutational spectrum of OCA in the Chinese population, and the assay we developed should be broadly useful as a molecular diagnostic, and as an aid for genetic counseling for OCA patients.
Dridi, M; Rosseel, T; Orton, R; Johnson, P; Lecollinet, S; Muylkens, B; Lambrecht, B; Van Borm, S
2015-10-01
West Nile virus (WNV) occurs as a population of genetic variants (quasispecies) infecting a single animal. Previous low-resolution viral genetic diversity estimates in sampled wild birds and mosquitoes, and in multiple-passage adaptation studies in vivo or in cell culture, suggest that WNV genetic diversification is mostly limited to the mosquito vector. This study investigated genetic diversification of WNV in avian hosts during a single passage using next-generation sequencing. Wild-captured carrion crows were subcutaneously infected using a clonal Middle-East WNV. Blood samples were collected 2 and 4 days post-infection. A reverse-transcription (RT)-PCR approach was used to amplify the WNV genome directly from serum samples prior to next-generation sequencing resulting in an average depth of at least 700 × in each sample. Appropriate controls were sequenced to discriminate biologically relevant low-frequency variants from experimentally introduced errors. The WNV populations in the wild crows showed significant diversification away from the inoculum virus quasispecies structure. By contrast, WNV populations in intracerebrally infected day-old chickens did not diversify from that of the inoculum. Where previous studies concluded that WNV genetic diversification is only experimentally demonstrated in its permissive insect vector species, we have experimentally shown significant diversification of WNV populations in a wild bird reservoir species.
Kim, Hyun-Kyoung; Park, Won Cheol; Lee, Kwang Man; Hwang, Hai-Li; Park, Seong-Yeol; Sorn, Sungbin; Chandra, Vishal; Kim, Kwang Gi; Yoon, Woong-Bae; Bae, Joon Seol; Shin, Hyoung Doo; Shin, Jong-Yeon; Seoh, Ju-Young; Kim, Jong-Il; Hong, Kyeong-Man
2014-01-01
The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS) for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs), which are abundant in solid tumors, can be utilized for identification of rearranged ends. As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB) in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP) microarray method entailing CNB-region refinement by competitor DNA. Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9%) were identified, and two polymerase chain reaction (PCR)-amplifiable rearrangements were obtained in six cases (66.7%). And significantly, TNGS-CNB, with its high positive identification rate (82.6%) of PCR-amplifiable rearrangements at candidate sites (19/23), just from filtering of aligned sequences, requires little effort for validation. Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.
Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo
2017-11-01
Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.
Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease
Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo
2017-01-01
Purpose: Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. Results: We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. Conclusion: c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND. PMID:29133643
Implementation of Cloud based next generation sequencing data analysis in a clinical laboratory.
Onsongo, Getiria; Erdmann, Jesse; Spears, Michael D; Chilton, John; Beckman, Kenneth B; Hauge, Adam; Yohe, Sophia; Schomaker, Matthew; Bower, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat
2014-05-23
The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories. To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample. We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.
Ionospheric Observations During a Geomagnetic Storm from LITES on the ISS
NASA Astrophysics Data System (ADS)
Finn, S. C.; Stephan, A. W.; Cook, T.; Budzien, S. A.; Chakrabarti, S.; Erickson, P. J.; Geddes, G.
2017-12-01
The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an extreme-ultraviolet imaging spectrograph that launched in February 2017 and was installed on the International Space Station (ISS). LITES is limb-viewing ( 150 - 350 km tangent altitude) and measures airglow emissions from 60 - 140 nm with 0.2° angular and 1 nm spectral resolutions. We present early LITES results of observations during a G2 geomagnetic storm in April 2017. In addition to LITES data, we will show complementary ground-based incoherent scatter radar (ISR) observations from Millstone Hill during this storm. The combination of LITES EUV space-based observations with the ground-based radio data is an example of the capability of campaign-style measurements of the ionosphere-thermosphere system using multiwavelength ground- and space-based instruments.
M2Lite: An Open-source, Light-weight, Pluggable and Fast Proteome Discoverer MSF to mzIdentML Tool.
Aiyetan, Paul; Zhang, Bai; Chen, Lily; Zhang, Zhen; Zhang, Hui
2014-04-28
Proteome Discoverer is one of many tools used for protein database search and peptide to spectrum assignment in mass spectrometry-based proteomics. However, the inadequacy of conversion tools makes it challenging to compare and integrate its results to those of other analytical tools. Here we present M2Lite, an open-source, light-weight, easily pluggable and fast conversion tool. M2Lite converts proteome discoverer derived MSF files to the proteomics community defined standard - the mzIdentML file format. M2Lite's source code is available as open-source at https://bitbucket.org/paiyetan/m2lite/src and its compiled binaries and documentation can be freely downloaded at https://bitbucket.org/paiyetan/m2lite/downloads.
Extracellular RNA is transported from one generation to the next in Caenorhabditis elegans
Marré, Julia; Traver, Edward C.
2016-01-01
Experiences during the lifetime of an animal have been proposed to have consequences for subsequent generations. Although it is unclear how such intergenerational transfer of information occurs, RNAs found extracellularly in animals are candidate molecules that can transfer gene-specific regulatory information from one generation to the next because they can enter cells and regulate gene expression. In support of this idea, when double-stranded RNA (dsRNA) is introduced into some animals, the dsRNA can silence genes of matching sequence and the silencing can persist in progeny. Such persistent gene silencing is thought to result from sequence-specific interaction of the RNA within parents to generate chromatin modifications, DNA methylation, and/or secondary RNAs, which are then inherited by progeny. Here, we show that dsRNA can be directly transferred between generations in the worm Caenorhabditis elegans. Intergenerational transfer of dsRNA occurs even in animals that lack any DNA of matching sequence, and dsRNA that reaches progeny can spread between cells to cause gene silencing. Surprisingly, extracellular dsRNA can also reach progeny without entry into the cytosol, presumably within intracellular vesicles. Fluorescently labeled dsRNA is imported from extracellular space into oocytes along with yolk and accumulates in punctate structures within embryos. Subsequent entry into the cytosol of early embryos causes gene silencing in progeny. These results demonstrate the transport of extracellular RNA from one generation to the next to regulate gene expression in an animal and thus suggest a mechanism for the transmission of experience-dependent effects between generations. PMID:27791108
Lubin, Ira M; Aziz, Nazneen; Babb, Lawrence J; Ballinger, Dennis; Bisht, Himani; Church, Deanna M; Cordes, Shaun; Eilbeck, Karen; Hyland, Fiona; Kalman, Lisa; Landrum, Melissa; Lockhart, Edward R; Maglott, Donna; Marth, Gabor; Pfeifer, John D; Rehm, Heidi L; Roy, Somak; Tezak, Zivana; Truty, Rebecca; Ullman-Cullere, Mollie; Voelkerding, Karl V; Worthey, Elizabeth A; Zaranek, Alexander W; Zook, Justin M
2017-05-01
A national workgroup convened by the Centers for Disease Control and Prevention identified principles and made recommendations for standardizing the description of sequence data contained within the variant file generated during the course of clinical next-generation sequence analysis for diagnosing human heritable conditions. The specifications for variant files were initially developed to be flexible with regard to content representation to support a variety of research applications. This flexibility permits variation with regard to how sequence findings are described and this depends, in part, on the conventions used. For clinical laboratory testing, this poses a problem because these differences can compromise the capability to compare sequence findings among laboratories to confirm results and to query databases to identify clinically relevant variants. To provide for a more consistent representation of sequence findings described within variant files, the workgroup made several recommendations that considered alignment to a common reference sequence, variant caller settings, use of genomic coordinates, and gene and variant naming conventions. These recommendations were considered with regard to the existing variant file specifications presently used in the clinical setting. Adoption of these recommendations is anticipated to reduce the potential for ambiguity in describing sequence findings and facilitate the sharing of genomic data among clinical laboratories and other entities. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments.
Hackenberg, Michael; Sturm, Martin; Langenberger, David; Falcón-Pérez, Juan Manuel; Aransay, Ana M
2009-07-01
Next-generation sequencing allows now the sequencing of small RNA molecules and the estimation of their expression levels. Consequently, there will be a high demand of bioinformatics tools to cope with the several gigabytes of sequence data generated in each single deep-sequencing experiment. Given this scene, we developed miRanalyzer, a web server tool for the analysis of deep-sequencing experiments for small RNAs. The web server tool requires a simple input file containing a list of unique reads and its copy numbers (expression levels). Using these data, miRanalyzer (i) detects all known microRNA sequences annotated in miRBase, (ii) finds all perfect matches against other libraries of transcribed sequences and (iii) predicts new microRNAs. The prediction of new microRNAs is an especially important point as there are many species with very few known microRNAs. Therefore, we implemented a highly accurate machine learning algorithm for the prediction of new microRNAs that reaches AUC values of 97.9% and recall values of up to 75% on unseen data. The web tool summarizes all the described steps in a single output page, which provides a comprehensive overview of the analysis, adding links to more detailed output pages for each analysis module. miRanalyzer is available at http://web.bioinformatics.cicbiogune.es/microRNA/.
2013-01-01
Background Human leukocyte antigen matching at allelic resolution is proven clinically significant in hematopoietic stem cell transplantation, lowering the risk of graft-versus-host disease and mortality. However, due to the ever growing HLA allele database, tissue typing laboratories face substantial challenges. In light of the complexity and the high degree of allelic diversity, it has become increasingly difficult to define the classical transplantation antigens at high-resolution by using well-tried methods. Thus, next-generation sequencing is entering into diagnostic laboratories at the perfect time and serving as a promising tool to overcome intrinsic HLA typing problems. Therefore, we have developed and validated a scalable automated HLA class I and class II typing approach suitable for diagnostic use. Results A validation panel of 173 clinical and proficiency testing samples was analysed, demonstrating 100% concordance to the reference method. From a total of 1,273 loci we were able to generate 1,241 (97.3%) initial successful typings. The mean ambiguity reduction for the analysed loci was 93.5%. Allele assignment including intronic sequences showed an improved resolution (99.2%) of non-expressed HLA alleles. Conclusion We provide a powerful HLA typing protocol offering a short turnaround time of only two days, a fully integrated workflow and most importantly a high degree of typing reliability. The presented automated assay is flexible and can be scaled by specific primer compilations and the use of different 454 sequencing systems. The workflow was successfully validated according to the policies of the European Federation for Immunogenetics. Next-generation sequencing seems to become one of the new methods in the field of Histocompatibility. PMID:23557197
Analysis of Litopenaeus vannamei Transcriptome Using the Next-Generation DNA Sequencing Technique
Li, Chaozheng; Weng, Shaoping; Chen, Yonggui; Yu, Xiaoqiang; Lü, Ling; Zhang, Haiqing; He, Jianguo; Xu, Xiaopeng
2012-01-01
Background Pacific white shrimp (Litopenaeus vannamei), the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. Methodology/Principal Findings This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp) with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG) categories, 8171 unigenes were assigned into 51 Gene ontology (GO) functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. Conclusions/Significance The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei. PMID:23071809
Scholz, Christian F P; Jensen, Anders
2017-01-01
The protocol describes a computational method to develop a Single Locus Sequence Typing (SLST) scheme for typing bacterial species. The resulting scheme can be used to type bacterial isolates as well as bacterial species directly from complex communities using next-generation sequencing technologies.
USDA-ARS?s Scientific Manuscript database
The genomic sequences of low and high passages of the United States infectious laryngotracheitis (ILT) vaccine strains CEO and TCO were determined using hybrid next generation sequencing in order to define genomic changes associated with attenuation and reversion to virulence. Phylogenetic analysis ...
USDA-ARS?s Scientific Manuscript database
Genotyping by sequencing (GBS) has been developed as an affordable application of next-generation sequencing for the purposes of discovering and genotyping SNPs in a variety of crop species and populations. In this study we employed a double restriction enzyme digestion protocol (HindIII and NlaIII)...
Using Next-Generation Sequencing to Explore Genetics and Race in the High School Classroom
ERIC Educational Resources Information Center
Yang, Xinmiao; Hartman, Mark R.; Harrington, Kristin T.; Etson, Candice M.; Fierman, Matthew B.; Slonim, Donna K.; Walt, David R.
2017-01-01
With the development of new sequencing and bioinformatics technologies, concepts relating to personal genomics play an increasingly important role in our society. To promote interest and understanding of sequencing and bioinformatics in the high school classroom, we developed and implemented a laboratory-based teaching module called "The…
USDA-ARS?s Scientific Manuscript database
The low cost of next generation sequencing (NGS) technology and the availability of a large number of well annotated plant genomes has made sequencing technology useful to breeding programs. With the published high quality tomato reference genome of the processing cultivar Heinz 1706, we can now uti...
USDA-ARS?s Scientific Manuscript database
Modern day genomics holds the promise of solving the complexities of basic plant sciences, and of catalyzing practical advances in plant breeding. While contiguous, "base perfect" deep sequencing is a key module of any genome project, recent advances in parallel next generation sequencing technologi...
Tools to exploit sequence data to find new markers and disease loci in dairy cattle
USDA-ARS?s Scientific Manuscript database
The decrease in cost of Next-Generation Sequencing has brought the technology into the realm of practical applications in livestock genomics. Recently, the 1000 Bulls Project has heralded the possibility of using full sequence data to improve imputation and detect disease loci within select founder ...
USDA-ARS?s Scientific Manuscript database
There is a growing need to combine DNA sequencing technologies to address complex problems in genome biology. These genomic studies routinely generate voluminous image, sequence, and mapping files that should be associated with quality control information (gels, spectra, etc.), and other important ...
Leong, Wai-Mun; Ripen, Adiratna Mat; Mirsafian, Hoda; Mohamad, Saharuddin Bin; Merican, Amir Feisal
2018-06-07
High-depth next generation sequencing data provide valuable insights into the number and distribution of RNA editing events. Here, we report the RNA editing events at cellular level of human primary monocyte using high-depth whole genomic and transcriptomic sequencing data. We identified over a ten thousand putative RNA editing sites and 69% of the sites were A-to-I editing sites. The sites enriched in repetitive sequences and intronic regions. High-depth sequencing datasets revealed that 90% of the canonical sites were edited at lower frequencies (<0.7). Single and multiple human monocytes and brain tissues samples were analyzed through genome sequence independent approach. The later approach was observed to identify more editing sites. Monocytes was observed to contain more C-to-U editing sites compared to brain tissues. Our results establish comparable pipeline that can address current limitations as well as demonstrate the potential for highly sensitive detection of RNA editing events in single cell type. Copyright © 2018 Elsevier Inc. All rights reserved.
Analysis of plant microbe interactions in the era of next generation sequencing technologies
Knief, Claudia
2014-01-01
Next generation sequencing (NGS) technologies have impressively accelerated research in biological science during the last years by enabling the production of large volumes of sequence data to a drastically lower price per base, compared to traditional sequencing methods. The recent and ongoing developments in the field allow addressing research questions in plant-microbe biology that were not conceivable just a few years ago. The present review provides an overview of NGS technologies and their usefulness for the analysis of microorganisms that live in association with plants. Possible limitations of the different sequencing systems, in particular sources of errors and bias, are critically discussed and methods are disclosed that help to overcome these shortcomings. A focus will be on the application of NGS methods in metagenomic studies, including the analysis of microbial communities by amplicon sequencing, which can be considered as a targeted metagenomic approach. Different applications of NGS technologies are exemplified by selected research articles that address the biology of the plant associated microbiota to demonstrate the worth of the new methods. PMID:24904612
Novel Primer Sets for Next Generation Sequencing-Based Analyses of Water Quality
Lee, Elvina; Khurana, Maninder S.; Whiteley, Andrew S.; Monis, Paul T.; Bath, Andrew; Gordon, Cameron; Ryan, Una M.; Paparini, Andrea
2017-01-01
Next generation sequencing (NGS) has rapidly become an invaluable tool for the detection, identification and relative quantification of environmental microorganisms. Here, we demonstrate two new 16S rDNA primer sets, which are compatible with NGS approaches and are primarily for use in water quality studies. Compared to 16S rRNA gene based universal primers, in silico and experimental analyses demonstrated that the new primers showed increased specificity for the Cyanobacteria and Proteobacteria phyla, allowing increased sensitivity for the detection, identification and relative quantification of toxic bloom-forming microalgae, microbial water quality bioindicators and common pathogens. Significantly, Cyanobacterial and Proteobacterial sequences accounted for ca. 95% of all sequences obtained within NGS runs (when compared to ca. 50% with standard universal NGS primers), providing higher sensitivity and greater phylogenetic resolution of key water quality microbial groups. The increased selectivity of the new primers allow the parallel sequencing of more samples through reduced sequence retrieval levels required to detect target groups, potentially reducing NGS costs by 50% but still guaranteeing optimal coverage and species discrimination. PMID:28118368
Using Next-Generation Sequencing to Explore Genetics and Race in the High School Classroom
Yang, Xinmiao; Hartman, Mark R.; Harrington, Kristin T.; Etson, Candice M.; Fierman, Matthew B.; Slonim, Donna K.; Walt, David R.
2017-01-01
With the development of new sequencing and bioinformatics technologies, concepts relating to personal genomics play an increasingly important role in our society. To promote interest and understanding of sequencing and bioinformatics in the high school classroom, we developed and implemented a laboratory-based teaching module called “The Genetics of Race.” This module uses the topic of race to engage students with sequencing and genetics. In the experimental portion of this module, students isolate their own mitochondrial DNA using standard biotechnology techniques and collect next-generation sequencing data to determine which of their classmates are most and least genetically similar to themselves. We evaluated the efficacy of this module by administering a pretest/posttest evaluation to measure student knowledge related to sequencing and bioinformatics, and we also conducted a survey at the conclusion of the module to assess student attitudes. Upon completion of our Genetics of Race module, students demonstrated significant learning gains, with lower-performing students obtaining the highest gains, and developed more positive attitudes toward scientific research. PMID:28408407
Complete Genome Sequences of Two Vesicular Stomatitis Virus Isolates Collected in Mexico
Isa, Pavel; Pauszek, Steven J.; Rodriguez, Luis L.
2017-01-01
ABSTRACT We report two full-genome sequences of vesicular stomatitis New Jersey virus (VSNJV) obtained by Illumina next-generation sequencing of RNA isolated from epithelial suspensions of cattle naturally infected in Mexico. These genomes represent the first full-genome sequences of vesicular stomatitis New Jersey viruses circulating in Mexico deposited in the GenBank database. PMID:28912331
Diagnostic Applications of Next Generation Sequencing in Immunogenetics and Molecular Oncology
Grumbt, Barbara; Eck, Sebastian H.; Hinrichsen, Tanja; Hirv, Kaimo
2013-01-01
Summary With the introduction of the next generation sequencing (NGS) technologies, remarkable new diagnostic applications have been established in daily routine. Implementation of NGS is challenging in clinical diagnostics, but definite advantages and new diagnostic possibilities make the switch to the technology inevitable. In addition to the higher sequencing capacity, clonal sequencing of single molecules, multiplexing of samples, higher diagnostic sensitivity, workflow miniaturization, and cost benefits are some of the valuable features of the technology. After the recent advances, NGS emerged as a proven alternative for classical Sanger sequencing in the typing of human leukocyte antigens (HLA). By virtue of the clonal amplification of single DNA molecules ambiguous typing results can be avoided. Simultaneously, a higher sample throughput can be achieved by tagging of DNA molecules with multiplex identifiers and pooling of PCR products before sequencing. In our experience, up to 380 samples can be typed for HLA-A, -B, and -DRB1 in high-resolution during every sequencing run. In molecular oncology, NGS shows a markedly increased sensitivity in comparison to the conventional Sanger sequencing and is developing to the standard diagnostic tool in detection of somatic mutations in cancer cells with great impact on personalized treatment of patients. PMID:23922545
Williams, Emma L; Bagg, Eleanor A L; Mueller, Michael; Vandrovcova, Jana; Aitman, Timothy J; Rumsby, Gill
2015-01-01
Definitive diagnosis of primary hyperoxaluria (PH) currently utilizes sequential Sanger sequencing of the AGXT, GRPHR, and HOGA1 genes but efficacy is unproven. This analysis is time-consuming, relatively expensive, and delays in diagnosis and inappropriate treatment can occur if not pursued early in the diagnostic work-up. We reviewed testing outcomes of Sanger sequencing in 200 consecutive patient samples referred for analysis. In addition, the Illumina Truseq custom amplicon system was evaluated for paralleled next-generation sequencing (NGS) of AGXT,GRHPR, and HOGA1 in 90 known PH patients. AGXT sequencing was requested in all patients, permitting a diagnosis of PH1 in 50%. All remaining patients underwent targeted exon sequencing of GRHPR and HOGA1 with 8% diagnosed with PH2 and 8% with PH3. Complete sequencing of both GRHPR and HOGA1 was not requested in 25% of patients referred leaving their diagnosis in doubt. NGS analysis showed 98% agreement with Sanger sequencing and both approaches had 100% diagnostic specificity. Diagnostic sensitivity of Sanger sequencing was 98% and for NGS it was 97%. NGS has comparable diagnostic performance to Sanger sequencing for the diagnosis of PH and, if implemented, would screen for all forms of PH simultaneously ensuring prompt diagnosis at decreased cost. PMID:25629080
Riman, Sarah; Kiesler, Kevin M; Borsuk, Lisa A; Vallone, Peter M
2017-07-01
Standard Reference Materials SRM 2392 and 2392-I are intended to provide quality control when amplifying and sequencing human mitochondrial genome sequences. The National Institute of Standards and Technology (NIST) offers these SRMs to laboratories performing DNA-based forensic human identification, molecular diagnosis of mitochondrial diseases, mutation detection, evolutionary anthropology, and genetic genealogy. The entire mtGenome (∼16569bp) of SRM 2392 and 2392-I have previously been characterized at NIST by Sanger sequencing. Herein, we used the sensitivity, specificity, and accuracy offered by next generation sequencing (NGS) to: (1) re-sequence the certified values of the SRM 2392 and 2392-I; (2) confirm Sanger data with a high coverage new sequencing technology; (3) detect lower level heteroplasmies (<20%); and thus (4) support mitochondrial sequencing communities in the adoption of NGS methods. To obtain a consensus sequence for the SRMs as well as identify and control any bias, sequencing was performed using two NGS platforms and data was analyzed using different bioinformatics pipelines. Our results confirm five low level heteroplasmy sites that were not previously observed with Sanger sequencing: three sites in the GM09947A template in SRM 2392 and two sites in the HL-60 template in SRM 2392-I. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of Next Generation Sequencing Techniques in Food Microbiology
Mayo, Baltasar; Rachid, Caio T. C. C; Alegría, Ángel; Leite, Analy M. O; Peixoto, Raquel S; Delgado, Susana
2014-01-01
Understanding the Maxam-Gilbert and Sanger sequencing as the first generation, in recent years there has been an explosion of newly-developed sequencing strategies, which are usually referred to as next generation sequencing (NGS) techniques. NGS techniques have high-throughputs and produce thousands or even millions of sequences at the same time. These sequences allow for the accurate identification of microbial taxa, including uncultivable organisms and those present in small numbers. In specific applications, NGS provides a complete inventory of all microbial operons and genes present or being expressed under different study conditions. NGS techniques are revolutionizing the field of microbial ecology and have recently been used to examine several food ecosystems. After a short introduction to the most common NGS systems and platforms, this review addresses how NGS techniques have been employed in the study of food microbiota and food fermentations, and discusses their limits and perspectives. The most important findings are reviewed, including those made in the study of the microbiota of milk, fermented dairy products, and plant-, meat- and fish-derived fermented foods. The knowledge that can be gained on microbial diversity, population structure and population dynamics via the use of these technologies could be vital in improving the monitoring and manipulation of foods and fermented food products. They should also improve their safety. PMID:25132799
Sharma, Davinder; Golla, Naresh; Singh, Dheer; Onteru, Suneel K
2018-03-01
The next-generation sequencing (NGS) based RNA sequencing (RNA-Seq) and transcriptome profiling offers an opportunity to unveil complex biological processes. Successful RNA-Seq and transcriptome profiling requires a large amount of high-quality RNA. However, NGS-quality RNA isolation is extremely difficult from recalcitrant adipose tissue (AT) with high lipid content and low cell numbers. Further, the amount and biochemical composition of AT lipid varies depending upon the animal species which can pose different degree of resistance to RNA extraction. Currently available approaches may work effectively in one species but can be almost unproductive in another species. Herein, we report a two step protocol for the extraction of NGS quality RNA from AT across a broad range of animal species. © 2017 Wiley Periodicals, Inc.
A fast sequence assembly method based on compressed data structures.
Liang, Peifeng; Zhang, Yancong; Lin, Kui; Hu, Jinglu
2014-01-01
Assembling a large genome using next generation sequencing reads requires large computer memory and a long execution time. To reduce these requirements, a memory and time efficient assembler is presented from applying FM-index in JR-Assembler, called FMJ-Assembler, where FM stand for FMR-index derived from the FM-index and BWT and J for jumping extension. The FMJ-Assembler uses expanded FM-index and BWT to compress data of reads to save memory and jumping extension method make it faster in CPU time. An extensive comparison of the FMJ-Assembler with current assemblers shows that the FMJ-Assembler achieves a better or comparable overall assembly quality and requires lower memory use and less CPU time. All these advantages of the FMJ-Assembler indicate that the FMJ-Assembler will be an efficient assembly method in next generation sequencing technology.
Screening for SNPs with Allele-Specific Methylation based on Next-Generation Sequencing Data.
Hu, Bo; Ji, Yuan; Xu, Yaomin; Ting, Angela H
2013-05-01
Allele-specific methylation (ASM) has long been studied but mainly documented in the context of genomic imprinting and X chromosome inactivation. Taking advantage of the next-generation sequencing technology, we conduct a high-throughput sequencing experiment with four prostate cell lines to survey the whole genome and identify single nucleotide polymorphisms (SNPs) with ASM. A Bayesian approach is proposed to model the counts of short reads for each SNP conditional on its genotypes of multiple subjects, leading to a posterior probability of ASM. We flag SNPs with high posterior probabilities of ASM by accounting for multiple comparisons based on posterior false discovery rates. Applying the Bayesian approach to the in-house prostate cell line data, we identify 269 SNPs as candidates of ASM. A simulation study is carried out to demonstrate the quantitative performance of the proposed approach.
Guo, Liang; Li, Mingming; Zhang, Heng; Yang, Sen; Chen, Xinghan; Meng, Zining; Lin, Haoran
2016-05-01
Recently, the next-generation sequencing (NGS) technology has become a powerful tool for sequencing the teleost mitochondrial genome (mitogenome). Here, we used this technology to determine the mitogenome of the yellowfin tuna (Thunnus albacares). A total of 41,378 reads were generated by Illumina platform with an average depth of 250×. The mitogenome (16,528 bp in length) contained 37 mitochondrial genes with the similar gene order to other typical teleosts. These mitochondrial genes were encoded on the heavy strand except for ND6 and eight tRNA genes. The result of phylogenetic analysis supported two distinct clades dividing the genus Thunnus, but the tuna species of these two genetic clades were different from that of two recognized subgenus based on anatomical characters and geographical distribution. Our results might help to understand the structure, function, and evolutionary history of the yellowfin tuna mitogenome and also provide valuable new insights for phylogenetic affinity of tuna species.
Mans, Ben J; Pienaar, Ronel; Ratabane, John; Pule, Boitumelo; Latif, Abdalla A
2016-07-01
Molecular classification and systematics of the Theileria is based on the analysis of the 18S rRNA gene. Reverse line blot or conventional sequencing approaches have disadvantages in the study of 18S rRNA diversity and a next-generation 454 sequencing approach was investigated. The 18S rRNA gene was amplified using RLB primers coupled to 96 unique sequence identifiers (MIDs). Theileria positive samples from African buffalo (672) and cattle (480) from southern Africa were combined in batches of 96 and sequenced using the GS Junior 454 sequencer to produce 825711 informative sequences. Sequences were extracted based on MIDs and analysed to identify Theileria genotypes. Genotypes observed in buffalo and cattle were confirmed in the current study, while no new genotypes were discovered. Genotypes showed specific geographic distributions, most probably linked with vector distributions. Host specificity of buffalo and cattle specific genotypes were confirmed and prevalence data as well as relative parasitemia trends indicate preference for different hosts. Mixed infections are common with African buffalo carrying more genotypes compared to cattle. Associative or exclusion co-infection profiles were observed between genotypes that may have implications for speciation and systematics: specifically that more Theileria species may exist in cattle and buffalo than currently recognized. Analysis of primers used for Theileria parva diagnostics indicate that no new genotypes will be amplified by the current primer sets confirming their specificity. T. parva SNP variants that occur in the 18S rRNA hypervariable region were confirmed. A next generation sequencing approach is useful in obtaining comprehensive knowledge regarding 18S rRNA diversity and prevalence for the Theileria, allowing for the assessment of systematics and diagnostic assays based on the 18S gene. Copyright © 2016 Elsevier GmbH. All rights reserved.
Webb, Kristen M; Rosenthal, Benjamin M
2011-01-01
The mitochondrial genome's non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been defined for 12 species and genotypes of parasites in the genus Trichinella, but its adequacy in representing the mitochondrial genome as a whole remains unclear, as the complete coding sequence has been characterized only for Trichinella spiralis. Here, we sought to comprehensively describe the extent and nature of divergence between the mitochondrial genomes of T. spiralis (which poses the most appreciable zoonotic risk owing to its capacity to establish persistent infections in domestic pigs) and Trichinella murrelli (which is the most prevalent species in North American wildlife hosts, but which poses relatively little risk to the safety of pork). Next generation sequencing methodologies and scaffold and de novo assembly strategies were employed. The entire protein-coding region was sequenced (13,917 bp), along with a portion of the highly repetitive non-coding region (1524 bp) of the mitochondrial genome of T. murrelli with a combined average read depth of 250 reads. The accuracy of base calling, estimated from coding region sequence was found to exceed 99.3%. Genome content and gene order was not found to be significantly different from that of T. spiralis. An overall inter-species sequence divergence of 9.5% was estimated. Significant variation was identified when the amount of variation between species at each gene is compared to the average amount of variation between species across the coding region. Next generation sequencing is a highly effective means to obtain previously unknown mitochondrial genome sequence. Particular to parasites, the extremely deep coverage achieved through this method allows for the detection of sequence heterogeneity between the multiple individuals that necessarily comprise such templates. Copyright © 2010 Elsevier B.V. All rights reserved.
Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India
S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali
2014-01-01
Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic/transcriptomic data is available at NCBI.
Software for pre-processing Illumina next-generation sequencing short read sequences
2014-01-01
Background When compared to Sanger sequencing technology, next-generation sequencing (NGS) technologies are hindered by shorter sequence read length, higher base-call error rate, non-uniform coverage, and platform-specific sequencing artifacts. These characteristics lower the quality of their downstream analyses, e.g. de novo and reference-based assembly, by introducing sequencing artifacts and errors that may contribute to incorrect interpretation of data. Although many tools have been developed for quality control and pre-processing of NGS data, none of them provide flexible and comprehensive trimming options in conjunction with parallel processing to expedite pre-processing of large NGS datasets. Methods We developed ngsShoRT (next-generation sequencing Short Reads Trimmer), a flexible and comprehensive open-source software package written in Perl that provides a set of algorithms commonly used for pre-processing NGS short read sequences. We compared the features and performance of ngsShoRT with existing tools: CutAdapt, NGS QC Toolkit and Trimmomatic. We also compared the effects of using pre-processed short read sequences generated by different algorithms on de novo and reference-based assembly for three different genomes: Caenorhabditis elegans, Saccharomyces cerevisiae S288c, and Escherichia coli O157 H7. Results Several combinations of ngsShoRT algorithms were tested on publicly available Illumina GA II, HiSeq 2000, and MiSeq eukaryotic and bacteria genomic short read sequences with the focus on removing sequencing artifacts and low-quality reads and/or bases. Our results show that across three organisms and three sequencing platforms, trimming improved the mean quality scores of trimmed sequences. Using trimmed sequences for de novo and reference-based assembly improved assembly quality as well as assembler performance. In general, ngsShoRT outperformed comparable trimming tools in terms of trimming speed and improvement of de novo and reference-based assembly as measured by assembly contiguity and correctness. Conclusions Trimming of short read sequences can improve the quality of de novo and reference-based assembly and assembler performance. The parallel processing capability of ngsShoRT reduces trimming time and improves the memory efficiency when dealing with large datasets. We recommend combining sequencing artifacts removal, and quality score based read filtering and base trimming as the most consistent method for improving sequence quality and downstream assemblies. ngsShoRT source code, user guide and tutorial are available at http://research.bioinformatics.udel.edu/genomics/ngsShoRT/. ngsShoRT can be incorporated as a pre-processing step in genome and transcriptome assembly projects. PMID:24955109
2013-01-01
The formalin-fixed, paraffin-embedded (FFPE) biopsy is a challenging sample for molecular assays such as targeted next-generation sequencing (NGS). We compared three methods for FFPE DNA quantification, including a novel PCR assay (‘QFI-PCR’) that measures the absolute copy number of amplifiable DNA, across 165 residual clinical specimens. The results reveal the limitations of commonly used approaches, and demonstrate the value of an integrated workflow using QFI-PCR to improve the accuracy of NGS mutation detection and guide changes in input that can rescue low quality FFPE DNA. These findings address a growing need for improved quality measures in NGS-based patient testing. PMID:24001039
Tablet—next generation sequence assembly visualization
Milne, Iain; Bayer, Micha; Cardle, Linda; Shaw, Paul; Stephen, Gordon; Wright, Frank; Marshall, David
2010-01-01
Summary: Tablet is a lightweight, high-performance graphical viewer for next-generation sequence assemblies and alignments. Supporting a range of input assembly formats, Tablet provides high-quality visualizations showing data in packed or stacked views, allowing instant access and navigation to any region of interest, and whole contig overviews and data summaries. Tablet is both multi-core aware and memory efficient, allowing it to handle assemblies containing millions of reads, even on a 32-bit desktop machine. Availability: Tablet is freely available for Microsoft Windows, Apple Mac OS X, Linux and Solaris. Fully bundled installers can be downloaded from http://bioinf.scri.ac.uk/tablet in 32- and 64-bit versions. Contact: tablet@scri.ac.uk PMID:19965881
High-Throughput Next-Generation Sequencing of Polioviruses
Montmayeur, Anna M.; Schmidt, Alexander; Zhao, Kun; Magaña, Laura; Iber, Jane; Castro, Christina J.; Chen, Qi; Henderson, Elizabeth; Ramos, Edward; Shaw, Jing; Tatusov, Roman L.; Dybdahl-Sissoko, Naomi; Endegue-Zanga, Marie Claire; Adeniji, Johnson A.; Oberste, M. Steven; Burns, Cara C.
2016-01-01
ABSTRACT The poliovirus (PV) is currently targeted for worldwide eradication and containment. Sanger-based sequencing of the viral protein 1 (VP1) capsid region is currently the standard method for PV surveillance. However, the whole-genome sequence is sometimes needed for higher resolution global surveillance. In this study, we optimized whole-genome sequencing protocols for poliovirus isolates and FTA cards using next-generation sequencing (NGS), aiming for high sequence coverage, efficiency, and throughput. We found that DNase treatment of poliovirus RNA followed by random reverse transcription (RT), amplification, and the use of the Nextera XT DNA library preparation kit produced significantly better results than other preparations. The average viral reads per total reads, a measurement of efficiency, was as high as 84.2% ± 15.6%. PV genomes covering >99 to 100% of the reference length were obtained and validated with Sanger sequencing. A total of 52 PV genomes were generated, multiplexing as many as 64 samples in a single Illumina MiSeq run. This high-throughput, sequence-independent NGS approach facilitated the detection of a diverse range of PVs, especially for those in vaccine-derived polioviruses (VDPV), circulating VDPV, or immunodeficiency-related VDPV. In contrast to results from previous studies on other viruses, our results showed that filtration and nuclease treatment did not discernibly increase the sequencing efficiency of PV isolates. However, DNase treatment after nucleic acid extraction to remove host DNA significantly improved the sequencing results. This NGS method has been successfully implemented to generate PV genomes for molecular epidemiology of the most recent PV isolates. Additionally, the ability to obtain full PV genomes from FTA cards will aid in facilitating global poliovirus surveillance. PMID:27927929
Quail, Michael A; Smith, Miriam; Coupland, Paul; Otto, Thomas D; Harris, Simon R; Connor, Thomas R; Bertoni, Anna; Swerdlow, Harold P; Gu, Yong
2012-07-24
Next generation sequencing (NGS) technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent's PGM, Pacific Biosciences' RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. Sequence generated by Ion Torrent, MiSeq and Pacific Biosciences technologies displays near perfect coverage behaviour on GC-rich, neutral and moderately AT-rich genomes, but a profound bias was observed upon sequencing the extremely AT-rich genome of Plasmodium falciparum on the PGM, resulting in no coverage for approximately 30% of the genome. We analysed the ability to call variants from each platform and found that we could call slightly more variants from Ion Torrent data compared to MiSeq data, but at the expense of a higher false positive rate. Variant calling from Pacific Biosciences data was possible but higher coverage depth was required. Context specific errors were observed in both PGM and MiSeq data, but not in that from the Pacific Biosciences platform. All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support.
NASA Astrophysics Data System (ADS)
Eriksson, S. C.; Wilson, T. J.; Anandakrishnan, S.; Aster, R. C.; Johns, B.; Anderson, K.; Taber, J.
2006-12-01
Two Antarctic projects developed by solid earth scientists in the GPS and seismology communities have rich education and outreach activities focused on disseminating information gleaned from this research and on including students from underrepresented groups. Members of the UNAVCO and IRIS research consortia along with international partners from Australia, Canada, Chile, Germany, Italy, New Zealand and the U.K. aim to deploy an ambitious GPS/seismic network to observe the Antarctic glaciological and geologic system using a multidisciplinary and internationally coordinated approach. The second project supports this network. UNAVCO and IRIS are designing and building a reliable power and communication system for autonomous polar station operation which use the latest power and communication technologies for ease of deployment and reliable multi-year operation in severe polar environments. This project will disseminate research results through an IPY/POLENET web-based museum style display based on the next-generation "Museum Lite" capability primarily supported by IRIS. "Museum Lite" uses a standard PC, touch-screen monitor, and standard Internet browsers to exploit the scalability and access of the Internet and to provide customizable content in an interactive setting. The unit is suitable for research departments, public schools, and an assortment of public venues, and can provide wide access to real-time geophysical data, ongoing research, and general information. The POLENET group will work with members of the two consortia to provide content about the project and polar science in general. One unit is to be installed at Barrow's Ilisagvit College through the Barrow Arctic Science Consortium, one at McMurdo Station in Antarctica, and two at other sites to be determined (likely in New Zealand/Australia and in the U.S.). In January, 2006, Museum Lite exhibit was installed at the Amundsen-Scott South Pole Station. Evaluation of this prototype is underway. These projects also have a special focus on engaging underrepresented groups in polar science through coalitions with existing recruitment networks and strong, currently operating programs such as the joint UNAVCO-IRIS-USGS program called Research Experiences in Solid Earth Science for Students (RESESS) that provides multi-year research experiences, ongoing mentorship, and a learning community. Undergraduate students will participate in polar research or in development of the new polar equipment.
Efficient error correction for next-generation sequencing of viral amplicons
2012-01-01
Background Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. Results In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Conclusions Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses. The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm PMID:22759430
Efficient error correction for next-generation sequencing of viral amplicons.
Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury
2012-06-25
Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.
NASA Astrophysics Data System (ADS)
1980-01-01
Super Vacuum Manufacturing Company's Stem-Lite Emergency Lighting System is widely used by fire, police, ambulance and other emergency service departments. The lights -- four floodlights which provide 2,000 watts of daytime equivalent visibility and a high-intensity flashing beacon can be elevated 10 feet above the roof of an emergency vehicle by means of an extendible mast. The higher elevation expands the effective radius of the floodlights and increases the beacon's visibility to several miles affording extra warning time to approaching traffic. When not in use, the light can be retracted into the compact rooftop housing. Stem-Lite also includes a generator which can serve to power such emergency equipment as pumps and drills, and a dashboard-mounted control panel for switching the lights and extending or retracting the mast.
Schramm, Chaim A; Sheng, Zizhang; Zhang, Zhenhai; Mascola, John R; Kwong, Peter D; Shapiro, Lawrence
2016-01-01
The rapid advance of massively parallel or next-generation sequencing technologies has made possible the characterization of B cell receptor repertoires in ever greater detail, and these developments have triggered a proliferation of software tools for processing and annotating these data. Of especial interest, however, is the capability to track the development of specific antibody lineages across time, which remains beyond the scope of most current programs. We have previously reported on the use of techniques such as inter- and intradonor analysis and CDR3 tracing to identify transcripts related to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of Antibody Repertoires (SONAR), capable of automating both general repertoire analysis and specialized techniques for investigating specific lineages. SONAR annotates next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks lineage development across multiple time points. SONAR also generates figures, such as identity-divergence plots and longitudinal phylogenetic "birthday" trees, and provides interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded as a ready-to-run Docker image or manually installed on a local machine. In the latter case, it can also be configured to take advantage of a high-performance computing cluster for the most computationally intensive steps, if available. In summary, this software provides a useful new tool for the processing of large next-generation sequencing datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be found at https://github.com/scharch/SONAR, and the Docker image can be obtained from https://hub.docker.com/r/scharch/sonar/.
Gangras, Pooja; Dayeh, Daniel M; Mabin, Justin W; Nakanishi, Kotaro; Singh, Guramrit
2018-01-01
Argonaute proteins (AGOs) are loaded with small RNAs as guides to recognize target mRNAs. Since the target specificity heavily depends on the base complementarity between two strands, it is important to identify small guide and long target RNAs bound to AGOs. For this purpose, next-generation sequencing (NGS) technologies have extended our appreciation truly to the nucleotide level. However, the identification of RNAs via NGS from scarce RNA samples remains a challenge. Further, most commercial and published methods are compatible with either small RNAs or long RNAs, but are not equally applicable to both. Therefore, a single method that yields quantitative, bias-free NGS libraries to identify small and long RNAs from low levels of input will be of wide interest. Here, we introduce such a procedure that is based on several modifications of two published protocols and allows robust, sensitive, and reproducible cloning and sequencing of small amounts of RNAs of variable lengths. The method was applied to the identification of small RNAs bound to a purified eukaryotic AGO. Following ligation of a DNA adapter to RNA 3'-end, the key feature of this method is to use the adapter for priming reverse transcription (RT) wherein biotinylated deoxyribonucleotides specifically incorporated into the extended complementary DNA. Such RT products are enriched on streptavidin beads, circularized while immobilized on beads and directly used for PCR amplification. We provide a stepwise guide to generate RNA-Seq libraries, their purification, quantification, validation, and preparation for next-generation sequencing. We also provide basic steps in post-NGS data analyses using Galaxy, an open-source, web-based platform.
gCUP: rapid GPU-based HIV-1 co-receptor usage prediction for next-generation sequencing.
Olejnik, Michael; Steuwer, Michel; Gorlatch, Sergei; Heider, Dominik
2014-11-15
Next-generation sequencing (NGS) has a large potential in HIV diagnostics, and genotypic prediction models have been developed and successfully tested in the recent years. However, albeit being highly accurate, these computational models lack computational efficiency to reach their full potential. In this study, we demonstrate the use of graphics processing units (GPUs) in combination with a computational prediction model for HIV tropism. Our new model named gCUP, parallelized and optimized for GPU, is highly accurate and can classify >175 000 sequences per second on an NVIDIA GeForce GTX 460. The computational efficiency of our new model is the next step to enable NGS technologies to reach clinical significance in HIV diagnostics. Moreover, our approach is not limited to HIV tropism prediction, but can also be easily adapted to other settings, e.g. drug resistance prediction. The source code can be downloaded at http://www.heiderlab.de d.heider@wz-straubing.de. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Zhou, Shuntai; Jones, Corbin; Mieczkowski, Piotr
2015-01-01
ABSTRACT Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set. PMID:26041299
Analysis of selected genes associated with cardiomyopathy by next-generation sequencing.
Szabadosova, Viktoria; Boronova, Iveta; Ferenc, Peter; Tothova, Iveta; Bernasovska, Jarmila; Zigova, Michaela; Kmec, Jan; Bernasovsky, Ivan
2018-02-01
As the leading cause of congestive heart failure, cardiomyopathy represents a heterogenous group of heart muscle disorders. Despite considerable progress being made in the genetic diagnosis of cardiomyopathy by detection of the mutations in the most prevalent cardiomyopathy genes, the cause remains unsolved in many patients. High-throughput mutation screening in the disease genes for cardiomyopathy is now possible because of using target enrichment followed by next-generation sequencing. The aim of the study was to analyze a panel of genes associated with dilated or hypertrophic cardiomyopathy based on previously published results in order to identify the subjects at risk. The method of next-generation sequencing by IlluminaHiSeq 2500 platform was used to detect sequence variants in 16 individuals diagnosed with dilated or hypertrophic cardiomyopathy. Detected variants were filtered and the functional impact of amino acid changes was predicted by computational programs. DNA samples of the 16 patients were analyzed by whole exome sequencing. We identified six nonsynonymous variants that were shown to be pathogenic in all used prediction softwares: rs3744998 (EPG5), rs11551768 (MGME1), rs148374985 (MURC), rs78461695 (PLEC), rs17158558 (RET) and rs2295190 (SYNE1). Two of the analyzed sequence variants had minor allele frequency (MAF)<0.01: rs148374985 (MURC), rs34580776 (MYBPC3). Our data support the potential role of the detected variants in pathogenesis of dilated or hypertrophic cardiomyopathy; however, the possibility that these variants might not be true disease-causing variants but are susceptibility alleles that require additional mutations or injury to cause the clinical phenotype of disease must be considered. © 2017 Wiley Periodicals, Inc.
Trujillano, Daniel; Weiss, Maximilian E R; Schneider, Juliane; Köster, Julia; Papachristos, Efstathios B; Saviouk, Viatcheslav; Zakharkina, Tetyana; Nahavandi, Nahid; Kovacevic, Lejla; Rolfs, Arndt
2015-03-01
Genetic testing for hereditary breast and/or ovarian cancer mostly relies on laborious molecular tools that use Sanger sequencing to scan for mutations in the BRCA1 and BRCA2 genes. We explored a more efficient genetic screening strategy based on next-generation sequencing of the BRCA1 and BRCA2 genes in 210 hereditary breast and/or ovarian cancer patients. We first validated this approach in a cohort of 115 samples with previously known BRCA1 and BRCA2 mutations and polymorphisms. Genomic DNA was amplified using the Ion AmpliSeq BRCA1 and BRCA2 panel. The DNA Libraries were pooled, barcoded, and sequenced using an Ion Torrent Personal Genome Machine sequencer. The combination of different robust bioinformatics tools allowed detection of all previously known pathogenic mutations and polymorphisms in the 115 samples, without detecting spurious pathogenic calls. We then used the same assay in a discovery cohort of 95 uncharacterized hereditary breast and/or ovarian cancer patients for BRCA1 and BRCA2. In addition, we describe the allelic frequencies across 210 hereditary breast and/or ovarian cancer patients of 74 unique definitely and likely pathogenic and uncertain BRCA1 and BRCA2 variants, some of which have not been previously annotated in the public databases. Targeted next-generation sequencing is ready to substitute classic molecular methods to perform genetic testing on the BRCA1 and BRCA2 genes and provides a greater opportunity for more comprehensive testing of at-risk patients. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Hafler, Brian P
2017-03-01
Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.
Next-generation sequencing in clinical virology: Discovery of new viruses.
Datta, Sibnarayan; Budhauliya, Raghvendra; Das, Bidisha; Chatterjee, Soumya; Vanlalhmuaka; Veer, Vijay
2015-08-12
Viruses are a cause of significant health problem worldwide, especially in the developing nations. Due to different anthropological activities, human populations are exposed to different viral pathogens, many of which emerge as outbreaks. In such situations, discovery of novel viruses is utmost important for deciding prevention and treatment strategies. Since last century, a number of different virus discovery methods, based on cell culture inoculation, sequence-independent PCR have been used for identification of a variety of viruses. However, the recent emergence and commercial availability of next-generation sequencers (NGS) has entirely changed the field of virus discovery. These massively parallel sequencing platforms can sequence a mixture of genetic materials from a very heterogeneous mix, with high sensitivity. Moreover, these platforms work in a sequence-independent manner, making them ideal tools for virus discovery. However, for their application in clinics, sample preparation or enrichment is necessary to detect low abundance virus populations. A number of techniques have also been developed for enrichment or viral nucleic acids. In this manuscript, we review the evolution of sequencing; NGS technologies available today as well as widely used virus enrichment technologies. We also discuss the challenges associated with their applications in the clinical virus discovery.
Liang, Chanjuan; van Dijk, Jeroen P; Scholtens, Ingrid M J; Staats, Martijn; Prins, Theo W; Voorhuijzen, Marleen M; da Silva, Andrea M; Arisi, Ana Carolina Maisonnave; den Dunnen, Johan T; Kok, Esther J
2014-04-01
The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.
Length-independent structural similarities enrich the antibody CDR canonical class model.
Nowak, Jaroslaw; Baker, Terry; Georges, Guy; Kelm, Sebastian; Klostermann, Stefan; Shi, Jiye; Sridharan, Sudharsan; Deane, Charlotte M
2016-01-01
Complementarity-determining regions (CDRs) are antibody loops that make up the antigen binding site. Here, we show that all CDR types have structurally similar loops of different lengths. Based on these findings, we created length-independent canonical classes for the non-H3 CDRs. Our length variable structural clusters show strong sequence patterns suggesting either that they evolved from the same original structure or result from some form of convergence. We find that our length-independent method not only clusters a larger number of CDRs, but also predicts canonical class from sequence better than the standard length-dependent approach. To demonstrate the usefulness of our findings, we predicted cluster membership of CDR-L3 sequences from 3 next-generation sequencing datasets of the antibody repertoire (over 1,000,000 sequences). Using the length-independent clusters, we can structurally classify an additional 135,000 sequences, which represents a ∼20% improvement over the standard approach. This suggests that our length-independent canonical classes might be a highly prevalent feature of antibody space, and could substantially improve our ability to accurately predict the structure of novel CDRs identified by next-generation sequencing.
Alena K. Oliver; Shawn P. Brown; Mac A. Callaham; Ari Jumpponen
2015-01-01
Rare taxa overwhelm metabarcoding data generated using next-generation sequencing (NGS). Low frequency Operational Taxonomic Units (OTUs) may be artifacts generated by PCR-amplification errors resulting from polymerase mispairing. We analyzed two Internal Transcribed Spacer 2 (ITS2) MiSeq libraries generated with proofreading (ThermoScientific Phusion
Draft genome sequences of Streptococcus bovis strains ATCC 33317 and JB1
USDA-ARS?s Scientific Manuscript database
We report the draft genome sequences of Streptococcus bovis type strain ATTC 33317 (CVM42251) isolated from cow dung and strain JB1 (CVM42252) isolated from a cow rumen in 1977. Strains were subjected to Next Generation sequencing and the genome sizes are approximately 2 MB and 2.2 MB, respectively....
USDA-ARS?s Scientific Manuscript database
The genomic sequences of low and high passages of U.S. infectious laryngotracheitis (ILT) vaccine strains chicken embryo origin (CEO) and tissue culture origin (TCO) these strains were determined using hybrid next generation sequencing in order to define relevant genomic changes associated with att...
USDA-ARS?s Scientific Manuscript database
New and emerging next generation sequencing technologies have reduced sequencing costs, but there is room for additional approaches that can be applied to complex polyploid plant genomes. Large (about 2.5GB) and highly repetitive tetraploid genome of G. hirsutum is still cost-intensive with traditi...
USDA-ARS?s Scientific Manuscript database
A small fast neutron mutant population has been established from Phaseolus vulgaris cv. Red Hawk. We leveraged the available P. vulgaris genome sequence and high throughput next generation DNA sequencing to examine the genomic structure of five Phaseolus vulgaris cv. Red Hawk fast neutron mutants wi...
Astrometry: Beyond Microarcseconds
NASA Astrophysics Data System (ADS)
Kulkarni, Shrinivas
2009-05-01
The next decade will witness the flowering of astrometry. On the ground we are already reaping the benefits of adaptive optics, interferometry and digital sky surveys. The precision of GAIA and SIM-Lite will usher in an age of tens to microarcsecond astrometry. In this talk (meant to provoke and whet the appetite of the audience) the speaker will explore astromery in the post-GAIA era. At the sub-microarcsecond the Universe is measurably not static. The speaker will address the basic technical and astronomical challenges and of course the scientific rewards of sub-microarcsecond astromery.
Developing 100K Affymetrix Axiom SNP Array for Polyploid Sugarcane
USDA-ARS?s Scientific Manuscript database
Sugarcane genotyping or fingerprinting has long been a daunting task due to its high polyploidy level with large number of chromosomes. Single nucleotide polymorphisms (SNPs) are very abundant DNA sequence variations in the genomes. With the advance of next generation sequencing (NGS) technologies, ...
Population sequencing reveals breed and sub-species specific CNVs in cattle
USDA-ARS?s Scientific Manuscript database
Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an increased...
Comparison and quantitative verification of mapping algorithms for whole genome bisulfite sequencing
USDA-ARS?s Scientific Manuscript database
Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitat...
The draft genome of a diploid cotton Gossypium raimondii
USDA-ARS?s Scientific Manuscript database
We have sequenced and assembled the draft genome of Gossypium raimondii, whose progenitor is considered the contributor of the D-subgenome to the economically important natural textile fiber producer, G. hirsutum. Next-generation Illumina pair-end (PE) sequencing strategies were employed to obtain ...
Transcriptome analysis of blueberry using 454 EST sequencing
USDA-ARS?s Scientific Manuscript database
Blueberry (Vaccinium corymbosum) is a major berry crop in the United States, and one that has great nutritional and economical value. Next generation sequencing methodologies, such as 454, have been demonstrated to be successful and efficient in producing a snap-shot of transcriptional activities du...
New single-copy nuclear genes for scale insect systematics
USDA-ARS?s Scientific Manuscript database
Despite the advent of next-generation sequencing, the polymerase chain reaction (PCR) and Sanger sequencing remain useful tools for molecular identification and systematics. To date, molecular systematics of scale insects has been constrained by the paucity of loci that researchers have been able to...
Simulating Next-Generation Sequencing Datasets from Empirical Mutation and Sequencing Models
Stephens, Zachary D.; Hudson, Matthew E.; Mainzer, Liudmila S.; Taschuk, Morgan; Weber, Matthew R.; Iyer, Ravishankar K.
2016-01-01
An obstacle to validating and benchmarking methods for genome analysis is that there are few reference datasets available for which the “ground truth” about the mutational landscape of the sample genome is known and fully validated. Additionally, the free and public availability of real human genome datasets is incompatible with the preservation of donor privacy. In order to better analyze and understand genomic data, we need test datasets that model all variants, reflecting known biology as well as sequencing artifacts. Read simulators can fulfill this requirement, but are often criticized for limited resemblance to true data and overall inflexibility. We present NEAT (NExt-generation sequencing Analysis Toolkit), a set of tools that not only includes an easy-to-use read simulator, but also scripts to facilitate variant comparison and tool evaluation. NEAT has a wide variety of tunable parameters which can be set manually on the default model or parameterized using real datasets. The software is freely available at github.com/zstephens/neat-genreads. PMID:27893777
Kappel, Kristina; Haase, Ilka; Käppel, Christine; Sotelo, Carmen G; Schröder, Ute
2017-11-01
Conventional Sanger sequencing of PCR products is the gold standard for species authentication of seafood products. However, this method is inappropriate for the analysis of products that might contain mixtures of species, such as tinned tuna. The purpose of this study was to test whether next-generation sequencing (NGS) can be a solution for the authentication of mixed products. Nine tuna samples containing mixtures of up to four species were prepared and subjected to an NGS approach targeting two short cytochrome b gene (cytb) fragments on the Illumina MiSeq platform. Sequence recovery was precise and admixtures of as low as 1% could be identified, depending on the species composition of the mixtures. Duplicate samples as well as two individual NGS runs produced very similar results. A first test of three commercial tinned tuna samples indicated the presence of different species in the same tin, although this is forbidden by EU law. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fujimori, Shigeo; Hirai, Naoya; Ohashi, Hiroyuki; Masuoka, Kazuyo; Nishikimi, Akihiko; Fukui, Yoshinori; Washio, Takanori; Oshikubo, Tomohiro; Yamashita, Tatsuhiro; Miyamoto-Sato, Etsuko
2012-01-01
Next-generation sequencing (NGS) has been applied to various kinds of omics studies, resulting in many biological and medical discoveries. However, high-throughput protein-protein interactome datasets derived from detection by sequencing are scarce, because protein-protein interaction analysis requires many cell manipulations to examine the interactions. The low reliability of the high-throughput data is also a problem. Here, we describe a cell-free display technology combined with NGS that can improve both the coverage and reliability of interactome datasets. The completely cell-free method gives a high-throughput and a large detection space, testing the interactions without using clones. The quantitative information provided by NGS reduces the number of false positives. The method is suitable for the in vitro detection of proteins that interact not only with the bait protein, but also with DNA, RNA and chemical compounds. Thus, it could become a universal approach for exploring the large space of protein sequences and interactome networks. PMID:23056904
Zhang, Lu; Xu, Jinhao; Ma, Jinbiao
2016-07-25
RNA-binding protein exerts important biological function by specifically recognizing RNA motif. SELEX (Systematic evolution of ligands by exponential enrichment), an in vitro selection method, can obtain consensus motif with high-affinity and specificity for many target molecules from DNA or RNA libraries. Here, we combined SELEX with next-generation sequencing to study the protein-RNA interaction in vitro. A pool of RNAs with 20 bp random sequences were transcribed by T7 promoter, and target protein was inserted into plasmid containing SBP-tag, which can be captured by streptavidin beads. Through only one cycle, the specific RNA motif can be obtained, which dramatically improved the selection efficiency. Using this method, we found that human hnRNP A1 RRMs domain (UP1 domain) bound RNA motifs containing AGG and AG sequences. The EMSA experiment indicated that hnRNP A1 RRMs could bind the obtained RNA motif. Taken together, this method provides a rapid and effective method to study the RNA binding specificity of proteins.
2013-01-01
Inherited retinal degenerative diseases (RDDs) display wide variation in their mode of inheritance, underlying genetic defects, age of onset, and phenotypic severity. Molecular mechanisms have not been delineated for many retinal diseases, and treatment options are limited. In most instances, genotype-phenotype correlations have not been elucidated because of extensive clinical and genetic heterogeneity. Next-generation sequencing (NGS) methods, including exome, genome, transcriptome and epigenome sequencing, provide novel avenues towards achieving comprehensive understanding of the genetic architecture of RDDs. Whole-exome sequencing (WES) has already revealed several new RDD genes, whereas RNA-Seq and ChIP-Seq analyses are expected to uncover novel aspects of gene regulation and biological networks that are involved in retinal development, aging and disease. In this review, we focus on the genetic characterization of retinal and macular degeneration using NGS technology and discuss the basic framework for further investigations. We also examine the challenges of NGS application in clinical diagnosis and management. PMID:24112618
Cho, Namjin; Hwang, Byungjin; Yoon, Jung-ki; Park, Sangun; Lee, Joongoo; Seo, Han Na; Lee, Jeewon; Huh, Sunghoon; Chung, Jinsoo; Bang, Duhee
2015-09-21
Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of complex genetic systems and unveiling structure and function of genetic pathways. Although high resolution mapping of en masse variant libraries renders molecular biologists to address genotype-phenotype relationships, long-read sequencing technology remains indispensable to assess functional relationship between mutations that lie far apart. Here, we introduce JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by combining a codon-based molecular barcoding strategy and de novo assembly of short-read data. We first validate JigsawSeq on small sub-pools and observed high precision and recall at various experimental settings. With extensive simulations, we then apply JigsawSeq to large-scale gene variant libraries to show that our method can be reliably scaled using next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional genomics and offer the opportunity to explore evolutionary trajectories of protein variants.
Precone, Vincenza; Del Monaco, Valentina; Esposito, Maria Valeria; De Palma, Fatima Domenica Elisa; Ruocco, Anna; D'Argenio, Valeria
2015-01-01
Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics. PMID:26665001
De Bellis, Fabien; Malapa, Roger; Kagy, Valérie; Lebegin, Stéphane; Billot, Claire; Labouisse, Jean-Pierre
2016-01-01
Premise of the study: Using next-generation sequencing technology, new microsatellite loci were characterized in Artocarpus altilis (Moraceae) and two congeners to increase the number of available markers for genotyping breadfruit cultivars. Methods and Results: A total of 47,607 simple sequence repeat loci were obtained by sequencing a library of breadfruit genomic DNA with an Illumina MiSeq system. Among them, 50 single-locus markers were selected and assessed using 41 samples (39 A. altilis, one A. camansi, and one A. heterophyllus). All loci were polymorphic in A. altilis, 44 in A. camansi, and 21 in A. heterophyllus. The number of alleles per locus ranged from two to 19. Conclusions: The new markers will be useful for assessing the identity and genetic diversity of breadfruit cultivars on a small geographical scale, gaining a better understanding of farmer management practices, and will help to optimize breadfruit genebank management. PMID:27610273
Charpentier, Elena; Garnaud, Cécile; Wintenberger, Claire; Bailly, Sébastien; Murat, Jean-Benjamin; Rendu, John; Pavese, Patricia; Drouet, Thibault; Augier, Caroline; Malvezzi, Paolo; Thiébaut-Bertrand, Anne; Mallaret, Marie-Reine; Epaulard, Olivier; Cornet, Muriel; Larrat, Sylvie; Maubon, Danièle
2017-08-01
Pneumocystis jirovecii is a major threat for immunocompromised patients, and clusters of pneumocystis pneumonia (PCP) have been increasingly described in transplant units during the past decade. Exploring an outbreak transmission network requires complementary spatiotemporal and strain-typing approaches. We analyzed a PCP outbreak and demonstrated the added value of next-generation sequencing (NGS) for the multilocus sequence typing (MLST) study of P. jirovecii strains. Thirty-two PCP patients were included. Among the 12 solid organ transplant patients, 5 shared a major and unique genotype that was also found as a minor strain in a sixth patient. A transmission map analysis strengthened the suspicion of nosocomial acquisition of this strain for the 6 patients. NGS-MLST enables accurate determination of subpopulation, which allowed excluding other patients from the transmission network. NGS-MLST genotyping approach was essential to deciphering this outbreak. This innovative approach brings new insights for future epidemiologic studies on this uncultivable opportunistic fungus.
Charpentier, Elena; Garnaud, Cécile; Wintenberger, Claire; Bailly, Sébastien; Murat, Jean-Benjamin; Rendu, John; Pavese, Patricia; Drouet, Thibault; Augier, Caroline; Malvezzi, Paolo; Thiébaut-Bertrand, Anne; Mallaret, Marie-Reine; Epaulard, Olivier; Cornet, Muriel; Larrat, Sylvie
2017-01-01
Pneumocystis jirovecii is a major threat for immunocompromised patients, and clusters of pneumocystis pneumonia (PCP) have been increasingly described in transplant units during the past decade. Exploring an outbreak transmission network requires complementary spatiotemporal and strain-typing approaches. We analyzed a PCP outbreak and demonstrated the added value of next-generation sequencing (NGS) for the multilocus sequence typing (MLST) study of P. jirovecii strains. Thirty-two PCP patients were included. Among the 12 solid organ transplant patients, 5 shared a major and unique genotype that was also found as a minor strain in a sixth patient. A transmission map analysis strengthened the suspicion of nosocomial acquisition of this strain for the 6 patients. NGS-MLST enables accurate determination of subpopulation, which allowed excluding other patients from the transmission network. NGS-MLST genotyping approach was essential to deciphering this outbreak. This innovative approach brings new insights for future epidemiologic studies on this uncultivable opportunistic fungus. PMID:28726611
GAMES identifies and annotates mutations in next-generation sequencing projects.
Sana, Maria Elena; Iascone, Maria; Marchetti, Daniela; Palatini, Jeff; Galasso, Marco; Volinia, Stefano
2011-01-01
Next-generation sequencing (NGS) methods have the potential for changing the landscape of biomedical science, but at the same time pose several problems in analysis and interpretation. Currently, there are many commercial and public software packages that analyze NGS data. However, the limitations of these applications include output which is insufficiently annotated and of difficult functional comprehension to end users. We developed GAMES (Genomic Analysis of Mutations Extracted by Sequencing), a pipeline aiming to serve as an efficient middleman between data deluge and investigators. GAMES attains multiple levels of filtering and annotation, such as aligning the reads to a reference genome, performing quality control and mutational analysis, integrating results with genome annotations and sorting each mismatch/deletion according to a range of parameters. Variations are matched to known polymorphisms. The prediction of functional mutations is achieved by using different approaches. Overall GAMES enables an effective complexity reduction in large-scale DNA-sequencing projects. GAMES is available free of charge to academic users and may be obtained from http://aqua.unife.it/GAMES.
TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets.
Dang, Louis T; Tondl, Markus; Chiu, Man Ho H; Revote, Jerico; Paten, Benedict; Tano, Vincent; Tokolyi, Alex; Besse, Florence; Quaife-Ryan, Greg; Cumming, Helen; Drvodelic, Mark J; Eichenlaub, Michael P; Hallab, Jeannette C; Stolper, Julian S; Rossello, Fernando J; Bogoyevitch, Marie A; Jans, David A; Nim, Hieu T; Porrello, Enzo R; Hudson, James E; Ramialison, Mirana
2018-04-05
A strong focus of the post-genomic era is mining of the non-coding regulatory genome in order to unravel the function of regulatory elements that coordinate gene expression (Nat 489:57-74, 2012; Nat 507:462-70, 2014; Nat 507:455-61, 2014; Nat 518:317-30, 2015). Whole-genome approaches based on next-generation sequencing (NGS) have provided insight into the genomic location of regulatory elements throughout different cell types, organs and organisms. These technologies are now widespread and commonly used in laboratories from various fields of research. This highlights the need for fast and user-friendly software tools dedicated to extracting cis-regulatory information contained in these regulatory regions; for instance transcription factor binding site (TFBS) composition. Ideally, such tools should not require prior programming knowledge to ensure they are accessible for all users. We present TrawlerWeb, a web-based version of the Trawler_standalone tool (Nat Methods 4:563-5, 2007; Nat Protoc 5:323-34, 2010), to allow for the identification of enriched motifs in DNA sequences obtained from next-generation sequencing experiments in order to predict their TFBS composition. TrawlerWeb is designed for online queries with standard options common to web-based motif discovery tools. In addition, TrawlerWeb provides three unique new features: 1) TrawlerWeb allows the input of BED files directly generated from NGS experiments, 2) it automatically generates an input-matched biologically relevant background, and 3) it displays resulting conservation scores for each instance of the motif found in the input sequences, which assists the researcher in prioritising the motifs to validate experimentally. Finally, to date, this web-based version of Trawler_standalone remains the fastest online de novo motif discovery tool compared to other popular web-based software, while generating predictions with high accuracy. TrawlerWeb provides users with a fast, simple and easy-to-use web interface for de novo motif discovery. This will assist in rapidly analysing NGS datasets that are now being routinely generated. TrawlerWeb is freely available and accessible at: http://trawler.erc.monash.edu.au .
Chitty, Lyn S; Mason, Sarah; Barrett, Angela N; McKay, Fiona; Lench, Nicholas; Daley, Rebecca; Jenkins, Lucy A
2015-01-01
Abstract Objective Accurate prenatal diagnosis of genetic conditions can be challenging and usually requires invasive testing. Here, we demonstrate the potential of next-generation sequencing (NGS) for the analysis of cell-free DNA in maternal blood to transform prenatal diagnosis of monogenic disorders. Methods Analysis of cell-free DNA using a PCR and restriction enzyme digest (PCR–RED) was compared with a novel NGS assay in pregnancies at risk of achondroplasia and thanatophoric dysplasia. Results PCR–RED was performed in 72 cases and was correct in 88.6%, inconclusive in 7% with one false negative. NGS was performed in 47 cases and was accurate in 96.2% with no inconclusives. Both approaches were used in 27 cases, with NGS giving the correct result in the two cases inconclusive with PCR–RED. Conclusion NGS provides an accurate, flexible approach to non-invasive prenatal diagnosis of de novo and paternally inherited mutations. It is more sensitive than PCR–RED and is ideal when screening a gene with multiple potential pathogenic mutations. These findings highlight the value of NGS in the development of non-invasive prenatal diagnosis for other monogenic disorders. © 2015 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. What's already known about this topic? Non-invasive prenatal diagnosis (NIPD) using PCR-based methods has been reported for the detection or exclusion of individual paternally inherited or de novo alleles in maternal plasma. What does this study add? NIPD using next generation sequencing provides an accurate, more sensitive approach which can be used to detect multiple mutations in a single assay and so is ideal when screening a gene with multiple potential pathogenic mutations. Next generation sequencing thus provides a flexible approach to non-invasive prenatal diagnosis ideal for use in a busy service laboratory. PMID:25728633
Adaptive traffic signal control system (ACS-Lite) for Wolf Road, Albany, New York.
DOT National Transportation Integrated Search
2014-10-01
Adaptive Control Software Lite (ACS : - : Lite) is a : traffic : signal timing optimization system that : dynamically adjusts : traffic : signal timing : s : to meet current traffic demands. : The purpose of this : research project : was : to : deplo...
Analysis of Illumina Microbial Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clum, Alicia; Foster, Brian; Froula, Jeff
2010-05-28
Since the emerging of second generation sequencing technologies, the evaluation of different sequencing approaches and their assembly strategies for different types of genomes has become an important undertaken. Next generation sequencing technologies dramatically increase sequence throughput while decreasing cost, making them an attractive tool for whole genome shotgun sequencing. To compare different approaches for de-novo whole genome assembly, appropriate tools and a solid understanding of both quantity and quality of the underlying sequence data are crucial. Here, we performed an in-depth analysis of short-read Illumina sequence assembly strategies for bacterial and archaeal genomes. Different types of Illumina libraries as wellmore » as different trim parameters and assemblers were evaluated. Results of the comparative analysis and sequencing platforms will be presented. The goal of this analysis is to develop a cost-effective approach for the increased throughput of the generation of high quality microbial genomes.« less
Sutton, Lesley-Ann; Ljungström, Viktor; Mansouri, Larry; Young, Emma; Cortese, Diego; Navrkalova, Veronika; Malcikova, Jitka; Muggen, Alice F; Trbusek, Martin; Panagiotidis, Panagiotis; Davi, Frederic; Belessi, Chrysoula; Langerak, Anton W; Ghia, Paolo; Pospisilova, Sarka; Stamatopoulos, Kostas; Rosenquist, Richard
2015-03-01
Next-generation sequencing has revealed novel recurrent mutations in chronic lymphocytic leukemia, particularly in patients with aggressive disease. Here, we explored targeted re-sequencing as a novel strategy to assess the mutation status of genes with prognostic potential. To this end, we utilized HaloPlex targeted enrichment technology and designed a panel including nine genes: ATM, BIRC3, MYD88, NOTCH1, SF3B1 and TP53, which have been linked to the prognosis of chronic lymphocytic leukemia, and KLHL6, POT1 and XPO1, which are less characterized but were found to be recurrently mutated in various sequencing studies. A total of 188 chronic lymphocytic leukemia patients with poor prognostic features (unmutated IGHV, n=137; IGHV3-21 subset #2, n=51) were sequenced on the HiSeq 2000 and data were analyzed using well-established bioinformatics tools. Using a conservative cutoff of 10% for the mutant allele, we found that 114/180 (63%) patients carried at least one mutation, with mutations in ATM, BIRC3, NOTCH1, SF3B1 and TP53 accounting for 149/177 (84%) of all mutations. We selected 155 mutations for Sanger validation (variant allele frequency, 10-99%) and 93% (144/155) of mutations were confirmed; notably, all 11 discordant variants had a variant allele frequency between 11-27%, hence at the detection limit of conventional Sanger sequencing. Technical precision was assessed by repeating the entire HaloPlex procedure for 63 patients; concordance was found for 77/82 (94%) mutations. In summary, this study demonstrates that targeted next-generation sequencing is an accurate and reproducible technique potentially suitable for routine screening, eventually as a stand-alone test without the need for confirmation by Sanger sequencing. Copyright© Ferrata Storti Foundation.
Moser, Lindsey A.; Ramirez-Carvajal, Lisbeth; Puri, Vinita; Pauszek, Steven J.; Matthews, Krystal; Dilley, Kari A.; Mullan, Clancy; McGraw, Jennifer; Khayat, Michael; Beeri, Karen; Yee, Anthony; Dugan, Vivien; Heise, Mark T.; Frieman, Matthew B.; Rodriguez, Luis L.; Bernard, Kristen A.; Wentworth, David E.
2016-01-01
ABSTRACT Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories. PMID:27822536
The quest for rare variants: pooled multiplexed next generation sequencing in plants.
Marroni, Fabio; Pinosio, Sara; Morgante, Michele
2012-01-01
Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, few research groups working in plant sciences have exploited this potentiality, showing that pooled NGS provides results in excellent agreement with those obtained by individual Sanger sequencing. The aim of this review is to convey to the reader the general ideas underlying the use of pooled NGS for the identification of rare variants. To facilitate a thorough understanding of the possibilities of the method, we will explain in detail the possible experimental and analytical approaches and discuss their advantages and disadvantages. We will show that information on allele frequency obtained by pooled NGS can be used to accurately compute basic population genetics indexes such as allele frequency, nucleotide diversity, and Tajima's D. Finally, we will discuss applications and future perspectives of the multiplexed NGS approach.
Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection.
Schlaberg, Robert; Chiu, Charles Y; Miller, Steve; Procop, Gary W; Weinstock, George
2017-06-01
- Metagenomic sequencing can be used for detection of any pathogens using unbiased, shotgun next-generation sequencing (NGS), without the need for sequence-specific amplification. Proof-of-concept has been demonstrated in infectious disease outbreaks of unknown causes and in patients with suspected infections but negative results for conventional tests. Metagenomic NGS tests hold great promise to improve infectious disease diagnostics, especially in immunocompromised and critically ill patients. - To discuss challenges and provide example solutions for validating metagenomic pathogen detection tests in clinical laboratories. A summary of current regulatory requirements, largely based on prior guidance for NGS testing in constitutional genetics and oncology, is provided. - Examples from 2 separate validation studies are provided for steps from assay design, and validation of wet bench and bioinformatics protocols, to quality control and assurance. - Although laboratory and data analysis workflows are still complex, metagenomic NGS tests for infectious diseases are increasingly being validated in clinical laboratories. Many parallels exist to NGS tests in other fields. Nevertheless, specimen preparation, rapidly evolving data analysis algorithms, and incomplete reference sequence databases are idiosyncratic to the field of microbiology and often overlooked.
DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing.
Castle, John C; Biery, Matthew; Bouzek, Heather; Xie, Tao; Chen, Ronghua; Misura, Kira; Jackson, Stuart; Armour, Christopher D; Johnson, Jason M; Rohl, Carol A; Raymond, Christopher K
2010-04-16
DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.
Chen, He; Yao, Jiacheng; Fu, Yusi; Pang, Yuhong; Wang, Jianbin; Huang, Yanyi
2018-04-11
The next generation sequencing (NGS) technologies have been rapidly evolved and applied to various research fields, but they often suffer from losing long-range information due to short library size and read length. Here, we develop a simple, cost-efficient, and versatile NGS library preparation method, called tagmentation on microbeads (TOM). This method is capable of recovering long-range information through tagmentation mediated by microbead-immobilized transposomes. Using transposomes with DNA barcodes to identically label adjacent sequences during tagmentation, we can restore inter-read connection of each fragment from original DNA molecule by fragment-barcode linkage after sequencing. In our proof-of-principle experiment, more than 4.5% of the reads are linked with their adjacent reads, and the longest linkage is over 1112 bp. We demonstrate TOM with eight barcodes, but the number of barcodes can be scaled up by an ultrahigh complexity construction. We also show this method has low amplification bias and effectively fits the applications to identify copy number variations.
Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.
Guttikonda, Satish K; Marri, Pradeep; Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P
2016-01-01
Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.
Bang, Kyeongrin; Hwang, Sejung; Lee, Jiae; Cho, Saeyoull
2015-01-01
To identify immune-related genes in the larvae of white-spotted flower chafers, next-generation sequencing was conducted with an Illumina HiSeq2000, resulting in 100 million cDNA reads with sequence information from over 10 billion base pairs (bp) and >50× transcriptome coverage. A subset of 77,336 contigs was created, and ∼35,532 sequences matched entries against the NCBI nonredundant database (cutoff, e < 10(-5)). Statistical analysis was performed on the 35,532 contigs. For profiling of the immune response, samples were analyzed by aligning 42 base sequence tags to the de novo reference assembly, comparing levels in immunized larvae to control levels of expression. Of the differentially expressed genes, 3,440 transcripts were upregulated and 3,590 transcripts were downregulated. Many of these genes were confirmed as immune-related genes such as pattern recognition proteins, immune-related signal transduction proteins, antimicrobial peptides, and cellular response proteins, by comparison to published data. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
HomSI: a homozygous stretch identifier from next-generation sequencing data.
Görmez, Zeliha; Bakir-Gungor, Burcu; Sagiroglu, Mahmut Samil
2014-02-01
In consanguineous families, as a result of inheriting the same genomic segments through both parents, the individuals have stretches of their genomes that are homozygous. This situation leads to the prevalence of recessive diseases among the members of these families. Homozygosity mapping is based on this observation, and in consanguineous families, several recessive disease genes have been discovered with the help of this technique. The researchers typically use single nucleotide polymorphism arrays to determine the homozygous regions and then search for the disease gene by sequencing the genes within this candidate disease loci. Recently, the advent of next-generation sequencing enables the concurrent identification of homozygous regions and the detection of mutations relevant for diagnosis, using data from a single sequencing experiment. In this respect, we have developed a novel tool that identifies homozygous regions using deep sequence data. Using *.vcf (variant call format) files as an input file, our program identifies the majority of homozygous regions found by microarray single nucleotide polymorphism genotype data. HomSI software is freely available at www.igbam.bilgem.tubitak.gov.tr/softwares/HomSI, with an online manual.
A multiple-alignment based primer design algorithm for genetically highly variable DNA targets
2013-01-01
Background Primer design for highly variable DNA sequences is difficult, and experimental success requires attention to many interacting constraints. The advent of next-generation sequencing methods allows the investigation of rare variants otherwise hidden deep in large populations, but requires attention to population diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically considered in primer design. Results Design constraints include degenerate sites to maximize population coverage, matching of melting temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers and limitations and give examples of successful designs for the analysis of HIV-1 populations. Conclusions PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-generation sequencing, and other experimental protocols targeting highly variable DNA samples. PMID:23965160
DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing
2010-01-01
Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads. PMID:20398377
Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq).
Watters, Kyle E; Lucks, Julius B
2016-01-01
Mapping RNA structure with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry has proven to be a versatile method for characterizing RNA structure in a variety of contexts. SHAPE reagents covalently modify RNAs in a structure-dependent manner to create adducts at the 2'-OH group of the ribose backbone at nucleotides that are structurally flexible. The positions of these adducts are detected using reverse transcriptase (RT) primer extension, which stops one nucleotide before the modification, to create a pool of cDNAs whose lengths reflect the location of SHAPE modification. Quantification of the cDNA pools is used to estimate the "reactivity" of each nucleotide in an RNA molecule to the SHAPE reagent. High reactivities indicate nucleotides that are structurally flexible, while low reactivities indicate nucleotides that are inflexible. These SHAPE reactivities can then be used to infer RNA structures by restraining RNA structure prediction algorithms. Here, we provide a state-of-the-art protocol describing how to perform in vitro RNA structure probing with SHAPE chemistry using next-generation sequencing to quantify cDNA pools and estimate reactivities (SHAPE-Seq). The use of next-generation sequencing allows for higher throughput, more consistent data analysis, and multiplexing capabilities. The technique described herein, SHAPE-Seq v2.0, uses a universal reverse transcription priming site that is ligated to the RNA after SHAPE modification. The introduced priming site allows for the structural analysis of an RNA independent of its sequence.
A Multiplexed Amplicon Approach for Detecting Gene Fusions by Next-Generation Sequencing.
Beadling, Carol; Wald, Abigail I; Warrick, Andrea; Neff, Tanaya L; Zhong, Shan; Nikiforov, Yuri E; Corless, Christopher L; Nikiforova, Marina N
2016-03-01
Chromosomal rearrangements that result in oncogenic gene fusions are clinically important drivers of many cancer types. Rapid and sensitive methods are therefore needed to detect a broad range of gene fusions in clinical specimens that are often of limited quantity and quality. We describe a next-generation sequencing approach that uses a multiplex PCR-based amplicon panel to interrogate fusion transcripts that involve 19 driver genes and 94 partners implicated in solid tumors. The panel also includes control assays that evaluate the 3'/5' expression ratios of 12 oncogenic kinases, which might be used to infer gene fusion events when the partner is unknown or not included on the panel. There was good concordance between the solid tumor fusion gene panel and other methods, including fluorescence in situ hybridization, real-time PCR, Sanger sequencing, and other next-generation sequencing panels, because 40 specimens known to harbor gene fusions were correctly identified. No specific fusion reads were observed in 59 fusion-negative specimens. The 3'/5' expression ratio was informative for fusions that involved ALK, RET, and NTRK1 but not for BRAF or ROS1 fusions. However, among 37 ALK or RET fusion-negative specimens, four exhibited elevated 3'/5' expression ratios, indicating that fusions predicted solely by 3'/5' read ratios require confirmatory testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden
Lührig, Katharina; Canbäck, Björn; Paul, Catherine J.; Johansson, Tomas; Persson, Kenneth M.; Rådström, Peter
2015-01-01
Next-generation sequencing of the V1–V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82–87%), with 22–40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities. PMID:25739379
Bacterial community analysis of drinking water biofilms in southern Sweden.
Lührig, Katharina; Canbäck, Björn; Paul, Catherine J; Johansson, Tomas; Persson, Kenneth M; Rådström, Peter
2015-01-01
Next-generation sequencing of the V1-V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82-87%), with 22-40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities.
Dudley, Dawn M.; Chin, Emily N.; Bimber, Benjamin N.; Sanabani, Sabri S.; Tarosso, Leandro F.; Costa, Priscilla R.; Sauer, Mariana M.; Kallas, Esper G.; O.’Connor, David H.
2012-01-01
Background Great efforts have been made to increase accessibility of HIV antiretroviral therapy (ART) in low and middle-income countries. The threat of wide-scale emergence of drug resistance could severely hamper ART scale-up efforts. Population-based surveillance of transmitted HIV drug resistance ensures the use of appropriate first-line regimens to maximize efficacy of ART programs where drug options are limited. However, traditional HIV genotyping is extremely expensive, providing a cost barrier to wide-scale and frequent HIV drug resistance surveillance. Methods/Results We have developed a low-cost laboratory-scale next-generation sequencing-based genotyping method to monitor drug resistance. We designed primers specifically to amplify protease and reverse transcriptase from Brazilian HIV subtypes and developed a multiplexing scheme using multiplex identifier tags to minimize cost while providing more robust data than traditional genotyping techniques. Using this approach, we characterized drug resistance from plasma in 81 HIV infected individuals collected in São Paulo, Brazil. We describe the complexities of analyzing next-generation sequencing data and present a simplified open-source workflow to analyze drug resistance data. From this data, we identified drug resistance mutations in 20% of treatment naïve individuals in our cohort, which is similar to frequencies identified using traditional genotyping in Brazilian patient samples. Conclusion The developed ultra-wide sequencing approach described here allows multiplexing of at least 48 patient samples per sequencing run, 4 times more than the current genotyping method. This method is also 4-fold more sensitive (5% minimal detection frequency vs. 20%) at a cost 3–5× less than the traditional Sanger-based genotyping method. Lastly, by using a benchtop next-generation sequencer (Roche/454 GS Junior), this approach can be more easily implemented in low-resource settings. This data provides proof-of-concept that next-generation HIV drug resistance genotyping is a feasible and low-cost alternative to current genotyping methods and may be particularly beneficial for in-country surveillance of transmitted drug resistance. PMID:22574170
Mølgaard, Kasper; Harwood, Seandean L; Compte, Marta; Merino, Nekane; Bonet, Jaume; Alvarez-Cienfuegos, Ana; Mikkelsen, Kasper; Nuñez-Prado, Natalia; Alvarez-Mendez, Ana; Sanz, Laura; Blanco, Francisco J; Alvarez-Vallina, Luis
2018-06-04
The recruitment of T-cells by bispecific antibodies secreted from adoptively transferred, gene-modified autologous cells has shown satisfactory results in preclinical cancer models. Even so, the approach's translation into the clinic will require incremental improvements to its efficacy and reduction of its toxicity. Here, we characterized a tandem T-cell recruiting bispecific antibody intended to benefit gene-based immunotherapy approaches, which we call the light T-cell engager (LiTE), consisting of an EGFR-specific single-domain V HH antibody fused to a CD3-specific scFv. We generated two LiTEs with the anti-EGFR V HH and the anti-CD3 scFv arranged in both possible orders. Both constructs were well expressed in mammalian cells as highly homogenous monomers in solution with molecular weights of 43 and 41 kDa, respectively. In situ secreted LiTEs bound the cognate antigens of both parental antibodies and triggered the specific cytolysis of EGFR-expressing cancer cells without inducing T-cell activation and cytotoxicity spontaneously or against EGFR-negative cells. Light T-cell engagers are, therefore, suitable for future applications in gene-based immunotherapy approaches.
Madduri, Ravi K.; Sulakhe, Dinanath; Lacinski, Lukasz; Liu, Bo; Rodriguez, Alex; Chard, Kyle; Dave, Utpal J.; Foster, Ian T.
2014-01-01
We describe Globus Genomics, a system that we have developed for rapid analysis of large quantities of next-generation sequencing (NGS) genomic data. This system achieves a high degree of end-to-end automation that encompasses every stage of data analysis including initial data retrieval from remote sequencing centers or storage (via the Globus file transfer system); specification, configuration, and reuse of multi-step processing pipelines (via the Galaxy workflow system); creation of custom Amazon Machine Images and on-demand resource acquisition via a specialized elastic provisioner (on Amazon EC2); and efficient scheduling of these pipelines over many processors (via the HTCondor scheduler). The system allows biomedical researchers to perform rapid analysis of large NGS datasets in a fully automated manner, without software installation or a need for any local computing infrastructure. We report performance and cost results for some representative workloads. PMID:25342933
Madduri, Ravi K; Sulakhe, Dinanath; Lacinski, Lukasz; Liu, Bo; Rodriguez, Alex; Chard, Kyle; Dave, Utpal J; Foster, Ian T
2014-09-10
We describe Globus Genomics, a system that we have developed for rapid analysis of large quantities of next-generation sequencing (NGS) genomic data. This system achieves a high degree of end-to-end automation that encompasses every stage of data analysis including initial data retrieval from remote sequencing centers or storage (via the Globus file transfer system); specification, configuration, and reuse of multi-step processing pipelines (via the Galaxy workflow system); creation of custom Amazon Machine Images and on-demand resource acquisition via a specialized elastic provisioner (on Amazon EC2); and efficient scheduling of these pipelines over many processors (via the HTCondor scheduler). The system allows biomedical researchers to perform rapid analysis of large NGS datasets in a fully automated manner, without software installation or a need for any local computing infrastructure. We report performance and cost results for some representative workloads.
NGSANE: a lightweight production informatics framework for high-throughput data analysis.
Buske, Fabian A; French, Hugh J; Smith, Martin A; Clark, Susan J; Bauer, Denis C
2014-05-15
The initial steps in the analysis of next-generation sequencing data can be automated by way of software 'pipelines'. However, individual components depreciate rapidly because of the evolving technology and analysis methods, often rendering entire versions of production informatics pipelines obsolete. Constructing pipelines from Linux bash commands enables the use of hot swappable modular components as opposed to the more rigid program call wrapping by higher level languages, as implemented in comparable published pipelining systems. Here we present Next Generation Sequencing ANalysis for Enterprises (NGSANE), a Linux-based, high-performance-computing-enabled framework that minimizes overhead for set up and processing of new projects, yet maintains full flexibility of custom scripting when processing raw sequence data. Ngsane is implemented in bash and publicly available under BSD (3-Clause) licence via GitHub at https://github.com/BauerLab/ngsane. Denis.Bauer@csiro.au Supplementary data are available at Bioinformatics online.
Lee, Yi-Xuan; Chen, Chien-Wen; Lin, Yi-Hui; Tzeng, Chii-Ruey; Chen, Chi-Huang
2018-01-01
Preimplantation genetic testing has been used widely in recent years as a part of assisted reproductive technology (ART) owing to the breakthrough development of deoxyribonucleic acid (DNA) sequencing. With the advancement of technology and increased resolution of next generation sequencing (NGS), extensive comprehensive chromosome screening along with small clinically significant deletions and duplications can possibly be performed simultaneously. Here, we present a case of rare chromosomal aberrations: 46,XY,dup(15)(q11.2q13),t(16;18)(q23;p11.2), which resulted in a normally developed adult but abnormal gametes leading to recurrent pregnancy loss (RPL). To our best knowledge, this is the first report of t(16;18) translocation with such a small exchanged segment detected by NGS platform of MiSeq system in simultaneous 24-chromosome aneuploidy screening.
Nilyanimit, Pornjarim; Chansaenroj, Jira; Poomipak, Witthaya; Praianantathavorn, Kesmanee; Payungporn, Sunchai; Poovorawan, Yong
2018-03-01
Human papillomavirus (HPV) infection causes cervical cancer, thus necessitating early detection by screening. Rapid and accurate HPV genotyping is crucial both for the assessment of patients with HPV infection and for surveillance studies. Fifty-eight cervicovaginal samples were tested for HPV genotypes using four methods in parallel: nested-PCR followed by conventional sequencing, INNO-LiPA, electrochemical DNA chip, and next-generation sequencing (NGS). Seven HPV genotypes (16, 18, 31, 33, 45, 56, and 58) were identified by all four methods. Nineteen HPV genotypes were detected by NGS, but not by nested-PCR, INNO-LiPA, or electrochemical DNA chip. Although NGS is relatively expensive and complex, it may serve as a sensitive HPV genotyping method. Because of its highly sensitive detection of multiple HPV genotypes, NGS may serve as an alternative for diagnostic HPV genotyping in certain situations. © The Korean Society for Laboratory Medicine
Next generation sequencing--implications for clinical practice.
Raffan, Eleanor; Semple, Robert K
2011-01-01
Genetic testing in inherited disease has traditionally relied upon recognition of the presenting clinical syndrome and targeted analysis of genes known to be linked to that syndrome. Consequently, many patients with genetic syndromes remain without a specific diagnosis. New 'next-generation' sequencing (NGS) techniques permit simultaneous sequencing of enormous amounts of DNA. A slew of research publications have recently demonstrated the tremendous power of these technologies in increasing understanding of human genetic disease. These approaches are likely to be increasingly employed in routine diagnostic practice, but the scale of the genetic information yielded about individuals means that caution must be exercised to avoid net harm in this setting. Use of NGS in a research setting will increasingly have a major but indirect beneficial impact on clinical practice. However, important technical, ethical and social challenges need to be addressed through informed professional and public dialogue before it finds its mature niche as a direct tool in the clinical diagnostic armoury.
Zilinskas, Julius; Lančinskas, Algirdas; Guarracino, Mario Rosario
2014-01-01
In this paper we propose some mathematical models to plan a Next Generation Sequencing experiment to detect rare mutations in pools of patients. A mathematical optimization problem is formulated for optimal pooling, with respect to minimization of the experiment cost. Then, two different strategies to replicate patients in pools are proposed, which have the advantage to decrease the overall costs. Finally, a multi-objective optimization formulation is proposed, where the trade-off between the probability to detect a mutation and overall costs is taken into account. The proposed solutions are devised in pursuance of the following advantages: (i) the solution guarantees mutations are detectable in the experimental setting, and (ii) the cost of the NGS experiment and its biological validation using Sanger sequencing is minimized. Simulations show replicating pools can decrease overall experimental cost, thus making pooling an interesting option.
Screening for SNPs with Allele-Specific Methylation based on Next-Generation Sequencing Data
Hu, Bo; Xu, Yaomin
2013-01-01
Allele-specific methylation (ASM) has long been studied but mainly documented in the context of genomic imprinting and X chromosome inactivation. Taking advantage of the next-generation sequencing technology, we conduct a high-throughput sequencing experiment with four prostate cell lines to survey the whole genome and identify single nucleotide polymorphisms (SNPs) with ASM. A Bayesian approach is proposed to model the counts of short reads for each SNP conditional on its genotypes of multiple subjects, leading to a posterior probability of ASM. We flag SNPs with high posterior probabilities of ASM by accounting for multiple comparisons based on posterior false discovery rates. Applying the Bayesian approach to the in-house prostate cell line data, we identify 269 SNPs as candidates of ASM. A simulation study is carried out to demonstrate the quantitative performance of the proposed approach. PMID:23710259
Web Thermo Tables (WTT) - Lite Edition
National Institute of Standards and Technology Data Gateway
SRD 202 NIST/TRC Web Thermo Tables (WTT) - Lite Edition (Online Subscription) WTT - Lite Edition, a Web version of the TRC Thermodynamic Tables, represents a collection of critically evaluated thermodynamic property data for 150 commonly-used (primarily organic) pure compounds.
Robust Sub-nanomolar Library Preparation for High Throughput Next Generation Sequencing.
Wu, Wells W; Phue, Je-Nie; Lee, Chun-Ting; Lin, Changyi; Xu, Lai; Wang, Rong; Zhang, Yaqin; Shen, Rong-Fong
2018-05-04
Current library preparation protocols for Illumina HiSeq and MiSeq DNA sequencers require ≥2 nM initial library for subsequent loading of denatured cDNA onto flow cells. Such amounts are not always attainable from samples having a relatively low DNA or RNA input; or those for which a limited number of PCR amplification cycles is preferred (less PCR bias and/or more even coverage). A well-tested sub-nanomolar library preparation protocol for Illumina sequencers has however not been reported. The aim of this study is to provide a much needed working protocol for sub-nanomolar libraries to achieve outcomes as informative as those obtained with the higher library input (≥ 2 nM) recommended by Illumina's protocols. Extensive studies were conducted to validate a robust sub-nanomolar (initial library of 100 pM) protocol using PhiX DNA (as a control), genomic DNA (Bordetella bronchiseptica and microbial mock community B for 16S rRNA gene sequencing), messenger RNA, microRNA, and other small noncoding RNA samples. The utility of our protocol was further explored for PhiX library concentrations as low as 25 pM, which generated only slightly fewer than 50% of the reads achieved under the standard Illumina protocol starting with > 2 nM. A sub-nanomolar library preparation protocol (100 pM) could generate next generation sequencing (NGS) results as robust as the standard Illumina protocol. Following the sub-nanomolar protocol, libraries with initial concentrations as low as 25 pM could also be sequenced to yield satisfactory and reproducible sequencing results.
Biodegradation is an important mechanism determining the fate of chemicals in the aquatic environment. In this paper, experimental data, determined from electrolytic respirometry, for 27 compounds were analyzed using first order and Monod kinetics. Additional data from the lite...
Mora-Castilla, Sergio; To, Cuong; Vaezeslami, Soheila; Morey, Robert; Srinivasan, Srimeenakshi; Dumdie, Jennifer N; Cook-Andersen, Heidi; Jenkins, Joby; Laurent, Louise C
2016-08-01
As the cost of next-generation sequencing has decreased, library preparation costs have become a more significant proportion of the total cost, especially for high-throughput applications such as single-cell RNA profiling. Here, we have applied novel technologies to scale down reaction volumes for library preparation. Our system consisted of in vitro differentiated human embryonic stem cells representing two stages of pancreatic differentiation, for which we prepared multiple biological and technical replicates. We used the Fluidigm (San Francisco, CA) C1 single-cell Autoprep System for single-cell complementary DNA (cDNA) generation and an enzyme-based tagmentation system (Nextera XT; Illumina, San Diego, CA) with a nanoliter liquid handler (mosquito HTS; TTP Labtech, Royston, UK) for library preparation, reducing the reaction volume down to 2 µL and using as little as 20 pg of input cDNA. The resulting sequencing data were bioinformatically analyzed and correlated among the different library reaction volumes. Our results showed that decreasing the reaction volume did not interfere with the quality or the reproducibility of the sequencing data, and the transcriptional data from the scaled-down libraries allowed us to distinguish between single cells. Thus, we have developed a process to enable efficient and cost-effective high-throughput single-cell transcriptome sequencing. © 2016 Society for Laboratory Automation and Screening.
Molecular taxonomic techniques such as DNA barcoding offer interesting new capabilities for studying community biodiversity for applications like biological monitoring. Beyond DNA barcoding, new DNA sequencing technologies (i.e. Next-Generation Sequencing) present even greater po...
Tree crops: Advances in insects and disease management
USDA-ARS?s Scientific Manuscript database
Advances in next-generation sequencing have enabled genome sequencing to be fast and affordable. Thus today researchers and industries can address new methods in pest and pathogen management. Biological control of insect pests that occur in large areas, such as forests and farming systems of fruit t...
Genotyping General Information Genome Wide Association Custom FFPE Sample Options Methylation Linkage Enrichment Options 51 Mb 51 Mb plus 6.8 - 24Mb custom option 54 Mb Clinical Exome 71 Mb (includes UTRs) Next Generation Sequencing Platform Illumina HiSeq sequencers Options for Formalin-Fixed Paraffin-Embedded (FFPE
Evaluation of ribosomal RNA removal protocols for Salmonella RNA-Seq projects
USDA-ARS?s Scientific Manuscript database
Next generation sequencing is a powerful technology and its application to sequencing entire RNA populations of food-borne pathogens will provide valuable insights. A problem unique to prokaryotic RNA-Seq is the massive abundance of ribosomal RNA. Unlike eukaryotic messenger RNA (mRNA), bacterial ...
Population sequencing reveals breed and sub-species specific CNVs in cattle
USDA-ARS?s Scientific Manuscript database
Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect the rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an incre...
Development and utilization of 100K SNP array in Saccharum Spp.
USDA-ARS?s Scientific Manuscript database
Sugarcane genotyping or fingerprinting has long been a daunting task due to its high polyploidy level with large number of chromosomes. Single nucleotide polymorphisms (SNPs) are very abundant DNA sequence variations in the genome. With the advance of next generation sequencing (NGS) technologies, m...
RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome
USDA-ARS?s Scientific Manuscript database
A first analysis of the Glycine max (L.) Merr. (soybean) transcriptome using next generation sequencing technology and RNA-Sequencing (RNA-Seq) is presented. This analysis will provide an important resource for understanding transcription and gene co-regulatory networks in soybean, the most economic...
Advances in high-throughput next-generation sequencing (NGS) technology for direct sequencing of environmental DNA (i.e. shotgun metagenomics) is transforming the field of microbiology. NGS technologies are now regularly being applied in comparative metagenomic studies, which pr...
Next-generation sequencing library construction on a surface.
Feng, Kuan; Costa, Justin; Edwards, Jeremy S
2018-05-30
Next-generation sequencing (NGS) has revolutionized almost all fields of biology, agriculture and medicine, and is widely utilized to analyse genetic variation. Over the past decade, the NGS pipeline has been steadily improved, and the entire process is currently relatively straightforward. However, NGS instrumentation still requires upfront library preparation, which can be a laborious process, requiring significant hands-on time. Herein, we present a simple but robust approach to streamline library preparation by utilizing surface bound transposases to construct DNA libraries directly on a flowcell surface. The surface bound transposases directly fragment genomic DNA while simultaneously attaching the library molecules to the flowcell. We sequenced and analysed a Drosophila genome library generated by this surface tagmentation approach, and we showed that our surface bound library quality was comparable to the quality of the library from a commercial kit. In addition to the time and cost savings, our approach does not require PCR amplification of the library, which eliminates potential problems associated with PCR duplicates. We described the first study to construct libraries directly on a flowcell. We believe our technique could be incorporated into the existing Illumina sequencing pipeline to simplify the workflow, reduce costs, and improve data quality.
Nakagome, Mariko; Solovieva, Elena; Takahashi, Akira; Yasue, Hiroshi; Hirochika, Hirohiko; Miyao, Akio
2014-03-14
Transposition event detection of transposable element (TE) in the genome using short reads from the next-generation sequence (NGS) was difficult, because the nucleotide sequence of TE itself is repetitive, making it difficult to identify locations of its insertions by alignment programs for NGS. We have developed a program with a new algorithm to detect the transpositions from NGS data. In the process of tool development, we used next-generation sequence (NGS) data of derivative lines (ttm2 and ttm5) of japonica rice cv. Nipponbare, regenerated through cell culture. The new program, called a transposon insertion finder (TIF), was applied to detect the de novo transpositions of Tos17 in the regenerated lines. TIF searched 300 million reads of a line within 20 min, identifying 4 and 12 de novo transposition in ttm2 and ttm5 lines, respectively. All of the transpositions were confirmed by PCR/electrophoresis and sequencing. Using the program, we also detected new transposon insertions of P-element from NGS data of Drosophila melanogaster. TIF operates to find the transposition of any elements provided that target site duplications (TSDs) are generated by their transpositions.
Genetic testing for inherited ocular disease: delivering on the promise at last?
Gillespie, Rachel L; Hall, Georgina; Black, Graeme C
2014-01-01
Genetic testing is of increasing clinical utility for diagnosing inherited eye disease. Clarifying a clinical diagnosis is important for accurate estimation of prognosis, facilitating genetic counselling and management of families, and in the future will direct gene-specific therapeutic strategies. Often, precise diagnosis of genetic ophthalmic conditions is complicated by genetic heterogeneity, a difficulty that the so-called 'next-generation sequencing' technologies promise to overcome. Despite considerable counselling and ethical complexities, next-generation sequencing offers to revolutionize clinical practice. This will necessitate considerable adjustment to standard practice but has the power to deliver a personalized approach to genomic medicine for many more patients and enhance the potential for preventing vision loss. © 2013 Royal Australian and New Zealand College of Ophthalmologists.
Schoolmeester, J Kenneth; Stamatakos, Michael D; Moyer, Ann M; Park, Kay J; Fairbairn, Melissa; Fader, Amanda N
2016-07-01
Uterine tumors with adipocytic differentiation are very uncommon. Mature adipocytes are sometimes seen as an element of smooth muscle neoplasms, more often as lipoleiomyoma, but also in the rare lipoleiomyosarcoma. Exceptional cases have been reported of various subtypes of liposarcoma associated with uterine smooth muscle tumors with or without adipocytic differentiation. We present a case of pleomorphic liposarcoma arising in a lipoleiomyosarcoma of the uterus. Genomic profiling was performed using a validated next generation sequencing panel covering 410 common cancer genes. Alterations were identified in TP53, PTEN, RB1, FAT1 and TERT. The patient's presentation and clinical course as well as the tumor's morphologic, immunohistochemical and molecular genetic findings are reviewed.
Comparing microarrays and next-generation sequencing technologies for microbial ecology research.
Roh, Seong Woon; Abell, Guy C J; Kim, Kyoung-Ho; Nam, Young-Do; Bae, Jin-Woo
2010-06-01
Recent advances in molecular biology have resulted in the application of DNA microarrays and next-generation sequencing (NGS) technologies to the field of microbial ecology. This review aims to examine the strengths and weaknesses of each of the methodologies, including depth and ease of analysis, throughput and cost-effectiveness. It also intends to highlight the optimal application of each of the individual technologies toward the study of a particular environment and identify potential synergies between the two main technologies, whereby both sample number and coverage can be maximized. We suggest that the efficient use of microarray and NGS technologies will allow researchers to advance the field of microbial ecology, and importantly, improve our understanding of the role of microorganisms in their various environments.
Lee, Sejoon; Lee, Soohyun; Ouellette, Scott; Park, Woong-Yang; Lee, Eunjung A; Park, Peter J
2017-06-20
In many next-generation sequencing (NGS) studies, multiple samples or data types are profiled for each individual. An important quality control (QC) step in these studies is to ensure that datasets from the same subject are properly paired. Given the heterogeneity of data types, file types and sequencing depths in a multi-dimensional study, a robust program that provides a standardized metric for genotype comparisons would be useful. Here, we describe NGSCheckMate, a user-friendly software package for verifying sample identities from FASTQ, BAM or VCF files. This tool uses a model-based method to compare allele read fractions at known single-nucleotide polymorphisms, considering depth-dependent behavior of similarity metrics for identical and unrelated samples. Our evaluation shows that NGSCheckMate is effective for a variety of data types, including exome sequencing, whole-genome sequencing, RNA-seq, ChIP-seq, targeted sequencing and single-cell whole-genome sequencing, with a minimal requirement for sequencing depth (>0.5X). An alignment-free module can be run directly on FASTQ files for a quick initial check. We recommend using this software as a QC step in NGS studies. https://github.com/parklab/NGSCheckMate. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NG6: Integrated next generation sequencing storage and processing environment.
Mariette, Jérôme; Escudié, Frédéric; Allias, Nicolas; Salin, Gérald; Noirot, Céline; Thomas, Sylvain; Klopp, Christophe
2012-09-09
Next generation sequencing platforms are now well implanted in sequencing centres and some laboratories. Upcoming smaller scale machines such as the 454 junior from Roche or the MiSeq from Illumina will increase the number of laboratories hosting a sequencer. In such a context, it is important to provide these teams with an easily manageable environment to store and process the produced reads. We describe a user-friendly information system able to manage large sets of sequencing data. It includes, on one hand, a workflow environment already containing pipelines adapted to different input formats (sff, fasta, fastq and qseq), different sequencers (Roche 454, Illumina HiSeq) and various analyses (quality control, assembly, alignment, diversity studies,…) and, on the other hand, a secured web site giving access to the results. The connected user will be able to download raw and processed data and browse through the analysis result statistics. The provided workflows can easily be modified or extended and new ones can be added. Ergatis is used as a workflow building, running and monitoring system. The analyses can be run locally or in a cluster environment using Sun Grid Engine. NG6 is a complete information system designed to answer the needs of a sequencing platform. It provides a user-friendly interface to process, store and download high-throughput sequencing data.
Weber, Stefanie; Büscher, Anja K; Hagmann, Henning; Liebau, Max C; Heberle, Christian; Ludwig, Michael; Rath, Sabine; Alberer, Martin; Beissert, Antje; Zenker, Martin; Hoyer, Peter F; Konrad, Martin; Klein, Hanns-Georg; Hoefele, Julia
2016-01-01
Steroid-resistant nephrotic syndrome (SRNS) is a severe cause of progressive renal disease. Genetic forms of SRNS can present with autosomal recessive or autosomal dominant inheritance. Recent studies have identified mutations in multiple podocyte genes responsible for SRNS. Improved sequencing methods (next-generation sequencing, NGS) now promise rapid mutational testing of SRNS genes. In the present study, a simultaneous screening of ten SRNS genes in 37 SRNS patients was performed by NGS. In 38 % of the patients, causative mutations in one SRNS gene were found. In 22 % of the patients, in addition to these mutations, a secondary variant in a different gene was identified. This high incidence of accumulating sequence variants was unexpected but, although they might have modifier effects, the pathogenic potential of these additional sequence variants seems unclear so far. The example of molecular diagnostics by NGS in SRNS patients shows that these new sequencing technologies might provide further insight into molecular pathogenicity in genetic disorders but will also generate results, which will be difficult to interpret and complicate genetic counseling. Although NGS promises more frequent identification of disease-causing mutations, the identification of causative mutations, the interpretation of incidental findings and possible pitfalls might pose problems, which hopefully will decrease by further experience and elucidation of molecular interactions.
Application of a hybrid generation/utility assessment heuristic to a class of scheduling problems
NASA Technical Reports Server (NTRS)
Heyward, Ann O.
1989-01-01
A two-stage heuristic solution approach for a class of multiobjective, n-job, 1-machine scheduling problems is described. Minimization of job-to-job interference for n jobs is sought. The first stage generates alternative schedule sequences by interchanging pairs of schedule elements. The set of alternative sequences can represent nodes of a decision tree; each node is reached via decision to interchange job elements. The second stage selects the parent node for the next generation of alternative sequences through automated paired comparison of objective performance for all current nodes. An application of the heuristic approach to communications satellite systems planning is presented.
Bruce, A. Gregory; Ryan, Jonathan T.; Thomas, Mathew J.; Peng, Xinxia; Grundhoff, Adam; Tsai, Che-Chung
2013-01-01
The complete sequence of retroperitoneal fibromatosis-associated herpesvirus Macaca nemestrina (RFHVMn), the pig-tailed macaque homolog of Kaposi's sarcoma-associated herpesvirus (KSHV), was determined by next-generation sequence analysis of a Kaposi's sarcoma (KS)-like macaque tumor. Colinearity of genes was observed with the KSHV genome, and the core herpesvirus genes had strong sequence homology to the corresponding KSHV genes. RFHVMn lacked homologs of open reading frame 11 (ORF11) and KSHV ORFs K5 and K6, which appear to have been generated by duplication of ORFs K3 and K4 after the divergence of KSHV and RFHV. RFHVMn contained positional homologs of all other unique KSHV genes, although some showed limited sequence similarity. RFHVMn contained a number of candidate microRNA genes. Although there was little sequence similarity with KSHV microRNAs, one candidate contained the same seed sequence as the positional homolog, kshv-miR-K12-10a, suggesting functional overlap. RNA transcript splicing was highly conserved between RFHVMn and KSHV, and strong sequence conservation was noted in specific promoters and putative origins of replication, predicting important functional similarities. Sequence comparisons indicated that RFHVMn and KSHV developed in long-term synchrony with the evolution of their hosts, and both viruses phylogenetically group within the RV1 lineage of Old World primate rhadinoviruses. RFHVMn is the closest homolog of KSHV to be completely sequenced and the first sequenced RV1 rhadinovirus homolog of KSHV from a nonhuman Old World primate. The strong genetic and sequence similarity between RFHVMn and KSHV, coupled with similarities in biology and pathology, demonstrate that RFHVMn infection in macaques offers an important and relevant model for the study of KSHV in humans. PMID:24109218
Genome Sequencing and Assembly by Long Reads in Plants
Li, Changsheng; Lin, Feng; An, Dong; Huang, Ruidong
2017-01-01
Plant genomes generated by Sanger and Next Generation Sequencing (NGS) have provided insight into species diversity and evolution. However, Sanger sequencing is limited in its applications due to high cost, labor intensity, and low throughput, while NGS reads are too short to resolve abundant repeats and polyploidy, leading to incomplete or ambiguous assemblies. The advent and improvement of long-read sequencing by Third Generation Sequencing (TGS) methods such as PacBio and Nanopore have shown promise in producing high-quality assemblies for complex genomes. Here, we review the development of sequencing, introducing the application as well as considerations of experimental design in TGS of plant genomes. We also introduce recent revolutionary scaffolding technologies including BioNano, Hi-C, and 10× Genomics. We expect that the informative guidance for genome sequencing and assembly by long reads will benefit the initiation of scientists’ projects. PMID:29283420
USDA-ARS?s Scientific Manuscript database
Ongoing developments and cost decreases in next-generation sequencing (NGS) technologies have led to an increase in their application, which has greatly enhanced the fields of genetics and genomics. Mapping sequence reads onto a reference genome is a fundamental step in the analysis of NGS data. Eff...
Use of whole genome sequencing in surveillance of drug resistant tuberculosis.
McNerney, Ruth; Zignol, Matteo; Clark, Taane G
2018-05-01
The threat of resistance to anti-tuberculosis drugs is of global concern. Current efforts to monitor resistance rely on phenotypic testing where cultured bacteria are exposed to critical concentrations of the drugs. Capacity for such testing is low in TB endemic countries. Drug resistance is caused by mutations in the Mycobacterium tuberculosis genome and whole genome sequencing to detect these mutations offers an alternative means of assessing resistance. Areas covered: The challenges of assessing TB drug resistance are discussed. Progress in elucidating the M. tuberculosis resistome and evidence of the accuracy of next generation sequencing for detecting resistance is reviewed. Expert Commentary: There are considerable advantages to using next generation sequencing for TB drug resistance surveillance. Accuracy is high for detecting resistance to the major first-line drugs but is currently lower for the second-line drugs due to our incomplete knowledge regarding resistance causing mutations. With the advances in sequencing technology and the opportunity to replace phenotypic drug susceptibility testing with safer and more cost effective methods it would appear that the question is when to implement. Current bottlenecks are sample extraction to allow whole genome sequencing directly from sputum and the lack of bioinformatics expertise in some TB endemic countries.
MendeLIMS: a web-based laboratory information management system for clinical genome sequencing.
Grimes, Susan M; Ji, Hanlee P
2014-08-27
Large clinical genomics studies using next generation DNA sequencing require the ability to select and track samples from a large population of patients through many experimental steps. With the number of clinical genome sequencing studies increasing, it is critical to maintain adequate laboratory information management systems to manage the thousands of patient samples that are subject to this type of genetic analysis. To meet the needs of clinical population studies using genome sequencing, we developed a web-based laboratory information management system (LIMS) with a flexible configuration that is adaptable to continuously evolving experimental protocols of next generation DNA sequencing technologies. Our system is referred to as MendeLIMS, is easily implemented with open source tools and is also highly configurable and extensible. MendeLIMS has been invaluable in the management of our clinical genome sequencing studies. We maintain a publicly available demonstration version of the application for evaluation purposes at http://mendelims.stanford.edu. MendeLIMS is programmed in Ruby on Rails (RoR) and accesses data stored in SQL-compliant relational databases. Software is freely available for non-commercial use at http://dna-discovery.stanford.edu/software/mendelims/.
DeBoever, Christopher; Reid, Erin G.; Smith, Erin N.; Wang, Xiaoyun; Dumaop, Wilmar; Harismendy, Olivier; Carson, Dennis; Richman, Douglas; Masliah, Eliezer; Frazer, Kelly A.
2013-01-01
Primary central nervous system lymphomas (PCNSL) have a dramatically increased prevalence among persons living with AIDS and are known to be associated with human Epstein Barr virus (EBV) infection. Previous work suggests that in some cases, co-infection with other viruses may be important for PCNSL pathogenesis. Viral transcription in tumor samples can be measured using next generation transcriptome sequencing. We demonstrate the ability of transcriptome sequencing to identify viruses, characterize viral expression, and identify viral variants by sequencing four archived AIDS-related PCNSL tissue samples and analyzing raw sequencing reads. EBV was detected in all four PCNSL samples and cytomegalovirus (CMV), JC polyomavirus (JCV), and HIV were also discovered, consistent with clinical diagnoses. CMV was found to express three long non-coding RNAs recently reported as expressed during active infection. Single nucleotide variants were observed in each of the viruses observed and three indels were found in CMV. No viruses were found in several control tumor types including 32 diffuse large B-cell lymphoma samples. This study demonstrates the ability of next generation transcriptome sequencing to accurately identify viruses, including DNA viruses, in solid human cancer tissue samples. PMID:24023918
VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research
Lai, Zhongwu; Markovets, Aleksandra; Ahdesmaki, Miika; Chapman, Brad; Hofmann, Oliver; McEwen, Robert; Johnson, Justin; Dougherty, Brian; Barrett, J. Carl; Dry, Jonathan R.
2016-01-01
Abstract Accurate variant calling in next generation sequencing (NGS) is critical to understand cancer genomes better. Here we present VarDict, a novel and versatile variant caller for both DNA- and RNA-sequencing data. VarDict simultaneously calls SNV, MNV, InDels, complex and structural variants, expanding the detected genetic driver landscape of tumors. It performs local realignments on the fly for more accurate allele frequency estimation. VarDict performance scales linearly to sequencing depth, enabling ultra-deep sequencing used to explore tumor evolution or detect tumor DNA circulating in blood. In addition, VarDict performs amplicon aware variant calling for polymerase chain reaction (PCR)-based targeted sequencing often used in diagnostic settings, and is able to detect PCR artifacts. Finally, VarDict also detects differences in somatic and loss of heterozygosity variants between paired samples. VarDict reprocessing of The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma dataset called known driver mutations in KRAS, EGFR, BRAF, PIK3CA and MET in 16% more patients than previously published variant calls. We believe VarDict will greatly facilitate application of NGS in clinical cancer research. PMID:27060149
Paging through history: parchment as a reservoir of ancient DNA for next generation sequencing
Teasdale, M. D.; van Doorn, N. L.; Fiddyment, S.; Webb, C. C.; O'Connor, T.; Hofreiter, M.; Collins, M. J.; Bradley, D. G.
2015-01-01
Parchment represents an invaluable cultural reservoir. Retrieving an additional layer of information from these abundant, dated livestock-skins via the use of ancient DNA (aDNA) sequencing has been mooted by a number of researchers. However, prior PCR-based work has indicated that this may be challenged by cross-individual and cross-species contamination, perhaps from the bulk parchment preparation process. Here we apply next generation sequencing to two parchments of seventeenth and eighteenth century northern English provenance. Following alignment to the published sheep, goat, cow and human genomes, it is clear that the only genome displaying substantial unique homology is sheep and this species identification is confirmed by collagen peptide mass spectrometry. Only 4% of sequence reads align preferentially to a different species indicating low contamination across species. Moreover, mitochondrial DNA sequences suggest an upper bound of contamination at 5%. Over 45% of reads aligned to the sheep genome, and even this limited sequencing exercise yield 9 and 7% of each sampled sheep genome post filtering, allowing the mapping of genetic affinity to modern British sheep breeds. We conclude that parchment represents an excellent substrate for genomic analyses of historical livestock. PMID:25487331
Next-generation sequencing: advances and applications in cancer diagnosis
Serratì, Simona; De Summa, Simona; Pilato, Brunella; Petriella, Daniela; Lacalamita, Rosanna; Tommasi, Stefania; Pinto, Rosamaria
2016-01-01
Technological advances have led to the introduction of next-generation sequencing (NGS) platforms in cancer investigation. NGS allows massive parallel sequencing that affords maximal tumor genomic assessment. NGS approaches are different, and concern DNA and RNA analysis. DNA sequencing includes whole-genome, whole-exome, and targeted sequencing, which focuses on a selection of genes of interest for a specific disease. RNA sequencing facilitates the detection of alternative gene-spliced transcripts, posttranscriptional modifications, gene fusion, mutations/single-nucleotide polymorphisms, small and long noncoding RNAs, and changes in gene expression. Most applications are in the cancer research field, but lately NGS technology has been revolutionizing cancer molecular diagnostics, due to the many advantages it offers compared to traditional methods. There is greater knowledge on solid cancer diagnostics, and recent interest has been shown also in the field of hematologic cancer. In this review, we report the latest data on NGS diagnostic/predictive clinical applications in solid and hematologic cancers. Moreover, since the amount of NGS data produced is very large and their interpretation is very complex, we briefly discuss two bioinformatic aspects, variant-calling accuracy and copy-number variation detection, which are gaining a lot of importance in cancer-diagnostic assessment. PMID:27980425
Fonseca, Dora Janeth; Patiño, Liliana Catherine; Suárez, Yohjana Carolina; de Jesús Rodríguez, Asid; Mateus, Heidi Eliana; Jiménez, Karen Marcela; Ortega-Recalde, Oscar; Díaz-Yamal, Ivonne; Laissue, Paul
2015-07-01
To identify new molecular actors involved in nonsyndromic premature ovarian failure (POF) etiology. This is a retrospective case-control cohort study. University research group and IVF medical center. Twelve women affected by nonsyndromic POF. The control group included 176 women whose menopause had occurred after age 50 and had no antecedents regarding gynecological disease. A further 345 women from the same ethnic origin (general population group) were also recruited to assess allele frequency for potentially deleterious sequence variants. Next generation sequencing (NGS), Sanger sequencing, and bioinformatics analysis. The complete coding regions of 70 candidate genes were massively sequenced, via NGS, in POF patients. Bioinformatics and genetics were used to confirm NGS results and to identify potential sequence variants related to the disease pathogenesis. We have identified mutations in two novel genes, ADAMTS19 and BMPR2, that are potentially related to POF origin. LHCGR mutations, which might have contributed to the phenotype, were also detected. We thus recommend NGS as a powerful tool for identifying new molecular actors in POF and for future diagnostic/prognostic purposes. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Aslam, Luqman; Beal, Kathryn; Ann Blomberg, Le; Bouffard, Pascal; Burt, David W.; Crasta, Oswald; Crooijmans, Richard P. M. A.; Cooper, Kristal; Coulombe, Roger A.; De, Supriyo; Delany, Mary E.; Dodgson, Jerry B.; Dong, Jennifer J.; Evans, Clive; Frederickson, Karin M.; Flicek, Paul; Florea, Liliana; Folkerts, Otto; Groenen, Martien A. M.; Harkins, Tim T.; Herrero, Javier; Hoffmann, Steve; Megens, Hendrik-Jan; Jiang, Andrew; de Jong, Pieter; Kaiser, Pete; Kim, Heebal; Kim, Kyu-Won; Kim, Sungwon; Langenberger, David; Lee, Mi-Kyung; Lee, Taeheon; Mane, Shrinivasrao; Marcais, Guillaume; Marz, Manja; McElroy, Audrey P.; Modise, Thero; Nefedov, Mikhail; Notredame, Cédric; Paton, Ian R.; Payne, William S.; Pertea, Geo; Prickett, Dennis; Puiu, Daniela; Qioa, Dan; Raineri, Emanuele; Ruffier, Magali; Salzberg, Steven L.; Schatz, Michael C.; Scheuring, Chantel; Schmidt, Carl J.; Schroeder, Steven; Searle, Stephen M. J.; Smith, Edward J.; Smith, Jacqueline; Sonstegard, Tad S.; Stadler, Peter F.; Tafer, Hakim; Tu, Zhijian (Jake); Van Tassell, Curtis P.; Vilella, Albert J.; Williams, Kelly P.; Yorke, James A.; Zhang, Liqing; Zhang, Hong-Bin; Zhang, Xiaojun; Zhang, Yang; Reed, Kent M.
2010-01-01
A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo). Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.1 Gb) includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest. PMID:20838655
Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products
Gomez-Escribano, Juan Pablo; Alt, Silke; Bibb, Mervyn J.
2016-01-01
Like many fields of the biosciences, actinomycete natural products research has been revolutionised by next-generation DNA sequencing (NGS). Hundreds of new genome sequences from actinobacteria are made public every year, many of them as a result of projects aimed at identifying new natural products and their biosynthetic pathways through genome mining. Advances in these technologies in the last five years have meant not only a reduction in the cost of whole genome sequencing, but also a substantial increase in the quality of the data, having moved from obtaining a draft genome sequence comprised of several hundred short contigs, sometimes of doubtful reliability, to the possibility of obtaining an almost complete and accurate chromosome sequence in a single contig, allowing a detailed study of gene clusters and the design of strategies for refactoring and full gene cluster synthesis. The impact that these technologies are having in the discovery and study of natural products from actinobacteria, including those from the marine environment, is only starting to be realised. In this review we provide a historical perspective of the field, analyse the strengths and limitations of the most relevant technologies, and share the insights acquired during our genome mining projects. PMID:27089350
Validation of a literature-based adherence score to Mediterranean diet: the MEDI-LITE score.
Sofi, Francesco; Dinu, Monica; Pagliai, Giuditta; Marcucci, Rossella; Casini, Alessandro
2017-09-01
Numerous studies have demonstrated a relationship between adherence to Mediterranean diet and prevention of chronic degenerative diseases. The aim of this study was to validate a novel instrument to measure adherence to Mediterranean diet based on the literature (the MEDI-LITE score). Two-hundred-and-four clinically healthy subjects completed both the MEDI-LITE score and the validated MedDietScore (MDS). Significant positive correlation between the MEDI-LITE and the MDS scores was found in the study population (R = .70; p < .0001). Furthermore, statistically significant positive correlations were found for all the nine different food groups. According to the receiver operating characteristic (ROC) curve analysis, MEDI-LITE evidenced a significant discriminative capacity between adherents and non-adherents to the Mediterranean diet pattern (optimal cut-off point = 8.50; sensitivity = 96%; specificity = 38%). In conclusion, our findings show that the MEDI-LITE score well correlate with MDS in both global score and in most of the items related to the specific food categories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Karen
Karen Davenport of Los Alamos National Laboratory discusses a high-throughput next generation genome finishing pipeline on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Schramm, Chaim A.; Sheng, Zizhang; Zhang, Zhenhai; Mascola, John R.; Kwong, Peter D.; Shapiro, Lawrence
2016-01-01
The rapid advance of massively parallel or next-generation sequencing technologies has made possible the characterization of B cell receptor repertoires in ever greater detail, and these developments have triggered a proliferation of software tools for processing and annotating these data. Of especial interest, however, is the capability to track the development of specific antibody lineages across time, which remains beyond the scope of most current programs. We have previously reported on the use of techniques such as inter- and intradonor analysis and CDR3 tracing to identify transcripts related to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of Antibody Repertoires (SONAR), capable of automating both general repertoire analysis and specialized techniques for investigating specific lineages. SONAR annotates next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks lineage development across multiple time points. SONAR also generates figures, such as identity–divergence plots and longitudinal phylogenetic “birthday” trees, and provides interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded as a ready-to-run Docker image or manually installed on a local machine. In the latter case, it can also be configured to take advantage of a high-performance computing cluster for the most computationally intensive steps, if available. In summary, this software provides a useful new tool for the processing of large next-generation sequencing datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be found at https://github.com/scharch/SONAR, and the Docker image can be obtained from https://hub.docker.com/r/scharch/sonar/. PMID:27708645
A generic assay for whole-genome amplification and deep sequencing of enterovirus A71
Tan, Le Van; Tuyen, Nguyen Thi Kim; Thanh, Tran Tan; Ngan, Tran Thuy; Van, Hoang Minh Tu; Sabanathan, Saraswathy; Van, Tran Thi My; Thanh, Le Thi My; Nguyet, Lam Anh; Geoghegan, Jemma L.; Ong, Kien Chai; Perera, David; Hang, Vu Thi Ty; Ny, Nguyen Thi Han; Anh, Nguyen To; Ha, Do Quang; Qui, Phan Tu; Viet, Do Chau; Tuan, Ha Manh; Wong, Kum Thong; Holmes, Edward C.; Chau, Nguyen Van Vinh; Thwaites, Guy; van Doorn, H. Rogier
2015-01-01
Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples. PMID:25704598
Complete sequence and diversity of a maize-associated Polerovirus in East Africa
USDA-ARS?s Scientific Manuscript database
Since 2011-2012, Maize lethal necrosis (MLN) has emerged in East Africa, causing massive yield loss and propelling research to identify viruses and virus populations present in maize. As expected, next generation sequencing (NGS) has revealed diverse and abundant viruses from the family Potyviridae,...
USDA-ARS?s Scientific Manuscript database
Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an increased...
USDA-ARS?s Scientific Manuscript database
Next generation fungal amplicon sequencing is being used with increasing frequency to study fungal diversity in various ecosystems; however, the influence of sample preparation on the characterization of fungal community is poorly understood. We investigated the effects of four procedural modificati...
Ultra high-throughput nucleic acid sequencing as a tool for virus discovery in the turkey gut.
USDA-ARS?s Scientific Manuscript database
Recently, the use of the next generation of nucleic acid sequencing technology (i.e., 454 pyrosequencing, as developed by Roche/454 Life Sciences) has allowed an in-depth look at the uncultivated microorganisms present in complex environmental samples, including samples with agricultural importance....
Genetic characterization of the soybean Nested Association Mapping (NAM) population
USDA-ARS?s Scientific Manuscript database
A population of nested association mapping (NAM) families can be a valuable resource to a research community. A set of NAM families were developed by crossing 40 diverse soybean genotypes to the common hub cultivar IA 3023. The 41 parents were sequenced with next generation sequencing for single nuc...
Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes
USDA-ARS?s Scientific Manuscript database
In this Genomics Era, vast amounts of next generation sequencing data have become publicly-available for multiple genomes across hundreds of species. Analysis of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset...
California mild CTV strains that break resistance in Trifoliate Orange
USDA-ARS?s Scientific Manuscript database
This is the final report of a project to characterize California isolates of Citrus tristeza virus (CTV) that replicate in Poncirus trifoliata (trifoliate orange). Next Generation Sequencing (NGS) of viral small interfering RNAs (siRNAs) and assembly of full-length sequences of mild California CTV i...
NASA Astrophysics Data System (ADS)
Westbrook, B.; Cukierman, A.; Lee, A.; Suzuki, A.; Raum, C.; Holzapfel, W.
2016-07-01
We present the development of the next generation of multi-chroic sinuous antenna-coupled transition edge sensor (TES) bolometers optimized for precision measurements of polarization of the cosmic microwave background (CMB) and cosmic foreground. These devices employ a polarization sensitive broadband self-complementary sinuous antenna to feed on-chip band defining filters before delivering the power to load resistors coupled to a TES on a released bolometer island. This technology was originally developed by UC Berkeley and will be deployed by POLARBEAR-2 and SPT-3G in the next year and half. In addition, it is a candidate detector for the LiteBIRD mission which will make all sky CMB and cosmic foreground polarization observations from a satellite platform in the early 2020's. This works focuses on expanding both the bandwidth and band count per pixel of this technology in order to meet the needs of future CMB missions. This work demonstrates that these devices are well suited for observations between 20 and 380 GHz. This proceeding describes the design, fabrication, and the characterization of three new pixel types: a low-frequency triplexing pixel (LFTP) with bands centered on 40, 60, and 90 GHz, a high-frequency triplexing pixel (HFTP) with bands centered on 220, 280, and 350 GHz, and a mid-frequency tetraplexing pixel with bands (MFTP) centered on 90, 150, 220, and 280 GHz. The average fractional bandwidth of these pixels designs was 36.7, 34.5, and 31.4 % respectively. In addition we found that the polarization modulation efficiency of each band was between 1 and 3 % which is consistent with the polarization efficiency of the wire grid used to take the measurement. Finally, we find that the beams have {˜ }1 % ellipticity for each pixel type. The thermal properties of the bolometers where tuned for characterization in our lab so we do not report on G and noise values as they would be unsuitable for modern CMB experiments.
Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project
Gilbert, Jack A.; Meyer, Folker; Antonopoulos, Dion; Balaji, Pavan; Brown, C. Titus; Brown, Christopher T.; Desai, Narayan; Eisen, Jonathan A; Evers, Dirk; Field, Dawn; Feng, Wu; Huson, Daniel; Jansson, Janet; Knight, Rob; Knight, James; Kolker, Eugene; Konstantindis, Kostas; Kostka, Joel; Kyrpides, Nikos; Mackelprang, Rachel; McHardy, Alice; Quince, Christopher; Raes, Jeroen; Sczyrba, Alexander; Shade, Ashley; Stevens, Rick
2010-01-01
Between July 18th and 24th 2010, 26 leading microbial ecology, computation, bioinformatics and statistics researchers came together in Snowbird, Utah (USA) to discuss the challenge of how to best characterize the microbial world using next-generation sequencing technologies. The meeting was entitled “Terabase Metagenomics” and was sponsored by the Institute for Computing in Science (ICiS) summer 2010 workshop program. The aim of the workshop was to explore the fundamental questions relating to microbial ecology that could be addressed using advances in sequencing potential. Technological advances in next-generation sequencing platforms such as the Illumina HiSeq 2000 can generate in excess of 250 billion base pairs of genetic information in 8 days. Thus, the generation of a trillion base pairs of genetic information is becoming a routine matter. The main outcome from this meeting was the birth of a concept and practical approach to exploring microbial life on earth, the Earth Microbiome Project (EMP). Here we briefly describe the highlights of this meeting and provide an overview of the EMP concept and how it can be applied to exploration of the microbiome of each ecosystem on this planet. PMID:21304727
Hajibabaei, Mehrdad; Shokralla, Shadi; Zhou, Xin; Singer, Gregory A. C.; Baird, Donald J.
2011-01-01
Timely and accurate biodiversity analysis poses an ongoing challenge for the success of biomonitoring programs. Morphology-based identification of bioindicator taxa is time consuming, and rarely supports species-level resolution especially for immature life stages. Much work has been done in the past decade to develop alternative approaches for biodiversity analysis using DNA sequence-based approaches such as molecular phylogenetics and DNA barcoding. On-going assembly of DNA barcode reference libraries will provide the basis for a DNA-based identification system. The use of recently introduced next-generation sequencing (NGS) approaches in biodiversity science has the potential to further extend the application of DNA information for routine biomonitoring applications to an unprecedented scale. Here we demonstrate the feasibility of using 454 massively parallel pyrosequencing for species-level analysis of freshwater benthic macroinvertebrate taxa commonly used for biomonitoring. We designed our experiments in order to directly compare morphology-based, Sanger sequencing DNA barcoding, and next-generation environmental barcoding approaches. Our results show the ability of 454 pyrosequencing of mini-barcodes to accurately identify all species with more than 1% abundance in the pooled mixture. Although the approach failed to identify 6 rare species in the mixture, the presence of sequences from 9 species that were not represented by individuals in the mixture provides evidence that DNA based analysis may yet provide a valuable approach in finding rare species in bulk environmental samples. We further demonstrate the application of the environmental barcoding approach by comparing benthic macroinvertebrates from an urban region to those obtained from a conservation area. Although considerable effort will be required to robustly optimize NGS tools to identify species from bulk environmental samples, our results indicate the potential of an environmental barcoding approach for biomonitoring programs. PMID:21533287
HAFLER, BRIAN P.
2017-01-01
Purpose Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. Methods A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Results Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Conclusion Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies. PMID:27753762
Ramos, Antonio M.; Crooijmans, Richard P. M. A.; Affara, Nabeel A.; Amaral, Andreia J.; Archibald, Alan L.; Beever, Jonathan E.; Bendixen, Christian; Churcher, Carol; Clark, Richard; Dehais, Patrick; Hansen, Mark S.; Hedegaard, Jakob; Hu, Zhi-Liang; Kerstens, Hindrik H.; Law, Andy S.; Megens, Hendrik-Jan; Milan, Denis; Nonneman, Danny J.; Rohrer, Gary A.; Rothschild, Max F.; Smith, Tim P. L.; Schnabel, Robert D.; Van Tassell, Curt P.; Taylor, Jeremy F.; Wiedmann, Ralph T.; Schook, Lawrence B.; Groenen, Martien A. M.
2009-01-01
Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs. PMID:19654876
Targeted next generation sequencing for molecular diagnosis of Usher syndrome.
Aparisi, María J; Aller, Elena; Fuster-García, Carla; García-García, Gema; Rodrigo, Regina; Vázquez-Manrique, Rafael P; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Françoise; Jaijo, Teresa; Millán, José M
2014-11-18
Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10 genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for Usher syndrome, based on targeted next generation sequencing. A custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of 11 patients with known mutations and another group of 33 patients with unknown mutations. Forty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and 6 large rearrangements. Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of the disease and improving the genetic diagnosis of Usher syndrome patients.
Binh, Tran Thanh; Suzuki, Rumiko; Trang, Tran Thi Huyen; Kwon, Dong Hyeon
2015-01-01
Metronidazole resistance is a key factor associated with Helicobacter pylori treatment failure. Although this resistance is mainly associated with mutations in the rdxA and frxA genes, the question of whether metronidazole resistance is caused by the inactivation of frxA alone is still debated. Furthermore, it is unclear whether there are other mutations involved in addition to the two genes that are associated with resistance. A metronidazole-resistant strain was cultured from the metronidazole-susceptible H. pylori strain 26695-1 by exposure to low concentrations of metronidazole. The genome sequences of both susceptible and resistant H. pylori strains were determined by Illumina next-generation sequencing, from which putative candidate resistance mutations were identified. Natural transformation was used to introduce PCR products containing candidate mutations into the susceptible parent strain 26695-1, and the metronidazole MIC was determined for each strain. Mutations in frxA (hp0642), rdxA (hp0954), and rpsU (hp0562) were confirmed by the Sanger method. The mutated sequence in rdxA was successfully transformed into strain 26695-1, and the transformants showed resistance to metronidazole. The transformants containing a single mutation in rdxA showed a low MIC (16 mg/liter), while those containing mutations in both rdxA and frxA showed a higher MIC (48 mg/liter). No transformants containing a single mutation in frxA or rpsU were obtained. Next-generation sequencing was used to identify mutations related to drug resistance. We confirmed that the mutations in rdxA are mainly associated with metronidazole resistance, and mutations in frxA are able to enhance H. pylori resistance only in the presence of rdxA mutations. Moreover, mutations in rpsU may play a role in metronidazole resistance. PMID:25645832
Maltese, Paolo E; Iarossi, Giancarlo; Ziccardi, Lucia; Colombo, Leonardo; Buzzonetti, Luca; Crinò, Antonino; Tezzele, Silvia; Bertelli, Matteo
2018-02-01
Obesity phenotype can be manifested as an isolated trait or accompanied by multisystem disorders as part of a syndromic picture. In both situations, same molecular pathways may be involved to different degrees. This evidence is stronger in syndromic obesity, in which phenotypes of different syndromes may overlap. In these cases, genetic testing can unequivocally provide a final diagnosis. Here we describe a patient who met the diagnostic criteria for Alström syndrome only during adolescence. Genetic testing was requested at 25 years of age for a final confirmation of the diagnosis. The genetic diagnosis of Alström syndrome was obtained through a Next Generation Sequencing genetic test approach using a custom-designed gene panel of 47 genes associated with syndromic and non-syndromic obesity. Genetic analysis revealed a novel homozygous frameshift variant p.(Arg1550Lysfs*10) on exon 8 of the ALMS1 gene. This case shows the need for a revision of the diagnostic criteria guidelines, as a consequence of the recent advent of massive parallel sequencing technology. Indications for genetic testing reported in these currently accepted diagnostic criteria for Alström syndrome, were drafted when sequencing was expensive and time consuming. Nowadays, Next Generation Sequencing testing could be considered as first line diagnostic tool not only for Alström syndrome but, more generally, for all those atypical or not clearly distinguishable cases of syndromic obesity, thus avoiding delayed diagnosis and treatments. Early diagnosis permits a better follow-up and pre-symptomatic interventions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Exome sequencing of a multigenerational human pedigree.
Hedges, Dale J; Hedges, Dale; Burges, Dan; Powell, Eric; Almonte, Cherylyn; Huang, Jia; Young, Stuart; Boese, Benjamin; Schmidt, Mike; Pericak-Vance, Margaret A; Martin, Eden; Zhang, Xinmin; Harkins, Timothy T; Züchner, Stephan
2009-12-14
Over the next few years, the efficient use of next-generation sequencing (NGS) in human genetics research will depend heavily upon the effective mechanisms for the selective enrichment of genomic regions of interest. Recently, comprehensive exome capture arrays have become available for targeting approximately 33 Mb or approximately 180,000 coding exons across the human genome. Selective genomic enrichment of the human exome offers an attractive option for new experimental designs aiming to quickly identify potential disease-associated genetic variants, especially in family-based studies. We have evaluated a 2.1 M feature human exome capture array on eight individuals from a three-generation family pedigree. We were able to cover up to 98% of the targeted bases at a long-read sequence read depth of > or = 3, 86% at a read depth of > or = 10, and over 50% of all targets were covered with > or = 20 reads. We identified up to 14,284 SNPs and small indels per individual exome, with up to 1,679 of these representing putative novel polymorphisms. Applying the conservative genotype calling approach HCDiff, the average rate of detection of a variant allele based on Illumina 1 M BeadChips genotypes was 95.2% at > or = 10x sequence. Further, we propose an advantageous genotype calling strategy for low covered targets that empirically determines cut-off thresholds at a given coverage depth based on existing genotype data. Application of this method was able to detect >99% of SNPs covered > or = 8x. Our results offer guidance for "real-world" applications in human genetics and provide further evidence that microarray-based exome capture is an efficient and reliable method to enrich for chromosomal regions of interest in next-generation sequencing experiments.
Cefalù, Angelo B; Spina, Rossella; Noto, Davide; Ingrassia, Valeria; Valenti, Vincenza; Giammanco, Antonina; Fayer, Francesca; Misiano, Gabriella; Cocorullo, Gianfranco; Scrimali, Chiara; Palesano, Ornella; Altieri, Grazia I; Ganci, Antonina; Barbagallo, Carlo M; Averna, Maurizio R
Severe hypertriglyceridemia (HTG) may result from mutations in genes affecting the intravascular lipolysis of triglyceride (TG)-rich lipoproteins. The aim of this study was to develop a targeted next-generation sequencing panel for the molecular diagnosis of disorders characterized by severe HTG. We developed a targeted customized panel for next-generation sequencing Ion Torrent Personal Genome Machine to capture the coding exons and intron/exon boundaries of 18 genes affecting the main pathways of TG synthesis and metabolism. We sequenced 11 samples of patients with severe HTG (TG>885 mg/dL-10 mmol/L): 4 positive controls in whom pathogenic mutations had previously been identified by Sanger sequencing and 7 patients in whom the molecular defect was still unknown. The customized panel was accurate, and it allowed to confirm genetic variants previously identified in all positive controls with primary severe HTG. Only 1 patient of 7 with HTG was found to be carrier of a homozygous pathogenic mutation of the third novel mutation of LMF1 gene (c.1380C>G-p.Y460X). The clinical and molecular familial cascade screening allowed the identification of 2 additional affected siblings and 7 heterozygous carriers of the mutation. We showed that our targeted resequencing approach for genetic diagnosis of severe HTG appears to be accurate, less time consuming, and more economical compared with traditional Sanger resequencing. The identification of pathogenic mutations in candidate genes remains challenging and clinical resequencing should mainly intended for patients with strong clinical criteria for monogenic severe HTG. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee
2011-11-01
Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.
miRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets
Paicu, Claudia; Mohorianu, Irina; Stocks, Matthew; Xu, Ping; Coince, Aurore; Billmeier, Martina; Dalmay, Tamas; Moulton, Vincent; Moxon, Simon
2017-01-01
Abstract Motivation MicroRNAs are a class of ∼21–22 nt small RNAs which are excised from a stable hairpin-like secondary structure. They have important gene regulatory functions and are involved in many pathways including developmental timing, organogenesis and development in eukaryotes. There are several computational tools for miRNA detection from next-generation sequencing datasets. However, many of these tools suffer from high false positive and false negative rates. Here we present a novel miRNA prediction algorithm, miRCat2. miRCat2 incorporates a new entropy-based approach to detect miRNA loci, which is designed to cope with the high sequencing depth of current next-generation sequencing datasets. It has a user-friendly interface and produces graphical representations of the hairpin structure and plots depicting the alignment of sequences on the secondary structure. Results We test miRCat2 on a number of animal and plant datasets and present a comparative analysis with miRCat, miRDeep2, miRPlant and miReap. We also use mutants in the miRNA biogenesis pathway to evaluate the predictions of these tools. Results indicate that miRCat2 has an improved accuracy compared with other methods tested. Moreover, miRCat2 predicts several new miRNAs that are differentially expressed in wild-type versus mutants in the miRNA biogenesis pathway. Availability and Implementation miRCat2 is part of the UEA small RNA Workbench and is freely available from http://srna-workbench.cmp.uea.ac.uk/. Contact v.moulton@uea.ac.uk or s.moxon@uea.ac.uk Supplementary information Supplementary data are available at Bioinformatics online. PMID:28407097
Clinical analysis of genome next-generation sequencing data using the Omicia platform
Coonrod, Emily M; Margraf, Rebecca L; Russell, Archie; Voelkerding, Karl V; Reese, Martin G
2013-01-01
Aims Next-generation sequencing is being implemented in the clinical laboratory environment for the purposes of candidate causal variant discovery in patients affected with a variety of genetic disorders. The successful implementation of this technology for diagnosing genetic disorders requires a rapid, user-friendly method to annotate variants and generate short lists of clinically relevant variants of interest. This report describes Omicia’s Opal platform, a new software tool designed for variant discovery and interpretation in a clinical laboratory environment. The software allows clinical scientists to process, analyze, interpret and report on personal genome files. Materials & Methods To demonstrate the software, the authors describe the interactive use of the system for the rapid discovery of disease-causing variants using three cases. Results & Conclusion Here, the authors show the features of the Opal system and their use in uncovering variants of clinical significance. PMID:23895124
Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.
Doan, Ryan; Cohen, Noah D; Sawyer, Jason; Ghaffari, Noushin; Johnson, Charlie D; Dindot, Scott V
2012-02-17
The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse's genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.
Genetics of pediatric obesity.
Manco, Melania; Dallapiccola, Bruno
2012-07-01
Onset of obesity has been anticipated at earlier ages, and prevalence has dramatically increased worldwide over the past decades. Epidemic obesity is mainly attributable to modern lifestyle, but family studies prove the significant role of genes in the individual's predisposition to obesity. Advances in genotyping technologies have raised great hope and expectations that genetic testing will pave the way to personalized medicine and that complex traits such as obesity will be prevented even before birth. In the presence of the pressing offer of direct-to-consumer genetic testing services from private companies to estimate the individual's risk for complex phenotypes including obesity, the present review offers pediatricians an update of the state of the art on genomics obesity in childhood. Discrepancies with respect to genomics of adult obesity are discussed. After an appraisal of findings from genome-wide association studies in pediatric populations, the rare variant-common disease hypothesis, the theoretical soil for next-generation sequencing techniques, is discussed as opposite to the common disease-common variant hypothesis. Next-generation sequencing techniques are expected to fill the gap of "missing heritability" of obesity, identifying rare variants associated with the trait and clarifying the role of epigenetics in its heritability. Pediatric obesity emerges as a complex phenotype, modulated by unique gene-environment interactions that occur in periods of life and are "permissive" for the programming of adult obesity. With the advent of next-generation sequencing techniques and advances in the field of exposomics, sensitive and specific tools to predict the obesity risk as early as possible are the challenge for the next decade.
Deep sequencing of evolving pathogen populations: applications, errors, and bioinformatic solutions
2014-01-01
Deep sequencing harnesses the high throughput nature of next generation sequencing technologies to generate population samples, treating information contained in individual reads as meaningful. Here, we review applications of deep sequencing to pathogen evolution. Pioneering deep sequencing studies from the virology literature are discussed, such as whole genome Roche-454 sequencing analyses of the dynamics of the rapidly mutating pathogens hepatitis C virus and HIV. Extension of the deep sequencing approach to bacterial populations is then discussed, including the impacts of emerging sequencing technologies. While it is clear that deep sequencing has unprecedented potential for assessing the genetic structure and evolutionary history of pathogen populations, bioinformatic challenges remain. We summarise current approaches to overcoming these challenges, in particular methods for detecting low frequency variants in the context of sequencing error and reconstructing individual haplotypes from short reads. PMID:24428920
Management of Incidental Findings in the Era of Next-generation Sequencing
Blackburn, Heather L.; Schroeder, Bradley; Turner, Clesson; Shriver, Craig D.; Ellsworth, Darrell L.; Ellsworth, Rachel E.
2015-01-01
Next-generation sequencing (NGS) technologies allow for the generation of whole exome or whole genome sequencing data, which can be used to identify novel genetic alterations associated with defined phenotypes or to expedite discovery of functional variants for improved patient care. Because this robust technology has the ability to identify all mutations within a genome, incidental findings (IF)- genetic alterations associated with conditions or diseases unrelated to the patient’s present condition for which current tests are being performed- may have important clinical ramifications. The current debate among genetic scientists and clinicians focuses on the following questions: 1) should any IF be disclosed to patients, and 2) which IF should be disclosed – actionable mutations, variants of unknown significance, or all IF? Policies for disclosure of IF are being developed for when and how to convey these findings and whether adults, minors, or individuals unable to provide consent have the right to refuse receipt of IF. In this review, we detail current NGS technology platforms, discuss pressing issues regarding disclosure of IF, and how IF are currently being handled in prenatal, pediatric, and adult patients. PMID:26069456
MuffinInfo: HTML5-Based Statistics Extractor from Next-Generation Sequencing Data.
Alic, Andy S; Blanquer, Ignacio
2016-09-01
Usually, the information known a priori about a newly sequenced organism is limited. Even resequencing the same organism can generate unpredictable output. We introduce MuffinInfo, a FastQ/Fasta/SAM information extractor implemented in HTML5 capable of offering insights into next-generation sequencing (NGS) data. Our new tool can run on any software or hardware environment, in command line or graphically, and in browser or standalone. It presents information such as average length, base distribution, quality scores distribution, k-mer histogram, and homopolymers analysis. MuffinInfo improves upon the existing extractors by adding the ability to save and then reload the results obtained after a run as a navigable file (also supporting saving pictures of the charts), by supporting custom statistics implemented by the user, and by offering user-adjustable parameters involved in the processing, all in one software. At the moment, the extractor works with all base space technologies such as Illumina, Roche, Ion Torrent, Pacific Biosciences, and Oxford Nanopore. Owing to HTML5, our software demonstrates the readiness of web technologies for mild intensive tasks encountered in bioinformatics.
Alternative Fuels Data Center: Electric Vehicle Infrastructure Projection
Tool (EVI-Pro) Lite Electric Vehicle Infrastructure Projection Tool (EVI-Pro) Lite to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Infrastructure Projection Tool (EVI -Pro) Lite on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Infrastructure
Šelb, J; Kogovšek, R; Šilar, M; Košnik, M; Korošec, P
2016-04-01
No study has assessed the diagnostic sensitivity of rApi m 1 and rVes v 5 on Immulite testing system. To compare the diagnostic sensitivity of commercially available venom recombinant allergens between the currently available immunoassays [ImmunoCAP (CAP) and Immulite (LITE)] and establish their correlation with the severity of the sting reaction. This study evaluated 95 bee venom and 110 yellow jacket venom-allergic subjects. We measured the levels of sIgE to rApi m 1, rVes v 5 (LITE and CAP), rApi m 2 (LITE), rVes v 1 (CAP) and total IgE (CAP). Forty-nine healthy subjects served as controls. The diagnostic sensitivity of rApi m 1 and rVes v 5 was significantly higher with the LITE than with the CAP system (71% vs. 88% and 82% vs. 93%). The specificity of both assays for both allergens was between 94% and 98%. Twenty-nine patients that tested negative for rApi m 1 or rVes v 5 with CAP were positive with LITE, but none of the patients that tested negative with LITE were positive with CAP. The positive values of rApi m 1 and rVes v 5 were on average 2.7 and 2.3 times higher, with the LITE than with the CAP system. The combination of rApi m 1 and rApi m 2 (LITE) and the combination of rVes v 5 (LITE) and rVes v 1 (CAP) almost matched the sensitivity of native venoms (95% and 97%, respectively), whereas the diagnostic sensitivity of the combination of rVes v 5 and rVes v 1 (CAP) did not reach the sensitivity of rVes v 5 (LITE) alone (90% vs. 93%). IgE levels to venom recombinants and total IgE did not correlate with the severity of sting reaction. The use of rApi m 1 and rVes v 5 with the LITE system significantly enhanced diagnostic utility of venom recombinants and should improve the dissection of bee and yellow jacket venom allergy. © 2015 John Wiley & Sons Ltd.
Marshall, Charla; Sturk-Andreaggi, Kimberly; Daniels-Higginbotham, Jennifer; Oliver, Robert Sean; Barritt-Ross, Suzanne; McMahon, Timothy P
2017-11-01
Next-generation ancient DNA technologies have the potential to assist in the analysis of degraded DNA extracted from forensic specimens. Mitochondrial genome (mitogenome) sequencing, specifically, may be of benefit to samples that fail to yield forensically relevant genetic information using conventional PCR-based techniques. This report summarizes the Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory's (AFMES-AFDIL) performance evaluation of a Next-Generation Sequencing protocol for degraded and chemically treated past accounting samples. The procedure involves hybridization capture for targeted enrichment of mitochondrial DNA, massively parallel sequencing using Illumina chemistry, and an automated bioinformatic pipeline for forensic mtDNA profile generation. A total of 22 non-probative samples and associated controls were processed in the present study, spanning a range of DNA quantity and quality. Data were generated from over 100 DNA libraries by ten DNA analysts over the course of five months. The results show that the mitogenome sequencing procedure is reliable and robust, sensitive to low template (one ng control DNA) as well as degraded DNA, and specific to the analysis of the human mitogenome. Haplotypes were overall concordant between NGS replicates and with previously generated Sanger control region data. Due to the inherent risk for contamination when working with low-template, degraded DNA, a contamination assessment was performed. The consumables were shown to be void of human DNA contaminants and suitable for forensic use. Reagent blanks and negative controls were analyzed to determine the background signal of the procedure. This background signal was then used to set analytical and reporting thresholds, which were designated at 4.0X (limit of detection) and 10.0X (limit of quantiation) average coverage across the mitogenome, respectively. Nearly all human samples exceeded the reporting threshold, although coverage was reduced in chemically treated samples resulting in a ∼58% passing rate for these poor-quality samples. A concordance assessment demonstrated the reliability of the NGS data when compared to known Sanger profiles. One case sample was shown to be mixed with a co-processed sample and two reagent blanks indicated the presence of DNA above the analytical threshold. This contamination was attributed to sequencing crosstalk from simultaneously sequenced high-quality samples to include the positive control. Overall this study demonstrated that hybridization capture and Illumina sequencing provide a viable method for mitogenome sequencing of degraded and chemically treated skeletal DNA samples, yet may require alternative measures of quality control. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Precision medicine for cancer with next-generation functional diagnostics.
Friedman, Adam A; Letai, Anthony; Fisher, David E; Flaherty, Keith T
2015-12-01
Precision medicine is about matching the right drugs to the right patients. Although this approach is technology agnostic, in cancer there is a tendency to make precision medicine synonymous with genomics. However, genome-based cancer therapeutic matching is limited by incomplete biological understanding of the relationship between phenotype and cancer genotype. This limitation can be addressed by functional testing of live patient tumour cells exposed to potential therapies. Recently, several 'next-generation' functional diagnostic technologies have been reported, including novel methods for tumour manipulation, molecularly precise assays of tumour responses and device-based in situ approaches; these address the limitations of the older generation of chemosensitivity tests. The promise of these new technologies suggests a future diagnostic strategy that integrates functional testing with next-generation sequencing and immunoprofiling to precisely match combination therapies to individual cancer patients.
The Downy Mildews: so many genomes, so little time
USDA-ARS?s Scientific Manuscript database
Downy mildews (DMs) are obligate biotrophic oomycete pathogens that cause diseases on a wide range of plant species. Individual species exhibit a high degree of host specialization. We have utilized next generation sequencing to efficiently generate de novo genome assemblies of multiple geographica...
Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian
2011-08-30
Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.
Milius, Robert P; Heuer, Michael; Valiga, Daniel; Doroschak, Kathryn J; Kennedy, Caleb J; Bolon, Yung-Tsi; Schneider, Joel; Pollack, Jane; Kim, Hwa Ran; Cereb, Nezih; Hollenbach, Jill A; Mack, Steven J; Maiers, Martin
2015-12-01
We present an electronic format for exchanging data for HLA and KIR genotyping with extensions for next-generation sequencing (NGS). This format addresses NGS data exchange by refining the Histoimmunogenetics Markup Language (HML) to conform to the proposed Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines (miring.immunogenomics.org). Our refinements of HML include two major additions. First, NGS is supported by new XML structures to capture additional NGS data and metadata required to produce a genotyping result, including analysis-dependent (dynamic) and method-dependent (static) components. A full genotype, consensus sequence, and the surrounding metadata are included directly, while the raw sequence reads and platform documentation are externally referenced. Second, genotype ambiguity is fully represented by integrating Genotype List Strings, which use a hierarchical set of delimiters to represent allele and genotype ambiguity in a complete and accurate fashion. HML also continues to enable the transmission of legacy methods (e.g. site-specific oligonucleotide, sequence-specific priming, and Sequence Based Typing (SBT)), adding features such as allowing multiple group-specific sequencing primers, and fully leveraging techniques that combine multiple methods to obtain a single result, such as SBT integrated with NGS. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Ludgate, Jackie L; Wright, James; Stockwell, Peter A; Morison, Ian M; Eccles, Michael R; Chatterjee, Aniruddha
2017-08-31
Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. The main features and advantages of this protocol are: An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing. We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.
Monitoring Error Rates In Illumina Sequencing.
Manley, Leigh J; Ma, Duanduan; Levine, Stuart S
2016-12-01
Guaranteeing high-quality next-generation sequencing data in a rapidly changing environment is an ongoing challenge. The introduction of the Illumina NextSeq 500 and the depreciation of specific metrics from Illumina's Sequencing Analysis Viewer (SAV; Illumina, San Diego, CA, USA) have made it more difficult to determine directly the baseline error rate of sequencing runs. To improve our ability to measure base quality, we have created an open-source tool to construct the Percent Perfect Reads (PPR) plot, previously provided by the Illumina sequencers. The PPR program is compatible with HiSeq 2000/2500, MiSeq, and NextSeq 500 instruments and provides an alternative to Illumina's quality value (Q) scores for determining run quality. Whereas Q scores are representative of run quality, they are often overestimated and are sourced from different look-up tables for each platform. The PPR's unique capabilities as a cross-instrument comparison device, as a troubleshooting tool, and as a tool for monitoring instrument performance can provide an increase in clarity over SAV metrics that is often crucial for maintaining instrument health. These capabilities are highlighted.
Houghton, Rebecca; Ellis, Joanna; Galiano, Monica; Clark, Tristan W; Wyllie, Sarah
2017-04-01
We describe haemagglutinin (HA) and neuraminidase (NA) sequencing in an apparent cross-site influenza A(H1N1) outbreak in renal transplant and haemodialysis patients, confirmed with whole genome sequencing (WGS). Isolates were sequenced from influenza positive individuals. Phylogenetic trees were constructed using HA and NA sequencing and subsequently WGS. Sequence data was analysed to determine genetic relatedness of viruses obtained from inpatient and outpatient cohorts and compared with epidemiological outbreak information. There were 6 patient cases of influenza in the inpatient renal ward cohort (associated with 3 deaths) and 9 patient cases in the outpatient haemodialysis unit cohort (no deaths). WGS confirmed clustered transmission of two genetically different influenza A(H1N1)pdm09 strains initially identified by analysis of HA and NA genes. WGS took longer, and in this case was not required to determine whether or not the two seemingly linked outbreaks were related. Rapid sequencing of HA and NA genes may be sufficient to aid early influenza outbreak investigation making it appealing for future outbreak investigation. However, as next generation sequencing becomes cheaper and more widely available and bioinformatics software is now freely accessible next generation whole genome analysis may increasingly become a valuable tool for real-time Influenza outbreak investigation. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Research Associate | Center for Cancer Research
The Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNLCR) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology or human genetics. As part of the BSP, the Microbiome and Genetics Core (the Core) characterizes microbiomes by next-generation sequencing to determine their composition and variation, as influenced by immune, genetic, and host health factors. The Core provides support across a spectrum of processes, from nucleic acid isolation through bioinformatics and statistical analysis. KEY ROLES/RESPONSIBILITIES The Research Associate II will provide support in the areas of automated isolation, preparation, PCR and sequencing of DNA on next generation platforms (Illumina MiSeq and NextSeq). An opportunity exists to join the Core’s team of highly trained experimentalists and bioinformaticians working to characterize microbiome samples. The following represent requirements of the position: A minimum of five (5) years related of biomedical experience. Experience with high-throughput nucleic acid (DNA/RNA) extraction. Experience in performing PCR amplification (including quantitative real-time PCR). Experience or familiarity with robotic liquid handling protocols (especially on the Eppendorf epMotion 5073 or 5075 platforms). Experience in operating and maintaining benchtop Illumina sequencers (MiSeq and NextSeq). Ability to evaluate experimental quality and to troubleshoot molecular biology protocols. Experience with sample tracking, inventory management and biobanking. Ability to operate and communicate effectively in a team-oriented work environment.
Identification of Prostate Cancer-Specific microDNAs
2016-02-01
circular DNA by rolling circle amplification (RCA) and then amplified DNA fragments were subject to deep sequencing. Deep sequencing of the...demonstrate the existence of microDNAs in prostate cancer. We adopted multiple displacement amplification (MDA) with random 2 primers for enriched...prostate cancer cells through multiple displacement amplification and next generation sequencing. R e la ti v e c e ll g ro w th ( % ) 0 20
Mapping Ribonucleotides Incorporated into DNA by Hydrolytic End-Sequencing.
Orebaugh, Clinton D; Lujan, Scott A; Burkholder, Adam B; Clausen, Anders R; Kunkel, Thomas A
2018-01-01
Ribonucleotides embedded within DNA render the DNA sensitive to the formation of single-stranded breaks under alkali conditions. Here, we describe a next-generation sequencing method called hydrolytic end sequencing (HydEn-seq) to map ribonucleotides inserted into the genome of Saccharomyce cerevisiae strains deficient in ribonucleotide excision repair. We use this method to map several genomic features in wild-type and replicase variant yeast strains.
Mohammed, Monzoorul Haque; Dutta, Anirban; Bose, Tungadri; Chadaram, Sudha; Mande, Sharmila S
2012-10-01
An unprecedented quantity of genome sequence data is currently being generated using next-generation sequencing platforms. This has necessitated the development of novel bioinformatics approaches and algorithms that not only facilitate a meaningful analysis of these data but also aid in efficient compression, storage, retrieval and transmission of huge volumes of the generated data. We present a novel compression algorithm (DELIMINATE) that can rapidly compress genomic sequence data in a loss-less fashion. Validation results indicate relatively higher compression efficiency of DELIMINATE when compared with popular general purpose compression algorithms, namely, gzip, bzip2 and lzma. Linux, Windows and Mac implementations (both 32 and 64-bit) of DELIMINATE are freely available for download at: http://metagenomics.atc.tcs.com/compression/DELIMINATE. sharmila@atc.tcs.com Supplementary data are available at Bioinformatics online.
Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.
Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong
2014-05-01
We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.
Identifying micro-inversions using high-throughput sequencing reads.
He, Feifei; Li, Yang; Tang, Yu-Hang; Ma, Jian; Zhu, Huaiqiu
2016-01-11
The identification of inversions of DNA segments shorter than read length (e.g., 100 bp), defined as micro-inversions (MIs), remains challenging for next-generation sequencing reads. It is acknowledged that MIs are important genomic variation and may play roles in causing genetic disease. However, current alignment methods are generally insensitive to detect MIs. Here we develop a novel tool, MID (Micro-Inversion Detector), to identify MIs in human genomes using next-generation sequencing reads. The algorithm of MID is designed based on a dynamic programming path-finding approach. What makes MID different from other variant detection tools is that MID can handle small MIs and multiple breakpoints within an unmapped read. Moreover, MID improves reliability in low coverage data by integrating multiple samples. Our evaluation demonstrated that MID outperforms Gustaf, which can currently detect inversions from 30 bp to 500 bp. To our knowledge, MID is the first method that can efficiently and reliably identify MIs from unmapped short next-generation sequencing reads. MID is reliable on low coverage data, which is suitable for large-scale projects such as the 1000 Genomes Project (1KGP). MID identified previously unknown MIs from the 1KGP that overlap with genes and regulatory elements in the human genome. We also identified MIs in cancer cell lines from Cancer Cell Line Encyclopedia (CCLE). Therefore our tool is expected to be useful to improve the study of MIs as a type of genetic variant in the human genome. The source code can be downloaded from: http://cqb.pku.edu.cn/ZhuLab/MID .
Tan, BoonFei; Ng, Charmaine; Nshimyimana, Jean Pierre; Loh, Lay Leng; Gin, Karina Y.-H.; Thompson, Janelle R.
2015-01-01
Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools. PMID:26441948
Crisol-Martínez, Eduardo; Moreno-Moyano, Laura T; Wormington, Kevin R; Brown, Philip H; Stanley, Dragana
2016-01-01
Worldwide, avian communities inhabiting agro-ecosystems are threatened as a consequence of agricultural intensification. Unravelling their ecological role is essential to focus conservation efforts. Dietary analysis can elucidate bird-insect interactions and expose avian pest-reduction services, thus supporting avian conservation. In this study, we used next-generation sequencing to analyse the dietary arthropod contents of 11 sympatric bird species foraging in macadamia orchards in eastern Australia. Across all species and based on arthropod DNA sequence similarities ≥98% with records in the Barcode of Life Database, 257 operational taxonomy units were assigned to 8 orders, 40 families, 90 genera and 89 species. These taxa included 15 insect pests, 5 of which were macadamia pests. Among the latter group, Nezara viridula (Pentatomidae; green vegetable bug), considered a major pest, was present in 23% of all faecal samples collected. Results also showed that resource partitioning in this system is low, as most bird species shared large proportion of their diets by feeding primarily on lepidopteran, dipteran and arachnids. Dietary composition differed between some species, most likely because of differences in foraging behaviour. Overall, this study reached a level of taxonomic resolution never achieved before in the studied species, thus contributing to a significant improvement in the avian ecological knowledge. Our results showed that bird communities prey upon economically important pests in macadamia orchards. This study set a precedent by exploring avian pest-reduction services using next-generation sequencing, which could contribute to the conservation of avian communities and their natural habitats in agricultural systems.
Crisol-Martínez, Eduardo; Moreno-Moyano, Laura T.; Wormington, Kevin R.; Brown, Philip H.; Stanley, Dragana
2016-01-01
Worldwide, avian communities inhabiting agro-ecosystems are threatened as a consequence of agricultural intensification. Unravelling their ecological role is essential to focus conservation efforts. Dietary analysis can elucidate bird-insect interactions and expose avian pest-reduction services, thus supporting avian conservation. In this study, we used next-generation sequencing to analyse the dietary arthropod contents of 11 sympatric bird species foraging in macadamia orchards in eastern Australia. Across all species and based on arthropod DNA sequence similarities ≥98% with records in the Barcode of Life Database, 257 operational taxonomy units were assigned to 8 orders, 40 families, 90 genera and 89 species. These taxa included 15 insect pests, 5 of which were macadamia pests. Among the latter group, Nezara viridula (Pentatomidae; green vegetable bug), considered a major pest, was present in 23% of all faecal samples collected. Results also showed that resource partitioning in this system is low, as most bird species shared large proportion of their diets by feeding primarily on lepidopteran, dipteran and arachnids. Dietary composition differed between some species, most likely because of differences in foraging behaviour. Overall, this study reached a level of taxonomic resolution never achieved before in the studied species, thus contributing to a significant improvement in the avian ecological knowledge. Our results showed that bird communities prey upon economically important pests in macadamia orchards. This study set a precedent by exploring avian pest-reduction services using next-generation sequencing, which could contribute to the conservation of avian communities and their natural habitats in agricultural systems. PMID:26930484
Pillai, Suja; Gopalan, Vinod; Lo, Chung Y; Liew, Victor; Smith, Robert A; Lam, Alfred King Y
2017-02-01
The goal of this pilot study was to develop a customized, cost-effective amplicon panel (Ampliseq) for target sequencing in a cohort of patients with sporadic phaeochromocytoma/paraganglioma. Phaeochromocytoma/paragangliomas from 25 patients were analysed by targeted next-generation sequencing approach using an Ion Torrent PGM instrument. Primers for 15 target genes (NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, MAX, MEN1, KIF1Bβ, EPAS1, CDKN2 & PHD2) were designed using ion ampliseq designer. Ion Reporter software and Ingenuity® Variant Analysis™ software (www.ingenuity.com/variants) from Ingenuity Systems were used to analysis these results. Overall, 713 variants were identified. The variants identified from the Ion Reporter ranged from 64 to 161 per patient. Single nucleotide variants (SNV) were the most common. Further annotation with the help of Ingenuity variant analysis revealed 29 of these 713variants were deletions. Of these, six variants were non-pathogenic and four were likely to be pathogenic. The remaining 19 variants were of uncertain significance. The most frequently altered gene in the cohort was KIF1B followed by NF1. Novel KIF1B pathogenic variant c.3375+1G>A was identified. The mutation was noted in a patient with clinically confirmed neurofibromatosis. Chromosome 1 showed the presence of maximum number of variants. Use of targeted next-generation sequencing is a sensitive method for the detecting genetic changes in patients with phaeochromocytoma/paraganglioma. The precise detection of these genetic changes helps in understanding the pathogenesis of these tumours. Copyright © 2016 Elsevier Inc. All rights reserved.
Fernández-Caballero Rico, Jose Ángel; Chueca Porcuna, Natalia; Álvarez Estévez, Marta; Mosquera Gutiérrez, María Del Mar; Marcos Maeso, María Ángeles; García, Federico
2018-02-01
To show how to generate a consensus sequence from the information of massive parallel sequences data obtained from routine HIV anti-retroviral resistance studies, and that may be suitable for molecular epidemiology studies. Paired Sanger (Trugene-Siemens) and next-generation sequencing (NGS) (454 GSJunior-Roche) HIV RT and protease sequences from 62 patients were studied. NGS consensus sequences were generated using Mesquite, using 10%, 15%, and 20% thresholds. Molecular evolutionary genetics analysis (MEGA) was used for phylogenetic studies. At a 10% threshold, NGS-Sanger sequences from 17/62 patients were phylogenetically related, with a median bootstrap-value of 88% (IQR83.5-95.5). Association increased to 36/62 sequences, median bootstrap 94% (IQR85.5-98)], using a 15% threshold. Maximum association was at the 20% threshold, with 61/62 sequences associated, and a median bootstrap value of 99% (IQR98-100). A safe method is presented to generate consensus sequences from HIV-NGS data at 20% threshold, which will prove useful for molecular epidemiological studies. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Ståhlberg, Anders; Krzyzanowski, Paul M; Jackson, Jennifer B; Egyud, Matthew; Stein, Lincoln; Godfrey, Tony E
2016-06-20
Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Single molecule sequencing of the M13 virus genome without amplification
Zhao, Luyang; Deng, Liwei; Li, Gailing; Jin, Huan; Cai, Jinsen; Shang, Huan; Li, Yan; Wu, Haomin; Xu, Weibin; Zeng, Lidong; Zhang, Renli; Zhao, Huan; Wu, Ping; Zhou, Zhiliang; Zheng, Jiao; Ezanno, Pierre; Yang, Andrew X.; Yan, Qin; Deem, Michael W.; He, Jiankui
2017-01-01
Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification. Here, we use the new GenoCare single-molecule sequencing platform from Direct Genomics to sequence the genome of the M13 virus. Our platform detects single-molecule fluorescence by total internal reflection microscopy, with sequencing-by-synthesis chemistry. We sequenced the genome of M13 to a depth of 316x, with 100% coverage. We determined a consensus sequence accuracy of 100%. In contrast to GC bias inherent to NGS results, we demonstrated that our single-molecule sequencing method yields minimal GC bias. PMID:29253901