Overdischarge protection in high-temperature cells and batteries
Redey, Laszlo
1990-01-01
Overdischarge indication and protection is provided in a lithium alloy - metal sulfide, secondary electrochemical cell and batteries of such cells through use of a low lithium activity phase that ordinarily is not matched with positive electrode material. Low lithium activity phases such as Li.sub.0.1 Al.sub.0.9 and LiAlSi in correspondence with positive electrode material cause a downward gradient in cell voltage as an indication of overdischarge prior to damage to the cell. Moreover, the low lithium activity phase contributes lithium into the electrolyte and provides a lithium shuttling current as overdischarge protection after all of the positive electrode material is discharged.
Overdischarge protection in high-temperature cells and batteries
Redey, L.
1990-06-19
Overdischarge indication and protection is provided in a lithium alloy metal sulfide, secondary electrochemical cell and batteries of such cells through use of a low lithium activity phase that ordinarily is not matched with positive electrode material. Low lithium activity phases such as Li[sub 0.1]Al[sub 0.9] and LiAlSi in correspondence with positive electrode material cause a downward gradient in cell voltage as an indication of overdischarge prior to damage to the cell. Moreover, the low lithium activity phase contributes lithium into the electrolyte and provides a lithium shuttling current as overdischarge protection after all of the positive electrode material is discharged. 8 figs.
Lithium-aluminum-iron electrode composition
Kaun, Thomas D.
1979-01-01
A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.
Lithium-aluminum-magnesium electrode composition
Melendres, Carlos A.; Siegel, Stanley
1978-01-01
A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.
Hydrogen, lithium, and lithium hydride production
Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.
2017-06-20
A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.
Size-dependent surface phase change of lithium iron phosphate during carbon coating
NASA Astrophysics Data System (ADS)
Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang
2014-03-01
Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.
NASA Astrophysics Data System (ADS)
Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko
2018-01-01
As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.
Influence of hydrogen on the corrosion behavior of stainless steels in lithium
NASA Astrophysics Data System (ADS)
Shulga, A. V.
2008-02-01
Corrosion behavior of several stainless steels in lithium and lithium with 0.05%H has been examined. Corrosion tests were performed under static conditions at 600 and 700 °C in the austenitic stainless steel of the type AISI 304 containers. Intensive formation of σ-phase of the composition Fe 50Cr 43Mo 3Ni 4 on the surface of austenitic stainless steels of the type AISI 316 at 700 °C for 1000 h was established as a result of isothermal mass transfer. Addition of 0.05%H in the form of LiH to lithium resulted in an increase in the quantity of the σ-phase. After corrosion tests of ferritic/martensitic steel in lithium at 700 °C for 1000 h the formation of the γ-phase was observed. In Li + 0.05%H besides the γ-phase was also formed the σ-phase. The features of decarburization of investigated stainless steels were examined using the direct method of activation autoradiography on carbon. Addition of 0.05%H in lithium significantly decreased the carbon content in the decarburization zone of austenitic stainless steel Fe-18Cr-15Ni-0.15C-0.23B without a noticeable change in the thickness of the decarburization zone. Decarburization of ferritic/martensitic stainless steel was less than of austenitic stainless steel using the same corrosion tests.
Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen; ...
2017-10-30
Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen
Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Liang; Chen-Wiegart, Yu-Chen K.
2017-10-30
Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less
Storage and Effective Migration of Li-Ion for Defected β-LiFePO 4 Phase Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hua; Song, Xiaohe; Zhuo, Zengqing
2016-01-13
Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstratemore » that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g–1 at a rate of 0.1 C (1C = 170 mA g–1) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.« less
Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals.
Guo, Hua; Song, Xiaohe; Zhuo, Zengqing; Hu, Jiangtao; Liu, Tongchao; Duan, Yandong; Zheng, Jiaxin; Chen, Zonghai; Yang, Wanli; Amine, Khalil; Pan, Feng
2016-01-13
Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g(-1) at a rate of 0.1 C (1C = 170 mA g(-1)) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.
Lithium ion conduction in sol-gel synthesized LiZr2(PO4)3 polymorphs
NASA Astrophysics Data System (ADS)
Kumar, Milind; Yadav, Arun Kumar; Anita, Sen, Somaditya; Kumar, Sunil
2018-04-01
Safety issue associated with the high flammability and volatility of organic electrolytes used in commercial rechargeable lithium ion batteries has led to significant attention to ceramic-based solid electrolytes. In the present study, lithium ion conduction in two polymorphs of LiZr2(PO4)3 synthesized via the sol-gel route has been investigated. Rietveld refinement of room temperature X-ray diffraction data of LiZr2(PO4)3 powders calcined at 900 °C and 1300 °C confirmed these to be the monoclinic phase with P21/n structure and rhombohedral phase with R3¯c structure, respectively. Increase in calcination temperature and resultant phase transformation improved the room temperature conductivity from 2.27×10-6 ohm-1m-1 for the monoclinic phase to 1.41×10-4 ohm-1m-1 for rhombohedral phase. Temperature dependence of conductivity was modeled using Arrhenius law and activation energy of ˜ 0.59 eV (for monoclinic phase) and ˜0.50 eV (for rhombohedral phase) were obtained.
Hybrid electrolytes for lithium metal batteries
NASA Astrophysics Data System (ADS)
Keller, Marlou; Varzi, Alberto; Passerini, Stefano
2018-07-01
This perspective article discusses the most recent developments in the field of hybrid electrolytes, here referred to electrolytes composed of two, well-defined ion-conducting phases, for high energy density lithium metal batteries. The two phases can be both solid, as e.g., two inorganic conductors or one inorganic and one polymer conductor, or, differently, one liquid and one inorganic conductor. In this latter case, they are referred as quasi-solid hybrid electrolytes. Techniques for the appropriate characterization of hybrid electrolytes are discussed emphasizing the importance of ionic conduction and interfacial properties. On this view, multilayer systems are also discussed in more detail. Investigations on Lewis acid-base interactions, activation energies for lithium-ion transfer between the phases, and the formation of an interphase between the components are reviewed and analyzed. The application of different hybrid electrolytes in lithium metal cells with various cathode compositions is also discussed. Fabrication methods for the feasibility of large-scale applications are briefly analyzed and different cell designs and configurations, which are most suitable for the integration of hybrid electrolytes, are determined. Finally, the specific energy of cells containing different hybrid electrolytes is estimated to predict possible enhancement in energy with respect to the current lithium-ion battery technology.
Lih thermal energy storage device
Olszewski, Mitchell; Morris, David G.
1994-01-01
A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.
Wei, Z.; Zhu, Y.; Zhang, W.; ...
2015-03-27
Lithium-rich material owns a particularly high capacity owing to the activation of electrochemical inactive Li 2MnO 3 phase. But at the same time, MnO 2 phase formed after Li 2MnO 3 activation confronts a severe problem of converting to spinel phase, and resulting in voltage decay. To our knowledge, this phenomenon is inherent property of layered manganese oxide materials and can hardly be overcome. Based on this, unlike previous reports, herein we design a method for the first time to accelerate the phase transformation by tuning the charge upper-limit voltage at a high value, so the phase transformation process canmore » be finished in a few cycles. Then material structure remains stable while cycling at a low upper-limit voltage. By this novel method voltage decay is eliminated significantly.« less
NASA Astrophysics Data System (ADS)
Xue, Sha; Liu, Yingdi; Li, Yaping; Teeters, Dale; Crunkleton, Daniel; Wang, Sanwu
The PEO3:LiCF3SO3 polymer electrolyte has attracted significant research due to its high conductivity and enhanced stability in lithium polymer batteries. Most experimental studies have shown that amorphous PEO lithium salt electrolytes have higher conductivity than the crystalline ones. Other studies, however, have shown that crystalline phase can conduct ions. In this work, we use ab initio molecular dynamics simulations to obtain the amorphous structure of PEO3:LiCF3SO3. The diffusion pathways and activation energies of lithium ions in both crystalline and amorphous PEO3:LiCF3SO3 are determined with first-principles density functional theory. In crystalline PEO3:LiCF3SO3, the activation energy for the low-barrier diffusion pathway is approximately 1.0 eV. In the amorphous phase, the value is 0.6 eV. This result would support the experimental observation that amorphous PEO3:LiCF3SO3has higher ionic conductivity than the crystalline phase. This work was supported by NASA Grant No. NNX13AN01A and by Tulsa Institute of Alternative Energy and Tulsa Institute of Nanotechnology. This research used resources of XSEDE, NERSC, and the Tandy Supercomputing Center.
LiH thermal energy storage device
Olszewski, M.; Morris, D.G.
1994-06-28
A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.
Yang, Wenge; Kim, Duck Young; Yang, Liuxiang; Li, Nana; Tang, Lingyun; Amine, Khalil; Mao, Ho-Kwang
2017-09-01
The lithium-air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge-discharge process greatly affect the overall performance of lithium-air batteries. One of the key issues is linked to the environmental oxygen-rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen-rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li 2 O 3 , LiO 2 , and LiO 4 . The LiO 2 and LiO 4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε-O 8 phase, while Li 2 O 3 inherits the local arrangements from ambient LiO 2 and Li 2 O 2 phases. These novel lithium oxides beyond the ambient Li 2 O, Li 2 O 2 , and LiO 2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions.
NASA Astrophysics Data System (ADS)
Komini Babu, Siddharth; Mohamed, Alexander I.; Whitacre, Jay F.; Litster, Shawn
2015-06-01
This paper presents the use of nanometer scale resolution X-ray computed tomography (nano-CT) in the three-dimensional (3D) imaging of a Li-ion battery cathode, including the separate volumes of active material, binder plus conductive additive, and pore. The different high and low atomic number (Z) materials are distinguished by sequentially imaging the lithium cobalt oxide electrode in absorption and then Zernike phase contrast modes. Morphological parameters of the active material and the additives are extracted from the 3D reconstructions, including the distribution of contact areas between the additives and the active material. This method could provide a better understanding of the electric current distribution and structural integrity of battery electrodes, as well as provide detailed geometries for computational models.
NASA Technical Reports Server (NTRS)
2007-01-01
Topics include: Wearable Environmental and Physiological Sensing Unit; Broadband Phase Retrieval for Image-Based Wavefront Sensing; Filter Function for Wavefront Sensing Over a Field of View; Iterative-Transform Phase Retrieval Using Adaptive Diversity; Wavefront Sensing With Switched Lenses for Defocus Diversity; Smooth Phase Interpolated Keying; Maintaining Stability During a Conducted-Ripple EMC Test; Photodiode Preamplifier for Laser Ranging With Weak Signals; Advanced High-Definition Video Cameras; Circuit for Full Charging of Series Lithium-Ion Cells; Analog Nonvolatile Computer Memory Circuits; JavaGenes Molecular Evolution; World Wind 3D Earth Viewing; Lithium Dinitramide as an Additive in Lithium Power Cells; Accounting for Uncertainties in Strengths of SiC MEMS Parts; Ion-Conducting Organic/Inorganic Polymers; MoO3 Cathodes for High-Temperature Lithium Thin-Film Cells; Counterrotating-Shoulder Mechanism for Friction Stir Welding; Strain Gauges Indicate Differential-CTE-Induced Failures; Antibodies Against Three Forms of Urokinase; Understanding and Counteracting Fatigue in Flight Crews; Active Correction of Aberrations of Low-Quality Telescope Optics; Dual-Beam Atom Laser Driven by Spinor Dynamics; Rugged, Tunable Extended-Cavity Diode Laser; Balloon for Long-Duration, High-Altitude Flight at Venus; and Wide-Temperature-Range Integrated Operational Amplifier.
Wang, X P; Gao, Y X; Xia, Y P; Zhuang, Z; Zhang, T; Fang, Q F
2014-04-21
The correlation and transport mechanism of lithium ions with the crystal structure of a fast lithium ion conductor Li7La3Zr2O12 are mainly investigated by internal friction (IF) and AC impedance spectroscopy techniques. Compared with the poor conductivity of tetragonal Li7La3Zr2O12, the Al stabilized cubic phase exhibits a good ionic conductivity that can be up to 1.9 × 10(-4) S cm(-1) at room temperature, which can be ascribed to the disordered distribution of lithium ions in the cubic phase. A well-pronounced relaxation IF peak (labeled as peak PC) is observed in the cubic phase while a very weak IF peak (labeled as PT) is observed in the tetragonal phase, further evidencing the difference in lithium ion migration in the two phases. Peak PC can be decomposed into two sub-peaks with the activation energy and the pre-exponential factor of relaxation time being E1 = 0.41 eV and τ01 = 1.2 × 10(-14) s for the lower temperature peak PC1 and E2 = 0.35 eV and τ02 = 1.9 × 10(-15) s for the higher temperature PC2 peak, respectively. Based on the crystalline structure of a cubic garnet-type Li7La3Zr2O12 compound, an atomistic mechanism of lithium ion diffusion via vacancies is suggested, i.e. 48g(96h) ↔ 48g(96h) for peak PC1 and 48g(96h) ↔ 24d for peak PC2, respectively. The weak PT peak in the tetragonal phase is preliminarily interpreted as due to the short jump process among neighboring octahedral sites and vacant tetrahedral sites.
Influence of lithium vacancies on the polaronic transport in olivine phosphate structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugavel, Sevi, E-mail: murug@physics.du.ac.in; Sharma, Monika; Shahid, Raza
2016-01-28
Intercalation and deintercalation of lithium ions in cathode materials are of principal to the operation of current rechargeable lithium ion batteries. The performance of lithium ion batteries highly relies on the active cathode material which includes cell potential, power/energy density, capacity, etc. An important issue in this class of material is to resolve the factors governing the electron and ion transport in olivine phosphate structure. In this class of material, there is still an open debate on the mechanism of charge transport including both polarons and lithium ions. On the one hand, this is due to the large disparity betweenmore » the experimental results and the theoretical model predictions. On the other hand, this is also due to the lack of precise experimental measurement without any parasitic phases in a given cathode material. Here, we present the polaronic conduction in lithiated triphylite LiFePO{sub 4} (LFP) and delithiated heterosite FePO{sub 4} (FP) by means of broadband ac impedance spectroscopy over wide range temperatures and frequency. It is found that the LFP phase possess two orders of higher polaronic conductivity than FP phase despite having similar mobility of polarons in both phases. We show that the differences in the polaronic conductivity of two phases are due to the significant differences in concentration of polarons. It is found that the formation energy of polarons in individual phases is mainly determined by the corresponding defect state associated with it. The temperature dependent dc conductivity has been analyzed within the framework of Mott model of polaronic conduction and explored the origin of polaronic conduction mechanism in this class of material.« less
NASA Astrophysics Data System (ADS)
Kojima, Y.; Muto, S.; Tatsumi, K.; Kondo, H.; Oka, H.; Horibuchi, K.; Ukyo, Y.
We investigate the local structural changes in a positive electrode of a lithium ion secondary battery (LiNi 0.8Co 0.15Al 0.05O 2 (NCA) as the active material) associated with charge-discharge cycling at elevated temperatures by scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). STEM-EELS spectral imaging reveals the evolution of a NiO-like phase localized near the surface and grain boundary regions after many cycles. The amounts of capacity fading and resistance increase are discussed based on the results of the semiquantitative estimation of NiO-like and other product phases. We also identify the chemical state of lithium in the NiO-like phase substituting for Ni.
Process for recovering tritium from molten lithium metal
Maroni, Victor A.
1976-01-01
Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.
Hydrogen, lithium, and lithium hydride production
Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J
2014-03-25
A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.
Stochastic many-particle model for LFP electrodes
NASA Astrophysics Data System (ADS)
Guhlke, Clemens; Gajewski, Paul; Maurelli, Mario; Friz, Peter K.; Dreyer, Wolfgang
2018-02-01
In the framework of non-equilibrium thermodynamics, we derive a new model for many-particle electrodes. The model is applied to LiFePO4 (LFP) electrodes consisting of many LFP particles of nanometer size. The phase transition from a lithium-poor to a lithium-rich phase within LFP electrodes is controlled by both different particle sizes and surface fluctuations leading to a system of stochastic differential equations. An explicit relation between battery voltage and current controlled by the thermodynamic state variables is derived. This voltage-current relation reveals that in thin LFP electrodes lithium intercalation from the particle surfaces into the LFP particles is the principal rate-limiting process. There are only two constant kinetic parameters in the model describing the intercalation rate and the fluctuation strength, respectively. The model correctly predicts several features of LFP electrodes, viz. the phase transition, the observed voltage plateaus, hysteresis and the rate-limiting capacity. Moreover we study the impact of both the particle size distribution and the active surface area on the voltage-charge characteristics of the electrode. Finally we carefully discuss the phase transition for varying charging/discharging rates.
Simulation of electrochemical behavior in Lithium ion battery during discharge process.
Chen, Yong; Huo, Weiwei; Lin, Muyi; Zhao, Li
2018-01-01
An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature.
Simulation of electrochemical behavior in Lithium ion battery during discharge process
Chen, Yong; Lin, Muyi; Zhao, Li
2018-01-01
An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature. PMID:29293535
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm; ...
2016-12-01
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.
Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically andmore » transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.« less
Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.
2018-01-12
Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically andmore » transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.« less
Muto, Shunsuke; Tatsumi, Kazuyoshi
2017-02-08
Advancements in the field of renewable energy resources have led to a growing demand for the analysis of light elements at the nanometer scale. Detection of lithium is one of the key issues to be resolved for providing guiding principles for the synthesis of cathode active materials, and degradation analysis after repeated use of those materials. We have reviewed the different techniques currently used for the characterization of light elements such as high-resolution transmission electron microscopy, scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). In the present study, we have introduced a methodology to detect lithium in solid materials, particularly for cathode active materials used in lithium-ion battery. The chemical states of lithium were isolated and analyzed from the overlapping multiple spectral profiles, using a suite of STEM, EELS and hyperspectral image analysis. The method was successfully applied in the chemical state analyses of hetero-phases near the surface and grain boundary regions of the active material particles formed by chemical reactions between the electrolyte and the active materials. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Synthesis of tritium breeder ceramics from metallic lithium
NASA Astrophysics Data System (ADS)
Knitter, R.; Kolb, M. H. H.; Odemer, C.
2012-01-01
For the fabrication of Li-6 enriched ceramic breeder materials for ITER, the availability of Li-6 enriched compounds is limited, and metallic Li-6 is the most widely available compound. As metallic lithium cannot be used directly in ceramic fabrication processes, we investigated different syntheses to obtain lithium orthosilicate or lithium metatitanate directly from molten lithium. In exothermic reactions of molten lithium with silicon, silica, or titania, several intermediate or precursor phases were observed under argon that could easily be transformed to the desired ceramic phases by a subsequent heat treatment under air. The reaction steps and the resulting phases were studied by differential scanning calorimetry and X-ray diffractometry. The synthesis from lithium and silicon seems to be especially suited for the production of larger quantities and has the advantage that silicon is available with a very high grade of purity.
Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells.
Stein, Malcolm; Chen, Chien-Fan; Robles, Daniel J; Rhodes, Christopher; Mukherjee, Partha P
2016-02-01
Research into new and improved materials to be utilized in lithium-ion batteries (LIB) necessitates an experimental counterpart to any computational analysis. Testing of lithium-ion batteries in an academic setting has taken on several forms, but at the most basic level lies the coin cell construction. In traditional LIB electrode preparation, a multi-phase slurry composed of active material, binder, and conductive additive is cast out onto a substrate. An electrode disc can then be punched from the dried sheet and used in the construction of a coin cell for electrochemical evaluation. Utilization of the potential of the active material in a battery is critically dependent on the microstructure of the electrode, as an appropriate distribution of the primary components are crucial to ensuring optimal electrical conductivity, porosity, and tortuosity, such that electrochemical and transport interaction is optimized. Processing steps ranging from the combination of dry powder, wet mixing, and drying can all critically affect multi-phase interactions that influence the microstructure formation. Electrochemical probing necessitates the construction of electrodes and coin cells with the utmost care and precision. This paper aims at providing a step-by-step guide of non-aqueous electrode processing and coin cell construction for lithium-ion batteries within an academic setting and with emphasis on deciphering the influence of drying and calendaring.
Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells
Stein, Malcolm; Chen, Chien-Fan; Robles, Daniel J.; Rhodes, Christopher; Mukherjee, Partha P.
2016-01-01
Research into new and improved materials to be utilized in lithium-ion batteries (LIB) necessitates an experimental counterpart to any computational analysis. Testing of lithium-ion batteries in an academic setting has taken on several forms, but at the most basic level lies the coin cell construction. In traditional LIB electrode preparation, a multi-phase slurry composed of active material, binder, and conductive additive is cast out onto a substrate. An electrode disc can then be punched from the dried sheet and used in the construction of a coin cell for electrochemical evaluation. Utilization of the potential of the active material in a battery is critically dependent on the microstructure of the electrode, as an appropriate distribution of the primary components are crucial to ensuring optimal electrical conductivity, porosity, and tortuosity, such that electrochemical and transport interaction is optimized. Processing steps ranging from the combination of dry powder, wet mixing, and drying can all critically affect multi-phase interactions that influence the microstructure formation. Electrochemical probing necessitates the construction of electrodes and coin cells with the utmost care and precision. This paper aims at providing a step-by-step guide of non-aqueous electrode processing and coin cell construction for lithium-ion batteries within an academic setting and with emphasis on deciphering the influence of drying and calendaring. PMID:26863503
Brady, Nicholas W.; Zhang, Qing; Knehr, K. W.; ...
2016-10-26
The electrochemical behavior of lithium trivanadate (LiV 3O 8) during lithiation, delithiation, and voltage recovery experiments is simulated using a crystal-scale model that accounts for solid-state diffusion, charge-transfer kinetics, and phase transformations. The kinetic expression for phase change was modeled using an approach inspired by the Avrami formulation for nucleation and growth. Numerical results indicate that the solid-state diffusion coefficient of lithium in LiV 3O 8 is ~ 10 -13 cm 2 s -1 and the equilibrium compositions in the two phase region (~2.5 V) are Li 2.5V 3O 8:Li 4V 3O 8. Agreement between the simulated and experimental resultsmore » is excellent. Relative to the lithiation curves, the experimental delithiation curves show significantly less overpotential and at low levels of lithiation (end of charge). Simulations are only able to capture this result by assuming that the solid-state mass-transfer resistance is less during delithiation. The proposed rationale for this difference is that the (100) face is inactive during lithiation, but active during delithiation. Finally, by assuming non-instantaneous phase-change kinetics, estimates are made for the overpotential due to imperfect phase change (supersaturation).« less
Metastable structure of Li13Si4
NASA Astrophysics Data System (ADS)
Gruber, Thomas; Bahmann, Silvia; Kortus, Jens
2016-04-01
The Li13Si4 phase is one out of several crystalline lithium silicide phases, which is a potential electrode material for lithium ion batteries and contains a high theoretical specific capacity. By means of ab initio methods like density functional theory (DFT) many properties such as heat capacity or heat of formation can be calculated. These properties are based on the calculation of phonon frequencies, which contain information about the thermodynamical stability. The current unit cell of "Li13Si4" given in the ICSD database is unstable with respect to DFT calculations. We propose a modified unit cell that is stable in the calculations. The evolutionary algorithm EVO found a structure very similar to the ICSD one with both of them containing metastable lithium positions. Molecular dynamic simulations show a phase transition between both structures where these metastable lithium atoms move. This phase transition is achieved by a very fast one-dimensional lithium diffusion and stabilizes this phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X. Q.; Sun, X.; Lee, S. J.
In Situ x-ray diffraction studies on Li{sub x}Mn{sub 2}O{sub 4} spinel cathode materials during charge-discharge cycles were carried out by using a synchrotron as x-ray source. Lithium rich (x = 1.03-1.06) spinel materials obtained from two different sources were studied. Three cubic phases with different lattice constants were observed during charge-discharge cycles in all the samples when a Sufficiently low charge-discharge rate (C/10) was used. There are two regions of two-phase coexistence between these three phases, indicating that both phase transitions are first order. The separation of the Bragg peaks representing these three phases varies from sample to sample andmore » also depends on the charge-discharge rate. These results show that the de-intercalation of lithium in lithium-rich spinel cathode materials proceeds through a series of phase transitions from a lithium-rich phase to a lithium-poor phase and finally to a {lambda}-MnO{sub 2} like cubic phase, rather than through a continuous lattice constant contraction in a single phase.« less
Boundaries for martensitic transition of 7Li under pressure
Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; ...
2015-08-14
We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressuremore » dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.« less
Real time neutron diffraction and NMR of the Empress II glass-ceramic system.
O'Donnell, M D; Hill, R G; Karpukhina, N; Law, R V
2011-10-01
This study reports real time neutron diffraction on the Empress II glass-ceramic system. The commercial glass-ceramics was characterized by real time neutron diffraction, ³¹P and ²⁹Si solid-state MAS-NMR, DSC and XRD. On heating, the as-received glass ceramic contained lithium disilicate (Li₂Si₂O₅), which melted with increasing temperature. This was revealed by neutron diffraction which showed the Bragg peaks for this phase had disappeared by 958°C in agreement with thermal analysis. On cooling lithium metasilicate (Li₂SiO₃) started to form at around 916°C and a minor phase of cristobalite at around 852°C. The unit cell volume of both Li-silicate phases increased linearly with temperature at a rate of +17×10⁻³ ų.°C⁻¹. Room temperature powder X-ray diffraction (XRD) of the material after cooling confirms presence of the lithium metasilicate and cristobalite as the main phases and shows, in addition, small amount of lithium disilicate and orthophosphate. ³¹P MAS-NMR reveals presence of the lithiorthophosphate (Li₃PO₄) before and after heat treatment. The melting of lithium disilicate on heating and crystallisation of lithium metasilicate on cooling agree with endothermic and exotermic features respectively observed by DSC. ²⁹Si MAS-NMR shows presence of lithium disilicate phase in the as-received glass-ceramic, though not in the major proportion, and lithium metasilicate in the material after heat treatment. Both phases have significantly long T₁ relaxation time, especially the lithium metasilicate, therefore, a quantitative analysis of the ²⁹Si MAS-NMR spectra was not attempted. Significance. The findings of the present work demonstrate importance of the commercially designed processing parameters in order to preserve desired characteristics of the material. Processing the Empress II at a rate slower than recommended 60°C min⁻¹ or long isothermal hold at the maximal processing temperature 920°C can cause crystallization of lithium metasilicate and cristobalite instead of lithium disilicate as major phase. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
LiBi{sub 3}S{sub 5}—A lithium bismuth sulfide with strong cation disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhal, Suliman; Wiedemann, Dennis, E-mail: dennis.wiedemann@chem.tu-berlin.de; Stanje, Bernhard
Among chalcogenide semiconductors for thermoelectric applications, alkali-metal bismuth compounds occur in many complex compositions favorable for high performance. Although LiBi{sub 3}S{sub 5} had been announced in 1977, the potential 1D lithium-ion conductor has hitherto eluded selective synthesis and structure determination. In this study, we present a solid-state route to phase-pure LiBi{sub 3}S{sub 5} powder starting from LiBiS{sub 2} and Bi{sub 2}S{sub 3}. Neutron diffractograms and lithium NMR spectra reveal its crystal structure to be a cation-disordered variety of the AgBi{sub 3}S{sub 5} type (synthetic pavonite; monoclinic, C2/m). Topological analyses and lithium NMR relaxometry suggest that correlated lithium-ion diffusion with activationmore » energies up to 0.66(2) eV occurs along the channels in b direction including tetrahedral voids. Because of cation disorder, immobile bismuth(III) ions clog these pathways, making LiBi{sub 3}S{sub 5} a moderate to poor ionic conductor. The synthesis route reported is nonetheless promising for new lithium bismuth sulfides with, possibly ordered, structure types of the pavonite homologous series. - Graphical abstract: Phase-pure LiBi{sub 3}S{sub 5} has been synthesized and shown to crystallize in cation-disordered variety of the AgBi{sub 3}S{sub 5} type (synthetic pavonite, C2/m) using neutron diffractometry. Topological analyses and NMR relaxometry suggest that immobile Bi{sup 3+} ions clog migration channels along b, making the material a poor lithium conductor. Display Omitted - Highlights: • Phase-pure LiBi{sub 3}S{sub 5} has been synthesized using a promising solid-state route. • LiBi{sub 3}S{sub 5} crystallizes in a cation-disordered variant of the AgBi{sub 3}S{sub 5} type. • Topological analyses suggest lithium diffusion in channels along b. • NMR relaxometry finds activation energies of diffusion as high as 0.66(2) eV. • Because of disorder, LiBi{sub 3}S{sub 5} is a moderate to poor lithium-ion conductor.« less
Xu, Feng; Wu, Lijun; Meng, Qingping; Kaltak, Merzuk; Huang, Jianping; Durham, Jessica L; Fernandez-Serra, Marivi; Sun, Litao; Marschilok, Amy C; Takeuchi, Esther S; Takeuchi, Kenneth J; Hybertsen, Mark S; Zhu, Yimei
2017-05-24
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. We report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable by orthorhombic distortion. Subsequently, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. These results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.
Xu, Feng; Wu, Lijun; Meng, Qingping; ...
2017-05-24
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. Here, we report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable bymore » orthorhombic distortion. As a result, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. Our results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Feng; Wu, Lijun; Meng, Qingping
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. Here, we report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable bymore » orthorhombic distortion. As a result, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. Our results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.« less
Post-Acute Effectiveness of Lithium in Pediatric Bipolar I Disorder
Kafantaris, Vivian; Pavuluri, Mani; McNamara, Nora K; Frazier, Jean A; Sikich, Linmarie; Kowatch, Robert; Rowles, Brieana M; Clemons, Traci E; Taylor-Zapata, Perdita
2013-01-01
Abstract Objective This study examined the long-term effectiveness of lithium for the treatment of pediatric bipolar disorder within the context of combination mood stabilizer therapy for refractory mania and pharmacological treatment of comorbid psychiatric conditions. Methods Outpatients, ages 7–17 years, meeting American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) diagnostic criteria for bipolar disorder I (BP-I) (manic or mixed) who demonstrated at least a partial response to 8 weeks of open-label treatment with lithium (Phase I) were eligible to receive open-label lithium for an additional 16 weeks (Phase II). Up to two adjunctive medications could be prescribed to patients experiencing residual symptoms of mania or comorbid psychiatric conditions, following a standardized algorithm. Results Forty-one patients received continued open-label long-term treatment with lithium for a mean of 14.9 (3.0) weeks during Phase II. The mean weight-adjusted total daily dose at end of Phase II was 27.8 (6.7) mg/kg/day, with an average lithium concentration of 1.0 (0.3) mEq/L. Twenty-five of the 41 patients (60.9%) were prescribed adjunctive psychotropic medications for residual symptoms. The most frequent indications for adjunctive medications were refractory mania (n=13; 31.7%) and attention-deficit/hyperactivity disorder (ADHD) (n=15; 36.6%). At the end of this phase 28 (68.3%) patients met a priori criteria for response (≥50% reduction from Phase I baseline in Young Mania Rating Scale [YMRS] summary score and a Clinical Global Impressions-Improvement [CGI-I] score of 1 or 2), with 22 (53.7%) considered to be in remission (YMRS summary score≤12 and CGI-Severity score of 1 or 2). These data suggest that patients who initially responded to lithium maintained mood stabilization during continuation treatment, but partial responders did not experience further improvement during Phase II, despite the opportunity to receive adjunctive medications. The most commonly reported (≥20%) adverse events associated with lithium treatment were vomiting, headache, abdominal pain, and tremor. Conclusions Lithium may be a safe and effective longer-term treatment for patients with pediatric bipolar disorder who respond to acute treatment with lithium. Partial responders to acute lithium did not appear to experience substantial symptom improvement during the continuation phase, despite the possibility that adjunctive medications could be prescribed. PMID:23510444
Electrochemical lithium intercalation into Bi2Sr2CaCu2O8+δ
NASA Astrophysics Data System (ADS)
Shimono, Takahiro; Kobayashi, Wataru; Nitani, Hiroaki; Kumai, Reiji; Moritomo, Yutaka
2013-04-01
We have prepared Li-intercalated LixBi2Sr2CaCu2O8+δ (x =0-2.0) samples by using electrochemical method, and performed synchrotron x-ray diffraction, Cu K-edge x-ray absorption fine structure (XAFS), and magnetic susceptibility measurements. With increasing x, a- and c-lattice parameters monotonically increase, which shows lithium intercalation into Bi2Sr2CaCu2O8+δ. Accompanied by the lithium insertion, the valence of Cu ion changes from Cu2+/Cu3+ to Cu1+/Cu2+ to realize charge neutrality. This change of the valence was detected by Cu K-edge XAFS measurement. A clear increase of spectral weight that corresponds to 1s→ 4pπ(3d10L) was observed at around 8982 eV with x. The superconducting (SC) transition temperature TC significantly changes from 74 K for x = 0 to 90 K for x = 0.8, which is attributed to modified density of states by the decrease of hole concentration. A volume fraction of the superconducting phase was 1-2 % for x >= 0.6 implying phase separation where Li-rich non SC phase and Li-poor SC phase coexist. Such a phase separation is universally seen in electrode active materials.
Electrolyte composition for electrochemical cell
Vissers, Donald R.; Tomczuk, Zygmunt; Anderson, Karl E.; Roche, Michael F.
1979-01-01
A high-temperature, secondary electrochemical cell that employs FeS as the positive electrode reactant and lithium or lithium alloy as the negative electrode reactant includes an improved electrolyte composition. The electrolyte comprises about 60-70 mole percent LiCl and 30-40 percent mole percent KCl which includes LiCl in excess of the eutectic composition. The use of this electrolyte suppresses formation of the J phase and thereby improves the utilization of positive electrode active material during cell cycling.
Anode for rechargeable ambient temperature lithium cells
NASA Technical Reports Server (NTRS)
Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)
1994-01-01
An ambient room temperature, high density, rechargeable lithium battery includes a Li(x)Mg2Si negative anode which intercalates lithium to form a single crystalline phase when x is up to 1.0 and an amorphous phase when x is from 1 to 2.0. The electrode has good reversibility and mechanical strength after cycling.
Effect of Branching on Rod-coil Polyimides as Membrane Materials for Lithium Polymer Batteries
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Cubon, Valerie A.; Scheiman, Daniel A.; Bennett, William R.
2003-01-01
This paper describes a series of rod-coil block co-polymers that produce easy to fabricate, dimensionally stable films with good ionic conductivity down to room temperature for use as electrolytes for lithium polymer batteries. The polymers consist of short, rigid rod polyimide segments, alternating with flexible, polyalkylene oxide coil segments. The highly incompatible rods and coils should phase separate, especially in the presence of lithium ions. The coil phase would allow for conduction of lithium ions, while the rigid rod phase would provide a high degree of dimensional stability. An optimization study was carried out to study the effect of four variables (degree of branching, formulated molecular weight, polymerization solvent and lithium salt concentration) on ionic conductivity, glass transition temperature and dimensional stability in this system.
Corrosion-electrochemical behavior of zirconium in molten alkali metal carbonates
NASA Astrophysics Data System (ADS)
Nikitina, E. V.
2016-08-01
The corrosion and electrochemical characteristics of zirconium during its interaction with molten lithium, sodium, and potassium carbonates containing from 1 to 5 wt % additives to the salt phase are studied in a temperature range of 500-800°C using gravimetry, corrosion potential measurement, and anodic polarization. The substances decreasing the corrosion losses due to the strengthening and thickening of an oxide film (lithium, sodium, potassium hydroxides) are used as passivators. Sodium chloride, fluoride, and sulfate serve as corrosion stimulators (activators).
Thermophysical and structural studies on some glass-ceramics and role of nano size crystallites
NASA Astrophysics Data System (ADS)
Kothiyal, G. P.; Arvind, A.; Kumar, Rakesh; Dixit, Anupam; Sharma, Kuldeep; Goswami, Madhumita
2009-07-01
In this paper, we present some studies on structure and thermophysical properties of glass and glass-ceramics with possible bio-medical and sealing applications. The glass-ceramics prepared for bio-medical applications include phosphate as well as silico-phosphate compositions. In vitro bio-compatibility/activity of these materials is discussed. The glass-ceramics used for the sealing application are lithium aluminium silicate (LAS) and lithium zinc silicate (LZS). The phase formation and some aspects of thermophysical properties and sealing are discussed.
Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes.
Chen, Hao Min; Maohua, Chen; Adams, Stefan
2015-07-07
In the search for fast lithium-ion conducting solids for the development of safe rechargeable all-solid-state batteries with high energy density, thiophosphates and related compounds have been demonstrated to be particularly promising both because of their record ionic conductivities and their typically low charge transfer resistances. In this work we explore a wide range of known and predicted thiophosphates with a particular focus on the cubic argyrodite phase with a robust three-dimensional network of ion migration pathways. Structural and hydrolysis stability are calculated employing density functional method in combination with a generally applicable method of predicting the relevant critical reaction. The activation energy for ion migration in these argyrodites is then calculated using the empirical bond valence pathway method developed in our group, while bandgaps of selected argyrodites are calculated as a basis for assessing the electrochemical window. Findings for the lithium compounds are also compared to those of previously known copper argyrodites and hypothetical sodium argyrodites. Therefrom, guidelines for experimental work are derived to yield phases with the optimum balance between chemical stability and ionic conductivity in the search for practical lithium and sodium solid electrolyte materials.
NASA Astrophysics Data System (ADS)
Liu, Kai; Ma, Jiang-Tao; Wang, Chang-An
2014-08-01
Garnet type electrolyte "Li6.5La3Ta0.5Zr1.5O12" (LLZTO) was prepared by conventional solid-state reaction in alumina crucibles and excess lithium salt (from 0% to 50 mol%) was added into the starting materials to investigate the effects of excess lithium salt on the property of LLZTO. SEM, XRD and AC impedance were used to determine the microstructure, phase formation and Li-ion conductivity. Cubic garnet with a minor second phase LiAlO2 in the grain boundary was obtained for the pellets with excess lithium salt. As the amount of excess lithium salt increased, more Al element diffused from alumina crucibles to LLZTO pellets and reacted with excess lithium salt to form liquid Li2O-Al2O3 phase in the grain boundary, which accelerated the pellets' densification and reduced lithium loss at a high temperature. Ionic conductivity of LLZTO pellets increased with the amount of excess lithium salt added and leveled off at ∼4 × 10-4 S cm-1 when lithium salt exceeded 30 mol%. The performance of Li-air batteries with hybrid electrolytes, using homemade LLZTO thin pellets as solid electrolytes, was investigated. The LLZTO thin pellet with more excess lithium salt in starting material had a higher density and resulted in better cell performance.
Catalytic activity in lithium-treated core–shell MoO x/MoS 2 nanowires
Cummins, Dustin R.; Martinez, Ulises; Kappera, Rajesh; ...
2015-09-22
Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoO x/MoS 2 core–shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechanism of H 2 evolution. The 1D nanowires exhibit significant improvement in H 2 evolution properties after lithiation, reducing the hydrogen evolution reaction (HER) onset potential by ~50 mV and increasing the generated current density by ~600%. The high electrochemical activity in the nanowires results from disruption of MoS 2 layersmore » in the outer shell, leading to increased activity and concentration of defect sites. This is in contrast to the typical mechanism of improved catalysis following lithium exfoliation, i.e., crystal phase transformation. As a result, these structural changes are verified by a combination of Raman and X-ray photoelectron spectroscopy (XPS).« less
NASA Astrophysics Data System (ADS)
Cheruku, Rajesh; Govindaraj, G.; Vijayan, Lakshmi
2017-12-01
The nanocrystalline lithium ferrite was synthesized by wet chemical methods such as solution combustion technique, sol-gel, and hydrothermal for a comparative study. Different characterization techniques like x-ray powder diffraction and thermal analysis were employed to confirm the structure and phase. Temperature-dependent Raman analysis was employed to classify the phonon modes associated with precise atomic motions existing in the synthesized materials. Morphology of sample surface was explored by scanning electron microscopy, and elemental analysis was done by energy dispersive spectroscopy analysis. The nanocrystalline nature of the materials was confirmed through transmission electron microscopy. Magnetic properties of these samples were explored through a vibrating sample magnetometer. Ac electrical impedance spectroscopy data were investigated using two Cole-Cole functions, and activation energies were calculated for all materials. Among them, solution combustion prepared lithium ferrite shows the highest conductivity and lowest activation energy.
de Araujo, Wallace Martins; Robbs, Bruno Kaufmann; Bastos, Lilian G; de Souza, Waldemir F; Vidal, Flávia C B; Viola, João P B; Morgado-Diaz, Jose A
2016-02-01
Lithium is a well-established non-competitive inhibitor of glycogen synthase kinase-3β (GSK-3β), a kinase that is involved in several cellular processes related to cancer progression. GSK-3β is regulated upstream by PI3K/Akt, which is negatively modulated by PTEN. The role that lithium plays in cancer is controversial because lithium can activate or inhibit survival signaling pathways depending on the cell type. In this study, we analyzed the mechanisms by which lithium can modulate events related to colorectal cancer (CRC) progression and evaluated the role that survival signaling pathways such as PI3K/Akt and PTEN play in this context. We show that the administration of lithium decreased the proliferative potential of CRC cells in a GSK-3β-independent manner but induced the accumulation of cells in G2/M phase. Furthermore, high doses of lithium increased apoptosis, which was accompanied by decreased proteins levels of Akt and PTEN. Then, cells that were induced to overexpress PTEN were treated with lithium; we observed that low doses of lithium strongly increased apoptosis. Additionally, PTEN overexpression reduced proliferation, but this effect was minor compared with that in cells treated with lithium alone. Furthermore, we demonstrated that PTEN overexpression and lithium treatment separately reduced cell migration, colony formation, and invasion, and these effects were enhanced when lithium treatment and PTEN overexpression were combined. In conclusion, our findings indicate that PTEN overexpression and lithium treatment cooperate to reduce the malignancy of CRC cells and highlight lithium and PTEN as potential candidates for studies to identify new therapeutic approaches for CRC treatment. © 2015 Wiley Periodicals, Inc.
Raman microscopy of lithium-manganese-rich transition metal oxide cathodes
Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; ...
2014-11-15
Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi 2MnO 3·(1-x)LiMO 2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopymore » is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.« less
Doeppner, Thorsten R; Kaltwasser, Britta; Sanchez-Mendoza, Eduardo H; Caglayan, Ahmet B; Bähr, Mathias; Hermann, Dirk M
2017-03-01
Lithium promotes acute poststroke neuronal survival, which includes mechanisms that are not limited to GSK3β inhibition. However, whether lithium induces long-term neuroprotection and enhanced brain remodeling is unclear. Therefore, mice were exposed to transient middle cerebral artery occlusion and lithium (1 mg/kg bolus followed by 2 mg/kg/day over up to 7 days) was intraperitoneally administered starting 0-9 h after reperfusion onset. Delivery of lithium no later than 6 h reduced infarct volume on day 2 and decreased brain edema, leukocyte infiltration, and microglial activation, as shown by histochemistry and flow cytometry. Lithium-induced neuroprotection persisted throughout the observation period of 56 days and was associated with enhanced neurological recovery. Poststroke angioneurogenesis and axonal plasticity were also enhanced by lithium. On the molecular level, lithium increased miR-124 expression, reduced RE1-silencing transcription factor abundance, and decreased protein deubiquitination in cultivated cortical neurons exposed to oxygen-glucose deprivation and in brains of mice exposed to cerebral ischemia. Notably, this effect was not mimicked by pharmacological GSK3β inhibition. This study for the first time provides efficacy data for lithium in the postacute ischemic phase, reporting a novel mechanism of action, i.e. increased miR-124 expression facilitating REST degradation by which lithium promotes postischemic neuroplasticity and angiogenesis.
Kaltwasser, Britta; Sanchez-Mendoza, Eduardo H; Caglayan, Ahmet B; Bähr, Mathias; Hermann, Dirk M
2016-01-01
Lithium promotes acute poststroke neuronal survival, which includes mechanisms that are not limited to GSK3β inhibition. However, whether lithium induces long-term neuroprotection and enhanced brain remodeling is unclear. Therefore, mice were exposed to transient middle cerebral artery occlusion and lithium (1 mg/kg bolus followed by 2 mg/kg/day over up to 7 days) was intraperitoneally administered starting 0–9 h after reperfusion onset. Delivery of lithium no later than 6 h reduced infarct volume on day 2 and decreased brain edema, leukocyte infiltration, and microglial activation, as shown by histochemistry and flow cytometry. Lithium-induced neuroprotection persisted throughout the observation period of 56 days and was associated with enhanced neurological recovery. Poststroke angioneurogenesis and axonal plasticity were also enhanced by lithium. On the molecular level, lithium increased miR-124 expression, reduced RE1-silencing transcription factor abundance, and decreased protein deubiquitination in cultivated cortical neurons exposed to oxygen–glucose deprivation and in brains of mice exposed to cerebral ischemia. Notably, this effect was not mimicked by pharmacological GSK3β inhibition. This study for the first time provides efficacy data for lithium in the postacute ischemic phase, reporting a novel mechanism of action, i.e. increased miR-124 expression facilitating REST degradation by which lithium promotes postischemic neuroplasticity and angiogenesis. PMID:27126323
Lithium Causes G2 Arrest of Renal Principal Cells
de Groot, Theun; Alsady, Mohammad; Jaklofsky, Marcel; Otte-Höller, Irene; Baumgarten, Ruben; Giles, Rachel H.
2014-01-01
Vasopressin-regulated expression and insertion of aquaporin-2 channels in the luminal membrane of renal principal cells is essential for urine concentration. Lithium affects urine concentrating ability, and approximately 20% of patients treated with lithium develop nephrogenic diabetes insipidus (NDI), a disorder characterized by polyuria and polydipsia. Lithium-induced NDI is caused by aquaporin-2 downregulation and a reduced ratio of principal/intercalated cells, yet lithium induces principal cell proliferation. Here, we studied how lithium-induced principal cell proliferation can lead to a reduced ratio of principal/intercalated cells using two-dimensional and three-dimensional polarized cultures of mouse renal collecting duct cells and mice treated with clinically relevant lithium concentrations. DNA image cytometry and immunoblotting revealed that lithium initiated proliferation of mouse renal collecting duct cells but also increased the G2/S ratio, indicating G2/M phase arrest. In mice, treatment with lithium for 4, 7, 10, or 13 days led to features of NDI and an increase in the number of principal cells expressing PCNA in the papilla. Remarkably, 30%–40% of the PCNA-positive principal cells also expressed pHistone-H3, a late G2/M phase marker detected in approximately 20% of cells during undisturbed proliferation. Our data reveal that lithium treatment initiates proliferation of renal principal cells but that a significant percentage of these cells are arrested in the late G2 phase, which explains the reduced principal/intercalated cell ratio and may identify the molecular pathway underlying the development of lithium-induced renal fibrosis. PMID:24408872
In situ optical microscopy of the martensitic phase transformation of lithium
NASA Astrophysics Data System (ADS)
Krystian, M.; Pichl, W.
2000-12-01
The phase transformation of lithium was investigated by in situ optical microscopy in a helium cryostat. The martensite microstructure is composed of irregular segments which grow in rapid bursts from many nuclei to a final size of 10 to 20 μm and then are immobilized. A major part of the segments is arranged in groups of parallel lamellas. A theoretical consideration of lattice compatibility predicts the existence of an almost perfectly coherent habit-plane interface between bcc and 9R in lithium. Therefore, the irregular microstructure is interpreted by the presence of the disordered polytype phase. Comparison with an earlier investigation in comparably impure lithium indicates a strong influence of impurities on the transformation mechanism. The connections between the low-temperature phase diagram, the geometrical compatibility condition, and the martensite microstructure are discussed.
Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa
2016-01-01
We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109
NASA Astrophysics Data System (ADS)
Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa
2016-06-01
We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.
Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers
Sun, Xiaoli
2017-01-01
Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide monolayers of the type MX2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W; X= S, Se, Te). The adsorption and diffusion of lithium on the stable MX2 phase was also investigated for potential application as an anode for lithium ion batteries. Some of these compounds were found to be stable in the 2H phase and some are in the 1T or 1T' phase, but only a few of them were stable in both 2H/1T or 2H/1T' phases. The results show that lithium is energetically favourable for adsorption on MX2 monolayers, which can be semiconductors with a narrow bandgap and metallic materials. Lithium cannot be adsorbed onto 2H-WS2 and 2H-WSe2, which have large bandgaps of 1.66 and 1.96 eV, respectively. The diffusion energy barrier is in the range between 0.17 and 0.64 eV for lithium on MX2 monolayers, while for most of the materials it was found to be around 0.25 eV. Therefore, this work illustrated that most of the MX2 monolayers explored in this work can be used as promising anode materials for lithium ion batteries. PMID:29354342
Development of a 300 Amp-hr high rate lithium thionyl chloride cell
NASA Technical Reports Server (NTRS)
Boyle, Gerard H.
1991-01-01
The development of a high-rate lithium thionyl chloride cylindrical cell with parallel plate electrodes is discussed. The development was divided into three phases: phase 1, a 150 Amp/hour low rate (1 mA/sq cm) design; phase 2, a 25 Amp/hour high rate (5 mA/sq cm) design; and phase 3, a 300 Amp/hour high rate (5 mA/sq cm) design. The basic design is the same for all three cells. The electrodes are perpendicular to the axis of the cylinder. Multiple electrodes are bussed up the side of the cylinder, 180 deg apart allowing excellent anode and cathode utilization. It is a lithium limited design with excess electrolyte. The cathode is Shawinigan or Gulf Acetylene black with no catalyst. The electrolyte is 1.8 Molar lithium tetrachloroaluminate (LiAlCl4) in thionyl chloride. All cell cases are 304L Stainless Steel with a BS&B burst disc.
NASA Astrophysics Data System (ADS)
Quesnel, François; Soucy, Gervais; Veilleux, Jocelyn; Hovington, Pierre; Zhu, Wen; Zaghib, Karim
The properties of lithium titanates anodes in Li-ion batteries are highly dependent on their secondary constituents. While their main phase is usually constituted of Li4Ti5O12, significant quantity of lithium titanates compounds of various stoichiometry are often present, due to either the processing, usage or aging of the material. These may go underreported, as many of these spectrums overlap or display low signal in X-ray diffraction (XRD). Samples of nanosized lithium titanates synthetized by inductive plasma were characterized by XRD and scanning electron microscopy (SEM), as they provide a regular yet typical crystallite size and shape including multiple phases. A Rietveld refinement was developed to extract the composition of these samples. Mass balance through further annealing and differential scanning calorimetry (DSC) enthalpy measurements from phase transformations were also used as identification and validation techniques.
Jiang, Fangming; Peng, Peng
2016-01-01
Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870
Technical Manual for Batteries, Navy Lithium Safety Program Responsibilities and Procedures
2004-08-19
lithium ion batteries and all equipment powered by lithium electrochemical power source(s) through all phases of the life of such systems. The purpose of this manual is to establish safety guidelines for the selection, design, testing, evaluation, use, packaging, storage, transportation and disposal of lithium
NASA Astrophysics Data System (ADS)
Zhou, Dong; Permien, Stefan; Rana, Jatinkumar; Krengel, Markus; Sun, Fu; Schumacher, Gerhard; Bensch, Wolfgang; Banhart, John
2017-02-01
Nano-crystalline NiFe2O4 particles were synthesized and used as active electrode material for a lithium ion battery that showed a high discharge capacity of 1534 mAh g-1 and charge capacity of 1170 mAh g-1 during the 1st cycle. X-ray absorption spectroscopy including XANES and EXAFS were used to investigate electronic and local structural changes of NiFe2O4 during the 1st lithiation and de-lithiation process. As lithium is inserted into the structure, tetrahedral site Fe3+ ions are reduced to Fe2+ and moved from tetrahedral sites to empty octahedral sites, while Ni2+ ions are unaffected. As a consequence, the matrix spinel structure collapses and transforms to an intermediate rock-salt monoxide phase. Meanwhile, the inserted Li is partially consumed by the formation of SEI and other side reactions during the conversion reaction. With further lithiation, the monoxide phase is reduced to highly disordered metallic Fe/Ni nanoparticles with a number of nearest neighbors of 6.0(8) and 8.1(4) for Fe and Ni, respectively. During subsequent de-lithiation, the metal particles are individually re-oxidized to Fe2O3 and NiO phases instead to the original NiFe2O4 spinel phase.
NASA Astrophysics Data System (ADS)
Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong
2015-06-01
Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g-1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g-1 at 0.1 C and 730 mAh g-1 at 5 C.
Electrodics: mesoscale physicochemical interactions in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Mukherjee, Partha P.; Chen, Chien-Fan
2014-06-01
Recent years have witnessed an explosion of interest and research endeavor in lithium-ion batteries to enable vehicle electrification. In particular, a critical imperative is to accelerate innovation for improved performance, life and safety of lithium-ion batteries for electric drive vehicles. Lithium ion batteries are complex, dynamical systems which include a multitude of coupled physicochemical processes encompassing electronic/ionic/diffusive transport in solid/electrolyte phases, electrochemical and phase change reactions and diffusion induced stress generation in multi-scale porous electrode microstructures. While innovations in nanomaterials and nanostructures have spurred the recent advancements, fundamental understanding of the electrode processing - microstructure - performance interplay is of paramount importance. In this presentation, mesoscale physicochemical interactions in lithium-ion battery electrodes will be elucidated.
NASA Astrophysics Data System (ADS)
Cussen, Edmund J.; Yip, Thomas W. S.; O'Neill, Gemma; O'Callaghan, Michael P.
2011-02-01
The structures of new phases Li 6CaLa 2Sb 2O 12 and Li 6.4Ca 1.4La 2Sb 2O 12 have been characterised using neutron powder diffraction. Rietveld analyses show that both compounds crystallise in the space group la3¯ d and contain the lithium cations in a complex arrangement with occupational disorder across oxide tetrahedra and distorted oxide octahedra, with considerable positional disorder in the latter. Variable temperature neutron diffraction experiments on Li 6.4Ca 1.4La 2Sb 2O 12 show the structure is largely invariant with only a small variation in the lithium distribution as a function of temperature. Impedance spectroscopy measurements show that the total conductivity of Li 6CaLa 2Sb 2O 12 is several orders of magnitude smaller than related lithium-stuffed garnets with σ=10 -7 S cm -1 at 95 °C and an activation energy of 0.82(3) eV. The transport properties of the conventional garnets Li 3Gd 3Te 2O 12, Li 3Tb 3Te 2O 12, Li 3Er 3Te 2O 12 and Li 3Lu 3Te 2O 12 have been evaluated and consistently show much lower values of conductivity, σ≤4.4×10 -6 S cm -1 at 285 °C and activation energies in the range 0.77(4)≤ Ea/eV≤1.21(3).
Rechargeable quasi-solid state lithium battery with organic crystalline cathode
Hanyu, Yuki; Honma, Itaru
2012-01-01
Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655
Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons.
Shah, S M; Patel, C H; Feng, A S; Kollmar, R
2013-10-01
The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and "wingless-related MMTV integration site" (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5-2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not prove lithium inhibiting glycogen synthase kinase 3 activity in spiral ganglion neurons. Experiments with additional drugs and molecular-genetic tools will be necessary to test whether glycogen synthase kinase 3 regulates neurite regeneration from spiral ganglion neurons, possibly by integrating neurotrophin and Wnt signals at the growth cone. Copyright © 2013 Elsevier B.V. All rights reserved.
Roberts, Matthew R; Madsen, Alex; Nicklin, Chris; Rawle, Jonathan; Palmer, Michael G; Owen, John R; Hector, Andrew L
2014-04-03
The phase changes that occur during discharge of an electrode comprised of LiFePO 4 , carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO 4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate.
Marakhova, I I; Sal'nikov, K V; Vinogradova, T A
1985-10-01
Rubidium and lithium influxes as well as intracellular potassium and sodium contents were investigated in L cells during the culture growth. In sparse culture over the cell densities 0.5-3 X 10(4) cells/cm2 ouabain-sensitive rubidium influx is small and ouabain-resistant lithium influx in high. With the increase in culture density up to 4-5 X 10(4) cells/cm2 the active rubidium influx, mediated by ouabain-sensitive component, is enhanced, and ion "leakage" tested by lithium influx is diminished. Simultaneously with the exponential growth of culture the intracellular potassium content is increased and the intracellular sodium content is decreased resulting in the higher K/Na ratio in cell. During the further transition to dense culture and in stationary state (10-17 X 10(4) cells/cm2) the sodium content and lithium influx do not change significantly, but the potassium content is decreased. The decrease in intracellular potassium is correlated with that in the portion of cells in S-phase from 27-30 to 12%. Thus, in transformed cells the density-dependent alterations in membrane cation transport are observed.
2014-01-01
The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate. PMID:24790684
NASA Astrophysics Data System (ADS)
Wang, Chun-Ming; Wang, Jin-Feng
2006-11-01
The piezoelectric properties of the lithium and cerium modified A-site vacancies sodium-potassium bismuth titanate (NKBT) lead-free piezoceramics are investigated. The piezoelectric activity of NKBT ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature TC, piezoelectric coefficient d33, and mechanical quality factor Qm for the NKBT ceramics modified with 0.10mol% (LiCe) are found to be 660°C, 25pC/N, and 3135, respectively. The Curie temperature gradually decreases from 675to650°C with the increase of (LiCe) modification. The dielectric spectroscopy shows that all the samples possess stable piezoelectric properties, demonstrating that the (LiCe) modified NKBT-based ceramics are the promising candidates for high temperature applications.
NASA Astrophysics Data System (ADS)
Wang, Yuxing; Lai, Wei
2015-02-01
High Li-content lithium garnet oxides are promising solid electrolyte materials for lithium batteries. Being the highest Li-content lithium garnet oxides, Li7La3Zr2O12 has been reported to crystallize in either the tetragonal or cubic phase with no consensus on the exact conditions under which these two phases are formed, which may be due to unintentional Al contamination and air exposure. In this work, the effects of Ta substitution and H2O/CO2 exposure have been studied under Al-contamination free conditions with minimal air exposure. We showed that 1) the Ta-substitution induced phase transition occurred through a two-phase mechanism and a minimum 0.6 mol of Ta substitution to Zr is needed to stabilize the cubic phase; 2) H2O and CO2 can individually induce the tetragonal-cubic phase transition in Li7La3Zr2O12 through proton exchange and Li extraction, respectively, which can have great influence on the transport properties of Li7La3Zr2O12.
Modeling Diffusion Induced Stresses for Lithium-Ion Battery Materials
NASA Astrophysics Data System (ADS)
Chiu Huang, Cheng-Kai
Advancing lithium-ion battery technology is of paramount importance for satisfying the energy storage needs in the U.S., especially for the application in the electric vehicle industry. To provide a better acceleration for electric vehicles, a fast and repeatable discharging rate is required. However, particle fractures and capacity loss have been reported under high current rate (C-rate) during charging/discharging and after a period of cycling. During charging and discharging, lithium ions extract from and intercalate into electrode materials accompanied with the volume change and phase transition between Li-rich phase and Li-poor phase. It is suggested that the diffusion-induced-stress is one of the main reasons causing capacity loss due to the mechanical degradation of electrode particles. Therefore, there is a fundamental need to provide a mechanistic understanding by considering the structure-mechanics-property interactions in lithium-ion battery materials. Among many cathode materials, the olivine-based lithium-iron-phosphate (LiFePO4) with an orthorhombic crystal structure is one of the promising cathode materials for the application in electric vehicles. In this research we first use a multiphysic approach to investigate the stress evolution, especially on the phase boundary during lithiation in single LiFePO4 particles. A diffusion-controlled finite element model accompanied with the experimentally observed phase boundary propagation is developed via a finite element package, ANSYS, in which lithium ion concentration-dependent anisotropic material properties and volume misfits are incorporated. The stress components on the phase boundary are used to explain the Mode I, Mode II, and Mode III fracture propensities in LiFePO4 particles. The elastic strain energy evolution is also discussed to explain why a layer-by-layer lithium insertion mechanism (i.e. first-order phase transformation) is energetically preferred. Another importation issue is how current rate (C-rate) during charging/discharging affects diffusion induced stresses inside electrode materials. For the experimental part we first conduct charging/discharging under different C-rates to observe the voltage responses for commercial LiFePO4 batteries. Then Time-of-Flight Secondary Ion Mass Spectrometry technique is applied to measure the lithium ion intensities in different C-rate charged/discharged samples. These experimental results could be used to support that a more significant voltage fluctuation under high C-rates is due to different lithium insertion mechanisms, rather than the amount of lithium ions intercalated into electrode materials. Thus the investigation of C-rate-dependent stress evolution is required for the development of a more durable lithium ion battery. In this dissertation, we extend the single particle finite element model to investigate the C-rate-dependent diffusion induced stresses in a multi-particle system. Concentration dependent anisotropic material properties, C-rate-dependent volume misfits and concentration dependent Li-ion diffusivity are incorporated in the model. The concentration gradients, diffusion induced stresses, and strain energies under different C-rates are discussed in this study. Particle fractures have been observed in many experimental results, in this study we further discuss the effect of the crack surface orientation on the lithium concentration profile and stress level in cathode materials. The results of this dissertation provide a better understanding of diffusion induced stresses in electrode materials and contribute to our fundamental knowledge of interplay between lithium intercalations, stress evolutions, particle fractures and the capacity fade in lithium-ion batteries.
Combined effects of lithium and borate ions on the hydration of calcium sulfoaluminate cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr; Dhoury, Mélanie; Champenois, Jean-Baptiste
This work investigates the combined influence of borate and lithium ions on the hydration of two calcium sulfoaluminate (CSA) cements containing 0 or 10 wt% gypsum. On the one hand, borates are known to retard CSA cement hydration due to the rapid precipitation of ulexite. On the other hand, lithium ions accelerate CSA cement hydration thanks to the fast precipitation of Li-containing aluminum hydroxide. When borates and lithium are present simultaneously, these two mechanisms are superimposed. With a gypsum-free cement, a third process is additionally observed: lithium promotes the initial precipitation of a borated AFm phase which is later convertedmore » into a borated AFt phase when hydration accelerates. Lithium salts can counteract the retardation by sodium borate. However, their influence is limited once a sufficient amount of Li-containing Al(OH){sub 3} seeds is formed. For the CSA cements under investigation, the threshold lithium concentration is close to 0.03 mmol/g of cement and similar with or without borate.« less
Overcharge tolerant high-temperature cells and batteries
Redey, Laszlo; Nelson, Paul A.
1989-01-01
In a lithium-alloy/metal sulfide high temperature electrochemical cell, cell damage caused by overcharging is avoided by providing excess lithium in a high-lithium solubility phase alloy in the negative electrode and a specified ratio maximum of the capacity of a matrix metal of the negative electrode in the working phase to the capacity of a transition metal of the positive electrode. In charging the cell, or a plurality of such cells in series and/or parallel, chemical transfer of elemental lithium from the negative electrode through the electrolyte to the positive electrode provides sufficient lithium to support an increased self-charge current to avoid anodic dissolution of the positive electrode components above a critical potential. The lithium is subsequently electrochemically transferred back to the negative electrode in an electrochemical/chemical cycle which maintains high self-discharge currents on the order of 3-15 mA/cm.sup.2 in the cell to prevent overcharging.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Fan, Guodong; Pan, Ke; Wei, Guo; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
The design of a lumped parameter battery model preserving physical meaning is especially desired by the automotive researchers and engineers due to the strong demand for battery system control, estimation, diagnosis and prognostics. In light of this, a novel simplified fractional order electrochemical model is developed for electric vehicle (EV) applications in this paper. In the model, a general fractional order transfer function is designed for the solid phase lithium ion diffusion approximation. The dynamic characteristics of the electrolyte concentration overpotential are approximated by a first-order resistance-capacitor transfer function in the electrolyte phase. The Ohmic resistances and electrochemical reaction kinetics resistance are simplified to a lumped Ohmic resistance parameter. Overall, the number of model parameters is reduced from 30 to 9, yet the accuracy of the model is still guaranteed. In order to address the dynamics of phase-change phenomenon in the active particle during charging and discharging, variable solid-state diffusivity is taken into consideration in the model. Also, the observability of the model is analyzed on two types of lithium ion batteries subsequently. Results show the fractional order model with variable solid-state diffusivity agrees very well with experimental data at various current input conditions and is suitable for electric vehicle applications.
Vargas, Cristian; Pineda, Julián; Calvo, Víctor; López-Jaramillo, Carlos
2014-01-01
As there are still doubts about brain connectivity in type I bipolar disorder (BID), resting-state functional magnetic resonance imaging (RS-fMRI) studies are necessary during euthymia for a better control of confounding factors. To evaluate the differences in brain activation between euthymic BID patients and control subjects using resting state- functional-magnetic resonance imaging (RS-fMRI), and to identify the lithium effect in these activations. A cross-sectional study was conducted on 21 BID patients (10 receiving lithium only, and 11 non-medicated) and 12 healthy control subjects, using RS fMRI and independent component analysis (ICA). Increased activation was found in the right hippocampus (P=.049) and posterior cingulate (P=.040) within the Default Mode Network (DMN) when BID and control group were compared. No statistically significant differences were identified between BID on lithium only therapy and non-medicated BID patients. The results suggest that there are changes in brain activation and connectivity in BID even during euthymic phase and mainly within the DMN network, which could be relevant in affect regulation. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Investigation Of A Tin-Lithium Alloy As A Liquid Plasma-Facing Material
NASA Astrophysics Data System (ADS)
Sandefur, Heather; Ruzic, David; Kolasinski, Robert; Buchenauer, Dean; Sandia National Laboratories Collaboration; University of Illinois Collaboration
2017-10-01
Sn-Li is a low melting-point alloy that has been identified as a material with favorable performance in plasma material interaction studies. While lithium is a low Z material with a demonstrated ability to absorb impinging ions, pure lithium is plagued by high evaporation rates in the liquid phase. The Sn-Li alloy is a more stable alternative that provides a lower rate of evaporative flux due to the high vapor pressure of tin. In the liquid phase, the bulk segregation of lithium to the surface of the material has also been observed. While the alloy is of considerable interest, little data has been collected on its surface chemistry in a plasma environment. In order to expand the existing body of knowledge in this area, samples of an 80 percent Sn-20 percent Li alloy were prepared and analyzed in order to assess the surface composition and degree of lithium segregation in the liquid phase. The Angle-Resolved Ion Energy Spectrometer (ARIES) at Sandia National Laboratories was used to probe the surfaces of the alloy using the low energy ion scattering method. The lithium coverage at the surface was measured, and the material's affinity for hydrogen chemisorption was investigated.
Jin, Yi-Chun; Duh, Jenq-Gong
2016-02-17
This study is aimed to explore the effect of fluoride doping and the associated structural transformation on lithium-rich layered cathode materials. The polymeric fluoride source is first adopted for synthesizing lithium intercalated oxide through a newly developed organic precipitation process. A heterostructured spinel/layered composite cathode material is obtained after appreciable fluorination and a superior rate capability is successfully achieved. The fluoride dopant amount and the surface spinel phase are evidenced and systematically examined by various structural spectroscopy and electrochemical analysis. It appears the reversible Ni(2+/4+) redox couple at high voltage regime around 4.8 V because of the formation of spinel LiNi1/2Mn3/2O4 phase. The mechanism of "layer to spinel" phase transformation is discussed in detail.
Taliyan, Rajeev; Ramagiri, Sruthi
2016-08-01
Numerous studies have demonstrated the possible neuroprotective role of lithium treatment against neurological disorders. However, the role of lithium in delayed phase of neuronal death against focal ischemia has not been explored. Therefore, the present study was designed to investigate the effect and molecular mechanisms of post-lithium treatment against cerebral ischemic reperfusion (I/R) injury and associated cognitive deficits in rats. I/R injury was induced by right middle cerebral artery occlusion and lithium (40 and 60 mg/kg) were given intraperitoneally, 24 h after the insult and continued for 1 week with 24-h interval. Using Lasser Doppler, cerebral blood flow was monitored before, during and after MCAO induction. Besides behavioral, biochemical, and histological evaluation, levels of tumor necrosis factor alpha (TNF-α) and brain-derived neurotrophic factor (BDNF) were also estimated. I/R injury resulted in significant elevation of neurological deficits, oxidative stress, neuroinflammation, and cognitive impairments. We found that lithium injection, 24 h after I/R-injury continued for 1 week, dose dependently prevented behavioral abnormality and cognitive impairments. Moreover, lithium attenuated the levels of oxidative stress and pro-inflammatory-cytokines TNF-α level. Further, lithium treatments significantly reduced neuronal damage and augmented healthy neuronal count and improved neuronal density in hippocampus. These neuroprotective effects of delayed lithium treatment were associated with upregulation of neurotrophic factor BDNF levels. Delayed lithium treatment provides neuroprotection against cerebral I/R injury and associated cognitive deficits by upregulating BDNF expression that opens a new avenue to treat I/R injury even after active cell death.
PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL
Moore, R.H.
1964-03-24
A process of recovering plutonium from fuel by dissolution in molten KAlCl/sub 4/ double salt is described. Molten lithium chloride plus stannous chloride is added to reduce plutonium tetrachloride to the trichloride, which is dissolved in a lithium chloride phase while the uranium, as the tetrachloride, is dissolved in a double-salt phase. Separation of the two phases is discussed. (AEC)
Sustainability Impact of Nanomaterial Enhanced Lithium Ion Batteries
NASA Astrophysics Data System (ADS)
Ganter, Matthew
Energy storage devices are becoming an integral part of sustainable energy technology adoption, particularly, in alternative transportation (electric vehicles) and renewable energy technologies (solar and wind which are intermittent). The most prevalent technology exhibiting near-term impact are lithium ion batteries, especially in portable consumer electronics and initial electric vehicle models like the Chevy Volt and Nissan Leaf. However, new technologies need to consider the full life-cycle impacts from material production and use phase performance to the end-of-life management (EOL). This dissertation investigates the impacts of nanomaterials in lithium ion batteries throughout the life cycle and develops strategies to improve each step in the process. The embodied energy of laser vaporization synthesis and purification of carbon nanotubes (CNTs) was calculated to determine the environmental impact of the novel nanomaterial at beginning of life. CNTs were integrated into lithium ion battery electrodes as conductive additives, current collectors, and active material supports to increase power, energy, and thermal stability in the use phase. A method was developed to uniformly distribute CNT conductive additives in composites. Cathode composites with CNT additives had significant rate improvements (3x the capacity at a 10C rate) and higher thermal stability (40% reduction in exothermic energy released upon overcharge). Similar trends were also measured with CNTs in anode composites. Advanced free-standing anodes incorporating CNTs with high capacity silicon and germanium were measured to have high capacities where surface area reduction improved coulombic efficiencies and thermal stability. A thermal stability plot was developed that compares the safety of traditional composites with free-standing electrodes, relating the results to thermal conductivity and surface area effects. The EOL management of nanomaterials in lithium ion batteries was studied and a novel recycling technique, referred to as refunctionalization , for lithium ion cathode materials was developed. Refunctionalization is the treatment of active materials in order to regain electrochemical performance at EOL which eliminates the need to recycle to the elemental level and can lead to greater environmental and economic savings. The lithium ion capacity of EOL lithium iron phosphate (LiFePO4) nanomaterial cathode was regained through chemical and electrochemical re-lithiation techniques. The embodied energy of refunctionalized LiFePO4 was calculated to be 50% less than cathode synthesized from virgin materials. Overall, these results contribute to an improved understanding of the life cycle impacts for nanomaterials in batteries. The CNT embodied energy calculation established the first life cycle inventory for laser vaporization CNTs, whereas the novel refunctionalization strategies established a new EOL pathway to recover cathodes at a higher value state than traditional recycling. At the same time, CNT enhanced battery electrodes increased power and energy in the use phase while demonstrating the unique ability to engineer electrodes to control thermal stability, which enables better performing and safer batteries.
Pezzato, Fernanda A.; Can, Adem; Hoshino, Katsumasa; Horta, José de Anchieta C.; Mijares, Miriam G.
2014-01-01
Rationale Alterations in brainstem circuits have been proposed as a possible mechanism underlying the etiology of mood disorders. Projections from the median raphe nucleus (MnR) modulate dopaminergic activity in the forebrain and are also part of a behavioral disinhibition/inhibition system that produces phenotypes resembling behavioral variations manifested during manic and depressive phases of bipolar disorder. Objective Assess the effect of chronic lithium treatment on behavioral disinhibition induced by MnR lesions. Methods MnR electrolytic lesions were performed in C57BL/6J mice, with sham operated and intact animals as control groups. Following recovery, mice were chronically treated with lithium (LiCl, added in chow) followed by behavioral testing. Results MnR lesion induced manic-like behavioral alterations including hyperactivity in the open field (OF), stereotyped circling, anxiolytic/risk taking in the elevated plus maze (EPM) and light/dark box (LDB) tests, and increased basal body temperature. Lithium was specifically effective in reducing OF hyperactivity and stereotypy but did not reverse (EPM) or had a nonspecific effect (LDB) on anxiety/risk taking measures. Additionally, lithium decreased saccharin preference and prevented weight loss during single housing. Conclusions Our data support electrolytic lesions of the MnR as an experimental model of a hyper-excitable/disinhibited phenotype consistent with some aspects of mania that are attenuated by the mood stabilizer lithium. Given lithium’s relatively specific efficacy in treating mania, these data support the hypothesis that manic symptoms derive not only from the stimulation of excitatory systems but also from inactivation or decreased activity of inhibitory mechanisms. PMID:25345734
Equation of state and electron localisation in fcc lithium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frost, Mungo; Levitan, Abraham L.; Sun, Peihao
We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.
Equation of state and electron localisation in fcc lithium
Frost, Mungo; Levitan, Abraham L.; Sun, Peihao; ...
2018-02-14
We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prosini, Pier Paolo, E-mail: pierpaolo.prosini@enea.it; Gislon, Paola; Cento, Cinzia
Graphical abstract: - Highlights: • Four different samples of FAP were synthesized by precipitation techniques. • The samples were used as precursors to synthesize electrochemical active LiFePO{sub 4}. • Their morphology, composition, structure and electrochemical performance were studied. • The LiFePO{sub 4} electrochemical performance resulted affected by the preparation method - Abstract: In this paper the morphological, structural and electrochemical properties of crystalline lithium iron phosphate (LiFePO{sub 4}) obtained from ferrous ammonium phosphate (FAP) have been studied. The FAP was obtained following four different processes, namely: (1) homogeneous phase precipitation, (2) heterogeneous phase precipitation from stoichiometric sodium phosphate, (3) heterogeneousmore » phase precipitation from stoichiometric ammonium phosphate, and (4) heterogeneous phase precipitation from over stoichiometric ammonium phosphate. Lithium iron phosphate was prepared by solid state reaction of FAP with lithium hydroxide. In order to evaluate the effect of reaction time and synthesis temperature the LiFePO{sub 4} was prepared varying the heating temperatures (550, 600 and 700 °C) and the reaction times (1 or 2 h). The morphology of the materials was evaluated by scanning electron microscopy while the chemical composition was determined by electron energy loss spectroscopy. X-ray diffraction was used to evaluate phase composition, crystal structure and crystallite size. The so obtained LiFePO{sub 4}'s were fully electrochemical characterized and a correlation was found between the crystal size and the electrochemical performance.« less
NASA Astrophysics Data System (ADS)
Liu, Xingang; Fu, Ju; Zhang, Chuhong
2016-12-01
A simple and practicable evaporation-induced self-assembly (EISA) method is introduced for the first time to prepare nanosized solid electrolyte Li1.4Al0.4Ti1.6(PO4)3 (LATP) for all-solid-state lithium-ion batteries. A pure Na+ super ion conductor (NASICON) phase is confirmed by X-ray diffraction (XRD) analysis, and its primary particle size is down to 70 nm by optimizing evaporation rate of the solvent. Excellent room temperature bulk and total lithium-ion conductivities of 2.09 × 10-3 S cm-1 and 3.63 × 10-4 S cm-1 are obtained, with an ion-hopping activation energy as low as 0.286 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com; Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050; Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp
2013-10-15
A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less
NASA Astrophysics Data System (ADS)
Brant, William R.; Li, Dan; Gu, Qinfen; Schmid, Siegbert
2016-01-01
A comparative study of ex-situ and operando X-ray diffraction techniques using the fast lithium ion conductor Li0.18Sr0.66Ti0.5Nb0.5O3 is presented. Ex-situ analysis of synchrotron X-ray diffraction data suggests that a single phase material exists for all discharges to as low as 0.422 V. For samples discharged to 1 V or lower, i.e. with higher lithium content, it is possible to determine the lithium position from the X-ray data. However, operando X-ray diffraction from a coin cell reveals that a kinetically driven two phase region occurs during battery cycling below 1 V. Through monitoring the change in unit cell dimension during electrochemical cycling the dynamics of lithium insertion are explored. A reduction in the rate of unit cell expansion of 22(2)% part way through the first discharge and 13(1)% during the second discharge is observed. This reduction may be caused by a drop in lithium diffusion into the bulk material for higher lithium contents. A more significant change is a jump in the unit cell expansion by 60(2)% once the lithium content exceeds one lithium ion per vacant site. It is suggested that this jump is caused by damping of octahedral rotations, thus establishing a link between lithium content and octahedral rotations.
Novel multi-telescopes beam combiners for next generation instruments (FIRST/SUBARU)
NASA Astrophysics Data System (ADS)
Martin, G.; Pugnat, T.; Gardillou, F.; Cassagnettes, C.; Barbier, D.; Guyot, C.; Hauden, J.; Huby, E.; Lacour, S.
2016-07-01
Integrated optic devices are nowadays achieving extremely good performances in the field of astronomical interferometry, as shown by PIONIER or GRAVITY silica/silicon-based instruments, already installed at VLTI. In order to address other wavelengths, increase the number of apertures to be combined and eventually ensure on-chip phase modulation, we are working on a novel generation of beam combiners, based on the hybridization of glass waveguides, that can ensure very sharp bend radius, high confinement and low propagation losses, together with lithium niobate phase modulators and channel waveguides that can achieve on-chip, fast (<100kHz) phase modulation. The work presented here has been realized in collaboration with our technological partners TeemPhotonics for glass waveguides and iXBlue-PSD for lithium niobate phase modulators. We will present our results on a hybrid glass/niobate (passive/active) beam combiner that has been developed in the context of FIRST/SUBARU 9T beam combiner. The combiner is structured in three parts: a) the first stage (passive glass) achieves beam splitting from one input to eight outputs, and that for nine input fibers coming from the sub-apertures of the Subaru telescope; b) the second stage consists on a 72 channel waveguides lithium niobate phase modulator in a push-pull configuration that allows to modify on-chip the relative phase between the 36 pairs of waveguides; c) a final recombination system of Y-junctions (passive glass) that allows to obtain combination of each input to every other one. The aim of this presentation is to discuss different issues of the combiners, such as transmission, birefringence, half-wave voltage modulation and spectral range.
Buck, Otto; Bracci, David J.; Jiles, David C.; Brasche, Lisa J. H.; Shield, Jeffrey E.; Chumbley, Leonard S.
1990-08-07
A method is disclosed for detecting the T.sub.1 phase in aluminum-lithium alloys through simultaneous measurement of conductivity and hardness. In employing eddy current to measure conductivity, when the eddy current decreases with aging of the alloy, while the hardness of the material continues to increase, the presence of the T.sub.1 phase may be detected.
Chen, Min; Chen, Dongrui; Liao, Youhao; Zhong, Xiaoxin; Li, Weishan; Zhang, Yuegang
2016-02-01
Nanolayered lithium-rich oxide doped with spinel phase is synthesized by acidic sucrose-assistant sol-gel combustion and evaluated as the cathode of a high-energy-density lithium ion battery. Physical characterizations indicate that the as-synthesized oxide (LR-SN) is composed of uniform and separated nanoparticles of about 200 nm, which are doped with about 7% spinel phase, compared to the large aggregated ones of the product (LR) synthesized under the same condition but without any assistance. Charge/discharge demonstrates that LR-SN exhibits excellent rate capability and cyclic stability: delivering an average discharge capacity of 246 mAh g(-1) at 0.2 C (1C = 250 mA g(-1)) and earning a capacity retention of 92% after 100 cycles at 4 C in the lithium anode-based half cell, compared to the 227 mA g(-1) and the 63% of LR, respectively. Even in the graphite anode-based full cell, LR-SN still delivers a capacity of as high as 253 mAh g(-1) at 0.1 C, corresponding to a specific energy density of 801 Wh kg(-1), which are the best among those that have been reported in the literature. The separated nanoparticles of the LR-SN provide large sites for charge transfer, while the spinel phase doped in the nanoparticles facilitates lithium ion diffusion and maintains the stability of the layered structure during cycling.
Rawlence, M; Filippin, A N; Wäckerlin, A; Lin, T-Y; Cuervo-Reyes, E; Remhof, A; Battaglia, C; Rupp, J L M; Buecheler, S
2018-04-25
Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li 7 La 3 Zr 2 O 12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li 7-3 x Ga x La 3 Zr 2 O 12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li 7-3 x Ga x La 3 Zr 2 O 12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10 -5 S cm -1 at 30 °C. We also note the formation of cubic Li 7 La 3 Zr 2 O 12 at the relatively low temperature of 500 °C.
Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr
2015-01-01
Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4. PMID:26345306
Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr
2015-09-08
Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4.
Hum, D S; Route, R K; Fejer, M M
2007-04-15
Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25 degrees -rotated, x-cut, near-stoichiometric lithium tantalate has been performed. Using a face-normal topology for frequency conversion applications allows scalable surface area to avoid surface and volume damage in high-power interactions. First-order, quasi-phase-matched second-harmonic generation was achieved using near-stoichiometric lithium tantalate fabricated by vapor transport equilibration. These crystals supported 1 J of 1064 nm radiation and generated 21 mJ of 532 nm radiation from a 7 ns, Q-switched Nd:YAG laser within a factor of 4.2 of expectation.
Scientific opportunities at SARAF with a liquid lithium jet target neutron source
NASA Astrophysics Data System (ADS)
Silverman, Ido; Arenshtam, Alex; Berkovits, Dan; Eliyahu, Ilan; Gavish, Inbal; Grin, Asher; Halfon, Shlomi; Hass, Michael; Hirsh, T. Y.; Kaizer, Boaz; Kijel, Daniel; Kreisel, Arik; Mardor, Israel; Mishnayot, Yonatan; Palchan, Tala; Perry, Amichay; Paul, Michael; Ron, Guy; Shimel, Guy; Shor, Asher; Tamim, Noam; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo
2018-05-01
SARAF (Soreq Applied Research Accelerator Facility) is based on a 5 mA, 40 MeV, proton/deuteron accelerator. Phase-I, operational since 2010, provides proton and deuteron beams up to 4 and 5 MeV, respectively, for basic and applied research activities. The high power Liquid-Lithium jet Target (LiLiT), with 1.912 MeV proton beam, provides high flux quasi-Maxwellian neutrons at kT 30 keV (about 2 × 1010 n/s/cm2/mA on the irradiated sample, about 1 cm from the target), enabling studies of s-process reactions relevant to nucleo-synthesis of the heavy elements in giant AGB stars. With higher energy proton beams and with deuterons, LiLiT can provide higher fluxes of high energy neutrons up to 20 MeV. The experimental program with SARAF phase-I will be enhanced shortly with a new target room complex which is under construction. Finally, SARAF phase-II, planned to start operation at 2023, will enable full capabilities with proton/ deuteron beams at 5 mA and 40 MeV. Liquid lithium targets will then be used to produce neutron sources with intensities of 1015 n/s, which after thermalization will provide thermal neutron (25 meV) fluxes of about 1012 n/s/cm2 at the entrance to neutron beam lines to diffraction and radiography stations.
Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Jacqmin, David A.
1998-01-01
Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.
Solution based synthesis of mixed-phase materials in the Li2TiO3-Li4SiO4 system
NASA Astrophysics Data System (ADS)
Hanaor, Dorian A. H.; Kolb, Matthias H. H.; Gan, Yixiang; Kamlah, Marc; Knitter, Regina
2015-01-01
As candidate tritium breeder materials for use in the ITER helium cooled pebble bed, ceramic multiphasic compounds lying in the region of the quasi-binary lithium metatitanate-lithium orthosilicate system may exhibit mechanical and physical advantages relative to single phase materials. Here we present an organometallic solution-based synthesis procedure for the low-temperature fabrication of compounds in the Li2TiO3-Li4SiO4 region and investigate phase stability and transformations through temperature varied X-ray diffraction and scanning calorimetry. Results demonstrate that the metatitanate and metasilicate phases Li2TiO3 and Li2SiO3 readily crystallise in nanocrystalline form at temperatures below 180 °C. Lithium deficiency in the region of 5% results from Li sublimation from Li4SiO4 and/or from excess Li incorporation in the metatitanate phase and brings about a stoichiometry shift, with product compounds exhibiting mixed lithium orthosilicate/metasilicate content towards the Si rich region and predominantly Li2TiO3 content towards the Ti rich region. Above 1150 °C the transformation of monoclinic to cubic γ-Li2TiO3 disordered solid-solution occurs while the melting of silicate phases indicates a likely monotectic type system with a solidus line in the region 1050-1100 °C. Synthesis procedures involving a lithium chloride precursor are not likely to be a viable option for breeder pebble synthesis as this route was found to yield materials with a more significant Li-deficiency exhibiting the crystallisation of the Li2TiSiO5 phase at intermediate compositions.
Jahng, Jeong Won; Lee, Jong-Ho
2015-12-05
Intraperitoneal injections (ip) of lithium chloride at large doses induce c-Fos expression in the brain regions implicated in conditioned taste aversion (CTA) learning, and also activate the hypothalamic-pituitary-adrenal (HPA) axis and increase the plasma corticosterone levels in rats. A pharmacologic treatment blunting the lithium-induced c-Fos expression in the brain regions, but not the HPA axis activation, induced CTA formation. Synthetic glucocorticoids at conditioning, but not glucocorticoid antagonist, attenuated the lithium-induced CTA acquisition. The CTA acquisition by ip lithium was not affected by adrenalectomy regardless of basal corticosterone supplement, but the extinction was delayed in the absence of basal corticosterone. Glucocorticoids overloading delayed the extinction memory formation of lithium-induced CTA. ip lithium consistently induced the brain c-Fos expression, the HPA activation and CTA formation regardless of the circadian activation of the HPA axis. Intracerebroventricular (icv) injections of lithium at day time also increased the brain c-Fos expression, activated the HPA axis and induced CTA acquisition. However, icv lithium at night, when the HPA axis shows its circadian activation, did not induce CTA acquisition nor activate the HPA axis, although it increased the brain c-Fos expression. These results suggest that the circadian activation of the HPA axis may affect central, but not peripheral, effect of lithium in CTA learning in rats, and the HPA axis activation may be necessary for the central effect of lithium in CTA formation. Also, glucocorticoids may be required for a better extinction; however, increased glucocorticoids hinder both the acquisition and the extinction of lithium-induced CTA. Copyright © 2015. Published by Elsevier B.V.
Correlating Local Structure with Electrochemical Activity in L i2MnO 3
Nanda, Jagjit; Sacci, Robert L.; Veith, Gabriel M.; ...
2015-07-31
Li 2MnO 3 is of interest as one component of the composite lithium-rich oxides, which are under development for high capacity, high voltage cathodes in lithium ion batteries. Despite such practical importance, the mechanism of electrochemical activity in Li 2MnO 3 is contested in the literature, as are the effects of long-term electrochemical cycling. Here, Raman spectroscopy and mapping are used to follow the chemical and structural changes that occur in Li 2MnO 3. Both conventional slurry electrodes and thin films are studied as a function of the state of charge (voltage) and cycle number. Thin films have similar electrochemicalmore » properties as electrodes prepared from slurries, but allow for spectroscopic investigations on uniform samples without carbon additives. Spectral changes correlate well with electrochemical activity and support a mechanism whereby capacity is lost upon extended cycling due to the formation of new manganese oxide phases. Raman mapping of both thin film and slurry electrodes charged to different voltages reveals significant variation in the local structure. Poor conductivity and slow kinetics associated with a two-phase reaction mechanism contribute to the heterogeneity.« less
Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes
NASA Astrophysics Data System (ADS)
Pröll, J.; Kohler, R.; Bruns, M.; Oberst, V.; Weidler, P. G.; Heißler, S.; Kübel, C.; Scherer, T.; Prang, R.; Seifert, H. J.; Pfleging, W.
2013-03-01
The increasing need for long-life lithium-ion batteries requires the further development of electrode materials. Especially on the cathode side new materials or material composites are needed to increase the cycle lifetime. On the one hand, spinel-type lithium manganese oxide is a promising candidate to be used as cathode material due to its non-toxicity, low cost and good thermal stability. On the other hand, the spinel structure suffers from change in the oxidation state of manganese during cycling which is also accompanied by loss of active material into the liquid electrolyte. The general trend is to enhance the active surface area of the cathode in order to increase lithium-ion mobility through the electrode/electrolyte interface, while an enhanced surface area will also promote chemical degradation. In this work, laser microstructuring of lithium manganese oxide thin films was applied in a first step to increase the active surface area. This was done by using 248 nm excimer laser radiation and chromium/quartz mask imaging techniques. In a second step, high power diode laser-annealing operating at a wavelength of 940 nm was used for forming a cubic spinel-like battery phase. This was verified by means of Raman spectroscopy and cyclic voltammetric measurements. In a last step, the laser patterned thin films were coated with indium tin oxide (ITO) layers with a thickness of 10 nm to 50 nm. The influence of the 3D surface topography as well as the ITO thickness on the electrochemical performance was studied by cyclic voltammetry. Post-mortem studies were carried out by using scanning electron microscopy and focused ion beam analysis.
Observations of the freeze/thaw performance of lithium fluoride by motion picture photography
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Perry, W. D.
1991-01-01
To gain direct observation of the molten salt phase change, a novel containerless technique was developed where the high surface tension of lithium fluoride was used to suspend a bead of the molten salt inside a specially designed wire cage. By varying the current passing through the wire, the cage also served as a variable heat source. In this way, the freeze/thaw performance of the lithium fluoride could be photographed by motion picture photography without the influence of container walls. The motion picture photography of the lithium fluoride sample revealed several zones during the phase change, a solid zone and a liquid zone, as expected, and a slush zone that was predicted by thermal analysis modeling.
Lattice softening in body-centered-cubic lithium-magnesium alloys
NASA Astrophysics Data System (ADS)
Winter, I. S.; Tsuru, T.; Chrzan, D. C.
2017-08-01
A first-principles investigation of the influence of lattice softening on lithium-magnesium alloys near the body-centered-cubic (bcc)/hexagonal close-packed (hcp) transition composition is presented. Results show that lithium-magnesium alloys display a softening of the shear modulus C11-C12 , and an acoustic phonon branch between the Γ and N high symmetry points, as the composition approaches the stability limit for the bcc phase. This softening is accompanied by an increase in the size of the dislocation core region. Ideal tensile strength calculations predict that ordered phases of lithium-magnesium alloys are intrinsically brittle. Methods to make the alloys more ductile are discussed, and the propensity for these alloys to display gum-metal-like behavior is assessed.
Zhou, Jigang; Wang, Jian; Hu, Yongfeng; Lu, Mi
2017-11-15
The nanoscale interfacial inhomogeneity in a cycled large-format LiFePO 4 (LFP) composite electrode has been studied by X-ray photoemission electron microscopy at single particle spatial resolution with a probe depth of ∼5 nm. The loss of active lithium in cycled LFP causes the coexsitence of fully delithiated LFP (FePO 4 ) and partially delithiated LFP (Li 0.6 FePO 4 or Li 0.8 FePO 4 ) as a function of the extent of lithium loss. The distribution of various lithium loss phases along with local agglomeration of LFP and degradation of binder and carbon black are correlatively visualized. This is the first experimental exploration of chemical interplay between components in the composite electrode from a large-format battery, and implications on the LFP degradation in this battery are discussed.
Development of Thin-Film Battery Powered Transdermal Medical Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, J.B.; Sein, T.
1999-07-06
Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-filmmore » battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.« less
Liu, Xingang; Fu, Ju; Zhang, Chuhong
2016-12-01
A simple and practicable evaporation-induced self-assembly (EISA) method is introduced for the first time to prepare nanosized solid electrolyte Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 (LATP) for all-solid-state lithium-ion batteries. A pure Na + super ion conductor (NASICON) phase is confirmed by X-ray diffraction (XRD) analysis, and its primary particle size is down to 70 nm by optimizing evaporation rate of the solvent. Excellent room temperature bulk and total lithium-ion conductivities of 2.09 × 10 -3 S cm -1 and 3.63 × 10 -4 S cm -1 are obtained, with an ion-hopping activation energy as low as 0.286 eV.
Gao, Peng; Wang, Liping; Zhang, Yu-Yang; Huang, Yuan; Liao, Lei; Sutter, Peter; Liu, Kaihui; Yu, Dapeng; Wang, En-Ge
2016-09-14
In the rechargeable lithium ion batteries, the rate capability and energy efficiency are largely governed by the lithium ion transport dynamics and phase transition pathways in electrodes. Real-time and atomic-scale tracking of fully reversible lithium insertion and extraction processes in electrodes, which would ultimately lead to mechanistic understanding of how the electrodes function and why they fail, is highly desirable but very challenging. Here, we track lithium insertion and extraction in the van der Waals interactions dominated SnS2 by in situ high-resolution TEM method. We find that the lithium insertion occurs via a fast two-phase reaction to form expanded and defective LiSnS2, while the lithium extraction initially involves heterogeneous nucleation of intermediate superstructure Li0.5SnS2 domains with a 1-4 nm size. Density functional theory calculations indicate that the Li0.5SnS2 is kinetically favored and structurally stable. The asymmetric reaction pathways may supply enlightening insights into the mechanistic understanding of the underlying electrochemistry in the layered electrode materials and also suggest possible alternatives to the accepted explanation of the origins of voltage hysteresis in the intercalation electrode materials.
NASA Astrophysics Data System (ADS)
Zhang, Cong; Conlisk, A. T.
2013-11-01
Mechanical stresses in the solid phase of the electrodes within lithium-ion batteries have been the subject of much work recently with the emphasis on the stresses induced by lithium insertion to or extraction from the active solid material. The particles within lithium-ion battery electrodes can undergo relative motion with relative velocities of different magnitudes and directions. One mode of the relative motion, resembling the slider bearing motion, manifests itself as two particles sliding relative to each other within an electrolyte solution. The electrolyte solution within the narrow pores between the particles is the medium through which the particles interact with each other. The effect of the electrolyte solution is not conventionally considered. The relative motion of the particles induces significant pressures. The primary objective of this work is to develop a model based on the lubrication approximation to investigate the magnitude and direction of the stresses induced by this sliding motion. Other applications in the biomedical field are also discussed. Supported by DOE Graduate Automotive Technology Education (GATE) and OSU Center for Automotive Research.
Increased erythrocyte Na+ pump and NaK-ATPase activity during lithium therapy.
Hokin-Neaverson, M; Burckhardt, W A; Jefferson, J W
1976-05-01
A significant mean increase of 18% in erythrocyte sodium pump activity (p less than 0.01, t test) was observed during lithium treatment, as compared with the activity before lithium treatment was started, in a group of 20 patients who were treated with lithium therapy for a variety of psychiatric conditions. The mean level of erythrocyte membrane ouabain-sensitive ATPase activity in a group of 35 subjects who were receiving lithium therapy was significantly higher than that of a different group of 38 subjects who were not receiving lithium therapy (p less than 0.005, t test). These observations may offer a biochemical mode of action for lithium in the treatment of bipolar affective disorder, since a deficiency of sodium pump activity has been shown to be associated with that disorder.
Guidotti, Ronald A.
1988-01-01
In a method for preparing lithiated, particulate FeS.sub.2 useful as a catholyte material in a lithium thermal battery, whereby the latter's voltage regulation properties are improved, comprising admixing FeS.sub.2 and an amount of a lithium-containing compound whereby the resultant total composition falls in an invariant region of the metallurgical phase diagram of its constituent components, an improvement comprises admixing said lithium-containing compound and FeS.sub.2 together with a solid electrolyte compatible with said catholyte, and heating the mixture at a temperature above the melting point of said electrolyte and at which said mixture reaches its thermodynamic equilibrium number of phases.
Enhanced H-mode pedestals with lithium injection in DIII-D
Osborne, Thomas H.; Jackson, Gary L.; Yan, Zheng; ...
2015-05-08
Periods of edge localized mode (ELM)-free H-mode with increased pedestal pressure and width were observed in the DIII-D tokamak when density fluctuations localized to the region near the separatrix were present. Injection of a powder of 45 μm diameter lithium particles increased the duration of the enhanced pedestal phases to up to 350 ms, and also increased the likelihood of a transition to the enhanced phase. Lithium injection at a level sufficient for triggering the extended enhanced phases resulted in significant lithium in the plasma core, but carbon and other higher Z impurities as well as radiated power levels weremore » reduced. Recycling of the working deuterium gas appeared unaffected by this level of lithium injection. The ion scale, k θ ρ s ~ 0.1–0.2, density fluctuations propagated in the electron drift direction with f ~ 80 kHz and occurred in bursts every ~1 ms. The fluctuation bursts correlated with plasma loss resulting in a flattening of the pressure profile in a region near the separatrix. This localized flattening 2 allowed higher overall pedestal pressure at the peeling-ballooning stability limit and higher pressure than expected under the EPED model due to reduction of the pressure gradient below the “ballooning critical profile”. Furthermore, reduction of the ion pressure by lithium dilution may contribute to the long ELM-free periods.« less
Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hui; Upreti, Shailesh; Chernova, Natasha A.
2015-10-15
The mixed-metal phases, (Li{sub 2}Mn{sub 1-y}Fe{sub y}P{sub 2}O{sub 7}, 0 {le} y {le} 1), were synthesized using a 'wet method', and found to form a solid solution in the P2{sub 1}/a space group. Both thermogravimetric analysis and magnetic susceptibility measurements confirm the 2+ oxidation state for both the Mn and Fe. The electrochemical capacity improves as the Fe concentration increases, as do the intensities of the redox peaks of the cyclic voltammogram, indicating higher lithium-ion diffusivity in the iron phase. The two Li{sup +} ions in the three-dimensional tunnel structure of the pyrophosphate phase allows for the cycling of moremore » than one lithium per redox center. Cyclic voltammograms show a second oxidation peak at 5 V and 5.3 V, indicative of the extraction of the second lithium ion, in agreement with ab initio computation predictions. Thus, electrochemical capacities exceeding 200 Ah/kg may be achieved if a stable electrolyte is found.« less
Chemical modification of electrolytes for lithium batteries
NASA Astrophysics Data System (ADS)
Afanas'ev, Vladimir N.; Grechin, Aleksandr G.
2002-09-01
Modern approaches to modifying chemically electrolytes for lithium batteries are analysed with the aim of optimising the charge-transfer processes in liquid-phase and solid (polymeric) media. The main regularities of transport properties of lithium electrolyte solutions containing complex (encapsulated) ions in aprotic solvents and polymers are discussed. The prospects for the development of electrolytic solvosystems with the chain (ionotropic) mechanism of conduction with respect to lithium ions are outlined. The bibliography includes 126 references.
Mouri, Abdelkader; Legrand, Philippe; El Ghzaoui, Abdeslam; Dorandeu, Christophe; Maurel, Jean Claude; Devoisselle, Jean-Marie
2016-04-11
Lithium biocompatible microemulsion based on Peceol(®), lecithin, ethanol and water was studied in attempt to identify the optimal compositions in term of drug content, physicochemical properties and stability. Lithium solubilization in microemulsion was found to be compatible with a drug-surfactant binding model. Lithium ions were predominantly solubilized within lecithin head group altering significantly the interfacial properties of the system. Pseudo-ternary phase diagrams of drug free and drug loaded microemulsions were built at constant ethanol/lecithin weight ratio (40/60). Lithium loaded microemulsion has totally disappeared in the Peceol(®) rich part of phase diagram; critical fractions of lecithin and ethanol were required for the formation of stable microemulsion. The effect of lithium concentration on the properties and physical stability of microemulsions were studied using microscopy, Karl Fischer titrations, rheology analyses, conductivity measurements and centrifugation tests. The investigated microemulsions were found to be stable under accelerated storage conditions. The systems exhibited low viscosity and behaved as Newtonian fluid and no structural transition was shown. Copyright © 2016 Elsevier B.V. All rights reserved.
Highly Accurate Calculations of the Phase Diagram of Cold Lithium
NASA Astrophysics Data System (ADS)
Shulenburger, Luke; Baczewski, Andrew
The phase diagram of lithium is particularly complicated, exhibiting many different solid phases under the modest application of pressure. Experimental efforts to identify these phases using diamond anvil cells have been complemented by ab initio theory, primarily using density functional theory (DFT). Due to the multiplicity of crystal structures whose enthalpy is nearly degenerate and the uncertainty introduced by density functional approximations, we apply the highly accurate many-body diffusion Monte Carlo (DMC) method to the study of the solid phases at low temperature. These calculations span many different phases, including several with low symmetry, demonstrating the viability of DMC as a method for calculating phase diagrams for complex solids. Our results can be used as a benchmark to test the accuracy of various density functionals. This can strengthen confidence in DFT based predictions of more complex phenomena such as the anomalous melting behavior predicted for lithium at high pressures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries.
Liu, Zhenzhen; Zhou, Lei; Ge, Qi; Chen, Renjie; Ni, Mei; Utetiwabo, Wellars; Zhang, Xiaoling; Yang, Wen
2018-06-13
Lithium-sulfur batteries have been regarded as promising candidates for energy storage because of their high energy density and low cost. It is a main challenge to develop long-term cycling stability battery. Here, a catalytic strategy is presented to accelerate reversible transformation of sulfur and its discharge products in lithium-sulfur batteries. This is achieved with single-atomic iron active sites in porous nitrogen-doped carbon, prepared by polymerizing and carbonizing diphenylamine in the presence of iron phthalocyanine and a hard template. The Fe-PNC/S composite electrode exhibited a high discharge capacity (427 mAh g -1 ) at a 0.1 C rate after 300 cycles with the Columbic efficiency of above 95.6%. Besides, the electrode delivers much higher capacity of 557.4 mAh g -1 at 0.5 C over 300 cycles. Importantly, the Fe-PCN/S has a smaller phase nucleation overpotential of polysulfides than nitrogen-doped carbon alone for the formation of nanoscale of Li 2 S as revealed by ex situ SEM, which enhance lithium-ion diffusion in Li 2 S, and therefore a high rate performance and remarkable cycle life of Li-sulfur batteries were achieved. Our strategy paves a new way for polysulfide conversion with atomic iron catalysis to exploit high-performance lithium-sulfur batteries.
In search of a phase response curve for lithium chloride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Readey, M.A.; Groh, K.R.; Ehret, C.F.
1987-01-01
Male rats were free-run, and one day later were exposed to a single, punctate dose of 5 mM LiCl/kg body weight by injection at one of eight equally spaced times throughout the 24-h period. For each of the six days following injection, a separate phase response curve was derived from core-temperature chronograms. Unlike the classical response induced by chronobiotics such as dexamethasone, alpha-methyl-para-tyrosine, and theophylline, statistically significant phase shifts for lithium were observed only on the first day following injection. These induced phase changes were not permanent, but instead were transient. By the sixth day of free-run, all experimental ratsmore » had drifted to the control acrophase; i.e., by the end of the experiment, most of the treated rats again had phase and confidence arcs not significantly different from their controls. The confidence arcs of the acrophases of the individual animals on the subsequent days post injection reveal that in this experiment, lithium was transiently dyschronogenic rather than definitively chronobiotic. The results suggest that punctate rather than chronic administration of lithium, followed by strict orthochronal administration of traditional zeitgebers, would be an effective way of restoring circadian synchrony in an internally desynchronized system. 122 refs.« less
On the reasons for low sulphur utilization in the lithium-sulphur batteries
NASA Astrophysics Data System (ADS)
Kolosnitsyn, V. S.; Kuzmina, E. V.; Karaseva, E. V.
2015-01-01
This work is to study the reasons for the relatively low efficiency of sulphur reduction (about 75%) in lithium-sulphur batteries. The two main reasons for that are suggested to be: the relatively low electrochemical activity of low order lithium polysulphides and blocking of the carbon framework of the sulphur electrode by insoluble products of electrochemical reactions - sulphur and lithium sulphide. The electrochemical activity of lithium polysulphides with different composition (Li2Sn, n = 2-6) has been studied in 1 M solutions of CF3SO3Li in sulfolane. It is shown that lithium polysulphides including lithium disulphide are able to electrochemically reduce with efficiency close to 100%. The electrochemical activity of lithium polysulphides decreases with the order. The order of lithium polysulphides affects the value of voltage of discharge plateaus but not the efficiency of sulphur reducing in the lithium polysulphides species. The relatively low efficiency of sulphur reduction in the lithium-sulphur batteries is more likely caused by blocking of carbon particles in the sulphur electrode by insoluble products of electrochemical reactions (sulphur and lithium sulphide). This prevents the electrochemical reduction of low order lithium polysulphides and especially lithium disulphide.
Synthesis of and characterization of lithium ceramic electrolytes
NASA Astrophysics Data System (ADS)
Rangasamy, Ezhiylmurugan
The depleting fossil fuel reserves, rising oil prices and the need for reduction in CO2 emissions have created an unprecedented impetus for vehicle electrification. Lithium batteries have the highest energy density of the various available battery technologies. They are the most promising battery candidate to enable Hybrid Electric Vehicles (HEVs) and Plug-in Electric Vehicles (PEVs). However, current Li-ion current battery technology is costly and requires a significant increase in energy density to achieve range comparable to conventional gasoline-powered vehicles. Advanced lithium battery technologies such as Li-S and Li-O2 could potentially offer significant improvements in energy density to address the limitations with current Li-ion technology. The implementation of these advanced battery technologies, however, has been limited by the lack of electrolyte technology to enable the use of metallic lithium anodes. Thus, there is a clear and compelling need to develop new electrolyte materials that exhibit the unique combination of fast ion conductivity, stability against lithium, air and moisture. Lithium Lanthanum Titanium Oxide (LLTO) and Lithium Lanthanum Zirconium Oxide (LLZO) have been identified as viable candidates for the advanced battery technologies. However, issues concerning phase purity and densification warrant developing new and novel synthetic techniques. A single step procedure has been developed for the synthesis of Lithium Lanthanum Titanium Oxide (LLTO) membranes. The single step procedure combines phase formation and densification of the ceramic electrolyte in a hot pressing technique. The effect of synthetic technique on relative density, grain structure and ionic conductivity of the LLTO membranes has been explored in detail. The critical step of synthesizing cubic Lithium Lanthanum Zirconium Oxide (LLZO) has been systematically studied through the controlled doping of Al, using X-Ray Diffraction (XRD) analysis. Effects of Li and Al concentration on the crystal structure of LLZO were also studied in detail. Critical dopant concentration of Al to stabilize cubic LLZO was established during the course of this study. Systematic doping studies on the 24c site of La3+ in the primary lattice have also been explored in detail using XRD analysis to improve the ionic conductivity by maintaining the Li sub-lattice free of dopants. It is hypothesized that the supervalent substitutions create Li vacancies in the sub-lattice promoting disorder, thereby stabilizing cubic LLZO. While Ce4+ substitution for La3+ proved to be effective in synthesizing cubic LLZO, precipitation of Ce4+ observed under Backscattered electron (BSE) imaging limited its ionic conductivity. In an effort to develop flexible, solution-based synthetic techniques, two novel processes were established to prepare low dimensional, cubic LLZO powders. Hot pressing of the synthesized LLZO samples yielded high relative density (>95%) ceramic electrolyte membranes. Arrhenius studies using EIS to measure activation energy revealed and empirical relationship between the grain size and activation energy for dense LLZO membranes.
Design and synthesis of inorganic/organic hybrid electrochemical materials
NASA Astrophysics Data System (ADS)
Harreld, John H.
An ambient pressure method for drying sol-gel materials is developed to synthesize high porosity (80--90%), high surface area vanadium oxide and silica aerogel materials (150--300 and 1000 m2/g for vanadium pentoxide and silica, respectively). The synthesis approach uses liquid exchange to replace the pore fluid with a low surface tension, nonpolar solvent which reduces the capillary pressures developed during drying. The Good-Girifalco interaction parameter is used to calculate pore stresses resulting from drying silica gels from various liquids. Vanadium oxide/polypyrrole hybrid aerogels are prepared using three strategies. These approaches focus on either sequential or consecutive polymerization of the inorganic and organic networks. Microcomposite aerogels are synthesized by encapsulating a dispersion of preformed polypyrrole in a vanadium pentoxide gel. In the second approach, pyrrole is polymerized and doped within the pore volume of preformed vanadium pentoxide gel. When the inorganic and organic precursors are polymerized simultaneously, the resulting gels exhibited a nanometer scaled microstructure with homogeneous distributions of either phases. Through this route, a suitable microstructure and composition for a lithium secondary battery cathode is obtained. Lithiated aerogels of hydrated nickel, cobalt, and mixed nickel-cobalt oxides are synthesized from lithium hydroxide and transition metal acetate precursors. The XRD analyses indicate that the nickel containing gels exhibit a lithium deficiency (less than 1 Li/transition metal. By increasing the concentration of the lithium precursor the lithium content in nickel oxides is increased, and additional base solution is no longer required to catalyze gelation. A non-hydrolytic sol-gel approach is utilized to create tin oxide and tin-aluminum binary oxide aerogels with high porosity (90%) and high surface area (300 m2/g). XRD data from single phase tin oxide aerogel indicates the growth of SnO2 crystallites between 150--400°C in air, accompanied by a reduction in surface area (30 m2/g). Heated tin oxide aerogel exhibits comparable reversible specific capacity (390 mAh/g) as that of commercial SnO2 (420 mAh/g). Amorphous tin oxide aerogel is stabilized to higher temperatures when aluminum oxide is incorporated into the structure. The tin oxide phase remains electrochemically active towards lithium insertion and exhibits excellent reversibility during cycling.
Current and Emerging Therapies for the Management of Bipolar Disorders
El-Mallakh, Rif S.; Elmaadawi, Ahmed Z.; Gao, Yonglin; Lohano, Kavita; Roberts, R. Jeannie
2011-01-01
Bipolar disorder is a complex condition to treat because agents that may be effective for a specific phase may not be effective for other phases, or may even worsen the overall course of the illness. Over the last decade there has been an increase in research activity in the treatment of bipolar illness. There are now several agents that are well established for the treatment of acute mania (lithium, divalproex, carbamazepine, nearly all antipsychotics), acute bipolar depression (lamotrigine, quetiapine, olanzapine/fluoxetine combination), and relapse prevention (lithium, lamotrigine, divalproex, most second generation antipsychotics). There are also novel treatments that are being studied for all three phases. These include eslicarbazepine, cariprazine, MEM-1003, memantine, tamoxifen and pentazocine for acute mania; pramipexole, modafinil, armodafinil, divalproex, lurasidone, agomelatine, cariprazine, lisedexamfetamine, riluzole, RG-2417, bifeprunox, ropinirole, GSK1014802, and magnetic stimulation for bipolar depression; and asenapine, lurasidone, and cariprazine for relapse prevention. Additionally, there are accumulating data that antidepressants, particularly serotoninergic ones, are not particularly effective in acute bipolar depression and may worsen the course of the illness. PMID:23861648
NASA Astrophysics Data System (ADS)
Priyono, S.; Primasari, R. D.; Saptari, S. A.; Prihandoko, B.
2017-07-01
Li4Ti5O12 powder as anode lithium ion battery was synthesized via solid state reaction with excess LiOH.H2O. Technical grades raw materials like LiOH.H2O and TiO2 were used as starting materials. LiOH.H2O excess was varied from 0; 2.5; 5 and 7.5% to get higher optimum phases and capacity of Li4Ti5O12. All raw materials were mixed stoichiometry then followed by calcination and sintering process to get final products. The obtained products were characterized by XRD, SEM, and PSA to get properties of active materials and the electrochemical properties were done by cyclic voltametry and charge-discharge test. The XRD test showed that 5% excess have highest Li4Ti5O12 phases. All samples have same in morphology, agglomerate and same in particle size distribution. Sample with 5% excess showed good reversible process and chargedischarge test showed that increasing Li4Ti5O12 phase can improve specific capacity.
A stable lithium-rich surface structure for lithium-rich layered cathode materials
Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin; Oshima, Yoshifumi; Choi, Jang Wook
2016-01-01
Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g−1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g−1 at 1C (250 mA g−1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface. PMID:27886178
Alternatives to lithium and divalproex in the maintenance treatment of bipolar disorder.
Gnanadesikan, Mukund; Freeman, Marlene P; Gelenberg, Alan J
2003-06-01
The role of lithium carbonate in the maintenance treatment of bipolar disorder is well established. Unfortunately, many patients fail to respond adequately to this agent or are unable to tolerate its adverse effects. Divalproex has become a commonly used alternative to lithium, but it also is ineffective or poorly tolerated in many patients. This article attempts to review the available data on maintenance therapy in bipolar disorder with a variety of anticonvulsants and antipsychotics (both conventional and novel), with reference to relevant studies in acute mania and bipolar depression as well. Evidence on maintenance therapy and relevant acute-phase data were collected using MEDLINE database searches. Data on maintenance therapy with agents other than lithium and divalproex are sparse, and often derived from open, uncontrolled studies. Implications and flaws of available data are discussed. Other than lithium, there are few robust double-blind data to support the use of a variety of agents in the maintenance phase. However, uncontrolled data suggest that a number of agents merit further study.
Related Studies in Long Term Lithium Battery Stability
NASA Technical Reports Server (NTRS)
Horning, R. J.; Chua, D. L.
1984-01-01
The continuing growth of the use of lithium electrochemical systems in a wide variety of both military and industrial applications is primarily a result of the significant benefits associated with the technology such as high energy density, wide temperature operation and long term stability. The stability or long term storage capability of a battery is a function of several factors, each important to the overall storage life and, therefore, each potentially a problem area if not addressed during the design, development and evaluation phases of the product cycle. Design (e.g., reserve vs active), inherent material thermal stability, material compatibility and self-discharge characteristics are examples of factors key to the storability of a power source.
Guidotti, R.A.
1986-06-10
A method is disclosed for preparing lithiated, particulate FeS/sub 2/ useful as a catholyte material in a lithium thermal battery, whereby the latter's voltage regulation properties are improved. The method comprises admixing FeS/sub 2/ and an amount of a lithium-containing compound, whereby the resultant total composition falls in an invariant region of the metallurgical phase diagram of its constituent components. Said lithium-containing compound and FeS/sub 2/ are admixed together with a solid electrolyte compatible with said catholyte, and the mixture is heated at a temperature above the melting point of said electrolyte and at which said mixture reaches its thermodynamic equilibrium number of phases.
Effect of Al substitution on the microstructure and lithium storage performance of nickel hydroxide
NASA Astrophysics Data System (ADS)
Li, Yanwei; Pan, Guanlin; Xu, Wenqiang; Yao, Jinhuan; Zhang, Lingzhi
2016-03-01
Al-substituted Ni(OH)2 samples with Al3+/Ni2+ mole ratio of 0%, 10% and 20% have been prepared by a very facile chemical co-precipitation method. The microstructure of the prepared samples are analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), and Field emission scanning electron microscopy (FESEM). The results reveal that the pure Ni(OH)2 sample is β-Ni(OH)2 with nanosheets hierarchical structure; the sample with 10% Al is mixed phase α/β-Ni(OH)2 with hybrid nanosheets/nanoparticles hierarchical structure; the sample with 20% Al is α-Ni(OH)2 with irregular nanoparticles hierarchical structure. The lithium storage performances of the prepared samples are characterized by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge tests. The results demonstrate that Al substitution could improve the lithium storage performances of nickel hydroxide. In particular, the mixed phase α/β-Ni(OH)2 with 10% Al exhibited the highest electrochemical activity, the best rate performance, and superior cycling stability. For example, after 30 charge/discharge cycles under a current density of 200 mA g-1, the mixed phase α/β-Ni(OH)2 with 10% Al can still deliver a specific discharge capacity of 964 mAh g-1, much higher than of for the α-Ni(OH)2 with 20% Al (681 mAh g-1) and the pure Ni(OH)2 (419 mAh g-1).
Stabilization of cubic Li7La3Hf2O12 by Al-doping
NASA Astrophysics Data System (ADS)
Baklanova, Yana V.; Tyutyunnik, Alexander P.; Tarakina, Nadezda V.; Fortes, A. Dominic; Maksimova, Lidiya G.; Korona, Daniil V.; Denisova, Tatyana A.
2018-07-01
In this paper we report on the stabilization of cubic Li7La3Hf2O12 by Al3+ doping and present a detailed crystal structure study and lithium ion conductivity measurements of the obtained compound. Polycrystalline Al-doped Li7La3Hf2O12 was prepared by a modified solid state method. The compound consists of micrometer size grains encapsulated by a glassy phase, which helps preventing the volatilization of lithium during annealing. Al-doped Li7La3Hf2O12 crystallizes in the garnet-related structure with a cubic unit cell (sp. gr. Ia 3 bar d (230)). A structural refinement using X-ray and neutron powder diffraction data showed that the Al3+ ions occupy only tetrahedral Li+ sites in the structure. The presence of overextended leading edges of the peaks on the XRD and NPD data is described by the introduction of an additional phase with rhombohedral distortion that occurs through a stretching of the cubic phase along the body diagonal. The activation energy as well as the total conductivity at room temperature are close to values obtained for un-doped cubic Li7La3Zr2O12 and Li7La3Hf2O12 garnets, which make Al-doped Li7La3Hf2O12 a potential candidate for the application as solid electrolyte in solid-state rechargeable lithium-ion batteries.
2011-12-01
of interest as a thermal energy storage material, due to its large specific and volumetric heats of fusion and its low melting temperature. Here, we...compound to water and octadecane, two other potential thermal energy storage materials. Furthermore, we examine the lithium nitrate-water phase diagram and...lithium nitrate trihydrate-lithium nitrate eutectic point (Hfus = 264 ± 2 J·g-1, Tm = 28.3 °C). 15. SUBJECT TERMS salt hydrate, thermal energy
Lithium air batteries having ether-based electrolytes
Amine, Khalil; Curtiss, Larry A.; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook
2016-10-25
A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.
Wolf, G; Müller, G M; Kehrberg, G
1989-01-01
From numerous investigations it is known that lithium carbonate promotes granulocytopoiesis by stimulation of CSF (colony stimulating factor) in bone marrow. To prove if no immature, in their functions restricted cells are delivered from bone marrow, the activity of granulocytes was tested in vitro in patients with lithium therapy. It could be seen that granulocytes of peripheral blood show an increased in-vitro-activation after lithium influence in vivo.
Discovery of high-gain stimulated polariton scattering near 4 THz from lithium niobate.
Chiu, Yu-Chung; Wang, Tsong-Dong; Zhao, Gang; Huang, Yen-Chieh
2017-12-01
Lithium niobate is the most popular material for terahertz wave generation via stimulated polariton scattering (SPS), previously known to have a gain peak near 2 THz. Here we report the discovery of another phase-matched gain peak near 4 THz in lithium niobate, which greatly extends the useful gain spectrum of lithium niobate. Despite the relatively high 4 THz absorption in lithium niobate, the 4 THz SPS becomes dominant over the 2 THz one in an intensely pumped short lithium niobate crystal due to less diffraction-induced absorption and mode-area mismatch. We also demonstrate a signal-seeded OTPO that generates 1.4 nJ at 4.2 THz from lithium niobate with 17.5 mJ pump energy.
Thermal Energy Transfer Through All Ceramic Restorations
2016-06-01
particles, but newer generations have reduced the size and narrowed the range of particles in the matrix . This evolution in ceramics improved the...crystalline second phase. These ceramics have a lithium silicate glass matrix with approximately 70% lithium-disilicate crystal fill. The micron size and... composition category described by Giordano and McLaren are the Interpenetrating Phase Ceramics . These ceramics were developed as an alternative to the
Lin, Xiaomu; Wang, Lei; Ding, Yujie J
2012-09-01
We efficiently generated far-infrared radiation at the wavelengths centered at 20.8 μm in the vicinity of one of the polariton resonances of lithium niobate. Such an efficient nonlinear conversion is made possible by exploiting phase matching for difference-frequency generation in lithium niobate. The highest peak power reached 233 W.
The Twentieth International Symposium on Molten Salts and Ionic Liquids
2016-11-29
Heterocyclic Carbene Involved?" by Hyung Kim "Carbon Dioxide Absorption Behavior and Cabronate Ion Transport of Lithium Orthosilicate/Molten Carbonate...K. Gemmell, K. Johnson, A. East 575 Lithium Ion Conduction in Single Lithium Perfluorosulfonylamides K. Kubota, H. Matsumoto 585...energy applications (e.g., batteries , fuel cells, semiconductors, photovoltaics, and phase change energy storage); (3) rare earth and nuclear chemistry
Transportation Research News | Transportation News | Transportation
Engineering has yielded new insights for lithium-ion (Li-ion) battery electrodes at the microstructural level -Phase Stochastics in Lithium-Ion Battery Electrodes" detailing the research and resulting revolutionizes the way lithium-ion (Li-ion) batteries are evaluated so designs can be improved before batteries
Energy Storage News | Transportation | Transportation Research | NREL
NREL/Purdue team's corresponding article, "Secondary-Phase Stochastics in Lithium-Ion Battery by NREL and NASA, the Battery ISC Device revolutionizes the way lithium-ion (Li-ion) batteries are collaboration with Purdue University's School of Mechanical Engineering has yielded new insights for lithium-ion
Method for treating beta-spodumene ceramics
Day, J. Paul; Hickman, David L.
1994-09-27
A vapor-phase method for treating a beta-spodumene ceramic article to achieve a substitution of exchangeable hydrogen ions for the lithium present in the beta-spodumene crystals, wherein a barrier between the ceramic article and the source of exchangeable hydrogen ions is maintained in order to prevent lithium contamination of the hydrogen ion source and to generate highly recoverable lithium salts, is provided.
Thermal stability of active/inactive nanocomposite anodes based on Cu2Sb in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Allcorn, Eric; Kim, Sang-Ok; Manthiram, Arumugam
2015-12-01
Various active/inactive nanocomposites of Cu2Sb-Al2O3@C, Cu2Sb-TiC, and Cu2Sb-TiC@C have been synthesized by high energy mechanical milling and investigated by differential scanning calorimetry (DSC) to determine the lithiated phase stability and heat generation arising from these electrodes. The milling process reduces the Li3Sb phase stability, relative to the un-milled samples, to below ∼200 °C. However, the incorporation of the reinforcing, inactive phases Al2O3, TiC, and carbon black offer a slight improvement. DSC curves also show that the low-temperature heat generation in the SEI-layer reaction range is not noticeably altered by either the milling process or the addition of the inactive phases. A strong exothermic peak is observed at ∼200 °C for the 0% state of charge electrodes of Cu2Sb-Al2O3@C and Cu2Sb-TiC@C that was caused by the incorporation of carbon black into the composite. This peak was not present in the electrodes of milled Cu2Sb or Cu2Sb-TiC, suggesting that efforts to extend the cycle life of alloy anodes should avoid carbon black due to its destabilizing effects on delithiated electrodes. Fourier Transform infrared spectroscopy analysis indicates that the reaction arising from the incorporation of carbon black is tied to a low-temperature breakdown of the lithium salt LiPF6.
Reversible Li-ion conversion reaction for a Ti xGe alloy in a Ti/Ge multilayer
Chen, Xiao; Fister, Tim T.; Esbenshade, Jennifer; ...
2017-02-13
Group IV inter-metallics electrochemically alloy with Li with stoichiometries as high as Li 4.4M (M=Si, Ge, Sn or Pb). Furthermore, this provides the second highest known specific capacity (after pure lithium metal) for lithium ion batteries, but the dramatic volume change during cycling greatly limits their use as anodes in Li-ion batteries. We describe an approach to overcome this limitation by constructing electrodes using a Ge/Ti multilayer architecture. In operando X-ray reflectivity and ex situ transmission electron microscopy are used to characterize the hetero-layer structure at various lithium stoichiometries along a lithiation/delithiation cycle. The as-deposited multilayer spontaneously forms a one-dimensionalmore » Ti xGe/Ti/Ti xGe core-shell planar structure embedded in a Ge matrix. The interfacial Ti xGe alloy is observed to be electrochemically active and exhibits reversible phase separation (i.e. a conversion reaction). Including the germanium components, the overall multilayer structure exhibits a 2.3-fold reversible vertical expansion and contraction and is shown to have improved capacity and capacity retention with respect to a Ge film with equivalent active material thickness.« less
Reversible Li-Ion Conversion Reaction for a TixGe Alloy in a Ti/Ge Multilayer.
Chen, Xiao; Fister, Tim T; Esbenshade, Jennifer; Shi, Bing; Hu, Xianyi; Wu, Jinsong; Gewirth, Andrew A; Bedzyk, Michael J; Fenter, Paul
2017-03-08
Group IV intermetallics electrochemically alloy with Li with stoichiometries as high as Li 4.4 M (M = Si, Ge, Sn, or Pb). This provides the second highest known specific capacity (after pure lithium metal) for lithium-ion batteries, but the dramatic volume change during cycling greatly limits their use as anodes in Li-ion batteries. We describe an approach to overcome this limitation by constructing electrodes using a Ge/Ti multilayer architecture. In operando X-ray reflectivity and ex situ transmission electron microscopy are used to characterize the heterolayer structure at various lithium stoichiometries along a lithiation/delithiation cycle. The as-deposited multilayer spontaneously forms a one-dimensional Ti x Ge/Ti/Ti x Ge core-shell planar structure embedded in a Ge matrix. The interfacial Ti x Ge alloy is observed to be electrochemically active and exhibits reversible phase separation (i.e., a conversion reaction). Including the germanium components, the overall multilayer structure exhibits a 2.3-fold reversible vertical expansion and contraction and is shown to have improved capacity and capacity retention with respect to a Ge film with equivalent active material thickness.
Understanding the Degradation Mechanism of Lithium Nickel Oxide Cathodes for Li-Ion Batteries
Xu, Jing; Hu, Enyuan; Nordlund, Dennis; ...
2016-11-01
The phase transition, charge compensation, and local chemical environment of Ni in LiNiO 2 were investigated to understand the degradation mechanism. The electrode was subjected to a variety of bulk and surface-sensitive characterization techniques under different charge–discharge cycling conditions. We observed the phase transition from the original hexagonal H1 phase to another two hexagonal phases (H2 and H3) upon Li deintercalation. Moreover, the gradual loss of H3-phase features was revealed during the repeated charges. The reduction in Ni redox activity occurred at both the charge and the discharge states, and it appeared both in the bulk and at the surfacemore » over the extended cycles. In conclusion, the degradation of crystal structure significantly contributes to the reduction of Ni redox activity, which in turn causes the cycling performance decay of LiNiO 2.« less
AKT Kinase Activity Is Required for Lithium to Modulate Mood-Related Behaviors in Mice
Pan, Jen Q; Lewis, Michael C; Ketterman, Josh K; Clore, Elizabeth L; Riley, Misha; Richards, Keenan R; Berry-Scott, Erin; Liu, Xiulin; Wagner, Florence F; Holson, Edward B; Neve, Rachael L; Biechele, Travis L; Moon, Randall T; Scolnick, Edward M; Petryshen, Tracey L; Haggarty, Stephen J
2011-01-01
Bipolar disorder (BP) is a debilitating psychiatric disorder, affecting ∼2% of the worldwide population, for which the etiological basis, pathogenesis, and neurocircuitry remain poorly understood. Individuals with BP suffer from recurrent episodes of mania and depression, which are commonly treated with the mood stabilizer lithium. However, nearly half of BP patients do not respond adequately to lithium therapy and the clinically relevant mechanisms of lithium for mood stabilization remain elusive. Here, we modeled lithium responsiveness using cellular assays of glycogen synthase kinase 3 (GSK-3) signaling and mood-related behavioral assays in inbred strains of mice that differ in their response to lithium. We found that activating AKT through phosphosrylation of a key regulatory site (Thr308) was associated with lithium response—activation of signaling pathways downstream of GSK-3 in cells and attenuation of mood-related behaviors in mice—and this response was attenuated by selective and direct inhibition of AKT kinase activity. Conversely, the expression of constitutively active AKT1 in both the cellular and behavioral assays conferred lithium sensitivity. In contrast, selective and direct GSK-3 inhibition by the ATP-competitive inhibitor CHIR99021 bypassed the requirement for AKT activation and modulated behavior in both lithium-responsive and non-responsive mouse strains. These results distinguish the mechanism of action of lithium from direct GSK-3 inhibition both in vivo and in vitro, and highlight the therapeutic potential for selective GSK-3 inhibitors in BP treatment. PMID:21389981
Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li–Ni–Mn–Co–O System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam
2016-02-27
In an attempt to enlarge the normal spinel phase diagram for the quaternary Li-Ni-Mn-Co-O system, the transformation at moderate temperatures (150-210 °C) of layered Li 0.5(Ni 1-y-zMn yCo z)O 2 (Rmore » $$\\bar{3}$$m), which were obtained by an ambient-temperature extraction of lithium from Li 0.5(Ni 1-y-zMn yCo z)O 2, into normal spinel-like (Fd$$\\bar{3}$$m) Li(Ni 1-y-zMn yCo z) 2O 4 has been investigated. The phase-conversion mechanism has been studied by joint time-of-flight (TOF) neutron and X-ray diffractions, thermogravimetric analysis, and bond valence sum map. The ionic diffusion of lithium (3a, 6c) and nickel (3a, 3b) ions has been quantified as a function of temperature. The investigated spinel phases are metastable, and they are subject to change into rock-salt phases at higher temperatures. The phases have been characterized as cathodes in lithium-ion cells. Finally, the study may serve as a strategic model to access other metastable phases by low-temperature synthesis approaches.« less
Systematic study on the discharge product of Pt-based lithium oxygen batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Feng; Xing, Yi; Bi, Xuanxuan
Lithium oxygen batteries have attracted much attention due to the high theoretical energy density. However, they suffer a large overpotential during oxygen evolution process and thus catalysts play a vital role in the reaction. Here, we systematically explored the influence of Pt-based nanoparticle catalysts on the discharge product Li 2O 2. Because of the superior electrical conductivity and the strong binding with oxygen, Pt-based nanoparticles serve as active sites which are favorable for the growth of toroidal Li 2O 2. We also found that the content and composition of Pt-based nanoparticle catalysts exert a significant influence on the electrochemical performancemore » of lithium oxygen batteries. The discharge products are composed of crystalline Li 2O 2 and oxygen-rich LiO 2 characterized by high-energy X-ray diffraction and Raman. Atomic force microscopy further provides detailed information of the particle size and surface roughness. The loading of Pt catalysts determines the phase and size of Li 2O 2 on the discharged electrode surface. This study will be beneficial for the optimization of Pt-based catalysts used in non-aqueous lithium oxygen batteries.« less
Systematic study on the discharge product of Pt-based lithium oxygen batteries
NASA Astrophysics Data System (ADS)
Wu, Feng; Xing, Yi; Bi, Xuanxuan; Yuan, Yifei; Wang, Hsien-Hau; Shahbazian-Yassar, Reza; Li, Li; Chen, Renjie; Lu, Jun; Amine, Khalil
2016-11-01
Lithium oxygen batteries have attracted much attention due to the high theoretical energy density. However, they suffer a large overpotential during oxygen evolution process and thus catalysts play a vital role in the reaction. Here, we systematically explored the influence of Pt-based nanoparticle catalysts on the discharge product Li2O2. Because of the superior electrical conductivity and the strong binding with oxygen, Pt-based nanoparticles serve as active sites which are favorable for the growth of toroidal Li2O2. We also found that the content and composition of Pt-based nanoparticle catalysts exert a significant influence on the electrochemical performance of lithium oxygen batteries. The discharge products are composed of crystalline Li2O2 and oxygen-rich LiO2 characterized by high-energy X-ray diffraction and Raman. Atomic force microscopy further provides detailed information of the particle size and surface roughness. The loading of Pt catalysts determines the phase and size of Li2O2 on the discharged electrode surface. This study will be beneficial for the optimization of Pt-based catalysts used in non-aqueous lithium oxygen batteries.
Takamatsu, Daiko; Yoneyama, Akio; Asari, Yusuke; Hirano, Tatsumi
2018-02-07
A fundamental understanding of concentrations of salts in lithium-ion battery electrolytes during battery operation is important for optimal operation and design of lithium-ion batteries. However, there are few techniques that can be used to quantitatively characterize salt concentration distributions in the electrolytes during battery operation. In this paper, we demonstrate that in operando X-ray phase imaging can quantitatively visualize the salt concentration distributions that arise in electrolytes during battery operation. From quantitative evaluation of the concentration distributions at steady states, we obtained the salt diffusivities in electrolytes with different initial salt concentrations. Because of no restriction on samples and high temporal and spatial resolutions, X-ray phase imaging will be a versatile technique for evaluating electrolytes, both aqueous and nonaqueous, of many electrochemical systems.
NASA Astrophysics Data System (ADS)
Ren, Guofeng; Zhang, Ruibo; Fan, Zhaoyang
2018-05-01
With the fully exposed graphene edges, high conductivity and large surface area, edge oriented graphene foam (EOGF), prepared by deposition of perpendicular graphene network encircling the struts of Ni foam, is a superior scaffold to support active materials for electrochemical applications. With VO2 as an example, EOGF loaded VO2 nanoparticle (VO2/EOGF) electrode has high rate performance as cathode in lithium ion batteries (LIBs). In addition to the Li+ intercalation into the lattice, contribution of non-diffusion-limited pseudocapacitance to the capacity is prominent at high rates. VO2/EOGF based supercapacitor also exhibits fast response, with a characteristic frequency of 15 Hz when the phase angle reaches -45°, or a relaxation time constant of 66.7 ms. These results suggest the promising potential of EOGF as a scaffold in supporting active nanomaterials for electrochemical energy storage and other applications.
Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries
Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Nelson, Lee O [Idaho Falls, ID
2005-01-04
The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.
Interaction of Fe-Al-Cr-C with the melt of an alkali metal carbonate
NASA Astrophysics Data System (ADS)
Nikitina, E. V.
2015-08-01
The interaction of an Fe-Al-Cr-C (29.5 wt % Fe, 29.35 wt % Cr, 2.56 wt % C, 38.59 wt % Al) alloy with the melt of a lithium, sodium, or potassium carbonate containing 1-5 wt % addition to a salt phase is studied by gravimetry and measuring the corrosion potential and anode polarization curves in the temperature range 500-600°C. As passivators, the substances that decrease the corrosion losses due to hardening and thickening of an oxide film (lithium, sodium, potassium hydroxides) are used. As corrosion stimulators (activators), sodium chloride, fluoride, and sulfate are used. The coalloying of iron with chromium and aluminum results in high corrosion resistance against both frontal (continuous) and local (pitting, intercrystalline) corrosion as a result of formation of chemically resistant and high-adhesion oxide layers with their participation. X-ray diffraction analysis reveals gamma aluminum oxide, spinel (alumochromite) traces, and lithium aluminate at the surface.
NASA Astrophysics Data System (ADS)
Li, Chuanhua; Yu, Zhiyong; Liu, Hanxing; Chen, Kang
2018-02-01
To improve sluggish kinetics of ORR and OER (oxygen reduction and evolution reaction) on the air electrode, the high surface area LaMnO3 nanoparticle catalysts were synthesized by sol-gel method. The specific surface area of as-synthesized pure phase LaMnO3 nanoparticles is 21.21 m2 g-1. The onset potential of high surface area LaMnO3 in alkaline solution is -0.0202 V which is comparable to commercial Pt/C. When the assembled high surface area LaMnO3-based lithium-air batteries were measured at 100 mA g-1, the initial discharge specific capacity could reach 6851.9 mA h g-1(carbon). In addition, lithium-oxygen batteries including high surface area LaMnO3 catalysts could be cycled for 52 cycles at 200 mA g-1 under a limited discharge-charge depth of 500 mA h gcarbon-1.
Vapor-phase fabrication of β-iron oxide nanopyramids for lithium-ion battery anodes.
Carraro, Giorgio; Barreca, Davide; Cruz-Yusta, Manuel; Gasparotto, Alberto; Maccato, Chiara; Morales, Julián; Sada, Cinzia; Sánchez, Luis
2012-12-07
The other polymorph: A vapor-phase route for the fabrication of β-Fe(2)O(3) nanomaterials on Ti substrates at 400-500 °C is reported. For the first time, the β polymorph is tested as anode for lithium batteries, exhibiting promising performances in terms of Li storage and rate capability. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Linmin; Xiao, Xianghui; Wen, Youhai
In this study, the stress generation caused by phase transitions and lithium intercalation of nickel-manganese-cobalt (NMC) based half cell with realistic 3D microstructures has been studied using finite element method. The electrochemical properties and discharged curves under various C rates are studied. The potential drops significantly with the increase of C rates. During the discharge process, for particles isolated from the conductive channels, several particles with no lithium ion intercalation are observed. For particles in the electrochemical network, the lithium ion concentration increases during the discharge process. The stress generation inside NMC particles is calculated coupled with lithium diffusion andmore » phase transitions. The results show the stresses near the concave and convex regions are the highest. The neck regions of the connected particles 2 can break and form several isolated particles. If the isolated particles are not connected with the electrically conductive materials such as carbon and binder, the capacity loses in battery. For isolated particles in the conductive channel, cracks are more likely to form on the surface. Moreover, stresses inside the particles increase dramatically when considering phase transitions. The phase transitions introduce an abrupt volume change and generate the strain mismatch, causing the stress increase.« less
Structural Transformation of LiFePO4 during Ultrafast Delithiation.
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; Saulnier, Mathieu; Dufresne, Eric M; Liang, Guoxian; Schougaard, Steen B
2017-12-21
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4 ) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. We investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahigh rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.
All-solid electrodes with mixed conductor matrix
Huggins, Robert A.; Boukamp, Bernard A.
1984-01-01
Alkali metal based electrochemical cells offer a great deal of promise for applications in many areas such as electric vehicles and load leveling purposes in stationary power plants. Lithium is an attractive candidate as the electroactive species in such cells since lithium is very electropositive, abundant and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated at elevated temperatures. The subject invention provides an electrochemical cell in one embodiment of which lithium is the electroactive species. The cell comprises an electrolyte, a positive electrode, and a negative electrode, either or both of which is an all-solid, composite microstructural electrode containing both a reactant phase and a mixed ionic-electronic conducting phase. The cells of the subject invention exhibit improved kinetic features, current and power densities. Repeated charging and discharging of these cells can be accomplished without appreciable loss of capacity.
Structural Transformation of LiFePO 4 during Ultrafast Delithiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less
Structural Transformation of LiFePO 4 during Ultrafast Delithiation
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; ...
2017-12-05
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less
Thermochemistry of tantalum-wall cooling system with lithium and sodium working fluids
NASA Technical Reports Server (NTRS)
Tower, L. K.
1972-01-01
Plots are presented which show the distribution of oxygen between liquid lithium and tantalum or niobium, and between liquid sodium and tantalum at elevated temperatures. Additional plots showing the composition of the gas phase above the solutions of oxygen and alkali metal are presented. The use of the plots is illustrated by an example tantalum heat pipe filled with lithium.
Liu, Qi; Liu, Yadong; Yang, Fan; He, Hao; Xiao, Xianghui; Ren, Yang; Lu, Wenquan; Stach, Eric; Xie, Jian
2018-02-07
In situ high-energy synchrotron XRD studies were carried out on commercial 18650 LiFePO 4 cells at different cycles to track and investigate the dynamic, chemical, and structural changes in the course of long-term cycling to elucidate the capacity fading mechanism. The results indicate that the crystalline structural deterioration of the LiFePO 4 cathode and the graphite anode is unlikely to happen before capacity fades below 80% of the initial capacity. Rather, the loss of the active lithium source is the primary cause for the capacity fade, which leads to the appearance of inactive FePO 4 that is proportional to the absence of the lithium source. Our in situ HESXRD studies further show that the lithium-ion insertion and deinsertion behavior of LiFePO 4 continuously changed with cycling. For a fresh cell, the LiFePO 4 experienced a dual-phase solid-solution behavior, whereas with increasing cycle numbers, the dynamic change, which is characteristic of the continuous decay of solid solution behavior, is obvious. The unpredicted dynamic change may result from the morphology evolution of LiFePO 4 particles and the loss of the lithium source, which may be the cause of the decreased rate capability of LiFePO 4 cells after long-term cycling.
Moorhead-Rosenberg, Zach; Huq, Ashfia; Goodenough, John B.; ...
2015-10-05
The electronic and electrochemical properties of the high-voltage spinel LiMn 1.5Ni 0.5O 4 as a function of cation ordering and lithium content have been investigated. Conductivity and activation energy measurements confirm that charge transfer occurs by small polaron hopping and the charge carrier conduction is easier in the Ni:3d band than in the in Mn:3d band. Seebeck coefficient data reveal that the Ni 2+/ 3+. and Ni 3+/ 4+ redox couples are combined in a single,3d band, and that maximum charge carrier concentration occurs where the average Ni oxidation state is close to 3+, corresponding to x = 0.5 inmore » Li Li 1-xMn 1.5Ni 0.5O 4. Furthermore, maximum electronic conductivity is found at x = 0.5, regardless of cation ordering. The thermodynamically stable phases formed during cycling were investigated by recording the X-ray diffraction (XRD) of chemically delithiated powders. The more ordered spinels maintained two separate two-phase regions upon lithium extraction, while the more disordered samples exhibited a solid-solubility region from LiMn 1.5Ni 0.5O 4 to Li 0.5Mn 1.5Ni 0.5O 4. The conductivity and phase-transformation data of four samples with varying degrees of cation ordering were compared to the electrochemical data collected with lithium cells. Only the most ordered spinel showed inferior rate performance, while the sample annealed for a shorter time performed comparable to the unannealed or disordered samples. Our results challenge the most common beliefs about high-voltage spinel: (i) low Mn 3+ content is responsible for poor rate performance and (ii) thermodynamically stable solid-solubility is critical for fast kinetics.« less
In Situ Observation of Single-Phase Lithium Intercalation in Sub-25-nm Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Li; Liu, Yang; Han, Wei-Qiang
Although a non-equilibrium single-phase reaction, with the absence of nucleation and growth of a second phase, is believed to be a key factor for high-rate performance of lithium-ion batteries, it is thermodynamically unfavorable and usually proceeds in electrode materials with small particle sizes (tens of nanometers). Unfortunately, the phase evolutions inside such small particles are often shrouded by the macroscopic inhomogeneous reactions of electrodes containing millions of particles, leading to intensive debate over the size-dependent microscopic reaction mechanisms. Here, we provide a generally applicable methodology based on in-situ electron diffraction study on a multi-particle system to track the lithiation pathwaysmore » in individual nanoparticles, and unambiguously reveal that lithiation of anatase TiO 2, previously long believed to be biphasic, converts to a single-phase reaction when the particle size is below ~25 nm. Our results imply the prevalence of such a size-dependent transition in lithiation mechanism among intercalation compounds whose lithium miscibility gaps are associated with a prominent size effect, and therefore provide important guidelines for designing high-power electrodes, especially cathodes.« less
In Situ Observation of Single-Phase Lithium Intercalation in Sub-25-nm Nanoparticles
Zhong, Li; Liu, Yang; Han, Wei-Qiang; ...
2017-05-05
Although a non-equilibrium single-phase reaction, with the absence of nucleation and growth of a second phase, is believed to be a key factor for high-rate performance of lithium-ion batteries, it is thermodynamically unfavorable and usually proceeds in electrode materials with small particle sizes (tens of nanometers). Unfortunately, the phase evolutions inside such small particles are often shrouded by the macroscopic inhomogeneous reactions of electrodes containing millions of particles, leading to intensive debate over the size-dependent microscopic reaction mechanisms. Here, we provide a generally applicable methodology based on in-situ electron diffraction study on a multi-particle system to track the lithiation pathwaysmore » in individual nanoparticles, and unambiguously reveal that lithiation of anatase TiO 2, previously long believed to be biphasic, converts to a single-phase reaction when the particle size is below ~25 nm. Our results imply the prevalence of such a size-dependent transition in lithiation mechanism among intercalation compounds whose lithium miscibility gaps are associated with a prominent size effect, and therefore provide important guidelines for designing high-power electrodes, especially cathodes.« less
Lithium alloy negative electrodes
NASA Astrophysics Data System (ADS)
Huggins, Robert A.
The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.
Phase Equilibria of Stored Chemical Energy Reactants.
1984-07-25
aluminate-lithium ferrate system. Detection of a Li1 Al4/7Fe 3/704 compound: C. R. Acad. Sci., Ser. C, V. 273, No. 15, p. 888-90. McNicol, B. D. and Pott...thermodynamic properties of lithium ferrate (LiO.5Fe2 .504) and lithium aluminate (LiO 5Al 2 504) from 5 to 545 K: J. Chem. Thermodyn., V. 7, No. 7, p. 693- 2...1977, Study of low-temperature hydrothermal crystallization in lithium oxide-silicon dioxide-water, potassium oxide-silicon dioxide-water, and
Production of battery grade materials via an oxalate method
Belharouak, Ilias; Amine, Khalil
2016-05-17
An active electrode material for electrochemical devices such as lithium ion batteries includes a lithium transition metal oxide which is free of sodium and sulfur contaminants. The lithium transition metal oxide is prepared by calcining a mixture of a lithium precursor and a transition metal oxalate. Electrochemical devices use such active electrodes.
Production of battery grade materials via an oxalate method
Belharouak, Ilias; Amine, Khalil
2014-04-29
An active electrode material for electrochemical devices such as lithium ion batteries includes a lithium transition metal oxide which is free of sodium and sulfur contaminants. The lithium transition metal oxide is prepared by calcining a mixture of a lithium precursor and a transition metal oxalate. Electrochemical devices use such active electrodes.
Catalytic and inhibiting effects of lithium peroxide and hydroxide on sodium chlorate decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, J.C.; Zhang, Y.
1995-09-01
Chemical oxygen generators based on sodium chlorate and lithium perchlorate are used in airplanes, submarines, diving, and mine rescue. Catalytic decomposition of sodium chlorate in the presence of cobalt oxide, lithium peroxide, and lithium hydroxide is studied using thermal gravimetric analysis. Lithium peroxide and hydroxide are both moderately active catalysts for the decomposition of sodium chlorate when used alone, and inhibitors when used with the more active catalyst cobalt oxide.
TCF7L2 mediates the cellular and behavioral response to chronic lithium treatment in animal models.
Misztal, Katarzyna; Brozko, Nikola; Nagalski, Andrzej; Szewczyk, Lukasz M; Krolak, Marta; Brzozowska, Katarzyna; Kuznicki, Jacek; Wisniewska, Marta B
2017-02-01
The mechanism of lithium's therapeutic action remains obscure, hindering the discovery of safer treatments for bipolar disorder. Lithium can act as an inhibitor of the kinase GSK3α/β, which in turn negatively regulates β-catenin, a co-activator of LEF1/TCF transcription factors. However, unclear is whether therapeutic levels of lithium activate β-catenin in the brain, and whether this activation could have a therapeutic significance. To address this issue we chronically treated mice with lithium. Although the level of non-phospho-β-catenin increased in all of the brain areas examined, β-catenin translocated into cellular nuclei only in the thalamus. Similar results were obtained when thalamic and cortical neurons were treated with a therapeutically relevant concentration of lithium in vitro. We tested if TCF7L2, a member of LEF1/TCF family that is highly expressed in the thalamus, facilitated the activation of β-catenin. Silencing of Tcf7l2 in thalamic neurons prevented β-catenin from entering the nucleus, even when the cells were treated with lithium. Conversely, when Tcf7l2 was ectopically expressed in cortical neurons, β-catenin shifted to the nucleus, and lithium augmented this process. Lastly, we silenced tcf7l2 in zebrafish and exposed them to lithium for 3 days, to evaluate whether TCF7L2 is involved in the behavioral response. Lithium decreased the dark-induced activity of control zebrafish, whereas the activity of zebrafish with tcf7l2 knockdown was unaltered. We conclude that therapeutic levels of lithium activate β-catenin selectively in thalamic neurons. This effect is determined by the presence of TCF7L2, and potentially contributes to the therapeutic response. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Design and operation of a 1000 C lithium-cesium test system
NASA Technical Reports Server (NTRS)
Hays, L. G.; Haskins, G. M.; Oconnor, D. E.; Torola, J., Jr.
1973-01-01
A 100 kWt cesium-lithium test loop fabricated of niobium-1% zirconium for experiments on erosion and two-phase system operation at temperatures of 980 C and velocities of 150 m/s. Although operated at design temperature for 100 hours, flow instabilities in the two-phase separator interfered with the achievement of the desired mass flow rates. A modified separator was fabricated and installed in the loop to alleviate this problem.
Design of multi-wavelength tunable filter based on Lithium Niobate
NASA Astrophysics Data System (ADS)
Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun
2018-05-01
A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.
Evenson, Carl; Mackay, Richard
2013-07-23
A process is disclosed for the preparation of electroactive cathode compounds useful in lithium-ion batteries, comprising exothermic mixing of low-cost precursors and calcination under appropriate conditions. The exothermic step may be a spontaneous flameless combustion reaction. The disclosed process can be used to prepare any lithium metal phosphate or lithium mixed metal phosphate as a high surface area single phase compound.
Hot filament technique for measuring the thermal conductivity of molten lithium fluoride
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Perry, William D.
1990-01-01
Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.
Chen, Grace; Nomikos, George G; Affinito, John; Zhao, Zhen
2016-09-01
Because the multimodal antidepressant vortioxetine is likely to be coadministered with other central nervous system (CNS)-active drugs, potential drug-drug interactions warrant examination. These studies evaluated whether there are pharmacokinetic and/or pharmacodynamic interactions between vortioxetine and ethanol, diazepam, or lithium. This series of phase I studies included healthy men and women (only men in the lithium study) aged 18-45 years. The ethanol study was a randomized, double-blind, two-parallel group, four-period crossover study in which subjects received a single dose of vortioxetine (20 or 40 mg) or placebo with or without ethanol, and the diazepam study was a randomized, double-blind, placebo-controlled, two-sequence, two-period crossover study in which subjects received a single dose of diazepam following multiple doses of vortioxetine 10 mg/day or placebo. These two studies evaluated the effect of coadministration on standardized psychomotor parameters and on selected pharmacokinetic parameters of each drug. The lithium study was a single-blind, single-sequence study evaluating the effect of multiple doses of vortioxetine 10 mg/day on the steady-state pharmacokinetics of lithium. Concomitant administration of vortioxetine and single doses of either ethanol or diazepam had no significant effect on the psychomotor performance of subjects compared with administration of ethanol or diazepam alone. Vortioxetine had no significant effect on the pharmacokinetics of ethanol, diazepam, or lithium, and ethanol had no significant effect on the pharmacokinetics of vortioxetine. Concomitant administration of these agents with vortioxetine was generally well tolerated, with no clinically relevant drug-drug pharmacokinetic or pharmacodynamic interactions identified.
Synthesis and characterization of high performance electrode materials for lithium ion batteries
NASA Astrophysics Data System (ADS)
Hong, Jian
Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20°C, although the film thickness was over 1 mum. Lithium titanate with the spinel structure is also an important anode material for high power applications. It has a unique feature of zero volume change during lithium ion intercalation, which gives its excellent performance when as nanoparticles. Our results show that a slight reduction of the titanium using hydrogen leads to a high capacity at a high rate even at moderate particle size. Silicon is currently of considerable interest as an anode for lithium secondary electrochemical batteries. The Li-Si alloy system, having average operating voltages below 500 mV versus lithium, can take up to 3.4 lithium ions during intercalation. It is also well known that a 300% volume dilatation is associated with alloying 3.4 lithium atoms per silicon atom. M-Si (M = Fe, Co, and Ni) alloys with nano-silicon domains were introduced as the anode materials for lithium ion batteries. An improved electrochemical performance was found.
Solid composite electrolytes for lithium batteries
Kumar, Binod; Scanlon, Jr., Lawrence G.
2000-01-01
Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.
2010-08-01
a mathematical equation relates the cathode reaction reversible electric potential to the lithium content of the cathode electrode. Based on the...Transport of Lithium in the Cell Cathode Active Material The Nernst -Einstein relation linking the lithium-ion mass diffusivity and its ionic...transient, isothermal and isobaric conditions. The differential model equation describing the lithium diffusion and accumulation in a spherical, active
Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the “Activation” Plateau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Bareno, Javier; Bettge, Martin
2015-01-01
A common feature of lithium-excess layered oxides, nominally of composition xLi 2MnO 3•(1-x)LiMO 2 (M = transition metal) is a high-voltage plateau (~4.5 V vs. Li/Li +) in their capacity-voltage profile during the first delithiation cycle. This plateau is believed to result from activation of the Li 2MnO 3 component, which makes additional lithium available for electrochemical cycling. However, oxides cycled beyond this activation plateau are known to display voltage fade which is a continuous reduction in their equilibrium potential. In this article we show that these oxides display gradual voltage fade even on electrochemical cycling in voltage ranges wellmore » below the activation plateau. The average fade is ~0.08 mV-cycle-1 for Li 1.2Ni 0.15Mn 0.55Co 0.1O 2 vs. Li cells after 20 cycles in the 2–4.1 V range at 55°C; a ~54 mV voltage hysteresis, expressed as the difference in average cell voltage between charge and discharge cycles, is also observed. The voltage fade results from a gradual accumulation of local spinel environments in the crystal structure. Some of these spinel sites result from lithium deficiencies during oxide synthesis and are likely to be at the particle surfaces; other sites result from the migration of transition metal atoms in the partially-delithiated LiMO 2 component into the lithium planes during electrochemical cycling. The observed rate of voltage fade depends on a combination of factors that includes the phase equilibrium between the layered and spinel components and the kinetics of transition metal migration.« less
NASA Astrophysics Data System (ADS)
Vieceli, Nathália; Nogueira, Carlos A.; Pereira, Manuel F. C.; Durão, Fernando O.; Guimarães, Carlos; Margarido, Fernanda
2018-01-01
The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. Therefore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from lepidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and response-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphization and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.
Mury, Fábio B; da Silva, Weber C; Barbosa, Nádia R; Mendes, Camila T; Bonini, Juliana S; Sarkis, Jorge Eduardo Souza; Cammarota, Martin; Izquierdo, Ivan; Gattaz, Wagner F; Dias-Neto, Emmanuel
2016-10-01
Phospholipase A2 (Pla2) is required for memory retrieval, and its inhibition in the hippocampus has been reported to impair memory acquisition in rats. Moreover, cognitive decline and memory deficits showed to be reduced in animal models after lithium treatment, prompting us to evaluate possible links between Pla2, lithium and memory. Here, we evaluated the possible modulation of Pla2 activity by a long-term treatment of rats with low doses of lithium and its impact in memory. Wistar rats were trained for the inhibitory avoidance task, treated with lithium for 100 days and tested for perdurability of long-term memory. Hippocampal samples were used for quantifying the expression of 19 brain-expressed Pla2 genes and for evaluating the enzymatic activity of Pla2 using group-specific radio-enzymatic assays. Our data pointed to a significant perdurability of long-term memory, which correlated with increased transcriptional and enzymatic activities of certain members of the Pla2 family (iPla2 and sPla2) after the chronic lithium treatment. Our data suggest new possible targets of lithium, add more information on its pharmacological activity and reinforce the possible use of low doses of lithium for the treatment of neurodegenerative conditions such as the Alzheimer's disease.
van Woerkom, Arthur Ernst
2017-01-01
It is proposed that lithium's therapeutic effects occur indirectly by augmenting a cascade of protective "fail-safe" pathways pre-configured to activate in response to a dangerous low cell [Mg ++ ] situation, eg, posttraumatic brain injury, alongside relative cell adenosine triphosphate depletion. Lithium activates cell protection, as it neatly mimics a lowered intracellular [Mg ++ ] level.
Crystallization of lithium borate glasses
NASA Technical Reports Server (NTRS)
Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.
1992-01-01
The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.
NASA Astrophysics Data System (ADS)
Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.
2010-06-01
Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li 2O-4.0Al 2O 3-68.6SiO 2-3.0K 2O-2.6B 2O 3-0.5P 2O 5-0.9TiO 2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li 2SiO 3) is the first phase to c form followed by cristobalite (SiO 2) and lithium disilicate (Li 2Si 2O 5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li 3PO 4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li 3PO 4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO 4 ( M=B, Al or Ti) complexes. The presence of BO 3 and BO 4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO 3) increases at the expense of tetrahedrally coordinated B (BO 4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.
Zhu, Zhenzhong; Kremer, Penny; Tadmori, Iman; Ren, Yi; Sun, Dongming; He, Xijing; Young, Wise
2011-01-01
Transplanted neural stem and progenitor cells (NSCs) produce mostly astrocytes in injured spinal cords. Lithium stimulates neurogenesis by inhibiting GSK3b (glycogen synthetase kinase 3-beta) and increasing WNT/beta catenin. Lithium suppresses astrogliogenesis but the mechanisms were unclear. We cultured NSCs from subventricular zone of neonatal rats and showed that lithium reduced NSC production of astrocytes as well as proliferation of glia restricted progenitor (GRP) cells. Lithium strongly inhibited STAT3 (signal transducer and activator of transcription 3) activation, a messenger system known to promote astrogliogenesis and cancer. Lithium abolished STAT3 activation and astrogliogenesis induced by a STAT3 agonist AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), suggesting that lithium suppresses astrogliogenesis by inhibiting STAT3. GSK3β inhibition either by a specific GSK3β inhibitor SB216763 or overexpression of GID5-6 (GSK3β Interaction Domain aa380 to 404) did not suppress astrogliogenesis and GRP proliferation. GSK3β inhibition also did not suppress STAT3 activation. Together, these results indicate that lithium inhibits astrogliogenesis through non-GSK3β-mediated inhibition of STAT. Lithium may increase efficacy of NSC transplants by increasing neurogenesis and reducing astrogliogenesis. Our results also may explain the strong safety record of lithium treatment of manic depression. Millions of people take high-dose (>1 gram/day) lithium carbonate for a lifetime. GSK3b inhibition increases WNT/beta catenin, associated with colon and other cancers. STAT3 inhibition may reduce risk for cancer. PMID:21931595
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Ono, M. Jaworski, R. Kaita, C. N. Skinner, J.P. Allain, R. Maingi, F. Scotti, V.A. Soukhanovskii, and the NSTX-U Team
Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50.more » Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.« less
Modeling crack growth during Li insertion in storage particles using a fracture phase field approach
NASA Astrophysics Data System (ADS)
Klinsmann, Markus; Rosato, Daniele; Kamlah, Marc; McMeeking, Robert M.
2016-07-01
Fracture of storage particles is considered to be one of the major reasons for capacity fade and increasing power loss in many commercial lithium ion batteries. The appearance of fracture and cracks in the particles is commonly ascribed to mechanical stress, which evolves from inhomogeneous swelling and shrinkage of the material when lithium is inserted or extracted. Here, a coupled model of lithium diffusion, mechanical stress and crack growth using a phase field method is applied to investigate how the formation of cracks depends on the size of the particle and the presence or absence of an initial crack, as well as the applied flux at the boundary. The model shows great versatility in that it is free of constraints with respect to particle geometry, dimension or crack path and allows simultaneous observation of the evolution of lithium diffusion and crack growth. In this work, we focus on the insertion process. In particular, we demonstrate the presence of intricate fracture phenomena, such as, crack branching or complete breakage of storage particles within just a single half cycle of lithium insertion, a phenomenon that was only speculated about before.
NASA Astrophysics Data System (ADS)
Vortmann-Westhoven, Britta; Winter, Martin; Nowak, Sascha
2017-04-01
With lithium being the capacity determining species in lithium-ion battery (LIB) cells, the local quantification is of enormous importance for understanding of the cell performance. The investigation of the lithium distribution in LIB full cells is performed with two different cell types, T-cells of the Swagelok® type and pouch bag cells with lithium nickel cobalt manganese oxide and mesocarbon microbead graphite as the active materials as well as a lithium hexafluorophosphate based organic carbonate solvent electrolyte. The lithium content of/at the individual components of the cells is analyzed for different states of charge (SOCs) by inductively coupled plasma-optical emission spectrometry (ICP-OES) and the lithium distribution as well as the loss of active lithium within the cells is calculated after cycling. With increasing the SOC, the lithium contents decrease in the cathodes and simultaneously increase in the anodes. The temperature increase shows a clear shift of the lithium content in the direction of the anode for the T-cells. The comparison of the C-rate influence shows that the lower the C-rate, the more the lithium content on the electrodes is shifted into the direction of the anode.
Lucas, Kirsten C; Hart, David A; Becker, Rolf W
2010-01-25
Lithium, a prophylactic drug for the treatment of bipolar disorder, is prescribed with caution due to its side effects, including renal damage. In this study porcine LLC-PK1 renal tubular cells were used to establish the direct toxicity of lithium on proximal cells and gain insights into the molecular mechanisms involved. In the presence of LiCl, cell proliferation exhibited insignificant decreases in a concentration-dependent manner, but once confluent, constant cell numbers were observed. Cell cycle studies indicated a small dose-dependent accumulation of cells in the G2/M stage after 24 h, as well as an increase in cells in the G0/G1 phase after treatment with 1-10 mM LiCl, but not at 20 mM LiCl. No evidence of apoptosis was observed based on cell morphology or DNA fragmentation studies, or evidence of protein expression changes for Bax, Bcl-2, and p53 proteins using immunocytochemistry. In addition caspases 3, 8 and 9 activity remained unaltered between control and lithium-treated cultures. To conclude, exposure to high concentrations of lithium did not result in overt toxic effects to LLC-PK1 renal cells, although LiCl did alter some aspects of cell behaviour, which could potentially influence function over time.
Aluminum-lithium alloys in helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A.F.
1997-10-01
Aluminium-lithium alloys are widely applied on the EH101 helicopter, designed and built jointly by GKN Westland Helicopters of England and Agusta S.p.A. of Italy. With the exception of the powder metallurgy alloy AA 5091, all the current commercially available aluminum-lithium alloys are produced by direct-chill casting, and require a precipitation-aging heat treatment to achieve the required properties. In aluminum-lithium alloys containing greater than 1.3% (by weight) of lithium, the intermetallic phase {delta}{prime}-Al{sub 3}Li precipitates upon natural or artificial aging, but the associated strengthening effect is insufficient to meet the medium or high strength levels usually required (the damage tolerant tempermore » in AA 8090 is an exception).« less
High capacity anode materials for lithium ion batteries
Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject
2015-11-19
High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.
Effects of lithium on brain glucose metabolism in healthy men.
Kohno, Tomoya; Shiga, Tohru; Toyomaki, Atsuhito; Kusumi, Ichiro; Matsuyama, Tetsuaki; Inoue, Tetsuya; Katoh, Chietsugu; Koyama, Tsukasa; Tamaki, Nagara
2007-12-01
Lithium is clinically available for the treatment of mood disorders. However, it has remained unclear how lithium acts on the brain to produce its effects. The aim of this study was to evaluate the effects of chronic lithium on human brain activity using positron emission tomography and clarify the correlation between brain activity changes and cognitive functional changes as induced by chronic lithium administration. A total of 20 healthy male subjects (mean age, 32 +/- 6 years) underwent positron emission tomographic scans with F-fluorodeoxyglucose and a battery of neuropsychological tests at baseline condition and after 4 weeks of lithium administration. Brain metabolic data were analyzed using statistical parametric mapping. Lithium increased relative regional cerebral glucose metabolism (rCMRglc) in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased rCMRglc in the right cerebellum and left lingual gyrus/cuneus. There was no difference in any of the variables of cognitive functions between the baseline condition and after chronic lithium administration. There was no correlation between rCMRglc changes in any of the brain regions and individual variable changes in any of the neuropsychological tests. The results suggest that the effects of chronic lithium are associated with increased activity in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased activity in the right cerebellum and left lingual gyrus/cuneus.
NASA Astrophysics Data System (ADS)
Zhang, Tao; Kamlah, Marc
2018-01-01
A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn-Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics^{circledR } for a spherically symmetric boundary value problem of lithium insertion into a Li_xMn_2O_4 cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for Li_xMn_2O_4 , and the interface evolution is studied. Comparison to the Cahn-Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn-Hilliard theory.
Graczyk-Zajac, Magdalena; Reinold, Lukas Mirko; Kaspar, Jan; Sasikumar, Pradeep Vallachira Warriam; Soraru, Gian-Domenico; Riedel, Ralf
2015-01-01
Within this work we define structural properties of the silicon carbonitride (SiCN) and silicon oxycarbide (SiOC) ceramics which determine the reversible and irreversible lithium storage capacities, long cycling stability and define the major differences in the lithium storage in SiCN and SiOC. For both ceramics, we correlate the first cycle lithiation or delithiation capacity and cycling stability with the amount of SiCN/SiOC matrix or free carbon phase, respectively. The first cycle lithiation and delithiation capacities of SiOC materials do not depend on the amount of free carbon, while for SiCN the capacity increases with the amount of carbon to reach a threshold value at ~50% of carbon phase. Replacing oxygen with nitrogen renders the mixed bond Si-tetrahedra unable to sequester lithium. Lithium is more attracted by oxygen in the SiOC network due to the more ionic character of Si-O bonds. This brings about very high initial lithiation capacities, even at low carbon content. If oxygen is replaced by nitrogen, the ceramic network becomes less attractive for lithium ions due to the more covalent character of Si-N bonds and lower electron density on the nitrogen atom. This explains the significant difference in electrochemical behavior which is observed for carbon-poor SiCN and SiOC materials. PMID:28347008
On bilinearity of Manson-Coffin low-cycle-fatigue relationship
NASA Technical Reports Server (NTRS)
Radhakrishnan, V. M.
1992-01-01
Some alloy systems, such as aluminum-lithium alloys and dual-phase steels, have been found to show a bilinear Manson-Coffin low-cycle-fatigue relationship. This paper shows that such bilinear behavior is related to the cyclic stress-strain curve. A bilinear cyclic stress-strain curve is a likely indication of a bilinear Manson-Coffin relationship. It is shown that materials other than aluminum-lithium alloys and dual-phase steels also may exhibit bilinear Manson-Coffin behavior. Implications for design are discussed.
Li-air batteries having ether-based electrolytes
Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook
2015-03-03
A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.
NASA Astrophysics Data System (ADS)
Lou, U.-Lat; You, Chen-Feng; Wu, Shein-Fu; Chung, Chuan-Hsiung
2014-05-01
Hydrothermal activity at Milos in the Aegean island (Greece) is mainly located at rather shallow depth (about 5 m). It is interesting to compare these chemical compositions and the evolution processes of the hydrothermal fluids at deep sea hydrothermal vents in Mid-ocean Ridge (MOR). Lithium (Li) is a highly mobile element and its isotopic composition varies at different geological settings. Therefore, Li and its isotope could be used as an indicator for many geochemical processes. Since 6Li preferential retained in the mineral phase where 7Li is leached into fluid phase during basalt alteration, the Li isotopic fractionation between the rocks and the fluids reflect sensitively the degree of water-rock interaction. In this study, Bio-Rad AG-50W X8 cation exchange resin was used for purifying the hydrothermal fluids to separate Li from other matrix elements. The Li isotopic composition (δ7Li) was determined by Multi-collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) with precision better than 0.2‰ (2σ, n=20). The Li concentration in the hydrothermal fluids falls between 0.02 to 10.31 mM. The δ7Li values vary from +1.9 to +29.7‰, indicating significant seawater contamination have occurred. These hydrothermal fluids fit well with seawater and brine two end-member binary mixing model. During phase separation, lithium, boron, chlorine, iodine, bromine, sodium and potassium were enriched in the brine phase. On the other hand, aluminum, sulphur and iron were enriched in the vapor phase. There is no significant isotope fractionation between the two phases. The water/rock ratio (W/R) calculated is low (about 1.5 to 1.8) for the Milos fluids, restricted seawater recharge into the oceanic crust. Moreover, the oceanic crust in the region becomes less altered since the W/R is low. The δ7Li value of the hydrothermal fluids can be used as a sensitive tool for studying water-rock interaction.
NASA Advanced Radiator Technology Development
NASA Astrophysics Data System (ADS)
Koester, J. Kent; Juhasz, Albert J.
1994-07-01
A practical implementation of the two-phase working fluid of lithium and NaK has been developed experimentally for pumped loop radiator designs. The benefits of the high heat capacity and low mass of lithium have been integrated with the shutdown capability enabled by the low freezing temperature of NaK by mixing these liquid metals directly. The stable and reliable start up and shutdown of a lithium/NaK pumped loop has been demonstrated through the development of a novel lithium freeze-separation technique within the flowing header ducts. The results of a highly instrumented liquid metal test loop are presented in which both lithium fraction as well as loop gravitational effects were varied over a wide range of values. Diagnostics based on dual electric probes are presented in which the convective behavior of the lithium component is directly measured during loop operation. The uniform distribution of the lithium after a freeze separation is verified by neutron radiography. The operating regime for reliable freeze/thaw flow behavior is described in terms of correlations based on dimensional analysis.
De-Paula, Vanessa de Jesus; Kerr, Daniel Shikanai; de Carvalho, Marília Palma Fabiano; Schaeffer, Evelin Lisete; Talib, Leda Leme; Gattaz, Wagner Farid; Forlenza, Orestes Vicente
2015-11-04
Experimental evidence supports the neuroprotective properties of lithium, with implications for the treatment and prevention of dementia and other neurodegenerative disorders. Lithium modulates critical intracellular pathways related to neurotrophic support, inflammatory response, autophagy and apoptosis. There is additional evidence indicating that lithium may also affect membrane homeostasis. To investigate the effect of lithium on cytosolic phospholipase A₂ (PLA₂) activity, a key player on membrane phospholipid turnover which has been found to be reduced in blood and brain tissue of patients with Alzheimer's disease (AD). Primary cultures of cortical and hippocampal neurons were treated for 7 days with different concentrations of lithium chloride (0.02 mM, 0.2 mM and 2 mM). A radio-enzymatic assay was used to determine the total activity of PLA₂ and two PLA₂ subtypes: cytosolic calcium-dependent (cPLA₂); and calcium-independent (iPLA₂). cPLA₂ activity increased by 82% (0.02 mM; p = 0.05) and 26% (0.2 mM; p = 0.04) in cortical neurons and by 61% (0.2 mM; p = 0.03) and 57% (2 mM; p = 0.04) in hippocampal neurons. iPLA₂ activity was increased by 7% (0.2 mM; p = 0.04) and 13% (2 mM; p = 0.05) in cortical neurons and by 141% (0.02 mM; p = 0.0198) in hippocampal neurons. long-term lithium treatment increases membrane phospholipid metabolism in neurons through the activation of total, c- and iPLA₂. This effect is more prominent at sub-therapeutic concentrations of lithium, and the activation of distinct cytosolic PLA₂ subtypes is tissue specific, i.e., iPLA₂ in hippocampal neurons, and cPLA₂ in cortical neurons. Because PLA₂ activities are reported to be reduced in Alzheimer's disease (AD) and bipolar disorder (BD), the present findings provide a possible mechanism by which long-term lithium treatment may be useful in the prevention of the disease.
Lithium dendrite growth through solid polymer electrolyte membranes
NASA Astrophysics Data System (ADS)
Harry, Katherine; Schauser, Nicole; Balsara, Nitash
2015-03-01
Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.
Cycle life performance of rechargeable lithium ion batteries and mathematical modeling
NASA Astrophysics Data System (ADS)
Ning, Gang
Capacity fade of commercial Sony US 18650 Li-ion batteries cycled at high discharge rates was studied at ambient temperature. Battery cycled at the highest discharge rate (3 C) shows the largest internal resistance increase of 27.7% relative to the resistance of fresh battery. It's been observed anode carbon loses 10.6% of its capability to intercalate or deintercalate Li+ after it was subjected to 300 cycles at discharge rate of 3 C. This loss dominates capacity fade of full battery. A mechanism considering continuous parasitic reaction at anode/electrolyte interface and film thickening has been proposed. First principles based charge-discharge models to simulate cycle life behavior of rechargeable Li-ion batteries have been developed. In the generalized model, transport in both electrolyte phase and solid phase were simultaneously taken into account. Under mild charge-discharge condition, transport of lithium in the electrolyte phase has been neglected in the simplified model. Both models are based on loss of the active lithium ions due to the electrochemical parasitic reaction at anode/electrolyte interface and on rise of the anode film resistance. The effect of parameters such as depth of discharge (DOD), end of charge voltage (EOCV) and overvoltage of the parasitic reaction on the cycle life behavior of a battery has been analyzed. The experimental results obtained at a charge rate of 1 C, discharge rate of 0.5 C, EOCV of 4.0 V and DOD of 0.4 have been used to validate cycle life models. Good agreement between the simulations and the experiments has been achieved up to 1968 cycles with both models. Simulation of cycle life of battery under multiple cycling regimes has also been demonstrated.
NASA Astrophysics Data System (ADS)
Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong
2016-01-01
Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.
Developments in the Material Fabrication and Performance of LiMn2O4 dCld Cathode Material
2016-06-13
Lithium manganese spinel; Lithium rechargeable batteries , Lithium - ion battery ...requirements. Lithium and lithium - ion battery systems are highly sought after for rechargeable applications due to their high energy density (Wh/L...further optimization, the robust LixMn2O4-dCld spinel materials will be promising active materials for future integration into lithium - ion batteries
NASA Astrophysics Data System (ADS)
Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa
2016-09-01
Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.
Ponraj, Rubha; Kannan, Aravindaraj G; Ahn, Jun Hwan; Kim, Dong-Won
2016-02-17
Trapping lithium polysulfides formed in the sulfur positive electrode of lithium-sulfur batteries is one of the promising approaches to overcome the issues related to polysulfide dissolution. In this work, we demonstrate that intrinsically hydrophilic magnesium oxide (MgO) nanoparticles having surface hydroxyl groups can be used as effective additives to trap lithium polysulfides in the positive electrode. MgO nanoparticles were uniformly distributed on the surface of the active sulfur, and the addition of MgO into the sulfur electrode resulted in an increase in capacity retention of the lithium-sulfur cell compared to a cell with pristine sulfur electrode. The improvement in cycling stability was attributed to the strong chemical interactions between MgO and lithium polysulfide species, which suppressed the shuttling effect of lithium polysulfides and enhanced the utilization of the sulfur active material. To the best of our knowledge, this report is the first demonstration of MgO as an effective functional additive to trap lithium polysulfides in lithium-sulfur cells.
Kim, Youngjin; Koo, Dongho; Ha, Seongmin; Jung, Sung Chul; Yim, Taeeun; Kim, Hanseul; Oh, Seung Kyo; Kim, Dong-Min; Choi, Aram; Kang, Yongku; Ryu, Kyoung Han; Jang, Minchul; Han, Young-Kyu; Oh, Seung M; Lee, Kyu Tae
2018-05-04
Lithium-oxygen (Li-O 2 ) batteries are desirable for electric vehicles because of their high energy density. Li dendrite growth and severe electrolyte decomposition on Li metal are, however, challenging issues for the practical application of these batteries. In this connection, an electrochemically active two-dimensional phosphorene-derived lithium phosphide is introduced as a Li metal protective layer, where the nanosized protective layer on Li metal suppresses electrolyte decomposition and Li dendrite growth. This suppression is attributed to thermodynamic properties of the electrochemically active lithium phosphide protective layer. The electrolyte decomposition is suppressed on the protective layer because the redox potential of lithium phosphide layer is higher than that of electrolyte decomposition. Li plating is thermodynamically unfavorable on lithium phosphide layers, which hinders Li dendrite growth during cycling. As a result, the nanosized lithium phosphide protective layer improves the cycle performance of Li symmetric cells and Li-O 2 batteries with various electrolytes including lithium bis(trifluoromethanesulfonyl)imide in N,N-dimethylacetamide. A variety of ex situ analyses and theoretical calculations support these behaviors of the phosphorene-derived lithium phosphide protective layer.
Scalable integration of Li5FeO4 towards robust, high-performance lithium-ion hybrid capacitors.
Park, Min-Sik; Lim, Young-Geun; Hwang, Soo Min; Kim, Jung Ho; Kim, Jeom-Soo; Dou, Shi Xue; Cho, Jaephil; Kim, Young-Jun
2014-11-01
Lithium-ion hybrid capacitors have attracted great interest due to their high specific energy relative to conventional electrical double-layer capacitors. Nevertheless, the safety issue still remains a drawback for lithium-ion capacitors in practical operational environments because of the use of metallic lithium. Herein, single-phase Li5FeO4 with an antifluorite structure that acts as an alternative lithium source (instead of metallic lithium) is employed and its potential use for lithium-ion capacitors is verified. Abundant Li(+) amounts can be extracted from Li5FeO4 incorporated in the positive electrode and efficiently doped into the negative electrode during the first electrochemical charging. After the first Li(+) extraction, Li(+) does not return to the Li5FeO4 host structure and is steadily involved in the electrochemical reactions of the negative electrode during subsequent cycling. Various electrochemical and structural analyses support its superior characteristics for use as a promising lithium source. This versatile approach can yield a sufficient Li(+)-doping efficiency of >90% and improved safety as a result of the removal of metallic lithium from the cell. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Interferometric Measurement of Phase Mismatch in Potential Second Harmonic Generators.
NASA Astrophysics Data System (ADS)
Sinofsky, Edward Lawrence
This dissertation combines aspects of lasers, nonlinear optics and interferometry to measure the linear optical properties involved in phase matched second harmonic generation, (SHG). A new measuring technique has been developed to rapidly analyze the phase matching performance of potential SHGs. The data taken is in the form of interferograms produced by the self referencing nonlinear Fizeau interferometer (NLF), and correctly predicts when phase matched SHG will occur in the sample wedge. Data extracted from the interferograms produced by the NLF, allows us to predict both phase matching temperatures for noncritically phase matchable crystals and crystal orientation for angle tuned crystals. Phase matching measurements can be made for both Type I and Type II configurations. Phase mismatch measurements were made at the fundamental wavelength of 1.32 (mu)m, for: calcite, lithium niobate, and gadolinium molybdate (GMO). Similar measurements were made at 1.06 (mu)m. for calcite. Phase matched SHG was demonstrated in calcite, lithium niobate and KTP, while phase matching by temperature tuning is ruled out for GMO.
Distributed Heterogeneous Simulation of a Hybrid-Electric Vehicle
2006-03-29
voltage dc bus via a fully controlled three-phase bridge converter. Also connc·:[uJ iu tilL UUS are the Lithium - ion battery bank, the ultra-capacitor...s~b~;~~~~·3 .... ! Lithium - Ion Battery Storage I _ .. ~:; Low-voltage Bus i I I] j i DC~ Converter ! -~~- ti~! 1 I --Ii! Battery i...devices in the propulsion system include the lithium - ion battery bank and the ultra-capacitor. Based on the range of the vehicle in the stealth model
Solid-solution thermodynamics in Al-Li alloys
NASA Astrophysics Data System (ADS)
Alekseev, A. A.; Lukina, E. A.
2016-05-01
The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.
NASA Astrophysics Data System (ADS)
Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.
2010-01-01
Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi 2O-71.7SiO 2-(17.7- x)Al 2O 3-4.9K 2O-3.2B 2O 3-2.5P 2O 5 (5.1≤ x≤12.6) upon heat treatment were studied. 29Si, 27Al, 31P and 11B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO 3 and BO 4 units. 27Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, 11B (high field 18.8 T) and 29Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi 2O 6, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li 2Si 2O 5), lithium metasilicate (Li 2SiO 3) and quartz (SiO 2) were identified in the 29Si NMR spectra of the glass-ceramics. 31P NMR spectra of the glass-ceramics revealed the presence of Li 3PO 4 and a mixed phase (Li,K) 3PO 4 at low alkali concentrations.
Extraction of Lithium from Brine Solution by Hydrolysis of Activated Aluminum Powder
NASA Astrophysics Data System (ADS)
Li, Yanhong; Chen, Xingyu; Liu, Xuheng; Zhao, Zhongwei; Liu, Chongwu
2018-05-01
Activated aluminum powder has been used to extract lithium from Mg-Li mixed solution via a hydrolysis-adsorption reaction. First, activated aluminum powder was prepared under the optimal conditions of NaCl addition of 70%, ball-milling time of 3 h, and ball-to-powder mass ratio of 20:1. Then, the activated aluminum powder was added into the Mg-Li mixed solution to extract lithium. X-ray diffraction analysis indicated that Li+ was adsorbed by freshly formed Al(OH)3 in the form of LADH-Cl [LiCl·2Al(OH)3·mH2O]. Under the optimal conditions of reaction time of 3 h, Al/Li molar ratio of 4:1 for activated aluminum powder addition, and reaction temperature of 70°C, lithium precipitation exceeded 90% while magnesium precipitation was controlled at 13%. These results indicate that activated aluminum powder can efficiently extract lithium from Mg-Li mixed solution via a hydrolysis-adsorption reaction.
Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C
2014-12-01
Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.
Method of preparing electrolyte for use in fuel cells
Kinoshita, Kimio; Ackerman, John P.
1978-01-01
An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.
Li, Shuai; Zhu, Jinlong; Wang, Yonggang; ...
2015-12-10
Lithium-rich Anti-perovskite (LiRAP), with general formula Li 3OX (X = Cl, Br, I), and recently reported as superionic conductors with 3-dimensional Li + migrating channels, is emerging as a promising candidate for solid electrolyte of all-solid-state LIBs. But, it is still difficult to fabricate pure LiRAP due to the difficulty of the phase formation and moisture-sensitive nature of the products. In this work, we thoroughly studied the formation mechanism of Li 3OCl and Li 3OBr in various solid state reaction routes. We developed different experimental strategies in order to improve the syntheses, in purposes of improved phase stability and large-scalemore » production of LiRAP. One feasible method is to use strongly reductive agents Li metal or LiH to eliminate OH species. The results show that LiH is more effective than Li metal because of negatively charged H - and uniform reaction. The other well-established method is using Li 2O and LiX mixture as reagents to preventing OH phase at the beginning, and using protected ball milling to make fine powders and hence active the reaction. Finally, IR spectroscopy, thermal analyses and first-principle calculation were performed to give indications on the reaction pathway.« less
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna
2015-03-01
Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.
Chen, Yongming; Liu, Nannan; Hu, Fang; Ye, Longgang; Xi, Yan; Yang, Shenghai
2018-05-01
The recycling of spent commercial lithium-ion batteries (LIBs) generates numerous environmental and economic benefits. In this research, a thermal treatment-ammoniacal leaching process is proposed to recover valuable metals from cathode active powder. Based on the thermal behavior by TG-DSC analysis, the cathode active powder is calcined at 300 °C and 550 °C in air atmosphere, and the crystalline phase characterization indicates that a new phase of Co 3 O 4 appears in the cathode active powder calcined at 550 °C, which signifies that the layer structure of LiCoO 2 collapses. The valence of manganese increases to form Li 4 Mn 5 O 12 in spinel structure of LiMn 2 O 4 . Using calcined cathode powder as feed material, ammoniacal leaching is carried out in (NH 4 ) 2 SO 4 -(NH 4 ) 2 SO 3 solution. Under the optimum conditions, Ni, Co, Mn and Li can be completely leached out with efficiencies of 98%, 81%, 92% and 98%, respectively. However, with the increase of ammonia concentration, the leaching efficiency of Mn decreases dramatically to 4% due to the formation of double salts. It is found that Co and Mn can be precipitated into residues in the form of (NH 4 ) 2 Co(SO 4 ) 2 ·H 2 O, (NH 4 ) 2 Mn(SO 3 ) 2 ·H 2 O and (NH 4 ) 2 Mn(SO 4 ) 2 ·6H 2 O under different leaching parameters. Based on the corresponding relationship between the leaching efficiency and phase evolution of object element, selective leaching can be achieved by controlling the formation of double salts. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
McCullagh, John
2018-01-01
This sixth-form chemistry activity describes how students can use acid-base titrimetry to investigate how adding salt to the aqueous phase may change the value of the partition coefficient of an organic acid between water and 2-methylpropan-1-ol. While the presence of lithium chloride and sodium chloride increases the value of the partition…
NASA Astrophysics Data System (ADS)
Sicolo, Sabrina; Fingerle, Mathias; Hausbrand, René; Albe, Karsten
2017-06-01
The chemical instability of the glassy solid electrolyte LiPON against metallic lithium and the occurrence of side reactions at their interface is investigated by combining a surface science approach and quantum-mechanical calculations. Using an evolutionary structure search followed by a melt-quenching protocol, a model for the disordered structure of LiPON is generated and put into contact with lithium. Even the static optimization of a simple model interface suggests that the diffusion of lithium into LiPON is driven by a considerable driving force that could easily take place under experimental conditions. Calculated reaction energies indicate that the reduction and decomposition of LiPON is thermodynamically favorable. By monitoring the evolution of the LiPON core levels as a function of lithium exposure, the disruption of the LiPON network alongside the occurrence of new phases is observed. The direct comparison between UV photoelectron spectroscopy measurements and calculated electronic densities of states for increasing stages of lithiation univocally identifies the new phases as Li2O, Li3P and Li3N. These products are stable against Li metal and form a passivation layer which shields the electrolyte from further decomposition while allowing for the diffusion of Li ions.
Performance of MnO2 Crystallographic Phases in Rechargeable Lithium-Air Oxygen Cathode
NASA Astrophysics Data System (ADS)
Oloniyo, Olubukun; Kumar, Senthil; Scott, Keith
2012-05-01
Manganese dioxide (MnO2) has been shown to be effective for improving the efficiency of cathodes in lithium-air cells. Different crystallographic phases including α-, β-, and γ-MnO2 nanowires, α-MnO2 nanospheres, and α-MnO2 nanowires on carbon ( α-MnO2/C) were synthesized using the hydrothermal method. Their physical properties were examined using x-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurements, and scanning electron microscopy (SEM) and found to be in agreement with the literature. Electrochemical properties of the synthesized catalyst particles were investigated by fabricating cathodes and testing them in a lithium-air cell with lithium hexafluorophosphate in propylene carbonate (LiPF6/PC) and tetra(ethylene glycol)dimethyl ether (LiTFSi/TEGDME) electrolytes. α-MnO2 had the highest discharge capacity in the LiTFSi/TEGDME electrolyte (2500 mAh/g), whilst α-MnO2/C in LiPF6/PC showed a significantly higher discharge capacity of 11,000 mAh/g based on total mass of the catalytic cathode. However, the latter showed poor capacity retention compared with γ-MnO2 nanowires, which was stable for up to 30 cycles. The reported discharge capacity is higher than recorded in previous studies on lithium-air cells.
Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression.
Struewing, Ian T; Durham, Samuel N; Barnett, Corey D; Mao, Catherine D
2009-06-26
Endothelial cell (EC) senescence and dysfunction occurring after chronic injury and inflammation are highly associated with the development and progression of cardiovascular diseases. However, the factors involved in the establishment of EC senescence remain poorly understood. We have previously shown that lithium, an inhibitor of glycogen synthase kinase (GSK)-3beta and activator of the Wnt/beta-catenin signaling pathway, induces an EC senescent-like phenotype. Herein, we show that lithium induces a rapid and pronounced up-regulation of the matrix metalloproteinase (MMP)-1, an inflammation and senescent cell marker, at the mRNA and protein levels, whereas the induction of two other senescent cell markers is either weak (interleukin-8) or delayed (plasminogen activator inhibitor-1). Lithium effect on MMP-1 expression is also specific among other MMPs and not mediated by GSK3beta inhibition. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive (-1607/2G) site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation. However, down-regulation of p53, a target of lithium in EC, dampens both basal and lithium-induced MMP-1 expression, which further links MMP-1 up-regulation with the establishment of cell senescence. Although increased MMP-1 levels are usually associated with angiogenesis in enabled proliferative EC, the exogenous addition of activated MMP-1 on lithium- arrested EC increases the number of EC positive for the senescent-associated-beta-galactosidase marker. Conversely, down-regulation of MMP-1 expression by small interfering RNAs blunts the lithium-dependent increase in senescent-associated-beta-galactosidase positive cells. Altogether our data indicate that lithium-induced MMP-1 may participate in the reinforcement of EC senescence and reveal a novel mechanism for lithium-induced tissue remodeling.
Variations in Gas and Water Pulses at an Arctic Seep: Fluid Sources and Methane Transport
NASA Astrophysics Data System (ADS)
Hong, W.-L.; Torres, M. E.; Portnov, A.; Waage, M.; Haley, B.; Lepland, A.
2018-05-01
Methane fluxes into the oceans are largely dependent on the methane phase as it migrates upward through the sediments. Here we document decoupled methane transport by gaseous and aqueous phases in Storfjordrenna (offshore Svalbard) and propose a three-stage evolution model for active seepage in the region where gas hydrates are present in the shallow subsurface. In a preactive seepage stage, solute diffusion is the primary transport mechanism for methane in the dissolved phase. Fluids containing dissolved methane have high 87Sr/86Sr ratios due to silicate weathering in the microbial methanogenesis zone. During the active seepage stage, migration of gaseous methane results in near-seafloor gas hydrate formation and vigorous seafloor gas discharge with a thermogenic fingerprint. In the postactive seepage stage, the high concentration of dissolved lithium points to the contribution of a deeper-sourced aqueous fluid, which we postulate advects upward following cessation of gas discharge.
Elucidating anionic oxygen activity in lithium-rich layered oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jing; Sun, Meiling; Qiao, Ruimin
Recent research has explored combining conventional transition metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. For this study, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely differentmore » oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.« less
Elucidating anionic oxygen activity in lithium-rich layered oxides
Xu, Jing; Sun, Meiling; Qiao, Ruimin; ...
2018-03-05
Recent research has explored combining conventional transition metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. For this study, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely differentmore » oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.« less
Liu, Hanshuo; Bugnet, Matthieu; Tessaro, Matteo Z; Harris, Kristopher J; Dunham, Mark J R; Jiang, Meng; Goward, Gillian R; Botton, Gianluigi A
2016-10-26
Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and its initiation, however, are still under debate and not yet fully understood. We herein systematically investigate the chemical evolution and structural transformation of the LiNi x Mn y Co 1-x-y O 2 (NMC) cathode material in order to understand the battery performance deterioration driven by the cathode degradation upon cycling. Using high-resolution electron energy loss spectroscopy (HR-EELS) we clarify the role of transition metals in the charge compensation mechanism, particularly the controversial Ni 2+ (active) and Co 3+ (stable) ions, at different states-of-charge (SOC) under 4.6 V operation voltage. The cathode evolution is studied in detail from the first-charge to long-term cycling using complementary diagnostic tools. With the bulk sensitive 7 Li nuclear magnetic resonance (NMR) measurements, we show that the local ordering of transition metal and Li layers (R3[combining macron]m structure) is well retained in the bulk material upon cycling. In complement to the bulk measurements, we locally probe the valence state distribution of cations and the surface structure of NMC particles using EELS and scanning transmission electron microscopy (STEM). The results reveal that the surface evolution of NMC is initiated in the first-charging step with a surface reduction layer formed at the particle surface. The NMC surface undergoes phase transformation from the layered structure to a poor electronic and ionic conducting transition-metal oxide rock-salt phase (R3[combining macron]m → Fm3[combining macron]m), accompanied by irreversible lithium and oxygen loss. In addition to the electrochemical cycling effect, electrolyte exposure also shows non-negligible influence on cathode surface degradation. These chemical and structural changes of the NMC cathode could contribute to the first-cycle coulombic inefficiency, restrict the charge transfer characteristics and ultimately impact the cell capacity.
Improvements in safety testing of lithium cells
NASA Astrophysics Data System (ADS)
Stinebring, R. C.; Krehl, P.
1985-07-01
A systematic approach was developed for evaluating the basic safety parameters of high power lithium soluble cathode cells. This approach consists of performing a series of tests on each cell model during the design, prototype and production phases. Abusive testing is performed in a facility where maximum protection is given to test personnel.
Improvements in safety testing of lithium cells
NASA Technical Reports Server (NTRS)
Stinebring, R. C.; Krehl, P.
1985-01-01
A systematic approach was developed for evaluating the basic safety parameters of high power lithium soluble cathode cells. This approach consists of performing a series of tests on each cell model during the design, prototype and production phases. Abusive testing is performed in a facility where maximum protection is given to test personnel.
Phase field kinetics of lithium electrodeposits
NASA Astrophysics Data System (ADS)
Ely, David R.; Jana, Aniruddha; García, R. Edwin
2014-12-01
A phase field description is formulated to describe the growth kinetics of an heterogeneously nucleated distribution of lithium electrodeposits. The underlying variational principle includes the bulk electrochemical contributions to the free energy of transformation of the system, the electrolyte-dendrite interfacial energy, and the substrate work of adhesion energetics. Results demonstrate that the rate of electrodeposition at the tip of an isolated dendrite is higher than the rate corresponding to the average overpotential, while the back contact is electrochemically shielded, thus favoring elongated, needle-like shapes. For large populations of electrochemically interacting deposits, two spatially distinct regions of behavior develop: one directly facing the counter-electrode where the local surficial electrodeposition dominates the local kinetics; and a second region, in the vicinity of the substrate-deposit interface, where the electrochemical shielding induced by the tip enables lateral electrochemical lithium exchange dendrite coalescence for small contact angle deposits, and dendrite dewetting and electrodissolution for large contact angle deposits. The underlying physical mechanisms through which some lithium nuclei detach from the depositing substrate, self-induce electrodissolution, while other continue to grow and coalesce are described for different contact angles.
NASA Astrophysics Data System (ADS)
Begam, K. M.; Michael, M. S.; Prabaharan, S. R. S.
An open framework type new material LixCo2(MoO4)3 [0 ≤ x < 3] possessing NASICON structure was identified as positive electrode material for use in 3V class lithium batteries. The new material was synthesized in its non-lithiated phase employing a metal/organic precursor method using a soft-combustion approach. We report here on the structural and electrochemical Li+ insertion/extraction properties of the resultant product. XRD revealed a single phase Co2(MoO4)3 powders and the annealed powders were found to contain ultrafine spherical grains. The redox behavior of the new material was demonstrated in lithium containing cells using the conventional wet cell configuration under Li+ aprotic organic electrolyte environment. The material offered a discharge capacity of 110 mAh/g between 3.5V and 1.5V during the first cycle and 50% of the initial capacity was retained at the end of 20th cycle.
NASA Astrophysics Data System (ADS)
Kashif, Ismail; Soliman, Ashia A.; Sakr, Elham M.; Ratep, Asmaa
2012-01-01
The glass system (45Li2O + 45B2O3 + 10Nb2O5) was fabricated by the conventional melt quenching technique poured in water, at air, between two hot plates and droplets at the cooled surface. The glass and glass ceramics were studied by differential thermal analysis (DTA) and X-ray diffraction (XRD). The as quenched samples poured in water and between two hot plates were amorphous. The samples poured at air and on cooled surface were crystalline as established via X-ray powder diffraction (XRD) studies. Differential thermal analysis was measured. The glass transition temperature (Tg) and the crystallization temperatures were calculated. Lithium niobate (LiNbO3) was the main phase in glass ceramic poured at air, droplets at the cooled surface and the heat treated glass sample at 500, 540 and 580 °C in addition to traces from LiNb3O8. Crystallite size of the main phases determined from the X-ray diffraction peaks is in the range of <100 nm. The fraction of crystalline (LiNbO3) phase decreases with increase in the heat treatment temperature.
NASA Astrophysics Data System (ADS)
Chaban, M. O.; Rozhdestvenska, L. M.; Palchyk, O. V.; Dzyazko, Y. S.; Dzyazko, O. G.
2018-04-01
A number of nanomaterials containing titanium dioxide and manganese dioxide were synthesized. The effect of synthesis conditions on structural and sorption characteristics for the selective extraction of lithium ions from solutions was studied. The ion-exchange materials were investigated with the methods of electron microscopy, thermogravimetric and X-ray analyses. During thermal synthesis phases of lithium manganese titanium spinel and TiO2 are being formed. Replacing a part of manganese with titanium ions leads to a decrease in the dissolution of Mn and to an increase in chemical stability. Composites with optimal values of selectivity and sorption rates were used to remove lithium ions from solutions with high salt background. The recovery degree of lithium ions under dynamic conditions reached 99%, the highest sorption capacity was found at pH 10.
Devanand, D P; Strickler, Jesse G; Huey, Edward D; Crocco, Elizabeth; Forester, Brent P; Husain, Mustafa M; Vahia, Ipsit V; Andrews, Howard; Wall, Melanie M; Pelton, Gregory H
2018-05-31
Symptoms of agitation, aggression, and psychosis frequently occur in patients with Alzheimer's disease (AD). These symptoms are distressing to patients and caregivers, often lead to institutionalization, are associated with increased mortality, and are very difficult to treat. Lithium is an established treatment for bipolar and other psychotic disorders in which agitation can occur. The Lit-AD study is the first randomized, double-blind, placebo-controlled trial to assess the efficacy of lithium treatment for symptoms of agitation or aggression, with or without psychosis, in older adults diagnosed with AD. Patients are randomly assigned to low dose (150-600 mg) lithium or placebo, targeting a blood level of 0.2-0.6 mmol/L, stratified by the presence/absence of psychotic symptoms. The study duration for each patient is 12 weeks. The primary study outcome is change in the agitation/aggression domain score on the Neuropsychiatric Inventory (NPI) over the study period. The secondary outcome is improvement in neuropsychiatric symptoms defined as a 30% decrease in a NPI core score that combines agitation/aggression and psychosis domain scores. The Treatment Emergent Symptom Scale (TESS) is used to assess somatic side effects. Other exploratory analyses examine the associations between improvement on lithium and indices shown to be associated with response to lithium in bipolar disorder: serum brain-derived neurotrophic factor (BDNF) levels, a SNP in intron 1 of the ACCN1 gene, and variation at the 7q11.2 gene locus. If lithium demonstrates efficacy in this Phase II pilot trial, a Phase III study will be developed to establish its clinical utility in these patients. ClinicalTrials.gov Identifier NCT02129348. Copyright © 2018. Published by Elsevier Inc.
Ruggiero, Rafael N; Rossignoli, Matheus T; Lopes-Aguiar, Cleiton; Leite, João P; Bueno-Junior, Lezio S; Romcy-Pereira, Rodrigo N
2018-06-01
Mood disorders are associated to functional unbalance in mesolimbic and frontal cortical circuits. As a commonly used mood stabilizer, lithium acts through multiple biochemical pathways, including those activated by muscarinic cholinergic receptors crucial for hippocampal-prefrontal communication. Therefore, here we investigated the effects of lithium on prefrontal cortex responses under cholinergic drive. Lithium-treated rats were anesthetized with urethane and implanted with a ventricular cannula for muscarinic activation, a recording electrode in the medial prefrontal cortex (mPFC), and a stimulating electrode in the intermediate hippocampal CA1. Either of two forms of synaptic plasticity, long-term potentiation (LTP) or depression (LTD), were induced during pilocarpine effects, which were monitored in real time through local field potentials. We found that lithium attenuates the muscarinic potentiation of cortical LTP (<20 min) but enhances the muscarinic potentiation of LTD maintenance (>80 min). Moreover, lithium treatment promoted significant cross-frequency coupling between CA1 theta (3-5 Hz) and mPFC low-gamma (30-55 Hz) oscillations. Interestingly, lithium by itself did not affect any of these measures. Thus, lithium pretreatment and muscarinic activation synergistically modulate the hippocampal-prefrontal connectivity. Because these alterations varied with time, oscillatory parameters, and type of synaptic plasticity, our study suggests that lithium influences prefrontal-related circuits through intricate dynamics, informing future experiments on mood disorders. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Lestariningsih, Titik; Wigayati, Etty Marty; Sabrina, Qolby; Prihandoko, Bambang; Priyono, Slamet
2018-04-01
Development of the synthesis of LiB(C2O4)2 compounds continues to evolve along with the need for electrolyte salts to support the research of the manufacture of lithium ion batteries. A study had been conducted on the effect of Li2CO3 substitution on the synthesis of LiB(C2O4)2 or LiBOB compounds. LiBOB was a major candidate to replace LiPF6 as a highly toxic lithium battery electrolyte and harmful to human health. Synthesis of Lithium bis(oxalato) borate used powder metallurgy method. The raw materials used are H2C2O4.2H2O, Li2CO3 or LiOH and H2BO3 from Merck Germany products. The materials are mixed with 2: 1: 1 mol ratio until homogeneous. The synthesis of LiBOB refers to previous research, where the heating process was done gradually. The first stage heating is carried out at 120°C for 4 hours, then the next stage heating is carried out at 240°C for 7 hours. The sample variation in this study was to distinguish the lithium source from Li2CO3 and LiOH. Characterization was done by XRD to know the phase formed, FTIR to confirm that functional group of LiB(C2O4)2 compound, SEM to know the morphological structure, and TG/DTA to know the thermal properties. The results of the analysis shows that LiBOB synthesis using Lithium source from Li2CO3 has succeeded to form LiBOB compound with more LiBOB phase composition is 59.1% and 40.9% LiBOB hydrate phase, SEM morphology shows powder consist of elongated round particle porous and similar to LiBOB commercial and show higher thermal stability.
Suppression of dendritic lithium growth in lithium metal-based batteries.
Li, Linlin; Li, Siyuan; Lu, Yingying
2018-06-19
Lithium metal-based batteries offer promising prospects as alternatives to today's lithium-ion batteries, due to their ultra-high energy density. Unfortunately, the application of lithium metal is full of challenges and has puzzled researchers for more than 40 years. In this feature article, we describe the history of the development of lithium metal batteries and their existing key challenges, which include non-uniform electrodeposition, volume expansion, high reactivity of the lithium metal/unstable solid electrolyte interphase (SEI), and the shuttling of active cathode materials. Then, we focus on the growth mechanisms of uneven lithium electrodeposition and extend the discussion to the approaches to inhibit lithium dendrites. Finally, we discuss future directions that are expected to drive progress in the development of lithium metal batteries.
Determining the phase diagram of lithium via ab initio calculation and ramp compression
NASA Astrophysics Data System (ADS)
Shulenburger, Luke; Seagle, Chris; Haill, Thomas; Harding, Eric
2015-06-01
Diamond anvil cell experiments have shown elemental lithium to have an extraordinarily complex phase diagram under pressure exhibiting numerous solid phases at pressures below 1 Mbar, as well as a complicated melting behavior. We explore this phase diagram utilizing a combination of quantum mechanical calculations and ramp compression experiments performed on Sandia National Laboratories' Z-machine. We aim to extend our knowledge of the high pressure behavior to moderate temperatures at pressures above 50 GPa with a specific focus on the melt line above 70 GPa. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Dept of Energy's Natl. Nuclear Security Administration under Contract DE-AC04-94AL85000.
Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.
2007-01-01
Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.
Exploring Lithium Deficiency in Layered Oxide Cathode for Li-Ion Battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Sung-Jin; Uddin, Md-Jamal; Alaboina, Pankaj K.
Abstract or short description: The ever-growing demand for high capacity cathode materials is on the rise since the futuristic applications are knocking on the door. Conventional approach to developing such cathode relies on the lithium-excess materials to operate the cathode at high voltage and extract more lithium-ion. Yet, they fail to satiate the needs because of their unresolved issues upon cycling such as, for lithium manganese-rich layered oxides – their voltage fading, and for as nickel-based layered oxides – the structural transition. Here, in contrast, lithium-deficient ratio is demonstrated as a new approach to attain high capacity at high voltagemore » for layered oxide cathodes. Rapid and cost effective lithiation of a porous hydroxide precursor with lithium deficient ratio acted as a driving force to partially convert the layered material to spinel phase yielding in a multiphase structure (MPS) cathode material. Upon cycling, MPS revealed structural stability at high voltage and high temperature and resulted in fast lithium-ion diffusion by providing a distinctive SEI chemistry – MPS displayed minimum lithium loss in SEI and formed a thinner SEI. MPS thus offer high energy and high power applications and provides a new perspective compared to the conventional layered cathode materials denying the focus for lithium excess material.« less
Jakobsson, Eric; Argüello-Miranda, Orlando; Chiu, See-Wing; Fazal, Zeeshan; Kruczek, James; Nunez-Corrales, Santiago; Pandit, Sagar; Pritchet, Laura
2017-12-01
Lithium has literally been everywhere forever, since it is one of the three elements created in the Big Bang. Lithium concentration in rocks, soil, and fresh water is highly variable from place to place, and has varied widely in specific regions over evolutionary and geologic time. The biological effects of lithium are many and varied. Based on experiments in which animals are deprived of lithium, lithium is an essential nutrient. At the other extreme, at lithium ingestion sufficient to raise blood concentration significantly over 1 mM/, lithium is acutely toxic. There is no consensus regarding optimum levels of lithium intake for populations or individuals-with the single exception that lithium is a generally accepted first-line therapy for bipolar disorder, and specific dosage guidelines for sufferers of that condition are generally agreed on. Epidemiological evidence correlating various markers of social dysfunction and disease vs. lithium level in drinking water suggest benefits of moderately elevated lithium compared to average levels of lithium intake. In contrast to other biologically significant ions, lithium is unusual in not having its concentration in fluids of multicellular animals closely regulated. For hydrogen ions, sodium ions, potassium ions, calcium ions, chloride ions, and magnesium ions, blood and extracellular fluid concentrations are closely and necessarily regulated by systems of highly selective channels, and primary and secondary active transporters. Lithium, while having strong biological activity, is tolerated over body fluid concentrations ranging over many orders of magnitude. The lack of biological regulation of lithium appears due to lack of lithium-specific binding sites and selectivity filters. Rather lithium exerts its myriad physiological and biochemical effects by competing for macromolecular sites that are relatively specific for other cations, most especially for sodium and magnesium. This review will consider what is known about the nature of this competition and suggest using and extending this knowledge towards the goal of a unified understanding of lithium in biology and the application of that understanding in medicine and nutrition.
Influence of reagents mixture density on the radiation-thermal synthesis of lithium-zinc ferrites
NASA Astrophysics Data System (ADS)
Surzhikov, A. P.; Lysenko, E. N.; Vlasov, V. A.; Malyshev, A. V.; Korobeynikov, M. V.; Mikhailenko, M. A.
2017-01-01
Influence of Li2CO3-ZnO-Fe2O3 powder reagents mixture density on the synthesis efficiency of lithium-zinc ferrites in the conditions of thermal heating or pulsed electron beam heating was studied by X-Ray diffraction and magnetization analysis. The results showed that the including a compaction of powder reagents mixture in ferrite synthesis leads to an increase in concentration of the spinel phase and decrease in initial components content in lithium-substituted ferrites synthesized by thermal or radiation-thermal heating.
Ab-initio Calculation of the XANES of Lithium Phosphates and LiFePO4
NASA Astrophysics Data System (ADS)
Yiu, Y. M.; Yang, Songlan; Wang, Dongniu; Sun, Xueliang; Sham, T. K.
2013-04-01
Lithium iron phosphate has been regarded as a promising cathode material for the next generation lithium ion batteries due to its high specific capacity, superior thermal and cyclic stability [1]. In this study, the XANES (X-ray Absorption Near Edge Structure) spectra of lithium iron phosphate and lithium phosphates of various compositions at the Li K, P L3,2, Fe M3,2 and O K-edges have been simulated self-consistently using ab-initio calculations based on multiple scattering theory (the FEFF9 code) and DFT (Density Functional Theory, the Wien2k code). The lithium phosphates under investigation include LiFePO4, γ-Li3PO4, Li4P2O7 and LiPO3. The calculated spectra are compared to the experimental XANES recorded in total electron yield (TEY) and fluorescence yield (FLY). This work was carried out to assess the XANES of possible phases presented in LiFePO4 based Li ion battery applications [2].
Li, Juchuan; Zhang, Qinglin; Xiao, Xingcheng; ...
2015-10-18
The intercalation compounds are generally considered as ideal electrode materials for lithium-ion batteries thanks to their minimum volume expansion and fast lithium ion diffusion. However, cracking still occurs in those compounds and has been identified as one of the critical issues responsible for their capacity decay and short cycle life, although the diffusion-induced stress and volume expansion are much smaller than those in alloying-type electrodes. Here, we designed a thin-film model system that enables us to tailor the cation ordering in LiNi 0.5Mn 1.5O 4 spinels and correlate the stress patterns, phase evolution, and cycle performances. Surprisingly, we found thatmore » distinct reaction paths cause negligible difference in the overall stress patterns but significantly different cracking behaviors and cycling performances: 95% capacity retention for disordered LiNi 0.5Mn 1.5O 4 and 48% capacity retention for ordered LiNi 0.5Mn 1.5O 4 after 2000 cycles. We were able to pinpoint that the extended solid-solution region with suppressed phase transformation attributed to the superior electrochemical performance of disordered spinel. Furthermore, this work envisions a strategy for rationally designing stable cathodes for lithium-ion batteries through engineering the atomic structure that extends the solid-solution region and suppresses phase transformation.« less
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Murakami, Takeshi; Naito, Makio
2016-07-01
The Ni-doped lithium manganese oxide, LiNi0.5Mn1.5O4, has received much attention as a cathode active material in high-energy lithium-ion batteries (LIBs). This active material has two different spinel structures depending on the ordering state of the Ni and Mn ions. The ordered LiNi0.5Mn1.5O4 spinel has an inferior cathode performance than the disordered phase because of its poor electronic conductivity. However, the ordered LiNi0.5Mn1.5O4 spinel possesses the potential advantage of avoiding dissolution of the Mn ion, which is an issue for the disordered spinel. The improvement of cathode performance is important for future applications. Here, we report a unique approach to improve the cathode performance of the ordered LiNi0.5Mn1.5O4 spinel. The mechanical treatment using an attrition-type mill successfully inserted lattice strains into the ordered LiNi0.5Mn1.5O4 spinel structure without a phase transformation to the disordered phase. The insertion of lattice strains by mechanical stresses provided an increased discharge capacity and a decreased charge transfer resistance. This limited crystal structure modification improved the cathode performance. The present work has the potential for application of the mechanically treated ordered LiNi0.5Mn1.5O4 spinel as a cathode for high-energy LIBs.
Torregrosa, Adrián J; Maestre, Haroldo; Capmany, Juan
2013-11-18
The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.
Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Lu, Dongping; Bowden, Mark
Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less
Phenol-Catalyzed Discharge in the Aprotic Lithium-Oxygen Battery.
Gao, Xiangwen; Jovanov, Zarko P; Chen, Yuhui; Johnson, Lee R; Bruce, Peter G
2017-06-01
Discharge in the lithium-O 2 battery is known to occur either by a solution mechanism, which enables high capacity and rates, or a surface mechanism, which passivates the electrode surface and limits performance. The development of strategies to promote solution-phase discharge in stable electrolyte solutions is a central challenge for development of the lithium-O 2 battery. Here we show that the introduction of the protic additive phenol to ethers can promote a solution-phase discharge mechanism. Phenol acts as a phase-transfer catalyst, dissolving the product Li 2 O 2 , avoiding electrode passivation and forming large particles of Li 2 O 2 product-vital requirements for high performance. As a result, we demonstrate capacities of over 9 mAh cm -2 areal , which is a 35-fold increase in capacity compared to without phenol. We show that the critical requirement is the strength of the conjugate base such that an equilibrium exists between protonation of the base and protonation of Li 2 O 2 . © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Kai; Yao, Zhenpeng; Hwang, Sooyeon
Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van dermore » Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Lastly, our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.« less
Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes
He, Kai; Yao, Zhenpeng; Hwang, Sooyeon; ...
2017-08-11
Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van dermore » Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Lastly, our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.« less
Structural micro-porous carbon anode for rechargeable lithium-ion batteries
Delnick, Frank M.; Even, Jr., William R.; Sylwester, Alan P.; Wang, James C. F.; Zifer, Thomas
1995-01-01
A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.
Identification of strengthening phases in Al-Cu-Li alloy Weldalite (tm) 049
NASA Technical Reports Server (NTRS)
1991-01-01
Microstructure property relationships were determined for a family of ultrahigh strength weldable Al-Cu-Li based alloys referred to as Weldalite (tm) alloys. The highest strength variant of this family, Weldalite 049, has a high Cu/Li wt pct. ratio with a nominal composition of Al-6.3Cu-1.3Li-0.4Ag-0.4Mg-0.14Zr. Increasing the alloy's lithium content above 1.3 wt pct. resulted in a decrease in both yield and ultimate tensile strength. Strength was shown to be strongly dependent on lithium content, with a maximum in strength occurring in the range of about 1.1 to 1.4 wt pct. lithium. The strengthening phases present in Weldalite 049 (1.3Li) and an Al-6.3Cu-1.9Li-0.4Mg-0.14Zr alloy were identified using transmission electron microscopy (TEM).
Ab Initio Investigations of High-Pressure Melting of Dense Lithium
NASA Astrophysics Data System (ADS)
Clay, Raymond; Morales, Miguel; Bonev, Stanimir
Lithium at ambient conditions is the simplest alkali metal and exhibits textbook nearly-free electron behavior. As the density is increased, however, significant core/valence overlap leads to surprisingly complex chemistry. We have systematically investigated the phase diagram of lithium at pressures ranging between two and six million atmospheres. Through a combination of density functional theory based path-integral and classical molecular dynamics simulations, we have investigated the impact of both nuclear quantum effects and anharmonicity on the melting line and solid phase boundaries. We also investigate how the inclusion of nuclear quantum effects and approximations in the treatment of electronic exchange-correlation impact the robustness of previous predictions of tetrahedral clustering in dense liquid Li. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
[Microstructure and mechanical property of a new IPS-Empress 2 dental glass-ceramic].
Luo, Xiao-ping; Watts, D C; Wilson, N H F; Silsons, N; Cheng, Ya-qin
2005-03-01
To investigate the microstructure and mechanical properties of a new IPS-Empress 2 dental glass-ceramic. AFM, SEM and XRD were used to analyze the microstructure and crystal phase of IPS-Empress 2 glass-ceramic. The flexural strength and fracture toughness were tested using 3-point bending method and indentation method respectively. IPS-Empress 2 glass-ceramic mainly consisted of lithium disilicate crystal, lithium phosphate and glass matrix, which formed a continuous interlocking structure. The crystal phases were not changed before and after hot-pressed treatment. AFM showed nucleating agent particles of different sizes distributed on the highly polished ceramic surface. The strength and fracture toughness were 300 MPa and 3.1 MPam(1/2). The high strength and fracture toughness of IPS-Empress 2 glass ceramic are attributed to the fine lithium disilicate crystalline, interlocking microstructure and crack deflection.
NASA Astrophysics Data System (ADS)
Li, Yajie; Pu, Hongting
2018-04-01
Polypropylene (PP)/polyethylene (PE) multilayer separators with cellular-like submicron pore structure for lithium-ion battery are efficiently fabricated by the combination of multilayer coextrusion (MC) and thermal induced phase separation (TIPS). The as-prepared separators, referred to as MC-TIPS PP/PE, not only show efficacious thermal shutdown function and wider shutdown temperature window, but also exhibit higher thermal stability than the commercial separator with trilayer construction of PP and PE (Celgard® 2325). The dimensional shrinkage of MC-TIPS PP/PE can be negligible until 160 °C. In addition, compared to the commercial separator, MC-TIPS PP/PE exhibits higher porosity and electrolyte uptake, leading to higher ionic conductivity and better battery performances. The above-mentioned fascinating characteristics with the convenient preparation process make MC-TIPS PP/PE a promising candidate for the application as high performance lithium-ion battery separators.
NASA Astrophysics Data System (ADS)
Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.
2016-11-01
Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.
Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties
NASA Astrophysics Data System (ADS)
Kaleva, G. M.; Politova, E. D.; Mosunov, A. V.; Sadovskaya, N. V.
2018-06-01
A review is presented of the synthesis and complex investigation of modified ion-conducting ceramics based on heterosubstituted lanthanum gallate as a promising electrolyte material for solid oxide fuel cells. The effect the composition of multicomponent complex oxides has on the structure, microstructure, and electrophysical properties of ceramics is examined. Samples of ceramics with new compositions are produced via solid-state synthesis and modified with lithium fluoride. A drop is observed in the sintering temperature of the ceramics, caused by the liquid phase mechanism of sintering as a result of the low-melting superstoichiometric quantities of the additive. The effect lithium fluoride has on the process of phase formation, microstructure, and conductivity of the ceramics is investigated. It is found that samples modified with lithium fluoride display high density, dense grain packing, and high values of electrical conductivity at high temperatures.
Lithium Impacts on the Amplitude and Period of the Molecular Circadian Clockwork
Li, Jian; Lu, Wei-Qun; Beesley, Stephen; Loudon, Andrew S. I.; Meng, Qing-Jun
2012-01-01
Lithium salt has been widely used in treatment of Bipolar Disorder, a mental disturbance associated with circadian rhythm disruptions. Lithium mildly but consistently lengthens circadian period of behavioural rhythms in multiple organisms. To systematically address the impacts of lithium on circadian pacemaking and the underlying mechanisms, we measured locomotor activity in mice in vivo following chronic lithium treatment, and also tracked clock protein dynamics (PER2::Luciferase) in vitro in lithium-treated tissue slices/cells. Lithium lengthens period of both the locomotor activity rhythms, as well as the molecular oscillations in the suprachiasmatic nucleus, lung tissues and fibroblast cells. In addition, we also identified significantly elevated PER2::LUC expression and oscillation amplitude in both central and peripheral pacemakers. Elevation of PER2::LUC by lithium was not associated with changes in protein stabilities of PER2, but instead with increased transcription of Per2 gene. Although lithium and GSK3 inhibition showed opposing effects on clock period, they acted in a similar fashion to up-regulate PER2 expression and oscillation amplitude. Collectively, our data have identified a novel amplitude-enhancing effect of lithium on the PER2 protein rhythms in the central and peripheral circadian clockwork, which may involve a GSK3-mediated signalling pathway. These findings may advance our understanding of the therapeutic actions of lithium in Bipolar Disorder or other psychiatric diseases that involve circadian rhythm disruptions. PMID:22428012
Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries.
Kichambare, Padmakar; Rodrigues, Stanley; Kumar, Jitendra
2012-01-01
The composite of nitrogen-doped carbon (N-C) blend with lithium aluminum germanium phosphate (LAGP) was studied as cathode material in a solid-state lithium-oxygen cell. Composite electrodes exhibit high electrochemical activity toward oxygen reduction. Compared to the cell capacity of N-C blend cathode, N-C/LAGP composite cathode exhibits six times higher discharge cell capacity. A significant enhancement in cell capacity is attributed to higher electrocatalytic activity and fast lithium ion conduction ability of LAGP in the cathode. © 2011 American Chemical Society
On the role of quantum ion dynamics for the anomalous melting of lithium
NASA Astrophysics Data System (ADS)
Elatresh, Sabri; Bonev, Stanimir
2011-03-01
Lithium has attracted a lot of interest in relation to a number of counterintuitive electronic and structural changes that it exhibits under pressure. One of the most remarkable properties of dense lithium is its anomalous melting. This behavior was first predicted theoretically based on first-principles molecular dynamics (FPMD) simulations, which treated the ions classically. The lowest melting temperature was determined to be about 275~K at 65~GPa. Recent experiments measured a melting temperature about 100~K lower at the same pressure. In this talk, we will present FPMD calculations of solid and liquid lithium free energies up to 100 GPa that take into account ion quantum dynamics. We examine the significance of the quantum effects for the finite-temperature phase boundaries of lithium and, in particular, its melting curve. Work supported by NSERC, Acenet, and LLNL under Contract DE-AC52-07NA27344.
Honda, Kazuya; Harris, Travis V; Hatanaka, Miho; Morokuma, Keiji; Mikami, Koichi
2016-06-20
The reaction mechanism for difluoromethylation of lithium enolates with fluoroform was analyzed computationally (DFT calculations with the artificial force induced reaction (AFIR) method and solvation model based on density (SMD) solvation model (THF)), showing an SN 2-type carbon-carbon bond formation; the "bimetallic" lithium enolate and lithium trifluoromethyl carbenoid exert the C-F bond "dual" activation, in contrast to the monometallic butterfly-shaped carbenoid in the Simmons-Smith reaction. Lithium enolates, generated by the reaction of 2 equiv. of lithium hexamethyldisilazide (rather than 1 or 3 equiv.) with the cheap difluoromethylating species fluoroform, are the most useful alkali metal intermediates for the synthesis of pharmaceutically important α-difluoromethylated carbonyl products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of preparing an electrochemical cell in uncharged state
Shimotake, Hiroshi; Bartholme, Louis G.; Arntzen, John D.
1977-02-01
A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.
Gamma ray degradation of electrolytes containing alkylcarbonate solvents and a lithium salt
NASA Astrophysics Data System (ADS)
Caillon-Caravanier, Magaly; Jones, Jennifer; Anouti, Mérièm; Montigny, Frédéric; Willmann, Patrick; David, Jean-Pierre; Soonckindt, Sabine; Lemordant, Daniel
Lithium-ion batteries for space applications, such as satellites, are subjected to cosmic radiations, in particular, γ-irradiation. In this study, the effects of this radiation on electrolytes and their components used in the lithium-ion batteries are investigated. The conductivity and viscosity of the samples have been measured before and after the irradiation. The modifications are evaluated by spectral analyses such as Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H and 13C NMR), solid phase microextraction-gas chromatography (SPME-GC) and gas chromatography-mass spectroscopy (GC-MS). The experimental results show that only the samples containing vinylene carbonate and/or the lithium salt LiPF 6 are degraded by γ-radiation.
NASA Astrophysics Data System (ADS)
Al-Hallaj, Said; Selman, J. R.
A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.
Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts.
Yuan, Zhe; Peng, Hong-Jie; Hou, Ting-Zheng; Huang, Jia-Qi; Chen, Cheng-Meng; Wang, Dai-Wei; Cheng, Xin-Bing; Wei, Fei; Zhang, Qiang
2016-01-13
Lithium-sulfur (Li-S) battery system is endowed with tremendous energy density, resulting from the complex sulfur electrochemistry involving multielectron redox reactions and phase transformations. Originated from the slow redox kinetics of polysulfide intermediates, the flood of polysulfides in the batteries during cycling induced low sulfur utilization, severe polarization, low energy efficiency, deteriorated polysulfide shuttle, and short cycling life. Herein, sulfiphilic cobalt disulfide (CoS2) was incorporated into carbon/sulfur cathodes, introducing strong interaction between lithium polysulfides and CoS2 under working conditions. The interfaces between CoS2 and electrolyte served as strong adsorption and activation sites for polar polysulfides and therefore accelerated redox reactions of polysulfides. The high polysulfide reactivity not only guaranteed effective polarization mitigation and promoted energy efficiency by 10% but also promised high discharge capacity and stable cycling performance during 2000 cycles. A slow capacity decay rate of 0.034%/cycle at 2.0 C and a high initial capacity of 1368 mAh g(-1) at 0.5 C were achieved. Since the propelling redox reaction is not limited to Li-S system, we foresee the reported strategy herein can be applied in other high-power devices through the systems with controllable redox reactions.
Evidence of formation of lithium compounds on FTU tiles and dust
NASA Astrophysics Data System (ADS)
Ghezzi, F.; Laguardia, L.; Apicella, M. L.; Bressan, C.; Caniello, R.; Cippo, E. Perelli; Conti, C.; De Angeli, M.; Maddaluno, G.; Mazzitelli, G.
2018-01-01
Since 2006 lithium as an advanced plasma facing material has been tested on the Frascati Tokamak Upgrade (FTU). Lithium in the liquid phase acts both as plasma facing component, i.e. limiter, and plays also a role in plasma operation because by depositing a lithium film on the walls (lithization) oxygen is gettered. As in all deposition processes, even for the lithization, the presence of impurities in plasma phase strongly affects the properties of the deposited film. During the 2008 campaigns of FTU it was observed a strong release of carbon dioxide (during disruptions), resulting in successive serious difficulty of operation. In order to find the possible reactions occurred, we have analyzed the surface of two tiles of the toroidal limiter close to the Liquid Lithium Limiter (LLL). The presence of molybdenum oxides and carbides suggested that the surface temperatures could have exceeded 1000 K, likely during disruptions. lithium oxides and hydroxides have been found on the tiles and in the dust collected in the vessel, confirming the presence of LiO and LiOH and a not negligible concentration of Li2CO3 especially at the LLL location. On the basis of the above results, we propose here a simple rationale, based on a two reactions mechanism, which can explain the formation of Li2CO3 and its subsequent decomposition during disruption with release of CO2 in the vessel. Admitting surface temperatures above 1000 K during a disruption, relatively high partial pressures of CO2 are also predicted by the equilibrium constant for Li2CO3 decomposition.
Lithium isotopes as indicators of meteorite parent body alteration
NASA Astrophysics Data System (ADS)
Sephton, Mark A.; James, Rachael H.; Fehr, Manuela A.; Bland, Philip A.; Gounelle, Matthieu
2013-05-01
Hydrothermal processing on planetesimals in the early solar system produced new mineral phases, including those generated by the transformation of anhydrous silicates into their hydrated counterparts. Carbonaceous chondrites represent tangible remnants of such alteration products. Lithium isotopes are known to be responsive to aqueous alteration, yet previously recognized variability within whole rock samples from the same meteorite appears to complicate the use of these isotopes as indicators of processing by water. We demonstrate a new way to use lithium isotopes that reflects aqueous alteration in carbonaceous chondrites. Temperature appears to exert a control on the production of acetic acid-soluble phases, such as carbonates and poorly crystalline Fe-oxyhydroxides. Temperature and degree of water-rock interaction determines the amount of lithium isotope fractionation expressed as the difference between whole rock and acetic acid-leachable fractions. Using these features, the type 1 chondrite Orgueil (δ7Li(whole rock) = 4.3‰; Δ7Li(acetic-whole) = 1.2‰) can be distinguished from the type 2 chondrites Murchison (δ7Li(whole rock) = 3.8; Δ7Li(acetic-whole) = 8.8‰) and carbonate-poor Tagish Lake (δ7Li(whole rock) = 4.3; Δ7Li(acetic-whole) = 9.4‰). This initial study suggests that lithium isotopes have the potential to reveal the role of liquid water in the early solar system.
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-01
We report on a sodium D2 resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-15
We report on a sodium D(2) resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Phase Equilibria and Ionic Solvation in the Lithium Tetrafluoroborate-Dimethylsulfoxide System
NASA Astrophysics Data System (ADS)
Gafurov, M. M.; Kirillov, S. A.; Gorobets, M. I.; Rabadanov, K. Sh.; Ataev, M. B.; Tretyakov, D. O.; Aydemirov, K. M.
2015-01-01
The phase diagram and electrical conductivity isotherms for the lithium tetrafluoroborate (LiBF4)-dimethylsulfoxide (DMSO) system and Raman spectra of DMSO and the LiBF4-DMSO solution were studied. Spectroscopic signatures of a H-bond between DMSO and BF4 - ions were found. The bonds of Li+ ions to the solvent were stronger than the bonds in DMSO dimers because formation of the solvate destroyed dimeric DMSO molecules. The τω values for DMSO molecules in the Li+-ion solvate shell of the LiBF4-DMSO system were similar to those for associated solvent molecules.
Yoon, Ki Ro; Lee, Gil Yong; Jung, Ji-Won; Kim, Nam-Hoon; Kim, Sang Ouk; Kim, Il-Doo
2016-03-09
Rational design and massive production of bifunctional catalysts with fast oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics are critical to the realization of highly efficient lithium-oxygen (Li-O2) batteries. Here, we first exploit two types of double-walled RuO2 and Mn2O3 composite fibers, i.e., (i) phase separated RuO2/Mn2O3 fiber-in-tube (RM-FIT) and (ii) multicomposite RuO2/Mn2O3 tube-in-tube (RM-TIT), by controlling ramping rate during electrospinning process. Both RM-FIT and RM-TIT exhibited excellent bifunctional electrocatalytic activities in alkaline media. The air electrodes using RM-FIT and RM-TIT showed enhanced overpotential characteristics and stable cyclability over 100 cycles in the Li-O2 cells, demonstrating high potential as efficient OER and ORR catalysts.
Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis.
Cipriani, Andrea; Hawton, Keith; Stockton, Sarah; Geddes, John R
2013-06-27
To assess whether lithium has a specific preventive effect for suicide and self harm in people with unipolar and bipolar mood disorders. Systematic review and meta-analysis. Medline, Embase, CINAHL, PsycINFO, CENTRAL, web based clinical trial registries, major textbooks, authors of important papers and other experts in the discipline, and websites of pharmaceutical companies that manufacture lithium or the comparator drugs (up to January 2013). Randomised controlled trials comparing lithium with placebo or active drugs in long term treatment for mood disorders. Two reviewers assessed studies for inclusion and risk of bias and extracted data. The main outcomes were the number of people who completed suicide, engaged in deliberate self harm, and died from any cause. 48 randomised controlled trials (6674 participants, 15 comparisons) were included. Lithium was more effective than placebo in reducing the number of suicides (odds ratio 0.13, 95% confidence interval 0.03 to 0.66) and deaths from any cause (0.38, 0.15 to 0.95). No clear benefits were observed for lithium compared with placebo in preventing deliberate self harm (0.60, 0.27 to 1.32). In unipolar depression, lithium was associated with a reduced risk of suicide (0.36, 0.13 to 0.98) and also the number of total deaths (0.13, 0.02 to 0.76) compared with placebo. When lithium was compared with each active individual treatment a statistically significant difference was found only with carbamazepine for deliberate self harm. Lithium tended to be generally better than the other active comparators, with small statistical variation between the results. Lithium is an effective treatment for reducing the risk of suicide in people with mood disorders. Lithium may exert its antisuicidal effects by reducing relapse of mood disorder, but additional mechanisms should also be considered because there is some evidence that lithium decreases aggression and possibly impulsivity, which might be another mechanism mediating the antisuicidal effect.
NASA Astrophysics Data System (ADS)
Raghavan, Rahul
Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the low specific capacities of the active materials in the electrodes. In the search for high-performance anode materials for Li-ion batteries, many alternatives to carbonaceous materials have been studied. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical capacity of 3500 mAh/g, making silicon a potential high density anode material. However, a large volume expansion of 300% occurs due to changes in the structure during lithium insertion, often leading to pulverization of the silicon. To this end, a class of silicon based cage compounds called clathrates are studied for electrochemical reactivity with lithium. Silicon-clathrates consist of silicon covalently bonded in cage structures comprised of face sharing Si20, Si24 and/or Si28 clusters with guest ions occupying the interstitial positions in the polyhedra. Prior to this, silicon clathrates have been studied primarily for their superconducting and thermoelectric properties. In this work, the synthesis and electrochemical characterization of two categories of silicon clathrates - Type-I silicon clathrate with aluminum framework substitution and barium guest ions (Ba8AlxSi46-x) and Type-II silicon clathrate with sodium guest ions (Nax Si136), are explored. The Type-I clathrate, Ba8AlxSi46-x consists of an open framework of aluminium and silicon, with barium (guest) atoms occupying the interstitial positions. X-ray diffraction studies have shown that a crystalline phase of clathrate is obtained from synthesis, which is powdered to a fine particle size to be used as the anode material in a Li-ion battery. Electrochemical measurements of these type of clathrates have shown that capacities comparable to graphite can be obtained for up to 10 cycles and lower capacities can be obtained for up to 20 cycles. Unlike bulk silicon, the clathrate structure does not undergo excessive volume change upon lithium intercalation, and therefore, the crystal structure is morphologically stable over many cycles. X-ray diffraction of the clathrate after cycling showed that crystallinity is intact, indicating that the clathrate does not collapse during reversible intercalation with lithium ions. Electrochemical potential spectroscopy obtained from the cycling data showed that there is an absence of formation of lithium-silicide, which is the product of lithium alloying with diamond cubic silicon. Type II silicon clathrate, NaxSi136, consists of silicon making up the framework structure and sodium (guest) atoms occupying the interstitial spaces. These clathrates showed very high capacities during their first intercalation cycle, in the range of 3,500 mAh/g, but then deteriorated during subsequent cycles. X-ray diffraction after one cycle showed the absence of clathrate phase and the presence of lithium-silicide, indicating the disintegration of clathrate structure. This could explain the silicon-like cycling behavior of Type II clathrates.
Kemp, David E.; Gao, Keming; Ganocy, Stephen J.; Rapport, Daniel J.; Elhaj, Omar; Bilali, Sarah; Conroy, Carla; Findling, Robert L.; Calabrese, Joseph R.
2011-01-01
Objective To assess whether combination treatment with lithium and divalproex is more effective than lithium monotherapy in prolonging the time to mood episode recurrence in patients with rapid-cycling bipolar disorder (RCBD) and comorbid substance abuse and/or dependence. Method A 6-month, double-blind, parallel group comparison was carried out in recently manic/hypomanic/mixed patients who had demonstrated a persistent bimodal response to combined treatment with lithium and divalproex. Subjects were randomly assigned to remain on combination treatment or to discontinue divalproex and remain on lithium monotherapy. Results Of 149 patients enrolled into the open-label acute stabilization phase, 79% discontinued prematurely (poor adherence: 42%; nonresponse: 25%; intolerable side effects: 10%). Of 31 patients (21%) randomly assigned to double-blind maintenance treatment, 55% relapsed (24% into depression and 76% into a manic/hypomanic/mixed episode), 26% completed the study, and 19% were poorly adherent or exited prematurely. The median time to recurrence of a new mood episode was 15.9 weeks for patients receiving lithium monotherapy and 17.8 weeks for patients receiving the combination of lithium and divalproex (p=NS). The rate of relapse into a mood episode for those receiving lithium monotherapy or the combination of lithium and divalproex was 56% and 53%, respectively. The rate of depressive relapse in both arms was 13%, while the rate of relapse into a manic, hypomanic, or mixed episode was 44% for lithium monotherapy and 40% for the combination of lithium and divalproex. Conclusion A small subgroup of patients in this study stabilized after six months of treatment with lithium plus divalproex. Of those who did, the addition of divalproex to lithium conferred no additional prophylactic benefit over lithium alone. Although depression is regarded as the hallmark of RCBD in general, these data suggest that recurrent episodes of mania tend to be more common in presentations accompanied by comorbid substance use. PMID:19192457
Liu, Qi; He, Hao; Li, Zhe-Fei; Liu, Yadong; Ren, Yang; Lu, Wenquan; Lu, Jun; Stach, Eric A; Xie, Jian
2014-03-12
We have performed operando synchrotron high-energy X-ray diffraction (XRD) to obtain nonintrusive, real-time monitoring of the dynamic chemical and structural changes in commercial 18650 LiFePO4/C cells under realistic cycling conditions. The results indicate a nonequilibrium lithium insertion and extraction in the LiFePO4 cathode, with neither the LiFePO4 phase nor the FePO4 phase maintaining a static composition during lithium insertion/extraction. On the basis of our observations, we propose that the LiFePO4 cathode simultaneously experiences both a two-phase reaction mechanism and a dual-phase solid-solution reaction mechanism over the entire range of the flat voltage plateau, with this dual-phase solid-solution behavior being strongly dependent on charge/discharge rates. The proposed dual-phase solid-solution mechanism may explain the remarkable rate capability of LiFePO4 in commercial cells.
NASA Astrophysics Data System (ADS)
Lang, Michael; Darma, Mariyam Susana Dewi; Kleiner, Karin; Riekehr, Lars; Mereacre, Liuda; Ávila Pérez, Marta; Liebau, Verena; Ehrenberg, Helmut
2016-09-01
The fatigue of commercial lithium ion batteries after long-term cycling at two different temperatures and cycling rates is investigated. The cells are opened after cycling and post-mortem analysis are conducted. Two main contributions to the capacity loss of the batteries are revealed. The loss of active lithium leads to a relative shift between anodes and cathodes potentials. A growth of the solid electrolyte interface (SEI) on the anode is determined as well as the formation of lithium fluoride species as an electrolyte decomposition product. Those effects are reinforced by increasing cycling rates from 1C/2C (charge/discharge) to 2C/3C as well as by increasing cycling temperatures from 25 °C to 40 °C. The other contribution to the capacity loss originates from a fatigue of the blended cathodes consisting of LiNi0.5Co0.2Mn0.3O2 (NCM), LiNi0.8Co0.15Al0.05O2 (NCA) and LiMn2O4 (LMO). Phase-specific capacity losses and fatigue mechanisms are identified. The layered oxides tend to form microcracks and reveal changes of the surface structure leading to a worsening of the lithium kinetics. The cathode exhibits a loss of manganese at 40 °C cycling temperature. Cycling at 40 °C instead of 25 °C has the major impact on cathodes capacity loss, while cycling at 2C/3C rates barely influences it.
Structural micro-porous carbon anode for rechargeable lithium-ion batteries
Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.
1995-06-20
A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.
CAEBAT Model Featured on American Chemical Society Journal Tenth
University's School of Mechanical Engineering has yielded new insights for lithium-ion (Li-ion) battery corresponding article, "Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes" detailing the microstructural modifications can greatly improve overall Li-ion battery performance. The value of this work is
Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, D.J.; Hubaud, A.A.; Vaughey, J.T., E-mail: vaughey@anl.gov
2014-01-01
Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stabilitymore » of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.« less
NASA Astrophysics Data System (ADS)
Asghar, Muhammad Rehman; Zhang, Yao; Wu, Aiming; Yan, Xiaohui; Shen, Shuiyun; Ke, Changchun; Zhang, Junliang
2018-03-01
In this work, a porous and honeycomb-structured Cellulose/Poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) membrane is prepared via a facile and ecofriendly phase inversion method by using glycerol as pore forming agent. Cellulose acetate, the source of cellulose, is easily converted into cellulose by hydrolysis in the presence of lithium hydroxide. Owing to the unique microstructure, the Cellulose/PVDF-HFP membrane offers several advantages, including high porosity, elevated electrolyte uptake, high ion conductivity, and wide electrochemical window (5.35 V). Compared with conventional polypropylene (PP) separator and PVDF-HFP membrane, the membrane developed in this work enables higher discharge capacity, higher lithium-ion transference number (0.89) and improved rate performance, which is able to maintain a high discharge capacity of 136 mAh g-1 at 8 C, using LiCoO2 as cathode and Li metal as anode. In addition, the Cellulose/PVDF-HFP membrane based batteries exhibit superior cycling performance that can maintain 91.7% capacity after 100 cycles at 0.2 C. The characterization and battery test results demonstrate that the membrane is highly compatible with lithium ion batteries.
Bschor, Tom; Baethge, Christopher; Adli, Mazda; Lewitzka, Ute; Eichmann, Uta; Bauer, Michael
2003-01-01
Objective Lithium augmentation is an established strategy in the treatment of refractory depression, but little is known about predictors of response and its mode of action. There is increasing evidence that low thyroid function indices within the normal range are associated with a poorer treatment response to antidepressants, but previous studies on the hypothalamic-pituitary-thyroid (HPT) system during lithium augmentation provide inconclusive results and have methodological limitations. This study aimed at exploring the role of thyroid function in lithium augmentation and used a prospective design that included a homogeneous sample of inpatients with unipolar major depressive disorder. Methods In 24 euthyroid patients with a major depressive episode who had not responded to antidepressant monotherapy of at least 4 weeks, we measured serum thyroid-stimulating hormone (TSH), total triiodothyronine (T3) and total thyroxine (T4) before (baseline) and during lithium augmentation therapy (follow-up). The time point of the endocrinological follow-up depended on the status of response, which was assessed weekly with the Hamilton Depression Rating Scale, 17-item version (HDRS17). Responders were reassessed immediately after response was determined, and non-responders after 4 weeks of lithium augmentation. Results There was a statistically significant change in thyroid system activity during lithium augmentation, with an increase of TSH levels and a decrease of peripheral T3 and T4 levels. However, there were no differences in any of the HPT hormones between responders and non-responders at baseline or at follow-up. Conclusions The decrease of thyroid system activity during lithium treatment reflects the well-established “antithyroid” properties of lithium. However, it appears that thyroid status does not predict response to lithium augmentation in euthyroid patients before treatment. PMID:12790161
Failure mechanisms in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Christensen, John Francis
Lithium-ion batteries have become one of the leading candidates for energy storage in electric and hybrid-electric vehicles due to their high energy and power densities. However, the life of this class of rechargeable cells is limited, and is usually considerably shorter than the requirement for an economically feasible alternative to the internal combustion engine. The goal of this research is to explore specific mechanisms for cell failure via mathematical modeling of phenomena that occur in a broad assortment of lithium-ion cells. The theoretical framework of the models presented here is general enough to be applicable to most lithium-ion cells and even electrochemical cells that fall outside the realm of lithium-ion technology, but the properties and parameters that are used are specific enough that quantitative predictions can be made. Specifically, models for passive-film growth at the electrode/electrolyte interface and for particle fracture are presented. In addition, we discuss a framework for describing and understanding various types of capacity fade. Finally, we optimize the design of a lithium-titanate based cell using an existing full-cell model and compare its performance to that of a graphite based cell. The passive-film model indicates that the extent of film growth and impedance rise in a cell should depend strongly upon the state of charge (SOC) at which a battery is stored. We further show that current efficiency increases with the rate at which a cell is charged, although the cycling range of the cell decreases as the current is raised due to the impedance of the film. The particle-fracture model elucidates the conditions under which both graphitic and lithium-manganese-oxide particles surpass their yield strength, at which point cracking is initiated and particle fragmentation may occur. Higher rates of charge and larger particle size generally lead to a higher likelihood of fracture, although this dependence is absent in materials that undergo a two-phase transition. Pressure diffusion and nonidealities embodied in solid-state diffusion and the kinetics of lithium insertion are included in the model, and are shown to have significant impact on the results. Variations in the thermodynamic factor with lithium content result in local SOCs at which the stress in the material is much higher than would be predicted for an ideal solution. The implications of these variations, including the possibility of selecting SOC windows for battery operation that minimize stress, are examined in detail. The high-rate performance of cells with lithium-titanate negative electrodes can be enhanced, relative to cells with graphitic negative electrodes, through the selection of active material of small particle size. The high potential of the lithium-titanate electrode prevents many of the undesirable side reactions that occur in graphitic electrodes, including passive-film formation and lithium deposition. We conclude that the lithium-titanate electrode is probably the more attractive candidate for hybrid-electric-vehicle and other high-power applications.
High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.
Lee, Sangkyu; Eom, Wonsik; Park, Hun; Han, Tae Hee
2017-08-02
Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO 2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO 2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO 2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO 2 crystals. As a result, high-temperature stable anatase TiO 2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO 2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO 2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO 2 nanofibers, the electrode prepared with anatase TiO 2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g -1 ).
Wang, Bo; Xu, Binghui; Liu, Tiefeng; Liu, Peng; Guo, Chenfeng; Wang, Shuo; Wang, Qiuming; Xiong, Zhigang; Wang, Dianlong; Zhao, X S
2014-01-21
In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co-modified with graphene and Mg(2+) doping (G/LFMP) were synthesized by a modified rheological phase method to improve the speed of lithium storage as well as cycling stability. The mesoporous structure of LiFePO4 nanocrystals was designed and realized by introducing the bead milling technique, which assisted in forming sucrose-pyrolytic carbon nanoparticles as the template for generating mesopores. For comparison purposes, samples modified only with graphene (G/LFP) or Mg(2+) doping (LFMP) as well as pure LiFePO4 (LFP) were also prepared and investigated. Microscopic observation and nitrogen sorption analysis have revealed the mesoporous morphologies of the as-prepared composites. X-ray diffraction (XRD) and Rietveld refinement data demonstrated that the Mg-doped LiFePO4 is a single olivine-type phase and well crystallized with shortened Fe-O and P-O bonds and a lengthened Li-O bond, resulting in an enhanced Li(+) diffusion velocity. Electrochemical properties have also been investigated after assembling coin cells with the as-prepared composites as the cathode active materials. Remarkably, the G/LFMP composite has exhibited the best electrochemical properties, including fast lithium storage performance and excellent cycle stability. That is because the modification of graphene provided active sites for nuclei, restricted the in situ crystallite growth, increased the electronic conductivity and reduced the interface reaction current density, while, Mg(2+) doping improved the intrinsically electronic and ionic transfer properties of LFP crystals. Moreover, in the G/LFMP composite, the graphene component plays the role of "cushion" as it could quickly realize capacity response, buffering the impact to LFMP under the conditions of high-rate charging or discharging, which results in a pre-eminent rate capability and cycling stability.
A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.
Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin
2018-02-14
Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.
Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice.
Hong, Namgue; Choi, Yun-Sik; Kim, Seong Yun; Kim, Hee Jung
2017-01-01
Status epilepticus is the most common serious neurological condition triggered by abnormal electrical activity, leading to severe and widespread cell loss in the brain. Lithium has been one of the main drugs used for the treatment of bipolar disorder for decades, and its anticonvulsant and neuroprotective properties have been described in several neurological disease models. However, the therapeutic mechanisms underlying lithium's actions remain poorly understood. The muscarinic receptor agonist pilocarpine is used to induce status epilepticus, which is followed by hippocampal damage. The present study was designed to investigate the effects of lithium post-treatment on seizure susceptibility and hippocampal neuropathological changes following pilocarpine-induced status epilepticus. Status epilepticus was induced by administration of pilocarpine hydrochloride (320 mg/kg, i.p.) in C57BL/6 mice at 8 weeks of age. Lithium (80 mg/kg, i.p.) was administered 15 minutes after the pilocarpine injection. After the lithium injection, status epilepticus onset time and mortality were recorded. Lithium significantly delayed the onset time of status epilepticus and reduced mortality compared to the vehicle-treated group. Moreover, lithium effectively blocked pilocarpine-induced neuronal death in the hippocampus as estimated by cresyl violet and Fluoro-Jade B staining. However, lithium did not reduce glial activation following pilocarpine-induced status epilepticus. These results suggest that lithium has a neuroprotective effect and would be useful in the treatment of neurological disorders, in particular status epilepticus.
Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells
Gao, Yang; Romero-Aleshire, Melissa J.; Cai, Qi; Price, Theodore J.
2013-01-01
Nephrogenic diabetes insipidus (NDI) is the most common renal side effect in patients undergoing lithium therapy for bipolar affective disorders. Approximately 2 million US patients take lithium of whom ∼50% will have altered renal function and develop NDI (2, 37). Lithium-induced NDI is a defect in the urinary concentrating mechanism. Lithium therapy also leads to proliferation and abundant renal cysts (microcysts), commonly in the collecting ducts of the cortico-medullary region. The mTOR pathway integrates nutrient and mitogen signals to control cell proliferation and cell growth (size) via the mTOR Complex 1 (mTORC1). To address our hypothesis that mTOR activation may be responsible for lithium-induced proliferation of collecting ducts, we fed mice lithium chronically and assessed mTORC1 signaling in the renal medulla. We demonstrate that mTOR signaling is activated in the renal collecting ducts of lithium-treated mice; lithium increased the phosphorylation of rS6 (Ser240/Ser244), p-TSC2 (Thr1462), and p-mTOR (Ser2448). Consistent with our hypothesis, treatment with rapamycin, an allosteric inhibitor of mTOR, reversed lithium-induced proliferation of medullary collecting duct cells and reduced levels of p-rS6 and p-mTOR. Medullary levels of p-GSK3β were increased in the renal medullas of lithium-treated mice and remained elevated following rapamycin treatment. However, mTOR inhibition did not improve lithium-induced NDI and did not restore the expression of collecting duct proteins aquaporin-2 or UT-A1. PMID:23884148
Lithium conductivity in glasses of the Li2O-Al2O3-SiO2 system.
Ross, Sebastian; Welsch, Anna-Maria; Behrens, Harald
2015-01-07
To improve the understanding of Li-dynamics in oxide glasses, i.e. the effect of [AlO4](-) tetrahedra and non-bridging oxygens on the potential landscape, electrical conductivity of seven fully polymerized and partly depolymerized lithium aluminosilicate glasses was investigated using impedance spectroscopy (IS). Lithium is the only mobile particle in these materials. Data derived from IS, i.e. activation energies, pre-exponential factors and diffusivities for lithium, are interpreted in light of Raman spectroscopic analyses of local structures in order to identify building units, which are crucial for lithium dynamics and migration. In polymerized glasses (compositional join LiAlSiO4-LiAlSi4O10) the direct current (DC) electrical conductivity continuously increases with increasing lithium content while lithium diffusivity is not affected by the Al/Si ratio in the glasses. Hence, the increase in electrical conductivity can be solely assigned to lithium concentration in the glasses. An excess of Li with respect to Al, i.e. the introduction of non-bridging oxygen into the network, causes a decrease in lithium mobility in the glasses. Activation energies in polymerized glasses (66 to 70 kJ mol(-1)) are significantly lower than those in depolymerized networks (76 to 78 kJ mol(-1)) while pre-exponential factors are nearly constant across all compositions. Comparison of the data with results for lithium silicates from the literature indicates a minimum in lithium diffusivity for glasses containing both aluminium tetrahedra and non-bridging oxygens. The findings allow a prediction of DC conductivity for a large variety of lithium aluminosilicate glass compositions.
Magnetic Field-Controlled Lithium Polysulfide Semiliquid Battery with Ferrofluidic Properties.
Li, Weiyang; Liang, Zheng; Lu, Zhenda; Tao, Xinyong; Liu, Kai; Yao, Hongbin; Cui, Yi
2015-11-11
Large-scale energy storage systems are of critical importance for electric grids, especially with the rapid increasing deployment of intermittent renewable energy sources such as wind and solar. New cost-effective systems that can deliver high energy density and efficiency for such storage often involve the flow of redox molecules and particles. Enhancing the mass and electron transport is critical for efficient battery operation in these systems. Herein, we report the design and characterization of a novel proof-of-concept magnetic field-controlled flow battery using lithium metal-polysulfide semiliquid battery as an example. A biphasic magnetic solution containing lithium polysulfide and magnetic nanoparticles is used as catholyte, and lithium metal is used as anode. The catholyte is composed of two phases of polysulfide with different concentrations, in which most of the polysulfide molecules and the superparamagnetic iron oxide nanoparticles can be extracted together to form a high-concentration polysulfide phase, in close contact with the current collector under the influence of applied magnetic field. This unique feature can help to maximize the utilization of the polysulfide and minimize the polysulfide shuttle effect, contributing to enhanced energy density and Coulombic efficiency. Additionally, owing to the effect of the superparamagnetic nanoparticles, the concentrated polysulfide phase shows the behavior of a ferrofluid that is flowable with the control of magnetic field, which can be used for a hybrid flow battery without the employment of any pumps. Our innovative design provides new insight for a broad range of flow battery chemistries and systems.
Synthesis and structure of novel lithium-ion conductor Li{sub 7}Ge{sub 3}PS{sub 12}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Yuki; Suzuki, Kota; Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502
The novel lithium-ion conductor Li{sub 7}Ge{sub 3}PS{sub 12} was synthesized by slow cooling from the ternary Li{sub 2}S–GeS{sub 2}–P{sub 2}S{sub 5} system, and was shown to exhibit a cubic argyrodite-type structure. The phase composition was determined by varying the ratio of starting materials; the observed monophasic properties were close to those for the Li{sub 7}Ge{sub 3}PS{sub 12} composition. The lattice parameter (a =9.80192(3) Å) of Li{sub 7}Ge{sub 3}PS{sub 12} was slightly smaller than that of Li{sub 7}PS{sub 6} (a =9.993 Å), indicating that substitution of a Li cation by the smaller Ge cation contracted the cubic lattice. In addition, themore » novel structure consisted of a framework composed of four isolated (Ge/P)S{sub 4} tetrahedra. Li{sup +} ions occupied tetrahedral sites within the framework, forming a three-dimensional conduction pathway. Finally, Li{sub 7}Ge{sub 3}PS{sub 12} exhibited a high ionic conductivity of 1.1×10{sup −4} S cm{sup −1} at 25 °C and an activation energy of 25 kJ mol{sup −1}. - Graphical abstract: A novel Li{sub 7}Ge{sub 3}PS{sub 12} solid lithium ion conductor, with cubic argyrodite strucuture, shows high ion conductivity of 1.1×10{sup –4} S cm{sup –1} with an activation energy of 25 kJ mol{sup –1}. The argyrodite structure consists of (Ge/P)S{sub 4} tetrahedra units along with partial occupation of lithium and germanium at 48 h site. - Highlights: • A novel lithium-ion conductor Li{sub 7}Ge{sub 3}PS{sub 12} was detected. • This was achieved through slow cooling of the ternary Li{sub 2}S–GeS{sub 2}–P{sub 2}S{sub 5} system. • This novel conductor revealed a cubic argyrodite-type structure. • Li{sub 7}Ge{sub 3}PS{sub 12} exhibited a high ionic conductivity of 1.1×10{sup −4} S cm{sup −1} at 25 °C. • These properties will aid in the design of superior lithium-ion conductors.« less
Roach, David J.; Dou, Shichen; Colby, Ralph H.; ...
2012-01-06
Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T 1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T 1 values along with the presence of minima in T 1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similarmore » activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.« less
NASA Astrophysics Data System (ADS)
McKenzie, Iain; Cortie, David L.; Harada, Masashi; Kiefl, Robert F.; Levy, C. D. Philip; MacFarlane, W. Andrew; McFadden, Ryan M. L.; Morris, Gerald D.; Ogata, Shin-Ichi; Pearson, Matthew R.; Sugiyama, Jun
2017-06-01
β -detected NMR (β -NMR) has been used to study the molecular-scale dynamics of lithium ions in thin films of poly(ethylene oxide) (PEO) containing either lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium trifluoroacetate (LiTFA) salts at monomer-to-salt ratios (EO/Li) of 8.3. The results are compared with previous β -NMR measurements on pure PEO and PEO with lithium triflate (LiOTf) at the same loading [McKenzie et al., J. Am. Chem. Soc. 136, 7833 (2014)]. Activated hopping of 8Li+ was observed in all of the films above ˜250 K, with the hopping parameters strongly correlated with the ionicity of the lithium salt rather than the polymer glass transition temperature. The pre-exponential factor increases exponentially with ionicity, while the activation energy for hopping increases approximately linearly, going from 6.3 ±0.2 kJ mol-1 in PEO:LiTFA to 17.8 ±0.2 kJ mol-1 in PEO:LiTFSI. The more rapid increase in the pre-exponential factor outweighs the effect of the larger activation energy and results in 8Li+ hopping being fastest in PEO followed by PEO:LiTFSI, PEO:LiOTf, and PEO:LiTFA.
McKenzie, Iain; Cortie, David L; Harada, Masashi; Kiefl, Robert F; Levy, C D Philip; MacFarlane, W Andrew; McFadden, Ryan M L; Morris, Gerald D; Ogata, Shin-Ichi; Pearson, Matthew R; Sugiyama, Jun
2017-06-28
β-detected NMR (β-NMR) has been used to study the molecular-scale dynamics of lithium ions in thin films of poly(ethylene oxide) (PEO) containing either lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium trifluoroacetate (LiTFA) salts at monomer-to-salt ratios (EO/Li) of 8.3. The results are compared with previous β-NMR measurements on pure PEO and PEO with lithium triflate (LiOTf) at the same loading [McKenzie et al., J. Am. Chem. Soc. 136, 7833 (2014)]. Activated hopping of 8 Li + was observed in all of the films above ∼250 K, with the hopping parameters strongly correlated with the ionicity of the lithium salt rather than the polymer glass transition temperature. The pre-exponential factor increases exponentially with ionicity, while the activation energy for hopping increases approximately linearly, going from 6.3±0.2 kJ mol -1 in PEO:LiTFA to 17.8±0.2 kJ mol -1 in PEO:LiTFSI. The more rapid increase in the pre-exponential factor outweighs the effect of the larger activation energy and results in 8 Li + hopping being fastest in PEO followed by PEO:LiTFSI, PEO:LiOTf, and PEO:LiTFA.
Effects of Surface Oxygen on the Performance of Carbon as an Anode in Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Clark, Gregory W.
2001-01-01
Carbon materials with similar bulk structure but different surface oxygen were compared for their performance as anodes in lithium-ion battery. The bulk structure was such that the graphene planes were perpendicular to the surface. Three types of surfaces were examined: surface containing C=O type oxygen. surface containing -O-C type oxygen, and surface containing high concentration of active sites. The test involved cycles of lithium insertion into and release from the carbon materials, which was in the half cells of carbon/saturated LiI-50/50 (vol %) EC and DMC/lithium. During the first cycle of lithium insertion, the presence of adsorbed oxygen, -O-C type oxygen, active carbon sites, and C=O type oxygen resulted in the formation of solid-electrolyte interface (SEI) when the carbon's voltage relative to lithium metal was >1.35, 1 to 1.35, 0.5 to 1, and 0.67 to 0.7 V, respectively. An optimum -O-C type oxygen and a minimum C=O type oxygen was found to increase the reversible and decrease the irreversible capacity of carbon. Active sites on the carbon surface result in a large irreversible capacity and a second lithium insertion-release mechanism. However, this new mechanism has a short cycle life.
New results of the spectral observations of CP stars
NASA Astrophysics Data System (ADS)
Polosukhina, N. S.; Shavrina, A. V.; Drake, N. A.; Kudryavtsev, D. O.; Smirnova, M. A.
2010-04-01
The lithium problem in Ap-CP stars has been, for a long time, a subject of debate. Individual characteristics of CP stars, such as high abundance of the rare-earth elements presence of magnetic fields, complicate structure of the surface distribution of chemical elements, rapid oscillations of some CP-stars, make the detection of the lithium lines and the determination of the lithium abundance, a difficult task. During the International Meeting in Slovakia in 1996, the lithium problem in Ap-CP stars was discussed. The results of the Li study carried out in CrAO Polosukhina (1973-1976), the works of Hack & Faraggiana (1963), Wallerstein & Hack (1964), Faraggiana et al. (1992-1996) formed the basis of the International project ‘Lithium in the cool CP-stars with magnetic fields’. The main goal of the project was, using systematical observations of Ap-CP stars with phase rotation in the spectral regions of the resonance doublet Li I 6708 Å and subordinate 6104 Å lithium lines with different telescopes, to create a database, which will permit to explain the physical origin of anomalous Li abundance in the atmospheres of these stars.
Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation
NASA Astrophysics Data System (ADS)
Chen, Jikun; Zhu, Yingjie; Chen, Nuofu; Liu, Xinling; Sun, Zhengliang; Huang, Zhenghong; Kang, Feiyu; Gao, Qiuming; Jiang, Jun; Chen, Lidong
2011-12-01
A two-step method has been used to fabricate nano-particles of layer-structured bismuth chalcogenide compounds, including Bi2Te3, Bi2Se3, and Bi2Se0.3Te2.7, through a nano-scaled top-down route. In the first step, lithium (Li) atoms are intercalated between the van der Waals bonded quintuple layers of bismuth chalcogenide compounds by controllable electrochemical process inside self-designed lithium ion batteries. And in the second step, the Li intercalated bismuth chalcogenides are subsequently exposed to ethanol, in which process the intercalated Li atoms would explode like atom-scaled bombs to exfoliate original microscaled powder into nano-scaled particles with size around 10 nm. The influence of lithium intercalation speed and amount to three types of bismuth chalcogenide compounds are compared and the optimized intercalation conditions are explored. As to maintain the phase purity of the final nano-particle product, the intercalation lithium amount should be well controlled in Se contained bismuth chalcogenide compounds. Besides, compared with binary bismuth chalcogenide compound, lower lithium intercalation speed should be applied in ternary bismuth chalcogenide compound.
One-step separation by thermal treatment and cobalt acid-leaching from spent lithium-ion batteries
NASA Astrophysics Data System (ADS)
Mu, Deying
2017-10-01
Lithium-ion batteries are extensively used in portable storage devices and automobiles, therefore the environment and resource problems caused by spent lithium ion batteries have become increasingly severe. This paper focuses on the recovery process of spent lithium cobalt oxide active material and comes up with reasonable processes and the best conditions for cobalt leaching ultimately.
Meshram, Pratima; Pandey, B D; Mankhand, T R
2015-11-01
This work is focussed on the processing of cathodic active material of spent lithium ion batteries (LIBs) to ensure resource recovery and minimize environmental degradation. The sulfuric acid leaching of metals was carried out for the recovery of all the valuable metals including nickel and manganese along with the frequently targeted metals like lithium and cobalt. The process parameters such as acid concentration, pulp density, time and temperature for the leaching of metals from the cathode powder containing 35.8% Co, 6.5% Li, 11.6% Mn and 10.06% Ni, were optimized. Results show the optimized leach recovery of 93.4% Li, 66.2% Co, 96.3% Ni and 50.2% Mn when the material was leached in 1M H2SO4 at 368 K and 50 g/L pulp density for 240 min. The need of a reductant for improved recovery of cobalt and manganese has been explained by the thermodynamic analysis (Eh-pH diagram) for these metals. Leaching of the valuable metals was found to follow the logarithmic rate law controlled by surface layer diffusion of the lixiviant reacting with the particles. The mode of leaching of the metals from the spent LIBs was further examined by chemical analysis of the samples at various stage of processing which was further corroborated by characterizing the untreated sample and the leach residues by XRD phase identification and the SEM-EDS studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Exceptionally High Proton and Lithium Cation Gas-Phase Basicity of the Anti-Diabetic Drug Metformin.
Raczyńska, Ewa D; Gal, Jean-François; Maria, Pierre-Charles; Michalec, Piotr; Zalewski, Marcin
2017-11-16
Substituted biguanides are known for their biological effect, and a few of them are used as drugs, the most prominent example being metformin (1,1-dimethylbiguanide, IUPAC name: N,N-dimethylimidodicarbonimidic diamide). Because of the presence of hydrogen atoms at the amino groups, biguanides exhibit a multiple tautomerism. This aspect of their structures was examined in detail for unsubstituted biguanide and metformin in the gas phase. At the density functional theory (DFT) level {essentially B3LYP/6-311+G(d,p)}, the most stable structures correspond to the conjugated, push-pull, system (NR 2 )(NH 2 )C═N-C(═NH)NH 2 (R = H, CH 3 ), further stabilized by an internal hydrogen bond. The structural and energetic aspects of protonation and lithium cation adduct formation of biguanide and metformin was examined at the same level of theory. The gas-phase protonation energetics reveal that the more stable tautomer is protonated at the terminal imino C═NH site, still with an internal hydrogen bond maintaining the structure of the neutral system. The calculated proton affinity and gas-phase basicity of the two molecules reach the domain of superbasicity. By contrast, the lithium cation prefers to bind the less stable, not fully conjugated, tautomer (NR 2 )C(═NH)-NH-C(═NH)NH 2 of biguanides, in which the two C═NH groups are separated by NH. This less stable form of biguanides binds Li + as a bidentate ligand, in agreement with what was reported in the literature for other metal cations in the solid phase. The quantitative assessment of resonance in biguanide, in metformin and in their protonated forms, using the HOMED and HOMA indices, reveals an increase in electron delocalization upon protonation. On the contrary, the most stable lithium cation adducts are less conjugated than the stable neutral biguanides, because the metal cation is better coordinated by the not-fully conjugated bidentate tautomer.
Oriented TiO2 nanotubes as a lithium metal storage medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae-Hun; Kang, Hee-Kook; Woo, Sang-Gil
2014-07-01
A new strategy for suppressing dendritic lithium growth in rechargeable lithium metal batteries is introduced, in which TiO2 nanotube (NT) array electrodes prepared by anodization are used as a metallic lithium storage medium. During the first charge process, lithium ions are inserted into the crystal structure of the TiO2 NT arrays, and then, lithium metal is deposited on the surfaces of the NT arrays, i.e., in the NT pores and between NT walls. From the second cycle onward, the TiO2 material is used as lithium ion pathways, which results in the effective current distribution for lithium deposition and prevents disintegrationmore » of the deposited metallic lithium. Compared to a Li(Cu foil)-LiCoO2 cell, the Li(TiO2 NT)-LiCoO2 cell exhibits enhanced cycling efficiency. This new concept will enable other 3D structured negative active materials to be used as lithium metal storage media for lithium metal batteries.« less
NASA Astrophysics Data System (ADS)
Anani, A.; Huggins, R. A.
The desire to produce high specific energy rechargeable batteries has led to the investigation of ternary alloy systems for use as negative electrode components in lithium-based cells. The addition of a third component to a binary alloy electrode could result in a significant change in the thermodynamic and/or kinetic behavior of the electrode material, depending on the relevant phase diagram and the crystal structures of the phases present. The influence of ternary phase diagram characteristics upon the thermodynamic properties and specific energies of multi-component electrodes is discussed with lithiumsilicon-based systems as an illustration. It is shown that the electrode potentials (and thus specific energies of the ensuing cell) as well as the theoretical lithium capacities of electrodes based on these ternary alloy modifications can be significantly increased with respect to their present day binary counterpart.
Polarization entangled cluster state generation in a lithium niobate chip
NASA Astrophysics Data System (ADS)
Szep, Attila; Kim, Richard; Shin, Eunsung; Fanto, Michael L.; Osman, Joseph; Alsing, Paul M.
2016-10-01
We present a design of a quantum information processing C-phase (Controlled-phase) gate applicable for generating cluster states that has a form of integrated photonic circuits assembled with cascaded directional couplers on a Ti in-diffused Lithium Niobate (Ti-LN) platform where directional couplers as the integrated optical analogue of bulk beam splitters are used as fundamental building blocks. Based on experimentally optimized fabrication parameters of Ti-LN optical waveguides operating at an 810nm wavelength, an integrated Ti-LN quantum C-phase gate is designed and simulated. Our proposed C-phase gate consists of three tunable directional couplers cascaded together with having different weighted switching ratios for providing a tool of routing vertically- and horizontally-polarized photons independently. Its operation mechanism relies on selectively controlling the optical coupling of orthogonally polarized modes via the change in the index of refraction, and its operation is confirmed by the BPM simulation.
Crystal Chemistry of Electrochemically and Chemically Lithiated Layered α I-LiVOPO 4
He, Guang; Bridges, Craig A.; Manthiram, Arumugam
2015-09-14
LiVOPO 4 is an attractive cathode for lithium-ion batteries with a high operating voltage and the potential to achieve the reversible insertion of two lithium ions between VOPO 4 and Li 2VOPO 4. Among the three known forms of LiVOPO 4 (α, β, and αI), the α I-LiVOPO 4 has a layered structure that could promote better ionic mobility and reversibility than others. However, a comprehensive study of its lithiated product is not available as αI-LiVOPO 4 is metastable and difficult to prepare by conventional approaches. We present here a facile synthesis of highly crystalline αI-LiVOPO 4 and α I-LiVOPOmore » 4/rGO nanocomposite by a microwave-assisted solvothermal method and its electrochemical/chemical lithiation. The LiVOPO 4/rGO cathodes exhibit a high reversible capacity of 225 mAh g –1, indicating the insertion of more than one lithium into VOPO 4. Both electrochemical and chemical lithiation imply a solid-solution reaction mechanism on inserting the second lithium into α I-LiVOPO 4, but a two-phase reaction feature could also occur under certain conditions such as insufficient time for equilibration of Li + diffusion in the structure. The fully lithiated new α I-Li 2VOPO 4 phase was characterized by combined Rietveld refinement of neutron diffraction and X-ray diffraction data and by bond-valence sum maps. The results suggest that αI-Li 2VOPO 4 retains the tetragonal P4/nmm symmetry of the parent α I-LiVOPO 4 structure, where the second lithium ions are located in the lithium layers rather than in the VOPO 4 layers« less
Ion beam promoted lithium absorption in glassy polymeric carbon
NASA Astrophysics Data System (ADS)
Ila, D.; Zimmerman, R. L.; Jenkins, G. M.; Maleki, H.; Poker, D. B.
1995-12-01
Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.
The effect of spark plasma sintering on lithium disilicate glass-ceramics.
Al Mansour, Fatima; Karpukhina, Natalia; Grasso, Salvatore; Wilson, Rory M; Reece, Mike J; Cattell, Michael J
2015-10-01
To evaluate the effects of spark plasma sintering (SPS) on the microstructure of lithium disilicate glass-ceramics. IPS e.max CAD glass-ceramic samples were processed using spark plasma sintering (SPS) and conventionally sintered (CS) as a comparison. Specimens were sintered at varying temperatures (T1: 840°C, T2: 820°C, T3: 800°C), heating rates (HR1: 150°C/min, HR2: 300°C/min, HR3: 500°C/min) and pressures (P1: 15MPa, P2: 50MPa, P3: 70MPa). IPS e.max Press glass powder samples were densified at 750 and 800°C (50 or 200MPa pressure). Samples were characterized using XRD, HTXRD, and SEM and quantitative image analysis. There was a significant increase in median crystal size (MCS) between the CS and the SPS T1 groups. A statistical difference (p>0.05) in MCS between SPS T1 and SPS T2 groups was observed. The SPS HR3 sample produced a smaller MCS than the CS, SPS HR1 and HR2 groups (p<0.05). The SPS P3 sample had a reduction in MCS compared with the CS group (p<0.05). XRD of the SPS samples revealed major lithium disilicate/lithium metasilicate phases and minor lithium orthophosphate and cristobalite/quartz phases. Densified IPS e.max Press glass samples resulted in fine fibrils or graduated lithium disilicate crystals. The effects of SPS were used to refine the microstructure of IPS e.max CAD lithium disilicate glass-ceramics. Densification by SPS of IPS e.max Press glass resulted in textured and fine nano-crystalline microstructures. SPS generated glass-ceramic microstructures may have unique properties and could be useful in the production of CAD/CAM materials for dentistry. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dees, D. W.; Kawauchi, S.; Abraham, D. P.
Galvanostatic Intermittent Titration Technique (GITT) experiments were conducted to determine the lithium diffusion coefficient of LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}, used as the active material in a lithium-ion battery porous composite positive electrode. An electrochemical model, based on concentrated solution porous electrode theory, was developed to analyze the GITT experimental results and compare to the original GITT analytical theory. The GITT experimental studies on the oxide active material were conducted between 3.5 and 4.5 V vs. lithium, with the maximum lithium diffusion coefficient value being 10{sup -10} cm{sup 2} s{sup -1} at 3.85 V. The lithium diffusion coefficient values obtainedmore » from this study agree favorably with the values obtained from an earlier electrochemical impedance spectroscopy study.« less
Developing the Pulsed Fission-Fusion (PuFF) Engine
NASA Technical Reports Server (NTRS)
Adams, Robert B.; Cassibry, Jason; Bradley, David; Fabisinski, Leo; Statham, Geoffrey
2014-01-01
In September 2013 the NASA Innovative Advanced Concept (NIAC) organization awarded a phase I contract to the PuFF team. Our phase 1 proposal researched a pulsed fission-fusion propulsion system that compressed a target of deuterium (D) and tritium (T) as a mixture in a column, surrounded concentrically by Uranium. The target is surrounded by liquid lithium. A high power current would flow down the liquid lithium and the resulting Lorentz force would compress the column by roughly a factor of 10. The compressed column would reach criticality and a combination of fission and fusion reactions would occur. Our Phase I results, summarized herein, review our estimates of engine and vehicle performance, our work to date to model the fission-fusion reaction, and our initial efforts in experimental analysis.
Lithium concentration dependent structure and mechanics of amorphous silicon
NASA Astrophysics Data System (ADS)
Sitinamaluwa, H. S.; Wang, M. C.; Will, G.; Senadeera, W.; Zhang, S.; Yan, C.
2016-06-01
A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of LixSi alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus of elasticity and fracture strength but increase in ductility in tension. For a LixSi system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.
Solid-liquid phase coexistence of alkali nitrates from molecular dynamics simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaraman, Saivenkataraman
2010-03-01
Alkali nitrate eutectic mixtures are finding application as industrial heat transfer fluids in concentrated solar power generation systems. An important property for such applications is the melting point, or phase coexistence temperature. We have computed melting points for lithium, sodium and potassium nitrate from molecular dynamics simulations using a recently developed method, which uses thermodynamic integration to compute the free energy difference between the solid and liquid phases. The computed melting point for NaNO3 was within 15K of its experimental value, while for LiNO3 and KNO3, the computed melting points were within 100K of the experimental values [4]. We aremore » currently extending the approach to calculate melting temperatures for binary mixtures of lithium and sodium nitrate.« less
NASA Astrophysics Data System (ADS)
Maekawa, F.; Verzilov, Y. M.; Smith, D. L.; Ikeda, Y.
2000-12-01
Except for 3H and 14C, no radioactive nuclide is produced by neutron-induced reactions with lithium in lithium-containing materials such as Li 2O and Li 2CO 3. However, when the lithium-containing materials are irradiated by 14 MeV neutrons, radioactive 7Be is produced by sequential charged particle reactions (SCPR). In this study, we measured effective 7Be production cross-sections in several lithium-containing samples at 14 MeV: the cross-sections are in the order of μb. Estimation of the effective cross-sections is attempted, and the estimated values agreed well with the experimental data. It was shown that the 7Be activity in a unit volume of lithium-containing materials in D-T fusion reactors can exceed total activity of the same unit volume of the SiC structural material in a certain cooling time. Consequently, a careful consideration of the 7Be production by SCPR is required to assess radioactive inventories in lithium-containing D-T fusion blanket materials.
β Coronae Bolealis: Lithium and Cerium Contribution to the Blend at 6708 Å
NASA Astrophysics Data System (ADS)
Drake, N. A.; Hubrig, S.; Polosukhina, N. S.; de La Reza, R.
2006-06-01
We analyze the Li I 6708 Å spectral region of the chemically peculiar Ap star βCrB using high resolution, high signal-to-noise spectra obtained at different rotation phases. Our study shows that the Ce II line at 6708.099 Å is a main contributor to the spectral feature at 6708 Å. This fact explains the observed red shift of the Li I doublet of about 0.2 Å found by Hack et al. (1997). We derive the values of lithium and cerium abundances for different rotation phases and show that βCrB has ``cosmic'' Li abundance.
High temperature lithium cells with solid polymer electrolytes
Yang, Jin; Eitouni, Hany Basam; Singh, Mohit
2017-03-07
Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.
Method for making glass-ceramic articles exhibiting high frangibility
Beall, George H.; Brydges, III., William T.; Ference, Joseph; Kozlowski, Theodore R.
1976-02-03
This invention is concerned with glass-ceramic articles having compositions within a very narrowly-delimited area of the MgO-Al.sub.2 O.sub.3 -B.sub.2 O.sub.3 -SiO.sub.2 field and having alpha-quartz and sapphirine as the principal crystal phases, resulting from nucleation through a combination of TiO.sub.2 and ZrO.sub.2. Upon contacting such articles with lithium ions at an elevated temperature, said lithium ions will replace magnesium ions on a two Li.sup.+-for-one Mg.sup..sup.+2 basis within the crystal structures, thereby providing a unitary glass-ceramic article having an integral surface layer wherein the principal crystal phase is a lithium-stuffed beta-quartz solid solution. That transformation of crystal phases results in compressive stresses being set up within the surface layer as the articles are cooled. Through the careful control of composition, crystallization treatment, and the parameters of the replacement reaction in the crystal structures, a tremendous degree of stored elastic energy can be developed within the articles such that they will demonstrate frangibility when fractured but will not exhibit undesirable spontaneous breakage and/or spalling.
A rechargeable lithium battery employing cobalt chevrel-phase compound as the cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yomaguchi, S.; Uchida, T.; Wakihara, M.
This paper reports on the single-phase region of cobalt Chevrel-phase compound (Co{sub y}Mo{sub 6}S{sub 8{minus}z}:CoCP) determined by x-ray diffraction analysis. The nonstoichiometric range of CoCP was very narrow and the only CoCP with y = 1.6,8 {minus} z = 7.7 could be prepared as a single phase. The CoCP was evaluated as a cathode for lithium secondary batteries. 1M CiClO{sub 4} in PC was used as an electrolyte. The discharge properties and discharge-charge cycling properties were measured galvanostatically under constant current densities from 0.1 to 2.0 mA/cm{sup 2}. The cell exhibited good discharge performance; for example when the cell wasmore » discharged under a cd = 0.1 mA/cm{sup 2}, 4.8 Li/Co{sub 1.6}Mo{sub 6}S{sub 7.7} were incorporated before the cell voltage fell down to 1.0 V (energy density: 277 Wh/kg). Also a rechargeability of more than 200 cycles was observed at cd = 0.5 mA/cm{sup 2}. The curve of OCV with varying Li content in the CoCP was very flat and near 2.1 V. The x-ray analysis of lithium incorporated cobalt Chevrel phase, Li{sub x}CoCP, was two sets of hexagonal lattice parameters showing the existence of two types of Chevrel phases (having different lattice parameters) coexisting in a wide range of 0 {lt} x {lt} 4.5.« less
Lithium hydroxide, LiOH, at elevated densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald
2014-07-14
We discuss the high-pressure phases of crystalline lithium hydroxide, LiOH. Using first-principles calculations, and assisted by evolutionary structure searches, we reproduce the experimentally known phase transition under pressure, but we suggest that the high-pressure phase LiOH-III be assigned to a new hydrogen-bonded tetragonal structure type that is unique amongst alkali hydroxides. LiOH is at the intersection of both ionic and hydrogen bonding, and we examine the various ensuing structural features and their energetic driving mechanisms. At P = 17 GPa, we predict another phase transition to a new phase, Pbcm-LiOH-IV, which we find to be stable over a wide pressuremore » range. Eventually, at extremely high pressures of 1100 GPa, the ground state of LiOH is predicted to become a polymeric structure with an unusual graphitic oxygen-hydrogen net. However, because of its ionic character, the anticipated metallization of LiOH is much delayed; in fact, its electronic band gap increases monotonically into the TPa pressure range.« less
Tang, Yun-Zhi; Wang, Bin; Zhou, Hai-Tao; Chen, Shao-Peng; Tan, Yu-Hui; Wang, Chang-Feng; Yang, Chang-Shan; Wen, He-Rui
2018-02-05
Dielectric relaxations have widely applied on high permittivity capacitors, dielectric switches, ferroelectrics, pyroelectrics, and electrical insulating materials. However, few investigations of large dielectric relaxation behaviors on organic-inorganic hybrid materials have been documented before. Here we present a novel two-dimensional succinimide lithium(I) hybrid compound, [Li(PDD) 2 ClO 4 ] n , 1, (PDD = 2,5-pyrrolidinedione = succinimide) which shows reversible phase transition behavior in the vicinity of 228 K accompanied by an unusual symmetry breaking from I4 1 /amd to C2/c. X-ray single crystal diffractions analysis indicates the twist motion of pyrrolidine heterocycles, and order-disorder motion of ClO 4 - anions triggered the reversible phase transition. By means of an intuitive crystallographic model (rattling ion model), we further illustrated the mechanism of the interesting reversible phase transition. Particularly, 1 shows ultralarge dielectric relaxation behavior in the vicinity of the phase transition by its dielectric constant dependence on temperatures and frequencies as well as its Cole-Cole relation.
Molecular Beam Epitaxy of lithium niobium oxide multifunctional materials
NASA Astrophysics Data System (ADS)
Tellekamp, M. Brooks; Shank, Joshua C.; Doolittle, W. Alan
2017-04-01
The role of stoichiometry and growth temperature in the preferential nucleation of material phases in the Li-Nb-O family are explored yielding an empirical growth phase diagram. It is shown that while single parameter variation often produces multi-phase films, combining substrate temperature control with the previously published lithium flux limited growth allows the repeatable growth of high quality single crystalline films of many different oxide phases. Higher temperatures (800-1050 °C) than normally used in MBE were necessary to achieve high quality materials. At these temperatures the desorption of surface species is shown to play an important role in film composition. Using this method single phase films of NbO, NbO2, LiNbO2, Li3NbO4, LiNbO3, and LiNb3O8 have been achieved in the same growth system, all on c-plane sapphire. Finally, the future of these films in functional oxide heterostructures is briefly discussed.
NASA Astrophysics Data System (ADS)
Brant, William R.; Roberts, Matthew; Gustafsson, Torbjörn; Biendicho, Jordi Jacas; Hull, Stephen; Ehrenberg, Helmut; Edström, Kristina; Schmid, Siegbert
2016-12-01
This paper presents a large wound cell for in operando neutron diffraction (ND) from which high quality diffraction patterns are collected every 15 min while maintaining conventional electrochemical performance. Under in operando data collection conditions the oxygen atomic displacement parameters (ADPs) and cell parameters were extracted for Li0.18Sr0.66Ti0.5Nb0.5O3. Analysis of diffraction data collected under in situ conditions revealed that the lithium is located on the (0.5 0.5 0) site, corresponding to the 3c Wyckoff position in the cubic perovskite unit cell, after the cell is discharged to 1 V. When the cell is discharged under potentiostatic conditions the quantity of lithium on this site increases, indicating a potential position where lithium becomes pinned in the thermodynamically stable phase. During this potentiostatic step the oxygen ADPs reduce significantly. On discharge, however, the oxygen ADPs were observed to increase gradually as more lithium is inserted into the structure. Finally, the rate of unit cell expansion changed by ∼44% once the lithium content approached ∼0.17 Li per formula unit. A link between lithium content and degree of mobility, disorder of the oxygen positions and changing rate of unit cell expansion at various stages during lithium insertion and extraction is thus presented.
Mechanism of epithelial lithium transport. Evidence for basolateral Na:Na and Na:Li exchange
1983-01-01
Measurement of transmural sodium fluxes across isolated, ouabain- inhibited turtle colon in the presence of a serosal-to-mucosal sodium gradient shows that in the absence of active transport the amiloride- sensitive cellular path contains at least two routes for the transmural movement of sodium and lithium, one a conductive path and the other a nonconductive, cation-exchange mechanism. The latter transport element can exchange lithium for sodium, and the countertransport of these two cations provides a mechanistic basis for the ability of tight epithelia to actively absorb lithium despite the low affinity of the basolateral Na/K-ATPase for this cation. PMID:6644269
Yang, Shan; Yan, Binggong; Wu, Jiaxiong; Lu, Li; Zeng, Kaiyang
2017-04-26
This paper presents the in situ mapping of temperature-dependent lithium-ion diffusion at the nanometer level in thin film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode using electrochemical strain microscopy. The thin-film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode exhibits higher lithium-ion diffusivities with increasing temperature, which explains the higher capacity observed in the lithium-ion batteries with a Li-rich cathode at elevated temperature. In addition, the activation energy for lithium-ion diffusion can be extracted in an Arrhenius-type plot at the level of grain structure with the assumption that the ionic movement is diffusion controlled. Compared with the grain interiors, the grain boundaries show relatively lower activation energy; hence, it is the preferred diffusion path for lithium ions. This study has bridged the gap between atomistic calculations and traditional macroscopic experiments, showing direct evidence as well as mechanisms for ionic diffusion for Li-rich cathode material.
Azimian-Zavareh, Vajihe; Hossein, Ghamartaj; Janzamin, Ehsan
2012-01-01
Objective: Glycogen synthase kinase-3β (GSK-3β) has been reported to be required for androgen receptor (AR) activity. This study sought to determine the usefulness of lithium chloride (LiCl) as a highly selective inhibitor of GSK-3β to increase the sensitivity of LNCap cells to doxorubicin (Dox), etoposide (Eto), and vinblastine (Vin) drugs. Materials and Methods: Thiazolyl Blue Tetrazolium Blue (MTT) assay was used to determine the cytotoxic effect to LiCl alone or in combination with low dose and IC50 doses of drugs. Subsequently, cell cycle analysis was performed by using flow cytometry. Results: LiCl showed cytotoxic effect in a dose- and time-dependent manner (P<0.001). Both Dox (100 or 280 nM) and Vin IC50 (5 nM) doses caused G2/M-phase arrest (P<0.001) compared with control. However, low dose (10 μM) or IC50 (70 μM) Eto doses showed G2/M or S-phase arrests, respectively (P<0.001). Combination of low dose or IC50 dose of Eto with LiCl showed increased apoptosis as revealed by high percent of cells in SubG1 (P<0.05, P<0.01, respectively). Moreover, Eto (10 μM) led to decreased percent of cells in G2/M phase when combined with LiCl (P<0.05). Conclusion: This study showed that LiCl increases apoptosis of (LNCap) Lymph Node Carcinoma of the Prostate cells in the presence of Eto, which is S- and G2-phase-specific drug. PMID:23248400
Rotation, activity, and lithium abundance in cool binary stars
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.
2012-10-01
We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P_rot-0.24} for binaries and {R_Hα ∝ P_rot-0.14} for singles. Its power-law difference is possibly significant. Lithium abundances in our (field-star) sample generally increase with effective temperature and are paralleled with an increase of the dispersion. The dispersion for binaries can be 1-2 orders of magnitude larger than for singles, peaking at an absolute spread of 3 orders of magnitude near T_eff≈ 5000 K. On average, binaries of comparable effective temperature appear to exhibit 0.25 dex less surface lithium than singles, as expected if the depletion mechanism is rotation dependent. We also find a trend of increased Li abundance with rotational period of form log n (Li) ∝ -0.6 log P_rot but again with a dispersion of as large as 3-4 orders of magnitude. Based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated with IAC, and the Automatic Photoelectric Telescopes in Arizona, jointly operated with Fairborn Observatory.
Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries
Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit; ...
2017-07-01
Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less
Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit
Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less
Investigation of the cluster formation in lithium niobate crystals by computer modeling method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.
The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.
Zhou, Xue; da Li, Wen-; Yuan, Bao-Long; Niu, Li-Jun; Yang, Xiao-Yu; Zhou, Zhi-Bin; Chen, Xiao-Hui; Feng, Xia
2016-08-01
We aimed to observe the therapeutic effects of lithium on inhalational anesthetic sevoflurane-induced apoptosis in immature brain hippocampus. From postnatal day 5 (P5) to P28, male Sprague-Dawley pups were intraperitoneally injected with lithium chloride or 0.9 % sodium chloride. On P7 after the injection, pups were exposed to 2.3 % sevoflurane or air for 6 h. Brain tissues were harvested 12 h and 3 weeks after exposure. Cleaved caspase-3, nNOS protein, GSK-3β,p-GSK-3β were assessed by Western blot, and histopathological changes were assessed using Nissl stain and TUNEL stain. From P28, we used the eight-arm radial maze test and step-through test to evaluate the influence of sevoflurane exposure on the learning and memory of juvenile rats. The results showed that neonatal sevoflurane exposure induced caspase-3 activation and histopathological changes in hippocampus can be attenuated by lithium chloride. Sevoflurane increased GSK-3β activity while pretreatment of lithium decreased GSK-3β activity. Moreover, sevoflurane showed possibly slight but temporal influence on the spatial learning and the memory of juvenile rats, and chronic use of lithium chloride might have the therapeutic effect. Our current study suggests that lithium attenuates sevoflurane induced neonatal hippocampual damage by GSK-3β pathway and might improve learning and memory deficits in rats after neonatal exposure.
Neuroprotective action of lithium in disorders of the central nervous system
CHIU, Chi-Tso; CHUANG, De-Maw
2011-01-01
Substantial in vitro and in vivo evidence of neurotrophic and neuroprotective effects of lithium suggests that it may also have considerable potential for the treatment of neurodegenerative conditions. Lithium's main mechanisms of action appear to stem from its ability to inhibit glycogen synthase kinase-3 activity and also to induce signaling mediated by brain-derived neurotrophic factor. This in turn alters a wide variety of downstream efectors, with the ultimate effect of enhancing pathways to cell survival. In addition, lithium contributes to calcium homeostasis. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, for instance, it suppresses the calcium-dependent activation of pro-apoptotic signaling pathways. By inhibiting the activity of phosphoinositol phosphatases, it decreases levels of inositol 1,4,5-trisphosphate, a process recently identified as a novel mechanism for inducing autophagy. These mechanisms alow therapeutic doses of lithium to protect neuronal cells from diverse insults that would otherwise lead to massive cell death. Lithium, moreover, has been shown to improve behavioral and cognitive deficits in animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, and Huntington's, Alzheimer's, and Parkinson's diseases. Since lithium is already FDA-approved for the treatment of bipolar disorder, our conclusions support the notion that its clinical relevance can be expanded to include the treatment of several neurological and neurodegenerative-related diseases. PMID:21743136
Mechanistic insights related to the design and construction of lithium single ion conductors
NASA Astrophysics Data System (ADS)
Spahlinger, Gregory
Lithium single ion conductors are a class of electrolytes, typically designed for lithium ion batteries, with the potential to improve the performance of these batteries. The benefits of single ion conductors arise out of the fact that their immobile anions are not capable of concentrating near the anode of the battery, causing an increase in resistance as the battery is discharged. Unfortunately lithium single ion conductors suffer severe drawbacks in their conductivity which have been attributed to diverse causes. Because of the low success rate of single ion conductors in the literature and previous work in the Baker group, I have chosen to investigate mechanistic questions related to the design and construction of these materials, without engineering new materials. An attractive design strategy for the screening of immobile anion moieties for single ion conductors would be the use of the copper catalyzed alkyne azide (CUAAC) "click" reaction in order to efficiently introduce anions onto a polymer or nanoparticle support in a way that is efficient and tunable. A variable added by this strategy would be the presence of a 1,2,3-triazole moiety which is without any significant precedent in the lithium ion electrolyte literature. In order to assess the impact of the triazole in on the conductivity of an electrolyte a series of model compounds were synthesized containing a variable number of triazoles in an otherwise poly(ethylene glycol) like oligomer chain. The model compounds were subjected to differential scanning calorimetry, electrochemical impedance spectroscopy, and in one case single crystal X-ray diffraction, and solvent shells were modeled for lithium with and without triazoles using ab initio quantum chemistry calculations. It was concluded that the triazole is not significantly stronger than an ether oxygen as a ligand in the electrolytes, however the triazole has a substantial dipole which exerts some deleterious effects on the conductivity, leading to an increase in the Arrhenius activation energy for the process. These effects are balanced by an increase in the pre-exponential factor which leads to "compensation behavior" due to the dependence of that quantity on the dipole density in the material. The observed effect is one of a lower conductivity for the model compounds relative to poly(ethylene glycol)dimethyl ether 500 at room temperature, which converges to roughly the same conductivity around 80 °C. In synthetic studies, attempts were made to synthesize N-triflylpropanesultam (TPS) a five membered heterocycle whose nucleophilic ring opening would yield a desirable anion for use in single ion conductors. TPS proved to be significantly more difficult to open than expected, which prompted a computational study. In order to study the nucleofugality of polyatomic anionic leaving groups derived from oxygen and nitrogen, a contingent of 19 methylating agents consisting of amines or alcohols activated with carbonyl or sulfonyl substituents has been examined via ab initio calculations. Gas phase activation energies for alkylation of ammonia, and gas phase methyl cation affinitys were calculated. It was found that polyatomic anionic leaving groups derived from nitrogen will have higher activation energies for Menshutkin (SN2) alkylation even when they have similar methyl cation affinities. This inherent deficit in the nucleofugality of nitrogen derived leaving groups appears to be a result of the way bond cleavage is synchronized with bond formation to the incoming ammonia nucleophile. Additionally the second sulfonyl group present in a sulfonimide appears to be less effective at activating nitrogen due to a preference for tetrahedral geometries at nitrogen in the transition states of sulfonamide groups. Optimal delocalization of electron density is therefore frustrated due to the symmetry of the leaving group.
Probing multiscale transport and inhomogeneity in a lithium-ion cells using in-situ neutron methods
Zhou, Hui; An, Ke; Allu, Srikanth; ...
2016-01-01
Here, we demonstrate for the first time the lithiation process in graphitic anodes using insitu neutron radiography in a pouch cell format. The neutron absorption contrast shows a direct correlation between degree of lithiation and the discharge voltage plateau. Furthermore, we provide a semi-quantitative comparison between the observed spatial variations of neutron attenuation line profile across the graphite electrode and the calculated lithium concentration profiles computed under similar electrochemical discharge conditions. In conjunction, in situ neutron diffraction of a similar pouch cell under identical test protocol was carried to obtain information about the local phase changes upon lithiation. Combined in-situmore » radiography and diffraction opens up a powerful nondestructive method to understand the multi-scale nature of lithium transport and degradation in practical lithium-ion cells.« less
NASA Astrophysics Data System (ADS)
Jeong, Hyun-Seok; Kim, Dong-Won; Jeong, Yeon Uk; Lee, Sang-Young
To improve the thermal shrinkage of the separators that are essential to securing the electrical isolation between electrodes in lithium-ion batteries, we develop a new separator based on a ceramic composite membrane. Introduction of microporous, ceramic coating layers onto both sides of a polyethylene (PE) separator allows such a progress. The ceramic coating layers consist of nano-sized alumina (Al 2O 3) powders and polymeric binders (PVdF-HFP). The microporous structure of the ceramic coating layers is observed to be crucial to governing the thermal shrinkage as well as the ionic transport of the ceramic composite separators. This microporous structure is determined by controlling the phase inversion, more specifically, nonsolvent (water) contents in the coating solutions. To provide a theoretical basis for this approach, a pre-investigation on the phase diagram for a ternary mixture comprising PVdF-HFP, acetone, and water is conducted. On the basis of this observation, the effect of phase inversion on the morphology and air permeability (i.e. Gurley value) of ceramic coating layers is systematically discussed. In addition, to explore the application of ceramic composite separators to lithium-ion batteries, the influence of the structural change in the coating layers on the thermal shrinkage and electrochemical performance of the separators is quantitatively identified.
Ding, Xiao-Kai; Zhang, Lu-Lu; Yang, Xue-Lin; Fang, Hui; Zhou, Ying-Xian; Wang, Ji-Qing; Ma, Di
2017-12-13
In this study, low cost anthracite-derived dual-phase carbon-coated Li 3 V 2 (PO 4 ) 3 composites have been successfully prepared via a traditional solid-phase method. XRD results show that the as-prepared samples have high crystallinity and anthracite introduction has no influence on the LVP crystal structure. The LVP/C particles are uniformly covered with a dual-phase carbon layer composed of amorphous carbon and graphitic carbon. The effect of the amount of anthracite on the battery performance of LVP as a cathode material has also been studied. The LVP/C composite obtained with 10 wt % anthracite (LVP/C-10) delivers the highest initial charge/discharge capacities of 186.1/168.2 mAh g -1 at 1 C and still retains the highest discharge capacity of 134.0 mAh g -1 even after 100 cycles. LVP/C-10 also displays an outstanding average capacity of 140.8 mAh g -1 at 5 C. The superior rate capability and cycling stability of LVP/C-10 is ascribed to the reduced particle size, decreased charge-transfer resistance, and improved lithium ion diffusion coefficient. Our results demonstrate that using anthracite as a carbon source opens up a new strategy for larger-scale synthesis of LVP and other electrode materials with poor electronic conductivity for lithium ion batteries.
An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor
NASA Astrophysics Data System (ADS)
Yijing, Yin
Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.
New Cathode Material for High Energy-Density Batteries
1974-07-31
Lithium Anodes LINK A ROLK LINK B LINK C INSTRUCTIONS I. ORIGINATING ACTIVITY: Enter the name and oddM-ss of the contractor...theoretical energy density of 399 whr/lb when paired with a lithium anode. Results of related, but less extensive, work on zinc fluoride and...a) The semiconductor was cathodically passi- vated in the presence of lithium ions, which would normally exist in lithium battery electrolytes
Synthesis and Electrochemical Performance of LixMn2-yCoyO4-dCld Cathode Material
2016-06-13
Lithium manganese oxide spinel is a potential candidate for Li- ion battery cathodes because of its...240 mAh/g of active material, and 4) high rate charge and discharge. Keywords: Lithium and Li- ion battery , Lithium manganese oxide spinel, Spinel...demonstrate desirable traits for incorporation into lithium - ion batteries for the military. References 1. David Linden (Ed.); Handbook of Batteries
Propagation of a Chemical Reaction through Heterogeneous Lithium- Polytetrafluoroethylene Mixtures
1975-12-11
Condensed Phases ........... ............... 9 1.2.1 Lithium-Gas Surface Reactions. .......... 10 1.2.2 Composite Solid Propellant Combustion. . .. 13...f:- the o:cu:=ence _A a surface reaction was developed, but no analyti7al reaction zate model was presented- 1.2.2 Composite S’-lid Propellant...Combustion Composite solid propellants are plastic-like materials consisting of small oxidizer particles embedded in a fuel matrix. Ammonium perchlorate is
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh
2001-01-01
In a lithium-ion battery, the lithium-storage capacity of the carbon anode is greatly affected by a surface layer formed during the first half cycle of lithium insertion and release into and out of the carbon anode. The formation of this solid-electrolyte interface, in turn, is affected by the chemistry of the carbon surface. A study at the NASA Glenn Research Center examined the cause-and-effect relations. Information obtained from this research could contribute in designing a high-capacity lithium-ion battery and, therefore, small, powerful spacecraft. In one test, three types of surfaces were examined: (1) a surface with low oxygen content (1.5 at.%) and a high concentration of active sites, (2) a surface with 4.5 at.% -OH or -OC type oxygen, and (3) a surface with 6.5 at.% O=C type oxygen. The samples were made from the same precursor and had similar bulk properties. They were tested under a constant current of 10 mA/g in half cells that used lithium metal as the counter electrode and 0.5 M lithium iodide in 50/50 (vol%) ethylene carbonate and dimethyl carbonate as the electrolyte. For the first cycle of the electrochemical test, the graph describes the voltage of the carbon anode versus the lithium metal as a function of the capacity (amount of lithium insertion or release). From these data, it can be observed that the surface with low oxygen and a high concentration of active sites could result in a high irreversible capacity. Such a high irreversible capacity could be prevented if the active sites were allowed to react with oxygen in air, producing -OH or -OC type oxygen. The O=C type oxygen, on the other hand, could greatly reduce the capacity of lithium intercalation and, therefore, needs to be avoided during battery fabrication.
Organometallic-inorganic hybrid electrodes for lithium-ion batteries
Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia
2016-09-13
Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.
Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stershic, A. J.; Simunovic, S.; Nanda, J.
2015-08-25
Electrode microstructure and processing can strongly influence lithium-ion battery performance such as capacity retention, power, and rate. Battery electrodes are multi-phase composite structures wherein conductive diluents and binder bond active material to a current collector. The structure and response of this composite network during repeated electrochemical cycling directly affects battery performance characteristics. We propose the fabric tensor formalism for describing the structure and evolution of the electrode microstructure. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Fabric tensor analysis is applied to experimental data-sets for positivemore » electrode made of lithium nickel manganese cobalt oxide, captured by X-ray tomography for several compositions and consolidation pressures. We show that fabric tensors capture the evolution of inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode. The fabric tensor analysis is also applied to Discrete Element Method (DEM) simulations of electrode microstructures using spherical particles with size distributions from the tomography. Furthermore, these results do not follow the experimental trends, which indicates that the particle size distribution alone is not a sufficient measure for the electrode microstructures in DEM simulations.« less
Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles
NASA Astrophysics Data System (ADS)
Smith, Kandler; Wang, Chao-Yang
A 1D electrochemical, lumped thermal model is used to explore pulse power limitations and thermal behavior of a 6 Ah, 72 cell, 276 V nominal Li-ion hybrid-electric vehicle (HEV) battery pack. Depleted/saturated active material Li surface concentrations in the negative/positive electrodes consistently cause end of high-rate (∼25 C) pulse discharge at the 2.7 V cell -1 minimum limit, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell -1 maximum limit, meant to protect the negative electrode from lithium deposition side reaction during charge, is overly conservative for high-rate (∼15 C) pulse charges initiated from states-of-charge (SOCs) less than 100%. Two-second maximum pulse charge rate from the 50% SOC initial condition can be increased by as much as 50% without risk of lithium deposition. Controlled to minimum/maximum voltage limits, the pack meets partnership for next generation vehicles (PNGV) power assist mode pulse power goals (at operating temperatures >16 °C), but falls short of the available energy goal. In a vehicle simulation, the pack generates heat at a 320 W rate on a US06 driving cycle at 25 °C, with more heat generated at lower temperatures. Less aggressive FUDS and HWFET cycles generate 6-12 times less heat. Contact resistance ohmic heating dominates all other mechanisms, followed by electrolyte phase ohmic heating. Reaction and electronic phase ohmic heats are negligible. A convective heat transfer coefficient of h = 10.1 W m -2 K -1 maintains cell temperature at or below the 52 °C PNGV operating limit under aggressive US06 driving.
Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Xu, Wu; Graff, Gordon L.
Lithium metal batteries are called the “holy grail” of energy storage systems. However, lithium dendrite growth in these batteries has prevented their practical applications in the last 40 years. Here we show a novel mechanism which can fundamentally change the dendritic morphology of lithium deposition. A low concentration of the second cations (including ions of cesium, rubidium, potassium, and strontium) exhibits an effective reduction potential lower than the standard reduction potential of lithium ions when the chemical activities of these second cations are much lower than that of lithium ions. During lithium deposition, these second cations will form a self-healingmore » electrostatic shield around the initial tip of lithium whenever it is formed. This shield will repel the incoming lithium ions and force them to deposit in the smoother region of the anode so a dendrite-free film is obtained. This mechanism is effective on dendrite prevention in both lithium metal and lithium ion batteries. They may also prevent dendrite growth in other metal batteries and have transformational impact on the smooth deposition in general electrodeposition processes.« less
Lithium in sediments and brines--how, why and where to search
Vine, James D.
1975-01-01
The possibility of using lithium in batteries to power electric vehicles and as fuel for thermonuclear power has focused attention on the limited resources of lithium other than in pegmatite minerals. The Clayton Valley, Nev., subsurface lithium brine has been the major source of lithium carbonate since about 1967, but the life of this brine field is probably limited to several more decades at the present rate of production. Lithium is so highly soluble during weathering and in sedimentary environments that no lithium-rich sedimentary minerals other than clays have been identified to date. The known deposits of lithium, such as the clay mineral hectorite and the lithium-rich brines, occur in closed desert basins of the Southwest in association with nonmarine evaporites. However, the ultimate source for the lithium in these deposits may be from hydrothermal solutions. The search for previously unreported deposits of nonpegmatitic lithium should consider its probable association, not only with nonmarine evaporite minerals, but also with recent volcanic and tectonic activity, as well as with deposits of boron, beryllium, fluorine, manganese, and possibly phosphate.
Redox-Active Separators for Lithium-Ion Batteries.
Wang, Zhaohui; Pan, Ruijun; Ruan, Changqing; Edström, Kristina; Strømme, Maria; Nyholm, Leif
2018-03-01
A bilayered cellulose-based separator design is presented that can enhance the electrochemical performance of lithium-ion batteries (LIBs) via the inclusion of a porous redox-active layer. The proposed flexible redox-active separator consists of a mesoporous, insulating nanocellulose fiber layer that provides the necessary insulation between the electrodes and a porous, conductive, and redox-active polypyrrole-nanocellulose layer. The latter layer provides mechanical support to the nanocellulose layer and adds extra capacity to the LIBs. The redox-active separator is mechanically flexible, and no internal short circuits are observed during the operation of the LIBs, even when the redox-active layer is in direct contact with both electrodes in a symmetric lithium-lithium cell. By replacing a conventional polyethylene separator with a redox-active separator, the capacity of the proof-of-concept LIB battery containing a LiFePO 4 cathode and a Li metal anode can be increased from 0.16 to 0.276 mA h due to the capacity contribution from the redox-active separator. As the presented redox-active separator concept can be used to increase the capacities of electrochemical energy storage systems, this approach may pave the way for new types of functional separators.
NASA Astrophysics Data System (ADS)
Polosukhina, N.; Shavrina, A.; Drake, N.; Kudryavtsev, D.; Smirnova, M.
The lithium problem in Ap-CP stars has for a long time been a subject of debates. Individual characteristics of CP stars, such as a high abundance of rare-earth elements, the presence of magnetic fields, complex structures of the surface distribution of chemical elements, rapid oscillations of some CP stars, make the detection of lithium lines, and determination of lithium abundance a challenging task. The lithium problem in Ap-CP stars was discussed during the meeting in Slovakia in 1996. The results of the Li study, carried out in CrAO (Polosukhina, 1973 - 1976), the works of Faraggiana & Hack (1963), Wallerstein & Hack (1964), Faraggiana et al. (1992 - 1996) formed the basis of the international project, called Lithium in the Cool CP Stars with Magnetic Fields. The main goal of the project was, using systematical observations of Ap-CP stars with phase rotation in the spectral regions of the resonance doublet Li I 6708 Å and subordinate 6104 Å lithium lines with different telescopes, to create a database, which will permit to explain the physical origin of the anomalous Li abundance in the atmospheres of these stars.
Lithium, Vanadium and Chromium Uptake Ability of Brassica juncea from Lithium Mine Tailings.
Elektorowicz, M; Keropian, Z
2015-01-01
The potential for phytoremediation and phytostabilization of lithium in lieu with vanadium and chromium on a formulated acidic heterogeneous growth media engineered around lithium mine tailings, was investigated in four phases: (1) overall efficiency of the removal of the three metals, (2) bioaccumulation ratios of the three metals, (3) overall relative growth rate, and (4) translocation index of the three metals in the physiology of the hyperaccumulator plant. A pot study was conducted to assess the suitability of Brassica juncea (Indian mustard) in a phytoremediation process whereby it was lingered for eighty-six days under homogeneous growth conditions and irrigated bidaily with organic fertilizer amended with LiCl. A post harvest data analysis was achieved through ashing and the implementation of cold digestion procedure in a concentrated hydrochloric acidic matrix. In physiological efficiency parameters, the hyperaccumulator plant was twice as able to phytostabilize chromium and four times was able to phytostabilize vanadium in comparison to lithium. Moreover, it was extremely efficient in translocating and accumulating lithium inside its upper physiological sites, more so than chromium and vanadium, thereby demonstrating Indian mustard, as a hyperaccumulator plant, for phytoextraction and phytostabilization in an acidic heterogeneous rhizosphere, with an extremely low relative growth rate.
Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu; Shiiba, Hiromasa; Ogawa, Masahiro; Nakayama, Keisuke; Ohta, Toshiaki; Endo, Daisuke; Ozaki, Tetsuya; Inamasu, Tokuo; Sato, Kei; Komaba, Shinichi
2015-06-23
Rechargeable lithium batteries have rapidly risen to prominence as fundamental devices for green and sustainable energy development. Lithium batteries are now used as power sources for electric vehicles. However, materials innovations are still needed to satisfy the growing demand for increasing energy density of lithium batteries. In the past decade, lithium-excess compounds, Li2MeO3 (Me = Mn(4+), Ru(4+), etc.), have been extensively studied as high-capacity positive electrode materials. Although the origin as the high reversible capacity has been a debatable subject for a long time, recently it has been confirmed that charge compensation is partly achieved by solid-state redox of nonmetal anions (i.e., oxide ions), coupled with solid-state redox of transition metals, which is the basic theory used for classic lithium insertion materials, such as LiMeO2 (Me = Co(3+), Ni(3+), etc.). Herein, as a compound with further excess lithium contents, a cation-ordered rocksalt phase with lithium and pentavalent niobium ions, Li3NbO4, is first examined as the host structure of a new series of high-capacity positive electrode materials for rechargeable lithium batteries. Approximately 300 mAh ⋅ g(-1) of high-reversible capacity at 50 °C is experimentally observed, which partly originates from charge compensation by solid-state redox of oxide ions. It is proposed that such a charge compensation process by oxide ions is effectively stabilized by the presence of electrochemically inactive niobium ions. These results will contribute to the development of a new class of high-capacity electrode materials, potentially with further lithium enrichment (and fewer transition metals) in the close-packed framework structure with oxide ions.
Chueh, William C; El Gabaly, Farid; Sugar, Joshua D; Bartelt, Norman C; McDaniel, Anthony H; Fenton, Kyle R; Zavadil, Kevin R; Tyliszczak, Tolek; Lai, Wei; McCarty, Kevin F
2013-03-13
The intercalation pathway of lithium iron phosphate (LFP) in the positive electrode of a lithium-ion battery was probed at the ∼40 nm length scale using oxidation-state-sensitive X-ray microscopy. Combined with morphological observations of the same exact locations using transmission electron microscopy, we quantified the local state-of-charge of approximately 450 individual LFP particles over nearly the entire thickness of the porous electrode. With the electrode charged to 50% state-of-charge in 0.5 h, we observed that the overwhelming majority of particles were either almost completely delithiated or lithiated. Specifically, only ∼2% of individual particles were at an intermediate state-of-charge. From this small fraction of particles that were actively undergoing delithiation, we conclude that the time needed to charge a particle is ∼1/50 the time needed to charge the entire particle ensemble. Surprisingly, we observed a very weak correlation between the sequence of delithiation and the particle size, contrary to the common expectation that smaller particles delithiate before larger ones. Our quantitative results unambiguously confirm the mosaic (particle-by-particle) pathway of intercalation and suggest that the rate-limiting process of charging is initiating the phase transformation by, for example, a nucleation-like event. Therefore, strategies for further enhancing the performance of LFP electrodes should not focus on increasing the phase-boundary velocity but on the rate of phase-transformation initiation.
Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the "Activation" Plateau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Bareno, J.; Bettge, M.
A common feature of lithium-excess layered oxides, nominally of composition xLi(2)MnO(3)center dot(1-x)LiMO2 (M = transition metal) is a high-voltage plateau (similar to 4.5 V vs. Li/Li+) in their capacity-voltage profile during the first delithiation cycle. This plateau is believed to result from activation of the Li2MnO3 component, which makes additional lithium available for electrochemical cycling. However, oxides cycled beyond this activation plateau are known to display voltage fade which is a continuous reduction in their equilibrium potential. In this article we show that these oxides display gradual voltage fade even on electrochemical cycling in voltage ranges well below the activationmore » plateau. The average fade is similar to 0.08 mV-cycle(-1) for Li(1.2)Ni(0.1)5Mn(0.5)5Co(0.1)O(2) vs. Li cells after 20 cycles in the 2-4.1 V range at 55 degrees C; a similar to 54 mV voltage hysteresis, expressed as the difference in average cell voltage between charge and discharge cycles, is also observed. The voltage fade results from a gradual accumulation of local spinel environments in the crystal structure. Some of these spinel sites result from lithium deficiencies during oxide synthesis and are likely to be at the particle surfaces; other sites result from the migration of transition metal atoms in the partially-delithiated LiMO2 component into the lithium planes during electrochemical cycling. The observed rate of voltage fade depends on a combination of factors that includes the phase equilibrium between the layered and spinel components and the kinetics of transition metal migration. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less
Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.
Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang
2010-05-25
There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.
Mixed conduction and grain boundary effect in lithium niobate under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qinglin; Center for High Pressure Science and Technology Advanced Research, Changchun 130012; Liu, Cailong
2015-03-30
The charge transport behavior of lithium niobate has been investigated by in situ impedance measurement up to 40.6 GPa. The Li{sup +} ionic conduction plays a dominant role in the transport process. The relaxation process is described by the Maxwell-Wagner relaxation arising at the interfaces between grains and grain boundaries. The grain boundary microstructure rearranges after the phase transition, which improves the bulk dielectric performance. The theoretical calculations show that the decrease of bulk permittivity with increasing pressure in the Pnma phase is caused by the pressure-induced enhancement of electron localization around O atoms, which limits the polarization of Nb-O electricmore » dipoles.« less
Dwivedi, Prashant Povel; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik
2013-12-16
Random duty-cycle errors (RDE) in ferroelectric quasi-phase-matching (QPM) devices not only affect the frequency conversion efficiency, but also generate non-phase-matched parasitic noise that can be detrimental to some applications. We demonstrate an accurate but simple method for measuring the RDE in periodically poled lithium niobate. Due to the equivalence between the undepleted harmonic generation spectrum and the diffraction pattern from the QPM grating, we employed linear diffraction measurement which is much simpler than tunable harmonic generation experiments [J. S. Pelc, et al., Opt. Lett.36, 864-866 (2011)]. As a result, we could relate the RDE for the QPM device to the relative noise intensity between the diffraction orders.
Thermodynamically constrained correction to ab initio equations of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Martin; Mattsson, Thomas R.
2014-07-07
We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence ofmore » the exchange-correlation functional used.« less
Characterization of LiBC by phase-contrast scanning transmission electron microscopy.
Krumeich, Frank; Wörle, Michael; Reibisch, Philipp; Nesper, Reinhard
2014-08-01
LiBC was used as a model compound for probing the applicability of phase-contrast (PC) imaging in an aberration-corrected scanning transmission electron microscope (STEM) to visualize lithium distributions. In the LiBC structure, boron and carbon are arranged to hetero graphite layers between which lithium is incorporated. The crystal structure is reflected in the PC-STEM images recorded perpendicular to the layers. The experimental images and their defocus dependence match with multi-slice simulations calculated utilizing the reciprocity principle. The observation that a part of the Li positions is not occupied is likely an effect of the intense electron beam triggering Li displacement. Copyright © 2013 Elsevier Ltd. All rights reserved.
Noiseless optical amplification in quasi-phase-matched bulk lithium niobate
NASA Astrophysics Data System (ADS)
Lovering, D. J.; Levenson, J. A.; Vidakovic, P.; Webjörn, J.; Russell, P. St. J.
1996-09-01
An optical parametric amplifier (OPA) has been demonstrated in bulk, periodically poled lithium niobate and is shown to operate with a noise figure well below the classical limit. In contrast to conventional OPA's, this device uses quasi-phase matching to provide the coupling between the pump and the signal. Comparison of the measured performance with that of a theoretical model reveals that the main intrinsic contribution to the output noise is due to spatial and temporal mode mixing, which arises as a consequence of tight focusing of the incident beams. Factors that affect the performance of this amplifier are identified theoretically and their relative importance investigated for both amplification and squeezing.
High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation
NASA Astrophysics Data System (ADS)
Nakano, S.; Nakayama, A.; Kikegawa, T.
2008-07-01
Lithium borohydride (LiBH4) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P42/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH4.
Boatner, Lynn A.; Comer, Eleanor P.; Wright, Gomez W.; ...
2017-02-21
Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu 2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalentmore » Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above ~0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu 2+ at concentrations up to and in excess of 3 wt.%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. Furthermore, the resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.« less
NASA Astrophysics Data System (ADS)
Boatner, L. A.; Comer, E. P.; Wright, G. W.; Ramey, J. O.; Riedel, R. A.; Jellison, G. E.; Kolopus, J. A.
2017-05-01
Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalent Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above 0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu2+ at concentrations up to and in excess of 3 wt%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. The resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.
Silicon oxide based high capacity anode materials for lithium ion batteries
Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet
2017-03-21
Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
Winsche, Warren E.; Miles, Francis T.; Powell, James R.
1976-01-01
This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.
Solid composite electrolytes for lithium batteries
Kumar, Binod; Scanlon, Jr., Lawrence G.
2001-01-01
Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.
Mechanistic Analysis of Mechano-Electrochemical Interaction in Silicon Electrodes with Surface Film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Ankit; Mukherjee, Partha P.
2017-11-17
High-capacity anode materials for lithium-ion batteries, such as silicon, are prone to large volume change during lithiation/delithiation which may cause particle cracking and disintegration, thereby resulting in severe capacity fade and reduction in cycle life. In this work, a stochastic analysis is presented in order to understand the mechano-electrochemical interaction in silicon active particles along with a surface film during cycling. Amorphous silicon particles exhibiting single-phase lithiation incur lower amount of cracking as compared to crystalline silicon particles exhibiting two-phase lithiation for the same degree of volumetric expansion. Rupture of the brittle surface film is observed for both amorphous andmore » crystalline silicon particles and is attributed to the large volumetric expansion of the silicon active particle with lithiation. The mechanical property of the surface film plays an important role in determining the amount of degradation in the particle/film assembly. A strategy to ameliorate particle cracking in silicon active particles is proposed.« less
NASA Astrophysics Data System (ADS)
Cao, Wanjun; Li, Yangxing; Fitch, Brian; Shih, Jonathan; Doung, Tien; Zheng, Jim
2014-12-01
The Li-ion capacitor (LIC) is composed of a lithium-doped carbon anode and an activated carbon cathode, which is a half Li-ion battery (LIB) and a half electrochemical double-layer capacitor (EDLC). LICs can achieve much more energy density than EDLC without sacrificing the high power performance advantage of capacitors over batteries. LIC pouch cells were assembled using activated carbon (AC) cathode and hard carbon (HC) + stabilized lithium metal power (SLMP®) anode. Different cathode configurations, various SLMP loadings on HC anode, and two types of separators were investigated to achieve the optimal electrochemical performance of the LIC. Firstly, the cathode binders study suggests that the PTFE binder offers improved energy and power performances for LIC in comparison to PVDF. Secondly, the mass ratio of SLMP to HC is at 1:7 to obtain the optimized electrochemical performance for LIC among all the various studied mass ratios between lithium loading amounts and active anode material. Finally, compared to the separator Celgard PP 3501, cellulose based TF40-30 is proven to be a preferred separator for LIC.
Prototype Rechargeable Lithium Batteries. Phase 1
1987-06-01
pentoxide [ V2o5 ], titanium disulfide [TiS ], vanadium V) sulfide [V2S 5 ], and lithium cobalt oxide [Li Co02]) witi high conductivity, ester-Eased...2400 envelope while the cathodes were supported with porous glass disks to maintain good electrical contact with the expanded metal current collectors...cells consisted of an electrode stack mounted between two glass slides held together with stainless steel wire and sealed in a Fisher & Porter 3-ounce
NASA Astrophysics Data System (ADS)
Verma, Vivek; Pandey, Vibhav; Singh, Sukhveer; Aloysius, R. P.; Annapoorni, S.; Kotanala, R. K.
2009-08-01
Lithium ferrite has been considered as one of the highly strategic magnetic material. Nano-crystalline Li 0.5Fe 2.5O 4 was prepared by four different techniques and characterized by X-ray diffraction, vibrating sample magnetometer (VSM), transmission electron microscope (TEM) and Fourier transform infrareds (FTIR). The effect of annealing temperature (700, 900 and 1050 °C) on microstructure has been correlated to the magnetic properties. From X-ray diffraction patterns, it is confirmed that the pure phase of lithium ferrite began to form at 900 °C annealing. The particle size of as-prepared lithium ferrite was observed around 40, 31, 22 and 93 nm prepared by flash combustion, sol-gel, citrate precursor and standard ceramic technique, respectively. Lithium ferrite prepared by citrate precursor method shows a maximum saturation magnetization 67.6 emu/g at 5 KOe.
Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium-Sulfur Battery.
Bao, Weizhai; Xie, Xiuqiang; Xu, Jing; Guo, Xin; Song, Jianjun; Wu, Wenjian; Su, Dawei; Wang, Guoxiu
2017-09-12
Three-dimensional metal carbide MXene/reduced graphene oxide hybrid nanosheets are prepared and applied as a cathode host material for lithium-sulfur batteries. The composite cathodes are obtained through a facile and effective two-step liquid-phase impregnation method. Owing to the unique 3 D layer structure and functional 2 D surfaces of MXene and reduced graphene oxide nanosheets for effective trapping of sulfur and lithium polysulfides, the MXene/reduced graphene oxide/sulfur composite cathodes deliver a high initial capacity of 1144.2 mAh g -1 at 0.5 C and a high level of capacity retention of 878.4 mAh g -1 after 300 cycles. It is demonstrated that hybrid metal carbide MXene/reduced graphene oxide nanosheets could be a promising cathode host material for lithium-sulfur batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Production of intensive negative lithium beam with caesium sputter-type ion source
NASA Astrophysics Data System (ADS)
Lobanov, Nikolai R.
2018-01-01
Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.
Mechanically Resilient Polymeric Films Doped with a Lithium Compound
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)
2005-01-01
This invention is a series of mechanically resilient polymeric films, comprising rod-coil block polyimide copolymers, which are doped with a lithium compound providing lithium ion conductivity, that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consists of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.
NASA Astrophysics Data System (ADS)
Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut
2016-03-01
Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.
Monothioanthraquinone as an organic active material for greener lithium batteries
NASA Astrophysics Data System (ADS)
Iordache, Adriana; Maurel, Vincent; Mouesca, Jean-Marie; Pécaut, Jacques; Dubois, Lionel; Gutel, Thibaut
2014-12-01
In order to reduce the environmental impact of human activities especially transportation and portable electronics, a more sustainable way is required to produce and store electrical energy. Actually lithium battery is one of the most promising solutions for energy storage. Unfortunately this technology is based on the use of transition metal-based active materials for electrodes which are rare, expensive, extracted by mining, can be toxic and hard to recycle. Organic materials are an interesting alternative to replace inorganic counterparts due to their high electrochemical performances and the possibility to produce them from renewable resources. A quinone derivative is synthetized and investigated as novel active material for rechargeable lithium ion batteries which shows higher performances.
NASA Astrophysics Data System (ADS)
Barrado, D.; Bouy, H.; Bouvier, J.; Moraux, E.; Sarro, L. M.; Bertin, E.; Cuillandre, J.-C.; Stauffer, J. R.; Lillo-Box, J.; Pollock, A.
2016-12-01
Context. Stellar clusters open the window to understanding stellar evolution and, in particular, the change with time and the dependence on mass of different stellar properties. As such, stellar clusters act as laboratories where different theories can be tested. Aims: We try to understand the origin of the connection between lithium depletion in F, G, and K stars, rotation and activity in the Pleiades open cluster. Methods: We have collected all the relevant data in the literature, including information regarding rotation period, binarity, and activity, and cross-matched this data with proper motions, multiwavelength photometry, and membership probability from the DANCe database. To avoid biases, we only included single members of the Pleiades with probabilities larger than 75% in the discussion. Results: The analysis confirms that there is a strong link between activity, rotation, and the lithium equivalent width excess, especially for the range Lum(bol) = 0.5-0.2L⊙ (about K2-K7 spectral types or 0.75-0.95 M⊙). Conclusions: It is not possible to disentangle these effects, but we cannot exclude that the observed lithium overabundance is partially an observational effect from enhanced activity owing to a large coverage by stellar spots induced by high rotation rates. Since a bona fide lithium enhancement is present in young, fast rotators, both activity and rotation should play a role in the lithium problem. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A113
Du, Xiaoyong; He, Wen; Zhang, Xudong; Ma, Jinyun; Wang, Chonghai; Li, Chuanshan; Yue, Yuanzheng
2013-04-01
We demonstrate a biomimetic synthesis methodology that allows us to create Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a 'nanocrystal-glass' configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by the controlled in-situ biomineralization of materials on the cell wall. Electrochemically active nanocrystals are used as the lamellar building blocks of mesopores, and the semiconductive glass phase can act both as the 'glue' between nanocrystals and functionalized component. The Li2O-MgO-P2O5-TiO2 nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass-ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries. Copyright © 2012 Elsevier B.V. All rights reserved.
Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects
Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.; ...
2017-03-14
Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.
Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less
Application of spouted bed elutriation in the recycling of lithium ion batteries
NASA Astrophysics Data System (ADS)
Bertuol, Daniel A.; Toniasso, Camila; Jiménez, Bernardo M.; Meili, Lucas; Dotto, Guilherme L.; Tanabe, Eduardo H.; Aguiar, Mônica L.
2015-02-01
The growing environmental concern, associated with the continuous increase in electronic equipment production, has induced the development of new technologies to recycle the large number of spent batteries generated in recent years. The amount of spent lithium-ion batteries (LIBs) tends to grow over the next years. These batteries are composed by valuable metals, such as Li, Co, Cu and Al, which can be recovered. Thus, the present work is carried out in two main steps: In the first step, a characterization of the LIBs is performed. Batteries from different brands and models are dismantled and their components characterized regarding to the chemical composition and main phases. In the second step, a sample of LIBs is shredded and the different materials present are separated by spouted bed elutriation. The results show that spouted bed elutriation is a simple and inexpensive way to obtain the separation of the different materials (polymers, metals, active electrode materials) present in spent LIBs.
Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects.
Pascal, Tod A; Villaluenga, Irune; Wujcik, Kevin H; Devaux, Didier; Jiang, Xi; Wang, Dunyang Rita; Balsara, Nitash; Prendergast, David
2017-04-12
Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ∼30° below the expected freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.
Designing and Thermal Analysis of Safe Lithium Ion Cathode Materials for High Energy Applications
NASA Astrophysics Data System (ADS)
Hu, Enyuan
Safety is one of the most critical issues facing lithium-ion battery application in vehicles. Addressing this issue requires the integration of several aspects, especially the material chemistry and the battery thermal management. First, thermal stability investigation was carried out on an attractive high energy density material LiNi0.5Mn1.5O4. New findings on the thermal-stability and thermal-decomposition-pathways related to the oxygen-release are discovered for the high-voltage spinel Li xNi0.5Mn1.5O4 (LNMO) with ordered (o-) and disordered (d-) structures at fully delithiated (charged) state using a combination of in situ time-resolved x-ray diffraction (TR-XRD) coupled with mass spectroscopy (MS) and x-ray absorption spectroscopy (XAS). Both fully charged o--LixNi0.5Mn1.5O 4 and d-LixNi0.5Mn1.5O 4 start oxygen-releasing structural changes at temperatures below 300 °C, which is in sharp contrast to the good thermal stability of the 4V-spinel LixMn2O4 with no oxygen being released up to 375 °C. This is mainly caused by the presence of Ni4+ in LNMO, which undergoes dramatic reduction during the thermal decomposition. In addition, charged o-LNMO shows better thermal stability than the d-LNMO counterpart, due to the Ni/Mn ordering and smaller amount of the rock-salt impurity phase in o-LNMO. Newly identified two thermal-decomposition-pathways from the initial LixNi0.5Mn1.5O 4 spinel to the final NiMn2O4-type spinel structure with and without the intermediate phases (NiMnO3 and alpha-Mn 2O3) are found to play key roles in thermal stability and oxygen release of LNMO during thermal decomposition. In addressing the safety issue associated with LNMO, Fe is selected to partially substitute Ni and Mn simultaneously utilizing the electrochemical activity and structure-stabilizing high spin Fe3+. The synthesized LiNi1/3Mn4/3Fe1/3O4 showed superior thermal stability and satisfactory electrochemical performance. At charged state, it is able to withstand the temperature as high as 500°C without observable oxygen release. It shows comparable cyclability performance to the LNMO material with better rate capability. The undiminished high voltage capacity is due to the electrochemical activity of Fe in the system. Fe also plays the key role of stabilizing the system at Fe3O4 type spinel phase against further phase transformation to the rock salt phase, accounting for the superior thermal stability of LiNi1/3Mn 4/3Fe1/3O4. Thermal analysis of the lithium-ion battery indicates the key role of electric current in contributing to a thermal runaway. FLUENT simulation on a 10-cell battery shows that under fast discharging conditions, the temperature level can easily reach the threshold of malfunction and the battery temperature features a large distribution of 18°C. Simple air cooling is not effective enough in addressing the problem. Designed air cooling or liquid cooling is required for the normal operation of lithium-ion batteries in vehicles.
Solid-liquid phase equilibria in the ternary system (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K
NASA Astrophysics Data System (ADS)
Wang, Shi-qiang; Guo, Ya-fei; Yang, Jian-sen; Deng, Tian-long
2015-12-01
Experimental studies on the solubilities and physicochemical properties including density, refractive index and pH value in the ternary systems (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K were determined with the method of isothermal dissolution equilibrium. Based on the experimental results, the phase diagrams and their corresponding physicochemical properties versus composition diagram in the system were plotted. In the phase diagrams of the ternary system at 288.15 and 298.15 K, there are one eutectic point and two crystallization regions corresponding to lithium metaborate octahydrate (LiBO2 · 8H2O) and lithium carbonate (Li2CO3), respectively. This system at both temperatures belongs to hydrate type I, and neither double salt nor solid solution was found. A comparison of the phase diagrams for this ternary system at 288.15 and 298.15 K shows that the solid phase numbers and exist minerals are the same, and the area of crystallization region of Li2CO3 is increased obviously with the increasing temperature while that of LiBO2 · 8H2O is decreased. The physicochemical properties (density, pH value and refractive index) of the solutions of the ternary system at two temperatures changes regularly with the increasing lithium carbonate concentration. The calculated values of density and refractive index using empirical equations of the ternary system are in good agreement with the experimental values.
Zhou, Yong-Ning; Yue, Ji-Li; Hu, Enyuan; ...
2016-08-08
Using fast time-resolved in situ X-ray diffraction, charge-rate dependent phase transition processes of layer structured cathode material LiNi 1/3Mn 1/3Co 1/3O 2 for lithium-ion batteries are studied. During first charge, intermediate phases emerge at high rates of 10C, 30C, and 60C, but not at low rates of 0.1C and 1C. These intermediate phases can be continuously observed during relaxation after the charging current is switched off. After half-way charging at high rate, sample studied by scanning transmission electron microscopy shows Li-rich and Li-poor phases' coexistence with tetrahedral occupation of Li in Li-poor phase. Also, the high rate induced overpotential ismore » thought to be the driving force for the formation of this intermediate Li-poor phase. The in situ quick X-ray absorption results show that the oxidation of Ni accelerates with increasing charging rate and the Ni 4+ state can be reached at the end of charge with 30C rate. Finally, these results give new insights in the understanding of the layered cathodes during high-rate charging.« less
A review of laser electrode processing for development and manufacturing of lithium-ion batteries
NASA Astrophysics Data System (ADS)
Pfleging, Wilhelm
2018-02-01
Laser processes for cutting, annealing, structuring, and printing of battery materials have a great potential in order to minimize the fabrication costs and to increase the electrochemical performance and operational lifetime of lithium-ion cells. Hereby, a broad range of applications can be covered such as micro-batteries, mobile applications, electric vehicles, and stand-alone electric energy storage devices. Cost-efficient nanosecond (ns)-laser cutting of electrodes was one of the first laser technologies which were successfully transferred to industrial high-energy battery production. A defined thermal impact can be useful in electrode manufacturing which was demonstrated by laser annealing of thin-film electrodes for adjusting of battery active crystalline phases or by laser-based drying of composite thick-film electrodes for high-energy batteries. Ultrafast or ns-laser direct structuring or printing of electrode materials is a rather new technical approach in order to realize three-dimensional (3D) electrode architectures. Three-dimensional electrode configurations lead to a better electrochemical performance in comparison to conventional 2D one, due to an increased active surface area, reduced mechanical tensions during electrochemical cycling, and an overall reduced cell impedance. Furthermore, it was shown that for thick-film composite electrodes an increase of electrolyte wetting could be achieved by introducing 3D micro-/nano-structures. Laser structuring can turn electrodes into superwicking. This has a positive impact regarding an increased battery lifetime and a reliable battery production. Finally, laser processes can be up-scaled in order to transfer the 3D battery concept to high-energy and high-power lithium-ion cells.
NASA Astrophysics Data System (ADS)
Wang, Gaojun; Chen, Linfeng; Mathur, Gyanesh N.; Varadan, Vijay K.
2011-04-01
Improving soldier portable power systems is very important for saving soldiers' lives and having a strategic advantage in a war. This paper reports our work on synthesizing lithium vanadium oxides (Li1+xV3O8) and developing their applications as the cathode (positive) materials in lithium-ion batteries for soldier portable power systems. Two synthesizing methods, solid-state reaction method and sol-gel method, are used in synthesizing lithium vanadium oxides, and the chemical reaction conditions are determined mainly based on thermogravimetric and differential thermogravimetric (TG-DTG) analysis. The synthesized lithium vanadium oxides are used as the active positive materials in the cathodes of prototype lithium-ion batteries. By using the new solid-state reaction technique proposed in this paper, lithium vanadium oxides can be synthesized at a lower temperature and in a shorter time, and the synthesized lithium vanadium oxide powders exhibit good crystal structures and good electrochemical properties. In the sol-gel method, different lithium source materials are used, and it is found that lithium nitrate (LiNO3) is better than lithium carbonate (Li2CO3) and lithium hydroxide (LiOH). The lithium vanadium oxides synthesized in this work have high specific charge and discharge capacities, which are helpful for reducing the sizes and weights, or increasing the power capacities, of soldier portable power systems.
Development of an Ultra-Safe Rechargeable Lithium-Ion Battery.
1994-11-15
34 DEVELOPMENT OF AN ULTRA-SAFE RECHARGEABLE LITHIUM - ION BATTERY DTIC \\ JANI 0 1995 19941221 079 Contract # N00014-94-C-0141 ARPA Order...DEVELOPMENT OF AN ULTRA-SAFE RECHARGEABLE LITHIUM - ION BATTERY R&D STATUS REPORT 1931-1001/0 ARPA Order No.: 9332004arp01/13APR1994/313ES Program Code...Title of Work: Lithium - ion Battery Development Reporting Period: August 15, 1994 to November 15, 1994 Description of Progress: The project activities had
Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets
Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; ...
2016-04-09
Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys inmore » the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in the higher end and should be considered secondary to elements such as strontium and barium that had overall better results. The results of this study along with other considerations such as thermodynamics, and chemical reactivity will help down select a preferred lithium ternary alloy.« less
Polymer containing functional end groups is base for new polymers
NASA Technical Reports Server (NTRS)
Hirshfield, S. M.
1971-01-01
Butadiene is polymerized with lithium-p-lithiophenoxide to produce linear polymer containing oxy-lithium group at one end and active carbon-lithium group at other end. Living polymers represent new approach to preparation of difunctional polymers in which structural features, molecular weight, type and number of end groups are controlled.
Filler Wire Development for 2195 Aluminum-Lithium
NASA Technical Reports Server (NTRS)
Bjorkman, Gerry; Cho, Alex; Russell, Carolyn; Zimmerman, Frank
1998-01-01
The presentation outline summarizes activities supporting the development of filler wire for 215 aluminum-lithium. The specific objective of the research was to identify an Al-Cu based filler wire chemistry which reduces weld susceptibility in 2195 Aluminum-Lithium welds and repairs welds along with providing adequate mechanical properties. This report is in viewgraph form.
Lithium Assisted “Dissolution–Alloying” Synthesis of Nanoalloys from Individual Bulk Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkholtz, Heather M.; Gallagher, James R.; Li, Tao
2016-04-12
We report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (similar to 200 degrees C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, which results in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron X-ray adsorption techniques. Then, upon the conversion of metal lithium tomore » LiOH in humid air, the Pd and Pt atoms undergo an alloying process to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted "dissolution-alloying" method bypasses many complications intrinsic to conventional ion reduction-based nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less
Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F
2012-04-07
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.
Lithium assisted “dissolution–alloying” synthesis of nanoalloys from individual bulk metals
Barkholtz, Heather M.; Gallagher, James R.; Li, Tao; ...
2016-03-27
Here, we report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (~200°C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, resulting in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron Xray adsorption techniques. Then, upon the conversion of metal lithium to LiOH in humid air,more » the Pd and Pt atoms undergo an alloying process, to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted “dissolutionalloying” method bypasses many complications intrinsic to conventional ion reductionbased nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less
Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method
NASA Astrophysics Data System (ADS)
Naderi, P.; Masoudpanah, S. M.; Alamolhoda, S.
2017-11-01
In this research, lithium ferrite (Li0.5Fe2.5O4) powders were prepared by solution combustion synthesis using glycine and citric acid fuels at various fuel to oxidant molar ratios ( ϕ = 0.5, 1 and 1.5). Phase evolution, microstructure and magnetic properties were characterized by thermal analysis, infrared spectroscopy, X-ray diffraction, electron microscopy and vibration sample magnetometry techniques. Single-phase lithium ferrite was formed using glycine fuel at all fuel to oxidant ratios, while some impurity α-Fe2O3 phase was appeared using citric acid fuel at ϕ ≥ 1. The phase and crystallite size mainly depended on the combustion rate through fuel type. Bulky microstructure observed for citric acid fuel was attributed to its slow combustion, while the fast exhausting of gaseous products led to spongy microstructure for glycine fuel. The highest saturation magnetization of 59.3 emu/g and coercivity of 157 Oe were achieved for the as-combusted powders using glycine fuel.
NASA Astrophysics Data System (ADS)
Qing, Rui; Liu, Li; Bohling, Christian; Sigmund, Wolfgang
2015-01-01
TiO2 is one of the most exciting anode candidates for safe application in lithium ion batteries. However, its low intrinsic electronic conductivity limits application. In this paper, a simple sol-gel based route is presented to produce nanosize TiO2 fibers with 119 ± 27 nm diameters via electrospinning. Subsequent calcination in various atmospheres was applied to achieve anatase and anatase-rutile mixed phase crystallites with and without carbon coating. The crystallite size was 5 nm for argon calcined fibers and 13-20 nm for air calcined fibers. Argon calcined TiO2 nanofibers exhibited electronic conductivity orders of magnitude higher than those of air-calcined samples. Lithium diffusivity was increased by one time and specific capacity by 26.9% due to the enhanced conductivity. It also had a different intercalation mechanism of lithium. Hydrogen post heat-treatment was found to benefit electronic conductivity (by 3-4.5 times), lithium diffusivity (1.5-2 times) and consequently the high rate performance of the TiO2 nanofibers (over 80%). The inner mechanism and structure-property relations among these parameters were also discussed.
Liu, Pan; Han, Jiuhui; Guo, Xianwei; Ito, Yoshikazu; Yang, Chuchu; Ning, Shoucong; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei
2018-02-16
Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of Li 2 O 2 at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.
Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane
NASA Astrophysics Data System (ADS)
He, Ruixuan; Echeverri, Mauricio; Kyu, Thein
2014-03-01
With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.
Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer's disease.
Nunes, Marielza Andrade; Viel, Tania Araujo; Buck, Hudson Sousa
2013-01-01
A lower incidence of dementia in bipolar patients treated with lithium has been described. This metal inhibits the phosphorylation of glycogen-synthase-kinase 3-α and β, which are related to amyloid precursor protein processing and tau hyperphosphorylation in pathological conditions, respectively. Following the same rationale, a group just found that lithium has disease-modifying properties in amnestic mild cognitive impairment with potential clinical implications for the prevention of Alzheimer's Disease (AD) when a dose ranging from 150 to 600 mg is used. As lithium is highly toxic in regular doses, our group evaluated the effect of a microdose of 300 μg, administered once daily on AD patients for 15 months. In the evaluation phase, the treated group showed no decreased performance in the mini-mental state examination test, in opposition to the lower scores observed for the control group during the treatment, with significant differences starting three months after the beginning of the treatment, and increasing progressively. This data suggests the efficacy of a microdose lithium treatment in preventing cognitive loss, reinforcing its therapeutic potential to treat AD using very low doses.
Banerji, T K; Maitra, S K; Basu, A; Hawkins, H K
1999-02-01
In this report, we have examined the effects of lithium on testicular morphology in a male subtropical wild avian species, the roseringed parakeet (Psittacula krameri). Adult male birds were collected during the months of February-March, a time when the testicular gametogenic activity in these seasonally breeding birds is at its peak. They were injected, intramuscularly, twice daily (07:00 and 19:00 h) with lithium chloride (Sigma Chemical Company) at a dosage of 0.5 mEq/Kg body weight either for 5 or 10 days. A significant decrease in both the absolute and relative testicular weights was evident in the lithium-treated birds as compared to those of the saline-injected control animals. Light microscopic studies of the testis in the lithium-treated animals showed a wide range of degenerative changes. These included a) a significant reduction in the diameter of seminiferous tubules; b) necrosis and exfoliation of most of the germ cells in the seminiferous tubular lumen with the exception of the spermatogonia; and c) a significant reduction in the number of mature spermatozoa in the tubular lumen. These degenerative changes were dependent on the duration of lithium treatment and were evident when the plasma lithium concentrations were well below the human therapeutic range. Leydig cell morphology was not affected by lithium however. Our results provide the first experimental evidence of lithium's adverse reproductive function in an avian species. These data provide further support to the view that lithium adversely affects the male reproductive system and that these effects extend beyond mammalian species.
NASA Astrophysics Data System (ADS)
Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.
2017-07-01
Lithium plating is considered one of the most detrimental phenomenon in lithium ion batteries (LIBs), as it increases cell degradation and might lead to safety issues. Plating induced LIB failure presents a major concern for emerging applications in transportation and electrical energy storage. Hence, the necessity to operando monitor, detect and analyze lithium plating becomes critical for safe and reliable usage of LIB systems. Here, we report in situ lithium plating analyses for a commercial graphite||LiFePO4 cell cycled under dynamic stress test (DST) driving schedule. We designed a framework based on incremental capacity (IC) analysis and mechanistic model simulations to quantify degradation modes, relate their effects to lithium plating occurrence and assess cell degradation. The results show that lithium plating was induced by large loss of active material on the negative electrode that eventually led the electrode to over-lithiate. Moreover, when lithium plating emerged, we quantified that the loss of lithium inventory pace was increased by a factor of four. This study illustrates the benefits of the proposed framework to improve lithium plating analysis. It also discloses the symptoms of lithium plating formation, which prove valuable for novel, online strategies on early lithium plating detection.
NASA Astrophysics Data System (ADS)
Lin, Xianke; Lu, Wei
2017-07-01
This paper proposes a model that enables consideration of the realistic anisotropic environment surrounding an active material particle by incorporating both diffusion and migration of lithium ions and electrons in the particle. This model makes it possible to quantitatively evaluate effects such as fracture on capacity degradation. In contrast, the conventional model assumes isotropic environment and only considers diffusion in the active particle, which cannot capture the effect of fracture since it would predict results contradictory to experimental observations. With the developed model we have investigated the effects of active material electronic conductivity, particle size, and State of Charge (SOC) swing window when fracture exists. The study shows that the low electronic conductivity of active material has a significant impact on the lithium ion pattern. Fracture increases the resistance for electron transport and therefore reduces lithium intercalation/deintercalation. Particle size plays an important role in lithium ion transport. Smaller particle size is preferable for mitigating capacity loss when fracture happens. The study also shows that operating at high SOC reduces the impact of fracture.
NASA Technical Reports Server (NTRS)
Miller, Thomas
2007-01-01
The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.
Thermally coupled moving boundary model for charge-discharge of LiFePO4/C cells
NASA Astrophysics Data System (ADS)
Khandelwal, Ashish; Hariharan, Krishnan S.; Gambhire, Priya; Kolake, Subramanya Mayya; Yeo, Taejung; Doo, Seokgwang
2015-04-01
Optimal thermal management is a key requirement in commercial utilization of lithium ion battery comprising of phase change electrodes. In order to facilitate design of battery packs, thermal management systems and fast charging profiles, a thermally coupled electrochemical model that takes into account the phase change phenomenon is required. In the present work, an electrochemical thermal model is proposed which includes the biphasic nature of phase change electrodes, such as lithium iron phosphate (LFP), via a generalized moving boundary model. The contribution of phase change to the heat released during the cell operation is modeled using an equivalent enthalpy approach. The heat released due to phase transformation is analyzed in comparison with other sources of heat such as reversible, irreversible and ohmic. Detailed study of the thermal behavior of the individual cell components with changing ambient temperature, rate of operation and heat transfer coefficient is carried out. Analysis of heat generation in the various regimes is used to develop cell design and operating guidelines. Further, different charging protocols are analyzed and a model based methodology is suggested to design an efficient quick charging protocol.
Lithium concentration dependent structure and mechanics of amorphous silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitinamaluwa, H. S.; Wang, M. C.; Will, G.
2016-06-28
A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of Li{sub x}Si alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus ofmore » elasticity and fracture strength but increase in ductility in tension. For a Li{sub x}Si system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.« less
Study of the phase transition in lithium potassium rubidium sulfate system
NASA Astrophysics Data System (ADS)
Hamed, A. E.; Abd. El-Aziz, Y. M.; Madi, N. K.; Kassem, M. E.
1998-10-01
Specific heat, Cp, measurements have been performed in lithium potassium rubidium sulfate, (Li 0.5- x/2 K 0.5- x/2 Rb x) 2SO 4, system in a wide range of Rb 2SO 4 content ( x) ( x=0 up to x=10%). Measurements were made between 300 and 800 K with special attention paid to the phase transition at 708 K. It is shown that for small contents, ( x), ( x=0.2 up to x=2%) quantitative changes in the temperature dependence of specific heat Cp( T) around the transition point, T1, are observed. A larger content, x, results in essential changes in the critical behavior of Cp( T) and a considerable change in the phase transition accompanied by a progressive decrease in the thermodynamic parameters. The ratios of the Landau expansion coefficients change as the content of Rb 2SO 4 increases.
Anodes for rechargeable lithium batteries
Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.
2003-01-01
A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.
Miyamoto, R; Sugiura, R; Kamitani, S; Yada, T; Lu, Y; Sio, S O; Asakura, M; Matsuhisa, A; Shuntoh, H; Kuno, T
2000-07-01
Lithium is the drug of choice for the treatment of bipolar affective disorder. The identification of an in vivo target of lithium in fission yeast as a model organism may help in the understanding of lithium therapy. For this purpose, we have isolated genes whose overexpression improved cell growth under high LiCl concentrations. Overexpression of tol1(+), one of the isolated genes, increased the tolerance of wild-type yeast cells for LiCl but not for NaCl. tol1(+) encodes a member of the lithium-sensitive phosphomonoesterase protein family, and it exerts dual enzymatic activities, 3'(2'),5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase. tol1(+) gene-disrupted cells required high concentrations of sulfite in the medium for growth. Consistently, sulfite repressed the sulfate assimilation pathway in fission yeast. However, tol1(+) gene-disrupted cells could not fully recover from their growth defect and abnormal morphology even when the medium was supplemented with sulfite, suggesting the possible implication of inositol polyphosphate 1-phosphatase activity for cell growth and morphology. Given the remarkable functional conservation of the lithium-sensitive dual-specificity phosphomonoesterase between fission yeast and higher-eukaryotic cells during evolution, it may represent a likely in vivo target of lithium action across many species.
NASA Astrophysics Data System (ADS)
De Micheli, Marc P.
2000-07-01
To realize an IOPO, one need a good nonlinear substrate in which it is possible to realize low-loss waveguides and fulfill the phase-matching conditions. In this paper, I will present the problems researchers have faced, the techniques they have used and the results they have obtained by using either proton exchange or titanium indiffusion to create waveguides in periodically poled lithium niobate.
Lithium and suicide in mood disorders: Updated meta-review of the scientific literature.
Smith, Katharine A; Cipriani, Andrea
2017-11-01
Suicide and suicidal behaviour are increased in mood disorders, particularly bipolar disorders. Observational studies and small randomized controlled trials (RCTs) support the idea that taking lithium is associated with a reduction in these rates. This paper aims to review the best evidence for the effect of lithium on rates of suicide and self harm. We searched PubMed, PsycINFO, and the Cochrane Library systematically for systematic reviews and meta-analyses of RCTs of lithium and suicide and self harm published between January 1980 and June 2017. In the case of multiple publications on the same topic, only the most recent or most comprehensive review was considered. A large number of reviews were identified, but only 16 publications were systematic reviews. Of these, three systematic reviews of lithium and suicide rates and one of lithium and self harm confined only to RCTs were identified. Despite some methodological concerns and heterogeneity in terms of participants, diagnoses, comparators, durations, and phase of illness, the evidence to date is overwhelmingly in favour of lithium as an antisuicidal agent, even balanced against any potential disadvantages of its use in regular clinical practice. The anti-suicidal effects of lithium have been consistently reported over the past 40 years. The most robust evidence comes from RCTs, but these results are also discussed in the context of the difficulties in conducting high quality studies in this area, and the supporting evidence that observational and non-randomized studies can also provide. Given this evidence, however, the use of lithium is still underrepresented in clinical practice and should be incorporated more assertively into current guidelines. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo
2016-09-21
Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.
Adjunctive treatment of manic agitation with lorazepam versus haloperidol: a double-blind study.
Lenox, R H; Newhouse, P A; Creelman, W L; Whitaker, T M
1992-02-01
While lithium is effective in treating the majority of bipolar patients during a manic episode, the addition of neuroleptic during the early phase of treatment has been common clinical practice in inpatient settings. In an earlier open study, we demonstrated the utility of the short-acting benzodiazepine lorazepam as an adjunct to lithium for the clinical management of manic agitation. We now present data from a randomized, double-blind clinical study of lorazepam versus haloperidol in 20 hospitalized patients with a DSM-III-R diagnosis of bipolar disorder who were being treated concomitantly with lithium. Patients were rated using the Mania Rating Scale, Brief Psychiatric Rating Scale, Physician Global Impression Scale, and side effects scales. Data were analyzed using standard group comparisons and survival analysis. There was no evidence for a significant difference between the two treatment groups in the magnitude of or time to response (5.0 +/- .82 days for haloperidol; 6.5 +/- .93 days for lorazepam). Of the patients who were terminated from the protocol early, nonresponse was the primary reason in the lorazepam group while side effects were the reason in the haloperidol group. Lorazepam may offer an efficacious and safe alternative to haloperidol as an adjunctive treatment to lithium in the clinical management of the early phase of manic agitation in a subgroup of bipolar patients.
Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides
Rinaldo, Steven G.; Gallagher, Kevin G.; Long, Brandon R.; ...
2015-03-04
Lithium- and manganese-rich (LMR) transition metal oxide cathodes are of interest for lithium-ion battery applications due to their increased energy density and decreased cost. However, the advantages in energy density and cost are offset, in part, due to the phenomena of voltage fade. Specifically, the voltage profiles (voltage as a function of capacity) of LMR cathodes transform from a high energy configuration to a lower energy configuration as they are repeatedly charged (Li removed) and discharged (Li inserted). Here, we propose a physical model of voltage fade that accounts for the emergence of a low voltage Li phase due tomore » the introduction of transition metal ion defects within a parent Li phase. The phenomenological model was re-cast in a general form and experimental LMR charge profiles were de-convoluted to extract the evolutionary behavior of various components of LMR capacitance profiles. Evolution of the voltage fade component was found to follow a universal growth curve with a maximal voltage fade capacity of ≈ 20% of the initial total capacity.« less
Investigating the Mechanism of Reversible Lithium Insertion into Anti-NASICON Fe 2(WO 4) 3
Barim, Gozde; Cottingham, Patrick; Zhou, Shiliang; ...
2017-03-07
The gram-scale preparation of Fe 2(WO 4) 3 by a new solution-based route and detailed characterization of the material are presented. The resulting Fe 2(WO 4) 3 undergoes a reversible electrochemical reaction against lithium centered around 3.0 V with capacities near 93% of the theoretical maximum. Evolution of the Fe 2(WO 4) 3 structure upon lithium insertion and deinsertion is probed using a battery of characterization techniques, including in situ X-ray diffraction, neutron total scattering, and X-ray absorption spectroscopy (XAS). A structural transformation from monoclinic to orthorhombic phases is confirmed during lithium intercalation. XAS and neutron total scattering measurements verifymore » that Fe 2(WO 4) 3 consists of trivalent iron and hexavalent tungsten ions. As lithium ions are inserted into the framework, iron ions are reduced to the divalent state, while the tungsten ions are electrochemically inactive and remain in the hexavalent state. Lastly, lithium insertion occurs via a concerted rotation of the rigid polyhedra in the host lattice driven by electrostatic interactions with the Li + ions; the magnitude of these polyhedral rotations was found to be slightly larger for Fe 2(WO 4) 3 than for the Fe 2(MoO 4) 3 analog.« less
Investigating the Mechanism of Reversible Lithium Insertion into Anti-NASICON Fe 2(WO 4) 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barim, Gozde; Cottingham, Patrick; Zhou, Shiliang
The gram-scale preparation of Fe 2(WO 4) 3 by a new solution-based route and detailed characterization of the material are presented. The resulting Fe 2(WO 4) 3 undergoes a reversible electrochemical reaction against lithium centered around 3.0 V with capacities near 93% of the theoretical maximum. Evolution of the Fe 2(WO 4) 3 structure upon lithium insertion and deinsertion is probed using a battery of characterization techniques, including in situ X-ray diffraction, neutron total scattering, and X-ray absorption spectroscopy (XAS). A structural transformation from monoclinic to orthorhombic phases is confirmed during lithium intercalation. XAS and neutron total scattering measurements verifymore » that Fe 2(WO 4) 3 consists of trivalent iron and hexavalent tungsten ions. As lithium ions are inserted into the framework, iron ions are reduced to the divalent state, while the tungsten ions are electrochemically inactive and remain in the hexavalent state. Lastly, lithium insertion occurs via a concerted rotation of the rigid polyhedra in the host lattice driven by electrostatic interactions with the Li + ions; the magnitude of these polyhedral rotations was found to be slightly larger for Fe 2(WO 4) 3 than for the Fe 2(MoO 4) 3 analog.« less
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin; Bache, Morten
2014-03-01
Formation and interaction of few-cycle solitons in a lithium niobate ridge waveguide are numerically investigated. The solitons are created through a cascaded phase-mismatched second-harmonic generation process, which induces a dominant self-defocusing Kerr-like nonlinearity on the pump pulse. The inherent material self-focusing Kerr nonlinearity is overcome over a wide wavelength range, and self-defocusing solitons are supported from 1100 to 1900 nm, covering the whole communication band. Single cycle self-compressed solitons and supercontinuum generation spanning 1.3 octaves are observed when pumped with femtosecond nanojoule pulses at 1550 nm. The waveguide is not periodically poled, as quasi-phase-matching would lead to detrimental nonlinear effects impeding few-cycle soliton formation.
Detection and distribution of lithium in Mg-Li-Al based alloy by ToF-SIMS
NASA Astrophysics Data System (ADS)
Kumar, Vinod
2016-12-01
Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) is used to investigate the surface as well as bulk microstructural features of novel Mg-Li-Al based alloy namely Mg-9Li-7Al-3Sn-1Zn (LATZ9531). ToF-SIMS study indicates that there are six multi-oxide layers present within the surface film of LATZ9531. Furthermore, The presence of Li containing phase has been qualitatively confirmed based on the high number of Li-ion counts in SIMS, and the same is verified quantitatively by using electron probe microanalysis (EPMA). The novel approach may be useful to determine the chemical composition of the phases in various alloys which has lighter alloying elements such as lithium.
Gelfo, Francesca; Cutuli, Debora; Nobili, Annalisa; De Bartolo, Paola; D'Amelio, Marcello; Petrosini, Laura; Caltagirone, Carlo
2017-01-01
Alzheimer's disease (AD) is an age-related neurodegenerative disorder with multifactorial etiopathogenesis, characterized by progressive loss of memory and other cognitive functions. A fundamental neuropathological feature of AD is the early and severe brain cholinergic neurodegeneration. Lithium is a monovalent cation classically utilized in the treatment of mood disorders, but recent evidence also advances a beneficial potentiality of this compound in neurodegeneration. Interestingly, lithium acts on several processes whose alterations characterize the brain cholinergic impairment at short and long term. On this basis, the aim of the present research was to evaluate the potential beneficial effects of a chronic lithium treatment in preventing the damage that a basal forebrain cholinergic neurodegeneration provokes, by investigating memory functions and neurodegeneration correlates. Adult male rats were lesioned by bilateral injections of the immunotoxin 192 IgG-Saporin into the basal forebrain. Starting 7 days before the surgery, the animals were exposed to a 30-day lithium treatment, consisting of a 0.24% Li2CO3 diet. Memory functions were investigated by the open field test with objects, the sociability and preference for social novelty test, and the Morris water maze. Hippocampal and neocortical choline acetyltransferase (ChAT) levels and caspase-3 activity were determined. Cholinergic depletion significantly impaired spatial and social recognition memory, decreased hippocampal and neocortical ChAT levels and increased caspase-3 activity. The chronic lithium treatment significantly rescued memory performances but did not modulate ChAT availability and caspase-3 activity. The present findings support the lithium protective effects against the cognitive impairment that characterizes the brain cholinergic depletion.
Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii.
Wilson, Nedra F; Lefebvre, Paul A
2004-10-01
Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H. Takino, and M. K. Kojima, Cell Struct. Funct. 12:369-374, 1987). Here, we demonstrate that lithium treatment depletes the pool of flagellar proteins from the cell body and that the heterotrimeric kinesin Fla10p accumulates in flagella. We identify GSK3 in Chlamydomonas and demonstrate that its kinase activity is inhibited by lithium in vitro. The tyrosine-phosphorylated, active form of GSK3 was enriched in flagella and GSK3 associated with the axoneme in a phosphorylation-dependent manner. The level of active GSK3 correlated with flagellar length; early during flagellar regeneration, active GSK3 increased over basal levels. This increase in active GSK3 was rapidly lost within 30 min of regeneration as the level of active GSK3 decreased relative to the predeflagellation level. Taken together, these results suggest a possible role for GSK3 in regulating the assembly and length of flagella.
Intercalation Dynamics in Lithium-Ion Batteries
2009-09-01
When applied to strongly phase-separating, highly anisotropic materials such as LiFePO4 , this model predicts phase-transformation waves between the...new findings relevant to batteries: Defect Interactions: When applied to strongly phase-separating, highly anisotropic mate- rials such as LiFePO4 ...93 6.3.5 Relevance to LiFePO4 . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.6 Wave propagation
NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering |
lithium-ion (Li-ion) batteries, known as a multi-scale multi-domain (GH-MSMD) model framework, was News | NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering March 16, 2016 NREL researcher looks across
Ion beam promoted lithium absorption in glassy polymeric carbon
NASA Astrophysics Data System (ADS)
Zimmerman, R. L.; Ila, D.; Jenkins, G. M.; Maleki, H.; Poker, D. B.
1995-12-01
Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature [G.M. Jenkins and K. Kawamura, Polymeric Carbons - Carbon Fiber, Glass and Char (Cambridge University Press, Cambridge, 1976) p. 140]. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C [D. Ila, G.M. Jenkins, L.R. Holland, A.L. Evelyn and H. Jena, Vacuum 45 (1994) 451]. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li 7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.
Chuang, De-Maw; Wang, Zhifei; Chiu, Chi-Tso
2011-01-01
The mood stabilizer lithium inhibits glycogen synthase kinase-3 (GSK-3) directly or indirectly by enhancing serine phosphorylation of both α and β isoforms. Lithium robustly protected primary brain neurons from glutamate-induced excitotoxicity; these actions were mimicked by other GSK-3 inhibitors or silencing/inhibiting GSK-3α and/or β isoforms. Lithium rapidly activated Akt to enhance GSK-3 serine phosphorylation and to block glutamate-induced Akt inactivation. Lithium also up-regulated Bcl-2 and suppressed glutamate-induced p53 and Bax. Induction of brain-derived neurotrophic factor (BDNF) was required for lithium’s neuroprotection to occur. BDNF promoter IV was activated by GSK-3 inhibition using lithium or other drugs, or through gene silencing/inactivation of either isoform. Further, lithium’s neuroprotective effects were associated with inhibition of NMDA receptor-mediated calcium influx and down-stream signaling. In rodent ischemic models, post-insult treatment with lithium decreased infarct volume, ameliorated neurological deficits, and improved functional recovery. Up-regulation of heat-shock protein 70 and Bcl-2 as well as down-regulation of p53 likely contributed to lithium’s protective effects. Delayed treatment with lithium improved functional MRI responses, which was accompanied by enhanced angiogenesis. Two GSK-3-regulated pro-angiogenic factors, matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor were induced by lithium. Finally, lithium promoted migration of mesenchymal stem cells (MSCs) by up-regulation of MMP-9 through GSK-3β inhibition. Notably, transplantation of lithium-primed MSCs into ischemic rats enhanced MSC migration to the injured brain regions and improved the neurological performance. Several other GSK-3 inhibitors have also been reported to be beneficial in rodent ischemic models. Together, GSK-3 inhibition is a rational strategy to combat ischemic stroke and other excitotoxicity-related brain disorders. PMID:21886605
Lithium ion beam divergence on SABRE extraction ion diode experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, D.L.; Cuneo, M.E.; Johnson, D.J.
Intense lithium beams are of particular interest for light ion inertial confinement fusion applications because lithium ions can be accelerated at high voltage in a single charge state (Li{sup +}) with a high mass-to-charge ratio and appropriate range for efficient focusing and heating of a hohlraum ICF target. Scaling to ion power densities adequate to drive high gain pellet implosions (600 TW at 30 MeV) will require a large number of beams transported, temporally bunched, and focused onto a target, with the necessary target standoff to ensure survival of the driver modules. For efficient long distance transport and focusing tomore » a small pellet, lithium beam divergence must be reduced to about 12 mrad or less (depending on the transport scheme). To support the eventual development of a light ion driver module for ICF applications, the authors are currently working to improve the composition, uniformity, and divergence of lithium ion beams produced by both passive LiF and active laser-generated lithium ion sources on extraction applied-B ion diodes on the SABRE accelerator (1 TW, 5 MV, 250 kA). While lithium beam divergence accounting and control are an essential goal of these experiments, divergence measurements for lithium beams present some unique problems not encountered to the same degree in divergence measurements on proton sources. To avoid these difficulties, the authors have developed a large aperture ion imaging diagnostic for time-resolved lithium divergence measurements. The authors will report on the operation of this lithium beam divergence diagnostic and on results of time-resolved divergence measurements in progress for passive LiF ion sources and laser-produced active lithium sources operated in diode configurations designed to control divergence growth. Comparisons will also be made with time-integrated divergence results obtained with small entrance aperture ultracompact pinhole cameras.« less
Highly efficient lithium composite anode with hydrophobic molten salt in seawater
NASA Astrophysics Data System (ADS)
Zhang, Yancheng; Urquidi-Macdonald, Mirna
A lithium composite anode (lithium/1-butyl-3-methyl-imidazoleum hexafluorophosphate (BMI +PF 6-)/4-VLZ) for primary lithium/seawater semi-fuel-cells is proposed to reduce lithium-water parasitic reaction and, hence, increase the lithium anodic efficiency up to 100%. The lithium composite anode was activated when in contact with artificial seawater (3% NaCl solution) and the output was a stable anodic current density at 0.2 mA/cm 2, which lasted about 10 h under potentiostatic polarization at +0.5 V versus open circuit potential (OCP); the anodic efficiency was indirectly measured to be 100%. With time, a small traces of water diffused through the hydrophobic molten salt, BMI +PF 6-, reached the lithium interface and formed a double layer film (LiH/LiOH). Accordingly, the current density decreased and the anodic efficiency was estimated to be 90%. The hypothesis of small traces of water penetrating the molten salt and reaching the lithium anode—after several hours of operation—is supported by the collected experimental current density and hydrogen evolution, electrochemical impedance spectrum analysis, and non-mechanistic interface film modeling of lithium/BMI +PF 6-.
The Effects of Magnetic Activity on Lithium-Inferred Ages of Stars
NASA Astrophysics Data System (ADS)
Juarez, Aaron J.; Cargile, Phillip A.; James, David J.; Stassun, Keivan G.
2014-08-01
In this project, we investigate the effects of magnetic activity on the Lithium Depletion Boundary (LDB) to recalibrate the measured ages for star clusters, using the open cluster Blanco 1 as a pilot study. We apply the LDB technique on low-mass Pre-Main-Sequence (PMS) stars to derive an accurate age for Blanco 1, and we consider the effect of magnetic activity on this inferred age. Although observations have shown that magnetic activity directly affects stellar radius and temperature, most PMS models do not include the effects of magnetic activity on stellar properties. Since the lithium abundance of a star depends on its radius and temperature, we expect that LDB ages are affected by magnetic activity. After empirically accounting for the effects of magnetic activity, we find the age of Blanco 1 to be ~100 Myr, which is ~30 Myr younger than the standard LDB age of ~130 Myr.
Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.
Kasnatscheew, Johannes; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora
2018-04-18
Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode(s) as active and electrolyte as inactive materials. State-of-the-art (SOTA) cathode and anode materials are reviewed, emphasizing viable approaches towards advancement of the overall performance and reliability of lithium ion batteries; however, existing challenges are not neglected. Liquid aprotic electrolytes for lithium ion batteries comprise a lithium ion conducting salt, a mixture of solvents and various additives. Due to its complexity and its role in a given cell chemistry, electrolyte, besides the cathode materials, is identified as most susceptible, as well as the most promising, component for further improvement of lithium ion batteries. The working principle of the most important commercial electrolyte additives is also discussed. With regard to new applications and new cell chemistries, e.g., operation at high temperature and high voltage, further improvements of both active and inactive materials are inevitable. In this regard, theoretical support by means of modeling, calculation and simulation approaches can be very helpful to ex ante pre-select and identify the aforementioned components suitable for a given cell chemistry as well as to understand degradation phenomena at the electrolyte/electrode interface. This overview highlights the advantages and limitations of SOTA lithium battery systems, aiming to encourage researchers to carry forward and strengthen the research towards advanced lithium ion batteries, tailored for specific applications.
Zhao, Lei; Gong, Neng; Liu, Meng; Pan, Xiaoli; Sang, Shaoming; Sun, Xiaojing; Yu, Zhe; Fang, Qi; Zhao, Na; Fei, Guoqiang; Jin, Lirong; Zhong, Chunjiu; Xu, Tianle
2014-12-01
Alzheimer's disease (AD) is a complicated, neurodegenerative disorder involving multifactorial pathogeneses and still lacks effective clinical treatment. Recent studies show that lithium exerts disease-modifying effects against AD. However, the intolerant side effects at conventional effective dosage limit the clinical use of lithium in treating AD. To explore a novel AD treatment strategy with microdose lithium, we designed and synthesized a new chemical, tri-lithium pyrroloquinoline quinone (Li3PQQ), to study the synergistic effects of low-dose lithium and pyrroloquinoline quinone, a native compound with powerful antioxidation and mitochondrial amelioration. The results showed that Li3PQQ at a relative low dose (6 and 12 mg/kg) exhibited more powerful effects in restoring the impairment of learning and memory, facilitating hippocampal long-term potentiation, and reducing cerebral amyloid deposition and phosphorylated tau level in APP/PS1 transgenic mice than that of lithium chloride at both low and high dose (5 and 100 mg/kg). We further found that Li3PQQ inhibited the activity of glycogen synthase kinase-3 and increased the activity of β-amyloid-binding alcohol dehydrogenase, which might underlie the beneficial effects of Li3PQQ on APP/PS1 transgenic mice. Our study demonstrated the efficacy of a novel AD therapeutic strategy targeting at multiple disease-causing mechanisms through the synergistic effects of microdose lithium and pyrroloquinoline quinone. Copyright © 2014 Elsevier Inc. All rights reserved.
Sun, H; Tabata, M
1999-07-01
A water-soluble porphyrin (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H(2)(obtpps)(4-), H(2)P(4-)) synthesized in our laboratory was applied to a solvent extraction method and a liquid membrane transport of lithium as low as 10(-5) M (M=mol dm(-3)) in the presence of sodium chloride higher than 0.1 M. The lithium porphyrin with five negative charges was extracted successfully into chloroform with tetrabutylammonium ion (But(4)N(+)) at pH 12.7. The extraction constant for the reaction of [LiP(5-)](a)+5[But(4)N](+)(a)right harpoon over left harpoon[(But(4)N)(5)LiP](o) was found to be (1.9+/-0.3)x10(18) M(-5), where the subscripts a and o denote chemical species in aqueous and organic phases, respectively. Lithium was transported to an aqueous phase at pH 7 through a chloroform liquid membrane containing [(But(4)N)(5)HP]. The extraction and transport mechanism was discussed on the basis of extraction constants, chemical species and transportation rate. Lithium in sea water or serum sample was separated and its concentration was determined spectrophotometrically by the present method without any interference from sodium chloride. The interference from transition and heavy metal ions was masked by Mg-EDTA. A calibration curve was linear over a range of 2x10(-6) to 2x10(-5) M at a precision of 1.51% (RSD).
NASA Astrophysics Data System (ADS)
Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo
2018-04-01
Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.
Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration
2016-08-22
and failure characteristics. Internal temperatures were obtained by designing and fabricating 18650 surrogate cells with embedded thermocouples which...Council Postdoctoral Associate Lithium-ion cell Lithium-ion battery fire Battery state of charge Packing configuration iii Contents 1.0 Background...and fabricating 18650 surrogate cells with embedded thermocouples which contained no active materials and were reused for multiple failure tests
Pb17Li and lithium: A thermodynamic rationalisation of their radically different chemistry
NASA Astrophysics Data System (ADS)
Hubberstey, Peter
1997-08-01
The contrasting chemistry of Pb17Li and lithium is attributed to their lithium activities. PbLi alloys exhibit marked negative deviations from ideality owing to 'chemical short range order', giving γ Li = 7.26 × 10 -4, aLi = 1.23 × 10 -4 and overlineGLi = -57.8 kJ mol -1 in Pb-17Li at 773 K. This overlineGLi value is sufficiently negative to prevent the reaction of Pb17Li with gaseous hydrogen and nitrogen to form LiH and Li 3N but not with oxygen containing gases to form Li 2O. Similarly, nitride and carbide ceramics are compatible with Pb-17Li but oxide ceramics are liable to degradation. In contrast, unit activity liquid lithium reacts with all the gases and, depending on their free energy of formation, some of the ceramics. Wherea, dissolved oxygen is corrosive in Pb-17Li, giving LiCrO 2, dissolved nitrogen adopts the corrosive role in lithium giving Li 9CrN 5. The instability of LiH in Pb-17Li renders tritium extraction facile; this contrasts with lithium for which tritium extraction is difficult owing to LiH formation.
Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; ...
2015-09-28
Doped Li 7La 3Zr 2O 12 garnets, oxide-based solids with good Li + conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediatemore » phases. The off-stoichiometry due to the liquid Li 2CO 3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less
Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.; ...
2016-10-12
Ag 7Fe 3(P 2O 7 ) 4 is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag +) forms metallic silver nanoparticles external to the crystals of Ag 7Fe 3(P 2O 7 ) 4 via an electrochemical reduction displacement reaction, while the other cation (Fe +3) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag 7Fe 3(P 2O 7 ) 4 is employed asmore » cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this article, a bimetallic pyrophosphate material Ag 7Fe 3(P 2O 7 ) 4 is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge–charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag 7Fe 3(P 2O 7 ) 4. Ag 7Fe 3(P 2O 7 ) 4 exhibits good reversibility at the iron centers indicated by ~80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by ~70% capacity retention upon a 4-fold increase in current.« less
Investigation of the lithium 670.7 nm wavelength range in the solar spectrum
NASA Astrophysics Data System (ADS)
Caffau, Elisabetta; Mott, Alessandro; Harutyunyan, Gohar; Malherbe, Jean-Marie; Steffen, Matthias
2016-07-01
Lithium is a key chemical element, with a chemical evolution that is different from that of most other elements. It is also very fragile, as it is destroyed by nuclear reactions with protons at temperatures higher than about 2.5 million K. According to standard Big Bang nucleosynthesis, only the isotope 7Li is produced in significant amounts, while the primordial abundance of the lighter isotope 6Li is negligible. Lithium is not produced by nucleosynthesis in normal stars, except in peculiar phases of stellar evolution (e.g. in AGB stars and Novae). Lithium may also be formed as a result of flares in the atmospheres of young, active stars. To investigate the history of Li production and depletion in the Galaxy, it is necessary to analyse stars of all ages, including those at solar metallicity. In this case, the spectroscopic determination of the Li abundance is complicated by the presence of other spectral lines overlapping with the Li doublet at 670.7 nm. The correct identification and knowledge of the atomic parameters of these blend lines is critical, especially if the 6LI/7Li isotopic ratio is to be derived. In this investigation, we consider several line lists of the blending components available in the literature and use them to compute synthetic spectra, performing the line formation computations both for the classical 1D Holweger-Mueller model and a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. The synthetic spectra are then compared to the solar spectrum observed at different limb angles. This allows us to check the quality of existing line lists, to find potentially misidentified blend lines, and to construct an optimized line list for solar-type stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.
Ag 7Fe 3(P 2O 7 ) 4 is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag +) forms metallic silver nanoparticles external to the crystals of Ag 7Fe 3(P 2O 7 ) 4 via an electrochemical reduction displacement reaction, while the other cation (Fe +3) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag 7Fe 3(P 2O 7 ) 4 is employed asmore » cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this article, a bimetallic pyrophosphate material Ag 7Fe 3(P 2O 7 ) 4 is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag 7Fe 3(P 2O 7 ) 4 is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge–charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag 7Fe 3(P 2O 7 ) 4. Ag 7Fe 3(P 2O 7 ) 4 exhibits good reversibility at the iron centers indicated by ~80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by ~70% capacity retention upon a 4-fold increase in current.« less
Yang, Yue; Huang, Guo Yong; Sun, Hongyu; Ahmad, Mashkoor; Mou, Qinyao; Zhang, Hongmei
2018-06-19
NiCo 2 O 4 is a potential anode material for lithium ion battery due to its many advantages, such as high theoretical capacitance, low cost, and good electrochemical activity. In this study, mesoporous NiCo 2 O 4 double-hemisphere (3-5 μm) with high surface area (270.68 m 2 ·g -1 ) and excellent electrochemical performances has been synthesized through a facile precipitation method followed with thermal treatment process. The prepared NiCo 2 O 4 is pure phase and can be indexed as a face-centered-cubic with a typical spinel structure. Electrochemical tests show the prepared material has high specific capacities (910 mAh·g -1 at 100 mA·g -1 ), excellent cyclicity (908 mAh·g -1 at 100 mA·g -1 after 60 cycles) and remarkable high rate performance (after 100 cycles, 585 mAh·g -1 at 400 mAh·g -1 , 415 mAh·g -1 at 800 mAh·g -1 and 320 mAh·g -1 at 1600 mAh·g -1 with coulombic efficiencies of almost 100%). The excellent performances of prepared NiCo 2 O 4 are mainly caused by the unique double-hemisphere structure, which has large surface area, gives material more opportunity to contact with electrolyte and facilitates lithium ion spreading into the material along the radical direction, resulting in a promising application for next-generation lithium-ion batteries. Copyright © 2018 Elsevier Inc. All rights reserved.
Neutron imaging systems utilizing lithium-containing semiconductor crystals
Stowe, Ashley C.; Burger, Arnold
2017-04-25
A neutron imaging system, including: a plurality of Li-III-VI.sub.2 semiconductor crystals arranged in an array, wherein III represents a Group III element and VI represents a Group VI element; and electronics operable for detecting and a charge in each of the plurality of crystals in the presence of neutrons and for imaging the neutrons. Each of the crystals is formed by: melting the Group III element; adding the Li to the melted Group III element at a rate that allows the Li and Group III element to react, thereby providing a single phase Li-III compound; and adding the Group VI element to the single phase Li-III compound and heating. Optionally, each of the crystals is also formed by doping with a Group IV element activator.
Lithium niobate guided-wave beam former for steering phased-array antennas.
Armenise, M N; Passaro, V M; Noviello, G
1994-09-10
We present the theoretical investigation, design, and simulation of a novel guided-wave optical processor for L-band-transmission beam forming in a linear array of phased active antennas. The proposed configuration includes two contradirectional surface acoustic-wave transducers, and it is based on a Y-cut, X-propagating Ti:LiNbO(3) planar waveguide supporting the lowest-order modes of both polarizations (TE(0) and TM(0)) at the free-space wavelength λ = 0.85 µm. A detailed comparison between the processor we propose and other optical and electronic architectures reported in the literature is carried out, exhibiting a number of significant advantages in terms of weight, total chip size, and power consumption, when the number of antenna elements is greater than 50.
Ma, Jiwei; Reeves, Kyle G.; Porras Gutierrez, Ana-Gabriela; ...
2017-09-19
Searches for new electrode materials for batteries must comply on financial and environmental costs to be useful in practical devices. The sol-gel chemistry has been widely used to design and implemented new concepts for the emergence of advanced materials such as hydride organic-inorganic composites. Here, we show that the simple reaction system including titanium alkoxide and water can be used to stabilize a new class of electrode materials. By investigating the crystallization path of anatase TiO2, an X-ray amorphous intermediate phase has been identified whose local structure probed by the pair distribution function, 1H solid-state NMR and DFT calculations, consistsmore » of a layered-type structure as found in the lepido-crocite. This phase presents the following general formula Ti 2-x⟂ xO 4-4x(OH) 4x.nH 2O (x ~ 0.5) where the substitution of oxide by hydroxide anions leads to the formation of titanium vacancies (•) and H 2O molecules are located in interlayers. Solid-state 1H NMR has enabled to characterize three main hydroxide environments that are Ti⟂-OH, Ti 2⟂ 2-OH and Ti3⟂-OH and layered H 2O molecules. The electrochemical properties of this phase were further investigated versus lithium and is shown to be very promising with reversible capacities of around 200 mAh.g -1 and an operating voltage of 1.55 V. We further showed that the lithium intercalation proceeds via a solid-solution mechanism. 7Li solid-state NMR and DFT calculations allowed to identify lithium host sites that are located at the titanium vacancies and interlayer space with lithium being solvated by structural water molecules. The easy fabrication, the absence of lithium and easier recycling and the encouraging properties makes this class of materials very attractive for competitive electrodes for batteries. We thus demonstrate that the revisit of an “old” chemistry with advanced characterization tools allows discovering new materials of technological relevance.« less
NMR Investigations of Structure and Dynamics in Polymers for Energy Storage Applications
NASA Astrophysics Data System (ADS)
Greenbaum, Steven
Materials innovation is needed to realize major progress in energy storage capacity for lithium batteries and capacitors. Polymers hold considerable promise as ion conducting media in batteries and electrochemical capacitors and as dielectrics in thin film capacitors. Structural studies of materials utilized in lithium battery technology are hampered by the lack of long-range order found in well-defined crystalline phases. Powder x-ray diffraction yields structural parameters that have been averaged over hundreds of lattice sites, and is unable to provide structural information about amorphous phases. Our laboratory uses solid state nuclear magnetic resonance (NMR) methods to investigate structural and chemical aspects of lithium ion cathodes, anodes, electrolytes, interfaces and interphases. NMR is element- (nuclear-) specific and sensitive to small variations in the immediate environment of the ions being probed, for example Li+, and in most cases is a reliably quantitative spectroscopy in that the integrated intensity of a particular spectral component is directly proportional to the number of nuclei in the corresponding material phase. NMR is also a powerful tool for probing ionic and molecular motion in lithium battery electrolytes with a dynamic range spanning some ten orders of magnitude through spin-lattice relaxation and self-diffusion measurements. Broadband relaxometry based on Fast Field Cycling NMR (FFCNMR) methods can span three to four of these orders of magnitude in a single set of measurements. Results of several recent NMR investigations performed on our lab will be presented. We explore the ion transport mechanism in polyether-based and lithium polymer electrolytes and those based on other base polymers, in particular, the extent to which ionic motion is coupled to polymer segmental motion. Polycarbonates are being considered as a possible replacement for polypropylene in high power thin film capacitors due to their favorable dielectric properties. We investigate the effects of incorporation of two types of additives in the polymer film on the ring-flip motions corresponding to the γ relaxation: (i) high dielectric constant ceramic particles; (ii) polar organic diluent molecules, The low frequency realm of broadband relaxometry allows meaningful comparison with dielectric relaxation studies of these samples performed by collaborators. Work Supported in part by the U.S. Office of Naval Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jiwei; Reeves, Kyle G.; Porras Gutierrez, Ana-Gabriela
Searches for new electrode materials for batteries must comply on financial and environmental costs to be useful in practical devices. The sol-gel chemistry has been widely used to design and implemented new concepts for the emergence of advanced materials such as hydride organic-inorganic composites. Here, we show that the simple reaction system including titanium alkoxide and water can be used to stabilize a new class of electrode materials. By investigating the crystallization path of anatase TiO2, an X-ray amorphous intermediate phase has been identified whose local structure probed by the pair distribution function, 1H solid-state NMR and DFT calculations, consistsmore » of a layered-type structure as found in the lepido-crocite. This phase presents the following general formula Ti 2-x⟂ xO 4-4x(OH) 4x.nH 2O (x ~ 0.5) where the substitution of oxide by hydroxide anions leads to the formation of titanium vacancies (•) and H 2O molecules are located in interlayers. Solid-state 1H NMR has enabled to characterize three main hydroxide environments that are Ti⟂-OH, Ti 2⟂ 2-OH and Ti3⟂-OH and layered H 2O molecules. The electrochemical properties of this phase were further investigated versus lithium and is shown to be very promising with reversible capacities of around 200 mAh.g -1 and an operating voltage of 1.55 V. We further showed that the lithium intercalation proceeds via a solid-solution mechanism. 7Li solid-state NMR and DFT calculations allowed to identify lithium host sites that are located at the titanium vacancies and interlayer space with lithium being solvated by structural water molecules. The easy fabrication, the absence of lithium and easier recycling and the encouraging properties makes this class of materials very attractive for competitive electrodes for batteries. We thus demonstrate that the revisit of an “old” chemistry with advanced characterization tools allows discovering new materials of technological relevance.« less
Altshuler, Lori L; Sugar, Catherine A; McElroy, Susan L; Calimlim, Brian; Gitlin, Michael; Keck, Paul E; Aquino-Elias, Ana; Martens, Brian E; Fischer, E Grace; English, Teri L; Roach, Janine; Suppes, Trisha
2017-03-01
The authors compared medication-induced mood switch risk (primary outcome), as well as treatment response and side effects (secondary outcomes) with three acute-phase treatments for bipolar II depression. In a 16-week, double-blind, multisite comparison study, 142 participants with bipolar II depression were randomly assigned to receive lithium monotherapy (N=49), sertraline monotherapy (N=45), or combination treatment with lithium and sertraline (N=48). At each visit, mood was assessed using standardized rating scales. Rates of switch were compared, as were rates of treatment response and the presence and severity of treatment-emergent side effects. Twenty participants (14%) experienced a switch during the study period (hypomania, N=17; severe hypomania, N=3). Switch rates did not differ among the three treatment groups, even after accounting for dropout. No patient had a manic switch or was hospitalized for a switch. Most switches occurred within the first 5 weeks of treatment. The treatment response rate for the overall sample was 62.7% (N=89), without significant differences between groups after accounting for dropout. The lithium/sertraline combination group had a significantly higher overall dropout rate than the monotherapy groups but did not have an accelerated time to response. Lithium monotherapy, sertraline monotherapy, and lithium/sertraline combination therapy were associated with similar switch and treatment response rates in participants with bipolar II depression. The dropout rate was higher in the lithium/sertraline combination treatment group, without any treatment acceleration advantage.
Examination of methylphenidate-mediated behavior regulation by glycogen synthase kinase-3 in mice.
Mines, Marjelo A; Beurel, Eleonore; Jope, Richard S
2013-01-05
Abnormalities in dopaminergic activity have been implicated in psychiatric diseases, such as attention deficit hyperactivity disorder (ADHD), and are treated with therapeutic stimulants, commonly methylphenidate or amphetamine. Amphetamine administration increases glycogen synthase kinase-3 (GSK3) activation, which is necessary for certain acute behavioral responses to amphetamine, including increased locomotor activity and impaired sensorimotor gating. Here, we tested if modulating GSK3 by administration of the GSK3 inhibitor lithium or expression of constitutively active GSK3 altered behavioral responses to methylphenidate administered to mice acutely or daily for 8 days. Methylphenidate or amphetamine was administered to mice intraperitoneally for 1 or 8 days. Open-field activity and pre-pulse inhibition (PPI) were measured. In contrast to lithium's blockade of acute amphetamine-induced locomotor hyperactivity, lithium treatment did not significantly reduce methylphenidate-induced locomotor hyperactivity in wild-type mice after acute or 8 days of repeated methylphenidate administration. Lithium treatment significantly increased the impairment in PPI caused by methylphenidate, but significantly reduced the amphetamine-induced PPI deficit. In GSK3 knockin mice, expression of constitutively active GSK3β, but not GSK3α, significantly increased locomotor hyperactivity after acute methylphenidate treatment, and significantly impaired PPI, preventing further methylphenidate-induced impairment of PPI that was evident in wild-type mice and GSK3α knockin mice. Lithium does not counteract locomotor activity and PPI responses to methylphenidate as it does these responses to amphetamine, indicating that different mechanisms mediate these behavioral responses to methylphenidate and amphetamine. Only active GSK3β, not GSK3α, modulates behavioral responses to MPH, indicating selectivity in the actions of GSK3 isoforms. Copyright © 2012 Elsevier B.V. All rights reserved.
Forney, Michael W; Ganter, Matthew J; Staub, Jason W; Ridgley, Richard D; Landi, Brian J
2013-09-11
Stabilized lithium metal powder (SLMP) has been applied during battery assembly to effectively prelithiate high capacity (1500-2500 mAh/g) silicon-carbon nanotube (Si-CNT) anodes, eliminating the 20-40% first cycle irreversible capacity loss. Pressure-activation of SLMP is shown to enhance prelithiation and enable capacity matching between Si-CNT anodes and lithium nickel cobalt aluminum oxide (NCA) cathodes in full batteries with minimal added mass. The prelithiation approach enables high energy density NCA/Si-CNT batteries achieving >1000 cycles at 20% depth-of-discharge.
Coque, Laurent; Mukherjee, Shibani; Cao, Jun-Li; Spencer, Sade; Marvin, Marian; Falcon, Edgardo; Sidor, Michelle M; Birnbaum, Shari G; Graham, Ami; Neve, Rachael L; Gordon, Elizabeth; Ozburn, Angela R; Goldberg, Matthew S; Han, Ming-Hu; Cooper, Donald C; McClung, Colleen A
2011-06-01
Lithium has been used extensively for mood stabilization, and it is particularly efficacious in the treatment of bipolar mania. Like other drugs used in the treatment of psychiatric diseases, it has little effect on the mood of healthy individuals. Our previous studies found that mice with a mutation in the Clock gene (ClockΔ19) have a complete behavioral profile that is very similar to human mania, which can be reversed with chronic lithium treatment. However, the cellular and physiological effects that underlie its targeted therapeutic efficacy remain unknown. Here we find that ClockΔ19 mice have an increase in dopaminergic activity in the ventral tegmental area (VTA), and that lithium treatment selectively reduces the firing rate in the mutant mice with no effect on activity in wild-type mice. Furthermore, lithium treatment reduces nucleus accumbens (NAc) dopamine levels selectively in the mutant mice. The increased dopaminergic activity in the Clock mutants is associated with cell volume changes in dopamine neurons, which are also rescued by lithium treatment. To determine the role of dopaminergic activity and morphological changes in dopamine neurons in manic-like behavior, we manipulated the excitability of these neurons by overexpressing an inwardly rectifying potassium channel subunit (Kir2.1) selectively in the VTA of ClockΔ19 mice and wild-type mice using viral-mediated gene transfer. Introduction of this channel mimics the effects of lithium treatment on the firing rate of dopamine neurons in ClockΔ19 mice and leads to a similar change in dopamine cell volume. Furthermore, reduction of dopaminergic firing rates in ClockΔ19 animals results in a normalization of locomotor- and anxiety-related behavior that is very similar to lithium treatment; however, it is not sufficient to reverse depression-related behavior. These results suggest that abnormalities in dopamine cell firing and associated morphology underlie alterations in anxiety-related behavior in bipolar mania, and that the therapeutic effects of lithium come from a reversal of these abnormal phenotypes.
Buried anode lithium thin film battery and process for forming the same
Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping
2004-10-19
A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
Hybrid capacitive deionization with anion-exchange membranes for lithium extraction
NASA Astrophysics Data System (ADS)
Siekierka, Anna; Bryjak, Marek
2017-11-01
Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.
Porous graphene nanocages for battery applications
Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.
2017-03-07
An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.
Surface or internal nucleation and crystallization of glass-ceramics
NASA Astrophysics Data System (ADS)
Höland, W.; Rheinberger, V. M.; Ritzberger, C.; Apel, E.
2013-07-01
Fluoroapatite (Ca5(PO4)3F) was precipitated in glass-ceramics via internal crystallization of base glasses. The crystals grew with a needle-like morphology in the direction of the crystallographic c-axis. Two different reaction mechanisms were analyzed: precipitation via a disordered primary apatite crystals and a solid state parallel reaction to rhenanite (NaCaPO4) precipitation. In contrast to the internal nucleation used in the formation of fluoroapatite, surface crystallization was induced to precipitate a phosphate-free oxyapatite of NaY9(SiO4)6O2-type. Internal nucleation and crystallization have been shown to be a very useful tool for developing high-strength lithium disilicate (Li2Si2O5) glass-ceramics. A very controlled process was conducted to transform the lithium metasilicate glass-ceramic precursor material into the final product of the lithium disilicate glass-ceramic without the major phase of the precursor material. The combination of all these methods allowed the driving forces of the internal nucleation and crystallization mechanisms to be explained. An amorphous phosphate primary phase was discovered in the process. Nucleation started at the interface between the amorphous phosphate phase and the glass matrix. The final products of all these glass-ceramics are biomaterials for dental restoration showing special optical properties, e.g. translucence and color close to dental teeth.
Yuan, Kun; Wang, Fu; Gao, Jing; Sun, Xiang; Deng, Zai-Xi; Wang, Hui; Jin, Lei; Chen, Ji-Hua
2014-01-01
The purpose of this study was to investigate the effect of zircon-based tricolor pigments (praseodymium zircon yellow, ferrum zircon red, and vanadium zircon blue) on the color, thermal property, crystalline phase composition, microstructure, flexural strength, and translucency of a novel dental lithium disilicate glass-ceramic. The pigments were added to the glass frit, milled, pressed, and sintered. Ninety monochrome samples were prepared and the colors were analyzed. The effect of the pigments on thermal property, crystalline phase composition, and microstructure were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM), respectively. Addition of the pigments resulted in the acquisition of subtractive primary colors as well as tooth-like colors, and did not demonstrate significant effects on the thermal property, crystalline phase composition, microstructure, and flexural strength of the experimental glass-ceramic. Although significant differences (p < 0.01) were observed between the translucencies of the uncolored and 1.0 wt % zircon-based pigment colored ceramics, the translucencies of the latter were sufficient to fabricate dental restorations. These results indicate that the zircon-based tricolor pigments can be used with dental lithium disilicate glass-ceramic to produce abundant and predictable tooth-like colors without significant adverse effects, if mixed in the right proportions. Copyright © 2013 Wiley Periodicals, Inc.
Nadeem, Rania I; Ahmed, Hebatalla I; El-Denshary, Ezz-El-Din S
2015-09-01
Recent studies have demonstrated a scrutinized association of diabetes mellitus with depressive symptoms and major depression. Glycogen synthase kinase-3 (GSK-3) is a protein kinase enzyme constitutively active in non-stimulated cells and in multiple signalings. Independent lines of research provide a converging evidence for an involvement of GSK-3 in the regulation of behavior and hyperglycemia. The present study revealed that streptozotocin (STZ)-induced diabetic rats were found to show lengthened duration of immobility in the forced-swimming test (FST) and reduced locomotor and exploratory activities in the open-field test (OFT). Imipramine (15 mg/kg), Paroxetine (10 mg/kg) and lithium carbonate (36.94 mg/kg) for 14 days reduced immobility behavior in FST. Paroxetine and lithium carbonate increased the locomotor and exploratory activities, while imipramine decreased the locomotor activity in the OFT. Imipramine and lithium carbonate reduced the blood glucose level while paroxetine didn't alter it. STZ-induced diabetes increased GSK-3 gene expression which was determined using the reverse transcription-quantitative polymerase chain reaction test, while the three drugs decreased its expression. It can be concluded that lithium carbonate and imipramine can control both hyperglycemia and the associated symptoms of depression at the same time by inhibiting GSK-3 activity. On the other hand, paroxetine may only manage the depressive-like symptoms associated with diabetes through modulating the enzyme GSK-3, without changing blood glucose levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang Jing; Li Fan; Liu Xuan
2009-03-13
Lithium chloride is a therapeutic agent for treatment of bipolar affective disorders. Increasing numbers of studies have indicated that lithium has neuroprotective effects. However, the molecular mechanisms underlying the actions of lithium have not been fully elucidated. This study aimed to investigate whether lithium chloride produces neuroprotective function by improving DNA repair pathway in retinal neurocyte. In vitro, the primary cultured retinal neurocytes (85.7% are MAP-2 positive cells) were treated with lithium chloride, then cultured with serum-free media to simulate the nutrient deprived state resulting from ischemic insult. The neurite outgrowth of the cultured cells increased significantly in a dose-dependentmore » manner when exposed to different levels of lithium chloride. Genomic DNA electrophoresis demonstrated greater DNA integrity of retinal neurocytes when treated with lithium chloride as compared to the control. Moreover, mRNA and protein levels of Ligase IV (involved in DNA non-homologous end-joining (NHEJ) pathway) in retinal neurocytes increased with lithium chloride. The end joining activity assay was performed to determine the role of lithium on NHEJ in the presence of extract from retinal neurocytes. The rejoining levels in retinal neurocytes treated with lithium were significantly increased as compared to the control. Furthermore, XRCC4, the Ligase IV partner, and the transcriptional factor, CREB and CTCF, were up-regulated in retinal cells after treating with 1.0 mM lithium chloride. Therefore, our data suggest that lithium chloride protects the retinal neural cells from nutrient deprivation in vitro, which may be similar to the mechanism of cell death in glaucoma. The improvement in DNA repair pathway involving in Ligase IV might have an important role in lithium neuroprotection. This study provides new insights into the neural protective mechanisms of lithium chloride.« less
NASA Astrophysics Data System (ADS)
Lewerenz, Meinert; Marongiu, Andrea; Warnecke, Alexander; Sauer, Dirk Uwe
2017-11-01
In this work the differential voltage analysis (DVA) is evaluated for LiFePO4|Graphite cylindrical cells aged in calendaric and cyclic tests. The homogeneity of the active lithium distribution and the loss of anode active material (LAAM) are measured by the characteristic shape and peaks of the DVA. The results from this analysis exhibit an increasing homogeneity of the lithium-ion distribution during aging for all cells subjected to calendaric aging. At 60 °C, LAAM is found additionally and can be associated with the deposition of dissolved Fe from the cathode on the anode, where it finally leads to the clogging of pores. For cells aged under cyclic conditions, several phenomena are correlated to degradation, such as loss of active lithium and local LAAM for 100% DOD. Moreover, the deactivation of certain parts of anode and cathode due to a lithium-impermeable covering layer on top of the anode is observed for some cells. While the 100% DOD cycling is featured by a continuous LAAM, the LAAM due to deactivation by a covering layer of both electrodes starts suddenly. The homogeneity of the active lithium distribution within the cycled cells is successively reduced with deposited passivation layers and with LAAM that is lost locally at positions with lower external pressure on the electrode.
Space reactor power 1986 - A year of choices and transition
NASA Technical Reports Server (NTRS)
Wiley, R. L.; Verga, R. L.; Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.
1986-01-01
Both the SP-100 and Multimegawatt programs have made significant progress over the last year and that progress is the focus of this paper. In the SP-100 program the thermoelectric energy conversion concept powered by a compact, high-temperature, lithium-cooled, uranium-nitride-fueled fast spectrum reactor was selected for engineering development and ground demonstration testing at an electrical power level of 300 kilowatts. In the Multimegawatt program, activities moved from the planning phase into one of technology development and assessment with attendant preliminary definition and evaluation of power concepts against requirements of the Strategic Defense Initiative.
XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass
NASA Technical Reports Server (NTRS)
Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.
2006-01-01
The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.
Feng, Lili; Xuan, Zhewen; Zhao, Hongbo; Bai, Yang; Guo, Junming; Su, Chang-Wei; Chen, Xiaokai
2014-01-01
Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance.
Chen, Mohan; Abrams, T.; Jaworski, M. A.; ...
2015-12-17
Because of lithium's possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. Here, we predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDmore » $$_{\\beta}$$ , $$\\beta =0.25$$ , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid–solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. Finally, we observed the formation of some D 2 molecules at high D concentrations.« less
NASA Astrophysics Data System (ADS)
Khateeb, Siddique A.; Farid, Mohammed M.; Selman, J. Robert; Al-Hallaj, Said
A lithium-ion battery employing a novel phase change material (PCM) thermal management system was designed for an electric scooter. Passive thermal management systems using PCM can control the temperature excursions and maintain temperature uniformity in Li-ion batteries without the use of active cooling components such as a fan, a blower or a pump found in air/liquid-cooling systems. Hence, the advantages of a compact, lightweight, and energy efficient system can be achieved with this novel form of thermal management system. Simulation results are shown for a Li-ion battery sub-module consisting of nine 18650 Li-ion cells surrounded by PCM with a melting point between 41 and 44 °C. The use of aluminum foam within the PCM and fins attached to the battery module were studied to overcome the low thermal conductivity of the PCM and the low natural convection heat transfer coefficient. The comparative results of the PCM performance in the presence of Al-foam and Al-fins are shown. The battery module is also simulated for summer and winter conditions. The effect of air-cooling on the Li-ion battery was also studied. These simulation results demonstrate the successful use of the PCM as a potential candidate for thermal management solution in electric scooter applications and therefore for other electric vehicle applications.
NASA Astrophysics Data System (ADS)
Martin, Guillermo; Heidmann, Samuel; Rauch, Jean-Yves; Jocou, Laurent; Courjal, Nadège
2014-03-01
We present an optimization process to improve the rejection ratio in integrated beam combiners by locking the dark fringe and then monitoring its intensity. The method proposed here uses the electro-optic effect of lithium niobate in order to lock the dark fringe and to real-time balance the photometric flux by means of a two-stage Mach-Zehnder interferometer waveguide. By applying a control voltage on the output Y-junction, we are able to lock the phase and stay in the dark fringe, while an independent second voltage is applied on the first-stage intensity modulator, to finely balance the photometries. We have obtained a rejection ratio of 4600 (36.6 dB) at 3.39 μm in transverse electric polarization, corresponding to 99.98% fringe contrast, and shown that the system can compensate external phase perturbations (a piston variation of 100 nm) up to around 1 kHz. We also show the preliminary results of this process on wide-band modulation, where a contrast of 38% in 3.25- to 3.65-μm spectral range is obtained. These preliminary results on wide-band need to be optimized, in particular, for reducing scattered light of the device at the Y-junction. We expect this active method to be useful in high-contrast interferometry, in particular, for astronomical spatial projects actually under study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Dirk; Ireland, John; Pesaran, Ahmad
NREL has developed a device to test one of the most challenging failure mechanisms of lithium-ion (Li-ion) batteries -- a battery internal short circuit. Many members of the technical community believe that this type of failure is caused by a latent flaw that results in a short circuit between electrodes during use. As electric car manufacturers turn to Li-ion batteries for energy storage, solving the short circuit problem becomes more important. To date, no reliable and practical method exists to create on-demand internal shorts in Li-ion cells that produce a response that is relevant to the ones produced by fieldmore » failures. NREL and NASA have worked to establish an improved ISC cell-level test method that simulates an emergent internal short circuit, is capable of triggering the four types of cell internal shorts, and produces consistent and reproducible results. Internal short circuit device design is small, low-profile and implantable into Li-ion cells, preferably during assembly. The key component is an electrolyte-compatible phase change material (PCM). The ISC is triggered by heating the cell above PCM melting temperature (presently 40 degrees C – 60 degrees C). In laboratory testing, the activated device can handle currents in excess of 300 A to simulate hard shorts (< 2 mohms). Phase change from non-conducting to conducting has been 100% successful during trigger tests.« less
In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.
Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less
In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.
Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the for-mation of solid electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and oth-er electrolyte components are still unclear. We report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach in-volving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li2S, LiF, Li2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and elec-trolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS5) fouling process. These new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less
Label-free investigation of the effects of lithium niobate polarization on cell adhesion
NASA Astrophysics Data System (ADS)
Mandracchia, B.; Gennari, O.; Paturzo, M.; Grilli, S.; Ferraro, P.
2017-06-01
The determination of contact area is pivotal to understand how biomaterials properties influence cell adhesion. In particular, the influence of surface charges is well-known but still controversial, especially when new functional materials and methods are introduced. Here, we use for the first time Holographic Total Internal Reflection Microscopy (HoloTIRM) to study the influence of the spontaneous polarization of ferroelectric lithium niobate (LN) on the adhesion properties of fibroblast cells. The selective illumination of a very thin region directly above the substrate, achieved by Total Internal Reflection, provides high-contrast images of the contact regions. Holographic recording, on the other hand, allows for label-free quantitative phase imaging of the contact areas between cells and LN. Phase signal is more sensitive in the first 100nm and, thus more reliable in order to locate focal contacts. This work shows that cells adhering on negatively polarized LN present a significant increase of the contact area in comparison with cells adhering on the positively polarized LN substrate, as well as an intensification of contact vicinity. This confirms the potential of LN as a platform for investigating the role of charges on cellular processes. The similarity of cell adhesion behavior on negatively polarized LN and glass control also confirms the possibility to use LN as an active substrate without impairing cell behavior.
In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.; ...
2017-05-03
Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less
Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase‐2
Kjaersgaard, Gitte; Madsen, Kirsten; Marcussen, Niels; Jensen, Boye L.
2014-01-01
Abstract In patients, chronic treatment with lithium leads to renal microcysts and nephrogenic diabetes insipidus (NDI). It was hypothesized that renal cyclooxygenase‐2 (COX‐2) activity promotes microcyst formation and NDI. Kidney microcysts were induced in male adolescent rats by feeding dams with lithium (50 mmol/kg chow) from postnatal days 7–34. Lithium treatment induced somatic growth retardation, renal microcysts and dilatations in cortical collecting duct; it increased cortical cell proliferation and inactive pGSK‐3β abundance; it lowered aquaporin‐2 (AQP2) protein abundance and induced polyuria with decreased ability to concentrate the urine; and it increased COX‐2 protein level in thick ascending limb. Concomitant treatment with lithium and a specific COX‐2 inhibitor, parecoxib (5 mg/kg per day, P10–P34), did not prevent lithium‐induced microcysts and polyuria, but improved urine concentrating ability transiently after a 1‐desamino‐8‐D‐arginine vasopressin challenge. COX‐2 inhibition did not reduce cortical lithium‐induced cell proliferation and phosphorylation of glycogen synthase kinase‐3β (GSK‐3β). COX‐1 protein abundance increased in rat kidney cortex in response to lithium. COX‐1 immunoreactivity was found in microcyst epithelium in rat kidney. A human nephrectomy specimen from a patient treated for 28 years with lithium displayed multiple, COX‐1‐immunopositive, microcysts. In chronic lithium‐treated adolescent rats, COX‐2 is not colocalized with microcystic epithelium, mitotic activity, and inactive pGSK‐3β in collecting duct; a blocker of COX‐2 does not prevent cell proliferation, cyst formation, or GSK‐3β inactivation. It is concluded that COX‐2 activity is not the primary cause for microcysts and polyuria in a NaCl‐substituted rat model of lithium nephropathy. COX‐1 is a relevant candidate to affect the injured epithelium. PMID:24744881
Assessment of Lithium-based Battery Electrolytes Developed under the NASA PERS Program
NASA Technical Reports Server (NTRS)
Bennett, William R.; Baldwin, Richard S.
2006-01-01
Recently, NASA formally completed the Polymer Energy Rechargeable System (PERS) Program, which was established in 2000 in collaboration with the Air Force Research Laboratory (AFRL) to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The goal of this program was to ultimately develop an advanced, space-qualified battery technology, which embodied a solid polymer electrolyte (SPE) and complementary components, with improved performance characteristics that would address future aerospace battery requirements. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. A variety of cell and polymeric electrolyte concepts were pursued as part of the development efforts undertaken at numerous governmental, industrial and academic laboratories. Numerous candidate electrolyte materials were developed, synthesized and optimized for evaluation. Utilizing the component screening facility and the "standardized" test procedures developed at the NASA Glenn Research Center, electrochemical screening and performance evaluations of promising candidate materials were completed. This overview summarizes test results for a variety of candidate electrolyte materials that were developed under the PERS Program. Electrolyte properties are contrasted and compared to the original project goals, and the strengths and weaknesses of the electrolyte chemistries are discussed. Limited cycling data for full-cells using lithium metal and vanadium oxide electrodes are also presented. Based on measured electrolyte properties, the projected performance characteristics and temperature limitations of batteries utilizing the advanced electrolytes and components have been estimated. Limitations for the achievement of practical performance levels are also discussed, as well as needs for future research and development.
Carbon nanomaterials used as conductive additives in lithium ion batteries.
Zhang, Qingtang; Yu, Zuolong; Du, Ping; Su, Ce
2010-06-01
As the vital part of lithium ion batteries, conductive additives play important roles in the electrochemical performance of lithium ion batteries. They construct a conductive percolation network to increase and keep the electronic conductivity of electrode, enabling it charge and discharge faster. In addition, conductive additives absorb and retain electrolyte, allowing an intimate contact between the lithium ions and active materials. Carbon nanomaterials are carbon black, Super P, acetylene black, carbon nanofibers, and carbon nanotubes, which all have superior properties such as low weight, high chemical inertia and high specific surface area. They are the ideal conductive additives for lithium ion batteries. This review will discuss some registered patents and relevant papers about the carbon nanomaterials that are used as conductive additives in cathode or anode to improve the electrochemical performance of lithium ion batteries.
Thin-film Rechargeable Lithium Batteries
DOE R&D Accomplishments Database
Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.
1993-11-01
Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.
A thermo-electric-driven flowing liquid lithium limiter/divertor for magnetic confined fusion
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Xu, Wenyu; Curreli, Davide; Andruczyk, Daniel; Mui, Travis
2012-10-01
The concept of using a liquid metal, especially liquid lithium, as the plasma facing surface may provide the best path forward toward reactor designs. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactor. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can induce electric currents inside liquid lithium and an external magnetic field can drive liquid lithium to flow within metallic open trenches. IR camera and thermocouple measurements prove the strong heat transfer ability of this concept. A new flowing lithium system with active control of the temperature gradient inside the lithium trenches and back flow channels has been designed. TEMHD driven liquid lithium run steady state and pulsed for a few seconds of high heat flux (˜15MW/m^2) has been used to investigate the transient reaction of the flowing lithium. A similar tray is scheduled to be tested in HT-7, Hefei, China as a limiter in Sept. 2012. Related movies and analysis will be shown.
Long-term effect of dietary overload lithium on the glucose metabolism in broiler chickens.
Bai, Shiping; Pan, Shuqin; Zhang, Keying; Ding, Xuemei; Wang, Jianping; Zeng, Qiufeng; Xuan, Yue; Su, Zuowei
2017-09-01
Lithium, like insulin, activates glycogen synthase and stimulates glucose transport in rat adipocytes. To investigate the effect of dietary overload lithium on glucose metabolism in broiler chickens, one-day-old chicks were fed a basal diet supplemented with 0 (control) or 100mg lithium/kg (overload lithium) for 35days. Compared to controls, glucose disappearance rates were lower (p=0.035) 15-120min after glucose gavage, and blood glucose concentrations were lower (p=0.038) 30min after insulin injection in overload lithium broilers. Overload lithium decreased (p<0.05) glycogen and glucose-6-phosphate concentrations in liver, but increased (p<0.05) their concentrations in pectoralis major. Overload lithium increased (p<0.05) mRNA expression of glucose transporter (GLUT) 3 and GLUT9 in liver, and GLUT1, GLUT3, GLUT8, and GLUT9 in pectoralis major, but decreased (p<0.05) cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in liver and mitochondrial PEPCK in pectoralis major. These results suggest that dietary overload lithium decreases glucose tolerance and gluconeogenesis, but increases insulin sensitivity and glucose transport in broiler chickens. Copyright © 2017 Elsevier B.V. All rights reserved.
Galvanostatic interruption of lithium insertion into magnetite: Evidence of surface layer formation
Nicholas W. Brady; Takeuchi, Esther S.; Knehr, K. W.; ...
2016-04-24
Magnetite is a known lithium intercalation material, and the loss of active, nanocrystalline magnetite can be inferred from the open-circuit potential relaxation. Specifically, for current interruption after relatively small amounts of lithium insertion, the potential first increases and then decreases, and the decrease is hypothesized to be due to a formation of a surface layer, which increases the solid-state lithium concentration in the remaining active material. Comparisons of simulation to experiment suggest that the reactions with the electrolyte result in the formation of a thin layer of electrochemically inactive material, which is best described by a nucleation and growth mechanism.more » Simulations are consistent with experimental results observed for 6, 8 and 32-nm crystals. As a result, simulations capture the experimental differences in lithiation behavior between the first and second cycles.« less
Wang, Zhongxiao; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Favazza, Tara L; Morss, Peyton C; Saba, Nicholas J; Fredrick, Thomas W; He, Xi; Akula, James D; Chen, Jing
2016-10-01
Familial exudative vitreoretinopathy (FEVR) is characterized by delayed retinal vascular development, which promotes hypoxia-induced pathologic vessels. In severe cases FEVR may lead to retinal detachment and visual impairment. Genetic studies linked FEVR with mutations in Wnt signaling ligand or receptors, including low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we investigated ocular pathologies in a Lrp5 knockout (Lrp5(-/-)) mouse model of FEVR and explored whether treatment with a pharmacologic Wnt activator lithium could bypass the genetic defects, thereby protecting against eye pathologies. Lrp5(-/-) mice displayed significantly delayed retinal vascular development, absence of deep layer retinal vessels, leading to increased levels of vascular endothelial growth factor and subsequent pathologic glomeruloid vessels, as well as decreased inner retinal visual function. Lithium treatment in Lrp5(-/-) mice significantly restored the delayed development of retinal vasculature and the intralaminar capillary networks, suppressed formation of pathologic glomeruloid structures, and promoted hyaloid vessel regression. Moreover, lithium treatment partially rescued inner-retinal visual function and increased retinal thickness. These protective effects of lithium were largely mediated through restoration of canonical Wnt signaling in Lrp5(-/-) retina. Lithium treatment also substantially increased vascular tubular formation in LRP5-deficient endothelial cells. These findings suggest that pharmacologic activation of Wnt signaling may help treat ocular pathologies in FEVR and potentially other defective Wnt signaling-related diseases. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Li(x)FeF6 (x = 2, 3, 4) battery materials: structural, electronic and lithium diffusion properties.
Schroeder, Melanie; Eames, Christopher; Tompsett, David A; Lieser, Georg; Islam, M Saiful
2013-12-21
Lithium iron fluoride materials have attracted recent interest as cathode materials for lithium ion batteries. The electrochemical properties of the high energy density Li(x)FeF6 (x = 2, 3, 4) materials have been evaluated using a combination of potential-based and DFT computational methods. Voltages of 6.1 V and 3.0 V are found for lithium intercalation from Li2FeF6 to α-Li3FeF6 and α-Li3FeF6 to Li4FeF6 respectively. The calculated density of states indicate that Li2FeF6 possesses metallic states that become strongly insulating after lithium intercalation to form α-Li3FeF6. The large energy gain associated with this metal-insulator transition is likely to contribute to the associated large voltage of 6.1 V. Molecular dynamics simulations of lithium diffusion in α-Li3FeF6 at typical battery operating temperatures indicate high lithium-ion mobility with low activation barriers. These results suggest the potential for good rate performance of lithium iron fluoride cathode materials.
Lithium in halo stars from standard stellar evolution
NASA Technical Reports Server (NTRS)
Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.
1990-01-01
A grid has been constructed of theoretical evolution sequences of models for low-metallicity stars from the premain-sequence to the giant branch phases. The grid is used to study the history of surface Li abundance during standard stellar evolution. The Li-7 observations of halo stars by Spite and Spite (1982) and subsequent observations are synthesized to separate the halo stars by age. The theory of surface Li abundance is illustrated by following the evolution of a reference halo star model from the contracting fully convective premain sequence to the giant branch phase. The theoretical models are compared with observed Li abundances. The results show that the halo star lithium abundances can be explained in the context of standard stellar evolution theory using completely standard assumptions and physics.
Dubaniewicz, Thomas H; DuCarme, Joseph P
2016-09-01
Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH 4 )-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO 4 ) cell model was tolerant to crush-induced internal short circuits within CH 4 -air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH 4 -air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl 2 ) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.
Effects of bicarbonate on lithium transport in human red cells
1978-01-01
Lithium influx into human erythrocytes increased 12-fold, when chloride was replaced with bicarbonate in a 150 mM lithium medium (38 degrees C. pH 7.4). The increase was linearly related to both lithium- and bicarbonate concentration, and was completely eliminated by the amino reagent 4, 4'- diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). DIDS binds to an integral membrane protein (mol wt approximately 10(5) dalton) involved in anion exchange. Inhibition of both anion exchange and of bicarbonate-stimulated lithium influx was linearly related to DIDS binding. 1.1 X 10(6) DIDS molecules per cell caused complete inhibition of both processes. Both Cl- and Li+ can apparently be transported by the anion transport mechanism. The results support our previous proposal that bicarbonate-induced lithium permeability is due to transport of lithium-carbonate ion pairs (LiCO-3). DIDS-sensitive lithium influx had a high activation energy (24 kcal/mol), compatible with transport by the anion exchange mechanism. We have examined how variations of passive lithium permeability, induced by bicarbonate, affect the sodium-driven lithium counter-transport in human erythrocytes. The ability of the counter-transport system to establish a lithium gradient across the membrane decrease linearly with bicarbonate concentration in the medium. The counter-transport system was unaffected by DIDS treatement. At a plasma bicarbonate concentration of 24 mM, two-thirds of the lithium influx is mediated by the bicarbonate-stimulated pathway, and the fraction will increase significantly in metabolic alkalosis. PMID:670928
Simulations of Lithium-Magnetite Electrodes Incorporating Phase Change
Knehr, Kevin W.; Cama, Christina A.; Brady, Nicholas W.; ...
2017-04-09
In this work, the phase changes occurring in magnetite (Fe 3O 4) during lithiation and voltage recovery experiments are modeled using a model that simulates the electrochemical performance of a Fe 3O 4 electrode by coupling the lithium transport in the agglomerate and nano-crystal length-scales to thermodynamic and kinetic expressions. Phase changes are described using kinetic expressions based on the Avrami theory for nucleation and growth. Also, simulated results indicate that the slow, linear voltage change observed at long times during the voltage recovery experiments can be attributed to a slow phase change from α-Li xFe 3O 4 to β-Limore » 4Fe 3O 4. In addition, the long voltage plateau at ~1.2 V observed during lithiation of electrodes is attributed to conversion from α-Li xFe 3O 4 to γ-(4 Li 2O + 3 Fe). Simulations for the lithiation of 6 and 32 nm Fe 3O 4 suggest the rate of conversion to γ-(4 Li 2O + 3 Fe) decreases with decreasing crystal size.« less
In Situ XAS and XRD Studies of Substituted Spinel Lithium Manganese Oxides in the 4-5 V Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBreen, J.; Mukerjee, S.; Yang, X. Q.
Partial substitution of Mn in lithium manganese oxide spinel materials by Cu and Ni greatly affects the electrochemistry and the phase behavior of the cathode. Substitution with either metal or with a combination of both shortens the 4.2 V plateau and results in higher voltage plateaus. In situ x-ray absorption (XAS) studies indicate that the higher voltage plateaus are related to redox processes on the substituents. In situ x-ray diffraction (XRD) on LiCu{sub 0.5}Mn{sub 1.5}O{sub 4} shows single phase behavior during the charge and discharge process. Three phases are observed for LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and two phases are observedmore » in the case of LiNi{sub 0.25}Cu{sub 0.25}Mn{sub 1.5}O{sub 4}. The electrolyte stability is dependent on both the operating voltage and the cathode composition. Even though Ni substituted materials have lower voltages, the electrolyte is more stable in cells with the Cu substituted materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui, E-mail: liuenhui99@sina.com.cn
Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl{sub 2} and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a currentmore » density of 100 mA g{sup −1}, the carbon without activation shows a first discharge capacity of 515 mAh g{sup −1}. After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl{sub 2} and KOH activation was 1010 and 2085 mAh g{sup −1}, respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g{sup −1} after 20 cycles, which was much better than that activated by ZnCl{sub 2}. These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.« less
Ban, Chunmei; Wu, Zhuangchun; Dillon, Anne C.
2017-01-10
An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).
Structure Stabilization by Mixed Anions in Oxyfluoride Cathodes for High-Energy Lithium Batteries
Kim, Sung-Wook; Pereira, Nathalie; Chernova, Natasha A.; ...
2015-08-24
Mixed-anion oxyfluorides (i.e., FeO xF 2-x) are an appealing alternative to pure fluorides as high-capacity cathodes in lithium batteries, with enhanced cyclability via oxygen substitution. Yet, it is still unclear how the mixed anions impact the local phase transformation and structural stability of oxyfluorides during cycling due to the complexity of electrochemical reactions, involving both lithium intercalation and conversion. Herein, we investigated the local chemical and structural ordering in FeO 0.7F 1.3 at length scales spanning from single particles to the bulk electrode, via a combination of electron spectrum-imaging, magnetization, electrochemistry, and synchrotron X-ray measurements. The FeO 0.7F 1.3more » nanoparticles retain a FeF 2-like rutile structure but chemically heterogeneous, with an F-rich core covered by thin O-rich shell. Upon lithiation the O-rich rutile phase is transformed into Li—Fe—O(—F) rocksalt that has high lattice coherency with converted metallic Fe, a feature that may facilitate the local electron and ion transport. The O-rich rocksalt is highly stable over lithiation/delithiation and thus advantageous to maintain the integrity of the particle, and due to its predominant distribution on the surface, it is expected to prevent the catalytic interaction of Fe with electrolyte. Our findings of the structural origin of cycling stability in oxyfluorides may provide insights into developing viable high-energy electrodes for lithium batteries.« less
Zhang, Tao; He, Yaqun; Wang, Fangfang; Ge, Linhan; Zhu, Xiangnan; Li, Hong
2014-06-01
Mineral processing operation is a critical step in any recycling process to realize liberation, separation and concentration of the target parts. Developing effective recycling methods to recover all the valuable parts from spent lithium-ion batteries is in great necessity. The aim of this study is to carefully undertake chemical and process mineralogical characterizations of spent lithium-ion batteries by coupling several analytical techniques to provide basic information for the researches on effective mechanical crushing and separation methods in recycling process. The results show that the grade of Co, Cu and Al is fairly high in spent lithium ion batteries and up to 17.62 wt.%, 7.17 wt.% and 21.60 wt.%. Spent lithium-ion batteries have good selective crushing property, the crushed products could be divided into three parts, they are Al-enriched fraction (+2 mm), Cu and Al-enriched fraction (-2+0.25 mm) and Co and graphite-enriched fraction (-0.25 mm). The mineral phase and chemical state analysis reveal the electrode materials recovered from -0.25 mm size fraction keep the original crystal forms and chemical states in lithium-ion batteries, but the surface of the powders has been coated by a certain kind of hydrocarbon. Based on these results a flowsheet to recycle spent LiBs is proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt.
Jeżowski, P; Crosnier, O; Deunf, E; Poizot, P; Béguin, F; Brousse, T
2018-02-01
Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO 2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.
Lithium prevents acrolein-induced neurotoxicity in HT22 mouse hippocampal cells.
Huang, Yingjuan; Qin, Jian; Chen, Meihui; Chao, Xiaojuan; Chen, Ziwei; Ramassamy, Charles; Pi, Rongbiao; Jin, Minghua
2014-04-01
Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde to which humans are exposed in many situations and has been implicated in neurodegenerative diseases, such as Alzheimer's disease. Lithium is demonstrated to have neuroprotective and neurotrophic effects in brain ischemia, trauma, neurodegenerative disorders, and psychiatric disorders. Previously we have found that acrolein induced neuronal death in HT22 mouse hippocampal cells. In this study, the effects of lithium on the acrolein-induced neurotoxicity in HT22 cells as well as its mechanism(s) were investigated. We found that lithium protected HT22 cells against acrolein-induced damage by the attenuation of reactive oxygen species and the enhancement of the glutathione level. Lithium also attenuated the mitochondrial dysfunction caused by acrolein. Furthermore, lithium significantly increased the level of phospho-glycogen synthase kinase-3 beta (GSK-3β), the non-activated GSK-3β. Taken together, our findings suggest that lithium is a protective agent for acrolein-related neurotoxicity.
Protection of tokamak plasma facing components by a capillary porous system with lithium
NASA Astrophysics Data System (ADS)
Lyublinski, I.; Vertkov, A.; Mirnov, S.; Lazarev, V.
2015-08-01
Development of plasma facing material (PFM) based on the Capillary-Porous System (CPS) with lithium and activity on realization of lithium application strategy are addressed to meet the challenges under the creation of steady-state tokamak fusion reactor and fusion neutron source. Presented overview of experimental study of lithium CPS in plasma devices demonstrates the progress in protection of tokamak plasma facing components (PFC) from damage, stabilization and self-renewal of liquid lithium surface, elimination of plasma pollution and lithium accumulation in tokamak chamber. The possibility of PFC protection from the high power load related to cooling of the tokamak boundary plasma by radiation of non-fully stripped lithium ions supported by experimental results. This approach demonstrated in scheme of closed loops of Li circulation in the tokamak vacuum chamber and realized in a series of design of tokamak in-vessel elements.
Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt
NASA Astrophysics Data System (ADS)
Jeżowski, P.; Crosnier, O.; Deunf, E.; Poizot, P.; Béguin, F.; Brousse, T.
2018-02-01
Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.
Electrochemical cell and method of assembly
Shimotake, Hiroshi; Voss, Ernst C. H.; Bartholme, Louis G.
1979-01-01
A method of preparing an electrochemical cell is disclosed which permits the assembly to be accomplished in air. The cell includes a metal sulfide as the positive electrode reactant, lithium alloy as the negative electrode reactant and an alkali metal, molten salt electrolyte. Positive electrode reactant is introduced as Li.sub.2 FeS.sub.2, a single-phase compound produced by the reaction of Li.sub.2 S and FeS. The use of this compound permits introduction of lithium in an oxidized form. Additional lithium can be introduced in the negative electrode structure enclosed within an aluminum foil envelope between layers of porous aluminum. Molten salt electrolyte is added after assembly and evacuation of the cell by including an interelectrode separator that has been prewet with an organic solution of KCl.
Separation of Californium from other Actinides
Mailen, J C; Ferris, L M
1973-09-25
A method is provided for separating californium from a fused fluoride composition containing californium and at least one element selected from the group consisting of plutonium, americium, curium, uranium, thorium, and protactinium which comprises contacting said fluoride composition with a liquid bismuth phase containing sufficient lithium or thorium to effect transfer of said actinides to the bismuth phase and then contacting the liquid bismuth phase with molten LiCl to effect selective transfer of californium to the chloride phase.
Ion-dipole interactions in concentrated organic electrolytes.
Chagnes, Alexandre; Nicolis, Stamatios; Carré, Bernard; Willmann, Patrick; Lemordant, Daniel
2003-06-16
An algorithm is proposed for calculating the energy of ion-dipole interactions in concentrated organic electrolytes. The ion-dipole interactions increase with increasing salt concentration and must be taken into account when the activation energy for the conductivity is calculated. In this case, the contribution of ion-dipole interactions to the activation energy for this transport process is of the same order of magnitude as the contribution of ion-ion interactions. The ion-dipole interaction energy was calculated for a cell of eight ions, alternatingly anions and cations, placed on the vertices of an expanded cubic lattice whose parameter is related to the mean interionic distance (pseudolattice theory). The solvent dipoles were introduced randomly into the cell by assuming a randomness compacity of 0.58. The energy of the dipole assembly in the cell was minimized by using a Newton-Raphson numerical method. The dielectric field gradient around ions was taken into account by a distance parameter and a dielectric constant of epsilon = 3 at the surfaces of the ions. A fair agreement between experimental and calculated activation energy has been found for systems composed of gamma-butyrolactone (BL) as solvent and lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate (LiAsF6), and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) as salts.
NASA Astrophysics Data System (ADS)
Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.
The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.
Evolution of the lithium morphology from cycling of thin film solid state batteries
Dudney, Nancy J.
2017-03-11
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Evolution of the lithium morphology from cycling of thin film solid state batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J.
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries
Oumellal, Yassine; Bonnet, Jean-Pierre
2015-01-01
Summary The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0) and the lowest electrode polarization (<0.2 V) for conversion materials. Conversion process reaction mechanisms with lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent nano-research prospects which share the knowledge of both hydrogen-storage and lithium-anode communities. PMID:26425434
Enabling High Energy Density Li-Ion Batteries through Li{sub 2}O Activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai
2016-09-01
Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and themore » abnormal high capacity associated with these high energy cathode materials.« less
Stabilities and defect-mediated lithium-ion conduction in a ground state cubic Li 3 N structure
Nguyen, Manh Cuong; Hoang, Khang; Wang, Cai-Zhuang; ...
2016-01-07
A stable ground state structure with cubic symmetry of Li 3N (c-Li 3N) is found by ab initio initially symmetric random-generated crystal structure search method. Gibbs free energy, calculated within quasi-harmonic approximation, shows that c-Li 3N is the ground state structure for a wide range of temperature. The c-Li 3N structure has a negative thermal expansion coefficient at temperatures lower than room temperature, due mainly to two transverse acoustic phonon modes. This c-Li 3N phase is a semiconductor with an indirect band gap of 1.90 eV within hybrid density functional calculation. We also investigate the migration and energetics of nativemore » point defects in c-Li 3N, including lithium and nitrogen vacancies, interstitials, and anti-site defects. Lithium interstitials are found to have a very low migration barrier (~0.12 eV) and the lowest formation energy among all possible defects. Thus, the ionic conduction in c-Li 3N is expected to occur via an interstitial mechanism, in contrast to that in the well-known α-Li 3N phase which occurs via a vacancy mechanism.« less
Luo, Yan; Li, Jiao; Huang, Jianguo
2016-11-29
A new bioinspired hierarchical nanofibrous silver-nanoparticle/anatase-rutile-titania (Ag-NP/A-R-titania) composite was fabricated by employing a natural cellulose substance (e.g., commercial laboratory cellulose filter paper) as the structural scaffold template, which was composed of anatase-phase titania (A-titania) nanotubes with rutile-phase titania (R-titania) nanoneedles grown on the surfaces and further silver nanoparticles (AgNPs) immobilized thereon. As it was employed as an anode material for lithium-ion batteries (LIBs), high reversible capacity, enhanced rate performance, and excellent cycling stability were achieved as compared with those of the corresponding cellulose-substance-derived nanotubular A-titania, R-titania, heterogeneous anatase/rutile titania (A-R-titania) composite, and commercial P25 powder. This benefited from its unique porous cross-linked three-dimensional structure inherited from the initial cellulose substance scaffold, which enhances the sufficient electrode/electrolyte contact, relieves the severe volume change upon cycling, and improves the amount of lithium-ion storage; moreover, the high loading content of the silver component in the composite improves the electrical conductivity of the electrode. The structural integrity of the composite was maintained upon long-term charge/discharge cycling, indicating its significant stability.
Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; ...
2017-01-05
The price of the cathode active materials in lithium ion batteries is a key cost driver and thus significantly impacts consumer adoption of devices that utilize large energy storage contents (e.g. electric vehicles). A process model has been developed and used to study the production process of a common lithium-ion cathode material, lithiated nickel manganese cobalt oxide, using the co-precipitation method. The process was simulated for a plant producing 6500 kg day –1. The results indicate that the process will consume approximately 4 kWh kg NMC –1 of energy, 15 L kg NMC –1 of process water, and cost $23more » to produce a kg of Li-NMC333. The calculations were extended to compare the production cost using two co-precipitation reactions (with Na 2CO 3 and NaOH), and similar cathode active materials such as lithium manganese oxide and lithium nickel cobalt aluminum oxide. Finally, a combination of cost saving opportunities show the possibility to reduce the cost of the cathode material by 19%.« less
Tomczuk, Zygmunt; Olszanski, Theodore W.; Battles, James E.
1977-03-08
A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such as solid lithium-aluminum filled within a substrate of metal foam are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.H.; Erck, R.; Park, E.T.
1997-04-01
Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calciummore » alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.« less
Kim, Hyungsub; Park, Inchul; Seo, Dong-Hwa; Lee, Seongsu; Kim, Sung-Wook; Kwon, Woo Jun; Park, Young-Uk; Kim, Chul Sung; Jeon, Seokwoo; Kang, Kisuk
2012-06-27
New iron-based mixed-polyanion compounds Li(x)Na(4-x)Fe(3)(PO(4))(2)(P(2)O(7)) (x = 0-3) were synthesized, and their crystal structures were determined. The new compounds contained three-dimensional (3D)sodium/lithium paths supported by P(2)O(7) pillars in the crystal. First principles calculations identified the complex 3D paths with their activation barriers and revealed them as fast ionic conductors. The reversible electrode operation was found in both Li and Na cells with capacities of one-electron reaction per Fe atom, 140 and 129 mAh g(-1), respectively. The redox potential of each phase was ∼3.4 V (vs Li) for the Li-ion cell and ∼3.2 V (vs Na) for the Na-ion cell. The properties of high power, small volume change, and high thermal stability were also recognized, presenting this new compound as a potential competitor to other iron-based electrodes such as Li(2)FeP(2)O(7), Li(2)FePO(4)F, and LiFePO(4).