Sample records for lithium borate buffer

  1. Method of recycling lithium borate to lithium borohydride through methyl borate

    DOEpatents

    Filby, Evan E.

    1977-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

  2. Combined effects of lithium and borate ions on the hydration of calcium sulfoaluminate cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr; Dhoury, Mélanie; Champenois, Jean-Baptiste

    This work investigates the combined influence of borate and lithium ions on the hydration of two calcium sulfoaluminate (CSA) cements containing 0 or 10 wt% gypsum. On the one hand, borates are known to retard CSA cement hydration due to the rapid precipitation of ulexite. On the other hand, lithium ions accelerate CSA cement hydration thanks to the fast precipitation of Li-containing aluminum hydroxide. When borates and lithium are present simultaneously, these two mechanisms are superimposed. With a gypsum-free cement, a third process is additionally observed: lithium promotes the initial precipitation of a borated AFm phase which is later convertedmore » into a borated AFt phase when hydration accelerates. Lithium salts can counteract the retardation by sodium borate. However, their influence is limited once a sufficient amount of Li-containing Al(OH){sub 3} seeds is formed. For the CSA cements under investigation, the threshold lithium concentration is close to 0.03 mmol/g of cement and similar with or without borate.« less

  3. Method of recycling lithium borate to lithium borohydride through diborane

    DOEpatents

    Filby, Evan E.

    1976-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

  4. Thermoluminescence response of rare earth activated zinc lithium borate glass

    NASA Astrophysics Data System (ADS)

    Saidu, A.; Wagiran, H.; Saeed, M. A.; Obayes, H. K.; Bala, A.; Usman, F.

    2018-03-01

    New glasses of zinc lithium borate doped with terbium oxide were synthesized by high temperature solid-state reaction. The amorphous nature of the glasses was confirmed using x-ray diffraction analysis (XRD). Thermoluminescence (TL) response of pure zinc lithium borate (ZLB) and zinc lithium borate doped with terbium (ZLB: Tb) exposed to gamma radiation was measured and compared. There is significant enhancement in the TL yields of ZLB: Tb compared to that of pure ZLB. Effect of varying concentration of dopant (Tb4O7) on the TL response of zinc lithium borate was investigated. 0.3 mol% concentration of Tb exhibited strongest TL intensity. Thermoluminescence curve of the phosphor consist of single isolated peak. The TL response of the new materials to the exposed radiation is linear within 0.5-100 Gy range of dose with sublinearity at the lower region of the curve. High sensitivity was exhibited by the new amorphous materials. Reproducibility, thermal fading and energy response of the proposed TLD were investigated and shows remarkable result that made the phosphor suitable for radiation dosimetry.

  5. Thermal property of holmium doped lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-04-01

    The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.

  6. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    NASA Astrophysics Data System (ADS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  7. The preparation and characterization of a lithium borate glass prepared by the gel technique

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Neilson, G. F.; Smith, G. L.; Dunn, B.; Moore, G. S.; Mackenzie, J. D.

    1985-01-01

    The preparation of an amorphous lithium borate gel by the metal organic procedure is described. In addition, a preliminary evaluation of the behavior of the gel upon heating is given. In particular the crystallization tendency of the gel is studied with the aid of DTA and X-ray diffraction, and the structural changes in the gel are monitored with the aid of IR spectroscopy. The glass produced from the lithium borate gel is compared to both the gel precursor material and a glass of similar composition prepared by conventional techniques. Specifically, the relevant water contents, crystallization behavior, and structural features are contrasted.

  8. Structural and Luminescent property of Holmium doped Borate Glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-02-01

    Holmium doped Lithium Lead Borate glasses of different compositions were prepared by melt quenching technique. Fourier transform infrared investigations on lithium lead borate glasses have been made to study the local order and vibrations of atoms in the glass network and it contains mainly BO3 and BO4 structural units. Photoluminescence techniques were employed to investigate the luminescent property of these glasses excited at 451nm. Blue emission have been observed from the transition 495 (5F3 → 5I8).

  9. Tris-borate is a poor counterion for RNA: a cautionary tale for RNA folding studies

    PubMed Central

    Buchmueller, Karen L.; Weeks, Kevin M.

    2004-01-01

    Native polyacrylamide gel electrophoresis is a powerful approach for visualizing RNA folding states and folding intermediates. Tris-borate has a high-buffering capacity and is therefore widely used in electrophoresis-based investigations of RNA structure and folding. However, the effectiveness of Tris-borate as a counterion for RNA has not been systematically investigated. In a recirculated Hepes/KCl buffer, the catalytic core of the bI5 group I intron RNA undergoes a conformational collapse characterized by a bulk transition midpoint, or Mg1/2, of ∼3 mM, consistent with extensive independent biochemical experiments. In contrast, in Tris-borate, RNA collapse has a much smaller apparent Mg1/2, equal to 0.1 mM, because in this buffer the RNA undergoes a different, large amplitude, folding transition at low Mg2+ concentrations. Analysis of structural neighbors using a short-lived, RNA-tethered, photocrosslinker indicates that the global RNA structure eventually converges in the two buffer systems, as the divalent ion concentration approaches ∼1 mM Mg2+. The weak capacity of Tris-borate to stabilize RNA folding may reflect relatively unfavorable interactions between the bulky Tris-borate ion and RNA or partial coordination of RNA functional groups by borate. Under some conditions, Tris-borate is a poor counterion for RNA and its use merits careful evaluation in RNA folding studies. PMID:15601995

  10. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis(fluorosulfonyl)imide electrolytes

    NASA Astrophysics Data System (ADS)

    Park, Kisung; Yu, Sunghun; Lee, Chulhaeng; Lee, Hochun

    2015-11-01

    Lithium bis(fluorosulfonyl)imide (LiFSI) is a promising salt that can possibly overcome the limitations of lithium hexafluorophosphate (LiPF6) in current Li-ion batteries (LIBs). Aluminum (Al) corrosion issue, however, is a major bottleneck for the wide use of LiFSI. This study investigates lithium borate salts as Al corrosion inhibitors in LiFSI electrolytes. Through a systematic comparison among lithium tetrafluoroborate (LiBF4), lithium bis(oxalato)borate (LiBOB), and lithium difluoro(oxalato)borate (LiDFOB), and LiPF6, the inhibition ability of the additives is revealed to be in the following order: LiDFOB > LiBF4 ≈ LiPF6 > LiBOB. In particular, the inhibition effect of LiDFOB is outstanding; the anodic behavior of Al in 0.8 M LiFSI + 0.2 M LiDFOB ethylene carbonate (EC)-based electrolyte is comparable to that of corrosion-free 1 M LiPF6 solution. The superior inhibition ability of LiDFOB is attributed to the formation of a passive layer composed of Al-F, Al2O3, and B-O species, as evidenced by X-ray photoelectron spectroscopy (XPS) measurements. A LiCoO2/graphite cell with 0.8 M LiFSI + 0.2 M LiDFOB electrolyte exhibits a rate capability comparable to a cell with 1 M LiPF6 solution, whereas a cell with 0.8 M LiFSI solution without LiDFOB suffers from poor power performance resulting from severe Al corrosion.

  11. Effect of the adsorption of lithium and borate species on the zeta potential of particles of cobalt ferrite, nickel ferrite, and magnetite.

    PubMed

    Barale, M; Lefèvre, G; Carrette, F; Catalette, H; Fédoroff, M; Cote, G

    2008-12-01

    Zetametric measurements on suspensions of oxide particles (cobalt ferrite, nickel ferrite, and magnetite) representative of corrosion products from primary circuits of pressurized water reactors were performed at 25 and 70 degrees C in the presence of lithium and borate species. No effect of lithium ions was observed. Borate species cause a decrease of the isoelectric point (IEP), attributed to the sorption of borate as a negative complex MOB(OH)3(-). A predictive model based on thermodynamic calculations (2-pK and diffuse layer models) of the surface acidity constants from the data of acid-base titrations combined with an empirical relationship between the surface potential Psi 0 and the zeta potential determined by zetametry was developed. A whole set of parameters valid at 25 degrees C, in a range of ionic strength between 10(-4) and 10(-2) molL(-1) and in a range of pH between 4 and 8, was determined for this model. Increase of temperature to 70 degrees C in the presence of borate results in a decrease of IEP for cobalt ferrite and an increase of the IEP for nickel ferrite.

  12. Optical and physical properties of samarium doped lithium diborate glasses

    NASA Astrophysics Data System (ADS)

    Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna

    2018-05-01

    Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 < x < 2 mole. %) were prepared by melt quenching method. The addition of modifier oxide to vitreous B2O3 modifies the glass network by converting three coordinated trigonal boron units (BO3) to weaker anionic four coordinated tetrahedral borons (BO4). The decrease in density and increase in molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average separation of boron-boron atoms with VmB clearly indicates deterioration of borate glass network, which in turn leads to decrease in the oxygen packing density. The replacements of Sm2O3 for PbO depolymerise the chain structure and that would increase the concentration of non-bridging oxygens. The marginal increase of optical band gap energy after 1.0 mol.% of Sm2O3 is explained by considering the structural modification in lead-borate. The influence of Sm3+ ion on physical and optical properties in lithium-lead-borate glasses is investigated and the results were discussed in view of the structure of borate glass network.

  13. Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li-O 2 Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Kah Chun; Lu, Jun; Low, John

    2014-03-13

    The stability of the lithium bis(oxalate) borate (LiBOB) salt against lithium peroxide (Li2O2) in an aprotic Li-O2 cell is investigated. From theoretical and experimental findings, we find that the chemical decomposition of LiBOB in electrolytes leads to the formation lithium oxalate during discharge of a Li-O2 cell. According to DFT calculations, the formation of lithium oxalate as the reaction product is exothermic, and therefore is thermodynamically feasible. This reaction seems to be independent of solvents used in the Li-O2 cell, and therefore LiBOB is probably not suitable to be used as the salt in Li-O2 cell electrolytes.

  14. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  15. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions

    PubMed Central

    Tanti, N.C.; Jones, L.; Sheardown, H.

    2010-01-01

    Purpose Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. Methods An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate  (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Results Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of β1 and α3 integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Conclusions Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells. PMID:20169012

  16. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions.

    PubMed

    Gorbet, M B; Tanti, N C; Jones, L; Sheardown, H

    2010-02-19

    Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of beta(1) and alpha(3) integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells.

  17. Investigation of passive films formed on the surface of alloy 690 in borate buffer solution

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Wenli, Guo

    2015-10-01

    The passive film formed on the surface of the alloy 690 in borate buffer solution was studied by potentiodynamic curves and electrochemical impedance spectroscopy. With the increasing of the passivation potential, the corrosion resistance of the alloy 690 reduced. Moreover, the corrosion resistance of the passive film was the lowest in the vicinity of 0.6 VSCE. These results were supported by XPS and Mott-Schottky analyses. The corrosion resistance of the alloy 690 increased with the increasing of passivated potential in borate buffer solution with chloride ion. The chloride ion decreased corrosion resistance of the alloy 690 according to point defect model.

  18. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  19. Striking Effects of Storage Buffers on Apparent Half-Lives of the Activity of Pseudomonas aeruginosa Arylsulfatase.

    PubMed

    Li, Yuwei; Yang, Xiaolan; Wang, Deqiang; Hu, Xiaolei; Yuan, Mei; Pu, Jun; Zhan, Chang-Guo; Yang, Zhaoyong; Liao, Fei

    2016-08-01

    To obtain the label enzyme for enzyme-linked-immunoabsorbent-assay of two components each time in one well with conventional microplate readers, molecular engineering of Pseudomonas aeruginosa arylsulfatase (PAAS) is needed. To compare thermostability of PAAS/mutants of limited purity, effects of buffers on the half-activity time (t 0.5) at 37 °C were tested. At pH 7.4, PAAS showed non-exponential decreases of activity, with the apparent t 0.5 of ~6.0 days in 50 mM HEPES, but ~42 days in 10 mM sodium borate with >85 % activity after 15 days; protein concentrations in both buffers decreased at slower rates after there were significant decreases of activities. Additionally, the apparent t 0.5 of PAAS was ~14 days in 50 mM Tris-HCl, and ~21 days in 10 mM sodium phosphate. By sodium dodecyl-polyacrylamide gel electrophoresis, the purified PAAS gave single polypeptide; after storage for 14 days at 37 °C, there were many soluble and insoluble fragmented polypeptides in the HEPES buffer, but just one principal insoluble while negligible soluble fragmented polypeptides in the borate buffer. Of tested mutants in the neutral borate buffer, rates for activity decreases and polypeptide degradation were slower than in the HEPES buffer. Hence, dilute neutral borate buffers were favorable for examining thermostability of PAAS/mutants.

  20. Crystallization of lithium borate glasses

    NASA Technical Reports Server (NTRS)

    Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.

    1992-01-01

    The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.

  1. Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li–O 2 Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Kah Chun; Lu, Jun; Low, John

    2014-03-13

    The stability of the lithium bis(oxalate) borate (LiBOB) salt against lithium peroxide (Li 2O 2) formation in an aprotic Li–O 2 (Li–air) battery is investigated. From theoretical and experimental findings, we find that the chemical decomposition of LiBOB in electrolytes leads to the formation lithium oxalate during the discharge of a Li–O 2 cell. According to density functional theory (DFT) calculations, the formation of lithium oxalate as the reaction product is exothermic and therefore is thermodynamically feasible. This reaction seems to be independent of solvents used in the Li–O 2 cell, and therefore LiBOB is probably not suitable to bemore » used as the salt in Li–O 2 cell electrolytes.« less

  2. Nonclinical safety evaluation of boric acid and a novel borate-buffered contact lens multi-purpose solution, Biotrue™ multi-purpose solution.

    PubMed

    Lehmann, David M; Cavet, Megan E; Richardson, Mary E

    2010-12-01

    Multipurpose solutions (MPS) often contain low concentrations of boric acid as a buffering agent. Limited published literature has suggested that boric acid and borate-buffered MPS may alter the corneal epithelium; an effect attributed to cytotoxicity induced by boric acid. However, this claim has not been substantiated. We investigated the effect of treating cells with relevant concentrations of boric acid using two cytotoxicity assays, and also assessed the impact of boric acid on corneal epithelial barrier function by measuring TEER and immunostaining for tight junction protein ZO-1 in human corneal epithelial cells. Boric acid was also assessed in an in vivo ocular model when administered for 28 days. Additionally, we evaluated Biotrue multi-purpose solution, a novel borate-buffered MPS, alone and with contact lenses for ocular compatibility in vitro and in vivo. Boric acid passed both cytotoxicity assays and did not alter ZO-1 distribution or corneal TEER. Furthermore, boric acid was well-tolerated on-eye following repeated administration in a rabbit model. Finally, Biotrue multi-purpose solution demonstrated good ocular biocompatibility both in vitro and in vivo. This MPS was not cytotoxic and was compatible with the eye when administered alone and when evaluated with contact lenses. We demonstrate that boric acid and a borate-buffered MPS is compatible with the ocular environment. Our findings provide evidence that ocular effects reported for some borate-buffered MPS may be incorrectly attributed to boric acid and are more likely a function of the unique combination of ingredients in the MPS formulation tested. Copyright © 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  3. Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate

    DOE PAGES

    Begishev, I. A.; Bromage, J.; Yang, S. T.; ...

    2018-05-16

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Furthermore, energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  4. Record fifth-harmonic-generation efficiency producing 211  nm, joule-level pulses using cesium lithium borate

    DOE PAGES

    Begishev, I. A.; Bromage, J.; Yang, S. T.; ...

    2018-01-01

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  5. Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begishev, I. A.; Bromage, J.; Yang, S. T.

    The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 nm and 266 nm, producing 211-nm pulses. Flattopped beam profiles and pulse shapes optimize efficiency. Furthermore, energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

  6. Structural studies of lead lithium borate glasses doped with silver oxide.

    PubMed

    Coelho, João; Freire, Cristina; Hussain, N Sooraj

    2012-02-01

    Silver oxide doped lead lithium borate (LLB) glasses have been prepared and characterized. Structural and composition characterization were accessed by XRD, FTIR, Raman, SEM and EDS. Results from FTIR and Raman spectra indicate that Ag(2)O acts as a network modifier even at small quantities by converting three coordinated to four coordinated boron atoms. Other physical properties, such as density, molar volume and optical basicity are also evaluated. Furthermore, they are also affected by the silver oxide composition. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    NASA Astrophysics Data System (ADS)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  8. Lithium tri borate (LiB3O5) embedded polymer electret for mechanical sensing application

    NASA Astrophysics Data System (ADS)

    Murugan, S.; Praveen, E.; Prasad, M. V. N.; Jayakumar, K.

    2017-05-01

    Lithium tri borate (LiB3O5) particles were synthesized by precipitation assisted high temperature solid state reaction. The particles were embedded in chitosan polymer and used as an electret. This electret was characterized for the suitability as a sensing element in vibration accelerometer. It is observed that LiB3O5 embedded electret exhibiting piezoelectric property. The electret is also giving an isolation of > 999 MΩ at 100 Vdc, 250 Vdc, 500 Vdc and 1kVdc confirms compatible for intrinsically safe sensing alternative in vibration accelerometer.

  9. Crystal nucleation in lithium borate glass

    NASA Technical Reports Server (NTRS)

    Smith, Gary L.; Neilson, George F.; Weinberg, Michael C.

    1988-01-01

    Crystal nucleation measurements were made on three lithium borate compositions in the vicinity of Li2O-2Br2O3. All nucleation measurements were performed at 500 C. Certain aspects of the nucleation behavior indicated (tentatively) that it proceeded by a homogeneous mechanism. The steady state nucleation rate was observed to have the largest value when the Li2O concentration was slightly in excess of the diborate composition. The change in nucleation rate with composition is controlled by the variation of viscosity as well as the change in free energy with composition. The variation of nucleation rate is explained qualitatively in these terms.

  10. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    DOE PAGES

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; ...

    2015-04-27

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  11. Study of the response of a lithium yttrium borate scintillator based neutron rem counter by Monte Carlo radiation transport simulations

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.

    2015-12-01

    The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.

  12. Report of the key comparison APMP.QM-K19. APMP comparison on pH measurement of borate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Obromsook, Krairerk; Tangpaisarnkul, Nongluck; Rodruangthum, Patumporn; Wong, Siu-Kay; Lam, Wai-Hing; Zakaria, Osman; Anuar Mohd. Amin, Khirul; Thanh, Ngo Huy; Máriássy, Michal; Vyskocil, Leos; Hankova, Zuzana; Fisicaro, Paola; Stoica, Daniela; Singh, Nahar; Soni, Daya; Ticona Canaza, Galia; Kutovoy, Viatcheslav; Barbieri Gonzaga, Fabiano; Dias, Júlio Cesar; Vospelova, Alena; Bakovets, Nickolay; Zhanasbayeva, Bibinur

    2015-01-01

    The APMP.QM-K19 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a borate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan (NMIJ) and the National Institute of Metrology (Thailand) (NIMT) at the APMP-TCQM meeting held 26-27 November 2012. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K19 and CCQM-K19.1. The comparison material was a borate buffer of pH around 9.2 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the second APMP key comparison on pH measurement and the fourth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006 and APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011. The results can be used further by any participant to support its CMC claim at least for a borate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. Thermoluminescent properties of rare earth doped lithium strontium borate phosphors

    NASA Astrophysics Data System (ADS)

    Jakathamani, S.; Annalakshmi, O.; Jose, M. T.

    2018-04-01

    Thermoluminescence (TL) of borates is remarkable in the field of radiation dosimetry because they can detect both neutron and gamma radiations. Usually, the TL efficiency of pure borates is low and hence dopants have to be added to increase their TL output. Their sensitivity and thermal stability vary widely and depend strongly on the preparation method. In this study polycrystalline powders of different rare earth doped thermoluminescent phosphors of Lithium Strontium borate (LSB) were synthesized by solid state sintering technique. Among the different rare earth dopants, the phosphor doped with cerium was found to have a simple glow curve structure with a dosimetric peak at around 265°C for a heating rate of 5°C/s. In order to study the effect of dopant on the TL characteristics, LSB phosphor with different concentrations of Ce dopant was synthesized and the TL intensity was found to be maximum for a dopant concentration of 0.7 mol%. All other important dosimetric characteristics like dose response and fading were carried out for the LSB:Ce (0.7 mol%) phosphor. Kinetic parameters like trap depth and frequency factor were determined using Peak shape method from Chen's equation.

  14. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    PubMed

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  15. Growth and Evaluation of Nonlinear Optical Crystals for Laser Applications: Lithium Borate, Barium Borate and Silver Gallium Selenide.

    DTIC Science & Technology

    1994-12-08

    communication 2. S. A. Kutovi, V. V. Laptev and S. Yu. Matsnev, " Lanthanum scandoborate as a new highly efficient active medium of solid state lasers," Sov. J...34Noncritical detection of tunable C02 laser radiation into green by upconversion in silver thio- gallate ," Applied Physics B53, 19 (1991). 3. N.-H

  16. Kinetic and Mechanistic Study of the pH-Dependent Activation (Epoxidation) of Prodrug Treosulfan Including the Reaction Inhibition in a Borate Buffer.

    PubMed

    Romański, Michał; Ratajczak, Whitney; Główka, Franciszek

    2017-07-01

    A prodrug treosulfan (T) undergoes a pH-dependent activation to epoxide derivatives. The process seems to involve an intramolecular Williamson reaction (IWR) but clear kinetic evidence is lacking. Moreover, a cis-diol system present in the T structure is expected to promote complexation with boric acid. As a result, the prodrug epoxidation would be inhibited; however, this phenomenon has not been investigated. In this article, the effect of pH on the kinetics of T conversion to its monoepoxide was studied from a mechanistic point of view. Also, the influence of boric acid on the reaction kinetics was examined. The rate constants observed for the activation of T (k obs ) in acetate, phosphate, and carbonate buffers satisfied the equation logk obs  = -7.48 + 0.96 pH. The reaction was inhibited in the excess of boric acid over T, and the k obs decreased with increasing borate buffer concentration. The experimental results were consistent with the inhibition model that included the formation of a tetrahedral, anionic T-boric acid monoester. To conclude, in nonborate buffers, the T activation to (2S,3S)-1,2-epoxybutane-3,4-diol 4-methanesulfonate follows IWR mechanism. A borate buffer changes the reaction kinetics and complicates kinetic analysis. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS

    PubMed Central

    Brdička, R.

    1936-01-01

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions. PMID:19872968

  18. Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Zhu, Lu; Wu, Feng; Li, Li; Zhang, Rong; Chen, Shi

    2014-01-01

    Lithium difluoromono(oxalato)borate (LiODFB) has been used as a novel lithium salt for battery in recent studies. In this study, a series of novel electrolytes has been prepared by adding 30 vol% dimethyl sulfite (DMS) or dimethyl carbonate (DMC) as co-solvent into an ethylene carbonate (EC)/ethyl methyl carbonate (EMC) + LiX mixture, in which the LiX could be LiClO4, LiODFB, LiBOB, LiTFSI, or LiCF3SO3. These ternary electrolytes have been investigated for use in lithium ion batteries. FT-IR spectroscopy analysis shows that characteristic functional groups (-CO3, -SO3) undergo red-shift or blue-shift with the addition of different lithium salts. The LiODFB-EC/EMC/DMS electrolyte exhibits high ionic conductivity, which is mainly because of the low melting point of DMS, and LiODFB possessing high solubility. The Li/MCMB cells containing this novel electrolyte exhibit high capacities, good cycling performance, and excellent rate performance. These performances are probably because both LiODFB and DMS can assist in the formation of SEI films by reductive decomposition. Additionally, the discharge capacity of Li/LiCoO2 half cell containing LiODFB-EC/EMC/DMS electrolyte is 130.9 mAh g-1 after 50 cycles, and it is very comparable with the standard-commercial electrolyte. The results show that this study produces a promising electrolyte candidate for lithium ion batteries.

  19. Effect of combinations of additives on the performance of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Santee, Stuart; Xiao, Ang; Yang, Li; Gnanaraj, Joe; Lucht, Brett L.

    Commercial lithium-ion batteries have excellent performance at room temperature for a few years. However, the calendar life and thermal stability (>50 °C) need to be improved for many applications, including electric vehicles. We have conducted an investigation of the effect of thermal stabilizing additives, including dimethyl acetamide, vinylene carbonate, and lithium bis(oxalato) borate, on the performance of lithium ion batteries stored at 70 °C for one month. The reactions of the lithium hexafluorophosphate/carbonate electrolyte, with and without electrolyte additives, with the surface of the electrodes after initial formation cycling have been analyzed via a combination of IR-ATR and XPS.

  20. Hydrothermal Crystal Growth of Lithium Tetraborate and Lithium Gamma-Metaborate

    DTIC Science & Technology

    2014-03-27

    could be atomic nuclei, the center of mass of some complex—those details are immaterial. Both the rectangle and lozenge form potential cross-sections...HR y d L Figure 10. The red lines are the various contours of solution of 9, using a = 10 Bohr radii and the mass of coefficients on the LHS forced to...absorptivity is significantly below that of the transition metals or the actinides [9]. The lithium borate crystals are therefore a strong candidate for

  1. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 2. Optimization of buffer and ionic strength using a full factorial experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Physical and optical absorption studies of Fe{sup 3+} - ions doped lithium borate glasses containing certain alkaline earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P., E-mail: pkistaiah@yahoo.com

    Iron ion doped lithium borate glasses with the composition 15RO-25Li{sub 2}O-59B{sub 2}O{sub 3}-1Fe{sub 2}O{sub 3} (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to {sup 6}A{sub 1g}(S) → 4E{sub g} (G) of Fe{sup 3+} ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties ismore » discussed.« less

  3. Evaluating electrolyte additives for lithium-ion cells: A new Figure of Merit approach

    NASA Astrophysics Data System (ADS)

    Tornheim, Adam; Peebles, Cameron; Gilbert, James A.; Sahore, Ritu; Garcia, Juan C.; Bareño, Javier; Iddir, Hakim; Liao, Chen; Abraham, Daniel P.

    2017-10-01

    Electrolyte additives are known to improve the performance of lithium-ion cells. In this work we examine the performance of Li1.03Ni0.5Mn0.3Co0.3O2-graphite (NMC532/Gr) cells containing combinations of lithium bis(oxalate)borate (LiBOB), vinylene carbonate (VC), trivinylcyclotriboroxane (tVCBO), prop-1-ene-1,3-sultone (PES), phenyl boronic acid ethylene glycol ester (PBE), tris(trimethylsilyl) phosphite (TMSPi), triethyl phosphite (TEPi), and lithium difluoro(oxalate)borate (LiDFOB) added to our baseline (1.2 M LiPF6 in EC:EMC, 3:7 w/w) electrolyte. In order to rank performance of the various electrolytes, we developed two separate figures of merit (FOM), which are based on the energy retention and power retention of the cells. Using these two metrics in conjunction, we show that only one of the fifteen electrolyte formulations tested significantly outperforms the baseline electrolyte: this electrolyte contains the 0.25 wt% tVCBO + 1 wt% TMSPi additive mix. Little correlation was observed between the FOMs for energy retention and power retention, which indicates that the mechanisms that govern these performance parameters are likely independent of each other. Our FOM approach has general applicability and can be used to develop electrolyte and electrode formulations that prolong the life of lithium-ion batteries.

  4. Evaluating electrolyte additives for lithium-ion cells: A new Figure of Merit approach

    DOE PAGES

    Tornheim, Adam; Peebles, Cameron; Gilbert, James A.; ...

    2017-09-01

    Electrolyte additives are known to improve the performance of lithium-ion cells. In this work we examine the performance of Li 1.03Ni 0.5Mn 0.3Co 0.3O 2-graphite (NMC532/Gr) cells containing combinations of lithium bis(oxalate)borate (LiBOB), vinylene carbonate (VC), trivinylcyclotriboroxane (tVCBO), prop-1-ene-1,3-sultone (PES), phenyl boronic acid ethylene glycol ester (PBE), tris(trimethylsilyl) phosphite (TMSPi), triethylphosphite (TEPi), and lithium difluoro(oxalate)borate (LiDFOB) added to our baseline (1.2M LiPF 6 in EC:EMC, 3:7 w/w) electrolyte. In order to rank performance of the various electrolytes, we developed two separate figures of merit (FOM), which are based on the energy retention and power retention of the cells. Using thesemore » two metrics in conjunction, we show that only one of the fifteen electrolyte formulations tested significantly outperforms the baseline electrolyte: this electrolyte contains the 0.25 wt% tVCBO + 1 wt% TMSPi additive mix. Little correlation was observed between the FOMs for energy retention and power retention, which indicates that the mechanisms that govern these performance parameters are likely independent of each other. In conclusion, our FOM approach has general applicability and can be used to develop electrolyte and electrode formulations that prolong the life of lithium-ion batteries.« less

  5. Evaluating electrolyte additives for lithium-ion cells: A new Figure of Merit approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tornheim, Adam; Peebles, Cameron; Gilbert, James A.

    Electrolyte additives are known to improve the performance of lithium-ion cells. In this work we examine the performance of Li 1.03Ni 0.5Mn 0.3Co 0.3O 2-graphite (NMC532/Gr) cells containing combinations of lithium bis(oxalate)borate (LiBOB), vinylene carbonate (VC), trivinylcyclotriboroxane (tVCBO), prop-1-ene-1,3-sultone (PES), phenyl boronic acid ethylene glycol ester (PBE), tris(trimethylsilyl) phosphite (TMSPi), triethylphosphite (TEPi), and lithium difluoro(oxalate)borate (LiDFOB) added to our baseline (1.2M LiPF 6 in EC:EMC, 3:7 w/w) electrolyte. In order to rank performance of the various electrolytes, we developed two separate figures of merit (FOM), which are based on the energy retention and power retention of the cells. Using thesemore » two metrics in conjunction, we show that only one of the fifteen electrolyte formulations tested significantly outperforms the baseline electrolyte: this electrolyte contains the 0.25 wt% tVCBO + 1 wt% TMSPi additive mix. Little correlation was observed between the FOMs for energy retention and power retention, which indicates that the mechanisms that govern these performance parameters are likely independent of each other. In conclusion, our FOM approach has general applicability and can be used to develop electrolyte and electrode formulations that prolong the life of lithium-ion batteries.« less

  6. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    DOE PAGES

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; ...

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10 -4 S cm -1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to t Li+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting designmore » parameters for further development of this new class of solid electrolytes.« less

  7. Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complexe.

    PubMed

    Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling

    2018-06-14

    Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.

  8. Optical absorption of Er3+ doped lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-05-01

    A new glass system Lithium lead borate doped with erbium trioxide were perpared using conventional melt quenching method. The amorphous nature of the glass samples were confirmed by XRD spectrum. The density of these glass were measured using Archmides principle, the values lie in the range from 4.27 to 4.76 g/cm-3. The corresponding molar volumes are calculated and the values are in the range of 23.81 to 26.17 cm-3. Absorption spectra were recorded in the wavelength range of 200nm to 1100nm, for the prepared glass samples. The optical direct and indirect energy band gaps were measured, the values are in the range of 2.875 to 3.254 eV and 2.25 to 2.81 eV respectively. Photoluminescence technique was employed to study the luminescent property of the prepared glasses excited at 380nm, emission spectra were recorded and analyzed.

  9. Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Abraham, D. P.; Furczon, M. M.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.

    Hybrid-electric vehicles require lithium-battery electrolytes that form stable, low impedance passivation layers to protect the electrodes, while allowing rapid lithium-ion transport under high current charge/discharge pulses. In this article, we describe data acquired on cells containing LiNi 0.8Co 0.15Al 0.05O 2-based positive electrodes, graphite-based negative electrodes, and electrolytes with lithium hexafluorophosphate (LiPF 6), lithium tetrafluoroborate (LiBF 4), lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato) borate (LiF 2OB) salts. The impedance data were collected in cells containing a Li-Sn reference electrode to determine effect of electrolyte composition and testing temperature on individual electrode impedance. The full cell impedance data showed the following trend: LiBOB > LiBF 4 > LiF 2OB > LiPF 6. The negative electrode impedance showed a trend similar to that of the full cell; this electrode was the main contributor to impedance in the LiBOB and LiBF 4 cells. The positive electrode impedance values for the LiBF 4, LiF 2OB, and LiPF 6 cells were comparable; the values were somewhat higher for the LiBOB cell. Cycling and impedance data were also obtained for cells containing additions of LiBF 4, LiBOB, LiF 2OB, and vinylene carbonate (VC) to the EC:EMC (3:7 by wt.) + 1.2 M LiPF 6 electrolyte. Our data indicate that the composition and morphology of the graphite SEI formed during the first lithiation cycle is an important determinant of the negative electrode impedance, and hence full cell impedance.

  10. The effect of MgO on the optical properties of lithium sodium borate doped with Cu+ ions

    NASA Astrophysics Data System (ADS)

    Alajerami, Yasser Saleh Mustafa; Hashim, Suhairul; Hassan, Wan Muhamad Saridan Wan; Ramli, Ahmad Termizi; Saleh, Muneer Aziz

    2013-04-01

    The current work presented the photoluminescence (PL) properties of a new glass system, which are reported for the first time. Based on the attractive properties of borate glass, a mixture of boric acid (70-x mol %) modified with lithium (20 mol %) and sodium carbonate (10 mol %) was prepared. The current study illustrated the effect of dopant and co-dopant techniques on the lithium sodium borate (LNB). Firstly, 0.1 mol % of copper ions doped with LNB was excited at 610 nm. The emission spectrum showed two prominent peaks in the violet region (403 and 440 nm). Then, we remarked the effect of adding different concentration of MgO on the optical properties of LNB. The results showed the great effect of magnesium oxide on the PL intensities (enhanced more than two times). Moreover, an obvious shifting has been defined toward the blue region (440 → 475 nm). The up-conversion optical properties were observed in all emission spectra. This enhancement is contributed to the energy transfer from MgO ions to monovalent Cu+ ion. It is well known that magnesium oxide alone generates weak emission intensity, but during this increment the MgO act as an activator (co-doped) for Cu+ ions. Finally, energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance all were measured for the current samples. The current samples were subjected to XRD for amorphous confirmation and IR for glass characterization before and after dopants addition. Finally, some of significant physical and optical parameters were also calculated.

  11. Variation of photoluminescence features in Pr{sup 3+} doped lithium-fluoro-borate glass by changing different modifier oxides (MgO, CaO, CdO and PbO)-Judd-Ofelt theory application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakrishna, A.; Rajesh, D.; Babu, S.

    2015-06-24

    Pr{sup 3+} (1.0 mol%) doped different modifier oxide based six lithium-fluoro-borate glasses with chemical composition of 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-20MO (where M= Mg, Ca, Cd and Pb), 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10MgO-10CaO and 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10CdO-10PbO were prepared by conventional melt quenching technique. Judd-Ofelt theory has been applied for evaluating the Judd-Ofelt intensity parameters for Pr{sup 3+} ion in these glass compositions and are in turn to used to predict radiative properties such as radiative transition probabilities (A{sub T}), branching ratios (β) and stimulated emission cross-section (σ{sub P}). Stimulated emission cross-section (σ{sub p}) of prominent emission transitions,more » {sup 3}P{sub 0}→{sup 3}H{sub 4} and {sup 1}D{sub 2}→{sup 3}H{sub 4} of Pr{sup 3+} ion in all lithium-fluoro-borate glasses were calculated. Among all the emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} posseses higher branching ratio and stimulated emission cross-section in Mg-Ca glass, which leads to the best laser excitation at 487 nm wavelength.« less

  12. Optical and vibrational spectroscopy of Ba0.85Ca0.15Zr0.1Ti0.9O3 modified lithium borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Viswanath, Pamarti; Prashanth, Sadhu Sai Pavan; Molli, Muralikrishna; Wicram, Jaschin Prem; Sai Muthukumar, V.

    2018-04-01

    Glass ceramics are excellent replacement for single crystalline materials which are expensive and difficult to fabricate. In this context, we have attempted to fabricate glass nanocomposites comprising of Lithium Borate glass matrix embedded with lead free ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT). Both of these functional materials are known to exhibit excellent ferroelectric behavior and are currently explored for various device applications. We have prepared these novel glass nanocomposite using melt-quenching techniquein various chemical composition involving different molar ratio. x(Ba0.85Ca0.15Zr0.1Ti0.9O3)-(1-x)(Li2O.2B2O3) where (x=0.1,0.2,0.3,0.4). The as-quenched samples exhibited amorphous nature as revealed by X-ray Diffraction studies. With the increase in BCZT content we have observed significant alteration in optical bandgap and Urbach energy. The tailoring of optical properties by tuning the structure was probed by Raman vibrational spectroscopy which confirmed the dominant role played by BCZT as a network modifier in these borate glasses. Concomitantly, these glass nanocomposites were found to be excellent UV absorbers.

  13. Lithium-ion conducting electrolyte salts for lithium batteries.

    PubMed

    Aravindan, Vanchiappan; Gnanaraj, Joe; Madhavi, Srinivasan; Liu, Hua-Kun

    2011-12-16

    This paper presents an overview of the various types of lithium salts used to conduct Li(+) ions in electrolyte solutions for lithium rechargeable batteries. More emphasis is paid towards lithium salts and their ionic conductivity in conventional solutions, solid-electrolyte interface (SEI) formation towards carbonaceous anodes and the effect of anions on the aluminium current collector. The physicochemical and functional parameters relevant to electrochemical properties, that is, electrochemical stabilities, are also presented. The new types of lithium salts, such as the bis(oxalato)borate (LiBOB), oxalyldifluoroborate (LiODFB) and fluoroalkylphosphate (LiFAP), are described in detail with their appropriate synthesis procedures, possible decomposition mechanism for SEI formation and prospect of using them in future generation lithium-ion batteries. Finally, the state-of-the-art of the system is given and some interesting strategies for the future developments are illustrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In vitro and in vivo dissolution behavior of a dysprosium lithium borate glass designed for the radiation synovectomy treatment of rheumatoid arthritis.

    PubMed

    Conzone, Samuel D; Brown, Roger F; Day, Delbert E; Ehrhardt, Gary J

    2002-05-01

    Dysprosium lithium borate (DyLB) glass microspheres were investigated for use in the radiation synovectomy treatment of rheumatoid arthritis. In vitro testing focused on weight loss and cation dissolution from glass microspheres immersed in simulated synovial fluid (SSF) at 37 degrees C for up to 64 days. In vivo testing was performed by injecting glass microspheres into the stifle joints of Sprague-Dawley rats and monitoring the biodegradability of the microspheres and the tissue response within the joints. The DyLB microspheres reacted nonuniformly in SSF with the majority of lithium and boron being dissolved, whereas nearly all of the dysprosium (>99.7%) remained in the reacted microspheres. Because the DyLB glasses released negligible amounts of dysprosium while reacting with SSF, they are considered safe for radiation synovectomy from the standpoint of unwanted radiation release from the joint capsule. Furthermore, the DyLB microspheres fragmented, degraded, and reacted with body fluids while in the joints of rats without histologic evidence of joint damage. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 260--268, 2002; DOI 10.1002/jbm.10047

  15. Photorefraction in the ultraviolet: Materials and effects

    NASA Astrophysics Data System (ADS)

    Laeri, F.; Jungen, R.; Angelow, G.; Vietze, U.; Engel, T.; Würtz, M.; Hilgenberg, D.

    1995-10-01

    Doped as well as nominally pure crystals of Lithium Niobate (LiNbO3), ι-Arginine Phosphate (LAP), Lithium Iodate (LiIO3), Potassium Dihydrogen Phosphate (KDP), Lithium Formate (LFM), Beta-Barium Borate (BBO), and lithium tetra borate were grown and investigated for photorefractive effects at ultraviolet wavelengths down to 333 nm. In nominally undoped LiNbO3 crystals strong beam coupling effects were observed. In contrast to the visible we revealed a diffusion-dominated charge transport mechanism based on holes, and a low photovoltaic field in the order of 550 V/cm. With such a crystal we investigated the modulation transfer function of a lensless image projection system based on a phase conjugation scheme. A spatial frequency response beyond 2800 line pairs per millimeter was observed. Photorefractive beam coupling was also obtained in LiIO3. Light-induced scattering was detected in iron-doped LiIO3 whereas as-grown LAP material did not exhibit any observable photorefractive effects. However, 100 kV X-ray irradiation seems to induce material defects which can lead to weak light-induced scattering at 351 nm. In all other above-mentioned materials, doped as well as undoped, light-induced scattering could not be observed. On the other hand, this is appreciated in all the applications where the crystals are used as nonlinear material for optical frequency conversion.

  16. Calibration of the borated ion chamber at NIST reactor thermal column.

    PubMed

    Wang, Z; Hertel, N E; Lennox, A

    2007-01-01

    In boron neutron capture therapy and boron neutron capture enhanced fast neutron therapy, the absorbed dose of tissue due to the boron neutron capture reaction is difficult to measure directly. This dose can be computed from the measured thermal neutron fluence rate and the (10)B concentration at the site of interest. A borated tissue-equivalent (TE) ion chamber can be used to directly measure the boron dose in a phantom under irradiation by a neutron beam. Fermilab has two Exradin 0.5 cm(3) Spokas thimble TE ion chambers, one loaded with boron, available for such measurements. At the Fermilab Neutron Therapy Facility, these ion chambers are generally used with air as the filling gas. Since alpha particles and lithium ions from the (10)B(n,alpha)(7)Li reactions have very short ranges in air, the Bragg-Gray principle may not be satisfied for the borated TE ion chamber. A calibration method is described in this paper for the determination of boron capture dose using paired ion chambers. The two TE ion chambers were calibrated in the thermal column of the National Institute of Standards and Technology (NIST) research reactor. The borated TE ion chamber is loaded with 1,000 ppm of natural boron (184 ppm of (10)B). The NIST thermal column has a cadmium ratio of greater than 400 as determined by gold activation. The thermal neutron fluence rate during the calibration was determined using a NIST fission chamber to an accuracy of 5.1%. The chambers were calibrated at two different thermal neutron fluence rates: 5.11 x 10(6) and 4.46 x 10(7)n cm(-2) s(-1). The non-borated ion chamber reading was used to subtract collected charge not due to boron neutron capture reactions. An optically thick lithium slab was used to attenuate the thermal neutrons from the neutron beam port so the responses of the chambers could be corrected for fast neutrons and gamma rays in the beam. The calibration factor of the borated ion chamber was determined to be 1.83 x 10(9) +/- 5.5% (+/- 1sigma) n cm(-2) per nC at standard temperature and pressure condition.

  17. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunchao; Wan, Shun; Veith, Gabriel M.

    2016-11-07

    Here, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), as an additive in conventional electrolyte for LiNi 0.5Mn 1.5O 4, exhibits improved coulombic efficiencies and cycling stability. Cyclic voltammograms indicate the cells with additive form good SEIs during the first cycle whereas no additive cell needs more cycles to form a functional SEI. XPS reveals LiBMFMB could reduce the decomposition of LiPF 6 salt and solvents, resulting in thinner SEI.

  18. Improving the Performance at Elevated Temperature of High Voltage Graphite/LiNi 0.5Mn 1.5O 4 Cells with Added Lithium Catechol Dimethyl Borate

    DOE PAGES

    Dong, Yingnan; Demeaux, Julien; Zhang, Yuzi; ...

    2016-12-13

    Performance of LiNi 0.5Mn 1.5O 4/graphite cells cycled to 4.8 V at 55°C with the 1.2 M LiPF 6 in EC/EMC (3/7, STD electrolyte) with and without added lithium catechol dimethyl borate (LiCDMB) has been investigated. The incorporation of 0.5 wt% LiCDMB to the STD electrolyte results in an improved capacity retention and coulombic efficiency upon cycling at 55°C. Ex-situ analysis of the electrode surfaces via a combination of SEM, TEM, and XPS reveals that oxidation of LiCDMB at high potential results in the deposition of a passivation layer on the electrode surface, preventing transition metal ion dissolution from themore » cathode and subsequent deposition on the anode. NMR investigations of the bulk electrolyte stored at 85°C reveals that added LiCDMB prevents the thermal decomposition of LiPF 6.« less

  19. Surface layer formation of LiCoO2 thin film electrodes in non-aqueous electrolyte containing lithium bis(oxalate)borate

    NASA Astrophysics Data System (ADS)

    Matsui, Masaki; Dokko, Kaoru; Akita, Yasuhiro; Munakata, Hirokazu; Kanamura, Kiyoshi

    2012-07-01

    Surface layer formation processes on a LiCoO2 thin film electrode in a non-aqueous electrolyte containing lithium bis(oxalate)borate (LiBOB) were investigated using in situ FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The in situ FTIR spectra of the electrolyte solution containing LiBOB showed that the adsorption of BOB anions on the electrode surface occurred during the charge process of the LiCoO2 thin film electrode above 4.0 V. XPS analysis for the LiCoO2 thin film electrode charged in an electrolyte containing LiBOB suggested that the adsorbed BOB anions on the electrode surface prevent the continuous decomposition of hexafluorophosphate (PF6) anions resulting in the formation of a very thin surface layer containing organic species, while the LiCoO2 charged in a LiPF6 solution had a relatively thick surface layer containing organic species and inorganic species.

  20. Improving the Performance at Elevated Temperature of High Voltage Graphite/LiNi 0.5Mn 1.5O 4 Cells with Added Lithium Catechol Dimethyl Borate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yingnan; Demeaux, Julien; Zhang, Yuzi

    Performance of LiNi 0.5Mn 1.5O 4/graphite cells cycled to 4.8 V at 55°C with the 1.2 M LiPF 6 in EC/EMC (3/7, STD electrolyte) with and without added lithium catechol dimethyl borate (LiCDMB) has been investigated. The incorporation of 0.5 wt% LiCDMB to the STD electrolyte results in an improved capacity retention and coulombic efficiency upon cycling at 55°C. Ex-situ analysis of the electrode surfaces via a combination of SEM, TEM, and XPS reveals that oxidation of LiCDMB at high potential results in the deposition of a passivation layer on the electrode surface, preventing transition metal ion dissolution from themore » cathode and subsequent deposition on the anode. NMR investigations of the bulk electrolyte stored at 85°C reveals that added LiCDMB prevents the thermal decomposition of LiPF 6.« less

  1. Insight into self-discharge of layered lithium-rich oxide cathode in carbonate-based electrolytes with and without additive

    NASA Astrophysics Data System (ADS)

    Li, Jianhui; Xing, Lidan; Zhang, Liping; Yu, Le; Fan, Weizhen; Xu, Mengqing; Li, Weishan

    2016-08-01

    Self-discharge behavior of layered lithium-rich oxide as cathode of lithium ion battery in a carbonated-based electrolyte is understood, and a simple boron-containing compound, trimethyl borate (TMB), is used as an electrolyte additive to suppress this self-discharge. It is found that layered lithium-rich oxide charged under 4.8 V in additive-free electrolyte suffers severe self-discharge and TMB is an effective electrolyte additive for self-discharge suppression. Physical characterizations from XRD, SEM, TEM, XPS and ICP-MS demonstrate that the crystal structure of the layered lithium-rich oxide collapses due to the chemical interaction between the charged oxide and electrolyte. When TMB is applied, the structural integrity of the oxide is maintained due to the protective cathode film generated from the preferential oxidation of TMB.

  2. Competitive immunoassay of phenobarbital by microchip electrophoresis with laser induced fluorescence detection.

    PubMed

    Huang, Yong; Zhao, Shulin; Shi, Ming; Liu, Jinwen; Liang, Hong

    2011-05-23

    A microchip electrophoresis method with laser induced fluorescence detection was developed for the immunoassay of phenobarbital. The detection was based on the competitive immunoreaction between analyte phenobarbital and fluorescein isothiocyanate (FITC) labeled phenobarbital with a limited amount of antibody. The assay was developed by varying the borate concentration, buffer pH, separation voltage, and incubation time. A running buffer system containing 35 mM borate and 15 mM sodium dodecyl sulfate (pH 9.5), and 2800 V separation voltage provided analysis conditions for a high-resolution, sensitive, and repeatable assay of phenobarbital. Free FITC-labeled phenobarbital and immunocomplex were separated within 30s. The calibration curve for phenobarbital had a detection limit of 3.4 nM and a range of 8.6-860.0 nM. The assay could be used to determine the phenobarbital plasma concentration in clinical plasma sample. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. D-Tagatose production in the presence of borate by resting Lactococcus lactis cells harboring Bifidobacterium longum L-arabinose isomerase.

    PubMed

    Salonen, Noora; Salonen, Kalle; Leisola, Matti; Nyyssölä, Antti

    2013-04-01

    Bifidobacterium longum NRRL B-41409 L-arabinose isomerase (L-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum L-AI were used for production of D-tagatose from D-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of D-galactose to D-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L⁻¹ substrate and at 37.5 °C after 5 days. The D-tagatose production rate of 185 g L⁻¹ day ⁻¹ was obtained at 300 g L⁻¹ galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial D-tagatose production rate was 290 g L⁻¹ day⁻¹ under these conditions.

  4. Free Available Chlorine Disinfection Criteria for Fixed Army Installation Primary Drinking Water

    DTIC Science & Technology

    1981-12-01

    Buffered Water with Fuivic Acid (5 C.U.) at pH 9 and 60C ............................................ 6. FAC Disinfection of f 2 Coliphage in Buffered Water ...with and without 250 mg/L -Ca+ at pH 5, 7, and 9 and 6°C ............... 31 10. FAC Disinfection of f 2 Coliphage in Water Containing 5 NTU Bentonite2...rngi L Ca+ 2 at pH- 5, 7, and q and 60C ...... ........................ 34 13. FAC Disinfection of f 2 Coliphage in Borate-Buffered Water with 250 mg

  5. Purification of the Alpha Glycerophosphate Oxidase from African Trypanosomes

    DTIC Science & Technology

    1988-02-02

    remo~val of all unattached enzymes , the GPO would be eluted with a buffer containing the substrate a- GP. Cyancqen bromide activated Sepharose 4B was...released upon eluticn with a buffer cm-xtaining 100 rm of a-GP. Unfortunately, in these experiments, trypan blue was eluted from the colmn and the enzyme ...borate buffer (pH 8.0), there was no leakage of the ligand but the GPO was not released fram the colun when eluted with 10aM c-GP. Enzyme assays of the

  6. Lithium Gadolinium Borate in Plastic Scintillator as an Antineutrino Detection Material

    DTIC Science & Technology

    2010-06-01

    advancement of fundamental particle physics, development of the standard model of particle physics and our understanding many cosmological processes...MeVee). Where the light produced by by a 1MeV electron is 1 MeVee by definition , but a heavy charged particle would have a kinetic energy of several

  7. Appearance of small polaron hopping conduction in iron modified cobalt lithium bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahiya, M. S.; Khasa, S., E-mail: skhasa@yahoo.com; Yadav, Arti

    2016-05-23

    Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe{sub 2}O{sub 3}•(20-x)CoO•30Li{sub 2}O•10Bi{sub 2}O{sub 3}•40B{sub 2}O{sub 3} (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott’s small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaronmore » radius (R{sub p}) has been evaluated using the values of phonon radius (R{sub ph}) and Debye temperature (θ{sub D}). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.« less

  8. Er{sup 3+}-doped strontium lithium bismuth borate glasses for broadband 1.5 {mu}m emission - optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-02-05

    Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er{sup 3+} were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er{sup 3+} ions to evaluate J-O intensity parameters, {Omega}{lambda} ({lambda} = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (A{sub R}), branching ratios ({beta})more » and radiative lifetimes ({tau}) are estimated for certain transitions. From the emission spectra, peak emission-cross sections ({sigma}{sub p}) and products of stimulated emission cross-section and full width at half maximum ({sigma}{sub p} Multiplication-Sign FWHM) were calculated for the observed emission transition, {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}.« less

  9. Glass microspheres for medical applications

    NASA Astrophysics Data System (ADS)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass microspheres containing 3.7 GBq of 186Re and 8.5 GBq of 188Re could be used to deliver a 100 Gy dose to a cancerous tumor, while limiting the total body dose caused by rhenium dissolution to approximately 1 mGy.

  10. Cytotoxic and inflammatory effects of contact lens solutions on human corneal epithelial cells in vitro.

    PubMed

    Oh, Sarah; McCanna, David J; Subbaraman, Lakshman N; Jones, Lyndon W

    2018-06-01

    To ascertain the effect that four contact lens (CL) multipurpose solutions (MPS) have on the viability and release of pro-inflammatory cytokines from human corneal epithelial cells (HCEC). HCEC were exposed to four different MPS at various concentrations for 18 hours. The cells were also exposed to phosphate buffer, borate buffer, and PHMB. The cell viability was evaluated using the alamarBlue assay. The release of pro-inflammatory cytokines was measured using a Multiplex electrochemiluminescent assay. MPS-A, MPS-B and MPS-C all reduced cell metabolic activity p < 0.05 from control with MPS-A showing the greatest cytotoxic effect (maximum reduction, 90.6%). In contrast, MPS-D showed no significant reductions in cytotoxicity except at the highest concentration tested (19% reduction at 20% MPS concentration). Of the four cytokines evaluated MPS-C showed a substantial increase in the release of IL-1β, IL-6, IL-8, and TNF-α at higher concentrations when compared to control p < 0.05. At the 20% concentration of MPS-A and MPS-B the release of IL-1 β increased p < 0.05 but the release of IL-6, IL-8, and TNF-α decreased. MPS-D did not cause a change in the release of cytokines IL-1β, IL-6, IL-8 and TNF-α p > 0.05. Exposing the cells to borate buffer and PHMB caused an increase in the release of TNF-α p < 0.05. This investigation demonstrates that at different concentration levels, several of the MPS tested showed a decrease in viability and an increase in the release of inflammatory cytokines from HCEC. The borate buffer component as well as PHMB appears to contribute to this pro-inflammatory reaction. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  11. An application of polymer-enhanced capillary transient isotachophoresis with an emissive boronic acid functionalized squarylium dye as an on-capillary labeling agent for gram-positive bacteria.

    PubMed

    Saito, Shingo; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L

    2013-01-01

    In this paper, the characterization and application of the "PectI" (polymer-enhanced capillary transient isotachophoresis) technique for the separation and detection of same genus, gram-positive bacteria, Bacillus globigii (Bg) and Bacillus subtilis, is demonstrated by employing a boronic acid-functionalized squarylium dye (SQ-BA) as an on-capillary labeling agent, including the quantitative performance and applicability to crude samples. The effect of borate in the separation buffer was also investigated, which revealed that borate strongly affects the separation behavior of bacteria.

  12. Fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses containing lithium, zinc and lead.

    PubMed

    Venkatramu, V; Babu, P; Jayasankar, C K

    2006-02-01

    The influence of glass composition on the fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses modified with Li+, Zn2+ and Pb2+ cations have been investigated. The magnitude of splittings of 7F1 levels are analyzed using crystal-field (CF) analysis. The relative intensities of 5D0 --> 7F2 to 5D0 --> 7F1 transitions, crystal-field strength parameters and decay times of the 5D0 level have been determined and are found to be lower for Pb based glasses than those of Zn/Li based glasses. The lifetimes of 5D0 level are found to increase when borate glasses are modified with pure fluorides than with oxides and oxyfluorides. The fluorescence decay of 5D0 level fits perfect single exponential in the Eu3+:glass systems studied which indicates the absence of energy transfer between Eu3+ ions in these glasses.

  13. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Hayden T.; Harrison, Katharine Lee

    2016-10-01

    The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Limore » + ions, and that the mobility of polymer associated Li + was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li + within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.« less

  14. Treatment of cells with alkaline borate buffer extends the capability of interphase FISH mapping.

    PubMed

    Yokota, H; van den Engh, G; Mostert, M; Trask, B J

    1995-01-20

    Interphase fluorescence in situ hybridization (FISH) has been shown to be a means to map DNA sequences relative to each other in the 100 kb to 1-2 Mb genomic-separation range. At distances below 0.1 Mb, probe sites are infrequently resolved in interphase chromatin. In the 0.1- to 1-Mb range, interphase chromatin can be modeled as a freely flexible chain. The mean square interphase distance between two probes is proportional to the genomic separation between the probes on the linear DNA molecule. Above 1-2 Mb, the relationship between interphase distance and genomic separation changes abruptly and appears to level off. We have used alkaline-borate treatment to expand the capability of interphase FISH mapping. We show here that alkaline-borate treatment increases nuclear diameter, the interphase distance between probes on homologous chromosomes, and the distance between probes on the same chromosome. We also show that the mean square distance between hybridization sites in borate-treated nuclei is proportional to genomic separation up to 4 Mb. Thus, alkaline-borate treatment enhances the capability of interphase FISH mapping by increasing the absolute distance between probes and extending the range of the simple relationship between interphase distance and genomic separation.

  15. Treatment of cells with alkaline borate buffer extends the capability of interphase FISH mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokota, H.; Van Den Engh, G.; Mostert, M.

    1995-01-20

    Interphase fluorescence in situ hybridization (FISH) has been shown to be a means to map DNA sequences relative to each other in the 100 kb to 1-2 Mb genomic-separation range. At distances below 0.1 Mb, probe sites are infrequently resolved in interphase chromatin. In the 0.1- to 1-Mb range, interphase chromatin can be modeled as a freely flexible chain. The mean square interphase distance between two probes is proportional to the genomic separation between the probes on the linear DNA molecule. Above 1-2 Mb, the relationship between interphase distance and genomic separation changes abruptly and appears to level off. Wemore » have used alkaline-borate treatment to expand the capability of interphase FISH mapping. We show here that alkaline-borate treatment increases nuclear diameter, the interphase distance between probes on homologous chromosomes, and the distance between probes on the same chromosome. We also show that the mean square distance between hybridization sites in borate-treated nuclei is proportional to genomic separation up to 4 Mb. Thus, alkaline-borate treatment enhances the capability of interphase FISH mapping by increasing the absolute distance between probes and extending the range of the simple relationship between interphase distance and genomic separation. 31 refs., 5 figs.« less

  16. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone.

    PubMed

    Cui, Xu; Zhao, Cunju; Gu, Yifei; Li, Le; Wang, Hui; Huang, Wenhai; Zhou, Nai; Wang, Deping; Zhu, Yi; Xu, Jun; Luo, Shihua; Zhang, Changqing; Rahaman, Mohamed N

    2014-03-01

    Osteomyelitis (bone infection) is often difficult to cure. The commonly-used treatment of surgical debridement to remove the infected bone combined with prolonged systemic and local antibiotic treatment has limitations. In the present study, an injectable borate bioactive glass cement was developed as a carrier for the antibiotic vancomycin, characterized in vitro, and evaluated for its capacity to cure osteomyelitis in a rabbit tibial model. The cement (initial setting time = 5.8 ± 0.6 min; compressive strength = 25.6 ± 0.3 MPa) released vancomycin over ~25 days in phosphate-buffered saline, during which time the borate glass converted to hydroxyapatite (HA). When implanted in rabbit tibial defects infected with methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis, the vancomycin-loaded cement converted to HA and supported new bone formation in the defects within 8 weeks. Osteomyelitis was cured in 87 % of the defects implanted with the vancomycin-loaded borate glass cement, compared to 71 % for the defects implanted with vancomycin-loaded calcium sulfate cement. The injectable borate bioactive glass cement developed in this study is a promising treatment for curing osteomyelitis and for regenerating bone in the defects following cure of the infection.

  17. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.

  18. Direct enantioseparation of catechin and epicatechin in tea drinks by 6-O-alpha-D-glucosyl-beta-cyclodextrin-modified micellar electrokinetic chromatography.

    PubMed

    Kodama, Shuji; Yamamoto, Atsushi; Matsunaga, Akinobu; Yanai, Hiroko

    2004-08-01

    Cyclodextrin-modified micellar electrokinetic chromatography was applied to the enantioseparation of catechin and epicatechin using 6-O-alpha-D-glucosyl-beta-cyclodextrin together with sodium dodecyl sulfate and borate-phosphate buffer. Factors affecting chiral resolution and migration time of catechin and epicatechin were studied. The optimum running conditions were found to be 200 mM borate-20 mM phosphate buffer (pH 6.4) containing 25 mM 6-O-alpha-D-glucosyl-beta-cyclodextrin and 240 mM sodium dodecyl sulfate with an effective voltage of +25 kV at 20 degrees C using direct detection at 210 nm. Under these conditions, the resolution (Rs) of racemic catechin and epicatechin were 4.15 and 1.92, respectively. With this system, catechin and epicatechin enantiomers along with other four catechins ((-)-catechin gallate, (-)-epicatechin gallate, (-)-epigallocatechin, (-)-epigallocatechin gallate) and caffeine in tea samples were analyzed successfully. The difference of migration time between catechin and epicatechin is discussed.

  19. Modified secondary lithium metal batteries with the polyaniline-carbon nanotube composite buffer layer.

    PubMed

    Zhang, Ding; Yin, Yanli; Liu, Changhong; Fan, Shoushan

    2015-01-07

    A modified secondary lithium metal battery inserted with a polyaniline-carbon nanotube nanoporous composite buffer layer was fabricated. This unique and simple design of battery has the great potential to decrease the safety risk of the secondary Li metal battery in cycles of recharging processes and improve its cycle life in the future.

  20. Solid polymeric electrolytes for lithium batteries

    DOEpatents

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  1. A novel, environmentally friendly sodium lauryl ether sulfate-, cocamidopropyl betaine-, cocamide monoethanolamine-containing buffer for MEKC on microfluidic devices.

    PubMed

    Hoeman, Kurt W; Culbertson, Christopher T

    2008-12-01

    A new buffer has been developed for fast, high-efficiency separations of amino acids by MEKC. This buffer was more environmentally friendly than the most commonly used surfactant-containing buffers for MEKC separations. It used a commercially available dishwashing soap by Seventh Generation (Burlington, VT, USA), which contained three micelle-forming agents. The mixed micelles were composed of sodium lauryl ether sulfate (anionic), cocamidopropyl betaine (zwitterionic), and cocamide monoethanolamine (non-ionic). The optimized buffer contained 5.0% w/w Seventh Generation Free & Clear dishwashing soap, 10 mM sodium borate, and was completely void of organics. The lack of organics and the biodegradability of the surfactant molecules made this buffer more environmentally friendly than typical SDS-containing buffers. This new buffer also had a different selectivity and provided faster separations with higher separation efficiencies than SDS-based buffers. Fast separations of BODIPY FL labeled amino acids yielded peaks with separation efficiencies greater than 100,000 in less than 20 s.

  2. Separation of 2-aminobenzoic acid-derivatized glycosaminoglycans and asparagine-linked glycans by capillary electrophoresis.

    PubMed

    Sato, Kae; Sato, Kiichi; Okubo, Akira; Yamazaki, Sunao

    2005-01-01

    A capillary electrophoresis method was developed for the analysis of oligosaccharides combined with derivatization with 2-aminobenzoic acid. Glycosaminoglycan delta-disaccharides were effectively resolved on a fused-silica capillary tube using 150 mM borate, pH 8.5, as a running electrolyte solution. This analytical method was applied to the identification of glycosaminoglycan in combination with enzymatic digestion. The separation of N-glycans or glucose-oligomers was performed with a phosphate buffer containing polyethylene glycol or borate as an electrolyte solution. This method is expected to be useful in the determination of oligosaccharide structures in a glycoprotein.

  3. Nano crystalline Bi2(VO5) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Khasa, S.; Dahiya, M. S.; Agarwal, A.

    2016-05-01

    Glass composition 7V2O5.23Li2O.20Bi2O3.50B2O3 and x(2NiO.V2O5).(30-x)Li2O.20Bi2O3.50B2O3, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi2(VO5) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V2O5-crystal were observed along with the nano crystalline Bi2(VO5) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRD diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi2(VO5) nano-crystallite was ~30nm for samples annealed at 400°C and ~42nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi2(VO5) crystallite.

  4. Structural and optical properties of lithium sodium borate glasses doped with Sm3+ ions

    NASA Astrophysics Data System (ADS)

    Dawaud, R. S. E. S.; Hashim, S.; Alajerami, Y. S. M.; Mhareb, M. H. A.; Maqableh, M. M.; Tamchek, N.

    2014-07-01

    Absorption and emission spectra of Sm3+ doped lithium sodium borate (LNB) have been reported. The samples were prepared by the melt-quenching technique and characterized by X-ray diffraction (XRD), diffraction thermal analysis (DTA), Fourier transforms infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). From the thermo-grams spectrum, glass transition (Tg), crystallization (Tc) and melting temperatures (Tm) have been evaluated. Direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. These glasses have shown strong nine absorption bands with hypersensitive transition at 1221 nm (6H5/2→4H3/2) and five emission bands for the transition at 4I7/2→6H13/2 (green color), 4I7/2→6H7/2 (orange color), 4I7/2→6H9/2 (orange color), 4I7/2→6H11/2 (red color) and 4I7/2→6H13/2 (red color) with performing an excitation of 400 nm. The oscillator strengths, refractive index, ions concentration, polaron radius and other parameters have been calculated for each dopant.

  5. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    PubMed

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries

    PubMed Central

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-01-01

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10−4 S cm−1) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety. PMID:25183416

  7. Investigations of the 1 KHZ Sound Absorption in Sea Water.

    DTIC Science & Technology

    1983-01-15

    York, 465 pages. Seward, T. M. (1974) Determination of the first ionization constant of silicic acid from quartz solubility in borate buffer...attenuation coefficient. J. Acoust. Soc. Am. 42, 270-271. Uppstrom, L (1968) A modified method for the determination of boron with curcumin and a simplified

  8. Gel Electrophoresis--The Easy Way for Students

    ERIC Educational Resources Information Center

    VanRooy, Wilhelmina; Sultana, Khalida

    2010-01-01

    This article describes a simple, inexpensive, easy to conduct gel-electrophoresis activity using food dyes. It is an alternative to the more expensive counterparts which require agarose gel, DNA samples, purchased chamber and Tris-borate-EDTA buffer. We suggest some learning activities for senior biology students along with comments on several…

  9. Multimodal emissions from Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, A.; Yadav, R.S.; Yadav, R.V.

    This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} andmore » Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. • The Tb{sup 3+}/Yb{sup 3+} co-doped glass gives QC emissions upon 266 and 355 nm excitations. • The Tb{sup 3+}/Yb{sup 3+} co-doped glass also emits intense green color on excitation with 976 nm. • The quantum cutting efficiency is larger for 355 nm excitation (137%). • The Tb{sup 3+}/Yb{sup 3+} co-doped glass may be used in solar cell and display devices.« less

  10. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    PubMed

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Electrolytes for Low Impedance, Wide Operating Temperature Range Lithium-Ion Battery Module

    NASA Technical Reports Server (NTRS)

    Hallac, Boutros (Inventor); Krause, Frederick C. (Inventor); Jiang, Junwei (Inventor); Smart, Marshall C. (Inventor); Metz, Bernhard M. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2018-01-01

    A lithium ion battery cell includes a housing, a cathode disposed within the housing, wherein the cathode comprises a cathode active material, an anode disposed within the housing, wherein the anode comprises an anode active material, and an electrolyte disposed within the housing and in contact with the cathode and anode. The electrolyte consists essentially of a solvent mixture, a lithium salt in a concentration ranging from approximately 1.0 molar (M) to approximately 1.6 M, and an additive mixture. The solvent mixture includes a cyclic carbonate, an non-cyclic carbonate, and a linear ester. The additive mixture consists essentially of lithium difluoro(oxalato)borate (LiDFOB) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte, and vinylene carbonate (VC) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte.

  12. Successful immunotherapy of canine flea allergy with injected Actinomycetales preparations.

    PubMed

    Marro, Alicia; Pirles, Mónica; Schiaffino, Laura; Bin, Liliana; Dávila, Héctor; Bottasso, Oscar A; McIntyre, Graham; Ripley, Paul R; Stanford, Cynthia A; Stanford, John L

    2011-08-01

    Can heat-killed, borate-buffered suspensions of Gordonia bronchialis, Rhodococcus coprophilus or Tsukamurella inchonensis be used to treat canine flea allergy? Organisms cultured on Sauton's medium into stationary phase were autoclaved in borate-buffered saline and stored at 10 mg wet weight/ml. Intradermal injections of 0.1 ml containing 1 mg of bacilli were administered on the first and 20th days of the study. G. bronchialis and R. coprophilus were most effective in a pilot study of a small number of dogs with flea allergy. A larger number of affected dogs were then randomized to receive placebo or either of the two selected reagents. The extent and severity of allergic signs and symptoms were scored and blood samples were collected just before the first injection and 28 days after the second. Both selected reagents reduced the extent and severity of lesions (p < 0.001) and reduced scratching. Eosinophil numbers were reduced (p < 0.0001) between the first and second assessment. Injections of G. bronchialis or R. coprophilus effectively reduce the signs and symptoms of flea allergy in dogs.

  13. Corrosion Behavior of Ultra-fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, A.; Gashti, S. O.

    2015-09-01

    Accumulative roll bonding (ARB) has been used as a severe plastic deformation process for the industrial production of ultra-fine grained (UFG) and nano-crystalline sheets with excellent mechanical properties. In the present study, the effect of the ARB process on the corrosion behavior of UFG and nano-crystalline 1050 aluminum alloy in a buffer borate solution (pH 5.5) has been investigated. The result of microhardness tests revealed that microhardness values increase with an increasing number of ARB cycles. A sharp increase in microhardness is seen after three ARB cycles, whereas moderate additional increases are observed afterward for up to nine cycles. Also, the XRD results showed that the mean crystallite size decreased to about 91 nm after nine cycles. The potentiodynamic plots show that as a result of ARB, the corrosion behavior of the UFG and nano-crystalline specimens improves, compared to the annealed 1050 aluminum alloy. Moreover, electrochemical impedance spectroscopy measurements showed that the polarization resistance increases with an increasing number of ARB cycles.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azimi, Nasim; Xue, Zheng; Hu, Libo

    Lithium difluoro(oxalato) borate (LiDFOB) was investigated as an electrolyte additive for the Li-S battery. This additive was identified to be an efficient electrolyte additive to suppress the polysulfide shuttling effect existing in the conventional Li-S chemistry. To detect the positive impact of the new additive, oligo (ethylene glycol) functionalized silane was employed as the electrolyte solvent due to its high solvation capability with the lithium polysulfides. The electrochemical results and the SEM data of Li-S battery using the new electrolyte confirmed the role of the LiDFOB as a critical component to eliminate the shuttling of the dissolved polysulfides thus enablingmore » a high coulombic efficiency. (C) 2014 Elsevier Ltd. All rights reserved.« less

  15. Mixed polyanion glass cathodes: Effect of polyanion content

    DOE PAGES

    Kercher, Andrew K.; Kolopus, James A.; Sacci, Robert L.; ...

    2017-02-18

    Mixed polyanion glass cathodes in lithium-ion batteries have very high capacities (200-500 mAh/g), but currently these materials have fundamental problems with 1 st-cycle irreversible loss, cycling efficiency, and capacity fade. It is well established that polyanion substitutions into glasses can dramatically affect their physical properties, but the effect of polyanion content on the electrochemical performance has not been previously established. The proper amount of lithium and borate substitution in copper phosphate/vanadate glasses was shown to nearly eliminate 1 st-cycle irreversible loss and improve cycling efficiency. As a result, Raman and IR spectroscopy were used to identify polyanions that correlated withmore » electrochemical performance changes.« less

  16. Comments on "Optical properties of borate crystals in the terahertz domain"

    NASA Astrophysics Data System (ADS)

    Svetlichnyi, V. A.; Naftaly, M.; Molloy, J. F.; Andreev, Yu. M.; Kokh, K. A.; Lanskii, G. V.; Kononova, N. G.; Kokh, A. E.

    2016-04-01

    We comment on the recent paper by V.D. Antsygin et al. [Opt. Commun. 309 (2013) 333-337], in which for the first time dispersions of refractive indices nx,z in lithium triborate (LBO) were presented for the THz domain. Their claim of "nx>nz", based on measurements by THz time-domain spectroscopy (TDS), is contrary to the well-known relationship for the maximum transparency region.

  17. Order–Disorder Transitions and Superionic Conductivity in the Sodium nido -Undeca(carba)borates

    DOE PAGES

    Tang, Wan Si; Dimitrievska, Mirjana; Stavila, Vitalie; ...

    2017-11-20

    The salt compounds NaB 11H 14, Na-7-CB10H13, Li-7-CB 10H 13, Na-7,8-C 2B 9H 12, and Na-7,9-C 2B 9H 12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B-H} + {C-H} vertices and an additional number of compensating bridging and/or terminal H atoms). We used first-principles calculations, X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, neutron elastic-scattering fixed-window scans, quasielastic neutron scattering, and electrochemical impedance measurements to investigate their structures, bonding potentials, phase-transition behaviors, anion orientational mobilities, and ionic conductivities compared to those of their closo-poly(carba)borate cousins. All exhibited order-disordermore » phase transitions somewhere between room temperature and 375 K. All disordered phases appear to possess highly reorientationally mobile anions (> ~10 10 jumps s -1 above 300 K) and cation-vacancy-rich, close-packed or body-center-cubic-packed structures [like previously investigated closo-poly(carba)borates]. Moreover, all disordered phases display superionic conductivities but with generally somewhat lower values compared to those for the related sodium and lithium salts with similar monocharged 1-CB 9H 10- and CB 11H 12- closo-carbaborate anions. This study significantly expands the known toolkit of solid-state, poly(carba)borate-based salts capable of superionic conductivities and provides valuable insights into the effect of crystal lattice, unit cell volume, number of carbon atoms incorporated into the anion, and charge polarization on ionic conductivity.« less

  18. The Evaluation of Triphenyl Phosphate as a Flame Retardant Additive to Improve the Safety of Lithium-Ion Battery Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Prakash, G. K. S.; Ratnakumar, B. V.

    2011-01-01

    With the intent of improving the safety characteristics of lithium ion cells, electrolytes containing flame retardant additives have been investigated. A number of triphenyl phosphate-containing electrolytes were evaluated in both coin cells and experimental three electrode lithium-ion cells (containing reference electrodes). A number of chemistries were investigated, including MCMB carbon/LiNi(0.8)Co(0.2)O2 (NCO), graphite/LiNi(0.8)Co(0.15)Al(0.05)O2 (NCA), Li/Li(Li(0.17)Ni(0.25)Mn(0.58))O2, Li/LiNiMnCoO2 (NMC) and graphite/LiNiMnCoO2 (NMC), to study the effect that different electrolyte compositions have upon performance. A wide range of TPP-containing electrolytes were demonstrated to have good compatibility with the C/NCO, C/NCA, and Li/NMC systems, however, poor performance was initially observed with the high voltage C/NMC system. This necessitated the development of improved electrolytes with stabilizing additives, leading to formulations containing lithium bis(oxalato)borate (LiBOB) that displayed substantially improved performance.

  19. Quantitative determination of copper in a glass matrix using double pulse laser induced breakdown and electron paramagnetic resonance spectroscopic techniques.

    PubMed

    Khalil, Ahmed A I; Morsy, Mohamed A

    2016-07-01

    A series of lithium-lead-borate glasses of a variable copper oxide loading were quantitatively analyzed in this work using two distinct spectroscopic techniques, namely double pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR). DP-LIBS results measured upon a combined nanosecond lasers irradiation running at 266nm and 1064nm pulses of a collinear configuration directed to the surface of borate glass samples with a known composition. This arrangement was employed to predict the electron's temperature (Te) and density (Ne) of the excited plasma from the recorded spectra. The intensity of elements' responses using this scheme is higher than that of single-pulse laser induced breakdown spectroscopy (SP-LIBS) setup under the same experimental conditions. On the other hand, the EPR data shows typical Cu (II) EPR-signals in the borate glass system that is networked at a distorted tetragonal Borate-arrangement. The signal intensity of the Cu (II) peak at g⊥=2.0596 has been used to quantify the Cu-content accurately in the glass matrix. Both techniques produced linear calibration curves of Cu-metals in glasses with excellent linear regression coefficient (R(2)) values. This study establishes a good correlation between DP-LIBS analysis of glass and the results obtained using EPR spectroscopy. The proposed protocols prove the great advantage of DP-LIBS system for the detection of a trace copper on the surface of glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Substituted benzotriazoles as inhibitors of copper corrosion in borate buffer solutions

    NASA Astrophysics Data System (ADS)

    Agafonkina, M. O.; Andreeva, N. P.; Kuznetsov, Yu. I.; Timashev, S. F.

    2017-08-01

    The adsorption of substituted 1,2,3-benzotriazoles (R-BTAs) onto copper is measured via ellipsometry in a pure borate buffer (pH 7.4) and satisfactorily described by Temkin's isotherm. The adsorption free energy (-Δ G a 0 ) values of these azoles are determined. The (-Δ G a 0 ) values are found to rise as their hydrophobicity, characterized by the logarithm of the partition coefficient of a substituted BTA in a model octanol-water system (log P), grows. The minimum concentration sufficient for the spontaneous passivation of copper ( C min) and a shift in the potential of local copper depassivation with chlorides ( E pt) after an azole is added to the solution (i.e., Δ E = E pt in - E pt backgr characterizing the ability of its adsorption to stabilize passivation) are determined in the same solution containing a corrosion additive (0.01M NaCl) for each azole under study. Both criteria of the passivating properties of azoles (log C min and Δ E) are shown to correlate linearly with log P, testifying to the role played by surface activity of this family of organic inhibitors in protecting copper in an aqueous solution.

  1. Optically stimulated luminescence of borate glasses containing magnesia, quicklime, lithium and potassium carbonates

    NASA Astrophysics Data System (ADS)

    Valença, J. V. B.; Silveira, I. S.; Silva, A. C. A.; Dantas, N. O.; Antonio, P. L.; Caldas, L. V. E.; d'Errico, F.; Souza, S. O.

    2017-11-01

    The OSL characteristics of three different borate glass matrices containing magnesia (LMB), quicklime (LCB) or potassium carbonate (LKB) were examined. Five different formulations for each composition were produced using a melt-quenching method and analyzed in terms of both dose-response curves and OSL shape decay. The samples were irradiated using a 90Sr/90Y beta source with doses up to 30 Gy. Dose-response curves were plotted using the initial OSL intensity as the chosen parameter. The OSL analysis showed that LKB glasses are the most sensitive to beta irradiation. For the most sensitive LKB composition, the irradiation process was also done using a 60Co gamma source in a dose range from 200 to 800 Gy. In all cases, no saturation was observed. A fitting process using a three-term exponential function was performed for the most sensitive formulations of each composition, which suggested a similar behavior in the OSL decay.

  2. Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model.

    PubMed

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang; Zhang, Changqing

    2013-07-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli.

  3. Gentamicin-Loaded Borate Bioactive Glass Eradicates Osteomyelitis Due to Escherichia coli in a Rabbit Model

    PubMed Central

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang

    2013-01-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

  4. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  5. Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass

    NASA Astrophysics Data System (ADS)

    Mhareb, M. H. A.; Hashim, S.; Ghoshal, S. K.; Alajerami, Y. S. M.; Saleh, M. A.; Dawaud, R. S.; Razak, N. A. B.; Azizan, S. A. B.

    2014-11-01

    Enhancing the up-conversion efficiency of borate glass via optimized doping of rare earth ions is an ever-ending quest in lasing glass. Neodymium (Nd3+) doped Lithium Magnesium Borate (LMB) glasses are prepared using the melt-quenching method. X-ray diffraction (XRD), Fourier transformed infrared (FTIR), UV-Vis-NIR absorption and Photoluminescence (PL) spectroscopic characterizations are made to examine the influence of Nd3+ concentration on physical properties and optical properties. Nd3+ contents dependent density, molar volume, refractive index, ion concentration, Polaron radius, inter nuclear distance, field strength, energy band gap and oscillator strength are calculated. XRD patterns confirm the amorphous nature of all glasses and the FTIR spectra reveal the presence of BO3 and BO4 functional groups. UV-Vis-IR spectra exhibit ten prominent bands centered at 871, 799, 741, 677, 625, 580, 522, 468, 426, 349 nm corresponding to the transitions from the ground state to 4F3/2, (4F5/2 + 2H9/2), (4F7/2 + 4S3/2), 4F9/2, 2H11/2, (4G5/2 + 2G7/2), (2K13/2 + 4G7/2 + 4G9/2), (2G9/2 + 2D3/2 + 2P3/2), (2P1/2 + 2D5/2), (4D3/2 + 4D5/2) excited states, respectively. A hyper-sensitive transition related to (4G5/2 + 2G7/2) level is evidenced at 580 nm. The room temperature up-conversion emission spectra at 800 nm excitation displays three peaks centered at 660, 610 and 540 nm. Glass with 0.5 mol% of Nd3+ showing an emission enhancement by a factor to two is attributed to the energy transfer between Mg2+ and Nd3+ ions. Our results suggest that these glasses can be nominated for solid state lasers and other photonic devices.

  6. Intensity noise cancellation in solid-state laser at 1.5  μm using SHG depletion as a buffer reservoir.

    PubMed

    Audo, Kevin; Alouini, Mehdi

    2018-03-01

    An absorption mechanism based on second-harmonic generation (SHG) is successfully implemented as a buffer reservoir in a solid-state Er,Yb:Glass laser emitting at the telecom wavelength. We show that a slight absorption mechanism based on SHG rate conversion of 0.016% using a beta barium borate crystal enables the canceling out of the excess intensity noise at the relaxation oscillation frequency, i.e., 35 dB reduction, as well as canceling the amplified spontaneous emission beating at the free spectral range resonances of the laser lying in the gigahertz range. Laser robustness is discussed.

  7. X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell.

    PubMed

    Ketenoglu, Didem; Spiekermann, Georg; Harder, Manuel; Oz, Erdinc; Koz, Cevriye; Yagci, Mehmet C; Yilmaz, Eda; Yin, Zhong; Sahle, Christoph J; Detlefs, Blanka; Yavaş, Hasan

    2018-03-01

    The effects of varying LiPF 6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li + ion concentration in the solvent manifests itself as a blue-shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF 4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.

  8. DISCUSSION ON "ELECTROCHEMICAL AND RAMAN SPECTROSCOPIC STUDIES OF THE INFLUENCE OF CHLORINATED SOLVENTS ON THE CORROSION BEHAVIOUR OF IRON IN BORATE BUFFER AND IN SIMULATED GROUNDWATER (CORROSION SCIENCE 2000;42:1921-1939)." (R827117)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Preparation of Ni3B2O6 nanosheet-based flowerlike architecture by a precursor method and its electrochemical properties in lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Liang, Pan; Du, Lu; Wang, Xia; Liu, Zhi-Hong

    2014-11-01

    A novel flower-like nickel borate of Ni3B2O6 nanostructure was prepared through a hydrothermal treatment and sequential thermal decomposition of precursor without employing any template or surfactant. All the samples were characterized by XRD, IR, XPS, TG-DTA, nitrogen adsorption, SEM and TEM. The flower-like Ni3B2O6 nanostructure was self-assembled by nanosheets with the thickness of about 40 nm. The electrochemical properties in lithium-ion battery of flower-like Ni3B2O6 nanostructure were studied by the cyclic voltammetry, galvanostatic cycling test, and electrochemical impedance spectroscopy, which showed it had a high initial discharge capacity and a good reversibility.

  10. A new anion receptor for improving the interface between lithium- and manganese-rich layered oxide cathode and the electrolyte

    DOE PAGES

    Ma, Yulin; Zhou, Yan; Du, Chunyu; ...

    2017-02-15

    Surface degradation on cycled lithium-ion battery cathode particles is governed not only by intrinsic thermodynamic properties of the material but also, oftentimes more predominantly, by the side reactions with the electrolytic solution. A superior electrolyte inhibits these undesired side reactions on the cathode and at the electrolyte interface, which consequently minimizes the deterioration of the cathode surface. The present study investigates a new boron-based anion receptor, tris(2,2,2-trifluoroethyl)borate (TTFEB), as an electrolyte additive in cells containing a lithium- and manganese-rich layered oxide cathode, Li 1.16Ni 0.2Co 0.1Mn 0.54O 2. Our electrochemical studies demonstrate that the cycling performance and Coulombic efficiency aremore » significantly improved because of the additive, in particular, under elevated temperature conditions. Spectroscopic analyses revealed that the addition of 0.5 wt % TTFEB is capable of reducing the content of lithium-containing inorganic species within the cathode-electrolyte interphase layer and minimizing the reduction of tetravalent Mn4+ at the cathode surface. Furthermore, our work introduces a novel additive highly effective in improving lithium-ion battery performance, highlights the importance in preserving the surface properties of cathode materials, and provides new insights on the working mechanism of electrolyte additives.« less

  11. Structural influence of mixed transition metal ions on lithium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Dahiya, Manjeet S.; Hooda, A.; Chand, Prem; Khasa, S.

    2017-08-01

    Lithium bismuth borate glasses containing mixed transition metals having composition 7CoO·23Li2O·20Bi2O3·50B2O3 (CLBB), 7V2O5·23Li2O·20Bi2O3·50B2O3 (VLBB) and x(2CoO·V2O5)·(30 - x)Li2O·20Bi2O3·50B2O3 (x = 0.0 (LBB) and x = 2.0, 5.0, 7.0, 10.0 mol% (CVLBB1-4)) are synthesized via melt quench route. The synthesized compositions are investigated for their physical properties using density (D) and molar volume (Vm), thermal properties by analyzing DSC/TG thermo-graphs, structural properties using IR absorption spectra in the mid-IR range and optical properties using UV-Vis-NIR spectroscopy. The Electron Paramagnetic Resonance (EPR) spectra of vanadyl and cobalt ion have been analyzed to study compositional effects on spin-Hamiltonian parameters. The non linear variations in physical properties depict a strong structural influence of Co/V- oxides on the glassy matrix. The compositional variations in characteristic temperatures (glass transition temperature Tg, glass crystallization temperature Tp and glass melting temperature Tm) reveals that Tg for glass samples CLBB is relatively less than that of pure lithium bismuth borate (LBB) glass sample wherein Tg for sample VLBB is higher than that of LBB. The increase in Tg (as compared with LBB) with an enhanced substitution of mixed transition metal oxides (2CoO·V2O5) shows a progressive structure modification of bismuth borate matrix. These predictions are very well corroborated by corresponding compositional trends of Tp and Tm. FTIR studies reveal that Co2+& VO2+ ions lead to structural rearrangements through the conversion of three-coordinated boron into four coordinated boron and thereby reducing number of non-bridging oxygen atoms. Bismuth is found to exist in [BiO6] octahedral units only, whereas boroxol rings are not present in the glass network. The theoretical values of optical basicity (Λth) and corresponding oxide ion polarizability (αo2-) have also been calculated to investigate oxygen covalency of glass matrix. Trends in both these parameters suggested an increase in ionic bonding on substitution of divalent transition metal cations causing a more bonding compaction in glass structure. The UV-Vis-NIR spectra suggest that cobalt ions exist as Co2+ states in octahedral coordination in glass network. Inter-electronic repulsion parameter and crystal field splitting energy were evaluated to understand the site symmetry around Co2+-ion in glass. X-band EPR spectra suggest that vanadium ions (V4+) exists as VO2+-ions in octahedral coordination with tetragonal compression. Spin Hamiltonian parameters g-values and A-values of VO2+ ions in glass were calculated. For sample CLBB two resonance lines in EPR spectrum attribute to octahedral symmetry around Co2+-ions were observed.

  12. XRD and FTIR analysis heat treated lithium bismo-borate glasses doped with 1.0 mol% copper ferrite

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Narwal, P.; Dahiya, Manjeet S.; Dahiya, T.; Agarwal, A.; Khasa, S.

    2018-05-01

    Glasses of compositions of 20Li20 • xBi2O3• (79-x)B2O3 + (1.0 mol%) CuFe2O4, with 0 ≤ x ≤ 40 were prepared by melt-quench technique. To obtain the glass-ceramics the controlled heat treatment were given to the prepared glasses. Two nano crystalline phases, i.e., Li2B4O7 and LiB3O5 were observed from X-ray diffraction patterns of the prepared glass- ceramic samples. We investigated the change in coordination number of network formers B2O3 and Bi2O3 and network modifiers Bi2O3, Li2O and CuFe2O4. Crystallites size (lies in range ˜47-50nm) and lattice strain (ɛ) were calculated for major phases for all prepared samples. FT-IR study revealed the de-polymerization of borate groups that change with heat treatment and Bi2O3 content. Deconvolution of IR absorption spectra resolves the overlapped and hidden peaks in IR spectra. Sharp and more intense FTIR peaks confirm the vibrations due to crystallites Li2B4O7 and LiB3O5 and change in coordination of network forming borate units.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wan Si; Dimitrievska, Mirjana; Stavila, Vitalie

    The salt compounds NaB 11H 14, Na-7-CB10H13, Li-7-CB 10H 13, Na-7,8-C 2B 9H 12, and Na-7,9-C 2B 9H 12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B-H} + {C-H} vertices and an additional number of compensating bridging and/or terminal H atoms). We used first-principles calculations, X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, neutron elastic-scattering fixed-window scans, quasielastic neutron scattering, and electrochemical impedance measurements to investigate their structures, bonding potentials, phase-transition behaviors, anion orientational mobilities, and ionic conductivities compared to those of their closo-poly(carba)borate cousins. All exhibited order-disordermore » phase transitions somewhere between room temperature and 375 K. All disordered phases appear to possess highly reorientationally mobile anions (> ~10 10 jumps s -1 above 300 K) and cation-vacancy-rich, close-packed or body-center-cubic-packed structures [like previously investigated closo-poly(carba)borates]. Moreover, all disordered phases display superionic conductivities but with generally somewhat lower values compared to those for the related sodium and lithium salts with similar monocharged 1-CB 9H 10- and CB 11H 12- closo-carbaborate anions. This study significantly expands the known toolkit of solid-state, poly(carba)borate-based salts capable of superionic conductivities and provides valuable insights into the effect of crystal lattice, unit cell volume, number of carbon atoms incorporated into the anion, and charge polarization on ionic conductivity.« less

  14. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage.

    PubMed

    Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan

    2017-12-01

    Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sericin removal from raw Bombyx mori silk scaffolds of high hierarchical order.

    PubMed

    Teuschl, Andreas Herbert; van Griensven, Martijn; Redl, Heinz

    2014-05-01

    Silk fibroin has previously been described as a promising candidate for ligament tissue engineering (TE) approaches. For biocompatibility reasons, silkworm silk requires removal of sericin, which can elicit adverse immune responses in the human body. One disadvantage of the required degumming process is the alteration of the silk fiber structural properties, which can hinder textile engineering of high order hierarchical structures. Therefore, the aim of this study was to find a way to remove sericin from a compact and highly ordered raw silk fiber matrix. The wire rope design of the test model scaffold comprises several levels of geometric hierarchy. Commonly used degumming solutions fail in removing sericin in this wire rope design. Weight loss measurements, picric acid and carmine staining as well as scanning electron microscopy demonstrated that the removal of sericin from the model scaffold of a wire rope design can be achieved through a borate buffer-based system. Furthermore, the borate buffer degummed silks were shown to be nontoxic and did not alter cell proliferation behavior. The possibility to remove sericin after the textile engineering process has taken place eases the production of highly ordered scaffold structures and may expand the use of silk as scaffold material in further TE and regenerative medicine applications.

  16. Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food.

    PubMed

    Omar, Mei Musa Ali; Elbashir, Abdalla Ahmed; Schmitz, Oliver J

    2017-01-01

    Simple and inexpensive capillary electrophoresis with UV-detection method (CE-UV) was optimized and validated for determination of six amino acids namely (alanine, asparagine, glutamine, proline, serine and valine) for Sudanese food. Amino acids in the samples were derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) prior to CE-UV analysis. Labeling reaction conditions (100mM borate buffer at pH 8.5, labeling reaction time 60min, temperature 70°C and NBD-Cl concentration 40mM) were systematically investigated. The optimal conditions for the separation were 100mM borate buffer at pH 9.7 and detected at 475nm. The method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision (repeatability) (RSD%) and accuracy (recovery). Good linearity was achieved for all amino acids (r(2)>0.9981) in the concentration range of 2.5-40mg/L. The LODs in the range of 0.32-0.56mg/L were obtained. Recoveries of amino acids ranging from 85% to 108%, (n=3) were obtained. The validated method was successfully applied for the determination of amino acids for Sudanese food samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model.

    PubMed

    Zhang, Xin; Jia, Weitao; Gu, Yifei; Xiao, Wei; Liu, Xin; Wang, Deping; Zhang, Changqing; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Zhou, Nai

    2010-08-01

    The treatment of chronic osteomyelitis (bone infection) remains a clinical challenge. In this work, pellets composed of a chitosan-bonded mixture of borate bioactive glass particles (<50microm) and teicoplanin powder (antibiotic), were evaluated in vitro and in vivo for treating chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) in a rabbit model. When immersed in phosphate-buffered saline, the pellets showed sustained release of teicoplanin over 20-30 days, while the bioactive glass converted to hydroxyapatite (HA) within 7 days, eventually forming a porous HA structure. Implantation of the teicoplanin-loaded pellets in a rabbit tibia osteomyelitis model resulted in the detection of teicoplanin in the blood for about 9 days. The implants converted to a bone-like HA graft, and supported the ingrowth of new bone into the tibia defects within 12 weeks of implantation. Microbiological, histological and scanning electron microscopy techniques showed that the implants provided a cure for the bone infection. The results indicate that the teicoplanin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone ingrowth, could provide a method for treating chronic osteomyelitis. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Chaotropic salts: novel modifiers for the capillary electrophoretic analysis of benzodiazepines.

    PubMed

    Su, Hsiu-Li; Lan, Min-Tsu; Lin, Kuan-Wen; Hsieh, You-Zung

    2008-08-01

    This paper describes a CE method for analyzing benzodiazepines using the chaotropic salts lithium trifluoromethanesulfonate (LiOTf), lithium hexafluorophosphate (LiPF(6)), and lithium bis(trifluoromethanesulfonyl)imide (LiNTf(2)) as modifiers in the running buffer. Although adequate resolution of seven benzodiazepine analytes occurred under the influence of each of the chaotropic anions, the separation efficiency was highest when bis(trifluoromethanesulfonyl)imide (Tf(2)N(-)) was the modifier. We applied affinity CE in conjunction with linear analysis to determine the association constants for the formation of complexes between the Tf(2)N(-) anion and the benzodiazepines. According to the estimated Gibbs free energies, the interactions between this chaotropic anion and the benzodiazepines were either ion-dipole or ion-induced dipole interactions. Adding chaotropic salts as modifiers into CE buffers is a simple and reproducible technique for separating benzodiazepines.

  19. Nano crystalline Bi{sub 2}(VO{sub 5}) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Arti, E-mail: artidabhur@gmail.com; Khasa, S.; Dahiya, M. S.

    2016-05-23

    Glass composition 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3}, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi{sub 2}(VO{sub 5}) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V{sub 2}O{sub 5}-crystal were observed along with the nano crystalline Bi{sub 2}(VO{sub 5}) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRDmore » diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi{sub 2}(VO{sub 5}) nano-crystallite was ~30 nm for samples annealed at 400°C and ~42 nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi{sub 2}(VO{sub 5}) crystallite.« less

  20. Spectroscopic investigations of Nd3+ doped Lithium Lead Alumino Borate glasses for 1.06 μm laser applications

    NASA Astrophysics Data System (ADS)

    Deopa, Nisha; Rao, A. S.; Gupta, Mohini; Vijaya Prakash, G.

    2018-01-01

    Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li2Osbnd 10PbOsbnd (10-x) Al2O3sbnd 70B2O3sbnd x Nd2O3 (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentialities using the absorption, emission and photoluminescence decay spectral measurements. The oscillator strengths measured from the absorption spectra were used to estimate the Judd-Ofelt intensity parameters using least square fitting procedure. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions 4F3/2 → 4I11/2 (1063 nm) and 4F3/2 → 4I9/2 (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd3+ ion concentration up to 1 mol % and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd3+ ion concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, the non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively higher values of emission cross-sections, branching ratios and quantum efficiency values obtained for 1.0 mol% of Nd3+ ions in LiPbAlB glass suggests it's aptness in generating lasing action at 1063 nm in NIR region.

  1. Spectroscopic investigations on Pr³+ and Nd³+ doped strontium-lithium-bismuth borate glasses.

    PubMed

    Rajesh, D; Balakrishna, A; Seshadri, M; Ratnakaram, Y C

    2012-11-01

    Spectroscopic investigations on different concentrations (0.1, 0.5, 1.0, 1.5 and 2.0mol%) of Pr(3+) and Nd(3+) doped strontium lithium bismuth borate glasses have been done. X-ray diffraction, SEM with EDS, absorption and luminescence spectra were recorded for all the glass matrices and analyzed. X-ray diffraction profiles and SEM images conformed amorphous nature of investigated glass samples. EDS spectra of host glass and Pr(3+)doped glass matrices gave information about the chemical composition of glass samples. From the absorption spectra of Pr(3+) and Nd(3+) ions, Judd-Ofelt (J-O) intensity parameters (Ω(λ),λ=2, 4 and 6) have been calculated and compared with other glass matrices. The emission characteristics such as radiative lifetimes (τ(R)), measured and calculated branching ratios (β) and stimulated emission cross-sections (σ(P)) have been obtained for the observed emission transitions of Pr(3+) and Nd(3+) ions in the above glass matrix for all the concentrations. From the emission spectra of Pr(3+) and Nd(3+) doped glass matrices, the effect of concentration on the quenching of intensity of (1)D(2)→(3)H(4) transition of Pr(3+) ion and (4)F(3/2)→(4)I(9/2), (4)I(11/2) and (4)I(13/2) transitions of Nd(3+) have been studied and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengcheng; Dong, Jian; West, Robert; Amine, Khalil

    Functionalized disiloxane compounds were synthesized by attaching oligo(ethylene glycol) chains, -(CH 2CH 2O)- n, n = 2-7, via hydrosilation, dehydrocoupling, and nucleophilic substitution reactions and were examined as non-aqueous electrolyte solvents in lithium-ion cells. The compounds were fully characterized by 1H, 13C, and 29Si nuclear magnetic resonance (NMR) spectroscopy. Upon doping with lithium bis(oxalato)borate (LiBOB) or LiPF 6, the disiloxane electrolytes showed conductivities up to 6.2 × 10 -4 S cm -1 at room temperature. The thermal behavior of the electrolytes was studied by differential scanning calorimetry, which revealed very low glass transition temperatures before and after LiBOB doping and much higher thermal stability compared to organic carbonate electrolytes. Cyclic voltammetry measurements showed that disiloxane-based electrolytes with 0.8 M LiBOB salt concentration are stable to 4.7 V. The LiBOB/disiloxane combinations were found to be good electrolytes for lithium-ion cells; unlike LiPF 6, LiBOB can provide a good passivation film on the graphite anode. The LiPF 6/disiloxane electrolyte was enabled in lithium-ion cells by adding 1 wt% vinyl ethylene carbonate (VEC). Full cell performance tests with LiNi 0.80Co 0.15Al 0.05O 2 as the cathode and mesocarbon microbead (MCMB) graphite as the anode show stable cyclability. The results demonstrate that disiloxane-based electrolytes have considerable potential as electrolytes for use in lithium-ion batteries.

  3. Simultaneous determination of anthraquinones, their 8-beta-D-glucosides, and sennosides of Rhei Rhizoma by capillary electrophoresis.

    PubMed

    Koyama, Junko; Morita, Izumi; Fujiyoshi, Hirotaka; Kobayashi, Norihiro

    2005-05-01

    The simultaneous separation and determination of major anthraquinones (emodin, chrysophanol, rhein and their glucosides, aloe-emodin, sennoside A, and sennoside B) of Rhei Rhizoma were achieved by cyclodextrin modified capillary zone electrophoresis. The running electrolyte used in this method was 0.005 M alpha-cyclodextrin in 0.03 M borate buffer (pH 10.0) containing 20% acetonitrile, with an applied voltage of 20 kV.

  4. A Study of the 5S Ribosomal RNAs of the Vibrionaceae

    DTIC Science & Technology

    1984-01-01

    codon (UAA, UAG, or UGA) TBE Tris-borate-EDTA buffer ug microgram, i.e., 10-’ gram 6 ul microliter. iJe., 10- 6 liter UPG unweighted pair-group UPGMA ...Psy~ww~w .......................... .. 4.------------------ 0 IC 5b. The UPGMA , or UPS average linkage, dendrogram resulting from the...cluster, and the V. damsela - Q. anguillarus doublet are identical to that predicted by UPGMA analysis. C. CONSERVED AND HYPERVARIABLE REGIONS As

  5. Chemical stability of Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide, an electrolyte salt for Li-ion cells

    DOE PAGES

    Shkrob, Ilya A.; Pupek, Krzysztof Z.; Gilbert, James A.; ...

    2016-12-01

    Lithium hexafluorophosphate (LiPF 6) is ubiquitous in commercial lithium-ion batteries, but it is hydrolytically unstable and corrosive on electrode surfaces. Using a more stable salt would confer multiple benefits for high-voltage operation, but many such electrolyte systems facilitate anodic dissolution and pitting corrosion of aluminum current collectors that negate their advantages. Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) is a new salt that was designed specifically for high-voltage cells. In this study we demonstrate that in carbonate electrolytes, LiTDI prevents anodic dissolution of Al current collectors, which places it into a select group of corrosion inhibitors. However, we also demonstrate that LiTDI becomes reducedmore » on lithiated graphite, undergoing sequential defluorination and yielding a thick and resistive solid-electrolyte interphase (SEI), which increases impedance and lowers electrode capacity. The mechanistic causes for this behavior are examined using computational chemistry methods in the light of recent spectroscopic studies. Here, we demonstrate that LiTDI reduction can be prevented by certain electrolyte additives, which include fluoroethylene carbonate, vinylene carbonate and lithium bis(oxalato)borate. This beneficial action is due to preferential reduction of these additives over LiTDI at a higher potential vs. Li/Li +, so the resulting SEI can prevent the direct reduction of LiTDI at lower potentials on the graphite electrode.« less

  6. Graphene electrodes for lithium-niobate electro-optic devices.

    PubMed

    Chang, Zeshan; Jin, Wei; Chiang, Kin Seng

    2018-04-15

    We propose and demonstrate the use of graphene electrodes for lithium-niobate electro-optic (EO) devices to exempt the need of incorporating a buffer layer between the waveguide and the electrodes. Using graphene electrodes, our experimental mode converter, based on an EO-generated long-period grating in a LiNbO 3 waveguide, shows a reduction in the half-π voltage by almost three times, compared with the conventional electrode design using metal. With the buffer layer exempted, the device fabrication process is also significantly simplified. The use of graphene electrodes is an effective approach to enhancing the efficiency of EO devices and, at the same time, reducing their fabrication cost.

  7. Preparation and properties of porous microspheres made from borate glass.

    PubMed

    Conzone, Samuel D; Day, Delbert E

    2009-02-01

    Dysprosium lithium-borate glass microspheres and particles, ranging from 45 to 150 microm in diameter, were reacted with a 0.25 M phosphate solution at 37 degrees C, whose pH was either 3 or 8.8. The glass reacted nonuniformly and was converted into a porous, amorphous, hydrated, dysprosium phosphate reaction product. The amorphous product had the same volume and shape (pseudomorphic) as the unreacted glass, and could be dried without cracking. After heating at 300 degrees C for 1 h, the amorphous reaction product had a specific surface area of approximately 200 m(2)/g, a pore size of approximately 30 nm, and nominal crushing strength of approximately 10 MPa. When the reaction product was heated to 600 degrees C for 15 min, the specific surface area decreased to approximately 90 m(2)/g and the nominal crushing strength increased to 35 MPa. Heating above 615 degrees C converted the amorphous dysprosium phosphate product into crystalline DyPO(4), which contained open porosity until heated above 800 degrees C for 15 min. Highly porous materials of different chemical composition can be prepared by chemically reacting a borate-based glass with an aqueous solution at low-temperature (<100 degrees C). These highly porous materials are easy to process, and are considered candidates for controlled drug delivery, catalysis, chromatographic separation, filtration, and as bioactive materials.

  8. Proline-coated column for the capillary electrochromatographic separation of amino acids by in-column derivatization.

    PubMed

    Lin, Chun-Chi; Liu, Chuen-Ying

    2004-10-01

    With 3-trimethoxysilylpropyl chloride as the spacer, a proline-coated capillary column was prepared for the capillary electrochromatographic (CEC) separation of amino acids by in-column derivatization. Nine standard mixtures, including aspartic acid, glutamic acid, valine, phenylalanine, alanine, isoleucine, leucine, tyrosine, and tryptophan, were injected. o-Phthalaldehyde (OPA), OPA/2-mercaptoethanol (2-ME) and OPA/N-acetylcysteine (NAC) in borate buffer were tested as the derivatizing agent. Among them, OPA (50 mM) in borate buffer (pH 9.5, 50 mM) gave the best performance. The formation of isoindole could be detected by UV detection. The sandwich-type injection was carried out in hydrostatic mode (10 cm) with the program R(10 s)S(10 s) R(10 s)W(10 min) with R, S, and W being the reagent, sample, and waiting times. Mesityl oxide, benzyl alcohol, and acetone showed some interaction with the column. A current monitoring method was used instead of the determination of the electroosmotic flow (EOF). The direction of EOF was from anode to cathode even under acidic condition lower than the pI value (6.31) of the bonded group due to some unreacted silanol groups. Some parameters including pH, nature, and concentration of the mobile phase and the effect of organic modifier with regard to the CEC separation were investigated. With the proline-coated column (75 (50) cm x 75 microm ID) the best separation was performed in phosphate buffer (pH 4.00, 100 mM) with an applied voltage of -15 kV. The established method was also compared with those precolumn derivatized prior to the separation with proline-coated column as well as with in-capillary derivatization and separation with a bare fused-silica column. Copyright 2004 WILEY-VCH Verlag GmbH & Co.

  9. Buffer salt effects in off-line coupling of capillary electrophoresis and mass spectrometry.

    PubMed

    Marák, Jozef; Stanová, Andrea

    2014-05-01

    In this work, the impact of buffer salts/matrix effects on the signal in direct injection MS with an electrospray interface (DI-ESI-MS) following pITP fractionation of the sample was studied. A range of buffers frequently used in CE analyses (pH 3-10) was prepared containing 10, 50, and 90% v/v of ACN, respectively. The sets of calibration solutions of cetirizine (an antihistaminic drug with an amphiprotic character) within a 0.05-2.0 mg/L concentration range were prepared in different buffers. The greatest enhancements in the MS signal (in terms of change in the slope of the calibration line) were obtained for the beta-alanine buffer (pH 3.5) in positive ionization and for the borate buffer (pH 9.2) in negative ionization, respectively. The procedure was successfully applied to the analysis of buserelin (a peptidic drug). The slope of the calibration line for solutions containing the beta-alanine buffer with 50% of ACN was 4 times higher than for water or urine, respectively. This study clearly demonstrates that the buffer salt/matrix effects in an offline combination of pITP and DI-ESI-MS can also play a positive role, as they can enhance the signal in MS. A similar influence of the above effects can also be presumed in the CE techniques combined on-line with ESI-MS.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkrob, Ilya A.; Pupek, Krzysztof Z.; Gilbert, James A.

    Lithium hexafluorophosphate (LiPF 6) is ubiquitous in commercial lithium-ion batteries, but it is hydrolytically unstable and corrosive on electrode surfaces. Using a more stable salt would confer multiple benefits for high-voltage operation, but many such electrolyte systems facilitate anodic dissolution and pitting corrosion of aluminum current collectors that negate their advantages. Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) is a new salt that was designed specifically for high-voltage cells. In this study we demonstrate that in carbonate electrolytes, LiTDI prevents anodic dissolution of Al current collectors, which places it into a select group of corrosion inhibitors. However, we also demonstrate that LiTDI becomes reducedmore » on lithiated graphite, undergoing sequential defluorination and yielding a thick and resistive solid-electrolyte interphase (SEI), which increases impedance and lowers electrode capacity. The mechanistic causes for this behavior are examined using computational chemistry methods in the light of recent spectroscopic studies. Here, we demonstrate that LiTDI reduction can be prevented by certain electrolyte additives, which include fluoroethylene carbonate, vinylene carbonate and lithium bis(oxalato)borate. This beneficial action is due to preferential reduction of these additives over LiTDI at a higher potential vs. Li/Li +, so the resulting SEI can prevent the direct reduction of LiTDI at lower potentials on the graphite electrode.« less

  11. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode-Electrolyte Interface in Lithium-Ion Batteries.

    PubMed

    Gao, Han; Maglia, Filippo; Lamp, Peter; Amine, Khalil; Chen, Zonghai

    2017-12-27

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in lithium-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a "corrosion inhibitor film" that prevents severely attack and passivation from protons that generated from the solvent oxidation, even the decomposition of solvent cannot be mitigated. Effect of two exemplary electrolyte additives, lithium difluoro(oxalato)borate (LiDFOB) and 3-hexylthiophene (3HT), on LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next-generation high-energy-density lithium-ion chemistries.

  12. Polyfluorinated boron cluster based salts: A new electrolyte for application in nonaqueous asymmetric AC/Li 4Ti 5O 12 supercapacitors

    NASA Astrophysics Data System (ADS)

    Ionica-Bousquet, C. M.; Muñoz-Rojas, D.; Casteel, W. J.; Pearlstein, R. M.; Kumar, G. Girish; Pez, G. P.; Palacín, M. R.

    Solutions of novel fluorinated lithium dodecaborate (Li 2B 12F xH 12- x) salts have been evaluated as electrolytes in nonaqueous asymmetric supercapacitors with Li 4Ti 5O 12 as negative electrode, and activated carbon (AC) as positive electrode. The results obtained with these new electrolytes were compared with those obtained with cells built using standard 1 M LiPF 6 dissolved in ethylene carbonate and dimethyl carbonate (EC:DMC; 1:1, v/v) as electrolyte. The specific energy, rate capability, and cycling performances of nonaqueous asymmetric cells based on these new electrolyte salts were studied. Cells assembled using the new fluoroborate salts show excellent reversibility, coulombic efficiency, rate capability and improved cyclability when compared with the standard electrolyte. These features confirm the suitability of lithium-fluoro-borate based salts to be used in nonaqueous asymmetric supercapacitors.

  13. Four-time 7Li stimulated-echo spectroscopy for the study of dynamic heterogeneities: Application to lithium borate glass.

    PubMed

    Storek, M; Tilly, J F; Jeffrey, K R; Böhmer, R

    2017-09-01

    To study the nature of the nonexponential ionic hopping in solids a pulse sequence was developed that yields four-time stimulated-echo functions of previously inaccessible spin-3/2-nuclei such as 7 Li. It exploits combined Zeeman and octupolar order as longitudinal carrier state. Higher-order correlation functions were successfully generated for natural-abundance and isotopically-enriched lithium diborate glasses. Four-time 7 Li measurements are presented and compared with two-time correlation functions. The results are discussed with reference to approaches devised to quantify the degree of nonexponentiality in glass forming systems and evidence for the occurrence of dynamic heterogeneities and dynamic exchange were found. Additional experiments using the 6 Li species illustrate the challenge posed by subensemble selection when the dipolar interactions are not very much smaller than the quadrupolar ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Determination of monosaccharides derivatized with 2-aminobenzoic Acid by capillary electrophoresis.

    PubMed

    Abo, Mitsuru; He, Li-Ping; Sato, Kae; Okubo, Akira

    2013-01-01

    Reducing monosaccharides were derivatized with 2-aminobenzoic acid (2-AA) through reductive amination using sodium cyanoborohydride as a reductant, and the derivatives were separated by capillary zone electrophoresis with UV detection using 50 mM sodium phosphate (pH 5.5) or 150 mM sodium borate-50 mM sodium phosphate (pH 7.0) running buffer. The derivatives of monosaccharides, which are major components of various carbohydrate materials, were completely separated within 25 min.

  15. The Feasibility and Functional Performance of Ternary Borate-Filled Hydrophilic Bone Cements: Targeting Therapeutic Release Thresholds for Strontium

    PubMed Central

    MacDonald, Kathleen; Price, Richard B.; Boyd, Daniel

    2017-01-01

    We examine the feasibility and functionality of hydrophilic modifications to a borate glass reinforced resin composite; with the objective of meeting and maintaining therapeutic thresholds for Sr release over time, as a potential method of incorporating antiosteoporotic therapy into a vertebroplasty material. Fifteen composites were formulated with the hydrophilic agent hydroxyl ethyl methacrylate (HEMA, 15, 22.5, 30, 37.5 or 45 wt% of resin phase) and filled with a borate glass (55, 60 or 65 wt% of total cement) with known Sr release characteristics. Cements were examined with respect to degree of cure, water sorption, Sr release, and biaxial flexural strength over 60 days of incubation in phosphate buffered saline. While water sorption and glass degradation increased with increasing HEMA content, Sr release peaked with the 30% HEMA compositions, scanning electron microscope (SEM) imaging confirmed the surface precipitation of a Sr phosphate compound. Biaxial flexural strengths ranged between 16 and 44 MPa, decreasing with increased HEMA content. Degree of cure increased with HEMA content (42 to 81%), while no significant effect was seen on setting times (209 to 263 s). High HEMA content may provide a method of increasing monomer conversion without effect on setting reaction, providing sustained mechanical strength over 60 days. PMID:28708123

  16. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model.

    PubMed

    Cui, Xu; Huang, Wenhai; Zhang, Yadong; Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting; Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping; Pan, Haobo; Rahaman, Mohamed N

    2017-04-01

    There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8±2MPa to 31±2MPa) as the ratio of glass particles to chitosan solution increased (from 1.0gml -1 to 2.5gml -1 ). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The Feasibility and Functional Performance of Ternary Borate-Filled Hydrophilic Bone Cements: Targeting Therapeutic Release Thresholds for Strontium.

    PubMed

    MacDonald, Kathleen; Price, Richard B; Boyd, Daniel

    2017-07-14

    We examine the feasibility and functionality of hydrophilic modifications to a borate glass reinforced resin composite; with the objective of meeting and maintaining therapeutic thresholds for Sr release over time, as a potential method of incorporating antiosteoporotic therapy into a vertebroplasty material. Fifteen composites were formulated with the hydrophilic agent hydroxyl ethyl methacrylate (HEMA, 15, 22.5, 30, 37.5 or 45 wt% of resin phase) and filled with a borate glass (55, 60 or 65 wt% of total cement) with known Sr release characteristics. Cements were examined with respect to degree of cure, water sorption, Sr release, and biaxial flexural strength over 60 days of incubation in phosphate buffered saline. While water sorption and glass degradation increased with increasing HEMA content, Sr release peaked with the 30% HEMA compositions, scanning electron microscope (SEM) imaging confirmed the surface precipitation of a Sr phosphate compound. Biaxial flexural strengths ranged between 16 and 44 MPa, decreasing with increased HEMA content. Degree of cure increased with HEMA content (42 to 81%), while no significant effect was seen on setting times (209 to 263 s). High HEMA content may provide a method of increasing monomer conversion without effect on setting reaction, providing sustained mechanical strength over 60 days.

  18. Screening and confirmatory methods for the analysis of macrocyclic lactone mycotoxins by CE with amperometric detection.

    PubMed

    Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Téllez, Helena; Rodríguez-Flores, Juana; Zougagh, Mohammed; Ríos, Angel; Chicharro, Manuel

    2009-02-01

    A simple analytical scheme for the screening and quantification of zearalenone and its metabolites, alpha-zearalenol and beta-zearalenol, is reported. Extracts from maize flour samples were collected by supercritical fluid extraction and afterwards, they were analyzed by CE with amperometric detection. This scheme allowed a rapid and reliable identification of contaminated flour samples according to the reference value established for zearalenone by directive 2005/38/EC (200 microg/kg). The sample screening method was carried out by CZE using 25 mM borate separation buffer at pH 9.2 and 25.0 kV as separation voltage, monitoring the amperometric signal at +700 mV with a carbon paste electrode. In this way, total amount of mycotoxins was determined and samples were processed in 4 min with a detection limit of 12 microg/L, enough to discriminate between positive (more than 200 microg/L total mycotoxins) and negative samples (less than 200 microg/L total mycotoxins). Positive samples were then subjected to CZE separation and quantification of each analyte was done with 50 mM borate running buffer modified with 30% methanol at pH 9.7 and 17.5 kV as separation voltage. Under these conditions, separation was achieved in 15 min with detection limits from 20 to 35 microg/L for each analyte.

  19. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 1. Screening of optimal extraction conditions using a D-optimal experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A D-optimal design was constructed to optimize allergen extraction efficiency simultaneously from roasted, non-roasted, defatted, and non-defatted almond, hazelnut, peanut, and pistachio flours using three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various conditions of ionic strength, buffer-to-protein ratio, extraction temperature, and extraction duration. Statistical analysis showed that roasting and non-defatting significantly lowered protein recovery for all nuts. Increasing the temperature and the buffer-to-protein ratio during extraction significantly increased protein recovery, whereas increasing the extraction time had no significant impact. The impact of the three buffers on protein recovery varied significantly among the nuts. Depending on the extraction conditions, protein recovery varied from 19% to 95% for peanut, 31% to 73% for almond, 17% to 64% for pistachio, and 27% to 88% for hazelnut. A modulation by the buffer type and ionic strength of protein and immunoglobuline E binding profiles of extracts was evidenced, where high protein recovery levels did not always correlate with high immunoreactivity. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Coefficient of Friction of Human Corneal Tissue.

    PubMed

    Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine

    2015-09-01

    A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.

  1. Diluents for stabilization of tuberculin

    PubMed Central

    Magnusson, Mogens; Guld, Johannes; Magnus, Knut; Waaler, Hans

    1958-01-01

    Tuberculin is known to be adsorbed to containers and syringes. In the present paper, the adsorption which takes place in the ampoules has been studied in relation to the diluent for the tuberculin. Adsorption was most evident in dilutions prepared with saline or with phosphate buffer containing dextran. The inclusion in phosphate buffer diluent of small amounts of proteins or synthetic surface-active agents decreased or prevented adsorption. A boric-acid sodium-borate diluent containing gum arabic, previously recommended for the preparation of stabilized tuberculin dilutions, was found to be ineffective. The most suitable diluent for the preparation of stable tuberculin dilutions was a 0.05‰ solution of Tween 80 in phosphate-buffered saline; this diluent appeared to prevent adsorption under a variety of experimental conditions. The inclusion of Tween 80 in the diluent had little or no effect on the general storage stability of purified tuberculin. Sensitization experiments in guinea-pigs, rabbits and humans showed that no sensitization against Tween 80 need be feared when a 0.05‰ solution of Tween 80 in phosphate buffered saline is used in the preparation of tuberculin dilutions. PMID:13618720

  2. X-Ray Absorption Spectroscopy Studies of the Atomic Structure of Zirconium-Doped Lithium Silicate Glasses and Glass-Ceramics, Zirconium-Doped Lithium Borate Glasses, and Vitreous Rare-Earth Phosphates

    NASA Astrophysics Data System (ADS)

    Yoo, Changhyeon

    In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.

  3. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Conder, Joanna; Bouchet, Renaud; Trabesinger, Sigita; Marino, Cyril; Gubler, Lorenz; Villevieille, Claire

    2017-06-01

    In the on going quest towards lithium-battery chemistries beyond the lithium-ion technology, the lithium-sulfur system is emerging as one of the most promising candidates. The major outstanding challenge on the route to commercialization is controlling the so-called polysulfide shuttle, which is responsible for the poor cycling efficiency of the current generation of lithium-sulfur batteries. However, the mechanistic understanding of the reactions underlying the polysulfide shuttle is still incomplete. Here we report the direct observation of lithium polysulfides in a lithium-sulfur cell during operation by means of operando X-ray diffraction. We identify signatures of polysulfides adsorbed on the surface of a glass-fibre separator and monitor their evolution during cycling. Furthermore, we demonstrate that the adsorption of the polysulfides onto SiO2 can be harnessed for buffering the polysulfide redox shuttle. The use of fumed silica as an electrolyte additive therefore significantly improves the specific charge and Coulombic efficiency of lithium-sulfur batteries.

  4. Solid state neutron detector and method for use

    DOEpatents

    Doty, F. Patrick; Zwieback, Ilya; Ruderman, Warren

    2002-01-01

    Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.

  5. Linear optical properties of the monoclinic bismuth borate BiB3O6

    NASA Astrophysics Data System (ADS)

    Hellwig, H.; Liebertz, J.; Bohatý, L.

    2000-07-01

    New materials for nonlinear optical (NLO) applications are still of great interest. The monoclinic BiB3O6 (BIBO) shows exceptionally large NLO coefficients. In this article we will present the linear optical properties in the wavelength range between 350 and 2400 nm, the phase matching conditions calculated for second harmonic generation, and optical parametric oscillation. Angular bandwidth data are also given. The wide tuning range of phase matched directions together with the monoclinic symmetry allow a broad variety of applications. The laser damage threshold is comparable to high quality lithium triborate.

  6. Determination of antibacterial flomoxef in serum by capillary electrophoresis.

    PubMed

    Kitahashi, Toshihiro; Furuta, Itaru

    2003-04-01

    A determination method of flomoxef (FMOX) concentration in serum by capillary electrophoresis is developed. Serum samples are extracted with acetonitrile. After pretreatment, they are separated in a fused-silica capillary tube with a 25 mM borate buffer (pH 10.0) as a running buffer that contains 50mM sodium dodecyl sulfate. The FMOX and acetaminophen (internal standard) are detected by UV absorbance at 200 nm. Linearity (0-200 mg/L) is good, and the minimum limit of detection is 1.0 mg/L (S/N = 3). The relative standard deviations of intra- and interassay variability are 1.60-4.78% and 2.10-3.31%, respectively, and the recovery rate is 84-98%. This method can be used for determination of FMOX concentration in serum.

  7. A Novel Injectable Borate Bioactive Glass Cement as an Antibiotic Delivery Vehicle for Treating Osteomyelitis

    PubMed Central

    Cui, Xu; Gu, Yi-Fei; Jia, Wei-Tao; Rahaman, Mohamed N.; Wang, Yang; Huang, Wen-Hai; Zhang, Chang-Qing

    2014-01-01

    Background A novel injectable cement composed of chitosan-bonded borate bioactive glass (BG) particles was evaluated as a carrier for local delivery of vancomycin in the treatment of osteomyelitis in a rabbit tibial model. Materials and Methods The setting time, injectability, and compressive strength of the borate BG cement, and the release profile of vancomycin from the cement were measured in vitro. The capacity of the vancomycin-loaded BG cement to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in rabbit tibiae in vivo was evaluated and compared with that for a vancomycin-loaded calcium sulfate (CS) cement and for intravenous injection of vancomycin. Results The BG cement had an injectability of >90% during the first 3 minutes after mixing, hardened within 30 minutes and, after hardening, had a compressive strength of 18±2 MPa. Vancomycin was released from the BG cement into phosphate-buffered saline for up to 36 days, and the cumulative amount of vancomycin released was 86% of the amount initially loaded into the cement. In comparison, vancomycin was released from the CS cement for up 28 days and the cumulative amount released was 89%. Two months post-surgery, radiography and microbiological tests showed that the BG and CS cements had a better ability to eradicate osteomyelitis when compared to intravenous injection of vancomycin, but there was no significant difference between the BG and CS cements in eradicating the infection. Histological examination showed that the BG cement was biocompatible and had a good capacity for regenerating bone in the tibial defects. Conclusions These results indicate that borate BG cement is a promising material both as an injectable carrier for vancomycin in the eradication of osteomyelitis and as an osteoconductive matrix to regenerate bone after the infection is cured. PMID:24427311

  8. A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis.

    PubMed

    Ding, Hao; Zhao, Cun-Ju; Cui, Xu; Gu, Yi-Fei; Jia, Wei-Tao; Rahaman, Mohamed N; Wang, Yang; Huang, Wen-Hai; Zhang, Chang-Qing

    2014-01-01

    A novel injectable cement composed of chitosan-bonded borate bioactive glass (BG) particles was evaluated as a carrier for local delivery of vancomycin in the treatment of osteomyelitis in a rabbit tibial model. The setting time, injectability, and compressive strength of the borate BG cement, and the release profile of vancomycin from the cement were measured in vitro. The capacity of the vancomycin-loaded BG cement to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in rabbit tibiae in vivo was evaluated and compared with that for a vancomycin-loaded calcium sulfate (CS) cement and for intravenous injection of vancomycin. The BG cement had an injectability of >90% during the first 3 minutes after mixing, hardened within 30 minutes and, after hardening, had a compressive strength of 18 ± 2 MPa. Vancomycin was released from the BG cement into phosphate-buffered saline for up to 36 days, and the cumulative amount of vancomycin released was 86% of the amount initially loaded into the cement. In comparison, vancomycin was released from the CS cement for up 28 days and the cumulative amount released was 89%. Two months post-surgery, radiography and microbiological tests showed that the BG and CS cements had a better ability to eradicate osteomyelitis when compared to intravenous injection of vancomycin, but there was no significant difference between the BG and CS cements in eradicating the infection. Histological examination showed that the BG cement was biocompatible and had a good capacity for regenerating bone in the tibial defects. These results indicate that borate BG cement is a promising material both as an injectable carrier for vancomycin in the eradication of osteomyelitis and as an osteoconductive matrix to regenerate bone after the infection is cured.

  9. Comparison of functional group selective ion-molecule reactions of trimethyl borate in different ion trap mass spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habicht, S C; Vinueza, Nelson R; Amundson, Lucas M

    2011-02-01

    We report here a comparison of the use of diagnostic ion–molecule reactions for the identification of oxygen-containing functional groups in Fourier-transform ion cyclotron resonance (FTICR) and linear quadrupole ion trap (LQIT) mass spectrometers. The ultimate goal of this research is to be able to identify functionalities in previously unknown analytes by using many different types of mass spectrometers. Previous work has focused on the reactions of various boron reagents with protonated oxygen-containing analytes in FTICR mass spectrometers. By using a LQIT modified to allow the introduction of neutral reagents into the helium buffer gas, this methodology has been successfully implementedmore » to this type of an ion trap instrument. The products obtained from the reactions of trimethyl borate (TMB) with various protonated analytes are compared for the two instruments. Finally, the ability to integrate these reactions into LC-MS experiments on the LQIT is demonstrated.« less

  10. Effect of different conventional melt quenching technique on purity of lithium niobate (LiNbO3) nano crystal phase formed in lithium borate glass

    NASA Astrophysics Data System (ADS)

    Kashif, Ismail; Soliman, Ashia A.; Sakr, Elham M.; Ratep, Asmaa

    2012-01-01

    The glass system (45Li2O + 45B2O3 + 10Nb2O5) was fabricated by the conventional melt quenching technique poured in water, at air, between two hot plates and droplets at the cooled surface. The glass and glass ceramics were studied by differential thermal analysis (DTA) and X-ray diffraction (XRD). The as quenched samples poured in water and between two hot plates were amorphous. The samples poured at air and on cooled surface were crystalline as established via X-ray powder diffraction (XRD) studies. Differential thermal analysis was measured. The glass transition temperature (Tg) and the crystallization temperatures were calculated. Lithium niobate (LiNbO3) was the main phase in glass ceramic poured at air, droplets at the cooled surface and the heat treated glass sample at 500, 540 and 580 °C in addition to traces from LiNb3O8. Crystallite size of the main phases determined from the X-ray diffraction peaks is in the range of <100 nm. The fraction of crystalline (LiNbO3) phase decreases with increase in the heat treatment temperature.

  11. Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal-Limbal and Human Conjunctival Epithelial Cells.

    PubMed

    Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline; Barisani-Asenbauer, Talin

    2017-06-01

    To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal-limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT-based assay. The morphology of cells was also investigated. HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface.

  12. Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal–Limbal and Human Conjunctival Epithelial Cells

    PubMed Central

    Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline

    2017-01-01

    Purpose: To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal–limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. Methods: HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT–based assay. The morphology of cells was also investigated. Results: HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. Conclusions: We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface. PMID:28399036

  13. Quality evaluation of Guan-Xin-Ning injection based on fingerprint analysis and simultaneous separation and determination of seven bioactive constituents by capillary electrophoresis.

    PubMed

    Xu, Liying; Chang, Ruimiao; Chen, Meng; Li, Lou; Huang, Yayun; Zhang, Hongfen; Chen, Anjia

    2017-12-01

    The purpose of this study was to develop a comprehensive, rapid and practical capillary electrophoresis (CE) method for quality control (QC) of Guan-Xin-Ning (GXN) injection based on fingerprint analysis and simultaneous separation and determination of seven constituents. In fingerprint analysis, a capillary zone electrophoresis (CZE) method with a running buffer of 30 mM borate solution (pH 9.3) was established. Meanwhile, ten batches of samples were used to establish the fingerprint electropherogram and 34 common peaks were obtained within 20 min. The RSD of relative migration times (RMT) and relative peak areas (RPA) were less than 5%. In order to further evaluate the quality of GXN injection, a micellar electrokinetic chromatography (MEKC) method was developed for simultaneous separation and determination of bioactive constituents. Seven components reached baseline separation with a running buffer containing 35 mM SDS and 45 mM borate solution (pH 9.3). A good linearity was obtained with correlation coefficients from 0.9906 to 0.9997. The LOD and LOQ ranged from 0.12 to 1.50 μg/mL and from 0.40 to 4.90 μg/mL, respectively. The recoveries ranged between 99.0 and 104.4%. Therefore, it was concluded that the proposed method can be used for full-scale quality analysis of GXN injection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications

    NASA Astrophysics Data System (ADS)

    Deopa, Nisha; Rao, A. S.

    2017-10-01

    Photoluminescence (PL) characterization of Lithium Lead Alumino Borate (LiPbAlB) glasses doped with Sm3+ ions at varying concentrations have been studied by using absorption, excitation, emission, time resolved and confocal image measurements. From the absorption spectra, Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ion doped LiPbAlB glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2, for which the emission cross-sections and branching ratios were evaluated to know the potentialities of these materials as visible luminescent devices. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition level were used to estimate quantum efficiency of the as-prepared glasses. The non-exponential decay curves observed for higher Sm3+ ion concentrations were well fitted to Inokuti-Hirayama model to understand the predominant energy transfer mechanism involved in the as-prepared glasses. CIE chromaticity coordinates and correlated color temperatures (CCT) were evaluated to understand the utility of the titled glasses in cool white light generation. The confocal images captured under 405 nm CW laser excitation show intense reddish-orange color. From the evaluated radiative parameters, emission cross-sections, quantum efficiency, CIE co-ordinates, CCT temperatures and confocal images, it was observed that LiPbAlB glass with 0.5 mol% Sm3+ ions are more suitable for w-LEDs and reddish-orange luminescent device applications.

  15. Effect of pyrophosphate ions on the conversion of calcium-lithium-borate glass to hydroxyapatite in aqueous phosphate solution.

    PubMed

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2010-10-01

    The conversion of glass to a hydroxyapatite (HA) material in an aqueous phosphate solution is used as an indication of the bioactive potential of the glass, as well as a low temperature route for preparing biologically useful materials. In this work, the effect of varying concentrations of pyrophosphate ions in the phosphate solution on the conversion of a calcium-lithium-borate glass to HA was investigated. Particles of the glass (150-355 μm) were immersed for up to 28 days in 0.25 M K(2)HPO(4) solution containing 0-0.1 M K(4)P(2)O(7). The kinetics of degradation of the glass particles and their conversion to HA were monitored by measuring the weight loss of the particles and the ionic concentration of the solution. The structure and composition of the conversion products were analyzed using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. For K(4)P(2)O(7) concentrations of up to 0.01 M, the glass particles converted to HA, but the time for complete conversion increased from 2 days (no K(4)P(2)O(7)) to 10 days (0.01 M K(4)P(2)O(7)). When the K(4)P(2)O(7) concentration was increased to 0.1 M, the product consisted of an amorphous calcium phosphate material, which eventually crystallized to a pyrophosphate product (predominantly K(2)CaP(2)O(7) and Ca(2)P(2)O(7)). The consequences of the results for the formation of HA materials and devices by the glass conversion route are discussed.

  16. Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.

    PubMed

    Padmaja, G; Kistaiah, P

    2009-03-19

    A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition.

  17. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Hongfa; Shi, Pengcheng; Bhattacharya, Priyanka

    2016-06-01

    Rechargeable lithium (Li) metal batteries with conventional LiPF6-carbonate electrolytes have been reported to fail quickly at charging current densities of about 1.0 mA cm-2 and above. In this work, we demonstrate the rapid charging capability of the Li||LiNi0.8Co0.15Al0.05O2 (NCA) cells enabled by a dual-salt electrolyte of LiTFSI-LiBOB in a carbonate solvent mixture. It is found that the thickness of solid electrolyte interphase (SEI) layer on Li metal anode largely increases with increasing charging current density. However, the cells using the LiTFSI-LiBOB dual-salt electrolyte significantly outperforms those using the LiPF6 electrolyte at high charging current densities. At the charging current densitymore » of 1.50 mA cm-2, the Li||NCA cells with the dual-salt electrolyte can still deliver a discharge capacity of 131 mAh g-1 and a capacity retention of 80% after 100 cycles, while those with the LiPF6 electrolyte start to show fast capacity fading after the 30th cycle and only exhibit a low capacity of 25 mAh g-1 and a low retention of 15% after 100 cycles. The reasons for the good chargeability and cycling stability of the cells using LiTFSI-LiBOB dual-salt electrolyte can be attributed to the good film-formation ability of the electrolyte on lithium metal anode and the highly conductive nature of the sulfur-rich interphase layer.« less

  18. Electrochemical behavior of Al in a non-aqueous alkyl carbonate solution containing LiBOB salt

    NASA Astrophysics Data System (ADS)

    Myung, Seung-Taek; Natsui, Hiroshi; Sun, Yang-Kook; Yashiro, Hitoshi

    Aluminum was studied as a current collector for rechargeable lithium batteries to understand electrochemical and passivation behavior. Electrochemical polarization tests, in situ scratch polarization tests and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) analysis in lithium bis-oxalato borate (LiBOB)-containing alkyl carbonate solution were conducted. The Al foil did not follow the alloy and de-alloy process with the LiBOB salt in electrolyte at 0 V vs. Li/Li + in the cathodic sweep. During the anodic scan to the noble direction, the absence of an oxidation peak up to 3 V vs. Li/Li + indicated that the air-formed oxide layer of Al was not reduced to metal. Oxide-free Al surfaces made by the in situ scratch test during the electrochemical polarization resulted in abrupt alloy formation with Li at 0 V vs. Li/Li +, but the newly formed surface formed passive films at higher potential with oxygen, namely, Al-O compound, as confirmed by ToF-SIMS.

  19. Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba- closo -borate Salts

    DOE PAGES

    Tang, Wan Si; Yoshida, Koji; Soloninin, Alexei V.; ...

    2016-09-01

    Solid lithium and sodium closo-polyborate-based salts are capable of superionic conductivities surpassing even liquid electrolytes, but often only at above-ambient temperatures where their entropically driven disordered phases become stabilized. Here we show by X-ray diffraction, quasielastic neutron scattering, differential scanning calorimetry, NMR, and AC impedance measurements that by introducing 'geometric frustration' via the mixing of two different closo-polyborate anions, namely, 1-CB 9H 10- and CB 11H 12-, to form solid-solution anion-alloy salts of lithium or sodium, we can successfully suppress the formation of possible ordered phases in favor of disordered, fast-ion-conducting alloy phases over a broad temperature range from subambientmore » to high temperatures. Finally, this result exemplifies an important advancement for further improving on the remarkable conductive properties generally displayed by this class of materials and represents a practical strategy for creating tailored, ambient-temperature, solid, superionic conductors for a variety of upcoming all-solid-state energy devices of the future.« less

  20. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution.

    PubMed

    Lee, Dong-Ju; Agostini, Marco; Park, Ju-Won; Sun, Yang-Kook; Hassoun, Jusef; Scrosati, Bruno

    2013-12-01

    Paving the road for sulfur: A unique electrolyte composition designed for the development of stable lithium-sulfur batteries with high energy. A battery with a high and stable capacity is prepared by using an electrolyte containing a dissolved catholyte-type compound, that is, Li2 S8 polysulfide. The cell is characterized by a capacity approaching the theoretical value at a working voltage of 2.1 V, which is remarkable compared to conventional lithium ion batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sensitive determination of phenolic acids in extra-virgin olive oil by capillary zone electrophoresis.

    PubMed

    Carrasco Pancorbo, Alegría; Cruces-Blanco, Carmen; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto

    2004-11-03

    A sensitive, rapid, efficient, and reliable method for the separation and determination of phenolic acids by capillary zone electrophoresis has been carried out. A detailed method optimization was carried out to separate 14 different compounds by studying parameters such as pH, type and concentration of buffer, applied voltage, and injection time. The separation was performed within 16 min, using a 25 mM sodium borate buffer (pH 9.6) at 25 kV with 8 s of hydrodynamic injection. With this method and using a liquid-liquid extraction system, with recovery values around 95%, it has been possible to detect small quantities of phenolic acids in olive oil samples. This is apparently the first paper showing the quantification of this specific family of phenolic compounds in virgin olive oil samples.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esswein, AJ; Surendranath, Y; Reece, SY

    A high surface area electrode is functionalized with cobalt-based oxygen evolving catalysts (Co-OEC = electrodeposited from pH 7 phosphate, Pi, pH 8.5 methylphosphonate, MePi, and pH 9.2 borate electrolyte, Bi). Co-OEC prepared from MePi and operated in Pi and Bi achieves a current density of 100 mA cm(-2) for water oxidation at 442 and 363 mV overpotential, respectively. The catalyst retains activity in near-neutral pH buffered electrolyte in natural waters such as those from the Charles River (Cambridge, MA) and seawater (Woods Hole, MA). The efficacy and ease of operation of anodes functionalized with Co-OEC at appreciable current density togethermore » with its ability to operate in near neutral pH buffered natural water sources bodes well for the translation of this catalyst to a viable renewable energy storage technology.« less

  3. Separation of flavonol-2-O-glycosides from Calendula officinalis and Sambucus nigra by high-performance liquid and micellar electrokinetic capillary chromatography.

    PubMed

    Pietta, P; Bruno, A; Mauri, P; Rava, A

    1992-02-28

    Calendula officinalis and Sambucus nigra flowers were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC) and micellar electrokinetic capillary chromatography (MECC). RP-HPLC was performed on C8 Aquapore RP 300 columns with eluents containing 2-propanol and tetrahydrofuran. MECC was carried out on a 72-cm fused-silica capillary using sodium dodecyl sulphate and sodium borate (pH 8.3) as the running buffer. The results obtained by these techniques are compared.

  4. The Role of Newly Discovered Exotoxin (S Toxin) in Pseudomonas aeruginosa Infections

    DTIC Science & Technology

    1979-08-01

    sodium or potassium phosphate 6.0-8.0 N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) 6.5-8.5 tris 7.0-9.5 sodium borate 7.5-9.5 sodium...was found to be variable with respect to whether sodium or potassium phosphate buffer was used. With sodium phosphate, virtually all the enzyme...activity bound was eluted between 20-100.2M phosphate at pH 6.8. With the potassium salt, elution occurs at 400-?00mM KP04. Since very little protein was

  5. Atom probe tomography of lithium-doped network glasses.

    PubMed

    Greiwe, Gerd-Hendrik; Balogh, Zoltan; Schmitz, Guido

    2014-06-01

    Li-doped silicate and borate glasses are electronically insulating, but provide considerable ionic conductivity. Under measurement conditions of laser-assisted atom probe tomography, mobile Li ions are redistributed in response to high electric fields. In consequence, the direct interpretation of measured composition profiles is prevented. It is demonstrated that composition profiles are nevertheless well understood by a complex model taking into account the electronic structure of dielectric materials, ionic mobility and field screening. Quantitative data on band bending and field penetration during measurement are derived which are important in understanding laser-assisted atom probe tomography of dielectric materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Efficient second to ninth harmonic generation using megawatt peak power microchip laser.

    PubMed

    Bhandari, R; Tsuji, N; Suzuki, T; Nishifuji, M; Taira, T

    2013-11-18

    We report the design and use of a megawatt peak power Nd:YAG/Cr4+:YAG microchip laser for efficient second to ninth harmonic generation. We show that the sub-nanosecond pulse width region, between 100 ps and 1 ns, is ideally suited for efficient wavelength conversion. Using this feature, we report 85% second harmonic generation efficiency using lithium triborate (LBO), 60% fourth harmonic generation efficiency usingß-barium borate, and 44% IR to UV third harmonic generation efficiency using Type I and Type II LBO. Finally, we report the first demonstration of 118 nm VUV generation in xenon gas using a microchip laser.

  7. Synthesis and optical properties of polycrystalline Li2Al2B2O7 (LABO)

    NASA Astrophysics Data System (ADS)

    Dagdale, S. R.; Muley, G. G.

    2016-05-01

    A polycrystalline lithium aluminum borate (Li2Al2B2O7, LABO) has been synthesized by using simple solid-state technique. The obtained LABO polycrystalline was characterized by powder X-ray diffraction; Fourier transform infrared (FT-IR) spectroscopy and second harmonic generation (SHG) efficiency measurement. The functional groups were identified using the FT-IR spectroscopic data. The SHG efficiency of the polycrystalline material was obtained by the classic Kurtz powder technique using a fundamental wavelength 1064 nm of Nd:YAG laser and it is found to be 1.4 times that of potassium dihydrogen phosphate (KDP).

  8. Lithium Sensitivity of Store Operated Ca2+ Entry and Survival of Fibroblasts Isolated from Chorea-Acanthocytosis Patients.

    PubMed

    Pelzl, Lisann; Elsir, Bhaeldin; Sahu, Itishri; Bissinger, Rosi; Singh, Yogesh; Sukkar, Basma; Honisch, Sabina; Schoels, Ludger; Jemaà, Mohamed; Lang, Elisabeth; Storch, Alexander; Hermann, Andreas; Stournaras, Christos; Lang, Florian

    2017-01-01

    The widely expressed protein chorein fosters activation of the phosphoinositide 3 kinase (PI3K) pathway thus supporting cell survival. Loss of function mutations of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A) causes chorea-acanthocytosis (ChAc), a neurodegenerative disorder paralleled by deformations of erythrocytes. In mice, genetic knockout of chorein leads to enhanced neuronal apoptosis. PI3K dependent signalling upregulates Orai1, a pore forming channel protein accomplishing store operated Ca2+ entry (SOCE). Increased Orai1 expression and SOCE have been shown to confer survival of tumor cells. SOCE could be up-regulated by lithium. The present study explored, whether SOCE and/or apoptosis are altered in ChAc fibroblasts and could be modified by lithium treatment. Fibroblasts were isolated from ChAc patients and age-matched healthy volunteers. Cytosolic Ca2+ activity ([Ca2+]i) was estimated from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM), and apoptosis from annexin-V/propidium iodide staining quantified in flow cytometry. SOCE was significantly smaller in ChAc fibroblasts than in control fibroblasts. Lithium (2 mM, 24 hours) significantly increased and Orai1 blocker 2-Aminoethoxydiphenyl Borate (2-APB, 50 µM, 24 hours) significantly decreased SOCE. Annexin-V-binding and propidium iodide staining were significantly higher in ChAc fibroblasts than in control fibroblasts. In ChAc fibroblasts annexin-V-binding and propidium iodide staining were significantly decreased by lithium treatment, significantly increased by 2-APB and virtually lithium insensitive in the presence of 2-APB. In ChAc fibroblasts, downregulation of SOCE contributes to enhanced susceptibility to apoptosis. Both, decreased SOCE and enhanced apoptosis of ChAc fibroblasts can be reversed by lithium treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Oxidation reaction of polyether-based material and its suppression in lithium rechargeable battery using 4 V class cathode, LiNi1/3Mn1/3Co1/3O2.

    PubMed

    Kobayashi, Takeshi; Kobayashi, Yo; Tabuchi, Masato; Shono, Kumi; Ohno, Yasutaka; Mita, Yuichi; Miyashiro, Hajime

    2013-12-11

    The all solid-state lithium battery with polyether-based solid polymer electrolyte (SPE) is regarded as one of next-generation lithium batteries, and has potential for sufficient safety because of the flammable-electrolyte-free system. It has been believed that polyether-based SPE is oxidized at the polymer/electrode interface with 4 V class cathodes. Therefore, it has been used for electric devices such as organic transistor, and lithium battery under 3 V. We estimated decomposition reaction of polyether used as SPE of all solid-state lithium battery. We first identified the decomposed parts of polyether-based SPE and the conservation of most main chain framework, considering the results of SPE analysis after long cycle operations. The oxidation reaction was found to occur slightly at the ether bond in the main chain with the branched side chain. Moreover, we resolved the issue by introducing a self-sacrificing buffer layer at the interface. The introduction of sodium carboxymethyl cellulose (CMC) to the 4 V class cathode surface led to the suppression of SPE decomposition at the interface as a result of the preformation of a buffer layer from CMC, which was confirmed by the irreversible exothermic reaction during the first charge, using electrochemical calorimetry. The attained 1500 cycle operation is 1 order of magnitude longer than those of previously reported polymer systems, and compatible with those of reported commercial liquid systems. The above results indicate to proceed to an intensive research toward the realization of 4 V class "safe" lithium polymer batteries without flammable liquid electrolyte.

  10. Determination of penicillamine in pharmaceuticals and human plasma by capillary electrophoresis with in-column fiber optics light-emitting diode induced fluorescence detection.

    PubMed

    Yang, Xiupei; Yuan, Hongyan; Wang, Chunling; Su, Xiaodong; Hu, Li; Xiao, Dan

    2007-10-18

    In this paper, a capillary electrophoresis (CE) system with in-column fiber optics light-emitting diode (LED) induced fluorescence detection was developed for the determination of penicillamine (PA). The influence of buffer concentration, buffer pH, applied voltage and injection time was systematically investigated. Optimum separation conditions were obtained with 10 mM borate buffer at pH 9.1, applied voltage 20 kV and 8 s hydrodynamic injection at 30 mbar. The detection system displayed linear dynamic range from 3.2 x 10(-7) to 4.8 x 10(-5) mol L(-1) with a correlation coefficient of 0.9991 and good repeatability (R.S.D.=2.46%). The method was applied to the determination of PA in commercial tablets and human plasma, which the recoveries of standard PA added to tablets and human plasma sample were found to be in the range of 96.26-102.68 and 91.10-99.35%, respectively. The proposed method is cheap, rapid, easy, and accurate, and can be successfully applied to the formulation analysis and bioanalysis.

  11. Analysis of different beta-lactams antibiotics in pharmaceutical preparations using micellar electrokinetic capillary chromatography.

    PubMed

    Pérez, M I Bailón; Rodríguez, L Cuadros; Cruces-Blanco, C

    2007-01-17

    The potential of micellar electrokinetic capillary chromatography (MEKC) for analyzing nine beta-lactams antibiotics (cloxacillin, dicloxacillin, oxacillin, penicillin G, penicillin V, ampicillin, nafcillin, piperacillin, amoxicillin) in different pharmaceutical preparations, have been demonstrated. An experimental design strategy has been applied to optimize the main variables: pH and buffer concentration, concentration of the micellar medium, separation voltage and capillary temperature. Borate buffer (26mM) at pH 8.5 containing 100mM sodium dodecyl sulphate (SDS) was used as the background electrolyte. The method was validated. Linearity, limit of detection and quantitation and precision were established for each compound. The analysis of some of the beta-lactams in Orbenin capsules, Britapen tables and in Veterin-Micipen injectable, all used in human and veterinary medicine, have demonstrated the applicability of these technique for quality control in the pharmaceutical industry.

  12. [Determination of glutamic acid in biological material by capillary electrophoresis].

    PubMed

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  13. Determination of phenolic constituents of biological interest in red wine by capillary electrophoresis with electrochemical detection.

    PubMed

    Peng, Youyuan; Chu, Qingcui; Liu, Fanghua; Ye, Jiannong

    2004-01-28

    A simultaneous determination of trans-resveratrol, (-)-epicatechin, and (+)-catechin in red wine by capillary electrophoresis with electrochemical detection (CE-ED) is reported. The effects of the potential of the working electrode, pH and concentration of running buffer, separation voltage, and injection time on CE-ED were investigated. Under the optimum conditions, the analytes could be separated in a 100 mmol/L borate buffer (pH 9.2) within 20 min. A 300 microm diameter carbon disk electrode has a good response at +0.85 V (vs SCE) for all analytes. The response was linear over 3 orders of magnitude with detection limit (S/N = 3) ranging from 2 x 10(-7) to 5 x 10(-7) g/mL for all analytes. This method has been used for the determination of these analytes in red wine without enrichment, and the assay result was satisfactory.

  14. Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer

    NASA Astrophysics Data System (ADS)

    Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  15. Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paajanen, A.; Lehto, J.; Santapakka, T.

    The efficiencies of 15 commercially available activated carbons were tested for the separation of trace cobalt ({sup 60}Co) in buffer solutions at pH 5.0, 6.7, and 9.1. On the basis of the results four carbon products, Diahope-006, Eurocarb TN5, Hydraffin DG47, and Norit ROW Supra, were selected for further study. These carbons represented varying (low, medium and high) cobalt removal efficiencies and were prepared of three typical raw materials: peat, coconut shell, or coal. Study was made of the effects on sorption efficiencies of factors of interest in metal/radionuclide-bearing waste effluents. These factors were pH, sodium ions, borate, and citrate.

  17. Determination of elemental content off rocks by laser ablation inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.

    1995-01-01

    A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.

  18. Impedance spectroscopic characterization of Sm2O3 containing lithium borate glasses.

    PubMed

    Ramteke, D D; Gedam, R S

    2014-12-10

    27.5 Li2O-(72.5-X) B2O3-X Sm2O3 (X=0.5, 1, 1.5 and 2) were prepared by conventional melt quench technique. Impedance spectroscopy (IS) is used to study the electrical properties of these prepared glasses. Modulus formalism is introduced to study relaxation behaviour of these glasses. Scaling model shows the good overlap of data on single master curve which suggests that conduction mechanism in these glasses is compositional dependent. Variation of dielectric constant and dielectric loss with the addition of Sm2O3 and frequency are discussed here. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The effect of Li2CO3 substitution on synthesis of LiBOB compounds as salt of electrolyte battery lithium ion

    NASA Astrophysics Data System (ADS)

    Lestariningsih, Titik; Wigayati, Etty Marty; Sabrina, Qolby; Prihandoko, Bambang; Priyono, Slamet

    2018-04-01

    Development of the synthesis of LiB(C2O4)2 compounds continues to evolve along with the need for electrolyte salts to support the research of the manufacture of lithium ion batteries. A study had been conducted on the effect of Li2CO3 substitution on the synthesis of LiB(C2O4)2 or LiBOB compounds. LiBOB was a major candidate to replace LiPF6 as a highly toxic lithium battery electrolyte and harmful to human health. Synthesis of Lithium bis(oxalato) borate used powder metallurgy method. The raw materials used are H2C2O4.2H2O, Li2CO3 or LiOH and H2BO3 from Merck Germany products. The materials are mixed with 2: 1: 1 mol ratio until homogeneous. The synthesis of LiBOB refers to previous research, where the heating process was done gradually. The first stage heating is carried out at 120°C for 4 hours, then the next stage heating is carried out at 240°C for 7 hours. The sample variation in this study was to distinguish the lithium source from Li2CO3 and LiOH. Characterization was done by XRD to know the phase formed, FTIR to confirm that functional group of LiB(C2O4)2 compound, SEM to know the morphological structure, and TG/DTA to know the thermal properties. The results of the analysis shows that LiBOB synthesis using Lithium source from Li2CO3 has succeeded to form LiBOB compound with more LiBOB phase composition is 59.1% and 40.9% LiBOB hydrate phase, SEM morphology shows powder consist of elongated round particle porous and similar to LiBOB commercial and show higher thermal stability.

  20. Photon Interaction Parameters for Some Borate Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  1. Radiation effects and defects in lithium borate crystals

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, Igor N.; Poryvay, Nikita E.; Pustovarov, Vladimir A.

    2010-11-01

    The paper presents the results of a study of the formation and decay of lattice defects in wide band-gap optical crystals of LiB3O5 (LBO), Li2B4O7 (LTB) and Li6Gd(BO3)3 (LGBO) with a sublattice of mobile lithium cations. By means of thermoluminescence techniques, and luminescent and absorption optical spectroscopy with a nanosecond time resolution under excitation with an electron beam, it was revealed that the optical absorption in these crystals in the visible and ultraviolet spectral ranges is produced by optical hole-transitions from the local defect level to the valence band states. The valence band density of the states determines mainly the optical absorption spectral profile, and the relaxation kinetics is rated by the interdefect non-radiative tunnel recombination between the trapped-hole center and the Li0 trapped-electron centers. At 290 K, the Li0 centers are subject to thermally stimulated migration. Based on experimental results, the overall picture of thermally stimulated recombination processes with the participation of shallow traps was established for these crystals.

  2. A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection.

    PubMed

    Wang, Shu; Liu, Baomin; Yuan, Dongxing; Ma, Jian

    2016-12-01

    Glyphosate (GLYP) is an important herbicide which is also used as the phosphorus source for marine organisms. The wide applications of GLYP can lead to its accumulation in oceans and coastal waters, thus creating environmental issues. However, there is limited methods for detection of GLYP and its degradation product, aminomethylphosphonic acid (AMPA) in saline samples. Therefore, a simple and fast method for the quantification of GLYP and AMPA in seawater matrix has been developed based on the derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl), separation with high performance liquid chromatography (HPLC) and detection with fluorescence detector (FLD). In order to maximize sensitivity, the derivatization procedure was carefully optimized regarding concentration of FMOC-Cl, volume of borate buffer, pH of borate buffer, mixing and derivatization time. The derivatization reaction could be completed within 30min in seawater samples without any additional clean-up or desalting steps. Under the optimized conditions, the developed HPLC method showed a wide linear response (up to several mg/L, R 2 >0.99). The limits of detection were 0.60μg/L and 0.30μg/L for GLYP and AMPA in seawater matrix, respectively. The relative standard deviation was 14.0% for GLYP (1.00mg/L) and 3.1% for AMPA (100μg/L) in saline samples with three different operators (n=24). This method was applied to determine the concentration of GLYP and AMPA in seawater culture media and the recovery data indicated minimal matrix interference. Due to its simplicity, high reproducibility and successful application in seawater culture media analysis, this method is a potentially useful analytical technique for both marine research and environmental science. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Comparison of classical fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-H2O2 for the degradation of cyclohexanoic acid.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2017-05-01

    The treatment of a naphthenic acid model compound, cyclohexanoic acid, with classical Fenton, UV-H 2 O 2 , UV-Fenton, nitrilotriacetic acid (NTA)-Fenton, UV-NTA-Fenton, and UV photolysis of Fe-NTA processes at pHs 3 and 8 was investigated. At 1.47 mM H 2 O 2 , 0.089 mM Fe, and 0.18 mM NTA, the UV-NTA-Fenton process at pH 3 exhibited the highest H 2 O 2 decomposition (100% in 25 min), CHA removal (100% in 12 min) with a rate constant of 0.27 ± 0.025 min -1 , and NTA degradation (100% in 6 min). Due to the formation of H 2 O 2 -Fe(III)NTA adduct, the total Fe concentration in the UV-NTA-Fenton system (0.063 mM at the end of the reaction) at pH 8 was much higher than that in the UV photolysis of Fe(III)NTA process (0.024 mM). The co-complexing effect of borate buffer helped to keep iron soluble; however, it imposed a negative influence on the CHA degradation in the UV-NTA-Fenton process (68% CHA removal in 60 min in the borate buffer compared to 92% in MilliQ water). The results demonstrated that the most efficient process for the CHA degradation under the experimental conditions was the UV-NTA-Fenton process at pH 3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Han; Maglia, Filippo; Lamp, Peter

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in Li-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a “corrosion inhibitor film” that prevents severely attack and passivation from protons that generatedmore » from the solvent oxidation, even the decomposition of solvent cannot not mitigated. Effect of three exemplary electrolyte additives: (i) lithium difluoro(oxalato)borate (LiDFOB); (ii) 3-hexylthiophene (3HT); and (iii) tris(hexafluoro-iso-propyl)phosphate (HFiP), on LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next generation high-energy density lithium-ion chemistries.« less

  5. Ion dynamics in a new class of materials: nanoglassy lithium alumosilicates

    NASA Astrophysics Data System (ADS)

    Stanje, B.; Bottke, P.; Breuer, S.; Hanzu, I.; Heitjans, P.; Wilkening, M.

    2018-03-01

    In many cases nanocrystalline materials, prepared through high-energy ball milling, reveal enhanced ion dynamics when compared to the situation in the coarse-grained analogues. This effect, which has particularly been seen for lithium alumosilicates, has been ascribed to structural disorder, i.e., the introduction of defect sites during mechanical treatment. Much less is, however, known about ion transport in nanostructured amorphous materials, e.g., nanoglassy compounds, which are regarded as a new class of functional materials. Following earlier studies on nanoglassy lithium alumosilicates and borates, here we studied ion dynamics in nanoglassy petalite LiAlSi4O10. While conductivity spectroscopy unequivocally reveals that long-range ion dynamics in nanoglassy LiAlSi4O10 decreases upon milling, local dynamics, sensed by 7Li nuclear magnetic resonance (NMR) spin-lattice relaxation, points to enhanced Li ion mobility compared to the non-treated glass. Most likely, as for nanocrystalline ceramics also for nanoglassy samples a heterogeneous structure, consisting of bulk and interfacial regions, is formed. For LiAlSi4O10 these interfacial regions, characterized by a higher degree of free volume, might act as hosts for spins experiencing fast longitudinal NMR relaxation. Obviously, these regions do not form a through-going network, which would allow the ions to move over long distances as quickly as in the unmilled glass.

  6. Simultaneous determination of ezetimibe and simvastatin in pharmaceutical preparations by MEKC.

    PubMed

    Yardimci, Ceren; Ozaltin, Nuran

    2010-02-01

    A micellar electrokinetic capillary chromatography method was developed and validated for the simultaneous determination of ezetimibe and simvastatin in pharmaceutical preparations. The influence of buffer concentration, buffer pH, sodium dodecyl sulphate (SDS) concentration, organic modifier, capillary temperature, applied voltage, and injection time was investigated, and the method validation studies were performed. The optimum separation for these analytes was achieved in less than 10 min at 30 degrees C with a fused-silica capillary column (56 cm x 50 microm i.d.) and a 25mM borate buffer at pH 9.0 containing 25mM SDS and 10% (v/v) acetonitrile. The samples were injected hydrodynamically for 3 s at 50 mbar, and the applied voltage was +30.0 kV. Detection wavelength was set at 238 nm. Diflunisal was used as internal standard. The method was suitably validated with respect to stability, specificity, linearity, limits of detection and quantification, accuracy, precision, and robustness. The limits of detection and quantification were 1.0 and 2.0 microg/mL for both ezetimibe and simvastatin, respectively. The method developed was successfully applied to the simultaneous determination of ezetimibe and simvastatin in pharmaceutical preparations.

  7. Determination of residual cell culture media components by MEKC.

    PubMed

    Zhang, Junge; Chakraborty, Utpal; Foley, Joe P

    2009-11-01

    Folic acid, hypoxanthine, mycophenolic acid, nicotinic acid, riboflavin, and xanthine are widely used as cell culture media components in monoclonal antibody manufacturing. These components are subsequently removed during the downstream purification processes. This article describes a single MEKC method that can simultaneously determine all the listed compounds with acceptable LOD and LOQ. All the analytes were successfully separated by MEKC using running buffer containing 40 mM SDS, 20 mM sodium phosphate, and 20 mM sodium borate at pH 9.0. The MEKC method was compared to the corresponding CZE method using the same running buffer containing no SDS. The effect of SDS concentration on separation, the pH of the running buffer, and the detection wavelength were studied and optimal MEKC conditions were established. Good linearity was obtained with correlation coefficients of more than 0.99 for all analytes. Specificity, accuracy, and precision were also evaluated. The recovery was in the range of 89-112%. The precision results were in the range of 1.7-4.8%. The experimentally determined data demonstrated that the MEKC method is applicable to the determination of the six analytes in in-process samples from monoclonal antibody manufacturing processes.

  8. III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Lee, Kyoung-Keun; Madison, Shannon M.; Henderson, Walter; Ralph, Stephen E.; Doolittle, W. Alan

    2005-10-01

    Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO3) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000°C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO3, producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN /GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO3 modulators on compact optoelectronic/electronic chips.

  9. Production of o-diphenols by immobilized mushroom tyrosinase.

    PubMed

    Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio

    2009-01-15

    The o-diphenols 4-tert-butyl-catechol, 4-methyl-catechol, 4-methoxy-catechol, 3,4-dihydroxyphenylpropionic acid and 3,4-dihydroxyphenylacetic acid were produced from the corresponding monophenols (4-tert-butyl-phenol, 4-methyl-phenol, 4-methoxy-phenol, p-hydroxyphenylpropionic acid and p-hydroxyphenylacetic acid) using immobilized mushroom tyrosinase from Agaricus bisporus. In all cases the yield was R(diphenol)> or =88-96%, which, according to the literature, is the highest yield so far, obtained using tyrosinase. The reaction was carried out in 0.5M borate buffer pH 9.0 which was used to minimize the diphenolase activity of tyrosinase by complexing the o-diphenols generated. Hydroxylamine and ascorbic acid were also present in the reaction medium, the former being used to reduce mettyrosinase to deoxytyrosinase, closing the catalytic cycle, and the latter to reduce the o-quinone produced to o-diphenol. Inactivation of the tyrosinase by ascorbic acid was also minimized due to the formation of an ascorbic acid-borate complex. Concentrations of the o-diphenolic compounds obtained at several reaction times were determined by gas chromatography-mass spectrometry (GC-MS) and UV-vis spectroscopy. The experimental results are discussed.

  10. Determination of acarbose by capillary zone electrophoresis.

    PubMed

    Lachmann, B; Noe, C R

    2013-07-01

    Acarbose (Glucobay, Bayer AG) acts as a potent alpha-glucosidase-inhibitor, which delays the intestinal starch digestion resulting in a reduction of postprandial blood glucose and insulin levels. Acarbose is a pseudo-tetrasaccharide, with two D-glucose units linked via an alpha 1-->4 glycosidic bond to acarviosin, which is a N-glycoside composed of an unsaturated cyclitol and 4-amino-4,6-dideoxy-alpha-D-glucopyranose. Several methods for the determination of acarbose by capillary electrophoresis can be found in literature. They are based either on the derivatisation with 7-aminonaphthalene-1,3-disulfonic acid (ANDS) or on the detection of the unsaturated cyclitol at wavelengths below 200 nm. The aim of our work was the determination of acarbose making use of a previously developed method based on reductive amination with S-phenylethylamine. The aminoalditols generated in the reaction formed differently charged borate-complexes depending on the configuration of the sugar. After successful method optimisation we were able to separate two potential impurities of acarbose, D-maltose und D-glucose. For the quantitation of acarbose in Glucobay tablets an additional borate-buffer system was established, reducing the total time of analysis to less than 10 min.

  11. Separation and determination of epinephrine and dopamine in traditional Chinese medicines by micellar electrokinetic capillary chromatography with laser induced fluorescence detection.

    PubMed

    Dong, Yuming; Chen, Hongli; Chen, Yonglei; Hui, Yang; Chen, Xingguo; Hu, Zhide

    2006-08-01

    A micellar electrokinetic capillary chromatography method with laser-induced fluorescence detection was developed for the analysis of epinephrine and dopamine after derivatization with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. The optimum derivatization conditions were: 30 mM sodium borate (pH adjusted to 8.0 with 1.0 M HCl), reaction time 30 min at 60 degrees C. Baseline separation was achieved within 14 min with a running buffer composed of 10 mM sodium borate + 25 mM sodium dodecyl sulfate (pH adjusted to 9.5 with 0.1 M NaOH) and an applied voltage of 15 kV. Good linearity relationships (correlation coefficients: 0.9991 for epinephrine and 0.9985 for dopamine) between peak areas and concentrations of the analytes were obtained. The detection limits and quantification limits for epinephrine and dopamine were 0.0038 mg/L and 0.013 mg/L, and 0.065 mg/L and 0.020 mg/L, respectively. The method was applied to the analysis of the two compounds in two Chinese medicines with recoveries in the range of 92.6-108.7%.

  12. Synthesis of Co 2SnO 4@C core-shell nanostructures with reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Du, Ning; Zhang, Hui; Wu, Ping; Yang, Deren

    This paper reports the synthesis of Co 2SnO 4@C core-shell nanostructures through a simple glucose hydrothermal and subsequent carbonization approach. The as-synthesized Co 2SnO 4@C core-shell nanostructures have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure Co 2SnO 4 nanocrystals. The carbon matrix has good volume buffering effect and high electronic conductivity, which may be responsible for the improved cyclic performance.

  13. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Du, Ning; Zhang, Hui; Yu, Jingxue; Qi, Yue; Yang, Deren

    2011-02-01

    This paper reports the synthesis of carbon-coated SnO2 (SnO2-C) nanotubes through a simple glucose hydrothermal and subsequent carbonization approach by using Sn nanorods as sacrificial templates. The as-synthesized SnO2-C nanotubes have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure SnO2 nanotubes. The hollow nanostructure, together with the carbon matrix which has good buffering effect and high electronic conductivity, can be responsible for the improved cyclic performance.

  14. High-speed liquid chromatographic determination of pilocarpine in pharmaceutical dosage forms.

    PubMed

    Khalil, S K

    1977-11-01

    A specific method for the direct determination of pilocarpine in aqueous pharmaceuticals in the presence of decomposition products, methylcellulose, and other ingredients usually present in pharmaceuticals is described. The method involves separation by high-speed liquid chromatography using, in series, octadecylsilane bonded to silica and cyanopropylsilane bonded to silica columns and a tetrahydrofuran-pH 9.2 borate buffer (3:7) eluant. Quantitation is achieved by monitoring the absorbance of the effluent at 254 nm and using a pyridine internal standard and a calibration curve prepared from known concentrations of pilocarpine nitrate. The reproducibility of the retention time and peak area was better than 2.0%.

  15. Synthesis and evaluation of borates derived from boric acid and diols for the protection of wood against fungal decay and thermal degradation

    Treesearch

    George C. Chen

    2004-01-01

    N,N-dimethyl amino carbinol catechol borate(1). N,N-dimethyl amino carbinol-4-methyl catechol borate(2), N,N-dimethyl amino carbinol-4-t- butyl catechol borate(3). N,N-dimethyl amino carbinol-2,3-naphthyl borate 4) were synthesized by refluxing boric acid and diol in DMF(N,N-dimethyl formamide). The borates were characterized by NMR. Wood impregnated with borate 1,2 or...

  16. Final report of the key comparison APMP.QM-K91: APMP comparison on pH measurement of phthalate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Asakai, Toshiaki; Maksimov, Igor; Suzuki, Toshihiro; Miura, Tsutomu; Ketrin, Rosi; Nuryatini; Thanh, Ngo Huy; Truong Chinh, Nguyen; Vospelova, Alena; Bastkowski, Frank; Sander, Beatrice; Matzke, Jessica; Prokunin, Sergey; Frolov, Dmitry; Aprelev, Alexey; Dobrovolskiy, Vladimir; Uysal, Emrah; Liv, Lokman; Velina Lara-Manzano, Judith; Montero-Ruiz, Jazmin; Ortiz-Aparicio, JosÉ Luis; Ticona Canaza, Galia; Anuar Mohd Amin, Khirul; Abd Kadir, Haslina; Bakovets, Nickolay; Wong, Siu-Kay; Lam, Wai-Hing

    2017-01-01

    The APMP.QM-K91 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phthalate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan at the APMP-TCQM meeting held September 22-23, 2014. After approval by TCQM, the comparison has been conducted by NMIJ. The comparison is a key comparison following CCQM-K91. The comparison material was a phthalate buffer of pH around 4.0 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the third APMP key comparison on pH measurement and the fifth APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004, APMP.QM-P09 (a phthalate buffer) in 2006, APMP.QM-K9/APMP.QM-P16 (a phosphate buffer) in 2010-2011 and APMP.QM-K19/APMP.QM-P25 (a borate buffer) in 2013-2014. The results can be used further by any participant to support its CMC claim at least for a phthalate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the used temperature(s) or the full temperature range between 15°C and 37 °C for the participant which measured pH values at the three temperatures. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. Mineralogy and sedimentology of the Miocene Göcenoluk borate deposit, Kırka district, western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    García-Veigas, Javier; Helvacı, Cahit

    2013-05-01

    The Miocene boratiferous district of Kırka, in western Anatolia (Turkey), is the most important Na-borate (borax) resource in the world. Two separate deposits in the Kırka district are located near the villages of Sarıkaya and Göcenoluk (Eskişehir Province). Borax is intensively exploited in open-pit mines in the Sarıkaya deposit while only small quarries of colemanite are known in the Göcenoluk deposit. Recent exploratory drilling in the Göcenoluk area intersected a thick succession of dolostones, tuffs and three borate-bearing units (Lower, Intermediate and Upper Borate Units). In them, the most abundant borate mineral is ulexite (Ca-Na-borate) passing at depth to probertite. Borax (Na-borate) is only present in the Intermediate Borate Unit. Minor amounts of colemanite (Ca-borate) and hydroboracite (Ca-Mg-borate) occur at the base, and/or top, of each mineralized unit. Pyroclastic layers within the borate units show intense alteration by alkaline, boron-bearing waters and formation of diagenetic clay minerals (smectites), zeolites (analcime) and borosilicates (searlesite). The Göcenoluk succession is interpreted as a shallow, ephemeral, alkaline lake deposit in which carbonates formed as stromatolites and travertines. Borate precipitation in the Göcenoluk area took place interstitially within muddy and carbonate sediments in a lateral progression from marginal Ca-borates towards Na-Ca-borates and rarely to Na-borates in the center of the lake. Authigenic silicate mineral distribution shows parallel changes toward the center of the lake that reflect increasing pH gradient.

  18. Comparison of Borate Bioactive Glass and Calcium Sulfate as Implants for the Local Delivery of Teicoplanin in the Treatment of Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis in a Rabbit Model

    PubMed Central

    Jia, Wei-Tao; Fu, Qiang; Huang, Wen-Hai

    2015-01-01

    There is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TEC in vitro and to cure methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC. PMID:26416858

  19. Comparison of Borate Bioactive Glass and Calcium Sulfate as Implants for the Local Delivery of Teicoplanin in the Treatment of Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis in a Rabbit Model.

    PubMed

    Jia, Wei-Tao; Fu, Qiang; Huang, Wen-Hai; Zhang, Chang-Qing; Rahaman, Mohamed N

    2015-12-01

    There is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TEC in vitro and to cure methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00465b

  1. Electrolytes with Improved Safety Developed for High Specific Energy Li-Ion Cells with Si-Based Anodes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; Soler, J.; West, W. C.; Ratnakumar, B. V.; Prakash, G. K. S.

    2012-01-01

    A number of electrolyte formulations that have improved safety characteristics have been developed for use with high capacity silicon-based anodes. To improve the compatibility with Si-based anodes, a number of technical approaches have been employed, including: (1) the use of mono-fluoroethylene carbonate (FEC) in conjunction with, or in lieu of, ethylene carbonate (EC), (2) the use of high proportions of fluorinated co-solvents, (3) the use of vinylene carbonate (VC) to stabilize the Si/C electrode, and (4) the use of lithium bis(oxalato)borate (LiBOB) to improve the compatibility of the electrolyte when Si/C electrodes are used in conjunction with high voltage cathodes. Candidate electrolytes were studied in Li/Si-C and Si-C/ Li(MnNiCo)O2 (NMC) coin cells, as well as in larger Si-C/NMC three-electrode cells equipped with lithium reference electrodes. In summary, many electrolytes that contain triphenyl phosphate (TPP), which is used as a flame retardant additive up to concentrations of 15 volume percent, and possess FEC as a co-solvent have been demonstrated to outperform the all-carbonate baseline electrolytes when evaluated in Si-C/ Li(MnNiCo)O2 cells.

  2. Structural study and DC conductivity of vanadyl doped zinc lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Seema, Khasa, S.; Dahiya, M. S.; Yadav, Arti; Agarwal, A.; Dahiya, S.

    2015-06-01

    Glasses with composition xZnOṡ(30 - x)ṡLi2Oṡ70B2O3 containing 2 mol% of V2O5 (x = 0, 2, 5, 7 and 10) were prepared by standard melt-quench technique. The amorphous nature of the glass samples was confirmed by using x-ray diffraction. The structural changes in these glasses have been investigated by employing IR spectroscopy in the mid-IR range. The infrared spectroscopic analysis confirms the presence of both triangular and tetraheldral coordinated boron units and absence of boroxol ring. It also shows that metal-oxide vibrations are present which are due to the bonding of lithium and zinc ions with oxygen. The dc conductivity was measured in the temperature range 353-523 K. The dc conductivity results show that conductivity decreases and activation energy increases when Li2O is replaced by ZnO, keeping the concentration of B2O3 constant. Decrease in conductivity and increase in activation energy shows that addition of ZnO to the glass matrix shows a "blocking effect" on the overall mobility of alkali ions, but at higher concentration the hopping effect was also observed.

  3. Simultaneous Stabilization of LiNi0.76Mn0.14Co0.10O2 Cathode and Lithium Metal Anode by LiBOB Additive.

    PubMed

    Zhao, Wengao; Zou, Lianfeng; Zheng, Jianming; Jia, Haiping; Song, Junhua; Engelhard, Mark H; Wang, Chongmin; Xu, Wu; Yang, Yong; Zhang, Ji-Guang

    2018-05-01

    The long-term cycling performance, rate capability, and voltage stability of lithium (Li) metal batteries with LiNi0.76Mn0.14Co0.10O2 (NMC76) cathodes is greatly enhanced by lithium bis(oxalato)borate (LiBOB) additive in the LiPF6-based electrolyte. With 2% LiBOB in the electrolyte, a Li||NMC76 cell is able to achieve a high capacity retention of 96.8% after 200 cycles at C/3 rate (1C = 200 mA g-1), which is the best result reported for a Ni-rich NMC cathode coupled with Li metal anode. The significantly enhanced electrochemical performance can be ascribed to the stabilization of both the NMC76-cathode/electrolyte and Li-metal-anode/electrolyte interfaces. LiBOB-containing electrolyte not only facilitates the formation of a more compact solid electrolyte interphase on the Li metal surface, it also forms a enhanced cathode electrolyte interface layer, which efficiently prevents the corrosion of the cathode interface and mitigates the formation of disordered rock-salt phase after cycling. The fundamental findings of this work highlight the importance of recognizing the dual effects of electrolyte additives in simultaneously stabilizing both cathode and anode interfaces, so as to enhance the long-term cycle life of high-energy-density battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mg- and K-bearing borates and associated evaporites at Eagle Borax spring, Death Valley, California: A spectroscopic exploration

    USGS Publications Warehouse

    Crowley, J.K.

    1996-01-01

    Efflorescent crusts at the Eagle Borax spring in Death Valley, California, contain an array of rare Mg and K borate minerals, several of which are only known from one or two other localities. The Mg- and/or K-bearing borates include aristarainite, hydroboracite, kaliborite, mcallisterite, pinnoite, rivadavite, and santite. Ulexite and probertite also occur in the area, although their distribution is different from that of the Mg and K borates. Other evaporite minerals in the spring vicinity include halite, thenardite, eugsterite, gypsum-anhydrite, hexahydrite, and bloedite. Whereas the first five of these minerals are found throughout Death Valley, the last two Mg sulfates are more restricted in occurrence and are indicative of Mg-enriched ground water. Mineral associations observed at the Eagle Borax spring, and at many other borate deposits worldwide, can be explained by the chemical fractionation of borate-precipitating waters during the course of evaporative concentration. The Mg sulfate and Mg borate minerals in the Eagle Borax efflorescent crusts point to the fractionation of Ca by the operation of a chemical divide involving Ca carbonate and Na-Ca borate precipitation in the subsurface sediments. At many other borate mining localities, the occurrence of ulexite in both Na borate (borax-kernite) and Ca borate (ulexite-colemanite) deposits similarly reflects ulexite's coprecipitation with Ca carbonate at an early concentration stage. Such ulexite may perhaps be converted to colemanite by later reaction with the coexisting Ca carbonate - the latter providing the additional Ca2+ ions needed for the conversion. Mg and Ca-Mg borates are the expected late-stage concentration products of waters forming ulexite-colemanite deposits and are therefore most likely to occur in the marginal zones or nearby mud facies of ulexite-colemanite orebodies. Under some circumstances, Mg and Ca-Mg borates might provide a useful prospecting guide for ulexite-colemanite deposits, although the high solubility of Mg borate minerals may prevent their formation in lacustrine settings and certainly inhibits their geologic preservation. The occurrence of Mg borates in borax-kernite deposits is also related to fractionation processes and points to the operation of an Mg borate chemical divide, characterized by Mg borate precipitation ahead of Mg carbonate. All of these considerations imply that Mg is a significant chemical component of many borate-depositing ground waters, even though Mg borate minerals may not be strongly evident in borate orebodies. The Eagle Borax spring borates and other evaporite minerals were studied using spectroscopic and X-ray powder diffraction methods, which were found to be highly complementary. Spectral reflectance measurements provide a sensitive means for detecting borates present in mixtures with other evaporites and can be used to screen samples rapidly for X-ray diffraction analysis. The apparently limited occurrence of Mg and K borate minerals compared to Ca and Na borates may stem partly from the inefficiency of X-ray diffraction methods for delineating the mineralogy of large and complex deposits. Spectral reflectance measurements can be made in the laboratory, in the field, on the mine face, and even remotely. Reflectance data should have an important role in studies of existing deposit mineralogy and related chemical fractionation processes, and perhaps in the discovery of new borate mineral resources.

  5. Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries.

    PubMed

    Liao, Mingna; Zhang, Qilun; Tang, Fengling; Xu, Zhiwei; Zhou, Xin; Li, Youpeng; Zhang, Yali; Yang, Chenghao; Ru, Qiang; Zhao, Lingzhi

    2018-03-22

    The synthesis of nanosized CoO anodes with unique morphologies via a hydrothermal method is investigated. By adjusting the pH values of reaction solutions, nanoflakes (CoO-NFs) and nanoflowers (CoO-FLs) are successfully located on copper foam. Compared with CoO-FLs, CoO-NFs as anodes for lithium ion batteries present ameliorated lithium storage properties, such as good rate capability, excellent cycling stability, and large CoO nanoflakes; CoO nanoflowers; anodes; binder free; lithium ion batteriesreversible capacity. The initial discharge capacity is 1470 mA h g -1 , while the reversible capacity is maintained at 1776 m Ah g -1 after 80 cycles at a current density of 100 mA h g -1 . The excellent electrochemical performance is ascribed to enough free space and enhanced conductivity, which play crucial roles in facilitating electron transport during repetitive Li⁺ intercalation and extraction reaction as well as buffering the volume expansion.

  6. Role of oxygen on the optical properties of borate glass doped with ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Baki, Manal; El-Diasty, Fouad, E-mail: fdiasty@yahoo.com

    2011-10-15

    Lithium tungsten borate glass (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0{<=}x{<=}0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B{sub 2}O{sub 3} the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density,more » which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B{sub 2}O{sub 3}, which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: > New borate glass for photonic application is prepared. > The dispersion property of the glass is effectively controlled using small amounts of ZnO. > ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. > Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.« less

  7. Radiological properties of plastics and TLD materials its application in radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Jabaseelan Samuel, E. James; Srinivasan, K.; Poopathi, V.

    2017-05-01

    In the current study, we evaluated the tissue equivalency of nine different commonly used thermoluminescence compounds and six plastic materials over the photon energy range of 15 KeV to 20 MeV. Our result confirmed that the ratio of number of electrons per gram, electron density of the entire TLD compounds and plastic materials to ICRU-44 soft tissue was lesser than unity, except in the case of polypropylene plastics. The effective atomic number ratio of all the plastic materials was also <1 excluding Poly-vinyl-chloride, and for TLD lithium borate material, it was <1 others which showed the deviation with respect to photon energy. Mass attenuation coefficient (µ/ϼ), mass absorption coefficient (µen/ρ) was calculated and the results are discussed in this paper.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Baki, Manal; Abdel-Wahab, Fathy A.; El-Diasty, Fouad

    Lithium tungsten borate glass of the composition (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0 {<=}x{<=} 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B{submore » 2}O{sub 3} by ZnO.« less

  9. Electrophoretically mediated microanalysis of a nicotinamide adenine dinucleotide-dependent enzyme and its facile multiplexing using an active pixel sensor UV detector.

    PubMed

    Urban, Pawel L; Goodall, David M; Bergström, Edmund T; Bruce, Neil C

    2007-08-31

    An electrophoretically mediated microanalysis (EMMA) method has been developed for yeast alcohol dehydrogenase and quantification of reactant and product cofactors, NAD and NADH. The enzyme substrate ethanol (1% (v/v)) was added to the buffer (50 mM borate, pH 8.8). Results are presented for parallel capillary electrophoresis with a novel miniature UV area detector, with an active pixel sensor imaging an array of two or six parallel capillaries connected via a manifold to a single output capillary in a commercial CE instrument, allowing conversions with five different yeast alcohol dehydrogenase concentrations to be quantified in a single experiment.

  10. Capillary Electrophoresis of Mono- and Oligosaccharides.

    PubMed

    Toppazzini, Mila; Coslovi, Anna; Rossi, Marco; Flamigni, Anna; Baiutti, Edi; Campa, Cristiana

    2016-01-01

    This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.

  11. Catalytic and inhibiting effect of amino acids on the porphyrin metallation reactions

    NASA Astrophysics Data System (ADS)

    Mamardashvili, Galina M.; Zhdanova, Daria Yu.; Mamardashvili, Nugzar Zh.; Koifman, Oskar I.; Dehaen, Wim

    In the present work, using the interaction of tetra-(4-sulfophenyl)porphyrin with copper(II) chloride as an example, it has been shown how different amino acid additives (glycine, valine, leucine and tryptophan) catalyze or inhibit the formation of Cu-porphyrin as a function of the chemical environment (borate buffer (pH7.4), DMSO) and the concentration of the additive. It has been demonstrated that the type of amino acid affects the complexation reaction rate. Possible mechanisms of metalloporphyrin formation and the ways of their acceleration are discussed. Ways in which different amino acid additives catalyze or inhibit the interaction of tetra-(4-sulfophenyl)porphyrin with copper(II) chloride are examined.

  12. Penetration of boron from topically applied borate solutions

    Treesearch

    Stan T. Lebow; Patricia K. Lebow; Steven A. Halverson

    2010-01-01

    Borate penetration relies on diffusion when borate and glycol-borate preservatives are applied to the surface of wood. This study evaluated the extent of borate penetration in framing lumber as a function of preservative formulation, wood moisture content, and diffusion time after treatment. In Phase I of the study, end-matched specimens were conditioned to target...

  13. Bright up-conversion white light emission from Er3+ doped lithium fluoro zinc borate glasses for photonic applications

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, L.; Naveen Kumar, K.; Rao, K. Srinivasa; Hwang, Pyung

    2018-03-01

    Various concentrations of Er3+ (0.3, 0.5, 1.0 and 1.5 mol %) doped lithium fluoro zinc borate glasses were synthesized by a traditional melt quenching method. XRD, FTIR and FESEM have been employed to analyze the structural, compositional and morphological analysis respectively. Judd-Ofelt theory has been employed to analyze the intensity parameters (Ωλ, λ = 2, 4 and 6) which can be used to estimate the radiative properties of fluorescent levels of Er3+. We have been observed a strong NIR emission peak at 1.53 μm (4I13/2 → 4I15/2) under the excitation of 980 nm from Er3+: LBZ glasses. Nevertheless, the NIR emission is remarkably enhanced by increasing the Er3+ ions concentration until the optimized concentration of 0.5 mol%. The lifetime of the excited level of 4I13/2 in the NIR emission transition is evaluated and it is found to be1.22 ms from the decay analysis of 0.5 mol% Er3+: LBZ glass. Apart from the NIR emission, a bright up-conversion green emission is observed at 544 nm (4S3/2 → 4I15/2) along with an intense red emission at 659 nm (4F9/2 → 4I15/2) and a weak blue emission (2H9/2 → 4I15/2) under the excitation of 980 nm. Up-conversion emission features were significantly enhanced with increasing the Er3+ concentration up to 1.0 mol%. The combination of the obtained up-conversion emission colors of green, red and blue could generate white light emission. The cool white-light emission from the optimized glass sample has been confirmed from the Commission International de I'Echairage (CIE) 1931 chromaticity diagram analysis and their correlated color temperature (CCT) values. Based on the NIR and up-conversion emission features, Er3+: LBZ glasses could be suggested as promising candidates for optical amplifiers, optical telecommunication windows and white light photonic applications.

  14. Rapid Point of Care Analyzer for the Measurement of Cyanide in Blood

    PubMed Central

    Ma, Jian; Ohira, Shin-Ichi; Mishra, Santosh K.; Puanngam, Mahitti; Dasgupta, Purnendu K.; Mahon, Sari B.; Brenner, Matthew; Blackledge, William; Boss, Gerry R.

    2011-01-01

    A simple, sensitive optical analyzer for the rapid determination of cyanide in blood in point of care applications is described. HCN is liberated by the addition of 20% H3PO4 and is absorbed by a paper filter impregnated with borate-buffered (pH 9.0) hydroxoaquocobinamide Hereinafter called cobinamide). Cobinamide on the filter changes color from orange (λmax = 510 nm) to violet (λmax = 583 nm) upon reaction with cyanide. This color change is monitored in the transmission mode by a light emitting diode (LED) with a 583 nm emission maximum and a photodiode detector. The observed rate of color change increases 10x when the cobinamide solution for filter impregnation is prepared in borate-buffer rather than in water. The use of a second LED emitting at 653 nm and alternate pulsing of the LEDs improve the limit of detection by 4x to ~ 0.5 μM for a 1 mL blood sample. Blood cyanide levels of imminent concern (≥ 10 μM) can be accurately measured in ~ 2 min. The response is proportional to the mass of cyanide in the sample – smaller sample volumes can be successfully used with proportionate change in the concentration LODs. Bubbling air through the blood-acid mixture was found effective for mixing of the acid with the sample and the liberation of HCN. A small amount of ethanol added to the top of the blood was found to be the most effective means to prevent frothing during aeration. The relative standard deviation (RSD) for repetitive determination of blood samples containing 9 μM CN was 1.09% (n=5). The technique was compared blind with a standard microdiffusion-spectrophotometric method used for the determination of cyanide in rabbit blood. The results showed good correlation (slope 1.05, r2 0.9257); independent calibration standards were used. PMID:21553921

  15. Determination of active ingredients in corn silk, leaf, and kernel by capillary electrophoresis with electrochemicaI detection.

    PubMed

    Lin, Miao; Chu, Qing-Cui; Tian, Xiu-Hui; Ye, Jian-Nong

    2007-01-01

    Corn has been known for its accumulation of flavones and phenolic acids. However, many parts of corn, except kernel, have not drawn much attention. In this work, a method based on capillary zone electrophoresis with electrochemical detection has been used for the separation and determination of epicatechin, rutin, ascorbic acid (Vc), kaempferol, chlorogenic acid, and quercetin in corn silk, leaf, and kernel. The distribution comparison of the ingredients among silk, leaf, and kernel is discussed. Several important factors--including running buffer acidity, separation voltage, and working electrode potential--were evaluated to acquire the optimum analysis conditions. Under the optimum conditions, the analytes could be well separated within 19 min in a 40-mmol/L borate buffer (pH 9.2). The response was linear over three orders of magnitude with detection limits (S/N = 3) ranging from 4.97 x 10(-8) to 9.75 x 10(-8) g/mL. The method has been successfully applied for the analysis of corn silk, leaf, and kernel with satisfactory results.

  16. Quality control of benserazide-levodopa and carbidopa-levodopa tablets by capillary zone electrophoresis.

    PubMed

    Fanali, S; Pucci, V; Sabbioni, C; Raggi, M A

    2000-07-01

    In modern practice, the treatment of Parkinson's disease and syndrome is carried out using pharmaceutical formulations containing a combination of levodopa and a decarboxylation inhibitor (carbidopa or benserazide). Two pharmaceutical formulations were quantified by capillary zone electrophoresis using two procedures which differed only in the kind of background electrolyte used. One procedure used a 25 mM phosphate buffer, pH 2.5, while the second one used a 25 mM borate buffer, pH 8.5. The electrophoretic analysis was carried out using an uncoated fused- silica capillary, a separation voltage of 20 kV with currents typically less than 60 microA, and spectrophotometric detection at 205 nm. Calibration curves were performed for levodopa (concentration range 1-100 microg/mL), for carbidopa and benserazide (1-50 microg/mL), and the plots of the peak area versus concentration were found to be linear with a correlation coefficient better than 0.9990. Satisfactory results were obtained when commercial tablets were analyzed in terms of accuracy (98-102%), repeatability (0.6-2.0%), and intermediate precision (1.1-2.6%).

  17. Chiral separation with gradient elution isotachophoresis for future in situ extraterrestrial analysis.

    PubMed

    Danger, Grégoire; Ross, David

    2008-10-01

    The first results of chiral separations with the gradient elution isotachophoresis method are presented. As previously described, citrate is used in the run buffer as the leading ion and borate in the sample buffer as the terminating ion. Modulation of parameters such as electrolyte pH, pressure scan rate, chiral selector concentration, combinations of CD or the percentage of ampholytes provides an easy optimization of the separations. To perform fluorescent detection 5-carboxyfluorescein succinimidyl ester and two fluorogenic-labeling agents, fluorescamine (Fluram) and 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, are used to label amino acids. With the 5-carboxyfluorescein amino acids, chiral separations are easily obtained using a neutral CD ((2-hydroxypropyl)-beta-CD) at a low concentration (2 mmol/L). With Fluram amino acids, the situation is more complicated due to the formation of diastereoisomers and due to weak interactions with the different CDs used. The use of the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde-labeling agent solves the problems observed with the Fluram agent while retaining the fluorogenic properties. These first results demonstrate the simplicity and the feasibility of gradient elution isotachophoresis for chiral separations.

  18. Amount of leachant and water absorption levels of wood treated with borates and water repellents.

    PubMed

    Baysal, Ergun; Sonmez, Abdullah; Colak, Mehmet; Toker, Hilmi

    2006-12-01

    Wood protection efficacy of borates against biological agents, flame retardancy, and suitability to the environment is well known. Since borates can be applied to timber as water based solutions, they are preferred economically as well. Even though they are highly mobile in wood, boron compounds are widely used in timber preservation. Borates migrate in liquid and increase the hygroscopicity of wood in damp conditions. This study deals with the physical restriction of water access in wood by impregnating water repellent agents into wood to limit amount of leachant and water absorption levels of wood after boron treatment. Borates were incorporated with polyethylene glycol-400 (PEG-400) their bulking effect in wood was considered. Results indicated that the amount of leachates from wood treated with borates in PEG-400 was remarkably higher compared to those of wood treated with the aqueous solutions of borates. Water absorption (WA) levels of wood treated with aqueous solutions of borates were higher than those of their treated samples with the solutions in PEG-400. Secondary treatments of wood with the water repellent (WR) chemicals following borate impregnation reduced the leaching of chemicals from wood in water and also WA of the specimens were less than those of the wood treated with only borates from aqueous and PEG solutions. Styrene (St) was the most effective monomer among the other agents used in terms of immobility effect on borates and WA.

  19. Iron doped LiCoPO4 thin films for lithium-ion microbatteries obtained by ns pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Smaldone, A.; Brutti, S.; De Bonis, A.; Ciarfaglia, N.; Santagata, A.; Teghil, R.

    2018-07-01

    Well crystallized and homogeneous iron doped LiCoPO4 (LCfP) thin films have been grown by ns Pulsed Laser Ablation, at ambient temperature without any substrate heating or post-annealing treatments. The films have been deposited in vacuum and in the presence of buffer gases (O2, Ar) and it has been found that their crystallinity, structure and morphology depend on pressure conditions. The films have been studied by Scanning Electron Microscopy and X Ray Diffraction, while their first steps of growth have been characterized by Transmission Electron Microscopy. A study of the plasma produced by the laser ablation in the different pressure conditions has been carried out with the aim of elucidate the mechanisms involved in the films deposition. LCfP thin films have been also tested as microelectrodes in lithium cells in galvanostatic condition for analyzing the reversibility of the lithium-ion battery.

  20. Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Yuan, Guanghui; Xiang, Jiming; Jin, Huafeng; Wu, Lizhou; Jin, Yanzi; Zhao, Yan

    2018-01-10

    A novel binary nanocomposite, ZnO/nitrogen-doped graphene (ZnO/NG), is synthesized via a facile solution method. In this prepared ZnO/NG composite, highly-crystalline ZnO nanoparticles with a size of about 10 nm are anchored uniformly on the N-doped graphene nanosheets. Electrochemical properties of the ZnO/NG composite as anode materials are systematically investigated in lithium-ion batteries. Specifically, the ZnO/NG composite can maintain the reversible specific discharge capacity at 870 mAh g -1 after 200 cycles at 100 mA g -1 . Besides the enhanced electronic conductivity provided by interlaced N-doped graphene nanosheets, the excellent lithium storage properties of the ZnO/NG composite can be due to nanosized structure of ZnO particles, shortening the Li⁺ diffusion distance, increasing reaction sites, and buffering the ZnO volume change during the charge/discharge process.

  1. Borates

    USGS Publications Warehouse

    Crangle, R.D.

    2013-01-01

    Four minerals represent 90 percent of the borates used by industry worldwide — the sodium borates (tincal and kernite), calcium borate (colemanite) and the sodium-calcium borate (ulexite). Borax is a white crystalline substance, chemically known as sodium tetraborate decahydrate, and is found naturally as the mineral tincal. Boric acid is a colorless crystalline solid sold in technical, national formulary and special quality grades as granules or powder and marketed most often as anhydrous boric acid. Deposits of borates are associated with volcanic activity and arid climates, with the largest economically viable deposits located in the Mojave Desert of the United States near Boron, CA, the Alpide belt in southern Asia and the Andean belt of South America.

  2. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghunatha, S.; Eraiah, B., E-mail: eraiah@rediffmail.com

    2016-05-06

    Holmium doped lithium-antimony-lead borate glasses having 1 mol% AgNO{sub 3} with composition 50B{sub 2}O{sub 3}-20PbO-25Sb{sub 2}O{sub 3}-5Li{sub 2}O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range ofmore » 2.31 to 2.37.« less

  3. A novel mixed-metal borate with large [B12O18(OH)6]6- motif: Synthesis, structure and property

    NASA Astrophysics Data System (ADS)

    Wei, Li; Pan, Jie; Xue, Zhen-Zhen; Wang, Guo-Ming; Wang, Ying-Xia

    2018-01-01

    A new mixed-metal polyborate, Na5Li[B12O18(OH)6]·2H2O (1), has been synthesized using solvothermal method and characterized by IR spectroscopy, thermogravimetric analysis, UV-Vis spectroscopy, powder and single-crystal X-ray diffraction, respectively. It crystallizes in the trigonal space group R-3c (No. 167) with unit cell parameters of a = b = 9.6767(6) Å, c = 36.358(5) Å, and Z = 6. Its structure features unprecedented 3D framework constructed from novel honeycomb-shaped inorganic Na-O sheets with unique 12-MR sodium rings and supramolecular polyborate 2D layers of lithium-centered [B12O18(OH)6]6-. UV-Vis spectral characterization indicates that compound 1 is a wide-band-gap semiconductor.

  4. Structural investigation and optical properties of xMnO2-25Li2O-5Na2O-15Bi2O3-(55-x)B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shilpa; Jali, V. M.

    2018-02-01

    This paper deals with the new mixed system of glass compositions Lithium sodium bismuth borate glasses doped with transition metal oxide. The technique used to prepare a sample is by melt quenching. The XRD profile pattern confirmed the amorphous phase of the present glass system. The network structure is based on BO3, BO4 units and BiO6 octahedral units. No boroxyl rings observed in the glass structure. The addition of MnO2 in small amount does not account for major structural changes. Optical band gap lies in the range 1.89 to 0.96 eV. Density, molar volume, oxygen packing density, Tg, direct optical band gap and refractive index show anomalous behavior.

  5. 40 CFR 721.10631 - Mixed metal borate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal borate (generic). 721... Substances § 721.10631 Mixed metal borate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal borate (PMN P-12-64...

  6. 40 CFR 721.10631 - Mixed metal borate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal borate (generic). 721... Substances § 721.10631 Mixed metal borate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal borate (PMN P-12-64...

  7. Quantitative determination of alginic acid in pharmaceutical formulations using capillary electrophoresis.

    PubMed

    Moore, Douglas E; Miao, William G; Benikos, Con

    2004-01-27

    A capillary electrophoresis (CE) method has been developed and validated for the quantitative determination of alginic acid, which is used as a rafting agent in complex antacid formulations. The method involves a preliminary separation of the alginic acid from the formulation by washing the sample matrix with methanol, diluted HCl and water. This is followed by electrophoresis within a fused silica capillary using borate/boric acid buffer as the electrolyte, and the quantification is performed by a UV detector monitoring at 200 nm, where the intrinsic absorption of alginic acid is measured. An assay precision of better than 3% was achieved in intra- and interday determinations. No interference was found from the matrix of the antacid formulations.

  8. Anti-prelog reduction of prochiral carbonyl compounds by Oenococcus oeni in a biphasic system.

    PubMed

    Hu, Jian; Xu, Yan

    2006-07-01

    An aqueous-organic biphasic system was established and used with whole cells of Oenococcus oeni to reduce 2-octanone to (R)-2-octanol. The conversion reached 99% when the Tris/borate buffer was increased from 50 mM to 300 mM in the aqueous phase. In addition, the conversion increased as the log P value of the organic solvent changed from 0.5 to 6.6. Under optimized conditions, the conversion of (R)-2-octanol reached 99% from 0.5 M 2-octanone with an optical purity of 99% e.e. The biphasic system allows the anti-Prelog reduction of aliphatic and aromatic ketones to furnish (R)-configurated alcohols in high optical purity as well.

  9. Near-IR, blue, and UV generation by frequency conversion of a Tm:YAP laser

    NASA Astrophysics Data System (ADS)

    Cole, Brian; Goldberg, Lew; Chinn, Steve

    2018-02-01

    We describe generation of near-infrared (944nm, 970nm), blue (472nm, 485nm), and UV (236 nm) light by frequency up-conversion of 2 μm output of a compact and efficient passively Q-switched Tm:YAP laser. The Tm:YAP laser source was near diffraction limited with maximum Q-switched pulse peak power of 190 kW. For second harmonic generation (SHG) of NIR, both periodically poled lithium niobate (PPLN) and lithium tri-borate (LBO) were evaluated, with 58% conversion efficiency and 3.1 W of 970 nm power achieved with PPLN. The PPLN 970nm emission was frequency doubled in 20mm long type I LBO, generating 1.1 W at 485nm with a conversion efficiency of 34%. With LBO used for frequency doubling of 2.3 W of 1888 nm Tm:YAP output to 944nm, 860mW was generated, with 37% conversion efficiency. Using a second LBO crystal to generate the 4th harmonic, 545mW of 472nm power was generated, corresponding to 64% conversion efficiency. To generate the 8th harmonic of Tm:YAP laser emission, the 472nm output of the second LBO was frequency doubled in a 7mm long BBO crystal, generating 110 mW at 236nm, corresponding to 21% conversion efficiency.

  10. Detection of Chlorogenic Acid in Honeysuckle Using Infrared-Assisted Extraction Followed by Capillary Electrophoresis with UV Detector

    PubMed Central

    Tang, Zhuxing; Zang, Shuliang; Zhang, Xiangmin

    2012-01-01

    In this study, a novel infrared-assisted extraction method coupled capillary electrophoresis (CE) is employed to determine chlorogenic acid from a traditional Chinese medicine (TCM), honeysuckle. The effects of pH and the concentration of the running buffer, separation voltage, injection time, IR irradiation time, and anhydrous ethanol in the extraction concentration were investigated. The optimal conditions were as follows: extraction time, 30 min; extraction solvent, 80% (v/v) ethanol in water solution; and 50 mmol/L borate buffer (pH 8.7) was used as the running buffer at a separation voltage of 16 kV. The samples were injected electrokinetically at 16 kV for 8 s. Good linearity (r2 > 0.9996) was observed over the concentration ranges investigated, and the stability of the solutions was high. Recoveries of the chlorogenic acid were from 95.53% to 106.62%, and the relative standard deviation was below 4.1%. By using this novel IR-assisted extraction method, a higher extraction efficiency than those extracted with conventional heat-reflux extraction was found. The developed IR-assisted extraction method is simple, low-cost, and efficient, offering a great promise for the quick determination of active compounds in TCM. The results indicated that IR-assisted extraction followed by CE is a reliable method for quantitative analysis of active ingredient in TCM. PMID:22291060

  11. Longitudinal meta-analysis of NIST pH Standard Reference Materials(®): a complement to pH key comparisons.

    PubMed

    Pratt, Kenneth W

    2015-04-01

    This meta-analysis assesses the long-term (up to 70 years) within-laboratory variation of the NIST pH Standard Reference Material® (SRM) tetroxalate, phthalate, phosphate, borate, and carbonate buffers. Values of ΔpH(S), the difference between the certified pH value, pH(S), of each SRM issue and the mean of all pH(S) values for the given SRM at that Celsius temperature, t, are graphed as a function of the SRM issue and t. In most cases, |ΔpH(S)| < 0.004. Deviations from the nominal base:acid amount (mole) ratio of a buffer yield t-independent, constant shifts in ΔpH(S). The mean ΔpH(S) characterizes such deviations. The corresponding mole fraction of impurity in the conjugate buffer component is generally <0.3 %. Changes in the equipment, personnel, materials, and methodology of the pH(S) measurement yield t-dependent variations. The standard deviation of ΔpH(S) characterizes such changes. Standard deviations of ΔpH(S) are generally 0.0015 or less. The results provide a long-term, single-institution complement to the time-specific, multi-institution results of pH key comparisons administered by the Consultative Committee for Metrology in Chemistry and Biology (CCQM).

  12. 21 CFR 872.3400 - Karaya and sodium borate with or without acacia denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... denture adhesive. 872.3400 Section 872.3400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... and sodium borate with or without acacia denture adhesive. (a) Identification. A karaya and sodium borate with or without acacia denture adhesive is a device composed of karaya and sodium borate with or...

  13. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells

    PubMed Central

    Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species. PMID:24715955

  14. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells.

    PubMed

    Yamauchi, Noboru; Gosho, Tadashi; Asatuma, Satoru; Toyooka, Kiminori; Fujiwara, Toru; Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.

  15. Uranium(iii) complexes supported by hydrobis(mercaptoimidazolyl)borates: synthesis and oxidation chemistry.

    PubMed

    Maria, Leonor; Santos, Isabel C; Santos, Isabel

    2018-05-23

    The reaction of [UI3(thf)4] with the sodium or lithium salts of hydrobis(2-mercapto-1-methylimidazolyl)borate ligands ([H(R)B(timMe)2]-) in a 1 : 2 ratio, in tetrahydrofuran, gave the U(iii) complexes [UI{κ3-H,S,S'-H(R)B(timMe)2}2(thf)2] (R = H (1), Ph (2)) in good yields. Crystals of [UI{κ3-H,S,S'-H(Ph)B(timMe)2}2(thf)2] (2) were obtained by recrystallization from a tetrahydrofuran/acetonitrile solution, and the ion-separated uranium complex [U{κ3-H,S,S'-H(Ph)B(timMe)2}2(CH3CN)3][I] (3-I) was obtained by dissolution of 2 in acetonitrile followed by recrystallization. One-electron oxidation of 2 with AgBPh4 or I2 resulted in the formation of the cationic U(iv) complexes [U{κ3-H,S,S'-H(Ph)B(timMe)2}3][X] (X = BPh4 (6-BPh4), I (6-I)), due to a ligand redistribution process. These complexes are the first examples of homoleptic poly(azolyl)borate U(iv) complexes. Treatment of complex 2 with azobenzene led to the isolation of crystals of the U(iv) compound [UI{κ3-H(Ph)B(timMe)2}2(κ2-timMe)] (7). Treatment of 2 with pyridine-N oxide (pyNO) led to the formation of the uranyl complex [UO2{κ2-S,S'-H(Ph)B(timMe)2}2] (8) and of complex 6-I, while from the reaction of [U{κ3-H(Ph)B(timMe)2}2(thf)3][BPh4] (5) with pyNO, the oxo-bridged U(iv) complex [{U{κ3-H(Ph)B(timMe)2}2(pyNO)}2(μ-O)][BPh4]2 (9) was also obtained. In the U(iii) and U(iv) complexes, the bis(azolyl)borate ligands bind to the uranium center in a κ3-H,S,S' coordination mode, while in the U(vi) complex the ligands bind to the metal in a κ2-S,S' mode. The presence of UH-B interactions in the solid-state, for the nine-coordinate complexes 1, 2, 3, 6 and 7 and for the eight-coordinate complex 9, was supported by IR spectroscopy and/or X-ray diffraction analysis.

  16. Preparation and electrochemical properties of core-shell carbon coated Mn-Sn complex metal oxide as anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Ruixue; Fang, Guoqing; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zheng, Junwei; Li, Decheng

    2014-02-01

    In this study, we synthesized a carbon coated Mn-Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g-1 after 200 cycles at a current density of 100 mA g-1. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  17. Chiral separation of benzoporphyrin derivative mono- and diacids by laser induced fluorescence-capillary electrophoresis.

    PubMed

    Peng, Xuejun; Sternberg, Ethan; Dolphin, David

    2002-01-01

    A method for the separation of benzoporphyrin derivative mono- and diacid (BPDMA, BPDDA) enantiomers by laser induced fluorescence-capillary electrophoresis (LIF-CE) has been developed. By using 300 mM borate buffer, pH 9.2, 25 mM sodium cholate and 10% acetronitrile as electrolyte, +10 kV electrokinetic sampling injection of 2 s and an applied +20 kV voltage across the ends of a 37 cm capillary (30 cm to the detector, 50 microm ID), all six BPD stereoisomers were baseline-separated within 20 min. Formation constants, free electrophoretic and complexation mobilities with borate and cholate were determined based on dynamic complexation capillary electrophoresis theory. The BPD enantiomers can be quantitatively determined in the range of 10(-2)-10(-5) mg mL(-1). The correlation coefficients (r2) of the least-squares linear regression analysis of the BPD enantiomers are in the range of 0.9914-0.9997. Their limits of detection are 2.18-3.5 x 10(-3) mg mL(-1). The relative standard deviations for the separation were 2.90-4.64% (n = 10). In comparison with high-performance liquid chromatography (HPLC), CE has better resolution and efficiency. This separation method was successfully applied to the BPD enantiomers obtained from a matrix of bovine serum and from liposomally formulated material as well as from studies with rat, dog and human microsomes.

  18. Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: aldehydes and ketones.

    PubMed

    Stockton, Amanda M; Tjin, Caroline Chandra; Huang, Grace L; Benhabib, Merwan; Chiesl, Thomas N; Mathies, Richard A

    2010-11-01

    A microchip CE method is developed for the analysis of two oxidized forms of carbon, aldehydes and ketones, with the Mars Organic Analyzer (MOA). Fluorescent derivitization is achieved in ∼ 15 min by hydrazone formation with Cascade Blue hydrazide in 30 mM borate pH 5-6. The microchip CE separation and analysis method is optimized via separation in 30 mM borate buffer, pH 9.5, at 20°C. A carbonyl standard consisting of ten aldehydes and ketones found in extraterrestrial matter is successfully separated; the resulting LOD depends on the reactivity of the compound and range from 70 pM for formaldehyde to 2 μM for benzophenone. To explore the utility of this method for analyzing complex samples, analyses of several fermented beverages are conducted, identifying ten aldehydes and ketones ranging from 30 nM to 5 mM. A Martian regolith simulant sample, consisting of a basalt matrix spiked with soluble ions and acetone, is designed and analyzed, but acetone is found to have a limited detectable lifetime under simulant Martian conditions. This work establishes the capability of the MOA for studying aldehydes and ketones, a critical class of oxidized organic molecules of interest in planetary and in terrestrial environmental and health studies. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis and characterization of cathode, anode and electrolyte materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Yang, Shoufeng

    Two new classes of cathode materials were studied: iron phosphate/sulfate materials and layered manganese oxides, both of which are low cost and had shown some potential. The first class of materials have poor conductivity and cyclability. I studied a number of methods for increasing the conductivity, and determined that grinding the material with carbon black was as effective as special in-situ coatings. The optimum carbon loading was determined to be between 6 and 15 wt%. Too much carbon reduces the volumetric energy density, whereas too little significantly increased cell polarization (reduced the rate of reaction). The kinetic and thermodynamic stability of LiFePO 4 was also studied and it was determined that over discharge protection will be needed as irreversible Li3PO4 can be formed at low potentials. A novel hydrothermal synthesis method was developed, but the significant level of Fe on the Li site reduces the reaction rate too much. In the case of the layered manganese oxide, cation substitution with Co and Ni is found to be effective in avoiding Jahn-Teller effects and improving electrochemistry. A wide range of tin compounds have been suggested as lithium storage media for advanced anode materials, as tin can store over 4 Li per Sn atom. Lithium hexafluorophosphate, LiPF6, is presently the salt of choice for LiCoO2 batteries, but it is expensive and dissolves some manganese compounds. The lithium bis(oxolato)borate (BOB) salt was recently reported, and I made a study of its use in cells with the LiFePO4 cathode and the tin anode. During its synthesis, it became clear that LiBOB is very reactive with many solvents, and these complexes were characterized to better understand this new material. In LiBOB the lithium is five coordinated, an unstable configuration for the lithium ion so that water and many other solvents rapidly react to make a six coordination. Only in the case of ethylene carbonate was the lithium found to be four coordinated. The LiBOB based electrolyte has a lower ionic conductivity than LiPF6, thus providing a poorer performance, while the capacity retention is improved. Further improvement of conductivity is still needed. Improved LiFePO4 cathode materials have been formed, the behavior of pure tin in the form of foil has been determined and will serve as the base case for future studies of tin based anodes, and the structure and electrochemical behavior of the new LIBOB electrolyte salt has been determined. (Abstract shortened by UMI.)

  20. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    NASA Astrophysics Data System (ADS)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  1. Highly electrically conductive layered carbon derived from polydopamine and its functions in SnO2-based lithium ion battery anodes.

    PubMed

    Kong, Junhua; Yee, Wu Aik; Yang, Liping; Wei, Yuefan; Phua, Si Lei; Ong, Hock Guan; Ang, Jia Ming; Li, Xu; Lu, Xuehong

    2012-10-25

    Thin carbonized polydopamine (C-PDA) coatings are found to have similar structures and electrical conductivities to those of multilayered graphene doped with heteroatoms. Greatly enhanced electrochemical properties are achieved with C-PDA-coated SnO(2) nanoparticles where the coating functions as a mechanical buffer layer and conducting bridge.

  2. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-07

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.

  3. Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system

    NASA Astrophysics Data System (ADS)

    Kaur, Parminder; Singh, K. J.; Thakur, Sonika

    2018-05-01

    Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.

  4. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  5. Understanding fifth-harmonic generation in CLBO

    NASA Astrophysics Data System (ADS)

    Patankar, S.; Yang, S. T.; Moody, J. D.; Bayramian, A. J.; Swadling, G. F.; Barker, D.; Datte, P.; Mennerat, G.; Norton, M.; Carr, C. W.; Begishev, I. A.; Bromage, J.; Ross, J. S.

    2018-02-01

    We report on results of fifth harmonic generation in Cesium Lithium Borate (CLBO) using a three-crystal cascaded frequency conversion scheme designed to study the energy balance of the final sum frequency generation stage. The experimental setup independently combines the first and fourth harmonic of a Nd:Glass laser in a 5mm thick CLBO crystal. Energy balance between the incoming and output energy is close to unity when the CLBO is out of phase matching and approximately 80% when the crystal is in phase matching. A detailed analysis of the residual fundamental and fourth harmonic energy indicates 5th harmonic light is being generated but only 26% is unaccounted for. We attribute the missing light to linear transmission loss in the CLBO oven. The ratio of the output to input energy is unity when the missing 5th harmonic is incorporated into the calculations. Two-dimensional plane wave mixing simulations show agreement with the results at lower intensities.

  6. Ternary borate-nucleoside complex stabilization by Ribonuclease A demonstrates phosphate mimicry

    PubMed Central

    Gabel, Scott A.; London, Robert E.

    2010-01-01

    Phosphate esters play a central role in cellular energetics, biochemical activation, signal transduction and conformational switching. The structural homology of the borate anion with phosphate, combined with its ability to spontaneously esterify hydroxyl groups, suggested that phosphate-ester recognition sites on proteins might exhibit significant affinity for non-enzymatically formed borate esters. 11B NMR studies and activity measurements on ribonuclease A in the presence of borate and several cytidine analogs demonstrate the formation of a stable ternary RNase A•3′-deoxycytidine-2′-borate ternary complex that mimics the complex formed between RNase A and a 2′-cytidine monophosphate (2′-CMP) inhibitor. Alternatively, no slowly exchanging borate resonance is observed for a ternary RNase A, borate, 2′-deoxycytidine mixture, demonstrating the critical importance of the 2′-hydroxyl group for complex formation. Titration of the ternary complex with 2′-CMP shows that it can displace the bound borate ester with a binding constant that is close to the reported inhibition constant of RNase A by 2′CMP. RNase A binding of a cyclic cytidine-2′,3′-borate ester, which is a structural homolog of the cytidine-2′,3′-cyclic phosphate substrate, could also be demonstrated. The apparent dissociation constant for the cytidine-2′,3′-borate•RNase A complex is 0.8 mM, which compares with a Michaelis constant of 11 mM for cCMP at pH 7, indicating considerably stronger binding. However, the value is 1000-fold larger than the reported dissociation constant of the RNase A complex with uridine-vanadate. These results are consistent with recent reports suggesting that in situ formation of borate esters that mimic the corresponding phosphate esters support enzyme catalysis. PMID:17957392

  7. A crystal-chemical classification of borate structures with emphasis on hydrated borates

    USGS Publications Warehouse

    Christ, C.L.; Clark, J.R.

    1977-01-01

    The rules governing formation of hydrated borate polyanions that were proposed by C.L. Christ in 1960 are critically reviewed and new rules added on the basis of recent crystal structure determinations. Principles and classifications previously published by others are also critically reviewed briefly. The fundamental building blocks from which borate polyanions can be constructed are defined on the basis of the number n of boron atoms, and the fully hydrated polyanions are illustrated. Known structures are grouped accordingly, and a shorthand notation using n and symbols ?? = triangle, T = tetrahedron is introduced so that the polyanions can be easily characterized. For example, 3:??+2T describes [B3O3(OH)5]2-. Correct structural formulas are assigned borates with known structures whereas borates of unknown structure are grouped separately. ?? 1977 Springer-Verlag.

  8. Simultaneous immobilization of borate, arsenate, and silicate from geothermal water derived from mining activity by co-precipitation with hydroxyapatite.

    PubMed

    Sasaki, Keiko; Hayashi, Yoshikazu; Toshiyuki, Kenta; Guo, Binglin

    2018-09-01

    The treatment of the geothermal water discharged through mining activity is a critical issue because the rate of discharge is 12,000 m 3 per day and the discharge contains high concentrations of borate (>20 mg/L) and arsenate (ca. 0.4 mg/L) as well as silicate and carbonate. The simultaneous reduction of borate and arsenate concentrations to acceptable levels was successfully performed by co-precipitation with hydroxyapatite (HAp). Although the coexisting high concentrations of carbonate act as a disturbing element, the co-precipitation equilibrium of borate was shifted to lower values by adjusting the P/Ca molar ratio, and the removal rate of borate was accelerated by using Al 3+ additives, resulting in the efficient reduction of borate within 1 h. The initially immobilized boron in HAp is in the tetragonal form, which probably occupies the hydroxyl sites in HAp, gradually transforming into the trigonal form in the solid state, as interpreted by 1 H NMR and 11 B-NMR. The coexisting silicate was also immobilized in an ellestadite form, as confirmed by 29 Si-NMR measurements. Arsenate and silicate were immobilized before borate in geothermal water. A dissolution assay of borate in the solid residues after co-precipitation with HAp verified the acceptable stability of borate, which is independent of the amount of added Al 3+ . Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Improved Wide Operating Temperature Range of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  10. Amphiphilic Polysaccharide Block Copolymers for pH-Responsive Micellar Nanoparticles.

    PubMed

    Breitenbach, Benjamin B; Schmid, Ira; Wich, Peter R

    2017-09-11

    A full polysaccharide amphiphilic block copolymer was prepared from end group-functionalized dextrans using copper-mediated azide-alkyne click chemistry. Sufficient modification of the reducing end in both blocks was achieved by microwave-enhanced reductive amination in a borate-buffer/methanol solvent system. The combination of a hydrophilic dextran block with a hydrophobic acetalated dextran block results in an amphiphilic structure that turns water-soluble upon acid treatment. The material has a low critical micelle concentration and self-assembles in water to spherical micellar nanoparticles. The formed nanoparticles have a narrow size distribution below 70 nm in diameter and disassemble in slightly acidic conditions. The amphiphilic polysaccharide system shows low toxicity and can stabilize the hydrophobic model drug curcumin in aqueous solutions over extended time periods.

  11. A fatal intoxication following the ingestion of 5-methoxy-N,N-dimethyltryptamine in an ayahuasca preparation.

    PubMed

    Sklerov, Jason; Levine, Barry; Moore, Karla A; King, Theodore; Fowler, David

    2005-01-01

    A case of a 25-year-old white male who was found dead the morning after consuming herbal extracts containing beta-carbolines and hallucinogenic tryptamines is presented. No anatomic cause of death was found at autopsy. Toxicologic analysis of the heart blood identified N,N-dimethyltryptamine (0.02 mg/L), 5-methoxy-N,N-dimethyltryptamine (1.88 mg/L), tetrahydroharmine (0.38 mg/L), harmaline (0.07 mg/L), and harmine (0.17 mg/L). All substances were extracted by a single-step n-butyl chloride extraction following alkalinization with borate buffer. Detection and quantitation was performed using liquid chromatography-electrospray mass spectrometry. The medical examiner ruled that the cause of death was hallucinogenic amine intoxication, and the manner of death was undetermined.

  12. Determination of psilocybin in Psilocybe semilanceata by capillary zone electrophoresis.

    PubMed

    Pedersen-Bjergaard, S; Sannes, E; Rasmussen, K E; Tønnesen, F

    1997-07-04

    A capillary zone electrophoretic (CZE) method was developed for the rapid determination of psilocybin in Psilocybe semilanceata. Following a simple two step extraction with 3.0+2.0 ml methanol, the hallucinogenic compound was effectively separated from matrix components by CZE utilizing a 10 mM borate-phosphate running buffer adjusted to pH 11.5. The identity of psilocybin was confirmed by migration time information and by UV spectra, while quantitation was accomplished utilizing barbital as internal standard. The calibration curve for psilocybin was linear within 0.01-1 mg/ml, while intra-day and inter-day variations of quantitative data were 0.5 and 2.5% R.S.D., respectively. In addition to psilocybin, the method was also suitable for the determination of the structurally related compound baeocystin.

  13. Analysis of sesquiterpenes in Valeriana officinalis by capillary electrophoresis.

    PubMed

    Mikell, J R; Ganzera, M; Khan, I A

    2001-12-01

    A capillary electrophoresis (CE) method permitting the determination of the main sesquiterpenes in Valeriana officinalis has been developed. A separation of valerenic acid and its hydroxy and acetoxy derivatives, three compounds characteristic for the species, was achieved using a 40 mM phosphate-borate buffer at pH 8.5, which contained 10% isopropanol as organic modifier. Applied temperature and voltage were 35 degrees C and 17.5 kV, respectively. This setup allowed a baseline separation of the three compounds within 8 min, with a detection limit of 5.8 micrograms/ml or less. Out of six market products analyzed, only one contained a detectable amount of the marker compounds, with 0.54% of hydroxyvalerenic acid and 0.13% valerenic acid, respectively. The quantitative results were comparable to those obtained by HPLC.

  14. Crystallization and preliminary crystallographic study of 3 alpha, 20 beta-hydroxysteroid dehydrogenase from Streptomyces hydrogenans.

    PubMed

    Fitzgerald, P M; Duax, W L; Punzi, J S; Orr, J C

    1984-05-15

    3 alpha, 20 beta-Hydroxysteroid dehydrogenase, an NADH-dependent oxidoreductase isolated from Streptomyces hydrogenans , is a tetramer containing four subunits each of Mr 25,000. The enzyme has been crystallized by the vapor diffusion technique using either phosphate or borate buffered ammonium sulfate (pH between 6.0 and 8.7) as the precipitant. The crystals are hexagonal bipyramids ; they have the symmetry of space group P6(4)22 (or P6(2)22), with unit cell dimensions a = 127.3 A, c = 112.2 A. Volume and density considerations imply that the crystallographic asymmetric unit contains two monomers, and therefore that the tetramer possesses a 2-fold axis of symmetry that is coincident with a crystallographic 2-fold symmetry element.

  15. Borates

    USGS Publications Warehouse

    Angulo, M.A.

    2011-01-01

    The article discusses the latest developments in the borates industry, particularly in the U.S., as of June 2011. It claims that the biggest economically feasible deposits of borates are seen in the U.S.' Mojave Desert, the Alpide belt in southern Asia and the Andean belt of South America. Turkish state-owned mining firm Eti Maden AS reported that borates were mainly used in the manufacture of glass, ceramics, fertilizer and detergent in 2009.

  16. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    DOE PAGES

    Wang, Deli; Wang, Jie; He, Huan; ...

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of Co xFe 3–xO 4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, wemore » directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less

  17. Separation of plant hormones from biofertilizer by capillary electrophoresis using a capillary coated dynamically with polycationic polymers.

    PubMed

    Jiang, Ting-Fu; Lv, Zhi-Hua; Wang, Yuan-Hong; Yue, Mei-E

    2006-06-01

    A new, simple and rapid capillary electrophoresis (CE) method, using hexadimethrine bromide (HDB) as electroosmotic flow (EOF) modifier, was developed for the identification and quantitative determination of four plant hormones, including gibberellin A3 (GA3), indole-3-acetic acid (IAA), alpha-naphthaleneacetic acid (NAA) and 4-chlorophenoxyacetic acid (4-CA). The optimum separation was achieved with 20 mM borate buffer at pH 10.00 containing 0.005% (w/v) of HDB. The applied voltage was -25 kV and the capillary temperature was kept constant at 25 degrees C. Salicylic acid was used as internal standard for quantification. The calibration dependencies exhibited good linearity within the ratios of the concentrations of standard samples and internal standard and the ratios of the peak areas of samples and internal standard. The correlation coefficients were from 0.9952 to 0.9997. The relative standard deviations of migration times and peak areas were < 1.93 and 6.84%, respectively. The effects of buffer pH, the concentration of HDB and the voltage on the resolution were studied systematically. By this method, the contents of plant hormone in biofertilizer were successfully determined within 7 min, with satisfactory repeatability and recovery.

  18. Determination of phthalic acid esters in Chinese white spirit using dispersive liquid-liquid microextraction coupled with sweeping β-cyclodextrin-modified micellar electrokinetic chromatography.

    PubMed

    Sun, Jianzhi; He, Hui; Liu, Shuhui

    2014-07-01

    A simple method that consumes low organic solvent is proposed for the analysis of phthalic acid esters in Chinese white spirit using dispersive liquid-liquid microextraction coupled with sweeping-micellar electrokinetic chromatography. Tetrachloromethane and white-spirit-containing ethanol were used as the extraction and dispersing solvents, respectively. The electrophoresis separation buffer was composed of 5 mM β-cyclodextrin, 50 mM sodium dodecyl sulfate and 25 mM borate buffer (pH 9.2) with 9% acetonitrile, enabling the baseline resolution of the analytes within 13 min. Under the optimum conditions, satisfactory linearities (5-1000 ng/mL, r ≥ 0.9909), good reproducibility (RSD ≤ 6.7% for peak area, and RSD ≤ 2.8% for migration time), low detection limits (0.4-0.8 ng/mL) and acceptable recovery rates (89.6-105.7%) were obtained. The proposed method was successfully applied to 22 Chinese white spirits, and the content of dibutyl phthalate in 55% of the samples exceeded the Specific Migration Limit of 0.3 mg/kg established by the domestic and international regulations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Microwave assisted synthesis of metal-organic framework MIL-101 nanocrystals as sorbent and pseudostationary phase in capillary electrophoresis for the separation of anthraquinones in environmental water samples.

    PubMed

    Liu, Yue; Hu, Jia; Li, Yan; Shang, Yun-Tao; Wang, Jia-Qi; Zhang, Ye; Wang, Zhong-Liang

    2017-10-01

    In this work, a CE method was developed to separate five anthraquinones: aloe-emodin, rhein, emodin, chrysophanol, and physcion. The CE method used a nano-sized metal organic framework MIL-101 (nMIL-101) as pseudostationary phase (PSP) and sorbent for dispersed particle extraction (DPE). The nMIL-101 was synthesized by microwave technique and was characterized by UV-vis, TEM, Zeta potential, X-ray diffraction spectrometry and micropore physisorption. In this method, anthraquinones were adsorbed by nMIL-101 of a fast kinetics within 10 min and then separated by CE. The CE conditions were optimized considering time, pH, buffer ionic strength, and nanoparticles concentration. The optimal CE condition is using 20 mM sodium borate buffer (pH 9.1) containing 15% methanol (v/v) and 400 mg/L nMIL-101 as additives within 8 min. The LODs varied from 24 to 57 μg/L, which were lower than those previously reported. Our method has been successfully applied to determine trace anthraquinones in environmental water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Stability of polymer encapsulated quantum dots in cell culture media

    NASA Astrophysics Data System (ADS)

    Ojea-Jiménez, I.; Piella, J.; Nguyen, T.-L.; Bestetti, A.; Ryan, A. D.; Puntes, V.

    2013-04-01

    The unique optical properties of Quantum Dots have attracted a great interest to use these nanomaterials in diverse biological applications. The synthesis of QDs by methods from the literature permits one to obtain nanocrystals coated by hydrophobic alkyl coordinating ligands and soluble in most of the cases in organic solvents. The ideal biocompatible QD must be homogeneously dispersed and colloidally stable in aqueous solvents, exhibit pH and salt stability, show low levels of nonspecific binding to biological components, maintain a high quantum yield, and have a small hydrodynamic diameter. Polymer encapsulation represents an excellent scaffold on which to build additional biological function, allowing for a wide range of grafting approaches for biological ligands. As these QD are functionalized with poly(ethylene)glycol (PEG) derivatives on their surface, they show long term stability without any significant change in the optical properties, and they are also highly stable in the most common buffer solutions such as Phosphate Buffer Saline (PBS) or borate. However, as biological studies are normally done in more complex biological media which contain a mixture of amino acids, salts, glucose and vitamins, it is essential to determine the stability of our synthesized QDs under these conditions before tackling biological studies.

  1. Development of coatings to control electroosmosis in zero gravity electrophoresis

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.

    1974-01-01

    A major problem confronting the operation of free fluid electrophoresis in zero gravity is the control of electrokinetic phenomena and, in particular, electroosmosis. Due to the severity of counter flow, as a result of electroosmosis, the electrical potential developed at the surface of shear must be maintained at near, or as close to, zero millivolts as possible. Based upon this investigation, it has been found that the amount of bound water or the degree of hydroxylation plays a major role in the control of this phenomena. Of necessity, factors, such as adhesion, biocompatibility, protein adsorption, and insolubility were considered in this investigation because of the long buffer-coating exposure times required by present space operations. Based upon tests employing microcapillary electrophoresis, it has been found that gamma amino propyl trihydroxysilane produced a coating which provides the lowest potential (minus 3.86 mv) at the surface of shear between the stationary and mobile layers. This coating has been soaked in both borate and saline buffers, up to three months, in a pH range of 6.5 to 10 without deleterious effects or a change in its ability to control electrokinetic effects.

  2. Separation of dietary omega-3 and omega-6 fatty acids in food by capillary electrophoresis.

    PubMed

    Soliman, Laiel C; Donkor, Kingsley K; Church, John S; Cinel, Bruno; Prema, Dipesh; Dugan, Michael E R

    2013-10-01

    A lower dietary omega-6/omega-3 (n-6/n-3) fatty acid ratio (<4) has been shown to be beneficial in preventing a number of chronic illnesses. Interest exists in developing more rapid and sensitive analytical methods for profiling fatty acid levels in foods. An aqueous CE method was developed for the simultaneous determination of 15 n-3 and n-6 relevant fatty acids. The effect of pH and concentration of buffer, type and concentration of organic modifier, and additive on the separation was investigated in order to determine the best conditions for the analysis. Baseline separations of the 15 fatty acids were achieved using 40 mM borate buffer at pH 9.50 containing 50 mM SDS, 10 mM β-cyclodextrin, and 10% acetonitrile. The developed CE method has LODs of <5 mg/L and good linearity (R(2) > 0.980) for all fatty acids studied. The proposed method was successfully applied to the determination of n-3 and n-6 fatty acids in flax seed, Udo® oils and a selection of grass-fed and grain-fed beef muscle samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. DNA stretching on the wall surfaces in curved microchannels with different radii

    NASA Astrophysics Data System (ADS)

    Hsieh, Shou-Shing; Wu, Fong-He; Tsai, Ming-Ju

    2014-08-01

    DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10-4 ≤ Re ≤ 10-3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm.

  4. Selective crystallization with preferred lithium-ion storage capability of inorganic materials

    PubMed Central

    2012-01-01

    Lithium-ion batteries are supposed to be a key method to make a more efficient use of energy. In the past decade, nanostructured electrode materials have been extensively studied and have presented the opportunity to achieve superior performance for the next-generation batteries which require higher energy and power densities and longer cycle life. In this article, we reviewed recent research activities on selective crystallization of inorganic materials into nanostructured electrodes for lithium-ion batteries and discuss how selective crystallization can improve the electrode performance of materials; for example, selective exposure of surfaces normal to the ionic diffusion paths can greatly enhance the ion conductivity of insertion-type materials; crystallization of alloying-type materials into nanowire arrays has proven to be a good solution to the electrode pulverization problem; and constructing conversion-type materials into hollow structures is an effective approach to buffer the volume variation during cycling. The major goal of this review is to demonstrate the importance of crystallization in energy storage applications. PMID:22353373

  5. Binder-free Si nanoparticle electrode with 3D porous structure prepared by electrophoretic deposition for lithium-ion batteries.

    PubMed

    Yang, Yang; Chen, Dingqiong; Liu, Bo; Zhao, Jinbao

    2015-04-15

    A binder-free silicon (Si) based electrode for lithium-ion battery was fabricated in an organic solvent through one-step electrophoretic deposition (EPD). The nanosized Si and acetylene black (AB) particles were bonded tightly together to form a homogeneous co-deposited film with 3D porous structure through the EPD process. The 3D porous structure provides buffer spaces to alleviate the mechanical stress due to silicon volume change during the cycling and improves lithium-ion conductivity by shortening ion diffusion length and better ion conducting pathway. The electrode prepared with 5 s deposition duration shows the best cycling performance among electrodes fabricated by EPD method, and thus, it was selected to be compared with the silicon electrode prepared by the conventional method. Our results demonstrate that the Si nanoparticle electrode prepared through EPD exhibits smaller cycling capacity decay rate and better rate capability than the electrode prepared by the conventional method.

  6. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fang, Menglu; Wang, Zhao; Chen, Xiaojun; Guan, Shiyou

    2018-04-01

    Three-dimensional sponge-like reduced graphene oxide/silicon/carbon nanotube composites were synthesized by one-step hydrothermal self-assembly using silicon nanoparticles, graphene oxide and amino modified carbon nanotubes to develop high-performance anode materials of lithium ion batteries. Scanning electron microscopy and transmission electron microscopy images show the structure of composites that Silicon nanoparticles are coated with reduced graphene oxide while amino modified carbon nanotubes wrap around the reduced graphene oxide in the composites. When applied to lithium ion battery, these composites exhibit high initial specific capacity of 2552 mA h/g at a current density of 0.05 A/g. In addition, reduced graphene oxide/silicon/carbon nanotube composites also have better cycle stability than bare Silicon nanoparticles electrode with the specific capacity of 1215 mA h/g after 100 cycles. The three-dimension sponge-like structure not only ensures the electrical conductivity but also buffers the huge volume change, which has broad potential application in the field of battery.

  7. Separation of 20 coumarin derivatives using the capillary electrophoresis method optimized by a series of Doehlert experimental designs.

    PubMed

    Woźniakiewicz, Michał; Gładysz, Marta; Nowak, Paweł M; Kędzior, Justyna; Kościelniak, Paweł

    2017-05-15

    The aim of this study was to develop the first CE-based method enabling separation of 20 structurally similar coumarin derivatives. To facilitate method optimization a series of three consequent Doehlert experimental designs with the response surface methodology was employed, using number of peaks and the adjusted time of analysis as the selected responses. Initially, three variables were examined: buffer pH, ionic strength and temperature (No. 1 Doehlert design). The optimal conditions provided only partial separation, on that account, several buffer additives were examined at the next step: organic cosolvents and cyclodextrin (No. 2 Doehlert design). The optimal cyclodextrin type was also selected experimentally. The most promising results were obtained for the buffers fortified with methanol, acetonitrile and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin. Since these additives may potentially affect acid-base equilibrium and ionization state of analytes, the third Doehlert design (No. 3) was used to reconcile concentration of these additives with optimal pH. Ultimately, the total separation of all 20 compounds was achieved using the borate buffer at basic pH 9.5 in the presence of 10mM cyclodextrin, 9% (v/v) acetonitrile and 36% (v/v) methanol. Identity of all compounds was confirmed using the in-lab build UV-VIS spectra library. The developed method succeeded in identification of coumarin derivatives in three real samples. It demonstrates a huge resolving power of CE assisted by addition of cyclodextrins and organic cosolvents. Our unique optimization approach, based on the three Doehlert designs, seems to be prospective for future applications of this technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis and evaluation of aminoborates derived from boric acid and diols for protecting wood against fungal and thermal degradation

    Treesearch

    George C. Chen

    2008-01-01

    N-methyl amino catechol borate (1), N-methyl amino-4-methyl catechol borate (2), N-methyl amino-4-t-butyl catechol borate (3), and N-methyl amino-2, 3-naphthyl borate (4) were synthesized by reflux of boric acid with a diol in solvent N,N-dimethyl formamide. The aminoborates were characterized by proton nuclear magnetic resonance spectroscopy, FTIR spectroscopy and...

  9. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  10. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Khasa, S.; Yadav, Arti; Dahiya, M. S.; Seema, Ashima, Agarwal, A.

    2015-06-01

    The DC conductivities of glasses having composition x(2NiO.V2O5).(30-x)Li2O.20Bi2O3.50B2O3 (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO.23 Li2O.20Bi2O3.50B2O3 and 7V2O5.23Li2O.20Bi2O3.50B2O3 (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott's small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  11. Waveguide structures in anisotropic nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Meissner, Helmuth E.

    2017-02-01

    We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.

  12. Microwave synthesis and electrochemical properties of lithium manganese borate as cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Ting; Muslim, Arzugul; Su, Zhi

    2015-05-01

    Nano structured LiMnBO3/C cathode materials are synthesized by a fast microwave solid-state reaction method using MnCO3, Li2CO3, H3BO3 and glucose as starting materials for the first time. The crystal structure, morphology and electrochemical properties of LiMnBO3/C composites are characterized by X-ray diffraction (XRD), raman spectroscopy (Ramon), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge-discharge tests. The result shows that not only monoclinic LiMnBO3/C but also hexagonal LiMnBO3/C cathode materials can be successfully synthesized by microwave solid-state method with power of 240 W in different time. Compared with h-LiMnBO3/C and mixed phase LiMnBO3/C, m-LiMnBO3/C displays lower charge-transfer resistance and the Warburg impedance, so it reveals a higher first discharge capacity of 156.3 mAh g-1 at 0.05 C within 1.8V-4.6 V, The value increases up to 173.2 mAh g-1 caused by the activation process. Even after 50 cycles, the discharge capacity of m-LiMnBO3/C still remains at 148.2 mAh g-1.

  13. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties.

    PubMed

    Möncke, D; Kamitsos, E I; Palles, D; Limbach, R; Winterstein-Beckmann, A; Honma, T; Yao, Z; Rouxel, T; Wondraczek, L

    2016-09-28

    A series of transition and post-transition metal ion (Mn, Cu, Zn, Pb, Bi) binary borate glasses was studied with special consideration of the cations impact on the borate structure, the cations cross-linking capacity, and more generally, structure-property correlations. Infrared (IR) and Raman spectroscopies were used for the structural characterization. These complementary techniques are sensitive to the short-range order as in the differentiation of tetrahedral and trigonal borate units or regarding the number of non-bridging oxygen ions per unit. Moreover, vibrational spectroscopy is also sensitive to the intermediate-range order and to the presence of superstructural units, such as rings and chains, or the combination of rings. In order to clarify band assignments for the various borate entities, examples are given from pure vitreous B 2 O 3 to meta-, pyro-, ortho-, and even overmodified borate glass compositions. For binary metaborate glasses, the impact of the modifier cation on the borate speciation is shown. High field strength cations such as Zn 2+ enhance the disproportionation of metaborate to polyborate and pyroborate units. Pb 2+ and Bi 3+ induce cluster formation, resulting in PbO n - and BiO n -pseudophases. Both lead and bismuth borate glasses show also a tendency to stabilize very large superstructural units in the form of diborate polyanions. Far-IR spectra reflect on the bonding states of modifier cations in glasses. The frequency of the measured cation-site vibration band was used to obtain the average force constant for the metal-oxygen bonding, F M-O . A linear correlation between glass transition temperature (T g ) and F M-O was shown for the metaborate glass series. The mechanical properties of the glasses also correlate with the force constant F M-O , though for cations of similar force constant the fraction of tetrahedral borate units (N 4 ) strongly affects the thermal and mechanical properties. For paramagnetic Cu- and Mn-borate glasses, N 4 was determined from the IR spectra after deducing the relative absorption coefficient of boron tetrahedral versus boron trigonal units, α = α 4 /α 3 , using NMR literature data of the diamagnetic glasses.

  14. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N., E-mail: ramakrishnan@monash.edu

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use ofmore » a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.« less

  15. Self-assembled 3D zinc borate florets via surfactant assisted synthesis under moderate pressures: Process temperature dependent morphology study

    NASA Astrophysics Data System (ADS)

    Mahajan, Dhiraj S.; Deshpande, Tushar; Bari, Mahendra L.; Patil, Ujwal D.; Narkhede, Jitendra S.

    2018-04-01

    In the present study, we prepared zinc borates using aqueous phase synthesis under moderate pressures (MP) (<150 psi) with ethanol as a co-solvent in the presence of a quaternary ammonium surfactant-Cetyltrimethylammonium bromide (CTAB). 3D morphologies of self-assembled zinc borate (Zn(H2O)B2O4 · 0.12 H2O, Zn3B6O12 · 3.5H2O, ZnB2O4) resembling flower-like structures were obtained by varying temperature under moderate pressure conditions. Synthesized zinc borates’ florets were morphologically characterized by Field Emission Scanning Electron Microscopy. The x-ray diffractions of borate species reveal rhombohydra, monoclinic and cubic phases of zinc borate crystals as a function of process temperature. Additionally, thermal analysis confirms excellent dehydration/degradation behavior for the zinc borate crystals synthesized at moderate pressures and elevated temperatures and could be utilized as potential flame retardant fillers in the polymer matrices.

  16. Bioactive borate glass coatings for titanium alloys.

    PubMed

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  17. Germanium and Tin Based Anode Materials for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Ji, Dongsheng

    The discovery of safe anode materials with high energy density for lithium-ion batteries has always been a significant topic. Group IV elements have been under intensive study for their high capability of alloying with lithium. Batteries with graphite and tin based anode material have already been applied in cell phones and vehicles. In order to apply group IV elements, their dramatic volume change during lithiation and delithiation processes is the key point to work on. Reducing the particle size is the most common method to buffer the volume expansion. This strategy has been applied on both germanium and tin based materials. Germanium based anode material has been made by two different synthesis methods. The amorphous Ge-C-Ti composite material was made by ball milling method and performed much better than other germanium alloy including Ge-Mg, Ge-Fe and Ge-Fe.Germanium sphere nano particles with diameter of around 50 nm have been made by solution method. After ball milled with graphite, the resulted product performed stable capacity over 500 mAh˙g-1 for more than 20 cycles. Ball milled graphite in the composite plays an important role of buffering volume change and stabilizing germanium. Sn-Fe alloy is one of the feasible solutions to stabilize tin. Sn 2Fe-C composite has been made by ball milling method. After optimizations of the ratio of precursors, reaction time, milling balls and electrolyte additives, the electrochemistry performance was improved. The anode performed 420 mAh˙ -1 at 1.0 mA/cm2 and maintained its structure after cycling at 2.0 mA/cm2. At 0.3 mA/cm2 cycling rate, the anode performed 978 mAh/cm3 after 500 cycles, which still exceeds the theoretical capacity of graphite.

  18. Nanocomposites with embedded structures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zichao

    Lithium-ion batteries (LIBs) have been widely employed in portable electronics and are rapidly expanding into emerging markets such as hybrid and electric vehicles and potentially electric grid storage. These new opportunities create new challenges for LIBs and further improvement of specific energy, cycling performance and rate capability are required. A major strategy in performance enhancement for the electrode materials involves the creation of carbon composites to provide mechanical buffering of active material and to improve electrical conductivity. In the current work, a platform is developed for creating functional hybrid materials by copolymerization of organic molecules and inorganic compounds followed by thermal pyrolysis, and the approach yields nanostructured composites in which nanoparticles are uniformly embedded in a porous, partially graphitic carbon matrix. Depending upon the chemistry of the starting materials, nanocomposites with embedded structures created using the approach are attractive as anode or cathode materials for next-generation rechargeable lithium battery systems. The platform is very versatile and through ex situ conversion or utilization of multiple precursors, can be applied to various classes of materials including metal oxides (single or mixed), metals, metal sulfides, alloys, metalloids, phosphates, etc. The approach also lends itself to the development of scalable processes for production of nanostructured battery materials. Mechanistic analysis was performed and reveals that the performance enhancement of the embedded nanocomposite configuration is mainly brought about by the mechanical buffering effect offered by the carbon matrix. The active material loading was shown to be an important factor in the design of the composites as electrode materials. In addition to the polymerization-based approach, other in situ methods such as one based on spray pyrolysis are also explored and demonstrate the versatility of the in situ synthesis concept.

  19. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    NASA Astrophysics Data System (ADS)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  20. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-12-01

    Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.

  1. Comparison of corrosion behavior between coarse grained and nano/ultrafine grained alloy 690

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Ting, Guo

    2016-01-01

    The effect of grain refinement on corrosion resistance of alloy 690 was investigated. The electron work function value of coarse grained alloy 690 was higher than that of nano/ultrafine grained one. The grain refinement reduced the electron work function of alloy 690. The passive films formed on coarse grained and nano/ultrafine grained alloy 690 in borate buffer solution were studied by potentiodynamic curves and electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The results showed that the grain refinement improved corrosion resistance of alloy 690. This was attributed to the fact that grain refinement promoted the enrichment of Cr2O3 and inhibited Cr(OH)3 in the passive film. More Cr2O3 in passive film could significantly improve the corrosion resistance of the nano/ultrafine grained alloy 690.

  2. Enantioseparations of amino acids by capillary array electrophoresis with 532 nm laser induced fluorescence detection.

    PubMed

    Liu, Kaiying; Wang, Li

    2013-06-21

    Capillary array electrophoresis (CAE) is a promising technique for multiple enantiomeric separations. Carboxytetramethylrhodamine succinimidyl ester (TAMRA SE), a rhodamine-core fluorescent probe, has rarely been applied as an original precolumn derivatization reagent for chiral amino acid (AA) analysis so far. For these purposes, high-throughput enantiomeric separations of 12 TAMRA SE-AAs by a home-made 532 nm CAE-LIF scanner are presented. The effect of cyclodextrins (CDs) and a variety of organic modifiers was quickly investigated. Baseline separations were achieved in 100 mM Tris-borate buffer (pH 10.0) containing 2 mM β-CD and 10 mM hexamethylenediamine (HDA). Multiple determination of the enantiomeric excess (ee) in non-racemic mixtures of alanine is successfully presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Determination of water-soluble vitamins in multivitamin dietary supplements and in artichokes by micellar electrokinetic chromatography.

    PubMed

    Serni, Enrico; Audino, Valeria; Del Carlo, Sara; Manera, Clementina; Saccomanni, Giuseppe; Macchia, Marco

    2013-01-01

    Several procedures of extraction with solvents for the simultaneous determination of vitamin C and some vitamins belonging to the B group (thiamine, riboflavine, nicotinic acid and nicotinamide) in multivitamin preparations and in artichokes (Cynara cardunculus subsp. scolymus [L.] Hegi) were developed. Different experimental conditions were used, in terms of heat treatment, composition and pH of the extraction mixture, with particular attention to high-temperature steps; purification of the extracts with solid phase extraction and stabilisation through lyophilisation were discussed. Analyses of the extracts were conducted by capillary electrophoresis in micellar electrokinetic chromatography modality. Borate buffer at pH 8.2 was used, and sodium dodecyl sulphate was added to the background electrolyte as surfactant. A range of linearity was determined and calibration curves were plotted for all the analytes.

  4. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.

    PubMed

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.

  5. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  6. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  7. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  8. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  9. 76 FR 74831 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... exposed to treated borated water. In response to a request from the Nuclear Energy Institute (NEI), the... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY: Nuclear Regulatory Commission. ACTION: Draft interim staff...

  10. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    NASA Astrophysics Data System (ADS)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.

  11. Angiogenic effects of borate glass microfibers in a rodent model.

    PubMed

    Lin, Yinan; Brown, Roger F; Jung, Steven B; Day, Delbert E

    2014-12-01

    The primary objective of this research was to evaluate the use of bioactive borate-based glass microfibers for angiogenesis in soft tissue repair applications. The effect of these fibers on growth of capillaries and small blood vessels was compared to that of 45S5 silica glass microfibers and sham implant controls. Compressed mats of three types of glass microfibers were implanted subcutaneously in rats and tissues surrounding the implant sites histologically evaluated 2-4 weeks post surgery. Bioactive borate glass 13-93B3 supplemented with 0.4 wt % copper promoted extensive angiogenesis as compared to silica glass microfibers and sham control tissues. The angiogenic responses suggest the copper-containing 13-93B3 microfibers may be effective for treating chronic soft tissue wounds. A second objective was to assess the possible systemic cytotoxicity of dissolved borate ions and other materials released from implanted borate glass microfibers. Cytotoxicity was assessed via histological evaluation of kidney tissue collected from animals 4 weeks after subcutaneously implanting high amounts of the borate glass microfibers. The evaluation of the kidney tissue from these animals showed no evidence of chronic histopathological changes in the kidney. The overall results indicate the borate glass microfibers are safe and effective for soft tissue applications. © 2014 Wiley Periodicals, Inc.

  12. Template-Free Synthesis of Sb2S3 Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Xie, Jianjun; Liu, Li; Xia, Jing; Zhang, Yue; Li, Min; Ouyang, Yan; Nie, Su; Wang, Xianyou

    2018-03-01

    Hierarchical Sb2S3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb2S3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 mAh g-1 at a current density of 200 mA g-1 after 50 cycles. Even at a high current density of 5000 mA g-1, a discharge capacity of 541 mAh g-1 is achieved. Sb2S3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 mAh g-1 at a current density of 200 mA g-1 after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space, which can buffer the volume expansion. [Figure not available: see fulltext.

  13. A Novel Polar Copolymer Design as a Multi-Functional Binder for Strong Affinity of Polysulfides in Lithium-Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Jiao, Yu; Chen, Wei; Lei, Tianyu; Dai, Liping; Chen, Bo; Wu, Chunyang; Xiong, Jie

    2017-03-01

    High energy density, low cost and environmental friendliness are the advantages of lithium-sulfur (Li-S) battery which is regarded as a promising device for electrochemical energy storage systems. As one of the important ingredients in Li-S battery, the binder greatly affects the battery performance. However, the conventional binder has some drawbacks such as poor capability of absorbing hydrophilic lithium polysulfides, resulting in severe capacity decay. In this work, we reported a multi-functional polar binder (AHP) by polymerization of hexamethylene diisocyanate (HDI) with ethylenediamine (EDA) bearing a large amount of amino groups, which were successfully used in electrode preparation with commercial sulfur powder cathodes. The abundant amide groups of the binder endow the cathode with multidimensional chemical bonding interaction with sulfur species within the cathode to inhibit the shuttling effect of polysulfides, while the suitable ductility to buffer volume change. Utilizing these advantageous features, composite C/S cathodes based the binder displayed excellent capacity retention at 0.5 C, 1 C, 1.5 C, and 3 C over 200 cycles. Accompany with commercial binder, AHP may act as an alternative feedstock to open a promising approach for sulfur cathodes in rechargeable lithium battery to achieve commercial application.

  14. Method for producing a borohydride

    DOEpatents

    Kong, Peter C [Idaho Falls, ID

    2008-09-02

    A method for producing a borohydride is described and which includes the steps of providing a source of borate; providing a material which chemically reduces the source of the borate to produce a borohydride; and reacting the source of borate and the material by supplying heat at a temperature which substantially effects the production of the borohydride.

  15. Method for producing a borohydride

    DOEpatents

    Kong, Peter C.

    2010-06-22

    A method for producing a borohydride is described that includes the steps of providing a source of borate; providing a material that chemically reduces the source of the borate to produce a borohydride; and reacting the source of the borate and the material by supplying heat at a temperature that substantially effects the production of the borohydride.

  16. Bioinspired Carbon/SnO2 Composite Anodes Prepared from a Photonic Hierarchical Structure for Lithium Batteries.

    PubMed

    Li, Yao; Meng, Qing; Ma, Jun; Zhu, Chengling; Cui, Jingru; Chen, Zhixin; Guo, Zaiping; Zhang, Tao; Zhu, Shenmin; Zhang, Di

    2015-06-03

    A carbon/SnO2 composite (C-SnO2) with hierarchical photonic structure was fabricated from the templates of butterfly wings. We have investigated for the first time its application as the anode material for lithium-ion batteries. It was demonstrated to have high reversible capacities, good cycling stability, and excellent high-rate discharge performance, as shown by a capacitance of ∼572 mAh g(-1) after 100 cycles, 4.18 times that of commercial SnO2 powder (137 mAh g(-1)); a far better recovery capability of 94.3% was observed after a step-increase and sudden-recovery current. An obvious synergistic effect was found between the porous, hierarchically photonic microstructure and the presence of carbon; the synergy guarantees an effective flow of electrolyte and a short diffusion length of lithium ions, provides considerable buffering room, and prevents aggregation of SnO2 particles in the discharge/charge processes. This nature-inspired strategy points out a new direction for the fabrication of alternative anode materials.

  17. Electrochemical properties of Sn/C nanoparticles fabricated by redox treatment and pulsed wire evaporation method

    NASA Astrophysics Data System (ADS)

    Song, Ju-Seok; Cho, Gyu-Bong; Ahn, Jou-Hyeon; Cho, Kwon-Koo

    2017-09-01

    Tin (Sn) based anode materials are the most promising anode materials for lithium-ion batteries due to their high theoretical capacity corresponding to the formation of Li4.4Sn composition (Li4.4Sn, 994 mAh/g). However, the applications of tin based anodes to lithium-ion battery system are generally limited by a large volume change (>260%) during lithiation and delithiation cycle, which causes pulverize and poor cycling stability. In order to overcome this shortcoming, we fabricate a Sn/C nanoparticle with a yolk-shell structure (Sn/void/C) by using pulsed wire evaporation process and oxidation/reduction heat treatment. Sn nanoparticles are encapsulated by a conductive carbon layer with structural buffer that leaves enough room for expansion and contraction during lithium insertion/desertion. We expect that the yolk-shell structure has the ability to accommodate the volume changes of tin and leading to an improved cycle performance. The Sn/Void/C anode with yolk-shell structure shows a high specific capacity of 760 mAh/g after 50 cycles.

  18. The Lithium Vapor Box Divertor

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  19. First Observations of Boron on Mars and Implications for Gale Crater Geochemistry

    NASA Astrophysics Data System (ADS)

    Gasda, P. J.; Haldeman, E. B.; Wiens, R. C.; Rapin, W.; Frydenvang, J.; Maurice, S.; Clegg, S. M.; Delapp, D.; Sanford, V.; McInroy, R.

    2016-12-01

    Borates are potentially important precursor materials for the origin of life on Earth. It has been shown that borates are required to stabilize ribose, a component of RNA, when produced by the formose reaction, a prebiotically plausible mechanism to produce ribose from formaldehyde. Evaporites, including borates, also shed light on the history of aqueous activity on Mars. The ChemCam instrument onboard the NASA Curiosity rover provides quantitative elemental compositions of targets in Gale Crater, Mars, using laser-induced breakdown spectroscopy (LIBS). Laboratory observations of Fe-free targets indicate that a LIBS emission line is visible with as little as 10 ppm B. We have observed B lines in 23 calcium sulfate veins in Gale Crater: 3 in Yellowknife Bay and 20 in the Murray lacustrine mudstone and the Stimson eolian sandstone units since sol 727, as Curiosity arrived at the base of Mt. Sharp, a 5 km sedimentary mound in the center of Gale Crater. To calibrate these observations, samples composed of borates diluted with Hawaiian basalt have been analyzed using the LANL ChemCam engineering model. Preliminary results show that the Gale Crater veins have between 10-100 ppm B. One possible explanation for borates in veins is that Gale Lake evaporated, depositing evaporites, including borates. Later, Gale Crater was partially buried and its lacustrine and overlying eolian units were lithified and fractured. Water flowed through the evaporite-rich layers, partially dissolving them. Fluid moved through the fractures, re-precipitating the borates and sulfates as veins. ChemCam cannot directly determine mineralogy, but B is likely present as borax as the dominate borate phase in these veins, based on previous estimates of vein fluid temperature. Borates forming in this environment tend to precipitate from mildly alkaline fluids. The fluid temperature and pH implies these veins were potentially habitable environments.

  20. Improved synthesis of fine zinc borate particles using seed crystals

    NASA Astrophysics Data System (ADS)

    Gürhan, Deniz; Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim

    2009-03-01

    Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical compositions and structures. In this study, the production of zinc borate having the molecular formula of 2ZnO·3B 2O 3·3.5H 2O was reexamined by studying the effects of reaction parameters on the properties of product as well as the reaction kinetics. Production of zinc borate from the reaction of boric acid and zinc oxide in the presence of seed crystals was performed in a continuously stirred, temperature-controlled batch reactor having a volume of 1.5 L. Samples taken in regular time intervals during the experiments were analyzed for the concentration of zinc oxide and boron oxide in the solid as well as for the conversion of zinc oxide to zinc borate versus time. The zinc borate production reaction was fit to the logistic model. The reaction rate, reaction completion time, composition and particle size distribution of zinc borate product were determined by varying the following parameters: the boric acid to zinc oxide ratio (H 3BO 3:ZnO=3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10 and 25 μm), stirring rate (275, 400, 800 and 1600 rpm), temperature (75, 85 and 95 °C) and the size of seed crystals (10 and 2 μm). The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increases with the increase in H 3BO 3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. Concomitantly, the reaction completion time is decreased by increasing the H 3BO 3:ZnO ratio, stirring rate and temperature. The average particle sizes of the zinc borate products are in the range 4.3-16.6 μm (wet dispersion analysis).

  1. Structure, molecular simulation, and release of aspirin from intercalated Zn-Al-layered double hydroxides.

    PubMed

    Meng, Zilin; Li, Xiaowei; Lv, Fengzhu; Zhang, Qian; Chu, Paul K; Zhang, Yihe

    2015-11-01

    Aspirin or acetylsalicylic acid (AA), a non-steroidal anti-inflammatory drug, is intercalated into Zn-Al-layered double hydroxides (ZnAl-LDHs) by co-precipitation and reconstruction methods. The composition, structure, and morphology of the intercalated products as well as their release behavior are determined experimentally and theoretically by Material Studio 5.5. Experimental results disclose the strong interaction between the LDHs sheets and AA in the intercalated ZnAl-LDHs produced by co-precipitation and slow release of AA from the intercalated ZnAl-LDHs in both phosphate buffered saline (PBS) and borate buffered saline (BBS) solutions. The percentage of AA released from the ZnAl-LDHs prepared by both methods in PBS (96.87% and 98.12%) are much more than those in BBS (68.59% and 81.22%) implying that both H4BO4(-) and H2PO4(-) can exchange with AA in the ZnAl-LDHs. After AA is released to PBS, ZnAl-LDHs break into small pieces. The experimental results are explained theoretically based on the calculation of the bonding energy between the anions and LDHs sheets as well as the AlO bond length change in the LDHs sheets. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. DNA stretching on the wall surfaces in curved microchannels with different radii.

    PubMed

    Hsieh, Shou-Shing; Wu, Fong-He; Tsai, Ming-Ju

    2014-01-01

    DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10(-4) ≤ Re ≤ 10(-3) and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm.

  3. DNA stretching on the wall surfaces in curved microchannels with different radii

    PubMed Central

    2014-01-01

    DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10−4 ≤ Re ≤ 10−3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm. PMID:25147488

  4. Rapid separation and sensitive determination of banned aromatic amines with plastic microchip electrophoresis.

    PubMed

    Li, Ruina; Wang, Lili; Gao, Xiaotong; Du, Gangfeng; Zhai, Honglin; Wang, Xiayan; Guo, Guangsheng; Pu, Qiaosheng

    2013-03-15

    Rapid analysis of trace amount of aromatic amines in environmental samples and daily necessities has attracted considerable attentions because some of them are strongly toxic and carcinogenic. In this study, fast and efficient electrophoretic separation and sensitive determination of 5 banned aromatic amines were explored for practical analysis using disposable plastic microchips combined with a low-cost laser-induced fluorescence detector. The effect of running buffer and its additive was systematically investigated. Under the selected condition, 5 fluorescein isothiocyanate labeled aromatic amines could be baseline separated within 90s by using a 10mmol/L borate buffer containing 2% (w/v) hydroxypropyl cellulose. Calibration curves of peak areas vs. concentrations were linear up to 40 or 120μmol/L for different analytes and limits of detection were in a range of 1-3nmol/L. Theoretical plate numbers of 6.8-8.5×10(5)/m were readily achieved. The method exhibited good repeatability, relative standard deviations (n=5) of peak areas and migration times were no more than 4.6% and 0.9%, respectively. The established method was successfully applied in the quantitative analysis of these banned aromatic amines in real samples of waste water and textile, recoveries of added standards were 85-110%. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Single tag for total carbohydrate analysis.

    PubMed

    Anumula, Kalyan Rao

    2014-07-15

    Anthranilic acid (2-aminobenzoic acid, 2-AA) has the remarkable property of reacting rapidly with every type of reducing carbohydrate. Reactivity of 2-AA with carbohydrates in aqueous solutions surpasses all other tags reported to date. This unique capability is attributed to the strategically located -COOH which accelerates Schiff base formation. Monosaccharides, oligosaccharides (N-, O-, and lipid linked and glycans in secretory fluids), glycosaminoglycans, and polysaccharides can be easily labeled with 2-AA. With 2-AA, labeling is simple in aqueous solutions containing proteins, peptides, buffer salts, and other ingredients (e.g., PNGase F, glycosidase, and transferase reaction mixtures). In contrast, other tags require relatively pure glycans for labeling in anhydrous dimethyl sulfoxide-acetic acid medium. Acidic conditions are known to cause desialylation, thus requiring a great deal of attention to sample preparation. Simpler labeling is achieved with 2-AA within 30-60 min in mild acetate-borate buffered solution. 2-AA provides the highest sensitivity and resolution in chromatographic methods for carbohydrate analysis in a simple manner. Additionally, 2-AA is uniquely qualified for quantitative analysis by mass spectrometry in the negative mode. Analyses of 2-AA-labeled carbohydrates by electrophoresis and other techniques have been reported. Examples cited here demonstrate that 2-AA is the universal tag for total carbohydrate analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Two new glucose 6-phosphate dehydrogenase variants associated with congenital nonspherocytic hemolytic anemia found in Japan: GD(-) Tokushima and GD(-) Tokyo.

    PubMed

    Miwa, S; Ono, J; Nakashima, K; Abe, S; Kageoka, T

    1976-01-01

    Two new variants of glucose 6-phosphate dehydrogenase (G6PD) deficiency associated with chronic nonspherocytic hemolytic anemia were discovered in Japan. Gd(-) Tokushima was found in a 17-years-old male whose erythrocytes contained 4.4% of normal enzyme activity. Partially purified enzyme revealed a main band of normal electrophoretic mobility with additional two minor bands of different mobility; normal Km G6P, and Km NADP five-to sixfold higher than normal; normal utilization of 2-deoxy-G6P, galactose-6P, and deamino-NADP; marked thermal instability; a normal pH curve; and normal Ki NADPH. The hemolytic anemia was moderate to severe. Gd(-) Tokyo was characterized from a 15-year-old male who had chronic nonspherocytic hemolytic anemia of mild degree. The erythrocytes contained 3% of normal enzyme activity, and partially purified enzyme revealed slow electrophoretic mobility (90% of normal for both a tris-hydrochloride buffer system and a tris-EDTA-borate buffer system, and 70% of normal for a phosphate buffer system); normal Km G6P and Km NADP; normal utilization of 2-deoxy-G6P, galactose-6P, and deamino-NADP; greatly increased thermal instability; a normal pH curve; and normal Ki NADPH. These two variants are clearly different from hitherto described G6PD variants, including the Japanese variants Gd(-) Heian and Gd(-) Kyoto. The mothers of both Gd(-) Tokushima and Gd(-) Tokoyo were found to be heterozygote by an ascorbate-cyanide test.

  7. Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesis

    NASA Technical Reports Server (NTRS)

    Smith, D. L.; Krikorian, A. D.

    1990-01-01

    Cultures of preglobular stage proembryos (PGSPs) were initiated from mechanically wounded mature zygotic embryos of carrot, Daucus carota, on a hormone-free, semisolid medium. These PGSPs have been maintained and multiplied for extended periods without their progression into later embryo stages on the same hormone-free medium containing 1 mM NH4+ as the sole nitrogen source. Sustained maintenance of cultures comprised exclusively of PGSPs was dependent on medium pH throughout the culture period. Best growth and multiplication of PGSP cultures occurred when the pH of unbuffered, hormone-free medium fell from 4.5 to 4 over a 2-week period or when buffered medium was titrated to pH 4. If the hormone-free medium was buffered to sustain a pH at or above 4.5, PGSPs developed into later embryo stages. Maintenance with continuous multiplication of PGSPs occurred equally well on medium containing NH4+ or NH4+ and NO3-, but growth was poor with NO3- alone. Additional observations on the effects of medium components such as various nitrogen sources and levels, sucrose concentration, semisolid supports, type of buffer, borate concentration, activated charcoal, and initial pH that permit optimum maintenance of the PGSPs or foster their continued developmental progression into mature embryos and plantlets are reported. The influence of the pH of the hormone-free medium as a determinant in maintaining cultures as PGSPs or allowing their continued embryonic development are unequivocally demonstrated by gross morphology, scanning electron microscopy, and histological preparations.

  8. 40 CFR 721.1880 - Borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)hydro-, sodium, (T-4)-. 721.1880 Section 721.1880 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.1880 Borate(1-), tris(acetato-.kappa.O)hydro-, sodium... substance identified as borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)- (PMN P-00-0922; CAS No...

  9. 40 CFR 721.1880 - Borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)hydro-, sodium, (T-4)-. 721.1880 Section 721.1880 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.1880 Borate(1-), tris(acetato-.kappa.O)hydro-, sodium... substance identified as borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)- (PMN P-00-0922; CAS No...

  10. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride), sodium borate and sodium metaborate; exemptions from the requirement of a tolerance. 180.1121 Section 180.1121 Protection of Environment ENVIRONMENTAL PROTECTION...

  11. Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23}: A new alkali and alkaline-earth metal mixed borate with [B{sub 10}O{sub 18}]{sup 6-} network and isolated [B{sub 2}O{sub 5}]{sup 4-} unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Min; Graduate University of Chinese Academy of Sciences, Beijing 100049; Pan Shilie, E-mail: slpan@ms.xjb.ac.cn

    2012-06-15

    A novel ternary lithium strontium borate Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23} crystal with size up to 20 mm Multiplication-Sign 10 mm Multiplication-Sign 4 mm has been grown via the top-seeded solution growth method below 730 Degree-Sign C. Single-crystal XRD analyses showed that Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23} crystallizes in the monoclinic space group P2{sub 1}/c with a=6.4664(4) A, b=8.4878(4) A, c=15.3337(8) A, {beta}=102.02(3) Degree-Sign , Z=2. The crystal structure is composed of [B{sub 10}O{sub 18}]{sup 6-} network and isolated [B{sub 2}O{sub 5}]{sup 4-} unit. The IR spectrum further confirmed the presence of both BO{sub 3} and BO{sub 4} groups. TG-DSCmore » and Transmission spectrum were reported. Band structures and density of states were calculated. - Graphical abstract: A new phase, Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23}, has been discovered in the ternary M{sub 2}O-M Prime O-B{sub 2}O{sub 3} (M=alkali-metal, M Prime =alkalineearth metal) system. The crystal structure consists of [B{sub 10}O{sub 18}]{sup 6-} network and isolated [B{sub 2}O{sub 5}]{sup 4-} unit. Highlights: Black-Right-Pointing-Pointer Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23} is a a novel borate discovered in the M{sub 2}O-M Prime O-B{sub 2}O{sub 3} (M=alkali-metal, M Prime =alkaline-earth metal) system. Black-Right-Pointing-Pointer Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23} crystal structure has a three-dimensional crystal structure with [B{sub 10}O{sub 18}]{sup 6-} network and isolated [B{sub 2}O{sub 5}]{sup 4-} unit. Black-Right-Pointing-Pointer Sr{sub 1} and Sr{sub 2} are located in two different channels constructed by {sup 3}{sub {infinity}}[B{sub 10}O{sub 18}] network.« less

  12. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Champenois, Jean-Baptiste; Dhoury, Mélanie; Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr

    Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorlymore » crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.« less

  13. Preservation of tissue specimens during transport to mycobacteriology laboratories.

    PubMed Central

    Richards, W D; Wright, H S

    1983-01-01

    Chloramine-T and sodium borate solutions were evaluated for their effectiveness in preserving Mycobacterium bovis and controlling the growth of non-mycobacterial contaminants on tissue specimens during transport to laboratories. The number of culturable M. bovis cells in suspension was reduced by 5.1 log10 upon exposure to chloramine-T solution and by less than 1 log10 upon exposure to sodium borate solution for 7 days. Reinoculation of laboratory media (because of overgrowth by non-mycobacterial contaminants) was required for 52.6% of 190 routine bovine tissue specimens shipped refrigerated in chloramine-T solution and for 6.1% of 520 specimens shipped unrefrigerated in sodium borate solution. M. bovis was isolated from bovine tissue stored in sodium borate solution at 23 degrees C for 17 weeks and at 4 degrees C for 25 weeks. Unrefrigerated sodium borate solution has been used successfully to ship tissue specimens to our laboratory for the past 11 years. PMID:6341397

  14. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    The pH of aqueous environments is determined by the dominant buffer systems of the water, defined operationally as total alkalinity (TA). The major buffer systems in the modern ocean are carbonic and boric acids of which the species bicarbonate, carbonate and borate make up about 77%, 19% and 4% of the TA, respectively. During the course of seawater evaporation (e.g. lagoons) the residual brine loses considerable portion of the dissolved inorganic carbon (DIC) and carbonate alkalinity (CA) already at the early stages of evaporation. DIC and CA decrease due to massive precipitation of CaCO3, while total boron (TB) increases conservatively, turning borate to the dominant alkalinity species in marine derived brines. In the present work we assess the apparent dissociation constant value of boric acid (KB‧) in saline and hypersaline waters, using the Dead Sea (DS) as a case study. We explain the DS low pH (∼6.3) and the effect of the boric and carbonic acid pK‧-s on the behavior of the brine's buffer system, including the pH increase that results from brine dilution. The KB‧ in DS was estimated from TB, TA, DIC and pH data measured in this study and early empirical data on artificial DS brines containing just carbonic acid. The KB‧ value was corroborated by Pitzer ion interaction model calculations using PHREEQC thermodynamic code applied to the chemical composition of the DS. Our results show that KB‧ increases considerably with the brine's ionic strength, reaching in the DS to a factor of 100 higher than in ;mean; seawater. Based on theoretical calculations and analyses of other natural brines it is suggested that brines' composition is a major factor in determining the KB‧ value and in turn the pH of such brines. We show that the higher the proportion of divalent cations in the brine the higher the dissociation constants of the weak acids (presumably due to formation of complexes). The low pH of the Dead Sea is accordingly explained by its extremely high ionic strength (TDS = 348 g/L) and the dominance of the divalent cation, Mg2+. Other natural hyper-saline brines with high concentration of divalent cations such as Kunteyi Lake in China and Don-Juan Pond in Antarctica follow the same general pattern. In contrast, the high pH of soda lakes results not only from their high TA but also by the dominance of the monovalent cation, Na+. Our study emphasizes the strong control of brine composition on pKB‧ and pH. These factors should be taken into consideration when reconstructing past and present environmental evaporitic environments.

  15. Femtosecond laser-induced refractive index modification in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Bhardwaj, V. R.; Simova, E.; Corkum, P. B.; Rayner, D. M.; Hnatovsky, C.; Taylor, R. S.; Schreder, B.; Kluge, M.; Zimmer, J.

    2005-04-01

    We present a comprehensive study on femtosecond laser-induced refractive index modification in a wide variety of multicomponent glasses grouped as borosilicate, aluminum-silicate, and heavy-metal oxide glasses along with lanthanum-borate and sodium-phosphate glasses. By using high-spatial resolution refractive index profiling techniques, we demonstrate that under a wide range of writing conditions the refractive index modification in multicomponent glasses can be positive, negative, or nonuniform, and exhibits a strong dependence on the glass composition. With the exception of some aluminum-silicate glasses all other glasses exhibited a negative/nonuniform index change. We also demonstrate direct writing of waveguides in photosensitive Foturan® glass with a femtosecond laser without initiating crystallization by thermal treatment. Upon ceramization of lithium-aluminum-silicate glasses such as Foturan®, Zerodur®, and Robax® we observe switching of laser-induced refractive index change from being positive to negative. The measured transmission losses in the waveguides at 1550nm agree with the index profile measurements in alkali-free aluminum-silicate glasses.

  16. TL and EPR studies of Cu, Ag and P doped Li2B4O7 phosphor

    NASA Astrophysics Data System (ADS)

    Can, N.; Karali, T.; Townsend, P. D.; Yildiz, F.

    2006-05-01

    Key characteristics of a newly prepared tissue-equivalent, highly sensitive thermoluminescence dosimeter, Li2B4O7:Cu,Ag,P, are presented. The material was developed at the Institute of Nuclear Sciences, Belgrade, in the form of sintered pellets. A new preparation procedure has greatly increased the sensitivity of the basic copper activated lithium borate and the glow curve of Li2B4O7 : Cu,Ag,P consists of a well-defined main dosimetric peak situated at about 460-465 K with a sensitivity which is about four to five times higher than that of LiF : Mg,Ti (TLD-100). The exceptionally good response features of Li2B4O7 : Cu,Ag,P are attributed to the incorporation of Cu as a dopant. Both low and high temperature emission spectra are presented and the origins of the various emission bands are considered. Additional data are provided from electron paramagnetic resonance measurements.

  17. Synthesis and optical property of holmium doped Lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2017-05-01

    The new glass system 60B2O3-30PbO-(10-x)Li2O-xHo2O3 (where x =0, 0.1, 0.3 and 0.5 mol%) were prepared by conventional melt quenching method. The XRD spectrum confirms the amorphous nature of the sample. The density of these glasses is measured by using Archimedes principle, the values range from 4.23 g/cm-3 to 4.34 g/cm-3 and the corresponding molar volumes are calculated. The optical absorbance studies were carried out on these glasses in the wavelength range of 200nm to 1100nm. The measured optical direct band gap energies were in the range of 3.072eV to 3.259eV and the optical indirect band gap energies in the range of 2.658eV to 2.846eV. The refractive indices of these glasses were measured by using Abbe refractometer and the corresponding polarizabilities of oxide ions are calculated by using Lorentz-Lorentz relations.

  18. Wide Operating Temperature Range Electrolytes for High Voltage and High Specific Energy Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Hwang, C.; Krause, F. C.; Soler, J.; West, W. C.; Ratnakumar, B. V.; Amine, K.

    2012-01-01

    A number of electrolyte formulations that have been designed to operate over a wide temperature range have been investigated in conjunction with layered-layered metal oxide cathode materials developed at Argonne. In this study, we have evaluated a number of electrolytes in Li-ion cells consisting of Conoco Phillips A12 graphite anodes and Toda HE5050 Li(1.2)Ni(0.15)Co(0.10)Mn(0.55)O2 cathodes. The electrolytes studied consisted of LiPF6 in carbonate-based electrolytes that contain ester co-solvents with various solid electrolyte interphase (SEI) promoting additives, many of which have been demonstrated to perform well in 4V systems. More specifically, we have investigated the performance of a number of methyl butyrate (MB) containing electrolytes (i.e., LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + MB (20:20:60 v/v %) that contain various additives, including vinylene carbonate, lithium oxalate, and lithium bis(oxalato)borate (LiBOB). When these systems were evaluated at various rates at low temperatures, the methyl butyrate-based electrolytes resulted in improved rate capability compared to cells with all carbonate-based formulations. It was also ascertained that the slow cathode kinetics govern the generally poor rate capability at low temperature in contrast to traditionally used LiNi(0.80)Co(0.15)Al(0.05)O2-based systems, rather than being influenced strongly by the electrolyte type.

  19. Hydrothermal synthesis of Ni 2FeBO 5 in near-supercritical PWR coolant and possible effects of neutron-induced 10B fission in fuel crud

    NASA Astrophysics Data System (ADS)

    Sawicki, Jerzy A.

    2011-08-01

    The hydrothermal synthesis of a nickel-iron oxyborate, Ni 2FeBO 5, known as bonaccordite, was investigated at pressures and temperatures that might occur at the surface of high-power fuel rods in PWR cores and in supercritical water reactors, especially during localized departures from nucleate boiling and dry-outs. The tests were performed using aqueous mixtures of nickel and iron oxides with boric acid or boron oxide, and as a function of lithium hydroxide addition, temperature and time of heating. At subcritical temperatures nickel ferrite NiFe 2O 4 was always the primary reaction product. High yield of Ni 2FeBO 5 synthesis started near critical water temperature and was strongly promoted by additions of LiOH up to Li/Fe and Li/B molar ratios in a range 0.1-1. The synthesis of bonaccordite was also promoted by other alkalis such as NaOH and KOH. The bonaccordite particles were likely formed by dissolution and re-crystallization by means of an intermediate nickel ferrite phase. It is postulated that the formation of Ni 2FeBO 5 in deposits of borated nickel and iron oxides on PWR fuel cladding can be accelerated by lithium produced in thermal neutron capture 10B(n,α) 7Li reactions. The process may also be aided in the reactor core by kinetic energy of α-particles and 7Li ions dissipated in the crud layer.

  20. Laboratory evaluation of borate:amine:copper derivatives In wood for fungal decay protection

    Treesearch

    George Chen

    2011-01-01

    This study aimed to evaluate borate:amine:copper derivatives in wood for fungal decay protection as well as the permanence of copper and boron in wood. Each of four derivatives of borate:amine:copper prevented fungal decay in wood. Disodium tetraborate decahydrate (borax):amine:copper derivatives with 0.61-0.63% retention after water leaching prevented decay by...

  1. Corrosion studies of titanium in borated water for TPX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D.F.; Pawel, S.J.; DeVan, J.H.

    1995-12-31

    Corrosion testing was performed to demonstrate the compatibility of the titanium vacuum vessel with borated water. Borated water is proposed to fill the annulus of the double wall vacuum vessel to provide effective radiation shielding. Borating the water with 110 grams of boric acid per liter is sufficient to reduce the nuclear heating in the Toroidal Field Coil set and limit the activation of components external to the vacuum vessel. Constant extension rate tensile (CERT) and electrochemical potentiodynamic tests were performed. Results of the CERT tests confirm that stress corrosion cracking is not significant for Ti-6Al4V or Ti-3AI-2.5V. Welded andmore » unwelded specimens were tested in air and in borated water at 150{degree}C. Strength, elongation, and time to failure were nearly identical for all test conditions, and all the samples exhibited ductile failure. Potentiodynamic tests on Ti-6A1-4V and Ti in borated water as a function of temperature showed low corrosion rates over a wide passive potential range. Further, this passivity appeared stable to anodic potentials substantially greater than those expected from MHD effects.« less

  2. Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-06-01

    The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.

  3. Novel method for early investigation of bioactivity in different borate bio-glasses

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  4. Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications

    NASA Astrophysics Data System (ADS)

    Ha, Chu T.; Lien, Nghiem T. Ha; Anh, Nguyen D.; Lam, Nguyen L.

    2017-12-01

    Anthocyanin belongs to a large group of phenolic compounds called flavonoids. It is found primarily in fruits, flowers, roots and other parts of higher plants. Within the black carrot, it has been found that the cyanidin component 1,2 diol was the major anthocyanine. Since the terminal thiols potentially display chemical interactions with borate additives, anthocyanin from the black carrot can act as a sensing material for detecting borate in the environment. As a natural dye, anthocyanin responds to pH change of the medium. Here, we present an application of black carrot dyes for pH sensing and for the detection of borate additives within meats. The dyes were encapsulated within a mesoporous silica (SiO2) matrix in order to prevent the sensing materials from dissolution into the aqueous medium. The encapsulation was done in situ during preparation of silica nanoparticles (size from 100 nm to 500 nm) following an advanced Stöber method. These anthocyanin-encapsulated silica nanoparticles show a clear color change from green in an aqueous solution free of borate to GRAY-red in the presence of borate additive and red (pH 2) to green (pH 10).

  5. A medium range order structural connection to the configurational heat capacity of borate-silicate mixed glasses.

    PubMed

    Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng

    2016-04-28

    It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).

  6. Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in pharmaceuticals and human urine by capillary electrophoresis.

    PubMed

    Sirichai, Somsak; Khanatharana, Proespichaya

    2008-09-15

    Capillary electrophoresis (CE) with UV detection for the simultaneous and short-time analysis of clenbuterol, salbutamol, procaterol, fenoterol is described and validated. Optimized conditions were found to be a 10 mmoll(-1) borate buffer (pH 10.0), an separation voltage of 19 kV, and a separation temperature of 32 degrees C. Detection was set at 205 nm. Under the optimized conditions, analyses of the four analytes in pharmaceutical and human urine samples were carried out in approximately 1 min. The interference of the sample matrix was not observed. The LOD (limits of detection) defined at S/N of 3:1 was found between 0.5 and 2.0 mgl(-1) for the analytes. The linearity of the detector response was within the range from 2.0 to 30 mgl(-1) with correlation coefficient >0.996.

  7. Analysis of Soft Drinks: UV Spectrophotometry, Liquid Chromatography, and Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    McDevitt, Valerie L.; Rodriguez, Alejandra; Williams, Kathryn R.

    1998-05-01

    Instrumental analysis students analyze commercial soft drinks in three successive laboratory experiments. First, UV multicomponent analysis is used to determine caffeine and benzoic acid in Mello YelloTM using the spectrophotometer's software and manually by the simultaneous equations method. The following week, caffeine, benzoic acid and aspartame are determined in a variety of soft drinks by reversed-phase liquid chromatography using 45% methanol/55% aqueous phosphate, pH 3.0, as the mobile phase. In the third experiment, the same samples are analyzed by capillary electrophoresis using a pH 9.4 borate buffer. Students also determine the minimum detection limits for all three compounds by both LC and CE. The experiments demonstrate the analytical use and limitations of the three instruments. The reports and prelab quizzes also stress the importance of the chemistry of the three compounds, especially the relationships of acid/base behavior and polarity to the LC and CE separations.

  8. Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review

    PubMed Central

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented. PMID:28794848

  9. Kinetics and mechanism of degradation of some 2-sulfanilamidopyrimidine derivatives. Part VI. The use of Hammett equation for kinetic investigation of 2-sulfanilamidopyrimidine derivatives hydrolysis.

    PubMed

    Zajac, M

    1977-01-01

    General, k, and specific, k1 and k2, first-order rate constants for the parallel reaction of hydrolysis catalized by H+ ions were estimated for sulfadiazine (I), sulfamerazine (II), sulfadimidine (III), sulfaperine (IV) and sulfamethoxydiazine (V), hydrolyzed in 1 mole/dm3 HCl at 333, 343, 355 and 363 K. General first-order rate constants for the spontaneous hydrolysis of I--V in borate buffer pH 9.20 at 403, 411 and 418 K were also determined. Thermodynamic parameters of the reaction (delta Ha, deltaH not equal to, deltaS not equal to, deltaG not equal to and log A) were calculated. The effect of substituents in positions 4, 5 and 6 of the pyrimidine ring on the rate of hydrolysis was interpreted in terms of Hammett equation.

  10. [Methods quantitative for determination of water-soluble vitamins in premixes and fortified food products by micellar electrokinetic chromatography on short end of the capillary].

    PubMed

    Bogachuk, M N; Bessonov, V V; Perederiaev, O I

    2011-01-01

    It was purposed new technique by micellar electrokinetic chromatography on short end of the capillary (capillary electrophoresis system Agilent 3D CE, DAD, quartz capillary HPCE stndrd cap 56 cm, 50 microm, 50 mM borate buffer pH=9,3, 100 mM sodium dodecil sulfate) for simultaneous determination of water-soluble vitamins (B1, B2, B6, B12, PP, B5, B9, C, B8) in fortified food products and premixes. It was observed on 6 samples of vitamin premixes and 28 samples of fortified food products using this technique. Our findings are consistent with the results of research on certain vitamins, conducted by other methods. The developed technique can be used in analysis of water-soluble vitamins in premixes and fortified food products.

  11. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection.

    PubMed

    Li, Xiang-Yun; Zhang, Qian-Li; Lian, Hong-Zhen; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A method for rapid separation and sensitive determination of three water-soluble vitamins, pyridoxine, ascorbic acid (VC), and p-aminobenzoic acid (PABA) has been developed by PDMS microchannel electrophoresis integrated with amperometric detection. After treatment of the microchip with oxygen plasma, the peak shapes of the three analytes were essentially improved. Pyridoxine, VC, and PABA were well separated within only 80 s in a running buffer of 20 mM borate solution (pH 8.5). Good linearity was obtained within the concentration range of 2-200 microM for the three water-soluble vitamins. The detection limits were 1.0 microM for pyridoxine and VC, and 1.5 microM for PABA. The proposed method has been successfully applied to real human urine sample, without solid phase extraction, with recoveries of 80-122% for the three water-soluble vitamins.

  12. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis.

    PubMed

    Jia, Wei-Tao; Zhang, Xin; Luo, Shi-Hua; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E; Zhang, Chang-Qing; Xie, Zong-Ping; Wang, Jian-Qiang

    2010-03-01

    Composite materials composed of borate bioactive glass and chitosan (designated BGC) were investigated in vitro and in vivo as a new delivery system for teicoplanin in the treatment of chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA). In vitro, the release of teicoplanin from BGC pellets into phosphate-buffered saline (PBS), as well as its antibacterial activity, were determined. The compressive strength of the pellets was measured after specific immersion times, and the structure of the pellets was characterized using scanning electron microscopy and X-ray diffraction. In vivo, the tibial cavity of New Zealand White rabbits was injected with MRSA strain to induce chronic osteomyelitis, treated by debridement after 4weeks, implanted with teicoplanin-loaded BGC pellets (designated TBGC) or BGC pellets, or injected intravenously with teicoplanin. After 12weeks' implantation, the efficacy of the TBGC pellets for treating osteomyelitis was evaluated using hematological, radiological, microbiological and histological techniques. When immersed in PBS, the TBGC pellets provided a sustained release of teicoplanin, while the surface of the pellets was converted to hydroxyapatite (HA). In vivo, the best therapeutic effect was observed in animals implanted with TBGC pellets, resulting in significantly lower radiological and histological scores, a lower positive rate of MRSA culture, and an excellent bone defect repair, without local or systemic side effects. The results indicate that TBGC pellets are effective in treating chronic osteomyelitis by providing a sustained release of teicoplanin, in addition to participating in bone regeneration. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Borate minerals and origin of the RNA world.

    PubMed

    Grew, Edward S; Bada, Jeffrey L; Hazen, Robert M

    2011-08-01

    The RNA World is generally thought to have been an important link between purely prebiotic (>3.7 Ga) chemistry and modern DNA/protein biochemistry. One concern about the RNA World hypothesis is the geochemical stability of ribose, the sugar moiety of RNA. Prebiotic stabilization of ribose by solutions associated with borate minerals, notably colemanite, ulexite, and kernite, has been proposed as one resolution to this difficulty. However, a critical unresolved issue is whether borate minerals existed in sufficient quantities on the primitive Earth, especially in the period when prebiotic synthesis processes leading to RNA took place. Although the oldest reported colemanite and ulexite are 330 Ma, and the oldest reported kernite, 19 Ma, boron isotope data and geologic context are consistent with an evaporitic borate precursor to 2400-2100 Ma borate deposits in the Liaoning and Jilin Provinces, China, as well as to tourmaline-group minerals at 3300-3450 Ma in the Barberton belt, South Africa. The oldest boron minerals for which the age of crystallization could be determined are the metamorphic tourmaline species schorl and dravite in the Isua complex (metamorphism between ca. 3650 and ca. 3600 Ma). Whether borates such as colemanite, ulexite and kernite were present in the Hadean (>4000 Ma) at the critical juncture when prebiotic molecules such as ribose required stabilization depends on whether a granitic continental crust had yet differentiated, because in its absence we see no means for boron to be sufficiently concentrated for borates to be precipitated.

  14. Laboratory evaluation of borate/amine/zinc formulations for fungal decay protection

    Treesearch

    George C. Chen; Rebecca E. Ibach

    2010-01-01

    The goals of this study were to evaluate borate/amine/zinc formulations in wood for fungal decay protection as well as the permanence of zinc and boron in wood. Wood treated with each of four formulations of borate/amine/zinc prevented or decreased fungal degradation after a 12-week AWPA Standard soil-block test. For non-leached specimens, wood treated with borax/amine...

  15. A mechanistic study of the interaction of water-soluble borate glass with apatite-bound heterocyclic nitrogen-containing bisphosphonates.

    PubMed

    Pramanik, Chandrani; Sood, Parveen; Niu, Li-Na; Yuan, He; Ghoshal, Sushanta; Henderson, Walter; Liu, Yaodong; Jang, Seung Soon; Kumar, Satish; Pashley, David H; Tay, Franklin R

    2016-02-01

    Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) is associated with osteonecrosis of the jaw. Although N-BPs bind strongly to bone surfaces via non-covalent bonds, it is possible for extrinsic ions to dissociate bound N-BPs from mineralized bone by competitive desorption. Here, we investigate the effects and mechanism of using an ionic cocktail derived from borate bioactive glass for sequestration of heterocyclic N-BPs bound to apatite. By employing solid-state and solution-state analytical techniques, we confirmed that sequestration of N-BPs from bisphosphonate-bound apatite occurs in the presence of the borate-containing ionic cocktail. Simulations by density functional theory computations indicate that magnesium cation and borate anion are well within the extent of the risedronate or zoledronate anion to form precipitate complexes. The sequestration mechanism is due to the borate anion competing with bisphosphonates for similar electron-deficient sites on the apatite surface for binding. Thus, application of the borate-containing ionic cocktail represents a new topical lavage approach for removing apatite-bound heterocyclic N-BPs from exposed necrotic bone in bisphosphonate-related osteonecrosis of the jaw. Long-term oral consumption and injections of nitrogen-containing bisphosphonates (N-BPs) may result in death of the jaw bone when there is traumatic injury to the bone tissues. To date, there is no effective treatment for such a condition. This work reported the use of an ionic cocktail derived from water-soluble borate glass microfibers to displace the most potent type of N-BPs that are bound strongly to the mineral component on bone surfaces. The mechanism responsible for such an effect has been identified to be cation-mediated complexation of borate anions with negatively-charged N-BPs, allowing them to be released from the mineral surface. This borate-containing cocktail may be developed into a novel topical rinse for removing mineral-bound N-BPs from exposed dead bone. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Electrostatic spray deposition of porous Fe 2O 3 thin films as anode material with improved electrochemical performance for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, L.; Xu, H. W.; Chen, P. C.; Zhang, D. W.; Ding, C. X.; Chen, C. H.

    Iron oxide materials are attractive anode materials for lithium-ion batteries for their high capacity and low cost compared with graphite and most of other transition metal oxides. Porous carbon-free α-Fe 2O 3 films with two types of pore size distribution were prepared by electrostatic spray deposition, and they were characterized by X-ray diffraction, scanning electron microscopy and X-ray absorption near-edge spectroscopy. The 200 °C-deposited thin film exhibits a high reversible capacity of up to 1080 mAh g -1, while the initial capacity loss is at a remarkable low level (19.8%). Besides, the energy efficiency and energy specific average potential (E av) of the Fe 2O 3 films during charge/discharge process were also investigated. The results indicate that the porous α-Fe 2O 3 films have significantly higher energy density than Li 4Ti 5O 12 while it has a similar E av of about 1.5 V. Due to the porous structure that can buffer the volume changes during lithium intercalation/de-intercalation, the films exhibit stable cycling performance. As a potential anode material for high performance lithium-ion batteries that can be applied on electric vehicle and energy storage, rate capability and electrochemical performance under high-low temperatures were also investigated.

  17. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes.

    PubMed

    Li, Wenyue; Tang, Yongbing; Kang, Wenpei; Zhang, Zhenyu; Yang, Xia; Zhu, Yu; Zhang, Wenjun; Lee, Chun-Sing

    2015-03-18

    Due to its high theoretical capacity and low lithium insertion voltage plateau, silicon has been considered one of the most promising anodes for high energy and high power density lithium ion batteries (LIBs). However, its rapid capacity degradation, mainly caused by huge volume changes during lithium insertion/extraction processes, remains a significant challenge to its practical application. Engineering Si anodes with abundant free spaces and stabilizing them by incorporating carbon materials has been found to be effective to address the above problems. Using sodium chloride (NaCl) as a template, bubble sheet-like carbon film supported core-shell Si/C composites are prepared for the first time by a facile magnesium thermal reduction/glucose carbonization process. The capacity retention achieves up to 93.6% (about 1018 mAh g(-1)) after 200 cycles at 1 A g(-1). The good performance is attributed to synergistic effects of the conductive carbon film and the hollow structure of the core-shell nanospheres, which provide an ideal conductive matrix and buffer spaces for respectively electron transfer and Si expansion during lithiation process. This unique structure decreases the charge transfer resistance and suppresses the cracking/pulverization of Si, leading to the enhanced cycling performance of bubble sheet-like composite. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Preparation of PPy-Coated MnO2 Hybrid Micromaterials and Their Improved Cyclic Performance as Anode for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Feng, Lili; Zhang, Yinyin; Wang, Rui; Zhang, Yanli; Bai, Wei; Ji, Siping; Xuan, Zhewen; Yang, Jianhua; Zheng, Ziguang; Guan, Hongjin

    2017-09-01

    MnO2@PPy core-shell micromaterials are prepared by chemical polymerization of pyrrole on the MnO2 surface. The polypyrrole (PPy) is formed as a homogeneous organic shell on the MnO2 surface. The thickness of PPy shell can be adjusted by the usage of pyrrole. The analysis of SEM, FT-IR, X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), and XRD are used to confirm the formation of PPy shell. Galvanostatic cell cycling and electrochemical impedance spectroscopy (EIS) are used to evaluate the electrochemical performance as anode for lithium-ion batteries. The results show that after formation of MnO2@PPy core-shell micromaterials, the cyclic performance as anode for lithium-ion batteries is improved. Fifty microliters of PPy-coated caddice-clew-like MnO2 has the best cyclic performances as has 620 mAh g-1 discharge specific capacities after 300 cycles. As a comparison, the discharge specific capacity of bare MnO2 materials falls to below 200 mAh g-1 after 10 cycles. The improved lithium-storage cyclic stability of the MnO2@PPy samples attributes to the core-shell hybrid structure which can buffer the structural expansion and contraction of MnO2 caused by the repeated embedding and disengagement of Li ions and can prevent the pulverization of MnO2. This experiment provides an effective way to mitigate the problem of capacity fading of the transition metal oxide materials as anode materials for (lithium-ion batteries) LIBs.

  19. Preparation of PPy-Coated MnO2 Hybrid Micromaterials and Their Improved Cyclic Performance as Anode for Lithium-Ion Batteries.

    PubMed

    Feng, Lili; Zhang, Yinyin; Wang, Rui; Zhang, Yanli; Bai, Wei; Ji, Siping; Xuan, Zhewen; Yang, Jianhua; Zheng, Ziguang; Guan, Hongjin

    2017-09-02

    MnO 2 @PPy core-shell micromaterials are prepared by chemical polymerization of pyrrole on the MnO 2 surface. The polypyrrole (PPy) is formed as a homogeneous organic shell on the MnO 2 surface. The thickness of PPy shell can be adjusted by the usage of pyrrole. The analysis of SEM, FT-IR, X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), and XRD are used to confirm the formation of PPy shell. Galvanostatic cell cycling and electrochemical impedance spectroscopy (EIS) are used to evaluate the electrochemical performance as anode for lithium-ion batteries. The results show that after formation of MnO 2 @PPy core-shell micromaterials, the cyclic performance as anode for lithium-ion batteries is improved. Fifty microliters of PPy-coated caddice-clew-like MnO 2 has the best cyclic performances as has 620 mAh g -1 discharge specific capacities after 300 cycles. As a comparison, the discharge specific capacity of bare MnO 2 materials falls to below 200 mAh g -1 after 10 cycles. The improved lithium-storage cyclic stability of the MnO 2 @PPy samples attributes to the core-shell hybrid structure which can buffer the structural expansion and contraction of MnO 2 caused by the repeated embedding and disengagement of Li ions and can prevent the pulverization of MnO 2 . This experiment provides an effective way to mitigate the problem of capacity fading of the transition metal oxide materials as anode materials for (lithium-ion batteries) LIBs.

  20. Low-energy collisionally activated dissociation of pentose-borate complexes

    NASA Astrophysics Data System (ADS)

    Pepi, Federico; Garzoli, Stefania; Tata, Alessandra; Giacomello, Pierluigi

    2010-01-01

    Pentose-borate 1:1 complexes were generated in the ESI source of a triple quadrupole and ion trap mass spectrometer by electrospray ionization of Na2B4O7 and pentose (arabinose, lyxose, ribose, xylose) 2:1 solution in CH3CN/H2O. The study of their low-energy collisionally activated dissociation (CAD) demonstrated that ribose and lyxose are preferentially complexed at the C2-C3 cis-diol function whereas arabinose and xylose are esterified at the C1-C2 hydroxyl groups. No evidence was found of the stronger affinity for ribose to borate. The ribose probiotic rule can be explained by considering its peculiar capability, among the investigated pentoses, to almost totally complex the borate anion at the C2-C3 hydroxyl group, thus enabling the subsequent stages of nucleotide assembly, such as phosphorylation and linkage to the nucleobases. Finally, the differences observed in the pentose-borate complex CAD spectra can be used for the mass spectrometric discrimination of isomeric pentoses in complex mixtures.

  1. Study on Microstructure and Electrochemical Corrosion Behavior of PEO Coatings Formed on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xiang, N.; Song, R. G.; Li, H.; Wang, C.; Mao, Q. Z.; Xiong, Y.

    2015-12-01

    Plasma electrolytic oxidation (PEO) treated 6063 aluminum alloy was applied in a silicate- and borate-based alkaline solution. The microstructure and electrochemical corrosion behavior were studied by scanning electron microscopy, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. The results showed that the silicate-based PEO coating was of a denser structure compared with that of borate-based PEO coating. In addition, the silicate-based PEO coating was composed of more phased (Al9Si) than borate-based PEO coating. The results of corrosion test indicated that the silicate-based PEO coating provided a superior protection to 6063 aluminum alloy substrate, while borate-based PEO coating with a porous structure showed an inferior conservancy against corrosive electrolyte. Furthermore, the EIS tests proved that both coatings were capable to resist the aggressive erosion in 0.5 M NaCl solution after 72 h of immersion. However, the borate-based PEO coating could not provide sufficient protection to the substrate after 72-h immersion in 1 M NaCl solution.

  2. Synthesis of hydrophobic zinc borate nanoflakes and its effect on flame retardant properties of polyethylene

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Long, Beihong; Wang, Zichen; Tian, Yumei; Zheng, Yunhui; Zhang, Qian

    2010-04-01

    Zinc borate (2ZnO·3B 2O 3·3.5H 2O) has relatively high dehydration on-set temperature which property permits processing in a wide range of polymer system. But zinc borate particles are hardly dispersed in a polymer matrix so that they prevent their using in industry. To address this problem, we synthesized hydrophobic zinc borate (2ZnO·3B 2O 3·3.5H 2O) nanoflakes by employing solid-liquid reaction of zinc oxide (ZnO) and boric acid (H 3BO 3) in the presence of oleic acid. This method does not bring pollution. By conducting morphological and microscopic analyses, we found that this compound displayed nanoflake morphology with particle size of around 100-200 nm, thickness less than 100 nm and there were uniform mesopores with the diameter about 10 nm within the particles. Furthermore, our products had an effect on flame retardant of polyethylene, especially when the zinc borate was modified by oleic acid.

  3. Boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozen, L.F.

    1991-05-01

    This paper reports that borate minerals and refined borates are used extensively for the manufacture of vitreous materials such as insulation and textile fiberglasses, borosilicate glass, and porcelain enamels and frits. In North America, these applications are estimated to account for over 54% of the borate consumption. Other substantial uses are in soaps and detergents, metallurgy, fire retardants, industrial biocides, agriculture, and various miscellaneous applications. Reported domestic borate consumption in 1990 was estimated by the U.S. Bureau of Mines to be 320 000 metric tons B{sub 2}O{sub 3} versus 354 000 metric tons B{sub 2}O{sub 3} in 1989. Consumption ismore » projected to remain essentially static in 1991. Imports were estimated by the Bureau to be 50 000 metric tons B{sub 2}O{sub 3} in 1990. Exports of boric acid and refined borates were approximately 650 000 metric tons of product, a 15 000 metric ton increase from the 1989 level. This increase partially offsets the drop in the 1990 consumption level.« less

  4. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    PubMed

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Novel method for early investigation of bioactivity in different borate bio-glasses.

    PubMed

    Abdelghany, A M

    2013-01-01

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm(-1) after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Borate protection of softwood from Coptotermes acinaciformis (Isoptera: Rhinotermitidae) damage: variation in protection thresholds explained.

    PubMed

    Peters, Brenton C; Fitzgerald, Christopher J

    2006-10-01

    Laboratory and field data reported in the literature are confusing with regard to "adequate" protection thresholds for borate timber preservatives. The confusion is compounded by differences in termite species, timber species and test methodology. Laboratory data indicate a borate retention of 0.5% mass/mass (m/m) boric acid equivalent (BAE) would cause > 90% termite mortality and restrict mass loss in test specimens to < or = 5%. Field data generally suggest that borate retentions appreciably > 0.5% m/m BAE are required. We report two field experiments with varying amounts of untreated feeder material in which Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) responses to borate-treated radiata (Monterey) pine, Pinus radiata D. Don, were measured. The apparently conflicting results between laboratory and field data are explained by the presence or absence of untreated feeder material in the test environment. In the absence of untreated feeder material, wood containing 0.5% BAE provided adequate protection from Coptotermes sp., whereas in the presence of untreated feeder material, increased retentions were required. Furthermore, the retentions required increased with increased amounts of susceptible material present. Some termites, Nasutitermes sp. and Mastotermes darwiniensis Froggatt, for example, are borate-tolerant and borate timber preservatives are not a viable management option with these species. The lack of uniform standards for termite test methodology and assessment criteria for efficacy across the world is recognized as a difficulty with research into the performance of timber preservatives with termites. The many variables in laboratory and field assays make "prescriptive" standards difficult to recommend. The use of "performance" standards to define efficacy criteria ("adequate" protection) is discussed.

  7. Atomic emission spectrometer/spectrograph for the determination of barium in microamounts of diatom ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankston, D.C.; Fisher, N.S.

    1977-06-01

    The development and routine application of a method for the determination of trace levels of barium in microsamples (5-10 mg) of diatom ash is described Acid-dissolved lithium metaborate fusion melts of ash samples are analyzed using a spectrometer/spectrograph equipped with a dc argon plasma jet excitation source and an echelle diffraction grating. Sample, standard, and blank solutions are buffered by lithium contributed by the flux, to a degree sufficient to reduce matrix effects to acceptable levels. Previous barium determinations by other analytical techniques, on seven interlaboratory reference materials, have been used to establish the accuracy of our results. The averagemore » relative standard deviation for the instrumental analyses was 0.07. Using recommended instrument settings, moreover, the lowest concentration of barium visible in synthetic standard solutions lies just below 2 ..mu..g/L, which is equivalent to 2 ..mu..g/g in the ash.« less

  8. Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Feng, Jinkui; Zhang, Zhen; Ci, Lijie; Zhai, Wei; Ai, Qing; Xiong, Shenglin

    2015-08-01

    A novel one-pot chemical dealloying method has been developed to prepare nanocomposite of reduced graphene oxide (RGO) and silicon dendrite from cheap commercial Al-Si eutectic precursor. The RGO anchoring could act as both conductive agent and buffer layer for Si volume change in the application of lithium ion batteries (LIBs). The Si/RGO composites show an initial reversible capacity of 2280 mAh g-1, excellent capacity retention of 1942 mAh g-1 even after 100 cycles, and a high capacity of 1521 mAh g-1 even at the rate of 4000 mA g-1. Electrochemical impedance spectroscopy (EIS) measurement proved that Si/RGO composite has the lower charge transfer resistance. This work proposes an economic and facile method to prepare silicon based anode material for next generation LIBs with high energy density.

  9. Embedding ultrafine ZnSnO3 nanoparticles into reduced graphene oxide composites as high-performance electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Yuhang; Jiang, Ranran; Li, Dan; Dong, Yutao; Liu, Yushan; Zhang, Jianmin

    2018-05-01

    Ultrafine ZnSnO3 nanoparticles, with an average diameter of 45 nm, homogeneously grown on reduced graphene oxide (rGO) have been successfully fabricated via methods of low temperature coprecipitation, colloid electrostatic self-assembly, and hydrothermal treatment. The uniformly distributed ZnSnO3 nanocrystals could inhibit the restacking of rGO sheets. In turn, the existence of rGO could hinder the growth and aggregation of ZnSnO3 nanoparticles in the synthesis process, increase the conductivity of the composite, and buffer the volume expansion of the ZnSnO3 nanocrystals upon lithium ion insertion and extraction. The obtained ZnSnO3/rGO exhibited superior cycling stability with a discharge/charge capacity of 718/696 mA h g-1 after 100 cycles at a current density of 0.1 A g-1.

  10. A novel strategy to prepare Ge@C/rGO hybrids as high-rate anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Bangrun; Wen, Zhaoyin; Jin, Jun; Hong, Xiaoheng; Zhang, Sanpei; Rui, Kun

    2017-02-01

    Germanium is considered as a promising anode material for lithium ion batteries (LIBs) due to its high-capacity. However, owing to the huge volume variation during cycling, the batteries based on germanium anodes usually show poor cyclability and inferior rate capability. Herein, we demonstrated a novel strategy to uniformly anchor the core-shell structured germanium@carbon (Ge@C) on the reduced graphene oxide (rGO) nanosheets by the strong adhesion of dopamine. In the resulting Ge@C/rGO hybrid, the amorphous carbon layer and rGO nanosheets can effectively reduce the agglomeration of germanium and provide buffer matrix for the volume change in electrochemical lithium reactions. When used as anode materials for LIBs, Ge@C/rGO hybrids deliver a reversible capacity of 1074.4 mA h g-1 at 2C after 600 cycles (with capacity retention of 96.5%) and high rate capability of 436 mA h g-1 at 20C after 200 cycles. The encouraging electrochemical performance clearly demonstrates that Ge@C/rGO hybrids could be a potential anode material with high capacity, excellent rate capability, and good cycling stability for LIBs.

  11. Ion selectivity of the Vibrio alginolyticus flagellar motor.

    PubMed Central

    Liu, J Z; Dapice, M; Khan, S

    1990-01-01

    The marine bacterium, Vibrio alginolyticus, normally requires sodium for motility. We found that lithium will substitute for sodium. In neutral pH buffers, the membrane potential and swimming speed of glycolyzing bacteria reached maximal values as sodium or lithium concentration was increased. While the maximal potentials obtained in the two cations were comparable, the maximal swimming speed was substantially lower in lithium. Over a wide range of sodium concentration, the bacteria maintained an invariant sodium electrochemical potential as determined by membrane potential and intracellular sodium measurements. Over this range the increase of swimming speed took Michaelis-Menten form. Artificial energization of swimming motility required imposition of a voltage difference in concert with a sodium pulse. The cation selectivity and concentration dependence exhibited by the motile apparatus depended on the viscosity of the medium. In high-viscosity media, swimming speeds were relatively independent of either ion type or concentration. These facts parallel and extend observations of the swimming behavior of bacteria propelled by proton-powered flagella. In particular, they show that ion transfers limit unloaded motor speed in this bacterium and imply that the coupling between ion transfers and force generation must be fairly tight. PMID:2394685

  12. Improving the performance of lithium-sulfur batteries by graphene coating

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangyang; Xie, Jing; Yang, Juan; Zou, Youlan; Tang, Jingjing; Wang, Songcan; Ma, Lulu; Liao, Qunchao

    2013-12-01

    A graphene coating mesoporous carbon/sulfur (RGO@CMK-3/S) composite, which is characteristic of a hybrid structure by incorporating the merits of CMK-3 matrix and graphene (RGO) skin, is synthesized by a facile and scalable route. The CMK-3/S composite is synthesized via a simple melt-diffusion strategy, and then a thin RGO skin is absorbed on the CMK-3/S composite surface in aqueous solution. When evaluating the electrochemical properties of as-prepared RGO wrapped nanostructures as cathode materials in lithium-sulfur batteries, it exhibits much improved cyclical stability and high rate performance. The RGO@CMK-3/S composite with 53.14 wt.% sulfur presents a reversible discharge capacity of about 734 mA h g-1 after 100 cycles at 0.5 C. The improved performance is attributed to the unique structure of RGO@CMK-3/S composite. CMK-3 with extensively mesopores can offer buffering space for the volume change of sulfur and efficient diffusion channel for lithium ions during the charge/discharge process. Meanwhile, the conductive RGO coating skin physically and chemically prevents the dissolution of polysulfides from the cathode, both of which contribute to the reduced capacity fade and improved electrochemical properties.

  13. Low-energy vibrational dynamics of cesium borate glasses.

    PubMed

    Crupi, C; D'Angelo, G; Vasi, C

    2012-06-07

    Low-temperature specific heat and inelastic light scattering experiments have been performed on a series of cesium borate glasses and on a cesium borate crystal. Raman measurements on the crystalline sample have revealed the existence of cesium rattling modes in the same frequency region where glasses exhibit the boson peak (BP). These localized modes are supposed to overlap with the BP in cesium borate glasses affecting its magnitude. Their influence on the low frequency vibrational dynamics in glassy samples has been considered, and their contribution to the specific heat has been estimated. Evidence for a relation between the changes of the BP induced by the increased amount of metallic oxide and the variations of the elastic medium has been provided.

  14. Succinimidyl Ester Surface Chemistry: Implications of the Competition between Aminolysis and Hydrolysis on Covalent Protein Immobilization

    PubMed Central

    2015-01-01

    N-Hydroxysuccinimide (NHS) ester terminal groups are commonly used to covalently couple amine-containing biomolecules (e.g., proteins and peptides) to surfaces via amide linkages. This one-step aminolysis is often performed in buffered aqueous solutions near physiological pH (pH 6 to pH 9). Under these conditions, the hydrolysis of the ester group competes with the amidization process, potentially degrading the efficiency of the coupling chemistry. The work herein examines the efficiency of covalent protein immobilization in borate buffer (50 mM, pH 8.50) using the thiolate monolayer formed by the chemisorption of dithiobis (succinimidyl propionate) (DSP) on gold films. The structure and reactivity of these adlayers are assessed via infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), electrochemical reductive desorption, and contact angle measurements. The hydrolysis of the DSP-based monolayer is proposed to follow a reaction mechanism with an initial nucleation step, in contrast to a simple pseudo first-order reaction rate law for the entire reaction, indicating a strong dependence of the interfacial reaction on the packing and presence of defects in the adlayer. This interpretation is used in the subsequent analysis of IR-ERS kinetic plots which give a heterogeneous aminolysis rate constant, ka, that is over 3 orders of magnitude lower than that of the heterogeneous hydrolysis rate constant, kh. More importantly, a projection of these heterogeneous kinetic rates to protein immobilization suggests that under coupling conditions in which low protein concentrations and buffers of near physiological pH are used, proteins are more likely physically adsorbed rather than covalently linked. This result is paramount for biosensors that use NHS chemistry for protein immobilization due to effects that may arise from noncovalently linked proteins. PMID:25317495

  15. Characterization of a novel particle into liquid sampler for analysis of single fluorescent aerosol particles through capillary electrophoresis.

    PubMed

    Tang, Hao; Hiemstra, Scott; Thompson, Jonathan E

    2011-09-19

    An approach to sample and analyze single aerosolized droplets (<10 nL) of solutions containing fluorescein isothiocyanate (FITC) labeled glycine (GLY) and glutamic acid (GLU) is demonstrated. The sampling approach is based on inertial impaction in which the sample particle is accelerated through a nozzle and directly into a small drop of buffered solution (20 mM borate, pH=10) suspended at the end of a coaxial tube of stainless steel and a fused silica capillary. A spherical light scattering cell and laser (λ=532 nm) is used to detect the arrival of particles at the buffered droplet. Upon dissolution and/or mixing, a portion of the sample is injected onto the fused silica capillary for subsequent chemical analysis by capillary electrophoresis (CE) and detection by laser-induced fluorescence (LIF). It was found that the inertial impaction approach sampled particles >1 μm diameter with an efficiency of 80% or greater. At 15 kV applied potential, the FITC conjugates of GLY and GLU could be resolved in less than 120 s allowing qualitative analysis of the contents of single dispersed particles. However, the extent to which the sample is diluted into the buffer droplet varied significantly on a per-particle basis that caused >80% R.S.D. in fluorescence peak heights. This aspect of the method would necessitate the use of internal standards for quantitative analysis of materials present within the particles. It is envisaged that further improvements to the device described may ultimately lead to analysis of the contents of single particles dispersed in earth's atmosphere. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Evaluation to the effect of B2O3-La2O3-SrO-Na2O-Al2O3 bonding agent on Ti6Al4V-porcelain bonding.

    PubMed

    Zhao, C Q; Wu, S Q; Lu, Y J; Gan, Y L; Guo, S; Lin, J J; Huang, T T; Lin, J X

    2016-10-01

    Low-fusing bonding agents have been widely applied in Ti-ceramics restorations. As an important category, borate bonding agents have great potentials in increasing Ti-porcelain bonding. The purpose of this study is to evaluate the effect of borate bonding agent with addition of Na2O and Al2O3 on Ti6Al4V-porcelain bonding. The thermal properties of borate bonding agent, such as glass transition temperature (Tg) and crystallization peak temperature (Tp), were investigated to establish the sintering process. And the coefficient of thermal expansion (CTE) was to evaluate the matching effect of porcelain to Ti6Al4V. The bond strength was analyzed by the three point bending test. The microscopic morphology of the borate bonding agent surface after sintering, the interface of Ti-borate bonding agent-porcelain, and the fracture mode after porcelains fracture, were studied to assess the influence of borate bonding agent on Ti6Al4V-ceramics. With the addition of Na2O and Al2O3, the porcelain residues were observed increased indication on the Ti6Al4V surface after porcelain fracture and the bond strength was acquired the maximum (49.45MPa) in the bonding agent composition of 75.70B2O3-5.92La2O3-11.84SrO-4.67Na2O-1.87Al2O3. Those results suggest that borate bonding agent is an effective way to improve the Ti6Al4V-ceramics bond strength. And the addition of Na2O and Al2O3 strengthen this effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Mechanism of Boron Mobility in Wheat and Canola Phloem1[C][OA

    PubMed Central

    Stangoulis, James; Tate, Max; Graham, Robin; Bucknall, Martin; Palmer, Lachlan; Boughton, Berin; Reid, Robert

    2010-01-01

    Low-molecular-weight borate complexes were isolated from canola (Brassica napus) and wheat (Triticum aestivum) phloem exudates, as well as the cytoplasm of the fresh-water alga Chara corallina, and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Phloem exudate was collected from field-grown canola inflorescence stalks by shallow incision, while wheat phloem exudate was collected by aphid stylectomy. Chara cytoplasm was collected by careful manual separation of the cell wall, vacuole, and cytosolic compartments. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry showed the presence of isotopic borate complexes, at mass-to-charge ratio of 690.22/691.22 in the canola and wheat phloem and at 300.11/301.11 in canola phloem and Chara cytoplasm. Using reference compounds, the borate complexes with mass-to-charge ratio 690.22/691.22 was identified as a bis-sucrose (Suc) borate complex in which the 4,6-hydroxyl pairs from the two α-glucopyranoside moieties formed an [L2B]−1 complex. Further investigation using liquid chromatography electrospray ionization triple quadrupole mass spectrometry analysis confirmed the presence of the bis-Suc borate complex in wheat phloem with a concentration up to 220 μm. The 300.11/301.11 complex was putatively identified as a bis-N-acetyl-serine borate complex but its concentration was below the detection limits of the liquid chromatography electrospray ionization triple quadrupole mass spectrometer so could not be quantified. The presence of borate complexes in the phloem provides a mechanistic explanation for the observed phloem boron mobility in canola and wheat and other species that transport Suc as their primary photoassimilate. PMID:20413647

  18. Geochemical characteristics of The Emet (Espey-Hisarcik) borate deposits, Kütahya, Turkey

    NASA Astrophysics Data System (ADS)

    Koçak, İ.; Koç, Ş.

    2018-06-01

    Nearly 72% world's borate reserves are in western part of Turkey. The Emet (Kütahya) deposit is one of these deposits. The Emet borate deposit, like other deposits in western Anatolia, was deposited in Miocene lacustrine environment whose formation coincides with volcanic activity started in Paleogene and lasted to the beginning of Quaternary. The borate ore displaying lenticular structure is alternated with claystone, marl, tuff and thin bedded limestone. The mineral paragenesis is composed of colemanite, hydroboracite, Veatchite, dolomite, calcite, montmorillonite and illite. The Emet borate deposit has been the subject of various geologic and mineralogical studies. In the present study major and trace element contents of 60 borate samples from this deposit are discussed. Among the trace elements, significant enrichment was found in As, Se, Sr, Cs, Sb and Li. Element correlations indicate volcanic source for boron (exhalations and hydrothermal solutions) whilst other elements are found to be derived from a terrestrial source. According to REE data, high Ce concentrations and anomalies are generally indicative of oxygenated depositional environment whilst low Ce contents facilitated the lake waters to be low oxygenated as a result of H2S-rich hydrothermal solutions. The weak negative anomaly detected only in the Hisarcık region is attributed to lacking of Eu contribution to the lake due to insufficient alteration on the continent.

  19. A novel high sensitivity HPLC assay for topiramate, using 4-chloro-7-nitrobenzofurazan as pre-column fluorescence derivatizing agent.

    PubMed

    Bahrami, Gholamreza; Mohammadi, Bahareh

    2007-05-01

    A new, sensitive and simple high-performance liquid chromatographic method for analysis of topiramate, an antiepileptic agent, using 4-chloro-7-nitrobenzofurazan as pre-column derivatization agent is described. Following liquid-liquid extraction of topiramate and an internal standard (amlodipine) from human serum, derivatization of the drugs was performed by the labeling agent in the presence of dichloromethane, methanol, acetonitrile and borate buffer (0.05 M; pH 10.6). A mixture of sodium phosphate buffer (0.05 M; pH 2.4): methanol (35:65 v/v) was eluted as mobile phase and chromatographic separation was achieved using a Shimpack CLC-C18 (150 x 4.6 mm) column. In this method the limit of quantification of 0.01 microg/mL was obtained and the procedure was validated over the concentration range of 0.01 to 12.8 microg/mL. No interferences were found from commonly co-administrated antiepileptic drugs including phenytoin, phenobarbital carbamazepine, lamotrigine, zonisamide, primidone, gabapentin, vigabatrin, and ethosuximide. The analysis performance was carried-out in terms of specificity, sensitivity, linearity, precision, accuracy and stability and the method was shown to be accurate, with intra-day and inter-day accuracy from -3.4 to 10% and precise, with intra-day and inter-day precision from 1.1 to 18%.

  20. Optical isomer separation of potential analgesic drug candidates by using capillary electrophoresis.

    PubMed

    Ferrara, G; Santagati, N A; Aturki, Z; Fanali, S

    1999-09-01

    Using cyclodextrin capillary zone electrophoresis (CD-CZE), baseline separation of synthetic potential analgesic drug diastereoisomer candidates 6,11-dimethyl-1,2,3,4,5,6-hexahydro-3-[(2'-methoxycarbonyl-2'-phenylc yclopropyl)methyl]-2,6-methano-3-benzazocin-8-ol (MPCB) and 6,11-dimethyl-1,2,3,4,5,6-hexahydro-3-[[2'-methoxycarbonyl-2'(4-chloroph enyl)cyclopropyl]methyl]-2,6-methano-3-benzazocin-8-ol (CCB) was achieved. Among the cyclodextrins tested (hydroxypropyl-, carboxymethyl- and sulfobutyl-beta-cyclodextrin (HP-beta-CD, CM-beta-CD and SBE-beta-CD)) SBE-beta-CD was found to be the most effective complexing agent, allowing good optical isomer separation. Resolution was also influenced by the CD concentration, pH of the buffer and presence of organic modifier in the background electrolyte. The optimum experimental conditions for the separation of studied analgesic drugs were found using 25 mM borate buffer at pH 9 containing 40 mM of SBE-beta-CD and 20% v/v of methanol. Using the above-mentioned background electrolyte, it was also possible to separate, in the same run, the enantiomers of normetazocine (NMZ) as well as the optical isomers of (+/-)-cis-2-chloromethyl-1-phenyl cyclopropancarboxylic acid methyl ester (PCE) or (+/-)-cis-2-chloromethyl-1-(4-chlorophenyl)cyclopropancarboxylic acid methyl ester (CPCE) reagents used in the synthesis of the studied analgesic drugs).

  1. The use of laser-induced fluorescence or ultraviolet detectors for sensitive and selective analysis of tobramycin or erythropoietin in complex samples

    NASA Astrophysics Data System (ADS)

    Ahmed, Hytham M.; Ebeid, Wael B.

    2015-05-01

    Complex samples analysis is a challenge in pharmaceutical and biopharmaceutical analysis. In this work, tobramycin (TOB) analysis in human urine samples and recombinant human erythropoietin (rhEPO) analysis in the presence of similar protein were selected as representative examples of such samples analysis. Assays of TOB in urine samples are difficult because of poor detectability. Therefore laser induced fluorescence detector (LIF) was combined with a separation technique, micellar electrokinetic chromatography (MEKC), to determine TOB through derivatization with fluorescein isothiocyanate (FITC). Borate was used as background electrolyte (BGE) with negative-charged mixed micelles as additive. The method was successively applied to urine samples. The LOD and LOQ for Tobramycin in urine were 90 and 200 ng/ml respectively and recovery was >98% (n = 5). All urine samples were analyzed by direct injection without sample pre-treatment. Another use of hyphenated analytical technique, capillary zone electrophoresis (CZE) connected to ultraviolet (UV) detector was also used for sensitive analysis of rhEPO at low levels (2000 IU) in the presence of large amount of human serum albumin (HSA). Analysis of rhEPO was achieved by the use of the electrokinetic injection (EI) with discontinuous buffers. Phosphate buffer was used as BGE with metal ions as additive. The proposed method can be used for the estimation of large number of quality control rhEPO samples in a short period.

  2. Strontium borate glass: potential biomaterial for bone regeneration

    PubMed Central

    Pan, H. B.; Zhao, X. L.; Zhang, X.; Zhang, K. B.; Li, L. C.; Li, Z. Y.; Lam, W. M.; Lu, W. W.; Wang, D. P.; Huang, W. H.; Lin, K. L.; Chang, J.

    2010-01-01

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones. PMID:20031984

  3. Is Boron a Prebiotic Element? A Mini-review of the Essentiality of Boron for the Appearance of Life on Earth

    NASA Astrophysics Data System (ADS)

    Scorei, Romulus

    2012-02-01

    Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".

  4. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.

    PubMed

    Deliormanlı, Aylin M

    2015-02-01

    Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications.

  5. Strontium borate glass: potential biomaterial for bone regeneration.

    PubMed

    Pan, H B; Zhao, X L; Zhang, X; Zhang, K B; Li, L C; Li, Z Y; Lam, W M; Lu, W W; Wang, D P; Huang, W H; Lin, K L; Chang, J

    2010-07-06

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones.

  6. Secondary relaxations in supercooled and glassy sucrose-borate aqueous solutions.

    PubMed

    Longinotti, M Paula; Corti, Horacio R; Pablo, Juan J de

    2008-10-13

    The dielectric relaxation spectra of concentrated aqueous solutions of sucrose-borate mixtures have been measured in the supercooled and glassy regions in the frequency range of 40Hz to 2MHz. The secondary (beta) relaxation process was analyzed in the temperature range 183-233K at water contents between 20 and 30wt%. The relaxation times were obtained, and the activation energy of that process was calculated. In order to assess the effect of borate on the relaxation of disaccharide-water mixtures, we also studied the dielectric behavior of sucrose aqueous solutions in the same range of temperatures and water contents. Our findings support the view that, beyond a water content of approximately 20wt%, the secondary relaxation of water-sucrose and water-sucrose-borate mixtures adopts a universal character that can be explained in terms of a simple exponential function of the temperature scaled by the glass transition temperature (T(g)). The behavior observed for water-sucrose and water-sucrose-borate mixtures is compared with previous results obtained in other water-carbohydrate systems.

  7. The molecular structure of the borate mineral rhodizite (K, Cs)Al4Be4(B, Be)12O28 - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Xi, Yunfei; Scholz, Ricardo; Souza, Larissa; Lana, Cristiano

    2014-07-01

    We have studied the borate mineral rhodizite (K, Cs)Al4Be4(B, Be)12O28 using a combination of DEM with EDX and vibrational spectroscopic techniques. The mineral occurs as colorless, gray, yellow to white crystals in the triclinic crystal system. The studied sample is from the Antandrokomby Mine, Sahatany valley, Madagascar. The mineral is prized as a semi-precious jewel. Semi-quantitative chemical composition shows a Al, Ca, borate with minor amounts of K, Mg and Cs. The mineral has a characteristic borate Raman spectrum and bands are assigned to the stretching and bending modes of B, Be and Al. No Raman bands in the OH stretching region were observed.

  8. Amorphous ZnO Quantum Dot/Mesoporous Carbon Bubble Composites for a High-Performance Lithium-Ion Battery Anode.

    PubMed

    Tu, Zhiming; Yang, Gongzheng; Song, Huawei; Wang, Chengxin

    2017-01-11

    Due to its high theoretical capacity (978 mA h g -1 ), natural abundance, environmental friendliness, and low cost, zinc oxide is regarded as one of the most promising anode materials for lithium-ion batteries (LIBs). A lot of research has been done in the past few years on this topic. However, hardly any research on amorphous ZnO for LIB anodes has been reported despite the fact that the amorphous type could have superior electrochemical performance due to its isotropic nature, abundant active sites, better buffer effect, and different electrochemical reaction details. In this work, we develop a simple route to prepare an amorphous ZnO quantum dot (QDs)/mesoporous carbon bubble composite. The composite consists of two parts: mesoporous carbon bubbles as a flexible skeleton and monodisperse amorphous zinc oxide QDs (smaller than 3 nm) encapsulated in an amorphous carbon matrix as a continuous coating tightly anchored on the surface of mesoporous carbon bubbles. With the benefits of abundant active sites, amorphous nature, high specific surface area, buffer effect, hierarchical pores, stable interconnected conductive network, and multidimensional electron transport pathways, the amorphous ZnO QD/mesoporous carbon bubble composite delivers a high reversible capacity of nearly 930 mA h g -1 (at current density of 100 mA g -1 ) with almost 90% retention for 85 cycles and possesses a good rate performance. This work opens the possibility to fabricate high-performance electrode materials for LIBs, especially for amorphous metal oxide-based materials.

  9. Borate-aided anion exchange high-performance liquid chromatography of uridine diphosphate-sugars in brain, heart, adipose and liver tissues.

    PubMed

    Oikari, Sanna; Venäläinen, Tuula; Tammi, Markku

    2014-01-03

    In this paper we describe a method optimized for the purification of uridine diphosphate (UDP)-sugars from liver, adipose tissue, brain, and heart, with highly reproducible up to 85% recoveries. Rapid tissue homogenization in cold ethanol, lipid removal by butanol extraction, and purification with a graphitized carbon column resulted in isolation of picomolar quantities of the UDP-sugars from 10 to 30mg of tissue. The UDP-sugars were baseline separated from each other, and from all major nucleotides using a CarboPac PA1 anion exchange column eluted with a gradient of acetate and borate buffers. The extraction and purification protocol produced samples with few unidentified peaks. UDP-N-acetylglucosamine was a dominant UDP-sugar in all the rat tissues studied. However, brain and adipose tissue showed high UDP-glucose levels, equal to that of UDP-N-acetylglucosamine. The UDP-N-acetylglucosamine showed 2.3-2.7 times higher levels than UDP-N-acetylgalactosamine in all tissues, and about the same ratio was found between UDP-glucose and UDP-galactose in adipose tissue and brain (2.6 and 2.8, respectively). Interestingly, the UDP-glucose/UDP-galactose ratio was markedly lower in liver (1.1) and heart (1.7). The UDP-N-acetylglucosamine/UDP-glucuronic acid ratio was also constant, between 9.7 and 7.7, except in liver with the ratio as low as 1.8. The distinct UDP-glucose/galactose ratio, and the abundance of UDP-glucuronic acid may reflect the specific role of liver in glycogen synthesis, and metabolism of hormones and xenobiotics, respectively, using these UDP-sugars as substrates. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Mineral resource of the month: boron

    USGS Publications Warehouse

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  11. Effects of long-term lithium and desipramine treatment upon clonidine-induced inhibition of /sup 3/H-norepinephrine release from rat hippocampal slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spengler, R.N.; Hollingsworth, P.J.; Smith, C.B.

    1986-03-01

    Long-term treatment with antidepressant agents alters the specific binding of /sup 3/H-clonidine, an alpha/sub 2/ adrenoreceptor agonist, to neural membranes isolated from specific areas of the rat brain. The purpose of the present study was to determine whether these changes in binding of /sup 3/H-clonidine represent an alteration in the functional state of the presynaptic alpha/sub 2/ adrenorecepotr. Hippocampal slices were incubated with /sup 3/H-norepinephrine (/sup 3/H-NE, 330 nM0 for 20 min, washed with fresh buffer for 30 min and then stimulated (4 Hz, 2 msec duration, 2 min) at 12 min intervals. Cumulative concentration-effect curves were determined of /supmore » 3/H-NE. Rats were injected, i.p., twice daily for 14 days with lithium chloride (105 mg/kg), desipramine HCl (10 mg/kg) or saline. In controls, the EC50 for clonidine was 2.3 +/- 1.0 nM (n = 3). After lithium treatment, the clonidine concentration-effect curve was shifted to the right, and the EC50 as 12.1 +/- 4.3 nM. Desipramine treatment nearly abolished the inhibitory effect of clonidine upon the release of /sup 3/H-NE by field stimulation. These observations indicate that the long-term administration of desipramine and lithium produce a functional subsensitivity of the alpha/sub 2/ adrenoreceptor which regulates norepinephrine release in the rat brain.« less

  12. Magnesium Hydride Nanoparticles Self-Assembled on Graphene as Anode Material for High-Performance Lithium-Ion Batteries.

    PubMed

    Zhang, Baoping; Xia, Guanglin; Sun, Dalin; Fang, Fang; Yu, Xuebin

    2018-04-24

    MgH 2 nanoparticles (NPs) uniformly anchored on graphene (GR) are fabricated based on a bottom-up self-assembly strategy as anode materials for lithium-ion batteries (LIBs). Monodisperse MgH 2 NPs with an average particle size of ∼13.8 nm are self-assembled on the flexible GR, forming interleaved MgH 2 /GR (GMH) composite architectures. Such nanoarchitecture could effectively constrain the aggregation of active materials, buffer the strain of volume changes, and facilitate the electron/lithium ion transfer of the whole electrode, leading to a significant enhancement of the lithium storage capacity of the GMH composite. Furthermore, the performances of GMH composite as anode materials for LIBs are enabled largely through robust interfacial interactions with poly(methyl methacrylate) (PMMA) binder, which plays multifunctional roles in forming a favorable solid-electrolyte interphase (SEI) film, alleviating the volume expansion and detachment of active materials, and maintaining the structural integrity of the whole electrode. As a result, these synergistic effects endow the obtained GMH composite with a significantly enhanced reversible capacity and cyclability as well as a good rate capability. The GMH composite with 50 wt % MgH 2 delivers a high reversible capacity of 946 mA h g -1 at 100 mA g -1 after 100 cycles and a capacity of 395 mAh g -1 at a high current density of 2000 mA g -1 after 1000 cycles.

  13. High-pressure synthesis and characterization of the first cerium fluoride borate CeB{sub 2}O{sub 4}F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinteregger, Ernst; Wurst, Klaus; Tribus, Martina

    2013-08-15

    CeB{sub 2}O{sub 4}F is the first cerium fluoride borate, which is exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO{sub 3}]{sup 3−} groups. This new cerium fluoride borate was synthesized under high-pressure/high-temperature conditions of 0.9 GPa and 1450 °C in a Walker-type multianvil apparatus. The compound crystallizes in the orthorhombic space group Pbca (No. 61) with eight formula units and the lattice parameters a=821.63(5), b=1257.50(9), c=726.71(6) pm, V=750.84(9) Å{sup 3}, R{sub 1}=0.0698, and wR{sub 2}=0.0682 (all data). The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO{sub 3}]{sup 3−}more » groups. Furthermore, IR spectroscopy, Electron Micro Probe Analysis and temperature-dependent X-ray powder diffraction measurements were performed. - Graphical abstract: A new rare-earth fluoride borate CeB{sub 2}O{sub 4}F could be synthesized under high-pressure/high-temperature conditions of 0.9 °GPa and 1450 °Cin a Walker-type multianvil apparatus. The crystal structure represents a new structure type in the class of rare-earth fluoride borates. The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO{sub 3}]{sup 3−} groups. A closer view on the ac-plane shows an interesting wave-like modulation of the borate chains. Highlights: • CeB{sub 2}O{sub 4}F is the first fluoride borate exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO{sub 3}]{sup 3−} groups. • CeB{sub 2}O{sub 4}F is the first cerium fluoride borate. • High-pressure conditions were necessary to synthesize CeB{sub 2}O{sub 4}F.« less

  14. Anatase TiO2 as a Cheap and Sustainable Buffering Filler for Silicon Nanoparticles in Lithium-Ion Battery Anodes.

    PubMed

    Maroni, Fabio; Carbonari, Gilberto; Croce, Fausto; Tossici, Roberto; Nobili, Francesco

    2017-12-08

    The design of effective supporting matrices to efficiently cycle Si nanoparticles is often difficult to achieve and requires complex preparation strategies. In this work, we present a simple synthesis of low-cost and environmentally benign aAnatase TiO 2 nanoparticles as buffering filler for Si nanoparticles (Si@TiO 2 ). The average anatase TiO 2 crystallite size was approximately 5 nm. A complete structural, morphological, and electrochemical characterization was performed. Electrochemical test results show very good specific capacity values of up to 1000 mAh g -1 and cycling at several specific currents, ranging from 500 to 2000 mA g -1 , demonstrating a very good tolerance to high cycling rates. Postmortem morphological analysis shows very good electrode integrity after 100 cycles at 500 mA g -1 specific current. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Facile fabrication of CNTs@C@MoSe2@Se hybrids with amorphous structure for high performance anode in lithium-ion batteries.

    PubMed

    Jin, Rencheng; Cui, Yuming; Wang, Qingyao; Li, Guihua

    2017-12-15

    Amorphous MoSe 2 and Se anchored on amorphous carbon coated multiwalled carbon nanotubes (CNTs@C@MoSe 2 @Se) have been synthesized by a facile solvothermal strategy. The one dimensional CNTs@C@MoSe 2 @Se can effectively buffer the volume variation, prohibit the aggregation and facilitate electron and ion transport throughout the electrode. Furthermore, the combination of MoSe 2 and Se also provides buffer spaces for the volumetric change during cycling. Thus, the obtained CNTs@C@MoSe 2 @Se hybrids display the enhanced cycle stability and excellent high rate capacity. The reversible capacity of 1010mAhg -1 can be achieved after 100 cycles at the current density of 0.1Ag -1 . Even after 500 cycles, a reversible capacity of 508mAhg -1 is still retained at 5Ag -1 . Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Green colorants based on energetic azole borates.

    PubMed

    Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg

    2014-11-24

    The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The molecular structure of the borate mineral rhodizite (K, Cs)Al4Be4(B, Be)12O28--a vibrational spectroscopic study.

    PubMed

    Frost, Ray L; López, Andrés; Xi, Yunfei; Scholz, Ricardo; Souza, Larissa; Lana, Cristiano

    2014-07-15

    We have studied the borate mineral rhodizite (K, Cs)Al4Be4(B, Be)12O28 using a combination of DEM with EDX and vibrational spectroscopic techniques. The mineral occurs as colorless, gray, yellow to white crystals in the triclinic crystal system. The studied sample is from the Antandrokomby Mine, Sahatany valley, Madagascar. The mineral is prized as a semi-precious jewel. Semi-quantitative chemical composition shows a Al, Ca, borate with minor amounts of K, Mg and Cs. The mineral has a characteristic borate Raman spectrum and bands are assigned to the stretching and bending modes of B, Be and Al. No Raman bands in the OH stretching region were observed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Thermally reversible gels in electrophoresis. I - Matrix characterization

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Snyder, Robert S.

    1988-01-01

    Two series of thermally reversible hydrogen-bonded gels have been characterized: (5 pct) PVA-(4 pct) PEG and (5 pct) PVA-(0.04 pct) borate gels. They both have extremely low melting points (16-17 C) and could be of potential interest for recovery of proteins after preparative electrophoresis. The PVA-borate gels can be exploited in the pH range 7-11 by progressively increasing the borate content in the pH interval 8 to 7 and concomitantly decreasing the borate levels in the pH zone 8 to 11. It is hypothesized that the low melting point of these gels is due to the fact that they are sparingly and sparsely hydrogen bonded along the PVA chain: on the average, 1 OH group out of 3 or 4 OH groups in the PVA polymer should be engaged in H-bond formation.

  19. Process for removal of mineral particulates from coal-derived liquids

    DOEpatents

    McDowell, William J.

    1980-01-01

    Suspended mineral solids are separated from a coal-derived liquid containing the solids by a process comprising the steps of: (a) contacting said coal-derived liquid containing solids with a molten additive having a melting point of 100.degree.-500.degree. C. in an amount of up to 50 wt. % with respect to said coal-derived liquid containing solids, said solids present in an amount effective to increase the particle size of said mineral solids and comprising material or mixtures of material selected from the group of alkali metal hydroxides and inorganic salts having antimony, tin, lithium, sodium, potassium, magnesium, calcium, beryllium, aluminum, zinc, molybdenum, cobalt, nickel, ruthenium, rhodium or iron cations and chloride, iodide, bromide, sulfate, phosphate, borate, carbonate, sulfite, or silicate anions; and (b) maintaining said coal-derived liquid in contact with said molten additive for sufficient time to permit said mineral matter to agglomerate, thereby increasing the mean particle size of said mineral solids; and (c) recovering a coal-derived liquid product having reduced mineral solids content. The process can be carried out with less than 5 wt. % additive and in the absence of hydrogen pressure.

  20. Effect of Variable Oxidation States of Vanadium on the Structural, Optical, and Dielectric Properties of B2O3-Li2O-ZnO-V2O5 Glasses.

    PubMed

    Arya, S K; Danewalia, S S; Arora, Manju; Singh, K

    2016-12-01

    In the present study, the effect of variable vanadium oxidation states on the structural, optical, and dielectric properties of vanadium oxide containing lithium borate glasses has been investigated. Electron paramagnetic resonance studies indicate that vanadium in these glasses is mostly in the V 4+ state, having a tetragonal symmetry. As the glass composition of V 2 O 5 increases, tetragonality also increases at the cost of octahedral symmetry. The photoluminescence (PL) spectra of these glasses are dominated by zinc oxide transition, whereas the peaks pertaining to the vanadyl group are not visible in the PL spectra. The optical absorption spectra show a single wide absorption band, which is attributed to V 4+ ions in these glasses. The ac conductivity of the glasses increases with an increase in vanadium content. The highest electrical conductivity observed is ∼10 -5 S cm -1 at 250 °C for the glass with 2.5 mol % V 2 O 5 . Electrical conductivity is dominated by electron conduction, as indicated by the activation energy calculation.

  1. Analysis of barium and strontium in sediments by dc plasma emission spectrometry

    USGS Publications Warehouse

    Bowker, P.C.; Manheim, F. T.

    1982-01-01

    The dc plasma are is suited to analysis of barium and strontium in a wide range of sedimentary rock matrices, from sands, shales, and carbonates, to ferromanganese nodules. Samples containing 10 ppm to more than 3000 ppm barium and strontium were studied. Both alkali (3500 ppm lithium borate, from a preliminary fusion) and lanthanum salts (1%) in the final solution are needed to achieve freedom from systematic effects due to extreme variation in matrix. In the absence of La, neither Li, Na, K, nor Cs totally eliminated effects of Al and other constituents on emission. Silica addition to the fusion helps achieve proper flux viscosity to aid removal of fused beads from graphite crucibles. The effect of refractory-substance formers such as aluminum with calcium can be reduced or removed by selection of a portion of the are for emission measurement. However, it was decided not to pursue this approach because of loss in analytical sensitivity and need for greater precision in optical adjustment. Analysis of standard rock samples showed generally satisfactory agreement with precision methods of analysis, and some new standard rock data are reported.

  2. Low-energy neutron detector based upon lithium lanthanide borate scintillators

    DOEpatents

    Czirr, John B.

    1998-01-01

    An apparatus for detecting neutrons includes a cerium activated scintillation crystal containing .sup.10 B, with the scintillation crystal emitting light in response to .alpha. particles emitted from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus also includes a gamma scintillator positioned adjacent the crystal and which generates light in response to gamma rays emitted from the decay of Li*. The apparatus further includes a first and a second light-to-electronic signal converter each positioned to respectively receive light from the crystal and the gamma scintillator, and each respectively outputting first and second electronic signals representative of .alpha. particles from the .sup.10 B(n,.alpha.)Li* reaction and gamma rays from the .sup.10 B(n,.alpha.)Li* reaction. The apparatus includes a coincidence circuit connected to receive the first and second signals and which generates a coincidence signal when the first and second signals coincide. The apparatus also includes a data analyzer for receiving an additional signal from at least one of the first and second converters, and for operating in response to the coincidence signal.

  3. Chemical characterization of solid polymer electrolyte membrane surfaces in LiFePO4 half-cells

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; He, Ruixuan; Peng, Fang; Dunn, William E.; Kyu's Group Team, Dr.

    High temperature (60 °C) capacity retention of succinonitrile plasticized solid polymer electrolyte membrane (PEM) in a LiFePO4 half-cell was investigated with or without lithium bis(oxalato)borate (LiBOB) modification. Various symmetric cells and half-cells were studied under different thermal and electrochemical conditions. At room temperature cycling, the unmodified PEM in the half-cell appeared stable up to 50 cycles tested. Upon cycling at 60 °C, the capacity decays rapidly and concurrently the cell resistance increased. The chemical compositions of the solid PEM surfaces on both cathode and anode sides were analyzed. New IR bands (including those belonged to amide) were discerned on the unmodified PEM surface of the Li electrode side at 60 °C suggestive of side reaction, but no new bands develop during room temperature cycling. To our astonishment, the side reaction was effectively suppressed upon LiBOB addition (0.4 wt%) into the PEM, contributing to increased high temperature capacity retention at 60°C. Plausible mechanisms of capacity fading and improved cycling performance due to LiBOB modification are discussed.

  4. Radiochemical determination of 241Am and Pu(alpha) in environmental materials.

    PubMed

    Warwick, P E; Croudace, I W; Oh, J S

    2001-07-15

    Americium-241 and plutonium determinations will become of greater importance over the coming decades as 137Cs and 241Pu decay. The impact of 137Cs on environmental chronology has been great, but its potency is waning as it decays and diffuses. Having 241Am and Pu as unequivocal markers for the 1963 weapon fallout maximum is important for short time scale environmental work, but a fast and reliable procedure is required for their separation. The developed method described here begins by digesting samples using a lithium borate fusion although an aqua regia leachate is also effective in many instances. Isolation of the Am and Pu is then achieved using a combination of extraction chromatography and conventional anion exchange chromatography. The whole procedure has been optimized, validated, and assessed for safety. The straightforwardness of this technique permits the analysis of large numbers of samples and makes 241Am-based techniques for high-resolution sediment accumulation rate studies attractive. In addition, the technique can be employed for the sequential measurement of Pu and Am in environmental surveillance programs, potentially reducing analytical costs and turnround times.

  5. Point defect disorder in high-temperature solution grown Sr6Tb0.94Fe1.06(BO3)6 single crystals

    NASA Astrophysics Data System (ADS)

    Velázquez, M.; Péchev, S.; Duttine, M.; Wattiaux, A.; Labrugère, C.; Veber, Ph.; Buffière, S.; Denux, D.

    2018-08-01

    New Sr6Tb0.94Fe1.06(BO3)6 single crystals were obtained from lithium borate high-temperature solution growth under controlled atmosphere. Their average crystal structure was found to adopt the trigonal R-3 space group with lattice parameters a = 12.2164 Å and c = 9.1934 Å. A combined multiscale characterization approach, involving diffuse reflectance, X-ray photoelectron (XPS) and Mössbauer spectroscopies, was undertaken to establish the exact nature of the point defect disorder in this crystal structure. The FeTb× antisite disorder in the Sr6Tb0.94Fe1.06(BO3)6 single crystals is different from the kind of point defect disorder known to exist in the powder phase material counterpart. The absence of Tb4+ cations in the crystal lattice was established by XPS, and that of any phase transition down to 4 K was checked by specific heat measurements. The magnetic susceptibility curve was found to follow a Curie-Weiss behaviour in the 4-354 K temperature range.

  6. Zirconocene mediated acetylboron chemistry.

    PubMed

    Jian, Zhongbao; Daniliuc, Constantin G; Kehr, Gerald; Erker, Gerhard

    2018-05-31

    The methyl zirconocene complex Cp*2Zr(Me)OMes reacts with H3C-B(C6F5)2 and CO to give the respective acetyl(methyl)borate Zr complex. Cp*2Zr(H)OMes reacts with H3C-B(C6F5)2 and CO to give the respective acetyl(hydrido)borate Zr product, admixed with a minor amount of the formyl(methyl)borate Zr complex isomer. Prolonged exposure to CO under close to ambient conditions results in the uptake of another CO equivalent to yield the corresponding borata-β-lactone zirconocene product.

  7. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    PubMed

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  8. Chemical composition and mineralogy of borate from Rio Grande deposit, Uyuni (Bolivia) as raw materials for industrial applications

    NASA Astrophysics Data System (ADS)

    Guillen Vargas, Julio; Arancibia, Jony Roger Hans; Alfonso, Pura; Garcia-Valles, Maite; Parcerisa, David; Martinez, Salvador

    2014-05-01

    Bolivia has large tailings as a result of the historic and present-day Sn mining activity developed extensively in that country. Tailings produced in these mining activities have an appropriate composition to reprocess them and make silicate glass and glass-ceramics, obtaining the valorization of wastes and reducing the visual and chemical impact. Reprocessing the wastes to make glass and glass-ceramics prevents the leaching of heavy metals from those wastes because they are retained in the structure of the glass. Furthermore, an option to increase the economic value of these glasses is the introduction of boron and other additives to produce borosilicate glass. In this study a characterization of the Rio Grande borate deposit for its use in the manufacture of borosilicate glass is presented. Mineralogy was determined by X-ray diffraction (XRD), and Fourier transforms infrared spectroscopy (FTIR); textures were observed by scanning electron microscopy (SEM) and chemical composition was determined by inductively coupled plasma mass spectrometry (ICP-MS). The Rio Grande borate deposit is located in an area of about 50 km2 close to the south of the Salar of Uyuni, in the Río Grande de Lípez Delta. Borates occur in the contact between fluvio-deltaic and lacustrine sediments from water raising the surface by capillarity. The borates crop out in an extent area but towards the west they are covered by fluvio-deltaic sediments, which can be up to 2 m thick. These borates occur as lenses 50-100 m in diameter and layers up to 1 m thick. They usually form brittle nodules with a cotton-ball texture. Chemical composition of the Rio Grande borates is CaO, 11.82-13.83 wt%; Na2O, 13.50-19.35 wt%; K2O, 0.05- 1.04 wt%; MgO, 0.42-1.46 wt%; B2O3, 36.21-42.60 wt%; SiO2, up to 0.53 wt% and SO2, up to 0.60 wt%. Trace elements are low: Sr content is between 151-786 ppm, Al 12-676 ppm, Mn between 1-17 ppm, As 2-10 ppm and Fe between 9-376 ppm. The most abundant borate mineral in this deposit is ulexite (NaCaB5.5H20), halite can reach up to 17 wt% and gypsum up to 1.2 wt.%. Calcite occurs in minor contents. Ulexite exhibits a fibrous morphology with fibers oriented parallel each other. Purity of borates from the Rio Grande deposits makes them suitable for the most restrictive applications. Chemistry of these borates is in accordance with the necessary composition for obtaining borosilicate glasses. Acknowledgements: This work was partly financed by the project AECID: A3/042750/11, and the SGR 2009SGR-00444.

  9. Supramolecular assembly of borate with quaternary ammonium: Crystal structure and tunable luminescent properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Jie; Wang, Yong-gang; Wang, Ying-xia, E-mail: wangyx@pku.edu.cn

    2013-04-15

    A new borate [C{sub 6}H{sub 16}N][B{sub 5}O{sub 6}(OH){sub 4}] (1) is synthesized hydrothermally by the reaction of isopropyltrimethylammonium hydroxide with boric acid. It crystallizes in the triclinic space group P-1 with the parameters a=9.1578(10) Å, b=9.372(9) Å, c=9.9812(10) Å, α=66.508(2)°, β=74.751(2)°, γ=81.893(2)°. The [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions are interlinked via hydrogen bonding forming a 3D supramolecular network containing large cavities, where reside the (CH{sub 3}){sub 3}(i-C{sub 3}H{sub 7}) N{sup +} cations. This borate shows tunable luminescent properties with temperature, heating-treatment, exciting-light, and solvents. The fluorescent intensity of 1 enhances 6-fold with decreasing the temperature from 25 K tomore » 78 K. By treatment under different temperatures, the luminescence of 1 shifted from blue to white and the sample treated at 230 °C emits bright white light to naked eyes. The hybrid borate can disperse in different solvents, and shows a red-shifted and intense emission in polar solvents. - Graphical abstract: The new quaternary ammonium borate [C{sub 6}H{sub 17}N][B{sub 5}O{sub 6}(OH){sub 4}] contains a 3D supramolecular network formed by hydrogen bond linked [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions and shows tunable luminescent properties with temperature, excitation light, and solvents. Highlights: ► A novel quaternary ammonium borate was synthesized. ► It possesses a supramolecular network fomed by H-bonded [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions. ► This borate shows tunable luminescent properties with temperature, heating treatment, excitation light, and solvents.« less

  10. From synthetic montroseite VOOH to topochemical paramontroseite VO2 and their applications in aqueous lithium ion batteries.

    PubMed

    Xu, Yang; Zheng, Lei; Xie, Yi

    2010-11-28

    Synthetic montroseite VOOH has been successfully prepared via a simple template-free hydrothermal route on a large scale for the first time-after sixty years of delay. The as-obtained sample shows a hierarchical morphology of urchin-like nanoarchitecture with hollow interiors consisting of well-crystalline nanorods standing vertically on the shell surface. Time-dependent experiments illustrated that these hierarchical hollow nanourchins were formed through the hydrolysis-driven Kirkendall effect coupled with a new-phased vanadium oxyhydroxide V(10)O(14)(OH)(2) precursor templated approach. Meanwhile, the as-obtained VOOH hollow nanourchins could convert topochemically to paramontroseite VO(2) without altering the size and original appearance during the annealing process due to the extreme structural similarity revealed by crystal structure analysis. Furthermore, the improved electrochemical performance of both montroseite VOOH and paramontroseite VO(2) hierarchical hollow structures toward Li uptake and release verifies their potential applications as anode materials in aqueous lithium ion batteries. These improved electrochemical properties could be ascribed to the synergetic effect of the microscopic tunneled crystal structure and macroscopic hollow morphological features, which provide the easy infiltration of electrolyte, short diffusion lengths for lithium ions and electron transport as well as sufficient void space to buffer the volume change.

  11. γ-Fe₂O₃ Nanocrystalline Microspheres with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage.

    PubMed

    Tian, Lei-Lei; Zhang, Ming-Jian; Wu, Chao; Wei, Yi; Zheng, Jia-Xin; Lin, Ling-Piao; Lu, Jun; Amine, Khalil; Zhuang, Quan-Chao; Pan, Feng

    2015-12-02

    Maghemite (γ-Fe2O3) nanocrystalline microspheres (MNMs) self-assembled with 52 nm nanocrystals bridged with FeOOH around grain boundaries were formed by solvothermal reaction and thermal oxidation. The unique architecture endows the MNMs with the lithium storage behavior of a hybrid battery-supercapacitor electrode: initial charge capacity of 1060 mAh g(-1) at the 100 mA g(-1) rate, stable cyclic capacity of 1077.9 mAh g(-1) at the same rate after 140 cycles, and rate capability of 538.8 mAh g(-1) at 2400 mA g(-1). This outstanding performance was attributed to the nanocrystal superiority, which shortens the Li(+) diffusion paths. The mechanism of this hybrid anode material was investigated with experimental measurements and structural analysis. The results indicate that at the first discharge, the MNM nanocrystal microsphere, whose structure can buffer the volume change that occurs during lithiation/delithiation, goes through four stages: Li(+) insertion in cation vacancies, spinel-to-rocksalt transformation, Li(+) intercalation of Li(1.75+x)Fe2O3 nanocrystals, and interfacial Li storage around nanocrystal boundaries. Only the latter two stages were reversible at and after the second charging/discharging cycle, exhibiting the hybrid behavior of a battery-supercapacitor with superior lithium storage.

  12. Impact of vanadium ions in barium borate glass

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Hammad, Ahmed H.

    2015-02-01

    Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data.

  13. Effect of Borates and Silicates on Wearing Properties of Mao Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Yan-Wei; Xiang, Nan; Song, Ren-Guo

    In the present study, microarc oxidation (MAO) coatings were formed on ZL101A aluminum alloy in an electrolytic bath containing 3g/L KOH + 2g/L Na2WO4+ 4g/L KF. The morphology and wearing behavior were investigated. In both electrolytes, the additives were borates (Na2B4O718g/L) and silicates (Na2SiO3 18g/L), respectively. It was found that the coating formed in borates-containing electrolyte was of compact and smooth structure than that of the one formed in silicates-containing electrolyte at the optimum treatment time. It was found that all the coatings were composed of á-Al2O3 and ã-Al2O3. The microhardness and wear tests proved that the coating formed in borates-containing electrolyte was having better mechanical properties than those of the coating formed in silicates-containing electrolyte.

  14. Inhibiting the corrosion of MNZh 5-1 alloy in neutral solutions of 5-chloro-1,2,3-benzotrialzol

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu. I.; Agafonkina, M. O.; Andreeva, N. P.; Arkhipushkin, I. A.; Kazansky, L. P.

    2017-11-01

    The adsorption and protective properties of 5-chloro-1,2,3-benzotriazol (5-chloro-BTA) are studied in relation to MNZh 5-1 alloy in a chloride borate buffer solution with pH 7.4. It is shown that this inhibitor can stabilize the passive state of the alloy at a concentration of 0.12 mmol/g. The adsorption of 5-chloro-BTA on a surface of MNZh 5-1 alloy is polymolecular; the free energy of adsorption is about 80 kJ/mol. The advantages of adsorption and protective properties of 5-chloro-BTA compared to BTA on both MNZh 5-1 alloy and the metals contained in the alloy (Ni, Cu) are shown. XPS data indicate a 5-chloro-BTA monolayer formed on the surface of the alloy. This monolayer was composed of inhibitor molecules, which are normally oriented toward a surface and are not removed during ultrasonic washing of the electrode.

  15. Modern bioanalysis of proteins by electrophoretic techniques.

    PubMed

    Krizkova, Sona; Ryvolova, Marketa; Masarik, Michal; Zitka, Ondrej; Adam, Vojtech; Hubalek, Jaromir; Eckschlager, Tomas; Kizek, Rene

    2014-01-01

    In 1957, protein rich in cysteine able to bind cadmium was isolated from horse kidney and named as metallothionein according to its structural properties. Further, this protein and metallothionein-like proteins have been found in tissues of other animal species, yeasts, fungi and plants. MT is as a potential cancer marker in the focus of interest, and its properties, functions, and behavior under various conditions are intensively studied. Our protocol describes separation of two major mammalian isoforms of MT (MT-1 and MT-2) using capillary electrophoresis (CE) coupled with UV detector. This protocol enables separation of MT isoforms and studying of their basic behavior as well as their quantification with detection limit in units of ng per μL. Sodium borate buffer (20 mM, pH 9.5) was optimized as a background electrolyte, and the separation was carried out in fused silica capillary with internal diameter of 75 μm and electric field intensity of 350 V/cm. Optimal detection wavelength was 254 nm.

  16. Maternal immunization with actinomycetales immunomodulators reduces parasitemias in offspring challenged with Trypanosoma cruzi.

    PubMed

    Davila, Hector; Didoli, Griselda; Bottasso, Oscar; Stanford, John

    2011-04-01

    This article describes the first use of heat-killed, borate-buffered preparations of aerobic actinomycetales to immunize pregnant animals in order to determine the effect on their pregnancy and fertility and the survival coefficients of their offspring. Pregnant rats received three injections of Gordonia bronchialis, Rhodococcus coprophylus or physiological saline and a proportion of their offspring were challenged with live Trypanosoma cruzi at the time of weaning. Levels of parasitemia and, in some animals, of the cytokines IFN-γ and IL-10 were measured. The progress of pregnancy, fertility and survival of offspring were unaffected by the maternal immunizations. The offspring of rats immunized with G. bronchialis displayed significantly reduced parasitemias, with increased levels of IFN-γ and reduced levels of IL-10, 4 days after challenge. The offspring of rats immunized with R. coprophylus displayed greater parasitemias than did those of the control group. These unexpected results are discussed and their causation considered.

  17. Optimization of a Precolumn OPA Derivatization HPLC Assay for Monitoring of l-Asparagine Depletion in Serum during l-Asparaginase Therapy.

    PubMed

    Zhang, Mei; Zhang, Yong; Ren, Siqi; Zhang, Zunjian; Wang, Yongren; Song, Rui

    2018-06-06

    A method for monitoring l-asparagine (ASN) depletion in patients' serum using reversed-phase high-performance liquid chromatography with precolumn o-phthalaldehyde and ethanethiol (ET) derivatization is described. In order to improve the signal and stability of analytes, several important factors including precipitant reagent, derivatization conditions and detection wavelengths were optimized. The recovery of the analytes in biological matrix was the highest when 4% sulfosalicylic acid (1:1, v/v) was used as a precipitant reagent. Optimal fluorescence detection parameters were determined as λex = 340 nm and λem = 444 nm for maximal signal. The signal of analytes was the highest when the reagent ET and borate buffer of pH 9.9 were used in the derivatization solution. And the corresponding derivative products were stable up to 19 h. The validated method had been successfully applied to monitor ASN depletion and l-aspartic acid, l-glutamine, l-glutamic acid levels in pediatric patients during l-asparaginase therapy.

  18. Determination of 1-aminocyclopropane-1-carboxylic acid in apple extracts by capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Liu, Xin; Li, Dian-Fan; Wang, Yun; Lu, Ying-Tang

    2004-12-17

    A rapid and sensitive method for the determination of 1-aminocyclopropane-1-carboxylic acid (ACC) in apple tissues has been described. This method is based on the derivatization of ACC with 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ), and separation and quantification of the resulting FQ-ACC derivative by capillary electrophoresis coupled to laser-induced fluorescence detection (CE-LIF). Our results indicated that ACC derivatized with FQ could be well separated from other interfering amino acids using 20 mM borate buffer (pH 9.35) containing 40 mM sodium dodecyl sulfate and 10 mM Brij 35. The linearity of ACC was determined in the range from 0.05 to 5 microM with a correlation of 0.9967. The concentration detection limit for ACC was 10 nM (signal-to-noise = 3). The sensitivity and selectivity of this described method allows the analysis of ACC in crude apple extracts without extra purification and enrichment procedure.

  19. A Study on Passive and Electrochemical Response of Pure Nickel in Borate Buffer Solutions: Effect of Cold Deformation

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Naseri, Majid; Gashti, Seyed Omid; Vafaeian, Saeed; Keshavarz, Mohsen K.

    2018-06-01

    In the present work, influences of the cold deformation on electrochemical and passive response of pure nickel in three solutions with adjusted pH values of 8.5, 9.0, and 9.5 at 298 ± 1 K (25 ± 1 °C) were investigated. A cold deformation process was applied by means of cold rolling. Implementation of the cold deformation process resulted in samples having a finer microstructure. Also, the cold work and grain refinement led to increased hardness. In addition, open-circuit potential and potentiodynamic polarization tests were performed and results showed that corrosion current density was reduced by applying the cold deformation. Moreover, the results of the electrochemical impedance spectroscopy and Mott-Schottky analyses indicated higher corrosion resistance of pure nickel after cold deformation. This behavior is attributed to the growth of much thicker, with less point defects, passive layer on the surface of cold-deformed samples.

  20. Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro.

    PubMed

    Liu, Yao-Jen; Su, Wen-Ta; Chen, Po-Hung

    2018-01-01

    Various biocompatible and biodegradable scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in hard tissue engineering regeneration. We evaluated the distinct effects of magnesium borate, zinc borate, and boric acid blended into chitosan scaffold for osteogenic differentiation of stem cells from exfoliated deciduous teeth. Stem cells from exfoliated deciduous teeth cells are a potential source of functional osteoblasts for applications in bone tissue engineering, but the efficiency of osteoblastic differentiation is low, thereby significantly limiting their clinical applications. Divalent metal borates have potential function in bone remodeling because they can simulate bone formation and decrease bone resorption. These magnesium, zinc, and B ions can gradually be released into the culture medium from the scaffold and induce advanced osteoblastic differentiation from stem cells from exfoliated deciduous teeth. Stem cells from exfoliated deciduous teeth with magnesium borate or zinc borate as inducer demonstrated more osteoblastic differentiation after 21 days of culture. Differentiated cells exhibited activity of alkaline phosphatase, bone-related gene expression of collagen type I, runt-related transcription factor 2, osteopontin, osteocalcin, vascular endothelial growth factor, and angiopoietin-1, as noted via real-time polymerase chain reaction analysis, as well as significant deposits of calcium minerals. Divalent mental magnesium and zinc and nonmetal boron can be an effective inducer of osteogenesis for stem cells from exfoliated deciduous teeth. This experiment might provide useful inducers for osteoblastic differentiation of stem cells from exfoliated deciduous teeth for tissue engineering and bone repair.

  1. Effect of zinc-borate glass addition on the thermal properties of the cordierite/Al2O3 composites containing nano-sized spinel crystal.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-11-01

    Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km).

  2. Hydrothermal synthesis and structural analysis of new mixed oxyanion borates: Ba{sub 11}B{sub 26}O{sub 44}(PO{sub 4}){sub 2}(OH){sub 6}, Li{sub 9}BaB{sub 15}O{sub 27}(CO{sub 3}) and Ba{sub 3}Si{sub 2}B{sub 6}O{sub 16}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyward, Carla, E-mail: cheywar@clemson.edu; McMillen, Colin D., E-mail: cmcmill@clemson.edu; Kolis, Joseph, E-mail: kjoseph@clemson.edu

    2013-07-15

    Several new borate compounds, Ba{sub 11}B{sub 26}O{sub 44}(PO{sub 4}){sub 2}(OH){sub 6} (1), Li{sub 9}BaB{sub 15}O{sub 27}(CO{sub 3}) (2), and Ba{sub 3}Si{sub 2}B{sub 6}O{sub 16} (3) were synthesized containing other hetero-oxyanion building blocks in addition to the borate frameworks. They were all prepared under hydrothermal conditions and characterized by single crystal and powder X-ray diffraction, and IR spectroscopy. Crystal data: For 1; space group P2{sub 1}/c, a=6.8909 (14) Å, b=13.629 (3) Å, c=25.851 (5) Å, β=90.04 (3)°; For 2; space group P-31c, a=8.8599 (13) Å, c=15.148 (3) Å; For 3; space group P-1, a=5.0414 (10) Å, b=7.5602 (15) Å, c=8.5374 (17)more » Å, α=77.15 (3)°, β=77.84 (3)°, γ=87.41 (3)° for 3. Compounds 1 and 2 contain isolated oxyanions [PO{sub 4}]{sup 3−} and [CO{sub 3}]{sup 2−} respectively, sitting in channels created by the borate framework, while structure 3 has the [SiO{sub 4}]{sup 4−} groups directly bonded to the borate groups creating a B–O–Si framework. - Highlights: • Hydrothermal syntheses of three new mixed oxyanion borates are presented. • Ba{sub 11}B{sub 26}O{sub 44}(PO{sub 4}){sub 2}(OH){sub 6} contains isolated [PO{sub 4}]{sup 3−} in voids of the borate framework. • Li{sub 9}BaB{sub 15}O{sub 27}(CO{sub 3}) contains isolated [CO{sub 3}]{sup 2−} in channels created by the framework. • Ba{sub 3}Si{sub 2}B{sub 6}O{sub 16} has direct bonding of [SiO{sub 4}]{sup 4−} and borates creating a B–O–Si framework.« less

  3. Synergetic interface between NiO/Ni3S2 nanosheets and carbon nanofiber as binder-free anode for highly reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Jiang, Jialin; Ma, Chao; Yang, Yinbo; Ding, Jingjing; Ji, Hongmei; Shi, Shaojun; Yang, Gang

    2018-05-01

    A novel heterostructure of NiO/Ni3S2 nanoflake is synthesized and composited with carbon nanofibers (CNF) membrane. NiO/Ni3S2 nanoflakes are homogeneously dispersed in CNF network, herein, NiO/Ni3S2 like leaf and CNF like branch. Carbon nanofibers network efficiently prevents the pulverization and buffers the volume changes of NiO/Ni3S2, meanwhile, NiO/Ni3S2 nanoflakes through the conductive channels of carbon nanofibers own improved Li+ diffusion ability and structural stability. The capacity of NiO/Ni3S2/CNF reaches to 519.2 mA g-1 after 200 cycles at the current density of 0.5 A g-1 while NiO/Ni3S2 fades to 71 mAh g-1 after 40 cycles. Owing to the synergetic structure, the resultant binder-free electrode NiO/Ni3S2/carbon nanofibers shows an excellent reversible lithium storage capability.

  4. Passive safety injection system using borated water

    DOEpatents

    Conway, Lawrence E.; Schulz, Terry L.

    1993-01-01

    A passive safety injection system relies on differences in water density to induce natural circulatory flow patterns which help maintain prescribed concentrations of boric acid in borated water, and prevents boron from accumulating in the reactor vessel and possibly preventing heat transfer.

  5. Boric Acid Corrosion of Concrete Rebar

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Yang, L.; Chiang, K.–T.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure and compromise the integrity of the structure. Because corrosion rate of carbon steel in concrete in the presence of boric acid is lacking in published literature and available data are equivocal on the effect of boric acid on rebar corrosion, corrosion rate measurements were conducted in this study using several test methods. Rebar corrosion rates were measured in (i) borated water flowing in a simulated concrete crack, (ii) borated water flowing over a concrete surface, (iii) borated water that has reacted with concrete, and (iv) 2,400 ppm boric acid solutions with pH adjusted to a range of 6.0 to 7.7. The corrosion rates were measured using coupled multielectrode array sensor (CMAS) and linear polarization resistance (LPR) probes, both made using carbon steel. The results indicate that rebar corrosion rates are low (~1 μm/yr or less)when the solution pH is ~7.1 or higher. Below pH ~7.1, the corrosion rate increases with decreasing pH and can reach ~100 μm/yr in solutions with pH less than ~6.7. The threshold pH for carbon steel corrosion in borated solution is between 6.8 and 7.3.

  6. Geochemical characteristics of Kırka (Sarıkaya) borate deposit, northwestern Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Koçak, İ.; Koç, Ş.

    2016-02-01

    The Kırka borate deposit was deposited in a Miocene lacustrine basin which is closely associated with volcanic activity which lasted from Paleogene to the beginning of Quaternary. Borate mineralization alternates with claystone, mudstone, tuff and fine-layered limestone and mostly shows a lenticular structure. The mineral paragenesis is composed of borax, tincalconite, ulexite, kurnakovite, probertite, tunellite, colemanite, dolomite, smectite group minerals, illite and some firstly reported minerals for the Kırka deposit including hydrochloroborite, brianroulstonite, hilgardite-4M and searlesite minerals. In comparison to average values of earth crust, concentrations of Cs, Sr, Li, As and Se were significantly enriched with respective rates of 21, 15, 14, 3 and 188 folds. Regarding KY, KS1 and KS2 locations, there are differences in both element abundances and their geochemical tendencies which are attributed to variations in discharge regime and physico-chemical conditions of the depositional environment. Independent behaviour of B2O3 might indicate that boron is not associated with clays and carbonates and, therefore, most part of boron must be derived from volcanic activity (hydrothermal solutions, gases). REE data indicate that the Kırka borate deposit was formed in a sedimentary environment where highly alkaline (high pH) hydrothermal solutions also took part in borate precipitation process.

  7. Synthesis and study on the luminescence properties of cadmium borate phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annalakshmi, O.; Jose, M.T., E-mail: mtjosein@yahoo.co.in; Venkatraman, B.

    2014-02-01

    Highlights: • Cadmium borate synthesized by solid state sintering technique. • Neutron sensitivity of the material ten times that of TLD-600. • Gamma sensitivity is found to be twice that of TLD-100. • Gamma response is linear from 0.1 to 10{sup 3} mGy. - Abstract: Cadmium borate compound prepared through wet chemical reaction from the starting chemicals followed by high temperature solid state synthesis below the melting point to get the final TL phosphor powder. Phase purity and bond details of cadmium borate crystals are characterized using X-ray diffraction technique and infrared spectroscopy. Feasibility of these materials for radiation dosimetrymore » applications was studied after gamma and neutron irradiation. Gamma irradiation of undoped phosphors show a single peak around 185 °C whereas doping with gadolinium and silver, new more intense peak observed at 290 °C. Irradiation to thermal neutrons revealed single peak around 170 °C for all the phosphors. TL emission spectra and photoluminescence (PL) studies were also carried out on the phosphors. These borate materials are found to be highly sensitive to neutrons and hence can be used for neutron detection. Neutron sensitivity of the material is about ten times that of TLD-600.« less

  8. Investigation of folic acid stability in fortified instant noodles by use of capillary electrophoresis and reversed-phase high performance liquid chromatography.

    PubMed

    Hau Fung Cheung, Rodney; Morrison, Paul D; Small, Darryl M; Marriott, Philip J

    2008-12-05

    A single enzyme treatment with alpha-amylase, prior to the quantification of added folic acid (FA) in fortified instant fried Asian noodles with analysis performed by capillary zone electrophoresis (CZE) and reversed-phase high performance liquid chromatography (RP-HPLC) with UV detection, is described. The method was validated and optimized for capillary electrophoresis (CE) with separation achieved using a 8 mM phosphate-12 mM borate run buffer with 5% MeOH at pH 9.5. FA was well separated from matrix components with nicotinic acid (NA) employed as an internal standard. In a comparative study, separation of FA was performed using HPLC with a mobile phase consisting of 27% MeOH (v/v) in aqueous potassium phosphate buffer (3.5 mM KH(2)PO(4) and 3.2 mM K(2)HPO(4)), pH 8.5, and containing 5 mM tetrabutylammonium dihydrogen phosphate as an ion-pairing agent. For both methods, excellent results were obtained for various analytical parameters including linearity, accuracy and precision. The limit of detection was calculated to be 2.2 mg/L for CE without sample stacking and 0.10 mg/L with high performance liquid chromatography (HPLC). Sample extraction involved homogenization and enzymatic extraction with alpha-amylase. Results indicated that FA was stable during four main stages of instant fried noodle manufacturing (dough crumbs, cut sheets, steaming and frying).

  9. The use of laser-induced fluorescence or ultraviolet detectors for sensitive and selective analysis of tobramycin or erythropoietin in complex samples.

    PubMed

    Ahmed, Hytham M; Ebeid, Wael B

    2015-05-15

    Complex samples analysis is a challenge in pharmaceutical and biopharmaceutical analysis. In this work, tobramycin (TOB) analysis in human urine samples and recombinant human erythropoietin (rhEPO) analysis in the presence of similar protein were selected as representative examples of such samples analysis. Assays of TOB in urine samples are difficult because of poor detectability. Therefore laser induced fluorescence detector (LIF) was combined with a separation technique, micellar electrokinetic chromatography (MEKC), to determine TOB through derivatization with fluorescein isothiocyanate (FITC). Borate was used as background electrolyte (BGE) with negative-charged mixed micelles as additive. The method was successively applied to urine samples. The LOD and LOQ for Tobramycin in urine were 90 and 200ng/ml respectively and recovery was >98% (n=5). All urine samples were analyzed by direct injection without sample pre-treatment. Another use of hyphenated analytical technique, capillary zone electrophoresis (CZE) connected to ultraviolet (UV) detector was also used for sensitive analysis of rhEPO at low levels (2000IU) in the presence of large amount of human serum albumin (HSA). Analysis of rhEPO was achieved by the use of the electrokinetic injection (EI) with discontinuous buffers. Phosphate buffer was used as BGE with metal ions as additive. The proposed method can be used for the estimation of large number of quality control rhEPO samples in a short period. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Optode Membrane for Determination of Nicotine via Generation of Its Bromoethane Derivative.

    PubMed

    Choi, M M; Wu, X J; Li, Y R

    1999-04-01

    A plasticized poly(vinyl chloride) optode membrane incorporated with a valinomycin ionophore, a H(+)-selective chromoionophore (ETH 5294), and a lipophilic potassium tetrakis(4-chlorophenyl)borate was used as a reversible sensing device for the indirect optical determination of nicotine. Nicotine was extracted from a tobacco product (1-5 g) and converted to its bromoethane derivative (NBD(+)Br(-)) by reacting with a solution of bromoethane in ethanol. NBD(+)Br(-) in a solution of 0.05 M boric acid-Borax buffer and 0.2 mM Triton X-100 was extracted into the bulk of the membrane and subsequently caused changes in optical absorption of the sensing layer. The response slope, dynamic working range, detection limit, sensitivity, selectivity, effects of buffer solution and neutral surfactant Triton X-100, and lifetime were discussed in detail. The response was pH dependent. At pH 8.5, the detection range was extended from 0.4 μM to 1 mM. Typical response times (t(95)) of the samples were 2-4 min. The optode method was successfully used to detect nicotine in a tobacco sample from the market (average content 0.720%; RSD 0.044%; n = 11). The interference of K(+) on the optode method can be prevented by the pre-extraction procedure. Malic acid and citrate showed no interferences. The recovery of nicotine as NBD(+) was 84-119% in the range 0.035-5% nicotine. The result was satisfactory compared with an AOAC UV standard method.

  11. Development and Validation of a Micellar Capillary Electrophoresis Method for Determination of IFNβ-1b in Lyophilized Formulation of a Biosimilar Product

    PubMed Central

    Dadgarnejad, Manuchehr; Rastegar, Hosein; Ilka, Hooshmand; Shekarchi, Maryam; Adib, Nooshin; Alebouyeh, Mahmood; Keypour, Nadia; Shoeibi, Shahram; Kobarfard, Farzad; Fazeli, Mohammad Reza

    2015-01-01

    Human interferons (IFNs) are key cytokines secreted by immune system. They have several effects such as antiviral and anti tumors activity, activating immune cells and healing of multiple sclerosis. The type IFNs present in humans are α ,β and Υ. IFN β is a polypeptide, normally produced by fibroblasts and seems to be more species-specific than IFN. Structural properties of IFNs are important for their biologic effects. There are a few analytical techniques for separation, identification and determination of IFNs in its formulations such as mass spectroscopy, RP-HPLC and capillary electrophoresis (CE). In this study we used Micellar Electrokinetic Chromatography (MEKC) as a unique mode of CE because of its capability to separate neutral as well as charged solutes. We used sodium tetraborate (Borax) as buffer without any modifier and sodium dodecyl sulfate (SDS) as surfactant. The optimum MECK running buffer consisted of Borate 50 Mm; SDS 20 mM pH =9.6. The validated method was used for determination of the IFN β-1b formulation which is manufactured in Iran. From 9 collected different batches, all of them had acceptable potency as claimed on their label with average 102.25 ±10.030 %. This is the first time that a MEKC method is introduced for quantification of IFN β-1b in its pharmaceutical dosage forms. The method is reliable safe, rapid and accurate. PMID:26330863

  12. Development and Validation of a Micellar Capillary Electrophoresis Method for Determination of IFNβ-1b in Lyophilized Formulation of a Biosimilar Product.

    PubMed

    Dadgarnejad, Manuchehr; Rastegar, Hosein; Ilka, Hooshmand; Shekarchi, Maryam; Adib, Nooshin; Alebouyeh, Mahmood; Keypour, Nadia; Shoeibi, Shahram; Kobarfard, Farzad; Fazeli, Mohammad Reza

    2015-01-01

    Human interferons (IFNs) are key cytokines secreted by immune system. They have several effects such as antiviral and anti tumors activity, activating immune cells and healing of multiple sclerosis. The type IFNs present in humans are α ,β and Υ. IFN β is a polypeptide, normally produced by fibroblasts and seems to be more species-specific than IFN. Structural properties of IFNs are important for their biologic effects. There are a few analytical techniques for separation, identification and determination of IFNs in its formulations such as mass spectroscopy, RP-HPLC and capillary electrophoresis (CE). In this study we used Micellar Electrokinetic Chromatography (MEKC) as a unique mode of CE because of its capability to separate neutral as well as charged solutes. We used sodium tetraborate (Borax) as buffer without any modifier and sodium dodecyl sulfate (SDS) as surfactant. The optimum MECK running buffer consisted of Borate 50 Mm; SDS 20 mM pH =9.6. The validated method was used for determination of the IFN β-1b formulation which is manufactured in Iran. From 9 collected different batches, all of them had acceptable potency as claimed on their label with average 102.25 ±10.030 %. This is the first time that a MEKC method is introduced for quantification of IFN β-1b in its pharmaceutical dosage forms. The method is reliable safe, rapid and accurate.

  13. Influence of CuO content on the structure of lithium fluoroborate glasses: Spectral and gamma irradiation studies.

    PubMed

    Abdelghany, A M; ElBatal, H A; EzzElDin, F M

    2015-10-05

    Glasses of lithium fluoroborate of the composition LiF 15%-B2O3 85% with increasing CuO as added dopant were prepared and characterized by combined optical and FTIR spectroscopy before and after gamma irradiation. The optical spectrum of the undoped glass reveals strong UV absorption with two distinct peaks at about 235 and 310 nm and with no visible bands. This strong UV absorption is related to the presence of unavoidable trace iron impurity (Fe(3+)) within the materials used for the preparation of this glass. After irradiation, the spectrum of the undoped glass shows a decrease of the intensity of the UV bands together with the resolution of an induced visible broad band centered at about 520 nm. The CuO doped glasses reveal the same UV absorption beside a very broad visible band centered at 780 nm and this band shows extension and splitting to several component peaks with higher CuO contents. Upon gamma irradiation, the spectra of all CuO-doped glasses reveal pronounced decrease of their intensities. The response of irradiation on the studied glasses is correlated with suggested photochemical reactions together with some shielding effect of the copper ions. The observed visible band is related to the presence of copper as distorted octahedral Cu(2+) ions. Infrared absorption spectra of the prepared glasses show repetitive characteristic triangular and tetrahedral borate units similar to that published from alkali or alkaline earth oxides B2O3 glasses. A suggested formation of (BO3/2F) tetrahedral units is advanced through action of LiF on B2O3 and these suggested units showing the same position and number as BO4 tetrahedra. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Unusual stoichiometry control in the atomic layer deposition of manganese borate films from manganese bis(tris(pyrazolyl)borate) and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klesko, Joseph P.; Bellow, James A.; Saly, Mark J.

    The atomic layer deposition (ALD) of films with the approximate compositions Mn{sub 3}(BO{sub 3}){sub 2} and CoB{sub 2}O{sub 4} is described using MnTp{sub 2} or CoTp{sub 2} [Tp = tris(pyrazolyl)borate] with ozone. The solid state decomposition temperatures of MnTp{sub 2} and CoTp{sub 2} are ∼370 and ∼340 °C, respectively. Preparative-scale sublimations of MnTp{sub 2} and CoTp{sub 2} at 210 °C/0.05 Torr afforded >99% recoveries with <0.1% nonvolatile residues. Self-limited ALD growth was demonstrated at 325 °C for MnTp{sub 2} or CoTp{sub 2} with ozone as the coreactant. The growth rate for the manganese borate process was 0.19 Å/cycle within the ALD window of 300–350 °C. The growth ratemore » for the cobalt borate process was 0.39–0.42 Å/cycle at 325 °C. X-ray diffraction of the as-deposited films indicated that they were amorphous. Atomic force microscopy of 35–36 nm thick manganese borate films grown within the 300–350 °C ALD window showed root mean square surface roughnesses of 0.4–0.6 nm. Film stoichiometries were assessed by x-ray photoelectron spectroscopy and time of flight-elastic recoil detection analysis. The differing film stoichiometries obtained from the very similar precursors MnTp{sub 2} and CoTp{sub 2} are proposed to arise from the oxidizing ability of the intermediate high valent manganese oxide layers and lack thereof for cobalt.« less

  15. Optical absorption and photoluminescence properties of Er3+ doped mixed alkali borate glasses.

    PubMed

    Ratnakaram, Y C; Kumar, A Vijaya; Naidu, D Tirupathi; Rao, J L

    2005-07-01

    An investigations of the optical absorption and fluorescence spectra of 0.2 mol% Er2O3 in mixed alkali borate glasses of the type 67.8B2O3 x xLi2O(32-x)Na2O, 67.8B2O3 x xLi2O(32-x)K2O and 67.8B2O3 x xNa2O(32-x)K2O (where x = 8, 12, 16, 20 and 24) are presented. The glasses were obtained by quenching melts consisting of H3BO3, Li2CO3, Na2CO3, K2CO3 and Er2O3 (950-1100 degrees C, 1.5-2 h) between two brass plates. Spectroscopic parameters like Racah (E1, E2 and E3), spin-orbit (xi(4f)) and configuration interaction (alpha) parameters are deduced as function of x. Using Judd-Ofelt theory, Judd-Ofelt intensity parameters (omega2, omega4 and omega6) are obtained. Radiative and non-radiative transition rates (A(T) and W(MPR)), radiative lifetimes (tauR), branching ratios (beta) and integrated absorption cross-sections (sigma) have been computed for certain excited states of Er3+ in these mixed alkali borate glasses. Emission spectra have been studied for all the three Er3+ doped mixed alkali borate glasses. The present paper throws light on the trends observed in the intensity parameters, radiative lifetimes, branching ratios and emission cross-sections as a function of x in these borate glasses, keeping in view the effect of mixed alkalies in borate glasses.

  16. Studies on Ionic Conductivity and Electrochemical Stability of Plasticized Photopolymerized Polymer Electrolyte Membranes for Solid State Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    He, Ruixuan

    In pursuit of safer and more flexible solid-state lithium ion batteries, solid polymer electrolytes have emerged as a promising candidate. The present dissertation entails exploration of solid plasticized, photopolymerized (i.e. ultraviolent-cured) polymer electrolyte membranes (PEM) for fulfilling the critical requirements of electrolytes, such as high ionic conductivity and good thermal and electrochemical stability, among others. Electrochemical performance of PEMs containing lithium ion half-cells was also investigated at different two temperatures. Phase diagram approach was adopted to guide the fabrication of two types of plasticized PEMs. Prepolymer poly (ethylene glycol) diacrylate (PEGDA) was used as a matrix for building an ionic conductive and mechanically sturdy network. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was incorporated as a source of lithium ions, while a solid plasticizer succinonitrile (SCN) and a liquid plasticizer tetraethylene glycol dimethyl ether (TEGDME) were incorporated in the respective systems. The important role of plasticizer on the enhancement of ionic conductivity (sigma) to the superionic conductive level (10-3 S/cm) was revealed in both systems. It is worth noting that photopolymerization induced crystallization (PIC) occurred during UV-curing in the SCN-rich region of the ternary PEGDA/LiTFSI/SCN ternary mixtures. The PEM thus formed contained a plastic crystal phase, which showed lower σ relative to their amorphous PEGDA/LiTFSI/TEGDME counterpart. Comparisons on other thermal and electrochemical properties of the two types of PEMs are presented in Chapter IV. For the PEGDA/LiTFSI/SCN PEMs, fundamental study was carried out to clarify the relationship between σ and glass transition temperature (T g). In lithium salt/polymer binary PEMs, increase in Tg and reduction in σ were observed; these may be attributed to ion-dipole complexation between dissociated lithium cations and ether oxygen upon salt addition. Notably, above the threshold salt concentration of 7 mol %, dual loss tangent peaks were observed in dynamic mechanical studies. These might be ascribed to segmental relaxations of ion-dipole complexed networks and that of polymer chains surrounding the undissociated lithium salt acting like "fillers". Upon SCN incorporation, these two peaks merged into one that was further suppressed below the Tg of the pure network, whereas σ improved to the superionic conductor level. The role of SCN on the σ enhancement as both plasticizer for the polymer network and ionizer for the salt is discussed in Chapter V. In order to improve the mechanical toughness of the highly conductive PEGDA/LiTFSI/SCN PEM, effects of prepolymer molecular weight on mechanical and electrochemical properties of PEMs were further investigated. By increasing molecular weight of PEGDA from 700 to 6000 g/mol, toughness and elongation at break were enhanced as expected. Interestingly, improved ionic conductivity was achieved simultaneously. The dual improvement may be attributed to the less chemical crosslinked points and the more flexible chain motion in the looser network of PEGDA6000-PEM relative to its PEGDA700 counterpart. Subsequently, high thermal stability and electrochemical stability of both types of PEMs, as well as the satisfactory room temperature charge/discharge cycling performance of PEM containing lithium ion half-cells were observed. The pertinent information is documented in Chapter VI. Finally, the investigation of the charge/discharge cycling performance of solid-state LiFePO4 half-cells at an elevated temperature of 60°C is discussed in Chapter VII. In the half-cells, particularly, SCN plasticized PEMs with and without electrolyte modifier lithium bis(oxalato)borate (LiBOB) were respectively employed. Rapid decline of capacity and increase of cell resistance were found in the unmodified PEM containing cell; however, these deteriorations were greatly suppressed upon LiBOB modification. Electrochemical and thermal compatibility of PEMs towards different electrodes were examined in several symmetric cells and half-cells. Detailed characterization on LiFePO 4 electrodes and PEMs retrieved from these cells implied that the observed battery failure might be triggered by an amide-forming side reaction that took place at the interface of a SCN plasticized PEM and a lithium electrode at high temperature. Of particular importance is the fact that this detrimental side reaction was effectively suppressed upon LiBOB electrolyte modifier addition. Plausible mechanisms are discussed.

  17. Impact of vanadium ions in barium borate glass.

    PubMed

    Abdelghany, A M; Hammad, Ahmed H

    2015-02-25

    Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source

    NASA Astrophysics Data System (ADS)

    McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart

    2016-08-01

    Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.

  19. Borate cross-linking chitosan/graphene oxide films: Toward the simultaneous enhancement of gases barrier and mechanical properties

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Capezzuto, Filomena; Buonocore, Giovanna G.; Tescione, Fabiana; Lavorgna, Marino; Xia, Hesheng; Ambrosio, Luigi

    2015-12-01

    Borate adducts, originated from hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan (CS) and graphene oxide (GO) nanosheets for the production of innovative composite sustainable materials. CS/GO film consisting of 10wt% borax and 1wt% GO exhibits a significant improvement of both toughness and oxygen barrier properties in comparison to pristine chitosan. In particular the tensile strength increases by about 100% and 150% after thermal annealing of samples at 90°C for 50min whereas the oxygen permeability reduces of about 90% compared to pristine chitosan. The enhancement of both mechanical and barrier properties is ascribed to the formation of a resistant network due to the chemical crosslinking, including borate orthoester bonds and hydroxyl moieties complexes, formed among borate ions, chitosan, and GO nanoplatelets. The crosslinked graphene-based chitosan material with its enhanced mechanical and barrier properties may significantly broad the range of applications of chitosan based-materials which presently are very limited and addressed only to packaging.

  20. Vibrational spectroscopy of the borate mineral kotoite Mg₃(BO₃)₂.

    PubMed

    Frost, Ray L; Xi, Yunfei

    2013-02-15

    Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm(-1), assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm(-1) are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm(-1) is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. New insight in the nature of surface magnetic anisotropy in iron borate

    NASA Astrophysics Data System (ADS)

    Strugatsky, M.; Seleznyova, K.; Zubov, V.; Kliava, J.

    2018-02-01

    The theory of surface magnetism of iron borate, FeBO3, has been extended by taking into consideration a crystal field contribution to the surface magnetic anisotropy energy. For this purpose, a model of distortion of the six-fold oxygen environment of iron ions in the near-surface layer of iron borate has been put forward. The spin Hamiltonian parameters for isolated Fe3+ ions in the distorted environment of the near-surface layer have been calculated using the Newman's superposition model. The crystal field contribution to the surface magnetic anisotropy energy has been calculated in the framework of the perturbation theory. The model developed allows concluding that the distortions of the iron environment produce a significant crystal field contribution to the surface magnetic anisotropy constant. The results of experimental studies of the surface magnetic anisotropy in iron borate can be described assuming the existence of relative contractions in the near-surface layer of the order of 1 %.

  2. [Investigations of the efficacy and bio-availability of different pilocarpine eye drops].

    PubMed

    Tapasztó, I; Boross, F

    1982-01-01

    The efficacy of three pilocarpine preparations in different concentrations (pilocarpine borate 0.5%, 1%, 2%; pilocarpine hydrochloride 0.5%, 1%, 2%; pilocarpine nitrate 1%, 2%) was investigated in 57 glaucomatous patients. Pilocarpine borate reduced intraocular pressure more effectively than either of the other pilocarpine solutions. The 2% concentration had a particularly prolonged effect. This finding corresponded well with pilocarpine levels in the aqueous humour of rabbits, as determined by spectrophotometric analysis. Pilocarpine borate 2% revealed an almost two-fold amount of drug compared to the 2% hydrochloride and nitrate solutions, and a detectable pilocarpine level was present for a longer period as well.

  3. Electrodeposited binder-free NiCo2O4@carbon nanofiber as a high performance anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Chu, Ruixia; Chen, Yanli; Jiang, Heng; Zhang, Ying; Huang, Nay Ming; Guo, Hang

    2018-03-01

    Binder-free nickel cobaltite on a carbon nanofiber (NiCo2O4@CNF) anode for lithium ion batteries was prepared via a two-step procedure of electrospinning and electrodeposition. The CNF was obtained by annealing electrospun poly-acrylonitrile (PAN) in nitrogen (N2). The NiCo2O4 nanostructures were then grown on the CNF by electrodeposition, followed by annealing in air. Experimental results showed that vertically aligned NiCo2O4 nanosheets had uniformly grown on the surface of the CNF, forming an interconnected network. The NiCo2O4@CNF possessed considerable lithium storage capacity and cycling stability. It exhibited a high reversible capacity of 778 mAhg-1 after 300 cycles at a current density of 0.25 C (1 C = 890 mAg-1) with an average capacity loss rate of 0.05% per cycle. The NiCo2O4@CNF had considerable rate capacities, delivering a capacity of 350 mAhg-1 at a current density of 2.0 C. The outstanding electrochemical performance can be mainly attributed to the following: (1) The nanoscale structure of NiCo2O4 could not only shorten the diffusion path of lithium ions and electrons but also increase the specific surface area, providing more active sites for electrochemical reactions. (2) The CNF with considerable mechanical strength and electrical conductivity could function as an anchor for the NiCo2O4 nanostructure and ensure an efficient electron transfer. (3) The porous structure resulted in a high specific surface area and an effective buffer for the volume changes during the repeated charge-discharge processes. Compared with a conventional hydrothermal method, electrodeposition could significantly simplify the preparation of NiCo2O4, with a shorter preparation period and lower energy consumption. This work provides an alternative strategy to obtain a high performance anode for lithium ion batteries.

  4. A method for determining the composition of methanol-trimethyl borate mixtures

    NASA Technical Reports Server (NTRS)

    Kaye, Samuel; Sordyl, Frank

    1955-01-01

    A study of mixtures of pure methanol and trimethyl borate showed that the composition can be accurately obtained by a simple density determination. The refractive-index determination gives the composition with much less accuracy. The potentiometric titration of boric acid is also discussed.

  5. Vibrational cooling of spin-stretched dimer states by He buffer gas: quantum calculations for Li2(a 3Sigma(u)+) at ultralow energies.

    PubMed

    Bovino, S; Bodo, E; Yurtsever, E; Gianturco, F A

    2008-06-14

    The interaction between the triplet state of the lithium dimer, (7)Li(2), with (4)He is obtained from accurate ab initio calculations where the vibrational dependence of the potential is newly computed. Vibrational quenching dynamics within a coupled-channel quantum treatment is carried out at ultralow energies, and large differences in efficiency as a function of the initial vibrational state of the targets are found as one compares the triplet results with those of the singlet state of the same target.

  6. A permanent magnet trap for buffer gas cooled atoms and molecules

    NASA Astrophysics Data System (ADS)

    Nohlmans, D.; Skoff, S. M.; Hendricks, R. J.; Segal, D. M.; Sauer, B. E.; Hinds, E. A.; Tarbutt, M. R.

    2013-05-01

    Cold molecules are set to provide a wealth of new science compared to their atomic counterparts. Here we want to present preliminary results for cooling and trapping atoms/molecules in a permanent magnetic trap. By replacing the conventional buffer gas cell with an arrangement of permanent magnets, we will be able to trap a fraction of the molecules right where they are cooled. For this purpose we have designed a quadrupole trap using NdFeB magnets, which has a trap depth of 0.4 K for molecules with a magnetic moment of 1 μB. Cold helium gas is pulsed into the trap region by a solenoid valve and the atoms/molecules are subsequently ablated into this and cooled via elastic collisions, leaving a fraction of them trapped. This new set-up is currently being tested with lithium atoms as they are easier to make. After having optimised the trapping and detection processes, we will use the same trap for YbF molecules.

  7. Hydrothermal synthesis and structural analysis of new mixed oxyanion borates: Ba11B26O44(PO4)2(OH)6, Li9BaB15O27(CO3) and Ba3Si2B6O16

    NASA Astrophysics Data System (ADS)

    Heyward, Carla; McMillen, Colin D.; Kolis, Joseph

    2013-07-01

    Several new borate compounds, Ba11B26O44(PO4)2(OH)6 (1), Li9BaB15O27(CO3) (2), and Ba3Si2B6O16 (3) were synthesized containing other hetero-oxyanion building blocks in addition to the borate frameworks. They were all prepared under hydrothermal conditions and characterized by single crystal and powder X-ray diffraction, and IR spectroscopy. Crystal data: For 1; space group P21/c, a=6.8909 (14) Å, b=13.629 (3) Å, c=25.851 (5) Å, β=90.04 (3)°; For 2; space group P-31c, a=8.8599 (13) Å, c=15.148 (3) Å; For 3; space group P-1, a=5.0414 (10) Å, b=7.5602 (15) Å, c=8.5374 (17) Å, α=77.15 (3)°, β=77.84 (3)°, γ=87.41 (3)° for 3. Compounds 1 and 2 contain isolated oxyanions [PO4]3- and [CO3]2- respectively, sitting in channels created by the borate framework, while structure 3 has the [SiO4]4- groups directly bonded to the borate groups creating a B-O-Si framework.

  8. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.

    PubMed

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2013-01-01

    To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.

  9. Degradable borate glass polyalkenoate cements.

    PubMed

    Shen, L; Coughlan, A; Towler, M; Hall, M

    2014-04-01

    Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time.

  10. Thermal-stability studies of electrode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jiang, Junwei

    2005-07-01

    The thermal stability of lithium-ion batteries has recently attracted attention for two major reasons. (1) Attempts to make large-size cells used in power tools, E-bikes and EVs. Large cells have lower surface area to volume ratios and hence heat dissipation is more problematic than 18650-size cells. Safety problems, therefore, for large cells are more serious. (2) Next generation high-capacity electrodes will increase the energy density of lithium-ion cells meaning even an 18650-size cell may face safety concerns. This thesis presents studies of the thermal stability of electrode materials in electrolytes to understand their reactivity. A search for new positive electrode materials with high thermal stability was made. The thermal stability of two common electrode materials (Li0.81 C6 and Li0.5CoO2) in lithium-ion cells was studied by Accelerating Rate Calorimeter (ARC). Li0.81C 6 has much lower reactivity with lithium bis(oxalato)borate (LiBOB) electrolyte compared to LiPF6 electrolyte. It is not the case, however, for Li0.5CoO2. Oven tests of full LiCoO 2/C 18650-size cells with LiBOB or LiPF6 electrolytes, confirmed the ARC results. ARC was then used to study the reactivity of existing electrode materials. The thermal stability of a negative electrode material was found to increase with the binding energy of Li atoms hosted in the material. Li0.5VO 2 (B) has a higher lithium binding energy (2.45 eV vs. Li) than Li 0.81C6 (0.1 eV vs. Li) and Li7Ti5O 12 (1.55 eV) and it shows the highest thermal stability in EC/DEC among the three materials. The reactivity of two existing positive electrode materials, LiMn2O4 and LiFePO4, was studied. Cell systems expected to be highly tolerant to thermal abuse were suggested: LiFePO 4/C or Li4Ti5O12 in LiBOB electrolytes. The system, x Li[Ni1/2Mn1/2]O2 • y LiCoO2 • z Li[Li1/3Mn2/3]O2 (x + y + z = 1), was explored for new positive electrode materials with large capacity and high thermal stability. Li[(Ni0.5Mn0.5) xCo1-x]O2 (0.4 ≤ x ≤ 0.7) samples have excellent electrochemical properties and thermal stability and are being commercialized by industry. Li[(Ni0.5Mn0.5)xCo y(Li1/3Mn2/3)z]O2 (1/12 ≤ y ≤ 1/4, 1/6 ≤ z ≤ 1/3) samples have high specific capacity (200 mA h g-1), excellent cycling performance, and are safer than LiCoO2. The materials are suggested for energy cells used in cell phones, laptops, and so on.

  11. Validation of a rapid micellar electrokinetic capillary chromatographic method for the simultaneous determination of isoniazid and pyridoxine hydrochloride in pharmaceutical formulation.

    PubMed

    Nemutlu, E; Celebier, M; Uyar, B; Altinöz, S

    2007-07-01

    An efficient and reliable micellar electrokinetic capillary chromatography (MEKC) method has been developed for the simultaneous determination of isoniazid (ISO) and pyridoxine hydrochloride (PYR) in pharmaceutical formulations. A chemometric two level full factorial design approach was used to search for the optimum conditions of separation. Three parameters were selected for this study: the buffer pH, the buffer concentration and sodium dodecyl sulphate (SDS) concentrations. Resolution, peak symmetry and analysis time were established as response. The two analytes were separated within 6 min with the optimized conditions: 50 mM borate buffer, 25 mM SDS pH 7.8, 35 degrees C, at 50 mbar 4s injection and 30 kV by using a fused silica capillary (72 cm effective length, 50 microm i.d.). The detection wavelength was set to 205 nm. Meloxicam was used as internal standard. The method was validated with respect to stability, linearity range, limit of quantitation and detection, precision, accuracy, specificity and robustness. The detection limits of the method were 1.0 microg mL(-1) for ISO and 0.40 microg mL(-1) for PYR and the method was linear at least in the range of 3.0-100 microg mL(-1) for ISO and 1.0-100 microg mL(-1) for PYR with excellent correlation coefficients (0.9995 for ISO and 0.9998 for PYR). Relative standard deviations (R.S.D.s) of the described method ranged between 0.54 and 2.27% for intra-day precision and between 0.65 and 2.69% for inter-day precision. The developed method was applied to the tablet form of ISO and PYR-containing the pharmaceutical preparations and the data were compared with obtained from the standard addition method. No statistically significant difference was found.

  12. Microsized Porous SiOx@C Composites Synthesized through Aluminothermic Reduction from Rice Husks and Used as Anode for Lithium-Ion Batteries.

    PubMed

    Cui, Jinlong; Cui, Yongfu; Li, Shaohui; Sun, Hongliang; Wen, Zhongsheng; Sun, Juncai

    2016-11-09

    Microsized porous SiO x @C composites used as anode for lithium-ion batteries (LIBs) are synthesized from rice husks (RHs) through low-temperature (700 °C) aluminothermic reduction. The resulting SiO x @C composite shows mesoporous irregular particle morphology with a high specific surface area of 597.06 m 2 /g under the optimized reduction time. This porous SiO x @C composite is constructed by SiO x nanoparticles uniformly dispersed in the C matrix. When tested as anode material for LIBs, it displays considerable specific capacity (1230 mAh/g at a current density of 0.1 A/g) and excellent cyclic stability with capacity fading of less than 0.5% after 200 cycles at 0.8 A/g. The dramatic volume change for the Si anode during lithium-ion (Li + ) insertion and extraction can be successfully buffered because of the formation of Li 2 O and Li 4 SiO 4 during initial lithiation process and carbon coating layer on the surface of SiO x . The porous structure could also mitigate the volume change and mechanical strains and shorten the Li + diffusion path length. These characteristics improve the cyclic stability of the electrode. This low-cost and environment-friendly SiO x @C composite anode material exhibits great potential as an alternative for traditional graphite anodes.

  13. γ-Fe 2 O 3 Nanocrystalline Microspheres with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Lei-Lei; Zhang, Ming-Jian; Wu, Chao

    Maghemite (γ-Fe2O3) nanocrystalline microspheres (MNMs) self-assembled with 52 nm nanocrystals bridged with FeOOH around grain boundaries were formed by solvothermal reaction and thermal oxidation. The unique architecture endows the MNMs with the lithium storage behavior of a hybrid battery-supercapacitor electrode: initial charge capacity of 1060 mAh g–1 at the 100 mA g–1 rate, stable cyclic capacity of 1077.9 mAh g–1 at the same rate after 140 cycles, and rate capability of 538.8 mAh g–1 at 2400 mA g–1. This outstanding performance was attributed to the nanocrystal superiority, which shortens the Li+ diffusion paths. The mechanism of this hybrid anode materialmore » was investigated with experimental measurements and structural analysis. The results indicate that at the first discharge, the MNM nanocrystal microsphere, whose structure can buffer the volume change that occurs during lithiation/delithiation, goes through four stages: Li+ insertion in cation vacancies, spinel-to-rocksalt transformation, Li+ intercalation of Li1.75+xFe2O3 nanocrystals, and interfacial Li storage around nanocrystal boundaries. Only the latter two stages were reversible at and after the second charging/discharging cycle, exhibiting the hybrid behavior of a battery-supercapacitor with superior lithium storage.« less

  14. Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery.

    PubMed

    Jiang, Tiancai; Bu, Fanxing; Feng, Xiaoxiang; Shakir, Imran; Hao, Guolin; Xu, Yuxi

    2017-05-23

    Integrating nanoscale porous metal oxides into three-dimensional graphene (3DG) with encapsulated structure is a promising route but remains challenging to develop high-performance electrodes for lithium-ion battery. Herein, we design 3DG/metal organic framework composite by an excessive metal-ion-induced combination and spatially confined Ostwald ripening strategy, which can be transformed into 3DG/Fe 2 O 3 aerogel with porous Fe 2 O 3 nanoframeworks well encapsulated within graphene. The hierarchical structure offers highly interpenetrated porous conductive network and intimate contact between graphene and porous Fe 2 O 3 as well as abundant stress buffer nanospace for effective charge transport and robust structural stability during electrochemical processes. The obtained free-standing 3DG/Fe 2 O 3 aerogel was directly used as highly flexible anode upon mechanical pressing for lithium-ion battery and showed an ultrahigh capacity of 1129 mAh/g at 0.2 A/g after 130 cycles and outstanding cycling stability with a capacity retention of 98% after 1200 cycles at 5 A/g, which is the best results that have been reported so far. This study offers a promising route to greatly enhance the electrochemical properties of metal oxides and provides suggestive insights for developing high-performance electrode materials for electrochemical energy storage.

  15. Scalable Production of Si Nanoparticles Directly from Low Grade Sources for Lithium-Ion Battery Anode.

    PubMed

    Zhu, Bin; Jin, Yan; Tan, Yingling; Zong, Linqi; Hu, Yue; Chen, Lei; Chen, Yanbin; Zhang, Qiao; Zhu, Jia

    2015-09-09

    Silicon, one of the most promising candidates as lithium-ion battery anode, has attracted much attention due to its high theoretical capacity, abundant existence, and mature infrastructure. Recently, Si nanostructures-based lithium-ion battery anode, with sophisticated structure designs and process development, has made significant progress. However, low cost and scalable processes to produce these Si nanostructures remained as a challenge, which limits the widespread applications. Herein, we demonstrate that Si nanoparticles with controlled size can be massively produced directly from low grade Si sources through a scalable high energy mechanical milling process. In addition, we systematically studied Si nanoparticles produced from two major low grade Si sources, metallurgical silicon (∼99 wt % Si, $1/kg) and ferrosilicon (∼83 wt % Si, $0.6/kg). It is found that nanoparticles produced from ferrosilicon sources contain FeSi2, which can serve as a buffer layer to alleviate the mechanical fractures of volume expansion, whereas nanoparticles from metallurgical Si sources have higher capacity and better kinetic properties because of higher purity and better electronic transport properties. Ferrosilicon nanoparticles and metallurgical Si nanoparticles demonstrate over 100 stable deep cycling after carbon coating with the reversible capacities of 1360 mAh g(-1) and 1205 mAh g(-1), respectively. Therefore, our approach provides a new strategy for cost-effective, energy-efficient, large scale synthesis of functional Si electrode materials.

  16. Scalable Production of the Silicon-Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes.

    PubMed

    Jin, Yan; Tan, Yingling; Hu, Xiaozhen; Zhu, Bin; Zheng, Qinghui; Zhang, Zijiao; Zhu, Guoying; Yu, Qian; Jin, Zhong; Zhu, Jia

    2017-05-10

    Alloy anodes possessed of high theoretical capacity show great potential for next-generation advanced lithium-ion battery. Even though huge volume change during lithium insertion and extraction leads to severe problems, such as pulverization and an unstable solid-electrolyte interphase (SEI), various nanostructures including nanoparticles, nanowires, and porous networks can address related challenges to improve electrochemical performance. However, the complex and expensive fabrication process hinders the widespread application of nanostructured alloy anodes, which generate an urgent demand of low-cost and scalable processes to fabricate building blocks with fine controls of size, morphology, and porosity. Here, we demonstrate a scalable and low-cost process to produce a porous yin-yang hybrid composite anode with graphene coating through high energy ball-milling and selective chemical etching. With void space to buffer the expansion, the produced functional electrodes demonstrate stable cycling performance of 910 mAh g -1 over 600 cycles at a rate of 0.5C for Si-graphene "yin" particles and 750 mAh g -1 over 300 cycles at 0.2C for Sn-graphene "yang" particles. Therefore, we open up a new approach to fabricate alloy anode materials at low-cost, low-energy consumption, and large scale. This type of porous silicon or tin composite with graphene coating can also potentially play a significant role in thermoelectrics and optoelectronics applications.

  17. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies

    NASA Astrophysics Data System (ADS)

    Saini, V. K.; Kumar, P.; Sarangpani, K. K.; Dixit, S. K.; Nakhe, S. V.

    2017-09-01

    Development of a demountable and see-through hollow cathode (HC) discharge lamp suitable for optogalvanic (OG) spectroscopy is described. The design of the HC lamp is simple, compact, and inexpensive. Lithium, investigated rarely by the OG method, is selected for cathode material as its isotopes are important for nuclear industry. The HC lamp is characterized electrically and optically for discharge oscillations free OG effect. Strong OG signals of lithium as well as neon (as buffer gas) are produced precisely upon copper vapor laser pumped tunable dye laser irradiation. The HC lamp is capable of generating a clean OG resonance spectrum in the available dye laser wavelength scanning range (627.5-676 nm) obtained with 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye. About 28 resonant OG lines are explicitly observed. Majority of them have been identified using j-l coupling scheme and assigned to the well-known neon transitions. One line that corresponds to wavelength near about 670.80 nm is assigned to lithium and resolved for its fine (2S1/2 → 2P1/2, 3/2) transitions. These OG transitions allow 0.33 cm-1 accuracy and can be used to supplement the OG transition data available from other sources to calibrate the wavelength of a scanning dye laser with precision at atomic levels.

  18. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies.

    PubMed

    Saini, V K; Kumar, P; Sarangpani, K K; Dixit, S K; Nakhe, S V

    2017-09-01

    Development of a demountable and see-through hollow cathode (HC) discharge lamp suitable for optogalvanic (OG) spectroscopy is described. The design of the HC lamp is simple, compact, and inexpensive. Lithium, investigated rarely by the OG method, is selected for cathode material as its isotopes are important for nuclear industry. The HC lamp is characterized electrically and optically for discharge oscillations free OG effect. Strong OG signals of lithium as well as neon (as buffer gas) are produced precisely upon copper vapor laser pumped tunable dye laser irradiation. The HC lamp is capable of generating a clean OG resonance spectrum in the available dye laser wavelength scanning range (627.5-676 nm) obtained with 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye. About 28 resonant OG lines are explicitly observed. Majority of them have been identified using j-l coupling scheme and assigned to the well-known neon transitions. One line that corresponds to wavelength near about 670.80 nm is assigned to lithium and resolved for its fine ( 2 S 1/2 → 2 P 1/2, 3/2 ) transitions. These OG transitions allow 0.33 cm -1 accuracy and can be used to supplement the OG transition data available from other sources to calibrate the wavelength of a scanning dye laser with precision at atomic levels.

  19. Facile preparation of a zinc-based alloy composite as a novel anode material for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Thanh; Bae, Joonwon; Kim, Ji Hyeon; Son, Hyung Bin; Kim, Il Tae; Hur, Jaehyun

    2018-01-01

    We report a new Zn-based nanocomposite anode material (Zn-Ti-C) for lithium-ion batteries synthesized by thermal treatment and a high energy mechanical milling process. X-ray diffraction and high-resolution transmission electron microscopy revealed the formation of active Zn nanoparticles finely dispersed in the hybrid titanium carbide (TiC) and carbon matrix. Electrochemical analyses show that the formation of the TiC and carbon buffer matrix significantly contributed to the improved performance of the Zn-based electrode by mitigating the volume changes of the Zn nanoparticles during the charge/discharge processes. Furthermore, we optimized the stoichiometric ratio of Zn and Ti in terms of specific capacity, cycling performance, and rate capability in the presence of carbon. The material with a 2:1 atomic ratio (ZnTi(2:1)-C) exhibited the best cycle life, with a gravimetric capacity of 363.6 mAh g-1 and a volumetric capacity of 472.7 mAh cm-3 after 300 charge/discharge cycles (78.1% retention). At this ratio, Zn-Ti-C consistently showed the best rate capability measurements up to 3000 mA g-1 (85% of its capacity at 100 mA g-1). Therefore, our Zn-Ti-C composite is a promising alternative negative electrode material for lithium-ion batteries.

  20. 77 FR 27815 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and... Guidance (LR-ISG), LR-ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in...) Report for the aging management of stainless steel structures and components exposed to treated borated...

  1. 76 FR 69292 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and... Stainless Steel Structures and Components in Treated Borated Water.'' This LR-ISG revises the guidance in...) and Generic Aging Lessons Learned (GALL) Report for the aging management of stainless steel structures...

  2. 77 FR 74883 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water; Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and..., ``Aging Management of Stainless Steel Structures and Components in Treated Borated Water,'' which was... Staff Guidance LR-ISG-2011-01, ``Aging Management of Stainless Steel Structures and Components in...

  3. Could borate have played a role in the RNA World?

    NASA Astrophysics Data System (ADS)

    Grew, E. S.; Bada, J. L.; Hazen, R. M.

    2012-12-01

    Two scenarios have been proposed for boron to play a critical role in the stabilization of ribose and other sugars in the ribonucleic acid (RNA) World, >3.8 Ga ago. One scenario envisages oligomeric RNA being synthesized in subaerial intermountane desert valleys in which groundwater was enriched in borate from breakdown of tourmaline (Benner et al. 2012 doi: 10.1021/ar200332w). In the alternative scenario, borates are enriched in hydrothermal environments (<150°C) in oceanic crust where ferromagnesian minerals are altered to brucite, serpentine and other minerals that can extract borate from the circulating seawater (Holm et al. 2006 doi:10.1186/1467-4866-7-7). Both scenarios presume that (1) B concentrations in non-marine water or sea water were about the same at >3.8 Ma as they are today and (2) plate tectonics was the prevailing regime. The postulated non-marine borate deposits would have been associated with continental collision and subduction with volcanism releasing B, whereas in the second scenario, ocean floor caught up in an early phase of subduction is considered a favorable site for borate formation. Because borate deposits are typically ephemeral and poorly preserved, the lack of evidence in the geologic record for these scenarios does not invalidate them. For example, the oldest reported non-marine borate deposits analogous to the type postulated in first scenario are only 20 Ma, but metamorphosed borates of Precambrian age have been interpreted to have non-marine evaporite precursors, the oldest being 2.4-2.1 Ga in the Liaoning-Jilin area, China. The first B minerals so far reported in the geologic record are metamorphic dravite-schorl tourmalines in the 3.7-3.8 Ga Isua supracrustal belt (southern West Greenland), where there is good evidence for seafloor spreading and subduction. The precursors to the Isua tourmalines are reported to include B-bearing marine clay minerals and detrital tourmaline. The relatively high Li contents in zircon from Jack Hills, Australia, have been cited as evidence for the presence of granitic (s. l.) "protocontinental" crust by 4.3 Ga (Ushikuba et al. 2008 doi:10.1016/j.epsl.2008.05.032; Valley et al. 2010 Rec Geol Surv W Aust, 5-7), but the existence of conventional plate tectonics prior to 3.8 Ga remains controversial. Chaussidon & Appel (1997 Chem Geol 136, 171-180) concluded that boron isotope compositions (δ11B) of tourmaline from Isua volcaniclastic rocks provide no evidence for changes of δ11B in the mantle or continental crust between now and 3.8 Ga, whereas the very light B (δ11B = -20‰) in tourmaline from Isua metachert could indicate that seawater δ11B was at least 10‰ less at 3.8 Ga than now and that there was proportionally less B in sediments at 3.8 Ga, i.e., fractionation of B between depleted mantle, oceans, continental crust and oceanic crust was still in progress (Chaussidon & Albarède 1992, EPSL 108, 229-241). If fractionation and outgassing of boron had not proceeded very far during the RNA World, neither of the proposed scenarios of borate enrichment is plausible, particularly in the absence of a conventional plate tectonics regime.

  4. Room temperature performance of 4 V aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode

    NASA Astrophysics Data System (ADS)

    Makino, Sho; Yamamoto, Rie; Sugimoto, Shigeyuki; Sugimoto, Wataru

    2016-09-01

    Water-stable multi-layered lithium-doped carbon (LixC6) negative electrode using poly(ethylene oxide) (PEO)-lithium bis(trifluoromethansulfonyl)imide (LiTFSI) polymer electrolyte containing N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI) ionic liquid was developed. Electrochemical properties at 60 °C of the aqueous hybrid supercapacitor using activated carbon positive electrode and a multi-layered LixC6 negative electrode (LixC6 | PEO-LiTFSI | LTAP) without PP13TFSI exhibited performance similar to that using Li anode (Li | PEO-LiTFSI | LTAP). A drastic decrease in ESR was achieved by the addition of PP13TFSI to PEO-LiTFSI, allowing room temperature operation. The ESR of the multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C was 801 Ω cm2, which is 1/6 the value of the multi-layered Li negative electrode with PEO-LiTFSI (5014 Ω cm2). Charge/discharge test of the aqueous hybrid supercapacitor using multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C afforded specific capacity of 20.6 mAh (g-activated carbon)-1 with a working voltage of 2.7-3.7 V, and good long-term capability up to 3000 cycles. Furthermore, an aqueous hybrid supercapacitor consisting of a high capacitance RuO2 nanosheet positive electrode and multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI showed specific capacity of 196 mAh (g-RuO2)-1 and specific energy of 625 Wh (kg-RuO2)-1 in 2.0 M acetic acid-lithium acetate buffered solution at 25 °C.

  5. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  6. Preparation and characterization of magnesium borate for special glass

    NASA Astrophysics Data System (ADS)

    Dou, Lishuang; Zhong, Jianchu; Wang, Hongzhi

    2010-05-01

    Magnesium borate with a variety of B2O3/MgO molar ratios, which can be applied for special glass, has been prepared through the reaction of light-burned magnesia with boric acid by a hydrothermal method. The effects of the B2O3/MgO molar ratio of raw materials, reaction time, temperature and liquid to solid ratio (ml g-1) on the synthetic product are investigated. The XRD and TG-DTG analyses indicate that the prepared magnesium borate is a mixture of magnesium hexaborate hydrate and ascharite. The results show that high B2O3/MgO molar ratios of raw materials and low reaction liquid-solid ratios favour the product with a high B2O3/MgO molar ratio and vice versa. There exists free MgO in the product when the reaction temperature is below 140 °C or the reaction time is not enough, because of the incomplete reaction of magnesium oxide with boric acid. The process of fractional crystallization for the magnesium borate mixture is also discussed.

  7. Advanced shield development for a fission surface power system for the lunar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. E. Craft; I. J. Silver; C. M. Clark

    A nuclear reactor power system such as the affordable fission surface power system enables a potential outpostonthemoon.Aradiation shieldmustbe included in the reactor system to reduce the otherwise excessive dose to the astronauts and other vital system components. The radiation shield is typically the most massive component of a space reactor system, and thus must be optimized to reduce mass asmuchas possible while still providing the required protection.Various shield options for an on-lander reactor system are examined for outpost distances of 400m and 1 kmfromthe reactor. Also investigated is the resulting mass savings from the use of a high performance cermetmore » fuel. A thermal analysis is performed to determine the thermal behaviours of radiation shields using borated water. For an outpost located 1000m from the core, a tetramethylammonium borohydride shield is the lightest (5148.4 kg), followed by a trilayer shield (boron carbide–tungsten–borated water; 5832.3 kg), and finally a borated water shield (6020.7 kg). In all of the final design cases, the temperature of the borated water remains below 400 K.« less

  8. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion.

    PubMed

    Rodriguez, Omar; Matinmanesh, Ali; Phull, Sunjeev; Schemitsch, Emil H; Zalzal, Paul; Clarkin, Owen M; Papini, Marcello; Towler, Mark R

    2016-12-01

    Silica-based and borate-based glass series, with increasing amounts of TiO₂ incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate's (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO₂ in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO₂ to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO₂ incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass ® and Pyrex.

  9. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion

    PubMed Central

    Rodriguez, Omar; Matinmanesh, Ali; Phull, Sunjeev; Schemitsch, Emil H.; Zalzal, Paul; Clarkin, Owen M.; Papini, Marcello; Towler, Mark R.

    2016-01-01

    Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate’s (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex. PMID:27916951

  10. A comparative study of Si-containing electrolyte additives for lithium ion battery: Which one is better and why is it better

    NASA Astrophysics Data System (ADS)

    Wang, Kang; Xing, Lidan; Zhu, Yunmin; Zheng, Xiongwen; Cai, Dandan; Li, Weishan

    2017-02-01

    Influence of two Si-containing electrolyte additives, tris(trimethylsilyl)borate (TMSB) and tris(trimethylsilyl)phosphate (TMSP), on the cyclic stability of high voltage LiNi0.5Mn1.5O4 electrode has been systematically studied in this work. The capacity retention of LiNi0.5Mn1.5O4 cycling in STD (1M LiPF6/EC: EMC = 3:7), TMSB- and TMSP-containing electrolytes is 23%, 85% and 71% after 600 cycles at 1C rate, respectively, revealing that the ability of TMSB on improving the cyclic performance of LiNi0.5Mn1.5O4 is superior to that of TMSP. Experimental and theoretical characterizations show that the preferential reaction of both TMSB and TMSP generates thin and uniform film on LiNi0.5Mn1.5O4 surface, which effectively suppress the continuous oxidation reaction of electrolyte. While the film generated from TMSB, which contains B and Si-rich compounds, shows better ability on restraining the growth of interfacial resistance during cycling, resulting in better cyclic stability of LiNi0.5Mn1.5O4 than that of TMSP.

  11. Observation of a different birefringence order at optical and THz frequencies in LBO crystal

    NASA Astrophysics Data System (ADS)

    Andreev, Yu. M.; Kokh, A. E.; Kokh, K. A.; Lanskii, G. V.; Litvinenko, K.; Mamrashev, A. A.; Molloy, J. F.; Murdin, B.; Naftaly, M.; Nikolaev, N. A.; Svetlichnyi, V. A.

    2017-04-01

    THz optical properties of lithium borate (LBO) crystals were measured using time-domain spectroscopy (TDS). The LBO crystal samples were of high optical quality and were cut and polished along the 〈100〉, 〈010〉 and 〈001〉 axes. Two independent measurements were performed in order to confirm the reproducibility and consistency of results. The contradictions in the previously published data on the THz optical properties of LBO were clarified. It was shown that the birefringence order at THz frequencies is nz

  12. Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE)

    NASA Astrophysics Data System (ADS)

    Aravindan, V.; Vickraman, P.

    2007-11-01

    A novel type of lithium bis(oxalato)borate (LiBOB) synthesized by the solid-state reaction method has been presented. LiBOB composite polymer electrolytes (CPE) prepared with dispersions of TIO2/ZrO2with various concentrations into the host blend matrices of poly(vinylidenefluoride) (PVdF)-poly(vinylchloride) (PVC) are investigated by scanning electron microscopy, x-ray diffraction (XRD) and ac impedance measurements. The plasticizing agent selected for the present study is a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) for the phase separated morphology of the studied polymers. The impedance studies on CPE membranes identify that membranes, with 2.5 wt% of fillers, have enhanced conductivities of 5.43 × 10-4 S cm-1 and 4.38 × 10-4 S cm-1, respectively, for TiO2 and ZrO2 at ambient temperature. The XRD investigations confirm that the membranes with filler levels exceeding the limit of 2.5 wt% show a gradual increase in the degree of crystallinity, rendering them less conducting. The activation energy calculations also highlight variations in conductivities of all the membranes.

  13. Dosimetric characteristics of LKB:Cu,P solid TL detector

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Alajerami, Y. S. M.; Ghoshal, S. K.; Saleh, M. A.; Saripan, M. I.; Kadir, A. B. A.; Bradley, D. A.; Alzimami, K.

    2014-11-01

    The dosimetric characteristics of newly developed borate glass dosimeter modified with lithium and potassium carbonate (LKB) and co-doped with CuO and NH4H2PO4 are reported. Broad peaks in the absence of any sharp peak confirms the amorphous nature of the prepared glass. A simple glow curve of Cu doped sample is observed with a single prominent peak (Tm) at 220 °C. The TL intensity response shows an enhancement of ~100 times due to the addition of CuO (0.1 mol%) to LKB compound. A further enhancement of the intensity by a factor of 3 from the addition of 0.25 mol% NH4H2PO4 as a co-dopant impurity is attributed to the creation of extra electron traps with consequent increase in energy transfer of radiation recombination centers. The TL yield performance of LKB:Cu,P with Zeff ≈8.92 is approximately seventeen times less sensitive compared to LiF:Mg,Ti (TLD-100). The proposed dosimeter shows good linearity up to 103 Gy, minimal fading and photon energy independence. These attractive features offered by our dosimeter is expected to pave the way towards dosimetric applications.

  14. Reactivity of cyclopentadienyl transition metal(ii) complexes with borate ligands: structural characterization of the toluene-activated molybdenum complex [Cp*Mo(CO)2(η3-CH2C6H5)].

    PubMed

    Ramalakshmi, Rongala; Maheswari, K; Sharmila, Dudekula; Paul, Anamika; Roisnel, Thierry; Halet, Jean-François; Ghosh, Sundargopal

    2016-10-18

    Reactions of cyclopentadienyl transition-metal halide complexes [Cp*Mo(CO) 3 Cl], 1, and [CpFe(CO) 2 I], 2, (Cp = C 5 H 5 ; Cp* = η 5 -C 5 Me 5 ) with borate ligands are reported. Treatment of 1 with [NaBt 2 ] (Bt 2 = dihydrobis(2-mercapto-benzothiazolyl)borate) in toluene yielded [Cp*Mo(CO) 2 (C 7 H 4 S 2 N)], 3, and [Cp*Mo(CO) 2 (η 3 -CH 2 C 6 H 5 )], 4, with a selective binding of toluene through C-H activation followed by orthometallation. Note that compound 4 is a structurally characterized toluene-activated molecule in which the metal is in η 3 -coordination mode. Under similar reaction conditions, [NaPy 2 ] (Py 2 = dihydrobis(2-mercaptopyridyl)borate) produced only the mercaptopyridyl molybdenum complex [Cp*Mo(CO) 2 (C 5 H 4 SN)], 5, in good yield. On the other hand, when compound 2 was treated individually with [NaBt] (Bt = trihydro(2-mercapto-benzothiazolyl)borate) and [NaPy 2 ] in THF, formation of the η 1 -coordinated complexes [CpFe(CO) 2 (C 7 H 4 S 2 N)], 6, and [CpFe(CO) 2 (C 5 H 4 SN)], 7, was observed. The solid-state molecular structures of compounds 3, 4, 6, and 7 have been established by single-crystal X-ray crystallographic analyses.

  15. Relationship between Eu{sup 3+} reduction and glass polymeric structure in Al{sub 2}O{sub 3}-modified borate glasses under air atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Qing; Yu, Xue; Xu, Xuhui

    2013-06-15

    The reduction of Eu{sup 3+} to Eu{sup 2+} is realized efficiently in Eu{sub 2}O{sub 3}-doped borate glasses prepared under air condition by melting-quenching method. Luminescent spectra show an increasing tendency of Eu{sup 2+} emission with increasing Al{sub 2}O{sub 3} concentration in B{sub 2}O{sub 3}–Na{sub 2}O glasses. It is interesting that significant enhancement appeared of Eu{sup 2+} luminescence in the Al{sub 2}O{sub 3}-rich sample comparing to the samples of Al{sub 2}O{sub 3} less than 6 mol%. FTIR and Raman scattering measurements indicated that some new vibration modes assigned to the low-polymerized structure groups decomposed from the slight Al{sub 2}O{sub 3} dopantmore » samples. These results demonstrated that the polymerization of the glass structure decreased with increasing incorporation of Al{sub 2}O{sub 3} into the borate glasses, linking to the efficiency of Eu{sup 3+} self-reduction in air at high temperature. - graphical abstract: A novel europium valence reduction phenomenon occurred in Al{sub 2}O{sub 3} modified borate glasses, FTIR and Raman measurements revealed that high polymeric groups were destroyed to low polymery structures with Al{sub 2}O{sub 3} addition. - Highlights: • The efficient reduction of Eu{sup 3+} to Eu{sup 2+} is observed in the B{sub 2}O{sub 3}–Na{sub 2}O glasses. • Eu{sup 2+} luminescence is significant enhanced in the Al{sub 2}O{sub 3}-rich glasses. • The introduction of Al{sub 2}O{sub 3} changed the network structure of the borate glasses. • High polymeric borate groups in the glass matrix may be destroyed to the lower ones.« less

  16. Borate cross-linked graphene oxide-chitosan as robust and high gas barrier films

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Capezzuto, Filomena; Lavorgna, Marino; Buonocore, Giovanna G.; Tescione, Fabiana; Xia, Hesheng; Ambrosio, Luigi

    2016-05-01

    Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites.Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites. Electronic supplementary information (ESI) available: Detailed characterization methods and survey XPS spectra. See DOI: 10.1039/c6nr00377j

  17. Composition-structure-properties relationship of strontium borate glasses for medical applications.

    PubMed

    Hasan, Muhammad S; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-07-01

    We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable. © 2014 Wiley Periodicals, Inc.

  18. 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam

    PubMed Central

    Um, Ji Hyun; Choi, Myounggeun; Park, Hyeji; Cho, Yong-Hun; Dunand, David C.; Choe, Heeman; Sung, Yung-Eun

    2016-01-01

    A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g−1 at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g−1 at 2 C, which is close to the best performance of Sn-based nanoscale material so far. PMID:26725652

  19. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries

    PubMed Central

    Park, Seok-Hwan; Lee, Wan-Jin

    2015-01-01

    Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g−1 at 100 mA g−1 and maintain a high reversible capacity of 772 mAh g−1 without showing obvious decay after 50 cycles. PMID:25944615

  20. Cu2+1O coated polycrystalline Si nanoparticles as anode for lithium-ion battery.

    PubMed

    Zhang, Junying; Zhang, Chunqian; Wu, Shouming; Liu, Zhi; Zheng, Jun; Zuo, Yuhua; Xue, Chunlai; Li, Chuanbo; Cheng, Buwen

    2016-12-01

    Cu2+1O coated Si nanoparticles were prepared by simple hydrolysis and were investigated as an anode material for lithium-ion battery. The coating of Cu2+1O on the surface of Si particles remarkably improves the cycle performance of the battery than that made by the pristine Si. The battery exhibits an initial reversible capacity of 3063 mAh/g and an initial coulombic efficiency (CE) of 82.9 %. With a current density of 300 mA/g, its reversible capacity can remains 1060 mAh/g after 350 cycles, corresponding to a CE ≥ 99.8 %. It is believed that the Cu2+1O coating enhances the electrical conductivity, and the elasticity of Cu2+1O further helps buffer the volume changes during lithiation/delithiation processes. Experiment results indicate that the electrode maintained a highly integrated structure after 100 cycles and it is in favour of the formation of stable solid electrolyte interface (SEI) on the Si surface to keep the extremely high CE during long charge and discharge cycles.

  1. Optimizing high-performance liquid chromatography method for quantification of glucosamine using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization in rat plasma: application to a pharmacokinetic study.

    PubMed

    Wang, Xianhuo; Chen, Xiang; Chen, Lijuan; Wang, Biqin; Peng, Cheng; He, Chunmei; Tang, Minghai; Zhang, Fan; Hu, Jia; Li, Rui; Zhao, Xia; Wei, Yuquan

    2008-11-01

    A sensitive and reliable HPLC method with fluorescence detection based on the precolumn derivatization of glucosamine with 6-aminoquinolyl-N-hydroxylsuccinimidyl carbamate (AQC) was established for the quantitative determination of glucosamine in rat plasma. The plasma protein was precipitated by acetonitrile, followed by vortex mixing and centrifugation. The supernatant was divided into the organic layer and aqueous layer by adding sodium chloride, and then the aqueous layer was derivatized with AQC in 0.2 M borate buffer of pH 8.8 before the HPLC analysis. An amino acid analysis column (3.9 x 150 mm, 4 microm) was applied, with 140 mM sodium acetate buffer (pH = 5.25) and acetonitrile as mobile phase at a flow rate of 1 mL/min. A linear correlation coefficient of 0.9987 was calculated within the range of 0.1-30 microg/mL of the standard curve for glucosamine. The limit of detection was 30 ng/mL. The intra- and inter-day precisions (as RSD) were less than 7.38 and 12.72%, respectively. The intra- and inter-day accuracy ranged from 91.8 to 110.0%. Extraction recoveries of glucosamine in plasma were more than 90%. The validated method was successfully applied for the quantitative determination of glucosamine in rat plasma and evaluation for pharmacokinetic study of glucosamine. It was also possible to be applied for the quantitative determination of other compounds containing amino group in biological samples.

  2. An automated method of on-line extraction coupled with flow injection and capillary electrophoresis for phytochemical analysis.

    PubMed

    Chen, Hongli; Ding, Xiuping; Wang, Min; Chen, Xingguo

    2010-11-01

    In this study, an automated system for phytochemical analysis was successfully fabricated for the first time in our laboratory. The system included on-line decocting, filtering, cooling, sample introducing, separation, and detection, which greatly simplified the sample preparation and shortened the analysis time. Samples from the decoction extract were drawn every 5 min through an on-line filter and a condenser pipe to the sample loop from which 20-μL samples were injected into the running buffer and transported into a split-flow interface coupling the flow injection and capillary electrophoresis systems. The separation of glycyrrhetinic acid (GTA) and glycyrrhizic acid (GA) took less than 5 min by using a 10 mM borate buffer (adjusted pH to 8.8) and +10 kV voltage. Calibration curves showed good linearity with correlation coefficients (R) more than 0.9991. The intra-day repeatabilities (n = 5, expressed as relative standard deviation) of the proposed system, obtained using GTA and GA standards, were 1.1% and 0.8% for migration time and 0.7% and 0.9% for peak area, respectively. The mean recoveries of GTA and GA in the off-line extract of Glycyrrhiza uralensis Fisch root were better than 99.0%. The limits of detection (signal-to-noise ratio = 3) of the proposed method were 6.2 μg/mL and 6.9 μg/mL for GTA and GA, respectively. The dynamic changes of GTA and GA on the decoction time were obtained during the on-line decoction process of Glycyrrhiza uralensis Fisch root.

  3. Carbon nanotube/poly(ethylene-co-vinyl acetate) composite electrode for capillary electrophoretic determination of esculin and esculetin in Cortex Fraxini.

    PubMed

    Chen, Zhi; Zhang, Luyan; Chen, Gang

    2009-10-01

    In this report, a novel carbon nanotube/poly(ethylene-co-vinyl acetate) (CNT/EVA) composite electrode was developed for the amperometric detection in CE. The composite electrode was fabricated by packing a mixture of CNTs and melted EVA in a piece of fused-silica capillary under heat. It was coupled with CE for the separation and detection of esculin and esculetin in Cortex Fraxini, a traditional Chinese medicine, to demonstrate its feasibility and performance. Esculin and esculetin have been well separated within 9 min in a 40 cm long capillary at a separation voltage of 12 kV using a 50 mM borate buffer (pH 9.2). The new CNT-based CE detector offered significantly lower detection potentials, yielded enhanced S/N characteristics, and exhibited high resistance to surface fouling and enhanced stability. It showed long-term stability and reproducibility with relative standard deviations of less than 5% for the peak current (n=15) and should also find a wide range of applications in other microfluidic analysis systems.

  4. Spectrofluorimetric determination of tobramycin in human serum and pharmaceutical preparations by derivatization with fluorescamine.

    PubMed

    Tekkeli, Serife Evrim Kepekci; Önal, Armağan; Sağırlı, A Olcay

    2014-02-01

    A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of tobramycin (TOB) in human serum and pharmaceutical preparations. The method is based on the reaction between the primary amino group of TOB and fluorescamine in borate buffer, pH 8.5, to give a highly fluorescent derivative which is measured at 469 nm after excitation at 388 nm. The fluorescence intensity was directly proportional to the concentration over the range 300-1500 ng/mL, with a limit of detection of 65 ng/mL and limit of quantitation of 215 ng/mL. All variables were investigated to optimize the reaction conditions. The method was validated according to International Conference on Harmonization guidelines in terms of specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. Good recoveries were obtained ranging from 97.4 to 100.64%, indicating that no interference was observed from concomitants usually present in pharmaceutical dosage forms. The method was successfully, applied for the analysis of the drug substance in its pharmaceutical preparations and spiked serum samples. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Quantitative analysis of mycosporine-like amino acids in marine algae by capillary electrophoresis with diode-array detection

    PubMed Central

    Hartmann, Anja; Murauer, Adele; Ganzera, Markus

    2017-01-01

    Marine species have evolved a variety of physical or chemical strategies to diminish damage from elevated environmental ultraviolet radiation. Mycosporine-like amino acids, a group of widely distributed small water soluble compounds, are biologically relevant because of their photo-protective potential. In addition, presumed antioxidant and skin protective strategies raise the interest for possible medicinal and cosmetic applications. In this study the first CE method for the quantification of mycosporine-like amino acids in marine species is presented. A borate buffer system consisting of 30 mM sodium tetraborate in water at a pH-value of 10.3 enabled the baseline separation of five MAAs, namely palythine, mycosporine-serinol, asterina-330, shinorine and porphyra-334, in 27 min. Separation voltage, temperature and detection wavelength were 25 kV, 25 °C and 320 nm, respectively. The optimized method was fully validated and applied for the quantitative determination of MAAs in the marine macroalgae Palmaria palmata, Porphyra umbilicalis, and Porphyra sp., as well as the lichen Lichina pygmaea. PMID:28213175

  6. Spectrophotometric determination of fenoterol hydrobromide in pure form and dosage forms.

    PubMed

    El-Shabrawy, Y; Belal, F; Sharaf El-Din, M; Shalan, Sh

    2003-10-01

    A sensitive and rapid spectrophotometric procedure has been investigated for the determination of fenoterol either per se or in pharmaceutical preparations. The proposed procedure is based on the reaction between the drug and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) at pH 7.2, using borate buffer, to produce a yellow adduct. The latter has maximum absorbance at 400 nm and obeys Beer's law within the concentration range 5-30 microg/ml. Regression analysis of the calibration data showed a good correlation coefficient (r=0.9996) with minimum detection limit of 0.24 microg/ml (6.2 x 10(-8) M). The proposed procedure has been successfully applied to the determination of this drug in its tablets and in syrup, the mean percent recoveries were 97.45+/-0.59 and 98.7+/-0.64%, respectively. The results obtained are in good agreement with those given using a reference method. The pharmaceutical additives other than active ingredient did not interfere. A proposal of the reaction pathway has been postulated.

  7. Validated spectrofluorimetric method for the determination of carbamazepine in pharmaceutical dosage forms after reaction with 4-chloro-7--nitrobenzo-2-oxa-1,3-diazole (NBD-Cl).

    PubMed

    Walash, Mohammed I; El-Enany, Nahed; Askar, Hanany

    2015-11-01

    A sensitive and simple spectrofluorimetric method has been developed and validated for the determination of the anti-epileptic drug carbamazepine (CBZ) in its dosage forms. The method was based on a nucleophilic substitution reaction of CBZ with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in borate buffer (pH 9) to form a highly fluorescent derivative that was measured at 530 nm after excitation at 460 nm. Factors affecting the formation of the reaction product were studied and optimized, and the reaction mechanism was postulated. The fluorescence-concentration plot is rectilinear over the range of 0.6-8 µg/mL with limit of detection of 0.06 µg/mL and limit of quantitation of 0.19 µg/mL. The method was applied to the analysis of commercial tablets and the results were in good agreement with those obtained using the reference method. Validation of the analytical procedures was evaluated according to ICH guidelines. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Analysis of compositional monosaccharides in fungus polysaccharides by capillary zone electrophoresis.

    PubMed

    Hu, Yuanyuan; Wang, Tong; Yang, Xingbin; Zhao, Yan

    2014-02-15

    A rapid analytical method of capillary zone electrophoresis (CZE) was established for the simultaneous separation and determination of 10 monosaccharides (aldoses and uronic acids). The monosaccharides were labeled with 1-phenyl-3-methyl-5-pyrazolone (PMP), and subsequently separated using an uncoated capillary (50 μm i.d. × 58.5 cm) and detected by UV at 245 nm with pH 11.0, 175 mM borate buffer at voltage 20 kV and capillary temperature 25 °C by CZE. The 10 PMP-labeled monosaccharides were rapidly baseline separated within 20 min. The optimized CZE method was successfully applied to the simultaneous separation and identification of the monosaccharide composition in Termitomyces albuminosus polysaccharides (TAPs) and Panus giganteus polysaccharides (PGPs). The quantitative recovery of the component monosaccharides in the fungus polysaccharides was in the range of 92.0-101.0% and the CV value was lower than 3.5%. The results demonstrate that the proposed CZE method is precise and practical for the monosaccharide analysis of fungus polysaccharides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Rapid sample screening method for authenticity controlling vanilla flavors using a CE microchip approach with electrochemical detection.

    PubMed

    Avila, Mónica; González, María Cristina; Zougagh, Mohammed; Escarpa, Alberto; Ríos, Angel

    2007-11-01

    Five vanilla-related flavors of food significance, vanillic alcohol (VOH), ethyl maltol (EMA), maltol (MAL), ethyl vanillin (EVA) and vanillin (VAN), were separated using CE microchips with electrochemical detection (CE-ED microchips). A +2 kV driving voltage for both injection and separation operation steps, using a borate buffer (pH 9.5, 20 mM) and 1 M nitric acid in the detection reservoir allowed the selective and sensitive detection of the target analytes in less than 200 s with reproducible control of EOF (RSD(migration times)<3%). The analysis in selected real vanilla samples was focusing on VAN and EVA because VAN is a basic fragrance compound of the vanilla aroma, whereas EVA is an unequivocal proof of adulteration of vanilla flavors. Fast detection of all relevant flavors (200 s) with an acceptable resolution (R(s) >1.5) and a high accuracy (recoveries higher than 90%) were obtained with independence of the matrices and samples examined. These results showed the reliability of the method and the potential use of CE microchips in the food control field for fraudulent purposes.

  10. Preparative enantioseparation of propafenone by counter-current chromatography using di-n-butyl L-tartrate combined with boric acid as the chiral selector.

    PubMed

    Tong, Shengqiang; Shen, Mangmang; Zheng, Ye; Chu, Chu; Li, Xing-Nuo; Yan, Jizhong

    2013-09-01

    This paper extends the research of the utilization of borate coordination complexes in chiral separation by counter-current chromatography (CCC). Racemic propafenone was successfully enantioseparated by CCC with di-n-butyl l-tartrate combined with boric acid as the chiral selector. The two-phase solvent system was composed of chloroform/ 0.05 mol/L acetate buffer pH 3.4 containing 0.10 mol/L boric acid (1:1, v/v), in which 0.10 mol/L di-n-butyl l-tartrate was added in the organic phase. The influence of factors in the enantioseparation of propafenone were investigated and optimized. A total of 92 mg of racemic propafenone was completely enantioseparated using high-speed CCC in a single run, yielding 40-42 mg of (R)- and (S)-propafenone enantiomers with an HPLC purity over 90-95%. The recovery for propafenone enantiomers from fractions of CCC was in the range of 85-90%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrolysis of p-nitrophenyl esters promoted by semifluorinated quaternary ammonium polymer latexes and films.

    PubMed

    Kaur, Baljinder; McBride, Sean P; Paul, Abhijit; Ford, Warren T

    2010-10-19

    Semifluorinated polymer latexes were prepared by emulsion polymerization of 2.5-25% of a fluoroalkyl methacrylate, 25% chloromethylstyrene, 1% styrylmethyl(trimethyl)ammonium chloride, and the remainder 2-ethylhexyl methacrylate under surfactant-free conditions. The chloromethylstyrene units were converted to quaternary ammonium ions with trimethylamine. In aqueous dispersions at particle concentrations of less than 1 mg mL(-1) the quaternary ammonium ion latexes promoted hydrolyses of p-nitrophenyl hexanoate (PNPH) in pH 9.4 borate buffer and of diethyl p-nitrophenyl phosphate (Paraoxon) in 0.1 M NaOH at 30 °C with half-lives of less than 10 min. Thin 0.7-2 μm films of the latexes on glass promoted fast hydrolysis of Paraoxon but not of PNPH under the same conditions. Even after annealing the quaternary ammonium ion polymer films at temperatures well above their glass transition temperatures, AFM images of the film surfaces had textures of particles. Contact angle measurements of the annealed films against water and against hexadecane showed that the surfaces were not highly fluorinated.

  12. Simultaneous determination of nandrolone, testosterone, and methyltestosterone by multi-immunoaffinity column and capillary electrophoresis.

    PubMed

    Qi, Xiao-Hua; Zhang, Li-Wei; Zhang, Xin-Xiang

    2008-08-01

    A multitarget antibody immunoaffinity column was proposed for the purification and enrichment of nandrolone, testosterone, and methyltestosterone from urine. Nandrolone-3-site substituted antigen was designed and synthesized and the polyclonal antibody was prepared with immunizing rabbits. The stationary phase of the immunoaffinity column was synthesized by covalently bonding the antibodies specific to nandrolone, testosterone, and methyltestosterone onto CNBr-actived Sepharose 4B. The analytes of interest were extracted with a methanol/water mixture in one step. The immunoaffinity column showed high affinity and high selectivity to a class of structurally related compounds. The elution was then transferred to a micellar electrokinetic CE system with a running buffer of sodium borate and sodium cholate for separation and determination. Recoveries of the three steroids from complex matrix were 88-94% with RSD values less than 5.2%. Optimization of the immunoaffinity column purification was achieved and the feasibility of the technique for the analysis of steroid hormone was discussed. The results indicated that the combination of multi-immunoaffinity column and CE was an effective technique, which was rapid, simple, and sensitive for the assay of steroids.

  13. Fast and simultaneous detection of prominent natural antioxidants using analytical microsystems for capillary electrophoresis with a glassy carbon electrode: a new gateway to food environments.

    PubMed

    Blasco, Antonio Javier; Barrigas, Inés; González, María Cristina; Escarpa, Alberto

    2005-12-01

    This paper examines for the first time the analytical possibilities of fast and simultaneous detection of prominent natural antioxidants including examples of flavonoids and vitamins using a CE microchip with electrochemical detection (ED). Unpinched injection conditions, zone electrophoretic separation and amperometric detection were carefully assayed and optimised. Analysis involved the zone electrophoretic separation of arbutin, (+)-catechin and ascorbic acid in less than 4 min using a borate buffer (pH 9.0, 50 mM), employing 2 kV as the separation voltage and +1.0 V as the detection potential. In addition, the separation of different 'couples' of natural antioxidants of food significance including (+)-catechin and ascorbic acid, (+)-catechin and rutin, as well as arbutin and phlorizdin is proposed. To demonstrate the potential and future role of CE microsystems, analytical possibilities and a new route in the raw sample analysis are presented. The preliminary results obtained allow the proposal of CE-ED microchips as a real gateway to microanalysis in foods.

  14. Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography-tandem mass spectrometry.

    PubMed

    Song, Xuqin; Zhou, Tong; Liu, Qingying; Zhang, Meiyu; Meng, Chenying; Li, Jiufeng; He, Limin

    2016-10-01

    A simple and sensitive method based on molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry was developed for the determination of the residues of ten macrolide drugs in swine, cattle and chicken muscles samples. The molecularly imprinted polymers (MIPs) were synthesized using tylosin as a template and methacrylic acid as a functional monomer. Samples were extracted with sodium borate buffer solution and ethyl acetate, and purified by the MIP cartridge. The results showed that the cartridge exhibited good recognition performance for macrolides, and better purification effect than the traditional solid-phase extraction cartridges. Recoveries of analytes at three spiking levels 1, 5 and 20μgkg(-1) ranged from 60.7% to 100.3% with the relative standard deviations less than 14%. The limits of detection of the method were between 0.1 and 0.4μgkg(-1). The method is useful for the routine monitoring of the residues of macrolide drugs in animal muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Differential Electrochemical Conductance Imaging at the Nanoscale.

    PubMed

    López-Martínez, Montserrat; Artés, Juan Manuel; Sarasso, Veronica; Carminati, Marco; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau

    2017-09-01

    Electron transfer in proteins is essential in crucial biological processes. Although the fundamental aspects of biological electron transfer are well characterized, currently there are no experimental tools to determine the atomic-scale electronic pathways in redox proteins, and thus to fully understand their outstanding efficiency and environmental adaptability. This knowledge is also required to design and optimize biomolecular electronic devices. In order to measure the local conductance of an electrode surface immersed in an electrolyte, this study builds upon the current-potential spectroscopic capacity of electrochemical scanning tunneling microscopy, by adding an alternating current modulation technique. With this setup, spatially resolved, differential electrochemical conductance images under bipotentiostatic control are recorded. Differential electrochemical conductance imaging allows visualizing the reversible oxidation of an iron electrode in borate buffer and individual azurin proteins immobilized on atomically flat gold surfaces. In particular, this method reveals submolecular regions with high conductance within the protein. The direct observation of nanoscale conduction pathways in redox proteins and complexes enables important advances in biochemistry and bionanotechnology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The allergens of Schistosoma mansoni

    PubMed Central

    Harris, W. G.

    1973-01-01

    Ten antigen fractions were prepared from adult Schistosoma mansoni by extraction into borate-buffered saline, precipitation at pH 4.6 and separation on Sephadex G-100. The allergic activity of these antigens was assayed by a modified Prausnitz—Kustner type reaction in rats; this test system was found to be sensitive and consistent, allowing differences in allergenicity between antigens to be accurately assessed. Skin-reactivity was detected in both acid-soluble and acid-insoluble fractions. Specific allergenicity was located in peak 3 of a G-100 separation of the acid-soluble fraction and in peaks 1 and 2 of a G-100 separation of the acid-insoluble fraction suggesting that the allergens of S. mansoni were of at least two types: (1) a protein of mol. wt above 150,000 precipitated at pH 4.6, and (2) a protein of mol. wt 20–30,000 remaining in solution at this pH. It is suggested that both these allergens are glycoproteins. Non-specific histamine-releasing agents were found in peak 1 of the G-100 separation of the acid-soluble material. ImagesFIG. 1 PMID:4122335

  17. Spectroscopic properties of some borate glasses containg uranium

    NASA Astrophysics Data System (ADS)

    Culea, E.; Milea, I.; Bratu, I.

    1993-03-01

    Spectroscopic properties of some borate glasses containing 1-5%UO 3 have been studied in the fields of 700-1200 cm -1 and 10,000-30,000 cm -1 Absorption bands specific for U 6+ and U 4+ ions were observed. The increase of the melting time produces the reduction of U 6+ ions to U 4+.

  18. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  19. N-Alkyl-N-methylpyrrolidinium Difluoro(oxalato)borate Ionic Liquids: Physical/Electrochemical Properties and Al Corrosion

    DTIC Science & Technology

    2013-01-01

    U.S. Army Research Laboratory, Adelphi, MD 20783, USA The synthesis and physical properties of difluoro(oxalato) borate (DFOB-)-based ionic...have a melting point (Tm) of -5°C and 31°C, respectively, whereas the PY15DFOB salt does not crystallize. Instead, this salt has a glass transition

  20. Infrared-to-visible conversion luminescence of Er 3+ ions in lead borate transparent glass-ceramics

    NASA Astrophysics Data System (ADS)

    Pisarski, Wojciech A.; Pisarska, Joanna; Lisiecki, Radosław; Grobelny, Łukasz; Dominiak-Dzik, Grażyna; Ryba-Romanowski, Witold

    2009-10-01

    Transparent glass-ceramics were successfully prepared during controlled heat treatment of lead borate glasses. The PbF 2 particles were dispersed into a borate glass matrix which was evidenced by X-ray diffraction analysis. The phase identification revealed that crystalline peaks can be related to the orthorhombic PbF 2 phase. Green up-conversion luminescence due to the 4S 3/2- 4I 15/2 transition of Er 3+ ions was registered. In comparison to the precursor glass the luminescence intensity was considerably higher, whereas the luminescence linewidth slightly decreased in the studied oxyfluoride transparent glass-ceramics. It indicated that a part of the trivalent erbium was incorporated into the PbF 2 crystalline phase.

  1. Framework influence of erbium doped oxyfluoride glasses on their optical properties

    NASA Astrophysics Data System (ADS)

    Środa, Marcin; Cholewa-Kowalska, Katarzyna; Różański, Marek; Nocuń, Marek

    2011-01-01

    Glasses of different matrix (phosphate, borate, silicate and lead-silicate) were studied for their optical properties. The effect of Er dopant on transmittance and luminescence properties was presented. The significant “red shift” and “blue shift” of UV edge absorption were discussed based on the changes in the framework of the borate and phosphate glasses, respectively. It was showed that the integral intensity of the two main optical absorption transitions monotonically increases with the order: phosphate < borate < silicate < lead-silicate. Ellipsometric measurement was applied to obtain the refractive index of the glasses. The correlation between the shift of edge absorption and the change of refractive index was presented. Effect of glassy matrix on luminescence of Er3+ was discussed.

  2. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.

    PubMed

    Reyes Jiménez, Antonia; Klöpsch, Richard; Wagner, Ralf; Rodehorst, Uta C; Kolek, Martin; Nölle, Roman; Winter, Martin; Placke, Tobias

    2017-05-23

    The next generation of lithium ion batteries (LIBs) with increased energy density for large-scale applications, such as electric mobility, and also for small electronic devices, such as microbatteries and on-chip batteries, requires advanced electrode active materials with enhanced specific and volumetric capacities. In this regard, silicon as anode material has attracted much attention due to its high specific capacity. However, the enormous volume changes during lithiation/delithiation are still a main obstacle avoiding the broad commercial use of Si-based electrodes. In this work, Si-based thin film electrodes, prepared by magnetron sputtering, are studied. Herein, we present a sophisticated surface design and electrode structure modification by amorphous carbon layers to increase the mechanical integrity and, thus, the electrochemical performance. Therefore, the influence of amorphous C thin film layers, either deposited on top (C/Si) or incorporated between the amorphous Si thin film layers (Si/C/Si), was characterized according to their physical and electrochemical properties. The thin film electrodes were thoroughly studied by means of electrochemical impedance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. We can show that the silicon thin film electrodes with an amorphous C layer showed a remarkably improved electrochemical performance in terms of capacity retention and Coulombic efficiency. The C layer is able to mitigate the mechanical stress during lithiation of the Si thin film by buffering the volume changes and to reduce the loss of active lithium during solid electrolyte interphase formation and cycling.

  3. Encapsulating Silica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage.

    PubMed

    Wang, Hongkang; Yang, Xuming; Wu, Qizhen; Zhang, Qiaobao; Chen, Huixin; Jing, Hongmei; Wang, Jinkai; Mi, Shao-Bo; Rogach, Andrey L; Niu, Chunming

    2018-04-24

    To address the volume-change-induced pulverization problems of electrode materials, we propose a "silica reinforcement" concept, following which silica-reinforced carbon nanofibers with encapsulated Sb nanoparticles (denoted as SiO 2 /Sb@CNFs) are fabricated via an electrospinning method. In this composite structure, insulating silica fillers not only reinforce the overall structure but also contribute to additional lithium storage capacity; encapsulation of Sb nanoparticles into the carbon-silica matrices efficiently buffers the volume changes during Li-Sb alloying-dealloying processes upon cycling and alleviates the mechanical stress; the porous carbon nanofiber framework allows for fast charge transfer and electrolyte diffusion. These advantageous characteristics synergistically contribute to the superior lithium storage performance of SiO 2 /Sb@CNF electrodes, which demonstrate excellent cycling stability and rate capability, delivering reversible discharge capacities of 700 mA h/g at 200 mA/g, 572 mA h/g at 500 mA/g, and 468 mA h/g at 1000 mA/g each after 400 cycles. Ex situ as well as in situ TEM measurements confirm that the structural integrity of silica-reinforced Sb@CNF electrodes can efficiently withstand the mechanical stress induced by the volume changes. Notably, the SiO 2 /Sb@CNF//LiCoO 2 full cell delivers high reversible capacities of ∼400 mA h/g after 800 cycles at 500 mA/g and ∼336 mA h/g after 500 cycles at 1000 mA/g.

  4. Cu-SnO2 nanostructures obtained via galvanic replacement control as high performance anodes for lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan Loi; Park, Duckshin; Hur, Jaehyun; Son, Hyung Bin; Park, Min Sang; Lee, Seung Geol; Kim, Ji Hyeon; Kim, Il Tae

    2018-01-01

    SnO2 has been considered as a promising anode material for lithium ion batteries (LIBs) because of its high theoretical capacity (782 mAh g-1). However, the reaction between lithium ions and Sn causes a large volume change, resulting in the pulverization of the anode, a loss of contact with the current collector, and a deterioration in electrochemical performance. Several strategies have been proposed to mitigate the drastic volume changes to extend the cyclic life of SnO2 materials. Herein, novel composites consisting of Cu and SnO2 were developed via the galvanic replacement reaction. The reaction was carried out at 180 °C for different durations and triethylene glycol was used as the medium solvent. The structure, morphology, and composition of the composites were analyzed by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The reaction time affected the particle size, which in turn affected the reaction kinetics. Furthermore, the novel nanostructures contained an inactive metal phase (Cu), which acted both as the buffer space against the volume change of Sn during the alloying reaction and as the electron conductor, resulting in a lower impedance of the composites. When evaluated as potential anodes for LIBs, the composite electrodes displayed extraordinary electrochemical performance with a high capacity and Coulombic efficiency, an excellent cycling stability, and a superior rate capability compared to a Sn electrode.

  5. N-Doped Dual Carbon-Confined 3D Architecture rGO/Fe3O4/AC Nanocomposite for High-Performance Lithium-Ion Batteries.

    PubMed

    Ding, Ranran; Zhang, Jie; Qi, Jie; Li, Zhenhua; Wang, Chengyang; Chen, Mingming

    2018-04-25

    To address the issues of low electrical conductivity, sluggish lithiation kinetics and dramatic volume variation in Fe 3 O 4 anodes of lithium ion battery, herein, a double carbon-confined three-dimensional (3D) nanocomposite architecture was synthesized by an electrostatically assisted self-assembly strategy. In the constructed architecture, the ultrafine Fe 3 O 4 subunits (∼10 nm) self-organize to form nanospheres (NSs) that are fully coated by amorphous carbon (AC), formatting core-shell structural Fe 3 O 4 /AC NSs. By further encapsulation by reduced graphene oxide (rGO) layers, a constructed 3D architecture was built as dual carbon-confined rGO/Fe 3 O 4 /AC. Such structure restrains the adverse reaction of the electrolyte, improves the electronic conductivity and buffers the mechanical stress of the entire electrode, thus performing excellent long-term cycling stability (99.4% capacity retention after 465 cycles relevant to the second cycle at 5 A g -1 ). Kinetic analysis reveals that a dual lithium storage mechanism including a diffusion reaction mechanism and a surface capacitive behavior mechanism coexists in the composites. Consequently, the resulting rGO/Fe 3 O 4 /AC nanocomposite delivers a high reversible capacity (835.8 mA h g -1 for 300 cycles at 1 A g -1 ), as well as remarkable rate capability (436.7 mA h g -1 at 10 A g -1 ).

  6. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Chiang, K.-T. K.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  7. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A.

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium weremore » prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.« less

  8. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.

    PubMed

    Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

    2014-01-01

    Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation.

  9. Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants.

    PubMed

    Rodriguez, Omar; Stone, Wendy; Schemitsch, Emil H; Zalzal, Paul; Waldman, Stephen; Papini, Marcello; Towler, Mark R

    2017-10-01

    In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn 2+ ), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro .

  10. Uranium Hydridoborates: Synthesis, Magnetism, and X-ray/Neutron Diffraction Structures.

    PubMed

    Braunschweig, H; Gackstatter, A; Kupfer, T; Radacki, K; Franke, S; Meyer, K; Fucke, K; Lemée-Cailleau, M-H

    2015-08-17

    While uranium hydridoborate complexes containing the [BH4](-) moiety have been well-known in the literature for many years, species with functionalized borate centers remained considerably rare. We were now able to prepare several uranium hydridoborates (1-4) with amino-substituted borate moieties with high selectivity by smooth reaction of [Cp*2UMe2] (Cp* = C5Me5) and [Cp'2UMe2] (Cp' = 1,2,4-tBu3C5H2) with the aminoborane H2BN(SiMe3)2. A combination of nuclear magnetic resonance spectroscopy, deuteration experiments, magnetic SQUID measurements, and X-ray/neutron diffraction studies was used to verify the anticipated molecular structures and oxidation states of 1-4 and helped to establish a linear tridentate coordination mode of the borate anions.

  11. Investigation of Mechanistic Pathway for Trimethyl Borate Mediated Amidation of (R)-Mandelic Acid for the Synthesis of Mirabegron, an Antimuscarinic Agent.

    PubMed

    Deshmukh, Dattatray G; Bangal, Mukund N; Patekar, Mukunda R; Medhane, Vijay J; Mathad, Vijayavitthal Thippannachar

    2018-03-01

    The present work describes investigation of mechanistic pathway for trimethyl borate mediated amidation of (R)-mandelic acid (3) with 4-nitophenylethylamine (2) to provide (R)-2-hydroxy-N-[2-(4-nitrophenyl)ethyl]-2-phenylacetamide (4) during mirabegron synthesis. Plausible reaction mechanism is proposed by isolating and elucidating the active α-hydroxy ester intermediate 16 from the reaction mass. Trimethyl borate mediated approach proved to be selective in providing 4 without disturbing α-hydroxyl group and stereochemistry of the chiral center, and is also a greener, more economic and production friendly over the reported methods. The developed approach is rapid and efficient for the preparation of 4 with an overall yield of 85-87% and around 99.0% purity by HPLC at scale.

  12. FTIR of binary lead borate glass: Structural investigation

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  13. Visible luminescence of dysprosium ions in oxyhalide lead borate glasses.

    PubMed

    Pisarska, Joanna; Żur, Lidia; Pisarski, Wojciech A

    2011-08-15

    Visible luminescence of Dy(3+) ions in oxyhalide lead borate glasses was examined. Luminescence spectra show two intense bands at 480 nm and 573 nm due to (4)F(9/2)→(6)H(15/2) (blue) and (4)F(9/2)→(6)H(13/2) (yellow) transitions of Dy(3+). Luminescence decays from (4)F(9/2) state and yellow-to-blue luminescence intensity ratios (Y/B) were analysed with PbX(2) (X=F, Cl) content. An introduction of PbX(2) to the borate glass results in the increasing of (4)F(9/2) lifetime and the decreasing of yellow-to-blue luminescence intensity ratio, which is due to reduction of covalency between Dy(3+) and O(2-)/X(-) ions. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Ex Situ Investigation of Anisotropic Interconnection in Silicon-Titanium-Nickel Alloy Anode Material

    DOE PAGES

    Cho, Jong -Soo; Alaboina, Pankaj Kumar; Kang, Chan -Soon; ...

    2017-03-10

    Herein we investigate the nanostructural evolution of Silicon-Titanium-Nickel (Si-Ti-Ni) ternary alloy material synthesized by melt spinning process for advanced lithium-ion battery anode. The synthesized material was found to have nano-Silicon particles dispersed in the Ti 4Ni 4Si 7 (STN) alloy buffering matrix and was characterized by X-ray diffraction (XRD), High resolution- transmission electron microscope (HR-TEM), Scanning transmission electron microscopes - energy dispersive X-ray spectrometer (STEM-EDS), and electrochemical performance test. The role of STN matrix is to accommodate the volume expansion stresses of the dispersed Si nanoparticles. However, an interesting behavior was observed during cycling. The Si nanoparticles were observed tomore » form interconnection channels growing through the weak STN matrix cracks and evolving to a network isolating the STN matrix into small puddles. In conclusion, this unique nanostructural evolution of Si particles and isolation of the STN matrix failing to offer significant buffering effect to the grown Si network eventually accelerates more volume expansions during cycling due to less mechanical confinement and leads to performance degradation and poor cycle stability.« less

  15. Nanocarbon networks for advanced rechargeable lithium batteries.

    PubMed

    Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2012-10-16

    Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting network for alloy anodes, such as Si and Ge, to accelerate electron transport, alleviate volume change, and prevent the agglomeration of active nanoparticles. Finally, we describe the power of nanocarbon networks for the next generation rechargeable lithium batteries, including Li-S, Li-O(2), and Li-organic batteries, and provide insights into the design of ideal nanocarbon networks for these devices. In addition, we address the ways in which nanocarbon networks can expand the applications of rechargeable lithium batteries into the emerging fields of stationary energy storage and transportation.

  16. Use of Additives to Improve Performance of Methyl Butyrate-Based Lithium-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. To this end, a number of electrolyte formulations have been developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl butyrate-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato)borate (LiBOB), which have been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. Improved performance has been demonstrated of Li-ion cells with methyl butyrate-based electrolytes, including 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %); 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 4% FEC; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + lithium oxalate; 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 2% VC; and 1.20M LiPF6 in EC+EMC+MB (20:20:60 v/v %) + 0.10M LiBOB. These electrolytes have been shown to improve performance in MCMB-LiNiCoO2 and graphite-LiNi1/3Co1/3Mn1/3O2 experimental Li-ion cells. A number of LiPF6-based mixed carbonate electrolyte formulations have been developed that contain ester co-solvents, which have been optimized for operation at low temperature, while still providing reasonable performance at high temperature. For example, a number of ester co-solvents were investigated, including methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), and butyl butyrate (BB) in multi-component electrolytes of the following composition: 1.0M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (20:60:20 v/v %) [where X = ester co-solvent]. ["Optimized Car bon ate and Ester-Based Li-Ion Electrolytes", NASA Tech Briefs, Vol. 32, No. 4 (April 2008), p. 56.] Focusing upon improved rate capability at low temperatures (i.e., 20 to 40 C), this approach was optimized further, resulting in the development of 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %), which were demonstrated to operate well over a wide temperature range in MCMB-LiNiCoAlO2 and Li4Ti5O12(-)LiNiCoAlO2 prototype cells.

  17. Open-framework gallium borate with boric and metaboric acid molecules inside structural channels showing photocatalysis to water splitting.

    PubMed

    Gao, Wenliang; Jing, Yan; Yang, Jia; Zhou, Zhengyang; Yang, Dingfeng; Sun, Junliang; Lin, Jianhua; Cong, Rihong; Yang, Tao

    2014-03-03

    An open-framework gallium borate with intrinsic photocatalytic activities to water splitting has been discovered. Small inorganic molecules, H3BO3 and H3B3O6, are confined inside structural channels by multiple hydrogen bonds. It is the first example to experimentally show the structural template effect of boric acid in flux synthesis.

  18. Tetrakis(1-imidazolyl) borate (BIM4) based zwitterionic and related molecules used as electron injection layers

    DOEpatents

    Li, Huaping; Xu, Yunhua; Bazan, Guillermo C

    2013-02-05

    Tetrakis(1-imidazolyl)borate (BIm4) based zwitterionic and/or related molecules for the fabrication of PLEDs is provided. Device performances with these materials approaches that of devices with Ba/Al cathodes for which the cathode contact is ohmic. Methods of producing such materials, and electron injection layers and devices containing these materials are also provided.

  19. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    PubMed

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions

    NASA Astrophysics Data System (ADS)

    Sathish, K.; Thirumaran, S.

    2015-08-01

    The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

Top