Science.gov

Sample records for lithium electrode surface

  1. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  2. Chemical and morphological characteristics of lithium electrode surfaces

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D.; Vasquez, R. P.; Grunthaner, F. J.; Somoano, R. B.

    1981-01-01

    Lithium electrode surfaces were analyzed for chemical and morphological characteristics, using electron spectroscopy chemical analysis (ESCA) and scanning electron microscopy (SEM). Samples included lithium metal and lithium electrodes which were cycled in a 1.5 M lithium arsenic hexafluoride/two-methyl tetrahydrofuran electrolyte. Results show that the surface of the as-received lithium metal was already covered by a film composed of LiO2 and an Li2O/CO2 adduct with a thickness of approximately 100-200 A. No evidence of Ni3 was found. Upon exposure of the lithium electrode to a 1.5 M LiAsF6/2-Me-THF electrochemical environment, a second film was observed to form on the surface, consisting primarily of As, Si, and F, possibly in the form of lithium arsenic oxyfluorides or lithium fluorosilicates. It is suggested that the film formation may be attributed to salt degradation.

  3. Surface and interface engineering of electrode materials for lithium-ion batteries.

    PubMed

    Wang, Kai-Xue; Li, Xin-Hao; Chen, Jie-Sheng

    2015-01-21

    Lithium-ion batteries are regarded as promising energy storage devices for next-generation electric and hybrid electric vehicles. In order to meet the demands of electric vehicles, considerable efforts have been devoted to the development of advanced electrode materials for lithium-ion batteries with high energy and power densities. Although significant progress has been recently made in the development of novel electrode materials, some critical issues comprising low electronic conductivity, low ionic diffusion efficiency, and large structural variation have to be addressed before the practical application of these materials. Surface and interface engineering is essential to improve the electrochemical performance of electrode materials for lithium-ion batteries. This article reviews the recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species.

  4. The surface chemistry of lithium electrodes in alkyl carbonate solutions

    SciTech Connect

    Aurbach, D.; Ein-Ely, Y.; Zaban, A.

    1994-01-01

    The chemical composition of the surface films formed on lithium in alkyl carbonate solutions was explored using surface sensitive Fourier transform infrared spectroscopy (external reflectance mode). The solvents included propylene carbonate, ethylene carbonate, and dimethyl carbonate. The salts included LiAsF{sub 6}, LiClO{sub 4}, LiBF{sub 4}, and LiPF{sub 6}. The advantages of this work over previous studies are that highly reflective Li surfaces were prepared fresh in solution and that the aging processes of the surface films initially formed could be rigorously investigated. Furthermore these three important solvents were investigated in a single study. This work further proves that the films initially formed on Li surfaces in these solvents consist of ROCO{sub 2}Li as the major constituents. Upon storage, the films initially formed react with trace water to form Li{sub 2}CO{sub 3}, which gradually also becomes a major surface species. It was found that these aging processes also depend on the salts used (for example ROCO{sub 2}Li or Li{sub 2}CO{sub 3} films are not stable in LiPF{sub 6} or LiBF{sub 4} solutions).

  5. Engineering nanostructures and surface chemistry of efficient lithium ion intercalation electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Dawei

    Lithium ion batteries have been one of the major power supplies for small electronic devices since last century. However, with the rapid advancement of electronics and the increasing demand for clean sustainable energy, newer lithium ion batteries with higher energy density, higher power density, and better cyclic stability are needed. In addition, newer generation of lithium ion batteries must meet the requirements of low and easy fabrication cost and free of toxic materials. Nanostructured electrodes are seemingly the most promising candidate for future lithium ion batteries. In our experiments, mesoporous MnO2 nanowall arrays were fabricated through water electrolysis induced precipitation. Thus-fabricated arrays delivered capacities upto 256 mAhg-1, nearly double the theoretical value of 140 mAhg -1 from bulk MnO2. Modification of nanostructured electrode surface chemistry was found to contribute to lithium ion intercalation rate capability. Anodized TiO2 nanotube arrays after annealing in CO at 400°C, with TiC and Ti3+ species present on the surface, exhibited a much enhanced rate capability as compared with arrays without noticeable surface defects. Manipulating the crystallinity of electrodes could be another method to improve the intercalation capability. V2O5 xerogel films with less crystallized structure exhibited higher intercalation capacity and better cyclic stability than well crystallized counterpart. Materials possessing nanostructures, surface and bulk defects and in poor crystallinity or amorphous state are all away from equilibrium state. The electrodes away from equilibrium state have demonstrated favorable lithium ion intercalation properties. The contribution of non-equilibrium state lies in three aspects: (1) enhancing the storage capacity by shifting the phase transition boundary; (2) improving the rate capability by introducing fast mass and charge transport path; and (3) allowing longer cyclic stability by permitting more freedom for

  6. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  7. Conductive lithium storage electrode

    DOEpatents

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T.; Andersson, Anna M.

    2012-04-03

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  8. Conductive lithium storage electrode

    DOEpatents

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T.; Andersson, Anna M.

    2008-03-18

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  9. Lithium metal oxide electrodes for lithium batteries

    SciTech Connect

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  10. Electrode for a lithium cell

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  11. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries.

    PubMed

    Schroder, Kjell W; Dylla, Anthony G; Harris, Stephen J; Webb, Lauren J; Stevenson, Keith J

    2014-12-10

    Nonaqueous solvents in modern battery technologies undergo electroreduction at negative electrodes, leading to the formation of a solid-electrolyte interphase (SEI). The mechanisms and reactions leading to a stable SEI on silicon electrodes in lithium-ion batteries are still poorly understood. This lack of understanding inhibits the rational design of electrolyte additives, active material coatings, and the prediction of Li-ion battery life in general. We prepared SEI with a common nonaqueous solvent (LiPF6 in PC and in EC/DEC 1:1 by wt %) on silicon oxide and etched silicon (001) surfaces in various states of lithiation to understand the role of surface chemistry on the SEI formation mechanism and SEI structure. Anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films, allowing for more accurate characterization of SEI chemical stratification and composition by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) depth profiling. Additionally, multivariate statistical methods were used to better understand TOF-SIMS depth profiling studies. We conclude that the absence of native-oxide layer on silicon has a significant impact on the formation, composition, structure, and thickness of the SEI. PMID:25402271

  12. Lithium intercalation in porous carbon electrodes

    SciTech Connect

    Tran, T.D.; Feikert, J.; Pekala, R.W.

    1995-04-01

    Carbons derived from the phase separation of polyacrylonitrile/solvent mixtures were investigated as lithium intercalation anodes for rechargeable lithium-ion batteries. The carbon electrodes have a bulk density of 0.35-0.5 g/cm{sup 3}, relatively low surface areas (< 10 m{sup 2}/g), and micron-size cells. Pyrolysis temperature influences the reversible lithium intercalation and the irreversible capacity (associated with the formation of the passivating layer). Carbon electrodes pyrolyzed at 600{degrees}C have first-cycle capacity as high as 550 mAh/g as well as large irreversible capacity, 440 mAh/g. Electrodes prepared at 1050{degrees}C have reversible capacities around 270 mAh/g with relatively lower capacity losses (120 mAh/g). Doping the organic precursors with phosphoric acid, prior to pyrolysis at 1050{degrees}C, leads to carbon electrodes with reversible capacities as high as 450 mAh/g. The capacity of doped carbon increased with increasing phosphorus concentration in the samples. The doped carbon anodes exhibited good cycleability and excellent coulombic efficiency. The electrochemical performance is related to morphology, chemical composition, and local structural order.

  13. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  14. Conductive lithium storage electrode

    DOEpatents

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

    2014-10-07

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001electrodes and storage batteries.

  15. Electronic structure and electrode properties of tetracyanoquinodimethane (TCNQ): a surface science investigation of lithium intercalation into TCNQ.

    PubMed

    Precht, Ruben; Hausbrand, René; Jaegermann, Wolfram

    2015-03-01

    Organic materials are of interest as ion battery cathode materials because they offer advantages over inorganic cathodes such as abundant resources and a low ecological footprint. However, they suffer from slow kinetics and a comparatively low potential. In this paper, we have investigated alkali induced changes in the electronic structure of tetracyanoquinodimethane (TCNQ) to be used as cathode material in Li-ion batteries. Lithium was inserted stepwise into TCNQ thin films by exposure to lithium vapour and analysis by photoemission (PES) was performed. The evolution of core levels, electronic structure and Fermi-level with increasing lithium insertion into TCNQ was monitored. The results show that lithium insertion takes place under integer charge transfer and polaron formation. We find no indication of deterioration of the material. The consequences of evolution of electronic structure and polaron formation for electrode potential and kinetic properties of the material are discussed.

  16. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    DOEpatents

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  17. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  18. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  19. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, Ian D.; Godshall, Ned A.; Huggins, Robert A.

    1982-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  20. Layered electrodes for lithium cells and batteries

    DOEpatents

    Johnson, Christopher S.; Thackeray, Michael M.; Vaughey, John T.; Kahaian, Arthur J.; Kim, Jeom-Soo

    2008-04-15

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  1. Long life lithium batteries with stabilized electrodes

    DOEpatents

    Amine, Khalil; Liu, Jun; Vissers, Donald R.; Lu, Wenquan

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  2. Lithium electronic environments in rechargeable battery electrodes

    NASA Astrophysics Data System (ADS)

    Hightower, Adrian

    This work investigates the electronic environments of lithium in the electrodes of rechargeable batteries. The use of electron energy-loss spectroscopy (EELS) in conjunction with transmission electron microscopy (TEM) is a novel approach, which when coupled with conventional electrochemical experiments, yield a thorough picture of the electrode interior. Relatively few EELS experiments have been preformed on lithium compounds owing to their reactivity. Experimental techniques were established to minimize sample contamination and control electron beam damage to studied compounds. Lithium hydroxide was found to be the most common product of beam damaged lithium alloys. Under an intense electron beam, halogen atoms desorbed by radiolysis in lithium halides. EELS spectra from a number of standard lithium compounds were obtained in order to identify the variety of spectra encountered in lithium rechargeable battery electrodes. Lithium alloys all displayed characteristically broad Li K-edge spectra, consistent with transitions to continuum states. Transitions to bound states were observed in the Li K and oxygen K-edge spectra of lithium oxides. Lithium halides were distinguished by their systematic chemical shift proportional to the anion electronegativity. Good agreement was found with measured lithium halide spectra and electron structure calculations using a self-consistant multiscattering code. The specific electrode environments of LiC6, LiCoO2, and Li-SnO were investigated. Contrary to published XPS predictions, lithium in intercalated graphite was determined to be in more metallic than ionic. We present the first experimental evidence of charge compensation by oxygen ions in deintercalated LiCoO2. Mossbauer studies on cycled Li-SnO reveal severely defective structures on an atomic scale. Metal hydride systems are presented in the appendices of this thesis. The mechanical alloying of immiscible Fe and Mg powders resulted in single-phase bcc alloys of less than 20

  3. Manganese oxide composite electrodes for lithium batteries

    DOEpatents

    Johnson, Christopher S.; Kang, Sun-Ho; Thackeray, Michael M.

    2009-12-22

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5electrode and 0.ltoreq.y<1 in which the Li.sub.2MnO.sub.3 and LiMn.sub.2-yM.sub.yO.sub.4 components have layered and spinel-type structures, respectively, and in which M is one or more metal cations. The electrode is activated by removing lithia, or lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  4. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Zygmunt; Olszanski, Theodore W.; Battles, James E.

    1977-03-08

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such as solid lithium-aluminum filled within a substrate of metal foam are provided.

  5. Stabilization of insertion electrodes for lithium batteries.

    SciTech Connect

    Thackeray, M. M.

    1998-09-03

    This paper discusses the techniques that are being employed to stabilize LiMn{sub 2}O{sub 4} spinel and composite Li{sub x}MnO{sub 2} positive electrodes. The critical role that spinel domains play in stabilizing these electrodes for operation at both 4 V and 3 V is highlighted. The concept of using an intermetallic electrode MM{prime} where M is an active alloying element and M{prime} is an inactive element (or elements) is proposed as an alternative negative electrode (to carbon) for lithium-ion cells. An analogy to metal oxide insertion electrodes, such as MnO{sub 2}, in which Mn is the electrochemically active ion and O is the inactive ion, is made. Performance data are given for the copper-tin electrode system, which includes the intermetallic phases eta-Cu{sub 6}Sn{sub 5} and Li{sub 2}CuSn.

  6. Silver manganese oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  7. Metallic function of lithium phosphate glass electrodes

    SciTech Connect

    Kochetova, T.I.; Bobrov, V.S.

    1995-05-20

    Specificity of metallic functions of lithium phosphate glasses toward univalent cations over a wide concentration range and their correlation with cation size have been studied. In the present work, the authors extended the spectrum of phosphate glass compositions: a study has been made how additions of gallium, titanium, and vanadium oxides influence electrode properties.

  8. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  9. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

  10. Manganese oxide composite electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Li, Naichao

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0electrode is activated by removing lithia, or lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  11. Polymer nanofiber-guided uniform lithium deposition for battery electrodes.

    PubMed

    Liang, Zheng; Zheng, Guangyuan; Liu, Chong; Liu, Nian; Li, Weiyang; Yan, Kai; Yao, Hongbin; Hsu, Po-Chun; Chu, Steven; Cui, Yi

    2015-05-13

    Lithium metal is one of the most promising candidates as an anode material for next-generation energy storage systems due to its highest specific capacity (3860 mAh/g) and lowest redox potential of all. The uncontrolled lithium dendrite growth that causes a poor cycling performance and serious safety hazards, however, presents a significant challenge for the realization of lithium metal-based batteries. Here, we demonstrate a novel electrode design by placing a three-dimensional (3D) oxidized polyacrylonitrile nanofiber network on top of the current collector. The polymer fiber with polar surface functional groups could guide the lithium ions to form uniform lithium metal deposits confined on the polymer fiber surface and in the 3D polymer layer. We showed stable cycling of lithium metal anode with an average Coulombic efficiency of 97.4% over 120 cycles in ether-based electrolyte at a current density of 3 mA/cm(2) for a total of 1 mAh/cm(2) of lithium. PMID:25822282

  12. Polymer nanofiber-guided uniform lithium deposition for battery electrodes.

    PubMed

    Liang, Zheng; Zheng, Guangyuan; Liu, Chong; Liu, Nian; Li, Weiyang; Yan, Kai; Yao, Hongbin; Hsu, Po-Chun; Chu, Steven; Cui, Yi

    2015-05-13

    Lithium metal is one of the most promising candidates as an anode material for next-generation energy storage systems due to its highest specific capacity (3860 mAh/g) and lowest redox potential of all. The uncontrolled lithium dendrite growth that causes a poor cycling performance and serious safety hazards, however, presents a significant challenge for the realization of lithium metal-based batteries. Here, we demonstrate a novel electrode design by placing a three-dimensional (3D) oxidized polyacrylonitrile nanofiber network on top of the current collector. The polymer fiber with polar surface functional groups could guide the lithium ions to form uniform lithium metal deposits confined on the polymer fiber surface and in the 3D polymer layer. We showed stable cycling of lithium metal anode with an average Coulombic efficiency of 97.4% over 120 cycles in ether-based electrolyte at a current density of 3 mA/cm(2) for a total of 1 mAh/cm(2) of lithium.

  13. The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis(perfluoroethylsulfonylimide) [LiN(C{sub 2}F{sub 5}SO{sub 2}){sub 2}

    SciTech Connect

    Naoi, Katsuhiko; Mori, Mitsuhiro; Naruoka, Yoshinori; Lamanna, W.M.; Atanasoski, R.

    1999-02-01

    A newly developed imide electrolyte salt, LiN(C{sub 2}F{sub 5}SO{sub 2}){sub 2} (LiBETI) was found to give very uniform, thin, and stable surface films on a lithium metal electrode in the propylene carbonate (PC) solution. LiBETI/PC was studied and compared to determine its ability to form such a stable surface film, with conventional electrolyte systems such as LiCF{sub 3}SO{sub 3}/PC, LiPF{sub 6}/PC, and LiN(CF{sub 3}So{sub 2}){sub 2}/PC (LiTFSI/PC). The surface film formed in LiBETI/PC system was a hemispherical, and the composition of the film consisted mainly of LiF, which is similar to that in a LiPF{sub 6}/PC system. Quartz crystal microbalance (QCM) and cyclic voltammetry (after the tenth cycle) indicated that the surface film formed in LiBETI/PC (ca. 50 nm) was thinner than those in LiPF{sub 6}/PC (ca. 90 nm), LiTFSI/PC (ca. 140 nm), or LiCF{sub 3}SO{sub 3}/PC (ca. 255 nm). The variation of the resonance resistance ({Delta}R) obtained from in situ CV/QCM measurement, which has been demonstrated to be a good measure of the surface roughness, also suggested that LiBETI/PC system gave a compact and smooth surface topology during lithium deposition-dissolution cycles. Impedance spectroscopy together with preliminary cycling tests showed that the LiBETI/PC system provides the highest cycling efficiency and improved cycleability among existing electrolyte salt systems in rechargeable battery systems employing lithium metal anodes.

  14. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  15. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

  16. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes.

    PubMed

    Harry, Katherine J; Hallinan, Daniel T; Parkinson, Dilworth Y; MacDowell, Alastair A; Balsara, Nitash P

    2014-01-01

    Failure caused by dendrite growth in high-energy-density, rechargeable batteries with lithium metal anodes has prevented their widespread use in applications ranging from consumer electronics to electric vehicles. Efforts to solve the lithium dendrite problem have focused on preventing the growth of protrusions from the anode surface. Synchrotron hard X-ray microtomography experiments on symmetric lithium-polymer-lithium cells cycled at 90 °C show that during the early stage of dendrite development, the bulk of the dendritic structure lies within the electrode, underneath the polymer/electrode interface. Furthermore, we observed crystalline impurities, present in the uncycled lithium anodes, at the base of the subsurface dendritic structures. The portion of the dendrite protruding into the electrolyte increases on cycling until it spans the electrolyte thickness, causing a short circuit. Contrary to conventional wisdom, it seems that preventing dendrite formation in polymer electrolytes depends on inhibiting the formation of subsurface structures in the lithium electrode.

  17. Vanadium diaphragm electrode serves as hydrogen diffuser in lithium hydride cell

    NASA Technical Reports Server (NTRS)

    Crouthamel, C. E.; Heinrich, R. R.; Johnson, C. E.

    1967-01-01

    Lithium hydride cell uses vanadium diaphragm electrode as a hydrogen diffuser. Vanadium is high in hydrogen gas solubility and permeability, is least sensitive to adverse surface effects, maintains good mechanical strength in hydrogen atmospheres, and appears to be compatible with all alkali-halide electrolytes and lithium metals.

  18. Lithium battery electrodes with ultra-thin alumina coatings

    SciTech Connect

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  19. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Z.; Olszanski, W.; Battles, J.E.

    1975-12-09

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such a solid lithium--aluminum filled within a substrate of metal foam are provided. 1 figure, 1 table.

  20. Methods for making lithium vanadium oxide electrode materials

    DOEpatents

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  1. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOEpatents

    Gilbert, Marian; Kaun, Thomas D.

    1984-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  2. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    SciTech Connect

    Gilbert, M.; Kaun, Th. D.

    1984-12-18

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  3. Surface-layer formation by reductive decomposition of LiPF6 at relatively high potentials on negative electrodes in lithium ion batteries and its suppression

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Tomoya; Shimada, Koki; Ichitsubo, Tetsu; Yagi, Shunsuke; Matsubara, Eiichiro

    2014-12-01

    In using a LiPF6/ethylene carbonate-dimethyl carbonate electrolyte for lithium ion batteries (LIBs), a certain reductive reaction is known to occur at a relatively high potential (ca. 2.6 V vs. Li+/Li) on Sn electrode, but its details are still unknown. By means of in-situ X-ray reflectometry, X-ray photoelectron spectroscopy, scanning electron microscopy observations and electrochemical measurements (by using mainly Sn electrode, and additionally Pt, graphite electrodes), we have found out that this reduction eventually forms an inactive passivation-layer consisting mainly of insulative LiF ascribed to the reductive decomposition of LiPF6, which significantly affects the battery cyclability. In contrast, a solid-electrolyte interphase (SEI) is formed by the reductive reaction of the solvent at ca. 1.5 V vs. Li+/Li, which is lower than the reduction potential of LiPF6. However, we have found that the formation of SEI preempts that of the passivation layer when holding the electrode at a potential lower than 1.5 V vs. Li+/Li. Consequently, the cyclability is improved by suppressing the formation of the inactive passivation layer. Such a pretreatment would be quite effective on improvement of the battery cyclability, especially for a relatively noble electrode whose oxidation potential is between 1.5 V and 2.6 V vs. Li+/Li.

  4. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  5. A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes

    NASA Astrophysics Data System (ADS)

    Aurbach, D.; Gofer, Y.; Schechter, A.; Chusid, O.; Gizbar, H.; Cohen, Y.; Moshkovich, M.; Turgeman, R.

    This paper describes briefly the difference between reversible lithium and magnesium electrodes. In the case of lithium, the active metal is always covered by surface films. Li dissolution-deposition is reversible only when the surface films contain elastomers and are flexible. Hence, they can accommodate the morphological changes of the electrode during the electrochemical processes without breaking down. In an ideal situation, lithium is deposited beneath the surface films, while being constantly protected in a way that prevents reactions between freshly deposited lithium and solution species. In contrast to lithium, magnesium electrodes are reversible only in solutions where surface film free conditions exist. Mg does not react with ethers, and thus, in ethereal solutions of Grignard reagents (RMgX, where R=alkyl, aryl, X=halide) and complexes of the following type: Mg(AlX 4- nR n' R n″ ') 2, R and R'=alkyl groups, X=halide, A=Al, 0< n<4 and n'+ n''= n, magnesium electrodes behave reversibly. However, it should be noted that the above stoichiometry of the Mg salts does not reflect the true structure of the active ions in solutions. Mg deposition does not occur via electron transfer to simply solvated Mg 2+ ions. The behavior of Mg electrodes in these solutions is discussed in light of studies by EQCM, EIS, FTIR, XPS, STM and standard electrochemical techniques.

  6. AC impedance electrochemical modeling of lithium-ion positive electrodes.

    SciTech Connect

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Engineering; IIT

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF{sub 6} dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes [1]. Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley [2]. The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation [3]. The resulting system of differential

  7. Protective coating on positive lithium-metal-oxide electrodes for lithium batteries

    DOEpatents

    Johnson, Christopher S.; Thackeray, Michael M.; Kahaian, Arthur J.

    2006-05-23

    A positive electrode for a non-aqueous lithium cell comprising a LiMn2-xMxO4 spinel structure in which M is one or more metal cations with an atomic number less than 52, such that the average oxidation state of the manganese ions is equal to or greater than 3.5, and in which 0.ltoreq.x.ltoreq.0.15, having one or more lithium spine oxide LiM'2O4 or lithiated spinel oxide Li1+yM'2O4 compounds on the surface thereof in which M' are cobalt cations and in which 0.ltoreq.y.ltoreq.1.

  8. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  9. Long life lithium batteries with stabilized electrodes

    DOEpatents

    Amine, Khalil; Liu, Jun; Vissers, Donald R; Lu, Wenquan

    2015-04-21

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In certain electrolytes, the alkali metal salt is a bis(chelato)borate and the additives include substituted or unsubstituted linear, branched or cyclic hydrocarbons comprising at least one oxygen atom and at least one aryl, alkenyl or alkynyl group. In other electrolytes, the additives include a substituted aryl compound or a substituted or unsubstituted heteroaryl compound wherein the additive comprises at least one oxygen atom. There are also provided methods of making the electrolytes and batteries employing the electrolytes. The invention also provides for electrode materials. Cathodes of the present invention may be further stabilized by surface coating the particles of the spinel or olivine with a material that can neutralize acid or otherwise lessen or prevent leaching of the manganese or iron ions. In some embodiments the coating is polymeric and in other embodiments the coating is a metal oxide such as ZrO.sub.2, TiO.sub.2, ZnO, WO.sub.3, Al.sub.2O.sub.3, MgO, SiO.sub.2, SnO.sub.2 AlPO.sub.4, Al(OH).sub.3, a mixture of any two or more thereof.

  10. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  11. Electrode materials and lithium battery systems

    DOEpatents

    Amine, Khalil; Belharouak, Ilias; Liu, Jun

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  12. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    approximately three times the capacity with significantly superior cycling stability and power. X-ray photoelectron spectroscopy (XPS) depth profiling provides evidence that the graphene coating inhibits manganese depletion from the LMO surface. Furthermore, cross-section transmission electron microscopy (TEM) demonstrates that a stable solid electrolyte interphase (SEI) layer is formed on graphene, which screens the LMO from direct contact with the electrolyte, thereby prolonging the electrode life. Density functional theory (DFT) calculations support the hypothesis of graphene as a diffusion barrier: Defected graphene acts as a barrier for manganese diffusion while allowing the transport of lithium. However, DFT calculations also suggest that the role of graphene goes beyond a physical barrier. The reactive edge of graphene can chemically interact with Mn3+ at the electrode surface, promotes an oxidation state change (Mn3+→Mn4+) and suppresses dissolution and the Jahn-Teller distortion associated with Mn 3.

  13. Lithium electrode and an electrical energy storage device containing the same

    DOEpatents

    Lai, San-Cheng

    1976-07-13

    An improved lithium electrode structure comprises an alloy of lithium and silicon in specified proportions and a supporting current-collecting matrix in intimate contact with said alloy. The lithium electrode of the present invention is utilized as the negative electrode in a rechargeable electrochemical cell.

  14. Electrode architectures for efficient electronic and ionic transport pathways in high power lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Faulkner, Ankita Shah

    As the demand for clean energy sources increases, large investments have supported R&D programs aimed at developing high power lithium ion batteries for electric vehicles, military, grid storage and space applications. State of the art lithium ion technology cannot meet power demands for these applications due to high internal resistances in the cell. These resistances are mainly comprised of ionic and electronic resistance in the electrode and electrolyte. Recently, much attention has been focused on the use of nanoscale lithium ion active materials on the premise that these materials shorten the diffusion length of lithium ions and increase the surface area for electrochemical charge transfer. While, nanomaterials have allowed significant improvements in the power density of the cell, they are not a complete solution for commercial batteries. Due to their large surface area, they introduce new challenges such as a poor electrode packing densities, high electrolyte reactivity, and expensive synthesis procedures. Since greater than 70% of the cost of the electric vehicle is due to the cost of the battery, a cost-efficient battery design is most critical. To address the limitations of nanomaterials, efficient transport pathways must be engineered in the bulk electrode. As a part of nanomanufacturing research being conducted the Center for High-rate Nanomanufacturing at Northeastern University, the first aim of the proposed work is to develop electrode architectures that enhance electronic and ionic transport pathways in large and small area lithium ion electrodes. These architectures will utilize the unique electronic and mechanical properties of carbon nanotubes to create robust electrode scaffolding that improves electrochemical charge transfer. Using extensive physical and electrochemical characterization, the second aim is to investigate the effect of electrode parameters on electrochemical performance and evaluate the performance against standard commercial

  15. Organometallic-inorganic hybrid electrodes for lithium-ion batteries

    DOEpatents

    Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia

    2016-09-13

    Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

  16. Negative electrodes for lithium cells and batteries

    DOEpatents

    Vaughey, John T.; Fransson, Linda M.; Thackeray, Michael M.

    2005-02-15

    A negative electrode is disclosed for a non-aqueous electrochemical cell. The electrode has an intermetallic compound as its basic structural unit with the formula M.sub.2 M' in which M and M' are selected from two or more metal elements including Si, and the M.sub.2 M' structure is a Cu.sub.2 Sb-type structure. Preferably M is Cu, Mn and/or Li, and M' is Sb. Also disclosed is a non-aqueous electrochemical cell having a negative electrode of the type described, an electrolyte and a positive electrode. A plurality of cells may be arranged to form a battery.

  17. Hierarchically porous graphene as a lithium-air battery electrode.

    PubMed

    Xiao, Jie; Mei, Donghai; Li, Xiaolin; Xu, Wu; Wang, Deyu; Graff, Gordon L; Bennett, Wendy D; Nie, Zimin; Saraf, Laxmikant V; Aksay, Ilhan A; Liu, Jun; Zhang, Ji-Guang

    2011-11-01

    The lithium-air battery is one of the most promising technologies among various electrochemical energy storage systems. We demonstrate that a novel air electrode consisting of an unusual hierarchical arrangement of functionalized graphene sheets (with no catalyst) delivers an exceptionally high capacity of 15000 mAh/g in lithium-O(2) batteries which is the highest value ever reported in this field. This excellent performance is attributed to the unique bimodal porous structure of the electrode which consists of microporous channels facilitating rapid O(2) diffusion while the highly connected nanoscale pores provide a high density of reactive sites for Li-O(2) reactions. Further, we show that the defects and functional groups on graphene favor the formation of isolated nanosized Li(2)O(2) particles and help prevent air blocking in the air electrode. The hierarchically ordered porous structure in bulk graphene enables its practical applications by promoting accessibility to most graphene sheets in this structure.

  18. Hierarchically porous graphene as a lithium-air battery electrode.

    PubMed

    Xiao, Jie; Mei, Donghai; Li, Xiaolin; Xu, Wu; Wang, Deyu; Graff, Gordon L; Bennett, Wendy D; Nie, Zimin; Saraf, Laxmikant V; Aksay, Ilhan A; Liu, Jun; Zhang, Ji-Guang

    2011-11-01

    The lithium-air battery is one of the most promising technologies among various electrochemical energy storage systems. We demonstrate that a novel air electrode consisting of an unusual hierarchical arrangement of functionalized graphene sheets (with no catalyst) delivers an exceptionally high capacity of 15000 mAh/g in lithium-O(2) batteries which is the highest value ever reported in this field. This excellent performance is attributed to the unique bimodal porous structure of the electrode which consists of microporous channels facilitating rapid O(2) diffusion while the highly connected nanoscale pores provide a high density of reactive sites for Li-O(2) reactions. Further, we show that the defects and functional groups on graphene favor the formation of isolated nanosized Li(2)O(2) particles and help prevent air blocking in the air electrode. The hierarchically ordered porous structure in bulk graphene enables its practical applications by promoting accessibility to most graphene sheets in this structure. PMID:21985448

  19. Aqueous processing of composite lithium ion electrode material

    DOEpatents

    Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Wood, III, David L

    2015-02-17

    A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.

  20. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  1. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    PubMed Central

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  2. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries.

    PubMed

    Shi, Feifei; Song, Zhichao; Ross, Philip N; Somorjai, Gabor A; Ritchie, Robert O; Komvopoulos, Kyriakos

    2016-06-14

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  3. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  4. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  5. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  6. Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.

    SciTech Connect

    Hudak, Nicholas S.; Huber, Dale L.

    2010-12-01

    Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

  7. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    PubMed Central

    Reddy, Arava Leela Mohana; Nagarajan, Subbiah; Chumyim, Porramate; Gowda, Sanketh R.; Pradhan, Padmanava; Jadhav, Swapnil R.; Dubey, Madan; John, George; Ajayan, Pulickel M.

    2012-01-01

    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered. PMID:23233879

  8. Lithium Wall Conditioning And Surface Dust Detection On NSTX

    SciTech Connect

    Skinner, C H; Bell, M G; Friesen, F.Q.L.; Heim, B; Jaworski, M A; Kugel, H; Maingi, R; Rais, B; Taylor, C N

    2011-05-23

    Lithium evaporation onto NSTX plasma facing components (PFC) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that binding of D atoms to the polycrystalline graphite material of the PFCs is fundamentally changed by lithium - in particular deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real-time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high voltage 3-phase waveform was evaluated for potential application to fusion reactors

  9. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOEpatents

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  10. Particulate inverse opal carbon electrodes for lithium-ion batteries.

    PubMed

    Kang, Da-Young; Kim, Sang-Ok; Chae, Yu Jin; Lee, Joong Kee; Moon, Jun Hyuk

    2013-01-29

    Inverse opal carbon materials were used as anodes for lithium ion batteries. We applied particulate inverse opal structures and their dispersion in the formation of anode electrodes via solution casting. We prepared aminophenyl-grafted inverse opal carbons (a-IOC), inverse opal carbons with mesopores (mIOC), and bare inverse opal carbons (IOC) and investigated the electrochemical behavior of these samples as anode materials. Surface modification by aminophenyl groups was confirmed by XPS measurements. TEM images showed mesopores, and the specific area of mIOC was compared with that of IOC using BET analysis. A half-cell test was performed to compare a-IOC with IOC and mIOC with IOC. In the case of the a-IOC structure, the cell test revealed no improvement in the reversible specific capacity or the cycle performance. The mIOC cell showed a reversible specific capacity of 432 mAh/g, and the capacity was maintained at 88%-approximately 380 mAh/g-over 20 cycles.

  11. Lithium ion phase-transfer reaction at the interface between the lithium manganese oxide electrode and the nonaqueous electrolyte.

    PubMed

    Kobayashi, Shota; Uchimoto, Yoshiharu

    2005-07-14

    The lithium ion phase-transfer reaction between the spinel lithium manganese oxide electrode and a nonaqueous electrolyte was investigated by the ac impedance spectroscopic method. The dependence of the impedance spectra on the electrochemical potential of the lithium ion in the electrode, the lithium salt concentration in the electrolyte, the kind of solvent, and the measured temperature were examined. Nyquist plots, obtained from the impedance measurements, consist of two semicircles for high and medium frequency and warburg impedance for low frequency, indicating that the reaction process of two main steps for high and medium frequency obey the Butler-Volmer type equation and could be related to the charge-transfer reaction process accompanied with lithium ion phase-transfer at the interface. The dependency on the solvent suggests that both steps in the lithium ion phase-transfer at the electrode/electrolyte interface include the desolvation process and have high activation barriers. PMID:16852662

  12. Raman diagnostics of LiCoO2 electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gross, Toni; Hess, Christian

    2014-06-01

    LiCoO2 based electrode materials were characterized in detail using visible Raman spectroscopy. The studied materials comprise the active LiCoO2 material itself as well as electrochemically relevant composites of LiCoO2 with binder and conductive additives. Spatially resolved analysis, i.e. mapping of LiCoO2 composite electrodes reveals a significant variation of chemical composition across the electrode surface. Based on wavelength-dependent studies we demonstrate the presence of a resonance enhancement for LiCoO2 materials for green laser excitation allowing for in situ studies on the LiCoO2-based electrodes during lithium de-intercalation. During in situ experiments no significant structural changes occur consistent with the fact that visible Raman spectroscopy probes mainly the surface region of the LiCoO2 composite electrode. Our results demonstrate the potential of Raman spectroscopy for spatially resolved and in situ analysis of lithium-ion batteries.

  13. Visualization of Charge Distribution in a Lithium Battery Electrode

    SciTech Connect

    Liu, Jun; Kunz, Martin; Chen, Kai; Tamura, Nobumichi; Richardson, Thomas J.

    2010-07-02

    We describe a method for direct determination and visualization of the distribution of charge in a composite electrode. Using synchrotron X-ray microdiffraction, state-of-charge profiles in-plane and normal to the current collector were measured. In electrodes charged at high rate, the signatures of nonuniform current distribution were evident. The portion of a prismatic cell electrode closest to the current collector tab had the highest state of charge due to electronic resistance in the composite electrode and supporting foil. In a coin cell electrode, the active material at the electrode surface was more fully charged than that close to the current collector because the limiting factor in this case is ion conduction in the electrolyte contained within the porous electrode.

  14. Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)

    SciTech Connect

    Meilin Liu, James Gole

    2006-12-14

    The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the

  15. Effect of local velocity on diffusion-induced stress in large-deformation electrodes of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhang, Kai; Zheng, Bailin; Yang, Fuqian

    2016-07-01

    In this work, the contribution of local velocity to the resultant flux of lithium in lithium-ion battery is introduced into the diffusion equation to describe the migration of lithium in the active material of electrodes. The effect of the local velocity on the stress evolution in a spherical electrode made of silicon is analyzed, using the derived diffusion equation and nonlinear theory of elasticity. Two boundary conditions at the surface of the electrode, which represent two extreme conditions of real electrode materials, are used in the stress analysis: one is stress-free, and the other is immobile. The numerical results with the stress-free boundary condition suggest that the effect of the local velocity on the distribution of radial stress and hoop stress increases with the increase of time and the effect of the local velocity on the distribution of lithium is relatively small. In comparison with the results without the effect of the local velocity, the effect of the local velocity is negligible for the immobile boundary condition. The numerical result shows that the use of the immobile boundary condition leads to the decrease of von-Mises stress, which likely will retard the mechanical degradation of electrode and improve the electrochemical performance of lithium-ion battery.

  16. Novel materials for negative electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pereira, Nathalie

    Carbonaceous materials are currently utilized as negative electrodes in commercial rechargeable Li-ion batteries. However, their low capacity prompted the search for alternative materials of higher capacity and good cycling stability in order to maximize the battery energy density and cycle life. Lithium alloys have long been considered as alternative negative electrode materials to substitute for the carbonaceous materials currently used in commercial rechargeable Li-ion batteries. However, they suffer from cracking caused by the large volume changes occurring during lithiation and delithiation. To better understand the alloys failure mechanism, various elements were tested and those that can alloy with lithium electrochemically were identified. Silicon showed extremely high capacity but poor cycle life. To investigate to which extent multiphase materials may improve cycle life, several binary metal-silicides were explored in search for improved cycling stability. Mg 2Si was the only compound of high capacity but it exhibited poor cycle life. Both addition of a matrix and decrease in particle size have been demonstrated to improve cycle life. Each effect has been investigated separately. Using tin-based powders of different size oxidized to various extent, we showed an increase in oxygen content, a particle size decrease and the formation of converted Sn-Sb compounds improved cycling stability. The effect of the matrix nature on the electrochemical properties was explored using Zn-based conversion materials. Upon reaction with lithium, ZnO and ZnS electrodes generated LiZn and a Li2O and Li2S matrix, respectively. The reversible process was identified as the Li-Zn alloying reaction, as obtained in pure metallic Zn electrodes. ZnO and ZnS failure mechanisms were also similar to metallic Zn. However, ZnS showed improved cycle life. LiZnN has been isolated by way of an electrochemical conversion reaction of Zn3N2 with lithium. We showed Zn3N 2 reversibly reacts with

  17. High performance lithium insertion negative electrode materials for electrochemical devices

    NASA Astrophysics Data System (ADS)

    Channu, V. S. Reddy; Rambabu, B.; Kumari, Kusum; Kalluru, Rajmohan R.; Holze, Rudolf

    2016-11-01

    Spinel LiCrTiO4 oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50-10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO4 electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO4 shows higher specific capacity.This LiCrTiO4 is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm2. The specific capacity decreases with increasing current densities.

  18. Protection of lithium metal surfaces using chlorosilanes.

    PubMed

    Marchioni, Filippo; Star, Kurt; Menke, Erik; Buffeteau, Thierry; Servant, Laurent; Dunn, Bruce; Wudl, Fred

    2007-11-01

    In this paper, we present a new approach for protecting metallic lithium surfaces based on a reaction between the thin native layer of lithium hydroxide present on the surface and various chlorosilane derivatives. The chemical composition of the resulting layer and the chemistry involved in layer formation were analyzed by polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray analysis (EDX). Spectroscopy shows the disappearance of surface hydroxide groups and the appearance of silicon and chloride on the lithium surface. Differential scanning calorimetry (DSC) and electrochemical impedance spectroscopy (EIS) show that this surface treatment protects the lithium from certain gas-phase reactions and is ionically conductive.

  19. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S.

    2016-07-01

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  20. Elastomeric binders for electrodes. [in secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D. H.; Somoano, R. B.

    1983-01-01

    The poor mechanical integrity of the cathode represents an important problem which affects the performance of ambient temperature secondary lithium cells. Repeated charge of a TiS2 cathode may give rise to stresses which disturb the electrode structure and can contribute to capacity loss. An investigation indicates that the use of an inelastic binder material, such as Teflon, aggravates the problem, and can lead to electrode disruption and poor TiS2 particle-particle contact. The feasibility of a use of elastomers as TiS2 binder materials has, therefore, been explored. It was found that elastomeric binders provide an effective approach for simplifying rechargeable cathode fabrication. A pronounced improvement in the mechanical integrity of the cathode structure contributes to a prolonged cycle life.

  1. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng

    2016-03-01

    Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.

  2. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries

    PubMed Central

    Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng

    2016-01-01

    Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution. PMID:26984488

  3. Discharge model for the lithium iron-phosphate electrode

    SciTech Connect

    Srinivasan, Venkat; Newman, John

    2004-02-28

    This paper develops a mathematical model for lithium intercalation and phase change in an iron phosphate-based lithium-ion cell in order to understand the cause for the low power capability of the material. The juxtaposition of the two phases is assumed to be in the form of a shrinking core, where a shell of one phase covers a core of the second phase. Diffusion of lithium through the shell and the movement of the phase interface are described and incorporated into a porous electrode model consisting of two different particle sizes. Open-circuit measurements are used to estimate the composition ranges of the single-phase region. Model-experimental comparisons under constant current show that ohmic drops in the matrix phase, contact resistances between the current collector and the porous matrix, and transport limitations in the iron phosphate particle limit the power capability of the cells. Various design options, consisting of decreasing the ohmic drops, using smaller particles, and substituting the liquid electrolyte by a gel are explored, and their relative importance discussed. The model developed in this paper can be used as a means of optimizing the cell design to suit a particular application.

  4. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    PubMed Central

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-01-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448

  5. Development of a benchmarking model for lithium battery electrodes

    NASA Astrophysics Data System (ADS)

    Bergholz, Timm; Korte, Carsten; Stolten, Detlef

    2016-07-01

    This paper presents a benchmarking model to enable systematic selection of anode and cathode materials for lithium batteries in stationary applications, hybrid and battery electric vehicles. The model incorporates parameters for energy density, power density, safety, lifetime, costs and raw materials. Combinations of carbon anodes, Li4Ti5O12 or TiO2 with LiFePO4 cathodes comprise interesting combinations for application in hybrid power trains. Higher cost and raw material prioritization of stationary applications hinders the breakthrough of Li4Ti5O12, while a combination of TiO2 and LiFePO4 is suggested. The favored combinations resemble state-of-the-art materials, whereas novel cell chemistries must be optimized for cells in battery electric vehicles. In contrast to actual research efforts, sulfur as a cathode material is excluded due to its low volumetric energy density and its known lifetime and safety issues. Lithium as anode materials is discarded due to safety issues linked to electrode melting and dendrite formation. A high capacity composite Li2MnO3·LiNi0.5Co0.5O2 and high voltage spinel LiNi0.5Mn1.5O4 cathode with silicon as anode material promise high energy densities with sufficient lifetime and safety properties if electrochemical and thermal stabilization of the electrolyte/electrode interfaces and bulk materials is achieved. The model allows a systematic top-down orientation of research on lithium batteries.

  6. Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes

    PubMed Central

    Song, Jongchan; Lee, Hongkyung; Choo, Min-Ju; Park, Jung-Ki; Kim, Hee-Tak

    2015-01-01

    The inhomogeneous Li electrodeposition of lithium metal electrode has been a major impediment to the realization of rechargeable lithium metal batteries. Although single ion conducting ionomers can induce more homogeneous Li electrodeposition by preventing Li+ depletion at Li surface, currently available materials do not allow room-temperature operation due to their low room temperature conductivities. In the paper, we report that a highly conductive ionomer/liquid electrolyte hybrid layer tightly laminated on Li metal electrode can realize stable Li electrodeposition at high current densities up to 10 mA cm−2 and permit room-temperature operation of corresponding Li metal batteries with low polarizations. The hybrid layer is fabricated by laminating few micron-thick Nafion layer on Li metal electrode followed by soaking 1 M LiPF6 EC/DEC (1/1) electrolyte. The Li/Li symmetric cell with the hybrid layer stably operates at a high current density of 10 mA cm−2 for more than 2000 h, which corresponds to more than five-fold enhancement compared with bare Li metal electrode. Also, the prototype Li/LiCoO2 battery with the hybrid layer offers cycling stability more than 350 cycles. These results demonstrate that the hybrid strategy successfully combines the advantages of bi-ionic liquid electrolyte (fast Li+ transport) and single ionic ionomer (prevention of Li+ depletion). PMID:26411701

  7. A stable graphite negative electrode for the lithium-sulfur battery.

    PubMed

    Jeschull, Fabian; Brandell, Daniel; Edström, Kristina; Lacey, Matthew J

    2015-12-14

    Efficient, reversible lithium intercalation into graphite in ether-based electrolytes is enabled through a protective electrode binder, polyacrylic acid sodium salt (PAA-Na). In turn, this enables the creation of a stable "lithium-ion-sulfur" cell, using a lithiated graphite negative electrode with a sulfur positive electrode, using the common DME:DOL solvent system suited to the electrochemistry of the lithium-sulfur battery. Graphite-sulfur lithium-ion cells show average coulombic efficiencies of ∼99.5%, compared with <95% for lithium-sulfur cells, and significantly better capacity retention, taking into account cell balancing considerations. The high efficiency derives from the considerably better interfacial stability of the graphite electrode, which suppresses the polysulfide redox shuttle and self-discharge.

  8. A stable graphite negative electrode for the lithium-sulfur battery.

    PubMed

    Jeschull, Fabian; Brandell, Daniel; Edström, Kristina; Lacey, Matthew J

    2015-12-14

    Efficient, reversible lithium intercalation into graphite in ether-based electrolytes is enabled through a protective electrode binder, polyacrylic acid sodium salt (PAA-Na). In turn, this enables the creation of a stable "lithium-ion-sulfur" cell, using a lithiated graphite negative electrode with a sulfur positive electrode, using the common DME:DOL solvent system suited to the electrochemistry of the lithium-sulfur battery. Graphite-sulfur lithium-ion cells show average coulombic efficiencies of ∼99.5%, compared with <95% for lithium-sulfur cells, and significantly better capacity retention, taking into account cell balancing considerations. The high efficiency derives from the considerably better interfacial stability of the graphite electrode, which suppresses the polysulfide redox shuttle and self-discharge. PMID:26451894

  9. Investigation of fluoroethylene carbonate effects on tin-based lithium-ion battery electrodes.

    PubMed

    Yang, Zhenzhen; Gewirth, Andrew A; Trahey, Lynn

    2015-04-01

    Electroless plating of tin on copper foil (2-D) and foams (3-D) was used to create carbon- and binder-free thin films for solid electrolyte interphase (SEI) property investigation. When electrochemically cycled vs lithium metal in coin cells, the foam electrodes exhibited better cycling performance than the planar electrodes due to electrode curvature. The effect of the additive/cosolvent fluoroethylene carbonate (FEC) was found to drastically improve the capacity retention and Coulombic efficiency of the cells. The additive amount of 2% FEC is enough to derive the benefits in the cells at a slow (C/9) cycling rate. The interfacial properties of Sn thin film electrodes in electrolyte with/without FEC additive were investigated using in situ electrochemical quartz crystal microbalance with dissipation (EQCM-D). The processes of the decomposition of the electrolyte on the electrode surface and Li alloying/dealloying with Sn were characterized quantitatively by surface mass change at the molecular level. FEC-containing electrolytes deposited less than electrolyte without FEC on the initial reduction sweep, yet increased the overall thickness/mass of SEI after several cyclic voltammetry cycles. EQCM-D studies demonstrate that the mass accumulated per mole of electrons (mpe) was varied in different voltage ranges, which reveals that the reduction products of the electrolyte with/without FEC are different.

  10. Surface characterization of platinum electrodes.

    PubMed

    Solla-Gullón, José; Rodríguez, Paramaconi; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2008-03-14

    The quantitative analysis of the different surface sites on platinum samples is attempted from pure voltammetric data. This analysis requires independent knowledge of the fraction of two-dimensional (111) and (100) domains. Specific site-probe reactions are employed to achieve this goal. Irreversibly-adsorbed bismuth and tellurium have been revealed to be sensitive to the presence of (111) terrace domains of different width whereas almost all sites involved in (100) ordered domains have been characterized through germanium adatoms. The experimental protocol follows that used with well-defined single-crystal electrodes and, therefore, requires careful control of the surface cleanliness. Platinum basal planes and their vicinal stepped surfaces have been employed to obtain calibration plots between the charge density measured under the adatom redox peak, specific for the type of surface site, and the corresponding terrace size. The evaluation of the (100) bidimensional domains can also be achieved using the voltammetric profiles, once the fraction of (111) ordered domains present in the polyoriented platinum has been determined and their featureless contribution has been subtracted from the whole voltammetric response. Using that curve, it is possible to perform a deconvolution of the adsorption states of the polycrystalline sample different from those related to (111) domains. The fraction of (100)-related states in the deconvoluted voltammogram can then be compared to that expected from the independent estimation coming from the charge involved in the redox process undergone by the irreversibly-adsorbed germanium and thus check the result of the deconvolution. The information about the surface-site distribution can also be applied to analyze the voltammetric profile of nanocrystalline platinum electrodes. PMID:18309392

  11. Electrode architectures for enhanced lithium ion battery performance

    NASA Astrophysics Data System (ADS)

    Kotz, Sharon Loeffler

    Increasing prevalence of portable electronic devices and growing concern over the consumption of fossil fuels have led to a growing demand for more efficient energy storage options. Lithium ion chemistry has grown to dominate the battery market, but still requires improvement to meet the increasing need for smaller, cheaper, better performing batteries. The use of nanomaterials has garnered much attention in recent years as a potential way of improving battery performance while decreasing the size. However, new problems are introduced with these materials such as low packing density and high reactivity with the electrolyte. This research focuses on the development of an electrode architecture using nanomaterials which will decrease lithium ion transport distance while enhancing electrical conductivity within the cell. The proposed architecture consists of a stacked, 2D structure composed of layers of carbon nanotubes and active material particles, and can be applied to both the anode and the cathode. The process also has the advantage of low cost because it can be performed under normal laboratory conditions (e.g. temperature and pressure) and easily adapted to a commercial scale.

  12. Evaluation residual moisture in lithium-ion battery electrodes and its effect on electrode performance

    DOE PAGES

    Li, Jianlin; Daniel, Claus; Wood, III, David L.; An, Seong Jin

    2016-01-11

    Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi0.5Mn0.3Co0.2O2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. As a result, it has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.

  13. Effect of prestress on the stability of electrode-electrolyte interfaces during charging in lithium batteries

    NASA Astrophysics Data System (ADS)

    Natsiavas, P. P.; Weinberg, K.; Rosato, D.; Ortiz, M.

    2016-10-01

    We formulate a model of the growth of electrode-electrolyte interfaces in lithium batteries in the presence of an elastic prestress. The model accounts for the kinetics of Li+ transport through a solid electrolyte and, within the interface, for the kinetics of Li+ adsorption by the anode, electrostatics, and the elastic field. We specifically account for the effect of the elastic field through an asymptotic analysis of a nearly flat interface between two semi-infinite elastic bodies. We use the model as a basis for assessing the effect of prestress on the stability of planar growth and the potential of prestress as a means of suppressing the formation of deleterious dendrites. We present a linear stability analysis that results in explicit analytical expressions for the dependence of growth rates, and of the critical unstable wavelength for the interfacial roughening, on the state of prestress and on fundamental parameters such as surface diffusivities, surface energy, deposition kinetics, and elastic moduli. Finally, we examine the model in the light of experimental observations concerned with the effect of applied pressure on a lithium/dioxolane-dimethoxy ethane electrolyte systems. With reasonable choices of parameters and some calibration, the model accounts for the observation that a modest applied pressure indeed results in a substantial reduction in the roughening of the lithium surface during cycling.

  14. Highly Oriented Carbon Nanotube Sheets for Rechargeable Lithium Oxygen Battery Electrodes.

    PubMed

    Ryu, Seongwoo; Kim, Byung Gon; Choi, Jang Wook; Lee, Haeshin

    2015-10-01

    Lithium oxygen batteries are one of the next generation rechargeable batteries. High energy density of lithium oxygen batteries have been considered as a very attractive power option for electric vehicles and many other electronic devices. However, they still faced substantial challenges such as short cycle life, large voltage hysteresis, low gravimetric and volumetric power. Here we developed a highly aligned CNT structured sheet for favorable lithium oxygen cathode electrodes. We fabricated highly oriented CNT sheets by rolling vertically aligned CNT arrays. Highly oriented CNT sheets provide excellent electrical conductivity with favorable mesoporous structure for cathode electrode. As a result, the CNT sheet performed maximum discharging capacity of 1810 mA/gc. We found that electrical conductivity and pore distribution plays important rolls for improving performance in lithium oxygen batteries. This study suggests new strategies of designing highly efficient porous carbon electrodes for lithium oxygen batteries. PMID:26726383

  15. Electrochromic & magnetic properties of electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zheng-Fei, Guo; Kun, Pan; Xue-Jin, Wang

    2016-01-01

    Progress in electrochromic lithium ion batteries (LIBs) is reviewed, highlighting advances and possible research directions. Methods for using the LIB electrode materials’ magnetic properties are also described, using several examples. Li4Ti5O12 (LTO) film is discussed as an electrochromic material and insertion compound. The opto-electrical properties of the LTO film have been characterized by electrical measurements and UV-Vis spectra. A prototype bi-functional electrochromic LIB, incorporating LTO as both electrochromic layer and anode, has also been characterized by charge- discharge measurements and UV-Vis transmittance. The results show that the bi-functional electrochromic LIB prototype works well. Magnetic measurement has proven to be a powerful tool to evaluate the quality of electrode materials. We introduce briefly the magnetism of solids in general, and then discuss the magnetic characteristics of layered oxides, spinel oxides, olivine phosphate LiFePO4, and Nasicon-type Li3Fe2(PO4)3. We also discuss what kind of impurities can be detected, which will guide us to fabricate high quality films and high performance devices. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201) and the Chinese Universities Scientific Fund (Grant No. 2015LX002).

  16. Thermal-stability studies of electrode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jiang, Junwei

    2005-07-01

    The thermal stability of lithium-ion batteries has recently attracted attention for two major reasons. (1) Attempts to make large-size cells used in power tools, E-bikes and EVs. Large cells have lower surface area to volume ratios and hence heat dissipation is more problematic than 18650-size cells. Safety problems, therefore, for large cells are more serious. (2) Next generation high-capacity electrodes will increase the energy density of lithium-ion cells meaning even an 18650-size cell may face safety concerns. This thesis presents studies of the thermal stability of electrode materials in electrolytes to understand their reactivity. A search for new positive electrode materials with high thermal stability was made. The thermal stability of two common electrode materials (Li0.81 C6 and Li0.5CoO2) in lithium-ion cells was studied by Accelerating Rate Calorimeter (ARC). Li0.81C 6 has much lower reactivity with lithium bis(oxalato)borate (LiBOB) electrolyte compared to LiPF6 electrolyte. It is not the case, however, for Li0.5CoO2. Oven tests of full LiCoO 2/C 18650-size cells with LiBOB or LiPF6 electrolytes, confirmed the ARC results. ARC was then used to study the reactivity of existing electrode materials. The thermal stability of a negative electrode material was found to increase with the binding energy of Li atoms hosted in the material. Li0.5VO 2 (B) has a higher lithium binding energy (2.45 eV vs. Li) than Li 0.81C6 (0.1 eV vs. Li) and Li7Ti5O 12 (1.55 eV) and it shows the highest thermal stability in EC/DEC among the three materials. The reactivity of two existing positive electrode materials, LiMn2O4 and LiFePO4, was studied. Cell systems expected to be highly tolerant to thermal abuse were suggested: LiFePO 4/C or Li4Ti5O12 in LiBOB electrolytes. The system, x Li[Ni1/2Mn1/2]O2 • y LiCoO2 • z Li[Li1/3Mn2/3]O2 (x + y + z = 1), was explored for new positive electrode materials with large capacity and high thermal stability. Li[(Ni0.5Mn0.5) xCo1-x]O2 (0

  17. Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition.

    PubMed

    Liu, Jian; Sun, Xueliang

    2015-01-16

    Lithium-ion batteries (LIBs) are very promising power supply systems for a variety of applications, such as electric vehicles, plug-in hybrid electric vehicles, grid energy storage, and microelectronics. However, to realize these practical applications, many challenges need to be addressed in LIBs, such as power and energy density, cycling lifetime, safety, and cost. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other film deposition counterparts. In this review, we summarize the state-of-the-art progresses of employing ALD to design novel nanostructured electrode materials and solid-state electrolytes and to tailor electrode/electrolyte interface by surface coatings in order to prevent unfavorable side reactions and achieve optimal performance of the electrode. Insights into the future research and development of the ALD technique for LIB applications are also discussed. We expect that this review article will provide resourceful information to researchers in both fields of LIBs and ALD and also will stimulate more insightful studies of using ALD for the development of next-generation LIBs.

  18. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.

    PubMed

    Fang, Xin; Peng, Huisheng

    2015-04-01

    As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries.

  19. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).

    PubMed

    Guo, Yang; Li, Feng; Zhu, Haochen; Li, Guangming; Huang, Juwen; He, Wenzhi

    2016-05-01

    Spent lithium-ion batteries (LIBs) are considered as an important secondary resource for its high contents of valuable components, such as lithium and cobalt. Currently, studies mainly focus on the recycling of cathode electrodes. There are few studies concentrating on the recovery of anode electrodes. In this work, based on the analysis result of high amount of lithium contained in the anode electrode, the acid leaching process was applied to recycle lithium from anode electrodes of spent LIBs. Hydrochloric acid was introduced as leaching reagent, and hydrogen peroxide as reducing agent. Within the range of experiment performed, hydrogen peroxide was found to have little effect on lithium leaching process. The highest leaching recovery of 99.4wt% Li was obtained at leaching temperature of 80°C, 3M hydrochloric acid and S/L ratio of 1:50g/ml for 90min. The graphite configuration with a better crystal structure obtained after the leaching process can also be recycled.

  20. Surface analysis of lithium coatings in NSTX

    NASA Astrophysics Data System (ADS)

    Timberlake, J.; Kugel, H. W.; Skinner, C. H.; Yao, N.

    2007-11-01

    Lithium coatings have been applied to NSTX plasma facing surfaces as part of a long term program to explore the potential for lithium to improve plasma and PFC performance. A LIThium EvaporatoR (LITER) directed a collimated stream of lithium vapor from an upper vacuum vessel port toward the graphite tiles of the lower center stack and divertor either before, or continuously between and during, discharges. Silicon witness coupons and other samples were retrieved from the vacuum vessel after the campaign and the surface morphology and elemental compostion examined with a XL30 FEG-SEM microscope equipped with an energy dispersed X-rays system sensitive to elements with atomic number greater than 4. The surfaces showed a complex morphology with nucleation sites apparent. Carbon and oxygen were the dominant impurities. Trace metals (Fe and Cr) were detected in the coating on the Si coupon, but not in a flake of bulk Li. We will present results of the surface analysis of samples exposed to Li evaporation in NSTX.

  1. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes.

    PubMed

    Cheng, Lei; Crumlin, Ethan J; Chen, Wei; Qiao, Ruimin; Hou, Huaming; Franz Lux, Simon; Zorba, Vassilia; Russo, Richard; Kostecki, Robert; Liu, Zhi; Persson, Kristin; Yang, Wanli; Cabana, Jordi; Richardson, Thomas; Chen, Guoying; Doeff, Marca

    2014-09-14

    Dense LLZO (Al-substituted Li7La3Zr2O12) pellets were processed in controlled atmospheres to investigate the relationships between the surface chemistry and interfacial behavior in lithium cells. Laser induced breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, synchrotron X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS) studies revealed that Li2CO3 was formed on the surface when LLZO pellets were exposed to air. The distribution and thickness of the Li2CO3 layer were estimated by a combination of bulk and surface sensitive techniques with various probing depths. First-principles thermodynamic calculations confirmed that LLZO has an energetic preference to form Li2CO3 in air. Exposure to air and the subsequent formation of Li2CO3 at the LLZO surface is the source of the high interfacial impedances observed in cells with lithium electrodes. Surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties. Polished samples in lithium cells had an area specific resistance (ASR) of only 109 Ω cm(2) for the LLZO/Li interface, the lowest reported value for Al-substituted LLZO. Galvanostatic cycling results obtained from lithium symmetrical cells also suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime.

  2. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    PubMed

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-01

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry. PMID:26277939

  3. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes

    DOE PAGES

    Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; Meng, Ying Shirley; Stevenson, Keith J.; Alvarado, Judith

    2015-08-03

    Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition bymore » X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.« less

  4. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes

    SciTech Connect

    Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; Meng, Ying Shirley; Stevenson, Keith J.; Alvarado, Judith

    2015-08-03

    Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.

  5. Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode

    NASA Astrophysics Data System (ADS)

    Clark, Steve J.; Wang, Da; Armstrong, A. Robert; Bruce, Peter G.

    2016-03-01

    Graphite, the dominant anode in rechargeable lithium batteries, operates at ~0.1 V versus Li+/Li and can result in lithium plating on the graphite surface, raising safety concerns. Titanates, for example, Li4Ti5O12, intercalate lithium at~1.6 V versus Li+/Li, avoiding problematic lithium plating at the expense of reduced cell voltage. There is interest in 1 V anodes, as this voltage is sufficiently high to avoid lithium plating while not significantly reducing cell potential. The sulfides, LiVS2 and LiTiS2, have been investigated as possible 1 V intercalation electrodes but suffer from capacity fading, large 1st cycle irreversible capacity or polarization. Here we report that the 50/50 solid solution, Li1+x(V0.5Ti0.5)S2, delivers a reversible capacity to store charge of 220 mAhg-1 (at 0.9 V), 99% of theoretical, at a rate of C/2, retaining 205 mAhg-1 at C-rate (92% of theoretical). Rate capability is excellent with 200 mAhg-1 at 3C. C-rate is discharge in 1 h. Polarization is low, 100 mV at C/2. To the best of our knowledge, the properties/performances of Li(V0.5Ti0.5)S2 exceed all previous 1 V electrodes.

  6. Investigation of electrolyte wetting in lithium ion batteries: Effects of electrode pore structures and solution

    NASA Astrophysics Data System (ADS)

    Sheng, Yangping

    Beside natural source energy carriers such as petroleum, coal and natural gas, the lithium ion battery is a promising man-made energy carrier for the future. This is a similar process evolved from horse-powered era to engine driven age. There are still a lot of challenges ahead like low energy density, low rate performance, aging problems, high cost and safety etc. In lithium ion batteries, investigation about manufacturing process is as important as the development of material. The manufacturing of lithium ion battery, including production process (slurry making, coating, drying etc.), and post-production (slitting, calendering etc.) is also complicated and critical to the overall performance of the battery. It includes matching the capacity of anode and cathode materials, trial-and-error investigation of thickness, porosity, active material and additive loading, detailed microscopic models to understand, optimize, and design these systems by changing one or a few parameters at a time. In the manufacturing, one of the most important principles is to ensure good wetting properties between porous solid electrodes and liquid electrolyte. Besides the material surface properties, it is the process of electrolyte transporting to fill the pores in the electrode after injection is less noticed in academic, where only 2-3 drops of electrolyte are needed for lab coin cell level. In industry, the importance of electrolyte transport is well known and it is considered as part of electrolyte wetting (or initial wetting in some situations). In consideration of practical usage term, electrolyte wetting is adopted to use in this dissertation for electrolyte transporting process, although the surface chemistry about wetting is not covered. An in-depth investigation about electrolyte wetting is still missing, although it has significant effects in manufacturing. The electrolyte wetting is determined by properties of electrolyte and electrode microstructure. Currently, only viscosity

  7. Vertically-aligned carbon nanotubes on aluminum as a light-weight positive electrode for lithium-polysulfide batteries.

    PubMed

    Liatard, S; Benhamouda, K; Fournier, A; Ramos, R; Barchasz, C; Dijon, J

    2015-05-01

    A light-weight, high specific surface current collector made of vertically-aligned carbon nanotubes grown on an aluminum substrate was fabricated and studied as a positive electrode in a semi-liquid lithium/polysulfide battery. This simple system delivered stable capacities over 1000 mA h gS(-1) and 2 mA h cm(-2) with almost no capacity loss over 50 cycles.

  8. Analysis of geometric and electrochemical characteristics of lithium cobalt oxide electrode with different packing densities

    NASA Astrophysics Data System (ADS)

    Lim, Cheolwoong; Yan, Bo; Kang, Huixiao; Song, Zhibin; Lee, Wen Chao; De Andrade, Vincent; De Carlo, Francesco; Yin, Leilei; Kim, Youngsik; Zhu, Likun

    2016-10-01

    To investigate geometric and electrochemical characteristics of Li ion battery electrode with different packing densities, lithium cobalt oxide (LiCoO2) cathode electrodes were fabricated from a 94:3:3 (wt%) mixture of LiCoO2, polymeric binder, and super-P carbon black and calendered to different densities. A synchrotron X-ray nano-computed tomography system with a spatial resolution of 58.2 nm at the Advanced Photon Source of the Argonne National Laboratory was employed to obtain three dimensional morphology data of the electrodes. The morphology data were quantitatively analyzed to characterize their geometric properties, such as porosity, tortuosity, specific surface area, and pore size distribution. The geometric and electrochemical analysis reveal that high packing density electrodes have smaller average pore size and narrower pore size distribution, which improves the electrical contact between carbon-binder matrix and LiCoO2 particles. The better contact improves the capacity and rate capability by reducing the possibility of electrically isolated LiCoO2 particles and increasing the electrochemically active area. The results show that increase of packing density results in higher tortuosity, but electrochemically active area is more crucial to cell performance than tortuosity at up to 3.6 g/cm3 packing density and 4 C rate.

  9. Conductive Polymer-Coated VS4 Submicrospheres As Advanced Electrode Materials in Lithium-Ion Batteries.

    PubMed

    Zhou, Yanli; Li, Yanlu; Yang, Jing; Tian, Jian; Xu, Huayun; Yang, Jian; Fan, Weiliu

    2016-07-27

    VS4 as an electrode material in lithium-ion batteries holds intriguing features like high content of sulfur and one-dimensional structure, inspiring the exploration in this field. Herein, VS4 submicrospheres have been synthesized via a simple solvothermal reaction. However, they quickly degrade upon cycling as an anode material in lithium-ion batteries. So, three conductive polymers, polythiophene (PEDOT), polypyrrole (PPY), and polyaniline (PANI), are coated on the surface to improve the electron conductivity, suppress the diffusion of polysulfides, and modify the interface between electrode/electrolyte. PANI is the best in the polymers. It improves the Coulombic efficiency to 86% for the first cycle and keeps the specific capacity at 755 mAh g(-1) after 50 cycles, higher than the cases of naked VS4 (100 mAh g(-1)), VS4@PEDOT (318 mAh g(-1)), and VS4@PPY (448 mAh g(-1)). The good performances could be attributed to the improved charge-transfer kinetics and the strong interaction between PANI and VS4 supported by theoretical simulation. The discharge voltage ∼2.0 V makes them promising cathode materials. PMID:27377263

  10. Conductive Polymer-Coated VS4 Submicrospheres As Advanced Electrode Materials in Lithium-Ion Batteries.

    PubMed

    Zhou, Yanli; Li, Yanlu; Yang, Jing; Tian, Jian; Xu, Huayun; Yang, Jian; Fan, Weiliu

    2016-07-27

    VS4 as an electrode material in lithium-ion batteries holds intriguing features like high content of sulfur and one-dimensional structure, inspiring the exploration in this field. Herein, VS4 submicrospheres have been synthesized via a simple solvothermal reaction. However, they quickly degrade upon cycling as an anode material in lithium-ion batteries. So, three conductive polymers, polythiophene (PEDOT), polypyrrole (PPY), and polyaniline (PANI), are coated on the surface to improve the electron conductivity, suppress the diffusion of polysulfides, and modify the interface between electrode/electrolyte. PANI is the best in the polymers. It improves the Coulombic efficiency to 86% for the first cycle and keeps the specific capacity at 755 mAh g(-1) after 50 cycles, higher than the cases of naked VS4 (100 mAh g(-1)), VS4@PEDOT (318 mAh g(-1)), and VS4@PPY (448 mAh g(-1)). The good performances could be attributed to the improved charge-transfer kinetics and the strong interaction between PANI and VS4 supported by theoretical simulation. The discharge voltage ∼2.0 V makes them promising cathode materials.

  11. Si composite electrode with Li metal doping for advanced lithium-ion battery

    SciTech Connect

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  12. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    NASA Astrophysics Data System (ADS)

    Al-Obeidi, Ahmed; Kramer, Dominik; Boles, Steven T.; Mönig, Reiner; Thompson, Carl V.

    2016-08-01

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  13. Lithium Batteries: Carbon-Rich Active Materials with Macrocyclic Nanochannels for High-Capacity Negative Electrodes in All-Solid-State Lithium Rechargeable Batteries (Small 25/2016).

    PubMed

    Sato, Sota; Unemoto, Atsushi; Ikeda, Takuji; Orimo, Shin-Ichi; Isobe, Hiroyuki

    2016-07-01

    On page 3381, S. Sato, S. Orimo, H. Isobe, and co-workers present the first macrocyclic material to be utilized in negative electrodes of all-solid-state, rechargeable lithium batteries. Assembled to align the molecular openings, the macrocycle paves paths for lithium to migrate to the π-stack intercalation sites for the storage. The macrocyclic nanochannel of a nanometer-scale diameter further provides extra spaces for the lithium storage to surpass conventional graphitic electrodes in the capacity.

  14. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    PubMed

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  15. Stabilizing the surface of lithium metal

    SciTech Connect

    Vaughey, J. T.; Liu, Gao; Zhang, Ji-Guang

    2014-05-01

    Lithium metal is an ideal anode for the next generation of high capacity rechargeable batteries, including Li-air, Li-S, and other Li-based batteries using intercalation compounds. To enable the broad applications for lithium anodes, more fundamental studies need to be conducted to simultaneously address the two barriers discussed above. One of the key breakthroughs in this field may come from the development of new electrolytes (and additives) which can form a stable SEI layer with enough mechanical strength and flexibility. The ideal electrolyte may consist of only two components; one component inhibits dendrite growth, while another component forms a stable SEI layer to improve Coulombic efficiency. In this review, the status of three approaches at manipulating and controlling the lithium metal – electrolyte interface were discussed. While previous studies concentrated on coatings with minimal surface connectivity, the approaches discussed, namely a coating that forms and dissipates into the electrolyte based on charge density, a coating bonded to the termination layer of lithium, and a conformal carbonate coating formed at the interface, all highlight new research directions. Although there are still many obstacles to be overcome, we are optimistic that Li metal can be used as an anode in rechargeable batteries in the foreseeable future. This will enable wide

  16. Mechanism of Silicon Electrode Aging upon Cycling in Full Lithium-Ion Batteries.

    PubMed

    Delpuech, Nathalie; Dupre, Nicolas; Moreau, Philippe; Bridel, Jean-Sebastian; Gaubicher, Joel; Lestriez, Bernard; Guyomard, Dominique

    2016-04-21

    Understanding the aging mechanism of silicon-based negative electrodes for lithium-ion batteries upon cycling is essential to solve the problem of low coulombic efficiency and capacity fading and further to implement this new high-capacity material in commercial cells. Nevertheless, such studies have so far focused on half cells in which silicon is cycled versus an infinite reservoir of lithium. In the present work, the aging mechanism of silicon-based electrodes is studied upon cycling in a full Li-ion cell configuration with LiCoO2 as the positive electrode. Postmortem analyses of both electrodes clearly indicate that neither one of them contains lithium and that no discernible degradation results from the cycling. The aging mechanism can be explained by the reduction of solvent molecules. Electrons extracted from the positive electrode are responsible for an internal imbalance in the cell, which results in progressive slippage of the electrodes and reduces the compositional range of cyclable lithium ions for both electrodes. PMID:26915951

  17. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy.

    PubMed

    Matsushita, Tadashi; Watanabe, Jiro; Nakao, Tatsuya; Yamashita, Seiichi

    2014-11-01

    For the last decades, the performance of the lithium-ion battery (LIB) has been significantly improved and its applications have been expanding rapidly. However, its performance has yet to be enhanced.In the lithium-ion battery development, it is important to elucidate the electrode structure change in detail during the charge and discharge cycling. In particular, solid electrolyte interface (SEI) formed by decomposition of the electrolytes on the graphite negative electrode surface should play an important role for battery properties. Therefore, it is essential to control the structure and composition of SEI to improve the battery performance. Here, we conducted a scanning electron microscope (SEM) and transmission electron microscope (TEM) study to elucidate the structures of the SEI during the charge and discharge process using LiNi1/3Co1/3Mn1/3O2 [1] cathode and graphite anode. [2] Since SEI is a lithium-containing compound with high activity, it was observed without being exposed to the atmosphere. The electrodes including SEI were sampled after dismantling batteries with cutoff voltages of 3V and 4.2V for the charge process and 3V for the discharge process. Fig.1 shows SEM images of the graphite electrode surface during the charge and discharge process. The change of the SEI structure during the process was clearly observed. Further, TEM images showed that the SEI grew thicker during the charge process and becomes thinner when discharged. These results with regard to the reversible SEI structure could give a new insight for the battery development.jmicro;63/suppl_1/i21/DFU056F1F1DFU056F1Fig. 1.SEM images of the graphite electrode surface:(a) before charge process;(b) with charge-cutoff voltage of 3.0V; (c) with charge-cutoff voltage of 4.2V; (d) with discharge-cutoff voltage of 3.0V.

  18. Fabrication methods for low impedance lithium polymer electrodes

    DOEpatents

    Chern, T.S.; MacFadden, K.O.; Johnson, S.L.

    1997-12-16

    A process is described for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

  19. Fabrication methods for low impedance lithium polymer electrodes

    DOEpatents

    Chern, Terry Song-Hsing; MacFadden, Kenneth Orville; Johnson, Steven Lloyd

    1997-01-01

    A process for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

  20. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study.

    PubMed

    Zhao, Kejie; Wang, Wei L; Gregoire, John; Pharr, Matt; Suo, Zhigang; Vlassak, Joost J; Kaxiras, Efthimios

    2011-07-13

    Silicon can host a large amount of lithium, making it a promising electrode for high-capacity lithium-ion batteries. Recent experiments indicate that silicon experiences large plastic deformation upon Li absorption, which can significantly decrease the stresses induced by lithiation and thus mitigate fracture failure of electrodes. These issues become especially relevant in nanostructured electrodes with confined geometries. On the basis of first-principles calculations, we present a study of the microscopic deformation mechanism of lithiated silicon at relatively low Li concentration, which captures the onset of plasticity induced by lithiation. We find that lithium insertion leads to breaking of Si-Si bonds and formation of weaker bonds between neighboring Si and Li atoms, which results in a decrease in Young's modulus, a reduction in strength, and a brittle-to-ductile transition with increasing Li concentration. The microscopic mechanism of large plastic deformation is attributed to continuous lithium-assisted breaking and re-forming of Si-Si bonds and the creation of nanopores.

  1. Three-dimensional silicon/carbon core-shell electrode as an anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jung Sub; Pfleging, Wilhelm; Kohler, Robert; Seifert, Hans Jürgen; Kim, Tae Yong; Byun, Dongjin; Jung, Hun-Gi; Choi, Wonchang; Lee, Joong Kee

    2015-04-01

    Practical application of silicon anodes for lithium-ion batteries has been mainly hindered because of their low electrical conductivity and large volume change (ca. 300%) occurring during the lithiation and delithiation processes. Thus, the surface engineering of active particles (material design) and the modification of electrode structure (electrode design) of silicon are necessary to alleviate these critical limiting factors. Silicon/carbon core-shell particles (Si@C, material design) are prepared by the thermal decomposition and subsequent three-dimensional (3D) electrode structures (electrode design) with a channel width of 15 μm are incorporated using the laser ablation process. The electrochemical characteristics of 3D Si@C used as the anode material for lithium-ion batteries are investigated to identify the effects of material and electrode design. By the introduction of a carbon coating and the laser structuring, an enhanced performance of Si anode materials exhibiting high specific capacity (>1200 mAh g-1 over 300 cycles), good rate capability (1170 mAh g-1 at 8 A g-1), and stable cycling is achieved. The morphology of the core-shell active material combined with 3D channel architecture can minimize the volume expansion by utilizing the void space during the repeated cycling.

  2. Li-Rich Li-Si Alloy As A Lithium-Containing Negative Electrode Material Towards High Energy Lithium-Ion Batteries

    PubMed Central

    Iwamura, Shinichiroh; Nishihara, Hirotomo; Ono, Yoshitaka; Morito, Haruhiko; Yamane, Hisanori; Nara, Hiroki; Osaka, Tetsuya; Kyotani, Takashi

    2015-01-01

    Lithium-ion batteries (LIBs) are generally constructed by lithium-including positive electrode materials, such as LiCoO2, and lithium-free negative electrode materials, such as graphite. Recently, lithium-free positive electrode materials, such as sulfur, are gathering great attention from their very high capacities, thereby significantly increasing the energy density of LIBs. Though the lithium-free materials need to be combined with lithium-containing negative electrode materials, the latter has not been well developed yet. In this work, the feasibility of Li-rich Li-Si alloy is examined as a lithium-containing negative electrode material. Li-rich Li-Si alloy is prepared by the melt-solidification of Li and Si metals with the composition of Li21Si5. By repeating delithiation/lithiation cycles, Li-Si particles turn into porous structure, whereas the original particle size remains unchanged. Since Li-Si is free from severe constriction/expansion upon delithiation/lithiation, it shows much better cyclability than Si. The feasibility of the Li-Si alloy is further examined by constructing a full-cell together with a lithium-free positive electrode. Though Li-Si alloy is too active to be mixed with binder polymers, the coating with carbon-black powder by physical mixing is found to prevent the undesirable reactions of Li-Si alloy with binder polymers, and thus enables the construction of a more practical electrochemical cell. PMID:25626879

  3. Method of preparing an electrode material of lithium-aluminum alloy

    DOEpatents

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  4. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes.

    PubMed

    Chen, Li; Wood, Michael G; Reano, Ronald M

    2013-11-01

    We present a silicon microring resonator with a lithium niobate top cladding and integrated tuning electrodes. Submicrometer thin films of z-cut lithium niobate are bonded to silicon microring resonators via benzocyclobutene. Integrated electrodes are incorporated to confine voltage controlled electric fields within the lithium niobate thin film. The electrode design utilizes thin film metal electrodes and an optically transparent electrode wherein the silicon waveguide core serves as both an optical waveguide medium and as a conductive electrode medium. The hybrid material system combines the electro-optic functionality of lithium niobate with the high index contrast of silicon waveguides, enabling compact low tuning voltage microring resonators. Optical characterization of fabricated devices results in a measured loaded quality factor of 11,500 and a free spectral range of 7.15 nm in the infrared. The demonstrated tunability is 12.5 pm/V, which is over an order of magnitude greater than electrode-free designs.

  5. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design.

    PubMed

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-01-01

    Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides. PMID:27046216

  6. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design

    NASA Astrophysics Data System (ADS)

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-04-01

    Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.

  7. 3D mapping of lithium in battery electrodes using neutron activation

    NASA Astrophysics Data System (ADS)

    He, Yuping; Downing, R. Gregory; Wang, Howard

    2015-08-01

    The neutron depth profiling technique based on the neutron activation reaction, 6Li (n, α) 3H, was applied with two dimensional (2D) pinhole aperture scans to spatially map lithium in 3D. The technique was used to study model LiFePO4 electrodes of rechargeable batteries for spatial heterogeneities of lithium in two cathode films that had undergone different electrochemical cycling histories. The method is useful for better understanding the functioning and failure of batteries using lithium as the active element.

  8. Mapping the anode surface-electrolyte interphase: investigating a life limiting process of lithium primary batteries.

    PubMed

    Bock, David C; Tappero, Ryan V; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-03-11

    Cathode solubility in batteries can lead to decreased and unpredictable long-term battery behavior due to transition metal deposition on the negative electrode such that it no longer supports high current. Analysis of negative electrodes from cells containing vanadium oxide or phosphorus oxide based cathode systems retrieved after long-term testing was conducted. This report demonstrates the use of synchrotron based X-ray microfluorescence (XRμF) to map negative battery electrodes in conjunction with microbeam X-ray absorption spectroscopy (μXAS) to determine the oxidation states of the metal centers resident in the solid electrolyte interphase (SEI) and at the electrode surface. Based on the empirical findings, a conceptual model for the location of metal ions in the SEI and their role in impacting lithium ion mobility at the electrode surfaces is proposed.

  9. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    SciTech Connect

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-08-01

    Thin films of Cu2Sb, prepared on stainless steel and copper substrates with a pulsed laser deposition technique at room temperature, have been evaluated as electrodes in lithium cells. The electrodes operate by a lithium insertion/copper extrusion reaction mechanism, the reversibility of which is superior when copper substrates are used, particularly when electrochemical cycling is restricted to the voltage range 0.65-1.4 V vs. Li/Li+. The superior performance of Cu2Sb films on copper is attributed to the more active participation of the extruded copper in the functioning of the electrode. The continual and extensive extrusion of copper on cycling the cells leads to the isolation of Li3Sb particles and a consequent formation of Sb. Improved cycling stability of both types of electrodes was obtained when cells were cycled between 0.65 and 1.4 V. A low-capacity lithium-ion cell with Cu2Sb and LiNi0.8Co0.15Al0.05O2 electrodes, laminated from powders, shows excellent cycling stability over the voltage range 3.15 - 2.2 V, the potential difference corresponding to approximately 0.65-1.4 V for the Cu2Sb electrode vs. Li/Li+. Chemical self-discharge of lithiated Cu2Sb electrodes by reaction with the electrolyte was severe when cells were allowed to relax on open circuit after reaching a lower voltage limit of 0.1 V. The solid electrolyte interphase (SEI) layer formed on Cu2Sb electrodes after cells had been cycled between 1.4 and 0.65 V vs. Li/Li+ was characterized by Fourier-transform infrared spectroscopy; the SEI layer contributes to the large irreversible capacity loss on the initial cycle of these cells. The data contribute to a better understanding of the electrochemical behavior of intermetallic electrodes in rechargeable lithium batteries.

  10. Rechargeable aqueous lithium-air batteries with an auxiliary electrode for the oxygen evolution

    NASA Astrophysics Data System (ADS)

    Sunahiro, S.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N.

    2014-09-01

    A rechargeable aqueous lithium-air cell with a third auxiliary electrode for the oxygen evolution reaction was developed. The cell consists of a lithium metal anode, a lithium conducting solid electrolyte of Li1+x+yAlx(Ti,Ge)2-xSiyP3-yO12, a carbon black oxygen reduction air electrode, a RuO2 oxygen evolution electrode, and a saturated aqueous solution of LiOH with 10 M LiCl. The cell was successfully operated for several cycles at 0.64 mA cm-2 and 25 °C under air, where the capacity of air electrode was 2000 mAh gcathod-1. The cell performance was degraded gradually by cycling under open air. The degradation was reduced under CO2-free air and pure oxygen. The specific energy density was calculated to be 810 Wh kg-1 from the weight of water, lithium, oxygen, and carbon in the air electrode.

  11. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOEpatents

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  12. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOEpatents

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  13. Lithium-ion capacitors with 2D Nb2CTx (MXene) - carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Byeon, Ayeong; Glushenkov, Alexey M.; Anasori, Babak; Urbankowski, Patrick; Li, Jingwen; Byles, Bryan W.; Blake, Brian; Van Aken, Katherine L.; Kota, Sankalp; Pomerantseva, Ekaterina; Lee, Jae W.; Chen, Ying; Gogotsi, Yury

    2016-09-01

    There is a growing interest to hybrid energy storage devices, such as lithium-ion capacitors, in which battery-type electrodes are combined with capacitor-type ones. It is anticipated that the energy density (either gravimetric or volumetric) of lithium-ion capacitors is improved if pseudocapacitive or fast insertion materials are used instead of conventional activated carbon (AC) in the capacitor-type electrode. MXenes, a new family of two-dimensional transition metal carbides, demonstrate metallic conductivity and fast charge-discharge behavior that make them suitable for this application. In this study, we move beyond single electrodes, half-cell studies and demonstrate three types of hybrid cells using Nb2CTx-carbon nanotube (CNT) films. It is shown that lithiated graphite/Nb2CTx-CNT, Nb2CTx-CNT/LiFePO4 and lithiated Nb2CTx-CNT/Nb2CTx-CNT cells are all able to operate within 3 V voltage windows and deliver capacities of 43, 24 and 36 mAh/g (per total weight of two electrodes), respectively. Moreover, the polarity of the electrodes can be reversed in the symmetric Nb2CTx-CNT cells from providing a positive potential between 0 and 3 V to a negative one from -3 to 0 V. It is shown that the volumetric energy density (50-70 Wh/L) of our first-generation devices with MXene electrodes exceeds that of a lithium titanate/AC capacitor.

  14. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    DOEpatents

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  15. Intermetallic negative electrodes for non-aqueous lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Johnson, Christopher S.; Fransson, Linda M.; Edstrom, Ester Kristina; Henriksen, Gary

    2004-05-04

    A method of operating an electrochemical cell is disclosed. The cell has an intermetallic negative electrode of Cu.sub.6-x M.sub.x Sn.sub.5, wherein x is .ltoreq.3 and M is one or more metals including Si and a positive electrode containing Li in which Li is shuttled between the positive electrode and the negative electrode during charge and discharge to form a lithiated intermetallic negative electrode during charge. The voltage of the electrochemical cell is controlled during the charge portion of the charge-discharge cycles so that the potential of the lithiated intermetallic negative electrode in the fully charged electrochemical cell is less than 0.2 V but greater than 0 V versus metallic lithium.

  16. FeS@C on Carbon Cloth as Flexible Electrode for Both Lithium and Sodium Storage.

    PubMed

    Wei, Xiang; Li, Weihan; Shi, Jin-an; Gu, Lin; Yu, Yan

    2015-12-23

    Flexible and self-supported carbon-coated FeS on carbon cloth films (denoted as FeS@C/carbon cloth) is prepared by a facial hydrothermal method combined with a carbonization treatment. The FeS@C/carbon cloth could be directly used as electrodes for Li-ion batteries (LIBs) and sodium-ion batteries (NIBs). The synthetic effects of the structure, highly electron-conductive of carbon cloth, porous structure for electrolyte access, and uniform carbon shell on FeS surface to accommodate the volume change lead to improved cyclability and rate capability. For lithium storage, the FeS@C/carbon cloth electrode delivers a high discharge capacity of 420 mAh g(-1) even after 100 cycles at a current density of 0.15 C and 370 mAh g(-1)at a high current density of 7.5 C (1 C = 609 mA g(-1). When used for sodium storage, it keeps a reversible capacity of 365 mAh g(-1)after 100 cycles at 0.15 C. Similar process can be utilized for the formation of various cathode and anode composites on carbon cloth for flexible energy storage devices.

  17. Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes

    NASA Astrophysics Data System (ADS)

    Shon, Jeong Kuk; Lee, Hyo Sug; Park, Gwi Ok; Yoon, Jeongbae; Park, Eunjun; Park, Gyeong Su; Kong, Soo Sung; Jin, Mingshi; Choi, Jae-Man; Chang, Hyuk; Doo, Seokgwang; Kim, Ji Man; Yoon, Won-Sub; Pak, Chanho; Kim, Hansu; Stucky, Galen D.

    2016-03-01

    Developing electrode materials with high-energy densities is important for the development of lithium-ion batteries. Here, we demonstrate a mesoporous molybdenum dioxide material with abnormal lithium-storage sites, which exhibits a discharge capacity of 1,814 mAh g-1 for the first cycle, more than twice its theoretical value, and maintains its initial capacity after 50 cycles. Contrary to previous reports, we find that a mechanism for the high and reversible lithium-storage capacity of the mesoporous molybdenum dioxide electrode is not based on a conversion reaction. Insight into the electrochemical results, obtained by in situ X-ray absorption, scanning transmission electron microscopy analysis combined with electron energy loss spectroscopy and computational modelling indicates that the nanoscale pore engineering of this transition metal oxide enables an unexpected electrochemical mass storage reaction mechanism, and may provide a strategy for the design of cation storage materials for battery systems.

  18. Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes.

    PubMed

    Shon, Jeong Kuk; Lee, Hyo Sug; Park, Gwi Ok; Yoon, Jeongbae; Park, Eunjun; Park, Gyeong Su; Kong, Soo Sung; Jin, Mingshi; Choi, Jae-Man; Chang, Hyuk; Doo, Seokgwang; Kim, Ji Man; Yoon, Won-Sub; Pak, Chanho; Kim, Hansu; Stucky, Galen D

    2016-01-01

    Developing electrode materials with high-energy densities is important for the development of lithium-ion batteries. Here, we demonstrate a mesoporous molybdenum dioxide material with abnormal lithium-storage sites, which exhibits a discharge capacity of 1,814 mAh g(-1) for the first cycle, more than twice its theoretical value, and maintains its initial capacity after 50 cycles. Contrary to previous reports, we find that a mechanism for the high and reversible lithium-storage capacity of the mesoporous molybdenum dioxide electrode is not based on a conversion reaction. Insight into the electrochemical results, obtained by in situ X-ray absorption, scanning transmission electron microscopy analysis combined with electron energy loss spectroscopy and computational modelling indicates that the nanoscale pore engineering of this transition metal oxide enables an unexpected electrochemical mass storage reaction mechanism, and may provide a strategy for the design of cation storage materials for battery systems. PMID:27001935

  19. Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes

    PubMed Central

    Shon, Jeong Kuk; Lee, Hyo Sug; Park, Gwi Ok; Yoon, Jeongbae; Park, Eunjun; Park, Gyeong Su; Kong, Soo Sung; Jin, Mingshi; Choi, Jae-Man; Chang, Hyuk; Doo, Seokgwang; Kim, Ji Man; Yoon, Won-Sub; Pak, Chanho; Kim, Hansu; Stucky, Galen D.

    2016-01-01

    Developing electrode materials with high-energy densities is important for the development of lithium-ion batteries. Here, we demonstrate a mesoporous molybdenum dioxide material with abnormal lithium-storage sites, which exhibits a discharge capacity of 1,814 mAh g−1 for the first cycle, more than twice its theoretical value, and maintains its initial capacity after 50 cycles. Contrary to previous reports, we find that a mechanism for the high and reversible lithium-storage capacity of the mesoporous molybdenum dioxide electrode is not based on a conversion reaction. Insight into the electrochemical results, obtained by in situ X-ray absorption, scanning transmission electron microscopy analysis combined with electron energy loss spectroscopy and computational modelling indicates that the nanoscale pore engineering of this transition metal oxide enables an unexpected electrochemical mass storage reaction mechanism, and may provide a strategy for the design of cation storage materials for battery systems. PMID:27001935

  20. Effect of lithium-ion diffusibility on interfacial resistance of LiCoO2 thin film electrode modified with lithium tungsten oxides

    NASA Astrophysics Data System (ADS)

    Hayashi, Tetsutaro; Miyazaki, Takamichi; Matsuda, Yasutaka; Kuwata, Naoaki; Saruwatari, Motoaki; Furuichi, Yuki; Kurihara, Koji; Kuzuo, Ryuichi; Kawamura, Junichi

    2016-02-01

    To investigate the contribution of lithium-ion diffusibility of lithium tungsten oxides (LWOs) to low interfacial resistance, we fabricate thin-film electrodes of 6Li-enriched LiCoO2 (6LCO) modified with various structure-types of 6Li-enriched LWOs by pulsed laser deposition. The electrodes are subjected to X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and secondary-ion mass spectrometry (SIMS) analyses. XRD reveals that the LWO layers have Li2WO4 structure with rhombohedral and tetragonal symmetries and amorphous states. EIS shows that the lowest interfacial resistance of the positive electrodes is given by the amorphous state, followed in order by the tetragonal and the rhombohedral symmetry, and that the diffusion coefficients of lithium-ions in the electrodes increase in the same order. SIMS demonstrates that the fastest lithium-ion self-diffusibility into the LWOs is found in the amorphous state, followed in order by tetragonal and rhombohedral symmetry. Furthermore, the amorphous state LWO modification shows smooth lithium-ion diffusion between the LWO and LCO layers after the electrochemical test. Conversely, the rhombohedral LWO modification demonstrates congested lithium-ion diffusion between the LWO and LCO layers after the test. Thus, fast lithium-ion self-diffusibility into the LWO-modified LCO contributes to enhancing the diffusion of lithium-ions, resulting in the reduction of interfacial resistance.

  1. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  2. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  3. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  4. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  5. 21 CFR 870.2370 - Electrocardiograph surface electrode tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrocardiograph surface electrode tester. 870... Electrocardiograph surface electrode tester. (a) Identification. An electrocardiograph surface electrode tester is a device used to test the function and application of electrocardiograph electrodes. (b)...

  6. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOEpatents

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  7. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes

    SciTech Connect

    Gallagher, Kevin G.; Trask, Stephen E.; Bauer, Christoph; Woehrle, Thomas; Lux, Simon; Tschech, Matthias; Polzin, Bryant J.; Ha, Seungbum; Long, Brandon R.; Wu, Qingliu; Lu, Wenquan; Dees, Dennis W.; Jansen, Andrew N.

    2016-01-01

    Increasing the areal capacity or electrode thickness in lithium ion batteries is one possible means to increase pack level energy density while simultaneously lowering cost. The physics that limit use of high areal capacity as a function of battery power to energy ratio are poorly understood and thus most currently produced automotive lithium ion cells utilize modest loadings to ensure long life over the vehicle battery operation. Here we show electrolyte transport limits the utilization of the positive electrode at critical C-rates during discharge; whereas, a combination of electrolyte transport and polarization lead to lithium plating in the graphite electrode during charge. Experimental measurements are compared with theoretical predictions based on concentrated solution and porous electrode theories. An analytical expression is derived to provide design criteria for long lived operation based on the physical properties of the electrode and electrolyte. Finally, a guideline is proposed that graphite cells should avoid charge current densities near or above 4 mA/cm2 unless additional precautions have been made to avoid deleterious side reaction.

  8. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    DOEpatents

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  9. The Science of Electrode Materials for Lithium Batteries - Progress Report

    SciTech Connect

    Brent Fultz

    2003-08-15

    OAK-B135 (IPLD Cleared) Basic materials science research on materials for anodes and cathodes in electrochemical cells. The work is a mix of electrochemical measurements and analysis of the materials by transmission electron microscopy and x-ray diffractometry. The emphasis is on the thermodynamics and kinetics of how lithium is intercalated and de-intercalleted into anode and cathod materials.

  10. Thermodynamic analysis and effect of crystallinity for silicon monoxide negative electrode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yasuda, Kouji; Kashitani, Yusuke; Kizaki, Shingo; Takeshita, Kohki; Fujita, Takehisa; Shimosaki, Shinji

    2016-10-01

    The electrochemical behavior of SiO negative electrodes for lithium ion batteries is thermodynamically and experimentally investigated. The analysis of the reaction pathway and the calculation of the reaction potentials during the Li insertion/extraction reactions are carried out by the construction of the ternary phase diagram for the Li-Si-O system. In the initial reaction of Li insertion, metallic Si and lithium silicates are formed above 0.37 V vs. Li/Li+ as a conversion reaction of the SiO negative electrode. Further Li insertion produces Li-Si alloys as reversible reaction phases. The decomposition of the Li4SiO4 phase begins before the formation of the Li-Si alloy is completed. The measured electrode behavior of the SiO negative electrode basically agrees with the thermodynamic calculations, especially at a low reaction rate; deviations can be ascribed to kinetic factors and electrode resistance. The values of over 1898 mA h g-1 and 71.0% were obtained for the discharge capacity and the coulombic efficiency, respectively. Furthermore, the overvoltage for an amorphous SiO electrode was smaller than that for a disproportionated SiO electrode into Si and SiO2 phases.

  11. Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt Oxide Electrodes

    SciTech Connect

    Hudak, N. S.; Davis, L. E.; Nagasubramanian, G.

    2014-12-09

    Entropy profiles of lithium cobalt oxide (LiCoO2) electrodes were measured at various stages in the cycle life to examine performance degradation and cycling-induced changes, or lack thereof, in thermodynamics. LiCoO2 electrodes were cycled at C/2 rate in half-cells (vs. lithium anodes) up to 20 cycles or C/5 rate in full cells (vs. MCMB anodes) up to 500 cycles. The electrodes were then subjected to entropy measurements (∂E/∂T, where E is open-circuit potential and T is temperature) in half-cells at regular intervals over the approximate range 0.5 ≤ x ≤ 1 in LixCoO2. Despite significant losses in capacity upon cycling, neither cycling rate resulted in any change to the overall shape of the entropy profile relative to an uncycled electrode, indicating retention of the basic LiCoO2 structure, lithium insertion mechanism, and thermodynamics. This confirms that cycling-induced performance degradation in LiCoO2 electrodes is primarily caused by kinetic barriers that increase with cycling. In the case of electrodes cycled at C/5, there was a subtle, quantitative, and gradual change in the entropy profile in the narrow potential range of the hexagonal-to-monoclinic phase transition. The observed change is indicative of a decrease in the intralayer lithium ordering that occurs at these potentials, and it demonstrates that a cyclinginduced structural disorder accompanies the kinetic degradation mechanisms.

  12. Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt Oxide Electrodes

    DOE PAGES

    Hudak, N. S.; Davis, L. E.; Nagasubramanian, G.

    2014-12-09

    Entropy profiles of lithium cobalt oxide (LiCoO2) electrodes were measured at various stages in the cycle life to examine performance degradation and cycling-induced changes, or lack thereof, in thermodynamics. LiCoO2 electrodes were cycled at C/2 rate in half-cells (vs. lithium anodes) up to 20 cycles or C/5 rate in full cells (vs. MCMB anodes) up to 500 cycles. The electrodes were then subjected to entropy measurements (∂E/∂T, where E is open-circuit potential and T is temperature) in half-cells at regular intervals over the approximate range 0.5 ≤ x ≤ 1 in LixCoO2. Despite significant losses in capacity upon cycling, neithermore » cycling rate resulted in any change to the overall shape of the entropy profile relative to an uncycled electrode, indicating retention of the basic LiCoO2 structure, lithium insertion mechanism, and thermodynamics. This confirms that cycling-induced performance degradation in LiCoO2 electrodes is primarily caused by kinetic barriers that increase with cycling. In the case of electrodes cycled at C/5, there was a subtle, quantitative, and gradual change in the entropy profile in the narrow potential range of the hexagonal-to-monoclinic phase transition. The observed change is indicative of a decrease in the intralayer lithium ordering that occurs at these potentials, and it demonstrates that a cyclinginduced structural disorder accompanies the kinetic degradation mechanisms.« less

  13. Nafion coated sulfur-carbon electrode for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Tang, Qiwei; Shan, Zhongqiang; Wang, Li; Qin, Xue; Zhu, Kunlei; Tian, Jianhua; Liu, Xuesheng

    2014-01-01

    In this paper, a nafion coated electrode is prepared to improve the performance of lithium sulfur batteries. It is demonstrated from a series of measurements that the nafion layer is quite effective in reducing shuttle effect and enhancing the stability and the reversibility of the electrode. When measured under the rate of 0.2 C, the initial discharge capacity of the nafion coated electrode can reach 1084 mAh g-1, with a Columbic efficiency of about 100%. After 100 charge/discharge cycles, this electrode can also deliver a reversible capacity of as high as 879 mAh g-1. Significantly, the charge-transfer resistance of the electrode tends to be reducing after coated with an appropriate thickness of nafion film. The cation conductivity as well as anion inconductivity is considered to be the dominant factor for the superior electrochemical properties.

  14. All-solid-state lithium-sulfur batteries with three-dimensional mesoporous electrode structures

    NASA Astrophysics Data System (ADS)

    Nagao, Miki; Suzuki, Kota; Imade, Yuki; Tateishi, Mitsuru; Watanabe, Ryota; Yokoi, Toshiyuki; Hirayama, Masaaki; Tatsumi, Takashi; Kanno, Ryoji

    2016-10-01

    Although the characteristics of lithium-sulfur batteries are advantageous for various applications, batteries with liquid electrolytes show capacity fading due to the dissolution of polysulfides. All-solid-state lithium-sulfur batteries with highly reversible characteristics are developed using a three-dimensional carbon matrix framework structure for the sulfur cathode. Sulfur is introduced into a carbon replica framework with a pore size of 8-100 nm. The composite electrode structure provides high electronic conduction and allows high cathode utilization during the battery reaction. The capacity of cells using a LiAl alloy as the negative electrode and the thio-LISICON (lithium superionic conductor) electrolyte increases when the pore size of the carbon replica is decreased from 100 nm to less than 15 nm. The highest capacity is obtained for the carbon replica with a pore size of 8.6 nm and a wall thickness of 4.7 nm. An examination of the relationship between the charge-discharge capacity and the structure of carbon replicas with different pore sizes and wall thicknesses indicates that three-dimensional highly ordered mesoporous carbon with a small pore size is a promising electrode structure for lithium-sulfur all-solid-state batteries.

  15. Liquid surface skimmer apparatus for molten lithium and method

    DOEpatents

    Robinson, Samuel C.; Pollard, Roy E.; Thompson, William F.; Stark, Marshall W.; Currin, Jr., Robert T.

    1995-01-01

    This invention relates to an apparatus for separating two fluids having different specific gravities. The invention also relates to a method for using the separating apparatus of the present invention. This invention particularly relates to the skimming of molten lithium metal from the surface of a fused salt electrolyte in the electrolytic production of lithium metal from a mixed fused salt.

  16. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application.

    PubMed

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; Zhu, Chenhui; Zheng, Ziyan; Ling, Min; Jia, Zhe; Bai, Ying; Fu, Yanbao; Lei, Jinglei; Song, Xiangyun; Battaglia, Vincent S; Yang, Wanli; Messersmith, Phillip B; Liu, Gao

    2015-12-01

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87% when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. The combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.

  17. Modified lithium vanadium oxide electrode materials products and methods

    DOEpatents

    Thackeray, Michael M.; Kahaian, Arthur J.; Visser, Donald R.; Dees, Dennis W.; Benedek, Roy

    1999-12-21

    A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.

  18. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes.

    PubMed

    Nam, Ki Tae; Kim, Dong-Wan; Yoo, Pil J; Chiang, Chung-Yi; Meethong, Nonglak; Hammond, Paula T; Chiang, Yet-Ming; Belcher, Angela M

    2006-05-12

    The selection and assembly of materials are central issues in the development of smaller, more flexible batteries. Cobalt oxide has shown excellent electrochemical cycling properties and is thus under consideration as an electrode for advanced lithium batteries. We used viruses to synthesize and assemble nanowires of cobalt oxide at room temperature. By incorporating gold-binding peptides into the filament coat, we formed hybrid gold-cobalt oxide wires that improved battery capacity. Combining virus-templated synthesis at the peptide level and methods for controlling two-dimensional assembly of viruses on polyelectrolyte multilayers provides a systematic platform for integrating these nanomaterials to form thin, flexible lithium ion batteries.

  19. Atomic hydrogen adsorption on lithium-doped graphite surfaces

    SciTech Connect

    Allouche, Alain

    2012-01-01

    The effects of lithium doping of pristine and defective graphite surfaces on hydrogen adsorption are studied by the first-principles Plane-Wave Density Functional Theory. The surface defects are simulated by a single atomic vacancy. The DFT calculation is corrected for long-range effects through semi-empirical London terms for each constituent of the system. The lithium doping of the graphite surfaces notably reinforces hydrogen atom binding. Qualitative comparison with experimental results is given using the lithium 1s energy level shifts induced by the atomic vacancy and/or hydrogen trapping.

  20. Synthesis and evaluation of polythiocyanogen (SCN) x as a rechargeable lithium-ion battery electrode material

    NASA Astrophysics Data System (ADS)

    Krishnan, Palanichamy; Advani, Suresh G.; Prasad, Ajay K.

    Polythiocyanogen, (SCN) x, is a promising lithium-ion battery electrode material due to its high theoretical capacity (462 mAh g -1), safe operation, inexpensive raw materials, and a simple and less energy-intensive manufacturing process. The (SCN) x was prepared from the solution of trithiocyanate (SCN) 3 - in methylene dichloride (MDC), which was prepared by electrochemical oxidation of ammonium thiocyanate (NH 4SCN) in a two-phase electrolysis medium of 1.0 M NH 4SCN in 0.50 M H 2SO 4 + MDC. The (SCN) 3 - underwent auto catalytic polymerization to (SCN) x during MDC removal. Battery electrodes with (SCN) x as the active material were prepared, and tested in Swagelok cells using lithium foil as the counter and reference electrode. The cells delivered capacities in the range of 200-275 mAh g -1 at the discharge-charge rate of 0.2 C. The cells were tested up to 20 cycles and showed repeatable performance with a coulombic efficiency of 97% at the 20th cycle. The results presented here indicate that (SCN) x is a promising lithium-ion battery electrode-material candidate for further studies.

  1. How voltage drops are manifested by lithium ion configurations at interfaces and in thin films on battery electrodes

    DOE PAGES

    Leung, Kevin; Leenheer, Andrew Jay

    2015-04-09

    Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode–surface film interface in response to the voltage, which adds complexity to the “electric double layer” (EDL). We also apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic length scales, including charge separation and interfacial dipole moments. Illustrating examples include Li3PO4, Li2CO3, and LixMn2O4 thin films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We proposemore » that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the “lithium cohesive energy”-based voltage governing Li content widely reported in DFT calculations, which is a slower-responding self-consistency criterion at interfaces. Furthermore, this distinction is critical for a comprehensive description of electrochemical activities on electrode surfaces, including Li+ insertion dynamics, parasitic electrolyte decomposition, and electrodeposition at overpotentials.« less

  2. How voltage drops are manifested by lithium ion configurations at interfaces and in thin films on battery electrodes

    SciTech Connect

    Leung, Kevin; Leenheer, Andrew Jay

    2015-04-09

    Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode–surface film interface in response to the voltage, which adds complexity to the “electric double layer” (EDL). We also apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic length scales, including charge separation and interfacial dipole moments. Illustrating examples include Li3PO4, Li2CO3, and LixMn2O4 thin films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We propose that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the “lithium cohesive energy”-based voltage governing Li content widely reported in DFT calculations, which is a slower-responding self-consistency criterion at interfaces. Furthermore, this distinction is critical for a comprehensive description of electrochemical activities on electrode surfaces, including Li+ insertion dynamics, parasitic electrolyte decomposition, and electrodeposition at overpotentials.

  3. Effect of concentration of lithium ions on the voltammetric responses of nitro-substituted aromatic sulfides in dimethylformamide on glassy carbon electrodes

    NASA Astrophysics Data System (ADS)

    Chellammal, S.; Noel, M.; Anantharaman, P. N.

    Lithium salts are used as supporting electrolytes and ion-pair forming reagents during voltammetric investigations in aprotic solvents. In the present work, these ions are found to have a significant influence on the voltammetric responses of aromatic sulfides in dimethylformamide given their concentration and the cathodic potential limits applied. At very low concentrations (< 4 mM) and cathodic potential limits (- 1.4 V), lithium ions form ion-pairs with the anion radicals generated by the reduction of nitro groups on the electrode surface. This is the conventional lithium ion-pair formation effect reported in the literature. With increasing lithium ion concentration and increasing cathodic limit, the ion-pairs tend to form an insoluble salt film on the electrode surface. This leads to inhibition of further electron transfer. The inhibiting effect does not seem to correlate with the size of the reactant organic molecule involved. At cathodic potential limits exceeding - 2 V, lithium ions appear to undergo direct reduction and subsequent reaction with trace levels of water in the solvent to produce a passive LiOH layer. This inhibits all further electron transfer.

  4. Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries.

    PubMed

    Xu, Kang; Zhuang, Guorong V; Allen, Jan L; Lee, Unchul; Zhang, Sheng S; Ross, Philip N; Jow, T Richard

    2006-04-20

    A homologous series of lithium alkyl mono- and dicarbonate salts was synthesized as model reference compounds for the frequently proposed components constituting the electrolyte/electrode interface in Li-ion batteries. The physicochemical characterization of these reference compounds in the bulk state using thermal analyses and X-ray photoelectron, nuclear magnetic resonance, and Fourier transform infrared spectroscopies establishes a reliable database of comparison for the studies on the surface chemistry of electrodes harvested from Li-ion cells.

  5. The Science of Electrode Materials for Lithium Batteries

    SciTech Connect

    Fultz, Brent

    2007-03-15

    Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

  6. Thermal stability of electrodes in Lithium-ion cells

    SciTech Connect

    ROTH,EMANUEL P.; NAGASUBRAMANIAN,GANESAN

    2000-02-07

    Differential scanning calorimetry (DSC) analysis was used to identify thermal reactions in Sony-type lithium-ion cells and to correlate these reactions with interactions of cell constituents and reaction products. An electrochemical half-cell was used to cycle the anode and cathode materials and to set the state-of-charge (SOC). Three temperature regions of interaction were identified and associated with the SOC (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 80 C involving decomposition of the solid electrolyte interphase (SEI) layer. The LiPF{sub 6} salt in the electrolyte (EC:PC:DEC/1M LiPF{sub 6}) was seen to play an essential role in this reaction. DSC analysis of the anodes from disassembled Sony cells showed similar behavior to the half-cell anodes with a strong exotherm beginning in the 80 C--90 C range. Exothermic reactions were also observed in the 200 C--300 C region between the intercalated lithium anodes, the LiPF{sub 6} salt, and the PVDF binder. These reactions were followed by a high-temperature reaction region, 300 C--400 C, also involving the PVDF binder and the intercalated lithium anodes. Cathode exothermic reactions with the PVDF binder were observed above 200 C and increased with the SOC (decreasing Li content in the cathode). No thermal reactions were seen at lower temperatures suggesting that thermal runaway reactions in this type of cell are initiated at the anode. An Accelerating Rate Calorimeter (ARC) was used to perform measurements of thermal runaway on commercial Sony Li-ion cells as a function of SOC. The cells showed sustained thermal output as low as 80 C in agreement with the DSC observations of anode materials but the heating rate was strongly dependent on the SOC.

  7. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20

  8. Biomimetic nanostructuring of copper thin films enhances adhesion to the negative electrode laminate in lithium-ion batteries.

    PubMed

    Zheng, Ziyan; Wang, Zhihui; Song, Xiangyun; Xun, Shidi; Battaglia, Vincent; Liu, Gao

    2014-10-01

    Thin films of copper are widely used as current collectors for the negative electrodes in lithium-ion batteries. However, a major cause of battery failure is delamination between the current collector and the graphite anode. When silicon or tin is used as active material, delamination becomes a key issue owing to the large volume changes of these materials during lithation and delithation processes. Learning from Nature, we developed a new biomimetic approach based on the adhesion properties of the feet of geckos. The biomimetic approach improves adhesion between the laminate and the copper surface by introducing an array of Cu(OH)2 nanorods, which increases the surface area of the current collector. When graphite anode laminate is casted onto regular and a modified copper surfaces, the modified current collector displays superior adhesion to graphite and the PVDF binder-based electrode. The electrochemical performance of the batteries using these electrodes is not compromised by the additional chemistry of the Cu(OH)2 on the copper surface. The technique can lead to enhanced battery lifetimes over long-term cycling.

  9. Biomimetic nanostructuring of copper thin films enhances adhesion to the negative electrode laminate in lithium-ion batteries.

    PubMed

    Zheng, Ziyan; Wang, Zhihui; Song, Xiangyun; Xun, Shidi; Battaglia, Vincent; Liu, Gao

    2014-10-01

    Thin films of copper are widely used as current collectors for the negative electrodes in lithium-ion batteries. However, a major cause of battery failure is delamination between the current collector and the graphite anode. When silicon or tin is used as active material, delamination becomes a key issue owing to the large volume changes of these materials during lithation and delithation processes. Learning from Nature, we developed a new biomimetic approach based on the adhesion properties of the feet of geckos. The biomimetic approach improves adhesion between the laminate and the copper surface by introducing an array of Cu(OH)2 nanorods, which increases the surface area of the current collector. When graphite anode laminate is casted onto regular and a modified copper surfaces, the modified current collector displays superior adhesion to graphite and the PVDF binder-based electrode. The electrochemical performance of the batteries using these electrodes is not compromised by the additional chemistry of the Cu(OH)2 on the copper surface. The technique can lead to enhanced battery lifetimes over long-term cycling. PMID:25139044

  10. Studies on two classes of positive electrode materials for lithium-ion batteries

    SciTech Connect

    Wilcox, James Douglas

    2008-12-01

    The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO4/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi1/3Co1/3-yMyMn1/3O2 (M=Al, Co, Fe, Ti) and LiNi0.4Co0.2-yMyMn0.4O2 (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO4 is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO4/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO4 particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of

  11. Sandwich electrode designed for high performance lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zhao, Chunsong; Luo, Xi; Chen, Chengmeng; Wu, Hui

    2016-05-01

    We fabricated a sandwich structure Li-ion battery electrode by trapping micron-sized silicon between a copper current collector and a graphene coating. During dynamic electrochemical cycles, the volume change of the silicon can be buffered by the coating through the deformation of soft graphenes. This structure can effectively prevent the silicon particles from escaping from the current collector while keeping the buffered graphene coating integrated and unbroken during deformation. The electrodes could be maintained for 400 cycles at a constant charge capacity of 1000 mA h g-1.We fabricated a sandwich structure Li-ion battery electrode by trapping micron-sized silicon between a copper current collector and a graphene coating. During dynamic electrochemical cycles, the volume change of the silicon can be buffered by the coating through the deformation of soft graphenes. This structure can effectively prevent the silicon particles from escaping from the current collector while keeping the buffered graphene coating integrated and unbroken during deformation. The electrodes could be maintained for 400 cycles at a constant charge capacity of 1000 mA h g-1. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09049k

  12. Lithium iron phosphate battery electrode integrity following high speed pulsed laser cutting

    NASA Astrophysics Data System (ADS)

    Lutey, Adrian H. A.; Fiorini, Maurizio; Fortunato, Alessandro; Carmignato, Simone

    2015-05-01

    Laser exposures are performed on lithium iron phosphate battery electrodes at with process parameters based on those leading to the smallest heat affected zone for low power laser exposure at . Scanning electron microscopy and Raman analysis are performed along the resulting cut edges to characterize macroscopic, chemical and microstructural changes resulting from laser exposure. The increase in velocity with respect to previous studies is found to limit macroscopic changes to areas directly exposed to the laser beam and greatly suppress or completely eliminate microstructural and chemical changes resulting from thermal conduction effects in the metallic conductor layers. These results confirm laser technology as a viable, more flexible solution to mechanical blanking devices for the cutting of lithium iron phosphate battery electrode films.

  13. Semianalytical method of solution for solid phase diffusion in lithium ion battery electrodes: Variable diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Renganathan, Sindhuja; White, Ralph E.

    A semianalytical methodology based on the integral transform technique is proposed to solve the diffusion equation with concentration dependent diffusion coefficient in a spherical intercalation electrode particle. The method makes use of an integral transform pair to transform the nonlinear partial differential equation into a set of ordinary differential equations, which is solved with less computational efforts. A general solution procedure is presented and two illustrative examples are used to demonstrate the usefulness of this method for modeling of diffusion process in lithium ion battery electrode. The solutions obtained using the method presented in this study are compared to the numerical solutions.

  14. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries.

    PubMed

    David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet

    2016-03-30

    Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm(-2)) delivers a charge capacity of ∼588 mAh g(-1)electrode (∼393 mAh cm(-3)electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries.

  15. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries

    PubMed Central

    David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet

    2016-01-01

    Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm−2) delivers a charge capacity of ∼588 mAh g−1electrode (∼393 mAh cm−3electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries. PMID:27025781

  16. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries.

    PubMed

    David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet

    2016-01-01

    Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm(-2)) delivers a charge capacity of ∼588 mAh g(-1)electrode (∼393 mAh cm(-3)electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries. PMID:27025781

  17. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet

    2016-03-01

    Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm-2) delivers a charge capacity of ~588 mAh g-1electrode (~393 mAh cm-3electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries.

  18. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.

    PubMed

    Fu, Kun; Wang, Yibo; Yan, Chaoyi; Yao, Yonggang; Chen, Yanan; Dai, Jiaqi; Lacey, Steven; Wang, Yanbin; Wan, Jiayu; Li, Tian; Wang, Zhengyang; Xu, Yue; Hu, Liangbing

    2016-04-01

    All-component 3D-printed lithium-ion batteries are fabricated by printing graphene-oxide-based composite inks and solid-state gel polymer electrolyte. An entirely 3D-printed full cell features a high electrode mass loading of 18 mg cm(-2) , which is normalized to the overall area of the battery. This all-component printing can be extended to the fabrication of multidimensional/multiscale complex-structures of more energy-storage devices. PMID:26833897

  19. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.

    PubMed

    Fu, Kun; Wang, Yibo; Yan, Chaoyi; Yao, Yonggang; Chen, Yanan; Dai, Jiaqi; Lacey, Steven; Wang, Yanbin; Wan, Jiayu; Li, Tian; Wang, Zhengyang; Xu, Yue; Hu, Liangbing

    2016-04-01

    All-component 3D-printed lithium-ion batteries are fabricated by printing graphene-oxide-based composite inks and solid-state gel polymer electrolyte. An entirely 3D-printed full cell features a high electrode mass loading of 18 mg cm(-2) , which is normalized to the overall area of the battery. This all-component printing can be extended to the fabrication of multidimensional/multiscale complex-structures of more energy-storage devices.

  20. Carbon-Rich Active Materials with Macrocyclic Nanochannels for High-Capacity Negative Electrodes in All-Solid-State Lithium Rechargeable Batteries.

    PubMed

    Sato, Sota; Unemoto, Atsushi; Ikeda, Takuji; Orimo, Shin-Ichi; Isobe, Hiroyuki

    2016-07-01

    A high-capacity electrode active material with macrocyclic nanochannels is developed for a negative electrode of lithium batteries. With appropriate design of the molecular and crystal structures, a ubiquitous chemical commonly available in reagent stocks of any chemistry laboratories, naphthalene, was transformed into a high-performance electrode material for all-solid-state lithium batteries.

  1. Electrode-supported thin α-alumina separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mi, Wanliang; Sharma, Gaurav; Dong, Xueliang; Jin, Yi; Lin, Y. S.

    2016-02-01

    Lithium ion batteries with an inorganic separator offer improved safety and enhanced reliability. The free-standing inorganic separators recently studied for lithium ion batteries are brittle and expensive. To address these issues, this paper reports the synthesis of a new and stable electrode-supported separator using a low-cost ceramic powder. Thin and porous α-Al2O3 separator films of thicknesses down to 40 μm were coated on Li4Ti5O12 (LTO) electrode by blade-coating a slurry of α-Al2O3, water and a small amount of polyvinyl alcohol (PVA). The performance of the LTO/Li cells with coated α-Al2O3 separator improves with decreasing PVA content. Cells with coated α-Al2O3 separator containing 0.4wt% PVA exhibit similar discharge capacity but better rate capability than those with commercial polypropylene (PP) or thick sintered α-Al2O3 separator. The coated α-Al2O3 separator does not react with LTO even after many charge/discharge cycles. Fabrication of the electrode-supported α-Al2O3 separator is scalable and cost-effective, offering high potential for practical application in industrial lithium ion battery manufacturing.

  2. Solid-State Electrode Engineering and Material Processing for All-Solid-State Lithium and Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Yersak, Thomas A.

    In this dissertation we demonstrate the full rechargeability of a FeS 2/lithium metal battery at 60°C. To enable the reversibility of the FeS2 redox chemistry we utilize a bulk all-solid-state battery architecture based upon the Li2S-P2S5 glass-ceramic electrolyte. The glass-ceramic electrolyte's non-volatility and non-flammability allows us to use a lithium metal anode safely, while its solid nature confines FeS2's intermediate electroactive species to prevent active material loss and capacity fade. Based only on the weight of the active materials our battery stands to triple the specific energy (Wh kg-1) of conventional state-of-the-art Li-ion batteries. We also observe ortho-FeS2 as a charge product and propose a new discharge mechanism which revises 30 years of research on the subject. Unfortunately, our laboratory FeS2/Li battery could not achieve a practical cell-level specific energy because the composite electrode was nearly 70 wt. % glass-ceramic electrolyte and carbon black. We also found that our batteries were not durable because the formation of lithium dendrites through the glass-ceramic electrolyte separator membrane frequently internally shorted test cells upon charge. The remainder of this dissertation outlines our work to develop an all-solid-state Li-ion battery to address the shorting issue and the work done to engineer better active material-electrolyte solid-solid interfaces in the composite electrode for high cell-level specific energy.

  3. Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material

    SciTech Connect

    Chockla, Aaron M.; Harris, Justin T.; Akhavan, Vahid A.; Bogart, Timothy D.; Holmberg, Vincent C.; Steinhagen, Chet; Mullins, C. Buddie; Stevenson, Keith J.; Korgel, Brian A.

    2011-11-09

    A nonwoven fabric with paperlike qualities composed of silicon nanowires is reported. The nanowires, made by the supercritical-fluid–liquid–solid process, are crystalline, range in diameter from 10 to 50 nm with an average length of >100 μm, and are coated with a thin chemisorbed polyphenylsilane shell. About 90% of the nanowire fabric volume is void space. Thermal annealing of the nanowire fabric in a reducing environment converts the polyphenylsilane coating to a carbonaceous layer that significantly increases the electrical conductivity of the material. This makes the nanowire fabric useful as a self-supporting, mechanically flexible, high-energy-storage anode material in a lithium ion battery. Anode capacities of more than 800 mA h g{sup –1} were achieved without the addition of conductive carbon or binder.

  4. Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-Ion porous electrode.

    SciTech Connect

    Dees, D. W.; Kawauchi, S.; Abraham, D. P.; Prakash, J.; Chemical Sciences and Engineering Division; Toyota Central R&D Labs Inc.; Illinois Inst. of Tech.

    2009-04-01

    Galvanostatic Intermittent Titration Technique (GITT) experiments were conducted to determine the lithium diffusion coefficient of LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}, used as the active material in a lithium-ion battery porous composite positive electrode. An electrochemical model, based on concentrated solution porous electrode theory, was developed to analyze the GITT experimental results and compare to the original GITT analytical theory. The GITT experimental studies on the oxide active material were conducted between 3.5 and 4.5 V vs. lithium, with the maximum lithium diffusion coefficient value being 10{sup -10} cm{sup 2} s{sup -1} at 3.85 V. The lithium diffusion coefficient values obtained from this study agree favorably with the values obtained from an earlier electrochemical impedance spectroscopy study.

  5. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S.; Noda, Suguru; Lee, Seung Woo

    2016-02-01

    Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering

  6. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  7. Enhanced electrochemical performance of nanoparticle coated polyethylene separator surface for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sivaprakash, Prabhavathy; Sen, P. K.; Sivaprakash, S.

    2014-12-01

    The separator (membrane) in a lithium ion rechargeable battery plays an indispensable role by preventing material and electrical contact of positive and negative electrodes, allowing swift ionic flow within the cell. Herein, we report an interesting approach to improve performance of readily available polyolefin separator by coating it with synthesized silica nanoparticles/polyvinylidene fluoride optimal blend. This coated composite separator was investigated for surface morphology, wettability, electrolyte uptake, thermal stability and performance studies. Coin cells fabricated using surface coated separator show good C-rate capability and stable cycle performance with capacity retention of 99% even after 50 cycles.

  8. Experimental investigation of a thermionic converter with developed surface electrodes

    SciTech Connect

    Luke, J.R.; El-Genk, M.S.; Adrian, J.M.

    1997-01-01

    A thermionic converter with developed planar electrode surfaces is designed and tested. One of the electrodes has concentric circular grooves cut into its surface, while the other electrode surface is smooth. The grooves are 0.5 mm deep and 0.5 mm wide, having lands that are 1.0 mm wide. The experimental setup is flexible so that either the smooth or developed surface electrode can be operated as the emitter, with the other operating as the collector. The I-V characteristics and power output are compared for the two electrode arrangements. {copyright} {ital 1997 American Institute of Physics.}

  9. Improved Positive Electrode Materials for Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Conry, Thomas Edward

    The introduction of the first commercially produced Li-ion battery by Sony in 1990 sparked a period of unprecedented growth in the consumer electronics industry. Now, with increasing efforts to move away from fossil-fuel-derived energy sources, a substantial amount of current research is focused on the development of an electrified transportation fleet. Unfortunately, existent battery technologies are unable to provide the necessary performance for electric vehicles (EV's) and plug-in hybrid electric vehicles (PHEV's) vehicles at a competitive cost. The cost and performance metrics of current Li-ion batteries are mainly determined by the positive electrode materials. The work here is concerned with understanding the structural and electrochemical consequences of cost-lowering mechanisms in two separate classes of Li-ion cathode materials; the LiMO2 (M = Ni, Mn, Co) layered oxides and the LiMPO4 olivine materials; with the goal of improving performance. Al-substitution for Co in LiNizMnzCo1-2zO 2 ("NMC") materials not only decreases the costly Co-content, but also improves the safety aspects and, notably, enhances the cycling stability of the layered oxide electrodes. The structural and electrochemical effects of Al-substitution are investigated here in a model NMC compound, LiNi0.45 Mn0.45Co0.1-yAlyO2. In addition to electrochemical measurements, various synchrotron-based characterization methods are utilized, including high-resolution X-ray diffraction (XRD), in situ X-ray diffraction, and X-ray absorption spectroscopy (XAS). Al-substitution causes a slight distortion of the as-synthesized hexagonal layered oxide lattice, lowering the inherent octahedral strain within the transition metal layer. The presence of Al also is observed to limit the structural variation of the NMC materials upon Li-deintercalation, as well as extended cycling of the electrodes. Various olivine materials, Li

  10. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes.

    PubMed

    Klink, Stefan; Schuhmann, Wolfgang; La Mantia, Fabio

    2014-08-01

    Porous lithium ion battery electrodes are characterized using a vertical distribution of cross-currents. In an appropriate simplification, this distribution can be described by a transmission line model (TLM) consisting of infinitely thin electrode layers. To investigate the vertical distribution of currents, overpotentials, and irreversible charge losses in a porous graphite electrode in situ, a multi-layered working electrode (MWE) was developed as the experimental analogue of a TLM. In this MWE, each layer is in ionic contact but electrically insulated from the other layers by a porous separator. It was found that the negative graphite electrodes get lithiated and delithiated stage-by-stage and layer-by-layer. Several mass-transport- as well as non-mass-transport-limited processes could be identified. Local current densities can reach double the average, especially on the outermost layer at the beginning of each intercalation stage. Furthermore, graphite particles close to the counter electrode act as "electrochemical sieve" reducing the impurities present in the electrolyte such as water.

  11. Surface-modified separators prepared with conductive polymer and aluminum fluoride for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shin, Won-Kyung; Yoo, Ji-Hyun; Kim, Dong-Won

    2015-04-01

    Conventional polyethylene (PE) separators are surface-modified by thin coating with conductive poly(3,4-ethylenedioxythiophen)-co-poly(ethylene glycol) (PEDOT-co-PEG) copolymer and aluminum fluoride particles. The surface-modified separators exhibit a significant reduction in thermal shrinkage and an improved electrolyte uptake. By using these separators, the lithium-ion cells composed of carbon negative electrodes and LiNi1/3Co1/3Mn1/3O2 positive electrodes are assembled and their cycling performances are evaluated. The cells assembled with the surface-modified separators demonstrate superior cycling performance compared to cells prepared with pristine PE separator, both at ambient temperatures and at elevated temperature.

  12. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stockli, Martin P.; Welton, R. F.

    2011-09-26

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H{sup -} ion generation was increased by up to a factor of 5 by plasma electrode 'activation', without supplying additional Cs, by heating the collar to high temperature for several hours using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, optimum cesiation was produced (without additional Cs) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces. Such activation by accumulation of impurities on electrode surfaces can be a reason for H{sup -} emission enhancement in other so-called 'volume' negative ion sources.

  13. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    PubMed

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries.

  14. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage.

    PubMed

    Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S; Noda, Suguru; Lee, Seung Woo

    2016-02-14

    Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ∼210 mA h gCS(-1), with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ∼155 mA h gelectrode(-1) with no obvious capacity fading up to 10,000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices. PMID:26809548

  15. Observation of State of Charge Distributions in Lithium-ion Battery Electrodes

    SciTech Connect

    Remillard, Jeffrey; O'Neil, Ann E; Bernardi, Dawn; Ro, Tina J; Miller, Ted; Neitering, Ken; Go, Joo-Young; Nanda, Jagjit

    2011-01-01

    Current lithium-ion battery technology is gearing towards meeting the robust demand of power and energy requirements for all-electric transportation without compromising on the safety, performance, and cycle life. The state-of-charge (SOC) of a Li-ion cell can be a macroscopic indicator of the state-of-health of the battery. The microscopic origin of the SOC relates to the local lithium content in individual electrode particles and the effective ability of Li-ions to transport or shuttle between the redox couples through the cell geometric boundaries. Herein, micrometer-resolved Raman mapping of a transition-metal-based oxide positive electrode, Li{sub 1-x}(Ni{sub y}Co{sub z}Al{sub 1-y-z})O{sub 2}, maintained at different SOCs, is shown. An attempt has been made to link the underlying changes to the composition and structural integrity at the individual particle level. Furthermore, an SOC distribution at macroscopic length scale of the electrodes is presented.

  16. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    DOE PAGES

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; Kim, Gi -Heon; Mukherjee, Partha P.

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constantmore » voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.« less

  17. State of health estimation in composite electrode lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Bartlett, Alexander; Marcicki, James; Rhodes, Kevin; Rizzoni, Giorgio

    2015-06-01

    Electrochemical models of lithium-ion batteries have been increasingly considered for online state of health estimation. These models can more accurately predict cell performance than traditional circuit models and can better relate physical degradation mechanisms to changes in model parameters. However, examples of state of health estimation algorithms that are validated with experimental data are scarce in the literature, particularly for cells with a composite electrode. The individual electrode active materials in a composite electrode may degrade at different rates and according to different physical mechanisms, and online estimation of this degradation facilitates more robust knowledge of how battery performance changes over its life. In this paper we use a reduced-order electrochemical model for a composite LiMn2O4-LiNi1/3Mn1/3 Co1/3O2 (LMO-NMC) electrode cell for online estimation of active material loss. Experimental data collected from composite electrode half cells that were aged under constant current cycling are used in an extended Kalman filter to estimate model parameters associated with loss of each active material. The capacity loss predicted by the online estimates agrees well with the measured capacity loss. Additionally, a differential capacity analysis demonstrates that active materials lose capacity at a similar rate, the same conclusion obtained from the online estimation algorithm.

  18. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    SciTech Connect

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; Kim, Gi -Heon; Mukherjee, Partha P.

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constant voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.

  19. FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries.

    PubMed

    Ait Salah, A; Jozwiak, P; Zaghib, K; Garbarczyk, J; Gendron, F; Mauger, A; Julien, C M

    2006-12-01

    The essential structural features of lithium-metal phosphates (LMP) have been studied using FTIR spectroscopy which is a sensitive tool to probe the local environment in the solid materials. Various LMP materials where M is iron have been investigated including phospho-olivine LiFePO(4), diphosphate LiFeP(2)O(7), Nasicon-type phosphate Li(3)Fe(2)(PO(4))(3) and dihydrate FePO(4).2H(2)O. Vitreous and amorphous materials are also considered. Analysis of internal and external modes of vibration allows to distinguish between the different phases and the type of cationic environment in the framework. Results corroborate the contribution of the main factors which are responsible for the complexity of the spectra, i.e. departure from ideal symmetry, interactions between polyhedra, bridging atoms and lattice distortion.

  20. A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yin, Fuxing; Zhang, Yongguang; Zhang, Chengwei; Mentbayeva, Almagul; Umirov, Nurzhan; Xie, Hongxian; Bakenov, Zhumabay

    2015-11-01

    A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and increasing the sulfur weight ratio in the electrode. Transmission electronic microscopy showed the formation of a highly developed core-shell tubular structure consisting of S/N-CNT composite with uniform sulfur coating on the surface of N-CNT. As a core in the composite, the N-CNT with N functionalization provides a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material.

  1. A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries.

    PubMed

    Zhao, Yan; Yin, Fuxing; Zhang, Yongguang; Zhang, Chengwei; Mentbayeva, Almagul; Umirov, Nurzhan; Xie, Hongxian; Bakenov, Zhumabay

    2015-12-01

    A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and increasing the sulfur weight ratio in the electrode. Transmission electronic microscopy showed the formation of a highly developed core-shell tubular structure consisting of S/N-CNT composite with uniform sulfur coating on the surface of N-CNT. As a core in the composite, the N-CNT with N functionalization provides a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material.

  2. Designing an elastomeric binder for large-volume-change electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Zonghai

    It is of commercial importance to develop high capacity negative and positive electrode materials for lithium-ion batteries to meet the energy requirements of portable electronic devices. Excellent capacity retention has been achieved for thin sputtered films of amorphous Si, Ge and Si-Sn alloys even when cycled to 2000 mAh/g and above, which suggests that amorphous alloys are capable of extended cycling. However, PVDF-based composite electrodes incorporating a-Si0.64Sn0.36/Ag powder (10 wt% silver coating) (˜10mum) still suffer from severe capacity fading because of the huge volumetric changes of a-Si0.64Sn0.36/Ag during charge/discharge cycling. It is the objective of this thesis to understand the problem scientifically and to propose practical solutions to solve this problem. Mechanical studies of binders for lithium battery electrodes have never been reported in the literature. The mechanical properties of commonly used binders, such as poly(vinylidene fluoride) (PVDF), haven't been challenged because commercially used active materials, such as LiCoO2 and graphite, have small volumetric changes (<10%) during charge/discharge cycling. However, the recently proposed metallic alloys have huge volumetric changes (up to 250%) during cycling. In this case, the mechanical properties of the binder become critical. A tether model is proposed to qualitatively understand the capacity fading of high-volume-change electrodes, and to predict the properties of a good binder system. A crosslinking/coupling route was used to modify the binder system according to the requirements of the tether model. A poly(vinylidene fluoride-tetrafluoroethylenepropylene)-based elastomeric binder system was designed to successfully improve the capacity retention of a-Si0.64 Sn0.36/Ag composite electrodes. In this thesis, it has also proven nontrivial to maximize the capacity retention of large-volume-change electrodes even when a fixed elastomeric binder system was used. The parameters that

  3. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    NASA Technical Reports Server (NTRS)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  4. Layered polyaniline composites with cation-exchanging properties for positive electrodes of rechargeable lithium batteries

    SciTech Connect

    Morita, Masayuki; Miyazaki, Seijiro; Ishikawa, Masashi; Matsuda, Yoshiharu . Dept. of Applied Chemistry and Chemical Engineering); Tajima, Hidehiko . Nagasaki Research and Development Center); Adachi, Kazuyuki; Anan, Fumimiasa . Research Lab.)

    1995-01-01

    Layered polyaniline/polyaniline-polyanion composite films (PAn-X/PAn-PA) were synthesized by electrochemical oxidation of aniline in aqueous acid solutions (HCl, HClO[sub 4]) followed by polymerization in poly(styrene-4-sulfonic acid) (PSSH) solutions. The films consist of inner polyaniline (PAn) layers doped with smaller size anions (X) and outer PSS-doped PAn layers. The resulting films showed high redox activities with cation-transfer properties in organic electrolyte solutions. The improved charge/discharge characteristics of the composite films gave an expectation of higher energy density for the full cell with lithium negative electrode.

  5. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery. PMID:26981849

  6. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery.

  7. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Liwei; Watanabe, Izumi; Doi, Takayuki; Okada, Shigeto; Yamaki, Jun-ichi

    The thermal stability and chemical structure of solid electrolyte interphase (SEI) formed on a natural-graphite negative-electrode in ethylene carbonate (EC) and dimethyl carbonate (DMC)-based electrolyte was investigated by thermogravimetry-differential thermal analysis combined with mass spectrometry (TG-DTA/MS) and X-ray photoemission spectroscopy (XPS). Due to the decomposition of SEI, two CO 2 evolution peaks at around 330 and 430 °C were detected in TG-MS studies with continuous CO 2 background. The continuous CO 2 background was attributed to the gradual decomposition of oxygen-containing polymeric species of SEI. Another two dominant components of SEI, lithium alkyl carbonate and lithium oxalate, were found to contribute to the CO 2 peaks at 330 and 430 °C separately. The effects of charging-depth, current density and cycle number on the CO 2 distribution and XPS spectra were studied. It was found that lithium oxalate was reduction product of lithium alkyl carbonate during the intercalation of lithium ions. The reduction reaction could be accelerated by elevated temperature. The transformation of SEI chemical structure showed direct effect on the thermal stability of SEI. At the same time, lithium carbonate was also found in SEI on the graphite electrode after long cycles, while it was negligible in the electrode subjected to short cycles.

  8. Rock-salt-type lithium metal sulphides as novel positive-electrode materials

    PubMed Central

    Sakuda, Atsushi; Takeuchi, Tomonari; Okamura, Kazuhiro; Kobayashi, Hironori; Sakaebe, Hikari; Tatsumi, Kuniaki; Ogumi, Zempachi

    2014-01-01

    One way of increasing the energy density of lithium-ion batteries is to use electrode materials that exhibit high capacities owing to multielectron processes. Here, we report two novel materials, Li2TiS3 and Li3NbS4, which were mechanochemically synthesised at room temperature. When used as positive-electrode materials, Li2TiS3 and Li3NbS4 charged and discharged with high capacities of 425 mA h g−1 and 386 mA h g−1, respectively. These capacities correspond to those resulting from 2.5- and 3.5-electron processes. The average discharge voltage was approximately 2.2 V. It should be possible to prepare a number of high-capacity materials on the basis of the concept used to prepare Li2TiS3 and Li3NbS4. PMID:24811191

  9. Surface Plasma Source Electrode Activation by Surface Impurities

    SciTech Connect

    Dudnikov, Vadim; Han, Baoxi; Johnson, Rolland P.; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2011-01-01

    In experiments with RF saddle antenna surface plasma sources (SPS), the efficiency of H- ion generation was increased by up to a factor of 5 by long time plasma electrode activation, without adding Cs from Cs supply, by heating the collar to high temperature using hot air flow and plasma discharge. Without cracking or heating the cesium ampoule, but likely with Cs recovery from impurities, the achieved energy efficiency was comparable to that of conventionally cesiated SNS RF sources with an external or internal Cs supply. In the experiments, perfect cesiation was produced (without additional Cs supply) by the collection and trapping of traces of remnant cesium compounds from SPS surfaces.

  10. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.

    PubMed

    Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P

    2013-07-23

    Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.

  11. Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode

    SciTech Connect

    Ding, Fei; Xu, Wu; Chen, Xilin; Zhang, Jian; Engelhard, Mark H.; Zhang, Yaohui; Johnson, Bradley R.; Crum, Jarrod V.; Blake, Thomas A.; Liu, Xingjiang; Zhang, Jiguang

    2013-09-04

    The application of lithium (Li) metal anode in rechargeable batteries is hindered by Li dendrite growth during Li deposition and low Li Coulombic efficiency (CE), where the nonaqueous electrolyte plays a critical role. In this work, the effects of different carbonate solvents and Li salts on Li deposition morphology and CE were systematically investigated. Typically cyclic carbonates are found to favor the formation of uniform Li film and improve Li CE than linear carbonates do. Several specific cyclic carbonates that are conventionally used as solid electrolyte interface formation additives in Li ion batteries can also improve the CE of Li anode. Furthermore, among the nine electrolyte salts studied, LiAsF6 and LiBOB lead to the highest CE for Li anode. LiBOB also leads to much smoother Li morphology than other salts do. Considering the better safety of LiBOB as compared to LiAsF6, LiBOB is a promising Li salt for rechargeable Li metal batteries with high CE. By combining the best electrolyte solvent/salt that can lead to high Li CE and novel electrolyte additives that can prevent dendrite formation, it is possible to find an electrolyte that not only prevents Li dendrite formation but also lead to high CE during Li deposition/stripping processes.

  12. Ultra-light Hierarchical Graphene Electrode for Binder-Free Supercapacitors and Lithium-Ion Battery Anodes.

    PubMed

    Zuo, Zicheng; Kim, Tae Young; Kholmanov, Iskandar; Li, Huifeng; Chou, Harry; Li, Yuliang

    2015-10-01

    A mild and environmental-friendly method is developed for fabricating a 3D interconnected graphene electrode with large-scale continuity. Such material has interlayer pores between reduced graphene oxide nanosheets and in-plane pores. Hence, a specific surface area up to 835 m(2) g(-1) and a high powder conductivity up to 400 S m(-1) are achieved. For electrochemical applications, the interlayer pores can serve as "ion-buffering reservoirs" while in-plane ones act as "channels" for shortening the mass cross-plane diffusion length, reducing the ion response time, and prevent the interlayer restacking. As binder-free supercapacitor electrode, it delivers a specific capacitance up to 169 F g(-1) with surface-normalized capacitance close to 21 μF cm(-2) (intrinsic capacitance) and power density up to 7.5 kW kg(-1), in 6 m KOH aqueous electrolyte. In the case of lithium-ion battery anode, it shows remarkable advantages in terms of the initiate reversible Coulombic efficiency (61.3%), high specific capacity (932 mAh g(-1) at 100 mA g(-1)), and robust long-term retention (93.5% after 600 cycles at 2000 mAh g(-1)).

  13. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect

    2010-07-01

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  14. Recent achievements on inorganic electrode materials for lithium-ion batteries.

    PubMed

    Croguennec, Laurence; Palacin, M Rosa

    2015-03-11

    The lithium-ion battery technology is rooted in the studies of intercalation of guest ions into inorganic host materials developed ca. 40 years ago. It further turned into a commercial product, which will soon blow its 25th candle. Intense research efforts during this time have resulted in the development of a large spectrum of electrode materials together with deep understanding of the underlying structure-property relationships that govern their performance. This has enabled an ever increasing electrochemical yield together with the diversification of the technology into several subfamilies, tailoring materials to application requirements. The present paper aims at providing a global and critical perspective on inorganic electrode materials for lithium-ion batteries categorized by their reaction mechanism and structural dimensionality. Specific emphasis is put on recent research in the field, which beyond the chemistry and microstructure of the materials themselves also involves considering interfacial chemistry concepts alongside progress in characterization techniques. Finally a short personal perspective is provided on some plausible development of the field. PMID:25679823

  15. Surface Chemistry and Precursor Material Effects on the Performance of Pyrolyzed Nanofibers as Anodes for Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Loebl, Andrew James

    Next-generation lithium-ion batteries to meet consumer demands and new applications require the development of new electrode materials. Electrospinning of polymers is a simple and effective method to create one-dimensional, self-supporting materials, with no inactive components after pyrolysis. Composites of these nanofibers and high-capacity lithium materials have been demonstrated to possess superior reversible capacity than state-of-the-art commercial anodes. Despite impressive reversible discharge capacities polyacrylonitrile-based composites are not ready for adoption in commercial applications. These materials suffer from irreversible losses of Li to formation on the electrode of the solid electrolyte interphase during the first charge of the cell. This thesis work has taken two approaches to engineer high-performing nanofiber-based electrodes. First, the chemistry at the interface of the electrode and the electrolyte has been changed by depositing new surfaces. Attempts to create a graphitic fiber surface via plasma enhanced chemical vapor deposition did not result in an improvement of the irreversible losses. However, the experiments did demonstrate the growth of large surface area carbon nanowalls on the pyrolyzed electrospun fibers, creating a material which could serve as a substrate in catalysis or as an electrode for composite ultra-capacitors. Additionally, passivation surfaces were deposited by atomic layer deposition and molecular layer deposition. These new surfaces were employed to reduce the irreversible consumption of lithium by moving the charge transfer reaction to the interface of the carbon and the new material. The removal the lithium from the solvent prior to charge transfer limits the irreversible reduction of solvent by metallic lithium. Alumina films grown by atomic layer deposition reduced lithium losses to the solid electrolyte interphase by up to 42% for twenty deposition cycles. This large improvement in irreversible capacity

  16. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2010-01-01

    In 2009, lithium consumption in the United States was estimated to have been about 1.2 kt (1,300 st) of contained lithium, a 40-percent decrease from 2008. The United States was estimated to be the fourth largest consumer of lithium, and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2009, world lithium consumption was estimated to have been about 18.7 kt (20,600 st) of lithium contained in minerals and compounds.

  17. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2011-01-01

    In 2010, lithium consumption in the United States was estimated to have been about 1 kt (1,100 st) of contained lithium, a 23-percent decrease from 2009. The United States was estimated to be the fourth largest consumer of lithium. It remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2010, world lithium consumption was estimated to have been about 21 kt (22,000 st) of lithium contained in minerals and compounds, a 12-percent increase from 2009.

  18. The Importance of Detecting Lithium on the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Heredia, A.; Colín-García, M.; Valdivia Silva, J.; Beraldi, H.; Negrón-Mendoza, A.; Durand-Manterola, H.; García-Martínez, J. L.; Ramos, S.; Ortega, F.

    2012-09-01

    Lithium (Li) is the third element of the periodic table and was created in the Big Bang together with hydrogen and helium. In water solution it exhibits low vapor pressure and freezing point, and other colligative properties enhancing the range of liquid water availability. With organic compounds, it forms organo-lithium reagents with direct covalent bond allowing for organic complexity. Lithium accreted with the Sun and planets in minor amounts and later it originated by nuclear fission processes due to highenergy cosmic rays. Here, we suggest that detecting Li in the surface of Mars by instruments bound to Curiosity rover may provide crucial evidence for the potential chemical evolution in the red planet in the presence of liquid water.

  19. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Breitung, Ben; Baumann, Peter; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten

    2016-07-01

    Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle size as well as electrode structure and height are visualized with high resolution. Furthermore, the formation and evolution of the solid-electrolyte interphase (SEI) can be followed and its thickness determined by phase imaging and nano-indentation, respectively. Major changes occur in the first lithiation cycle at potentials below 0.6 V with respect to Li/Li+ due to increased SEI formation - which is a dynamic process - and alloying reactions. Overall, these results provide insight into the function of silicon-based composite electrodes and further show that AFM is a powerful technique that can be applied to important battery materials, without restriction to thin film geometries.Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle

  20. Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design [Morphological design of silicon electrode with anisotropic interface reaction rate for lithium ion batteries

    DOE PAGES

    An, Yonghao; Wood, Brandon C.; Ye, Jianchao; Chiang, Yet -Ming; Wang, Y. Morris; Tang, Ming; Jiang, Hanqing

    2015-06-08

    Although crystalline silicon (c-Si) anodes promise very high energy densities in Li-ion batteries, their practical use is complicated by amorphization, large volume expansion and severe plastic deformation upon lithium insertion. Recent experiments have revealed the existence of a sharp interface between crystalline Si (c-Si) and the amorphous LixSi alloy during lithiation, which propagates with a velocity that is orientation dependent; the resulting anisotropic swelling generates substantial strain concentrations that initiate cracks even in nanostructured Si. Here we describe a novel strategy to mitigate lithiation-induced fracture by using pristine c-Si structures with engineered anisometric morphologies that are deliberately designed to counteractmore » the anisotropy in the crystalline/amorphous interface velocity. This produces a much more uniform volume expansion, significantly reducing strain concentration. Based on a new, validated methodology that improves previous models of anisotropic swelling of c-Si, we propose optimal morphological designs for c-Si pillars and particles. The advantages of the new morphologies are clearly demonstrated by mesoscale simulations and verified by experiments on engineered c-Si micropillars. The results of this study illustrate that morphological design is effective in improving the fracture resistance of micron-sized Si electrodes, which will facilitate their practical application in next-generation Li-ion batteries. In conclusion, the model and design approach present in this paper also have general implications for the study and mitigation of mechanical failure of electrode materials that undergo large anisotropic volume change upon ion insertion and extraction.« less

  1. Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design [Morphological design of silicon electrode with anisotropic interface reaction rate for lithium ion batteries

    SciTech Connect

    An, Yonghao; Wood, Brandon C.; Ye, Jianchao; Chiang, Yet -Ming; Wang, Y. Morris; Tang, Ming; Jiang, Hanqing

    2015-06-08

    Although crystalline silicon (c-Si) anodes promise very high energy densities in Li-ion batteries, their practical use is complicated by amorphization, large volume expansion and severe plastic deformation upon lithium insertion. Recent experiments have revealed the existence of a sharp interface between crystalline Si (c-Si) and the amorphous LixSi alloy during lithiation, which propagates with a velocity that is orientation dependent; the resulting anisotropic swelling generates substantial strain concentrations that initiate cracks even in nanostructured Si. Here we describe a novel strategy to mitigate lithiation-induced fracture by using pristine c-Si structures with engineered anisometric morphologies that are deliberately designed to counteract the anisotropy in the crystalline/amorphous interface velocity. This produces a much more uniform volume expansion, significantly reducing strain concentration. Based on a new, validated methodology that improves previous models of anisotropic swelling of c-Si, we propose optimal morphological designs for c-Si pillars and particles. The advantages of the new morphologies are clearly demonstrated by mesoscale simulations and verified by experiments on engineered c-Si micropillars. The results of this study illustrate that morphological design is effective in improving the fracture resistance of micron-sized Si electrodes, which will facilitate their practical application in next-generation Li-ion batteries. In conclusion, the model and design approach present in this paper also have general implications for the study and mitigation of mechanical failure of electrode materials that undergo large anisotropic volume change upon ion insertion and extraction.

  2. Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode

    PubMed Central

    Clark, Steve J.; Wang, Da; Armstrong, A. Robert; Bruce, Peter G.

    2016-01-01

    Graphite, the dominant anode in rechargeable lithium batteries, operates at ∼0.1 V versus Li+/Li and can result in lithium plating on the graphite surface, raising safety concerns. Titanates, for example, Li4Ti5O12, intercalate lithium at∼1.6 V versus Li+/Li, avoiding problematic lithium plating at the expense of reduced cell voltage. There is interest in 1 V anodes, as this voltage is sufficiently high to avoid lithium plating while not significantly reducing cell potential. The sulfides, LiVS2 and LiTiS2, have been investigated as possible 1 V intercalation electrodes but suffer from capacity fading, large 1st cycle irreversible capacity or polarization. Here we report that the 50/50 solid solution, Li1+x(V0.5Ti0.5)S2, delivers a reversible capacity to store charge of 220 mAhg−1 (at 0.9 V), 99% of theoretical, at a rate of C/2, retaining 205 mAhg−1 at C-rate (92% of theoretical). Rate capability is excellent with 200 mAhg−1 at 3C. C-rate is discharge in 1 h. Polarization is low, 100 mV at C/2. To the best of our knowledge, the properties/performances of Li(V0.5Ti0.5)S2 exceed all previous 1 V electrodes. PMID:26996753

  3. Soft X-ray absorption spectroscopic studies with different probing depths: Effect of an electrolyte additive on electrode surfaces

    NASA Astrophysics Data System (ADS)

    Yogi, Chihiro; Takamatsu, Daiko; Yamanaka, Keisuke; Arai, Hajime; Uchimoto, Yoshiharu; Kojima, Kazuo; Watanabe, Iwao; Ohta, Toshiaki; Ogumi, Zenpachi

    2014-02-01

    A solid electrolyte interphase (SEI) formed on a model LiCoO2 electrode was analyzed by the ultra-soft X-ray absorption spectroscopy (XAS). The data of Li K-, B K-, C K-, O K-, and Co L-edges spectra for the SEI film on the electrode were collected using three detection methods with different probing depths. The electrode was prepared by a pulsed laser deposition method. All the spectral data consistently indicated that the SEI film containing lithium carbonate was instantly formed just after the soak of the electrode into the electrolyte solution and that it decomposed during the repeated charge-discharge reactions. The decomposition of the SEI film seems to cause the deterioration in lithium ion battery cycle performance. By adding lithium bis(oxalate) borate (LiBOB) to the electrolyte the decomposition could be suppressed leading to longer cycle life. It was found that some of the Co ions at the electrode surface were reduced to Co(II) during the charge-discharge reactions and this reaction could also be suppressed by the addition of LiBOB.

  4. Effect of Polymer Electrode Morphology on Performance of a Lithium/Polypyrrole Battery. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nicholson, Marjorie Anne

    1991-01-01

    A variety of conducting polymer batteries were described in the recent literature. In this work, a Li/Polypyrrole secondary battery is described. The effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase is explored. A method of preparing conducting polymers was developed which yields high surface area per unit volume of electrode material. A porous membrane is used as a template in which to electrochemically polymerize pyrrole, then the membrane is dissolved, leaving the polymer in a fibrillar form. Conventionally, the polymer is electrochemically polymerized as a dense polymer film on a smooth Pt disk electrode. Previous work has shown that when the polymer is electrochemically polymerized in fribrillar form, charge transport rates are faster and charge capacities are greater than for dense, conventionally grown films containing the same amount of polymer. The purpose is to expand previous work by further investigating the possibilities of the optimization of transport rates in polypyrrole films by controlling the morphology of the films. The utility of fibrillar polypyrrole as a cathode material in a lithium/polymer secondary battery is then assessed. The performance of the fibrillar battery is compared to the performance of an analogous battery which employed a conventionally grown polypyrrole film. The study includes a comparison of cyclic voltammetry, shape of charge/discharge curves, discharge time and voltage, cycle life, coulombic efficiencies, charge capacities, energy densities, and energy efficiencies.

  5. Fabrication of Binder-Free Pencil-Trace Electrode for Lithium-Ion Battery: Simplicity and High Performance.

    PubMed

    Park, Hyean-Yeol; Kim, Min-Sik; Bae, Tae-Sung; Yuan, Jinliang; Yu, Jong-Sung

    2016-05-10

    A binder-free and solvent-free pencil-trace electrode with intercalated clay particles (mainly SiO2) is prepared via a simple pencil-drawing process on grinded Cu substrate with rough surface and evaluated as an anode material for lithium-ion battery. The pencil-trace electrode exhibits a high reversible capacity of 672 mA h g(-1) at 100 mA g(-1) after 100 cycles, which can be attributed to the unique multilayered graphene particles with lateral size of few micrometers and the formation of LixSi alloys generated by interaction between Li(+) and an active Si produced in the electrochemical reduction of nano-SiO2 in the clay particles between the multilayered graphene particles. The multilayered graphene obtained by this process consists of 1 up to 20 and occasionally up to 50 sheets and thus can not only help accommodating the volume change and alleviating the structural strain during Li ion insertion and extraction but also allow rapid access of Li ions during charge-discharge cycling. Drawing with a pencil on grinded Cu substrate is not only very simple but also cost-effective and highly scalable, easily establishing graphitic circuitry through a solvent-free and binder-free approach.

  6. Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes

    SciTech Connect

    Wang, Feng; Robert, Rosa; Chernova, Natasha A.; Pereira, Nathalie; Omenya, Fredrick; Badway, Fadwa; Hua, Xiao; Ruotolo, Michael; Zhang, Ruigang; Wu, Lijun; Volkov, Vyacheslav; Su, Dong; Key, Baris; Whittingham, M. Stanley; Grey, Clare P.; Amatucci, Glenn G.; Zhu, Yimei; Graetz, Jason

    2015-10-15

    Materials that undergo a conversion reaction with lithium (e.g., metal fluorides MF{sub 2}: M = Fe, Cu, ...) often accommodate more than one Li atom per transition-metal cation, and are promising candidates for high-capacity cathodes for lithium ion batteries. However, little is known about the mechanisms involved in the conversion process, the origins of the large polarization during electrochemical cycling, and why some materials are reversible (e.g., FeF{sub 2}) while others are not (e.g., CuF{sub 2}). In this study, we investigated the conversion reaction of binary metal fluorides, FeF{sub 2} and CuF{sub 2}, using a series of local and bulk probes to better understand the mechanisms underlying their contrasting electrochemical behavior. X-ray pair-distribution-function and magnetization measurements were used to determine changes in short-range ordering, particle size and microstructure, while high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) were used to measure the atomic-level structure of individual particles and map the phase distribution in the initial and fully lithiated electrodes. Both FeF{sub 2} and CuF{sub 2} react with lithium via a direct conversion process with no intercalation step, but there are differences in the conversion process and final phase distribution. During the reaction of Li{sup +} with FeF{sub 2}, small metallic iron nanoparticles (<5 nm in diameter) nucleate in close proximity to the converted LiF phase, as a result of the low diffusivity of iron. The iron nanoparticles are interconnected and form a bicontinuous network, which provides a pathway for local electron transport through the insulating LiF phase. In addition, the massive interface formed between nanoscale solid phases provides a pathway for ionic transport during the conversion process. These results offer the first experimental evidence explaining the origins of the high lithium reversibility in FeF{sub 2}. In contrast

  7. Effects of Propylene Carbonate Content in CsPF₆-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries.

    PubMed

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Xiang, Hongfa; Engelhard, Mark H; Polzin, Bryant J; Wang, Chongmin; Zhang, Ji-Guang; Xu, Wu

    2016-03-01

    The effects of propylene carbonate (PC) content in CsPF6-containing electrolytes on the performances of graphite electrode in lithium half cells and in graphite∥LiNi0.80Co0.15Al0.05O2 (NCA) full cells are investigated. It is found that the performance of graphite electrode is significantly affected by PC content in the CsPF6-containing electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode can be attributed to the synergistic effects of the PC solvent and the Cs(+) additive. The synergistic effects of Cs(+) additive and appropriate amount of PC enable the formation of a robust, ultrathin, and compact solid electrolyte interphase (SEI) layer on the surface of graphite electrode, which is only permeable for desolvated Li(+) ions and allows fast Li(+) ion transport through it. Therefore, this SEI layer effectively suppresses the PC cointercalation and largely alleviates the Li dendrite formation on graphite electrode during lithiation even at relatively high current densities. The presence of low-melting-point PC solvent improves the sustainable operation of graphite∥NCA full cells under a wide temperature range. The fundamental findings also shed light on the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in various energy-storage devices.

  8. Pie-like electrode design for high-energy density lithium-sulfur batteries.

    PubMed

    Li, Zhen; Zhang, Jin Tao; Chen, Yu Ming; Li, Ju; Lou, Xiong Wen David

    2015-01-01

    Owing to the overwhelming advantage in energy density, lithium-sulfur (Li-S) battery is a promising next-generation electrochemical energy storage system. Despite many efforts in pursuing long cycle life, relatively little emphasis has been placed on increasing the areal energy density. Herein, we have designed and developed a 'pie' structured electrode, which provides an excellent balance between gravimetric and areal energy densities. Combining lotus root-like multichannel carbon nanofibers 'filling' and amino-functionalized graphene 'crust', the free-standing paper electrode (S mass loading: 3.6 mg cm(-2)) delivers high specific capacity of 1,314 mAh g(-1) (4.7 mAh cm(-2)) at 0.1 C (0.6 mA cm(-2)) accompanied with good cycling stability. Moreover, the areal capacity can be further boosted to more than 8 mAh cm(-2) by stacking three layers of paper electrodes with S mass loading of 10.8 mg cm(-2). PMID:26608228

  9. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries.

    PubMed

    Ai, Guo; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Song, Xiangyun; En, Yunfei; Battaglia, Vincent S; Srinivasan, Venkat; Liu, Gao

    2016-09-14

    The lithium-sulfur (Li-S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg·cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure. PMID:27501313

  10. Pie-like electrode design for high-energy density lithium-sulfur batteries.

    PubMed

    Li, Zhen; Zhang, Jin Tao; Chen, Yu Ming; Li, Ju; Lou, Xiong Wen David

    2015-11-26

    Owing to the overwhelming advantage in energy density, lithium-sulfur (Li-S) battery is a promising next-generation electrochemical energy storage system. Despite many efforts in pursuing long cycle life, relatively little emphasis has been placed on increasing the areal energy density. Herein, we have designed and developed a 'pie' structured electrode, which provides an excellent balance between gravimetric and areal energy densities. Combining lotus root-like multichannel carbon nanofibers 'filling' and amino-functionalized graphene 'crust', the free-standing paper electrode (S mass loading: 3.6 mg cm(-2)) delivers high specific capacity of 1,314 mAh g(-1) (4.7 mAh cm(-2)) at 0.1 C (0.6 mA cm(-2)) accompanied with good cycling stability. Moreover, the areal capacity can be further boosted to more than 8 mAh cm(-2) by stacking three layers of paper electrodes with S mass loading of 10.8 mg cm(-2).

  11. Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage.

    PubMed

    Song, Zhiping; Qian, Yumin; Gordin, Mikhail L; Tang, Duihai; Xu, Terrence; Otani, Minoru; Zhan, Hui; Zhou, Haoshen; Wang, Donghai

    2015-11-16

    In spite of recent progress, there is still a lack of reliable organic electrodes for Li storage with high comprehensive performance, especially in terms of long-term cycling stability. Herein, we report an ideal polymer electrode based on anthraquinone, namely, polyanthraquinone (PAQ), or specifically, poly(1,4-anthraquinone) (P14AQ) and poly(1,5-anthraquinone) (P15AQ). As a lithium-storage cathode, P14AQ showed exceptional performance, including reversible capacity almost equal to the theoretical value (260 mA h g(-1); >257 mA h g(-1) for AQ), a very small voltage gap between the charge and discharge curves (2.18-2.14=0.04 V), stable cycling performance (99.4% capacity retention after 1000 cycles), and fast-discharge/charge ability (release of 69% of the low-rate capacity or 64% of the energy in just 2 min). Exploration of the structure-performance relationship between P14AQ and related materials also provided us with deeper understanding for the design of organic electrodes.

  12. Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries

    NASA Astrophysics Data System (ADS)

    Li, Chia-Chen; Lin, Yu-Sheng

    2012-12-01

    The interactions of organic additives with active powders are investigated and are found to have great influence on the determination of the mixing process for preparing electrode slurries with good dispersion and electrochemical properties of lithium iron phosphate (LiFePO4) electrodes. Based on the analyses of zeta potential, sedimentation, and rheology, it is shown that LiFePO4 prefers to interact with styrene-butadiene rubber (SBR) relative to other organic additives such as sodium carboxymethyl cellulose (SCMC), and thus shows preferential adsorption by SBR, whereas SBR has much lower efficiency than SCMC in dispersing LiFePO4. Therefore, for SCMC to interact with and disperse LiFePO4 before the interaction of LiFePO4 with SBR, it is suggested to mix SCMC with LiFePO4 prior to the addition of SBR during the slurry preparation process. For the electrode prepared via the suggested process, i.e., the sequenced adding process in which SCMC is mixed with active powders prior to the addition of SBR, a much better electrochemical performance is obtained than that of the one prepared via the process referred as the simultaneous adding process, in which mixing of SCMC and SBR with active powders in simultaneous.

  13. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte.

    PubMed

    Holtz, Megan E; Yu, Yingchao; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A; Arias, Tomás A; Abruña, Héctor D; Muller, David A

    2014-03-12

    A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here, we describe an approach that enables imaging the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio nonlinear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte and image charging dynamics in the cathode. We observe competing delithiation mechanisms such as core-shell and anisotropic growth occurring in parallel for different particles under the same conditions. This technique represents a general approach for the operando nanoscale imaging of electrochemically active ions in the electrode and electrolyte in a wide range of electrical energy storage systems.

  14. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries.

    PubMed

    Ai, Guo; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Song, Xiangyun; En, Yunfei; Battaglia, Vincent S; Srinivasan, Venkat; Liu, Gao

    2016-09-14

    The lithium-sulfur (Li-S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg·cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.

  15. Graphene protected surface state on Ir(111) with adsorbed lithium

    NASA Astrophysics Data System (ADS)

    Lazic, Predrag; Pervan, Petar; Petrovic, Marin; Srut-Rakic, Iva; Pletikosic, Ivo; Kralj, Marko; Milun, Milorad; Valla, Tonica

    It is well known that electronic surface states (SS) get strongly perturbed upon the chemical adsorption of very small amount of adsorbates. Adsorption of lithium atoms on Ir(111) is no exception to that rule. Iridium SS gets strongly perturbed and is practically eradicated - it can not be seen as a sharp peak in the ARPES measurement. However, if the system is prepared with graphene on top of Ir/Li system, the iridium SS reappears. We present a combined experimental and theoretical study of the described system. Using the density functional theory calculations for large unit cells with disordered lithium atoms geometries on the (111) surface of iridium we were able to reproduce the results of the ARPES measurements - showing clearly that the SS signal is strongly suppressed when lithium is adsorbed, while it is almost unchanged when lithium is intercalated (i.e. with graphene on top of it). Looking at the projected density of states we constructed a rather simple model explaining this behavior which seems to be general.

  16. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  17. Lithium

    USGS Publications Warehouse

    Ober, J.A.

    2006-01-01

    In 2005, lithium consumption in the United States was at 2.5 kt of contained lithium, nearly 32% more than the estimate for 2004. World consumption was 14.1 kt of lithium contained in minerals and compounds in 2003. Exports from the US increased slightly compared with 2004. Due to strong demand for lithium compounds in 2005, both lithium carbonate plants in Chile were operating at or near capacity.

  18. Individual finger classification from surface EMG: Influence of electrode set.

    PubMed

    Celadon, Nicolo; Dosen, Strahinja; Paleari, Marco; Farina, Dario; Ariano, Paolo

    2015-01-01

    The aim of this work was to minimize the number of channels, determining acceptable electrode locations and optimizing electrode-recording configurations to decode isometric flexion and extension of individual fingers. Nine healthy subjects performed cyclical isometric contractions activating individual fingers. During the experiment they tracked a moving visual marker indicating the contraction type (flexion/extension), desired activation level and the finger that should be employed. Surface electromyography (sEMG) signals were detected from the forearm muscles using a matrix of 192 channels (24 longitudinal columns and 8 transversal rows, 10 mm inter-electrode distance). The classification was evaluated in the context of a linear discriminant analysis (LDA) with different sets of EMG electrodes: A) one linear array of 8 electrodes, B) two arrays of 8 electrodes each, C) a set with one electrode on the barycenter of each sEMG activity area, D) all the recorded channels. The results showed that the classification accuracy depended on the electrode set (F=14.67, p<;0.001). The best reduction approaches were the barycenter calculation and the use of two linear arrays of electrodes, which performed similarly to each other (both > 82% of average success rate). Considering the computation time and electrode positioning, it is concluded that two arrays of 8 electrodes provide an optimal configuration to classify the isometric flexion and extension of individual fingers.

  19. Comparison of three-dimensional analysis and stereological techniques for quantifying lithium-ion battery electrode microstructures.

    PubMed

    Taiwo, Oluwadamilola O; Finegan, Donal P; Eastwood, David S; Fife, Julie L; Brown, Leon D; Darr, Jawwad A; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R

    2016-09-01

    Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity.

  20. Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes.

    PubMed

    Li, Linsen; Jacobs, Ryan; Gao, Peng; Gan, Liyang; Wang, Feng; Morgan, Dane; Jin, Song

    2016-03-01

    Metal fluorides and oxides can store multiple lithium ions through conversion chemistry to enable high-energy-density lithium-ion batteries. However, their practical applications have been hindered by an unusually large voltage hysteresis between charge and discharge voltage profiles and the consequent low-energy efficiency (<80%). The physical origins of such hysteresis are rarely studied and poorly understood. Here we employ in situ X-ray absorption spectroscopy, transmission electron microscopy, density functional theory calculations, and galvanostatic intermittent titration technique to first correlate the voltage profile of iron fluoride (FeF3), a representative conversion electrode material, with evolution and spatial distribution of intermediate phases in the electrode. The results reveal that, contrary to conventional belief, the phase evolution in the electrode is symmetrical during discharge and charge. However, the spatial evolution of the electrochemically active phases, which is controlled by reaction kinetics, is different. We further propose that the voltage hysteresis in the FeF3 electrode is kinetic in nature. It is the result of ohmic voltage drop, reaction overpotential, and different spatial distributions of electrochemically active phases (i.e., compositional inhomogeneity). Therefore, the large hysteresis can be expected to be mitigated by rational design and optimization of material microstructure and electrode architecture to improve the energy efficiency of lithium-ion batteries based on conversion chemistry.

  1. Evaluation and Testing of Commercially-Available Carbon Nanotubes as Negative Electrodes for Lithium Ion Cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    2007-01-01

    Rechargeable lithium ion (Li-ion) battery technology offers significant performance advantages over the nickel-based technologies used for energy storage for the majority of NASA's missions. Specifically Li-ion technology offers a threefold to fourfold increase in gravimetric and volumetric energy densities and produces voltages in excess of three times the value of typical nickel-based battery systems. As part of the Advanced Battery Technology program at NASA Glenn Research Center (GRC), a program on the evaluation of anodes for Li-ion cells and batteries was conducted. This study focused on the feasibility of using carbon nanotubes as anodes in Li-Ion cells. Candidate materials from multiple sources were evaluated. Their performance was compared to a standard anode comprised of mesocarbon microbeads. In all cases, the standard MCMB electrode exhibited superior performance. The details and results of the study are presented.

  2. MoS2/C Multilayer Nanospheres as an Electrode Base for Lithium Power Sources

    NASA Astrophysics Data System (ADS)

    Shyyko, Lyudmyla O.; Kotsyubynsky, Volodymyr O.; Budzulyak, Ivan M.; Sagan, Piotr

    2016-05-01

    Multilayer nanospheres with alternating 2H-MoS2 and C layers were studied as a cathode base for lithium power sources. Interesting hierarchical structure, synergetic effect, and the presence of defects as supplementary active sites, introduced by the additional annealing at 773 K in Ar atmosphere, have determined the conductivity, referred to symmetric hopping or random barrier model, and led to achieve the high values of specific capacity of 3700, 1390, and 790 A h kg-1 at currents 0.1, 0.3, and 0.5 C. Such unusual result was never reported before and could be explained by combining of the faradaic and non-faradaic accumulation processes within electrode material.

  3. Room temperature performance of 4 V aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode

    NASA Astrophysics Data System (ADS)

    Makino, Sho; Yamamoto, Rie; Sugimoto, Shigeyuki; Sugimoto, Wataru

    2016-09-01

    Water-stable multi-layered lithium-doped carbon (LixC6) negative electrode using poly(ethylene oxide) (PEO)-lithium bis(trifluoromethansulfonyl)imide (LiTFSI) polymer electrolyte containing N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI) ionic liquid was developed. Electrochemical properties at 60 °C of the aqueous hybrid supercapacitor using activated carbon positive electrode and a multi-layered LixC6 negative electrode (LixC6 | PEO-LiTFSI | LTAP) without PP13TFSI exhibited performance similar to that using Li anode (Li | PEO-LiTFSI | LTAP). A drastic decrease in ESR was achieved by the addition of PP13TFSI to PEO-LiTFSI, allowing room temperature operation. The ESR of the multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C was 801 Ω cm2, which is 1/6 the value of the multi-layered Li negative electrode with PEO-LiTFSI (5014 Ω cm2). Charge/discharge test of the aqueous hybrid supercapacitor using multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C afforded specific capacity of 20.6 mAh (g-activated carbon)-1 with a working voltage of 2.7-3.7 V, and good long-term capability up to 3000 cycles. Furthermore, an aqueous hybrid supercapacitor consisting of a high capacitance RuO2 nanosheet positive electrode and multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI showed specific capacity of 196 mAh (g-RuO2)-1 and specific energy of 625 Wh (kg-RuO2)-1 in 2.0 M acetic acid-lithium acetate buffered solution at 25 °C.

  4. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries.

    PubMed

    Key, Baris; Bhattacharyya, Rangeet; Morcrette, Mathieu; Seznéc, Vincent; Tarascon, Jean-Marie; Grey, Clare P

    2009-07-01

    Lithium-ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation because of the extremely large gravimetric and volumetric capacity of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link structure in these systems with electrochemical performance. We apply a combination of static, in situ and magic angle sample spinning, ex situ (7)Li nuclear magnetic resonance (NMR) studies to investigate the changes in local structure that occur in an actual working LIB. The first discharge occurs via the formation of isolated Si atoms and smaller Si-Si clusters embedded in a Li matrix; the latter are broken apart at the end of the discharge, forming isolated Si atoms. A spontaneous reaction of the lithium silicide with the electrolyte is directly observed in the in situ NMR experiments; this mechanism results in self-discharge and potential capacity loss. The rate of this self-discharge process is much slower when CMC (carboxymethylcellulose) is used as the binder.

  5. Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery.

    PubMed

    Luo, Langli; Wu, Jinsong; Xu, Junming; Dravid, Vinayak P

    2014-11-25

    Electrode materials based on conversion reactions with lithium ions have shown much higher energy density than those based on intercalation reactions. Here, nanocubes of a typical metal oxide (Co3O4) were grown on few-layer graphene, and their electrochemical lithiation and delithiation were investigated at atomic resolution by in situ transmission electron microscopy to reveal the mechanism of the reversible conversion reaction. During lithiation, a lithium-inserted Co3O4 phase and a phase consisting of nanosized Co-Li-O clusters are identified as the intermediate products prior to the subsequent formation of Li2O crystals. In delithiation, the reduced metal nanoparticles form a network and breakdown into even smaller clusters that act as catalysts to prompt reduction of Li2O, and CoO nanoparticles are identified as the product of the deconversion reaction. Such direct real-space, real-time atomic-scale observations shed light on the phenomena and mechanisms in reaction-based electrochemical energy conversion and provide impetus for further development in electrochemical charge storage devices.

  6. Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni

    SciTech Connect

    Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

    2004-09-08

    Lithium manganese oxides substituted with nickel or cobalt were characterized electrochemically in lithium cell configurations. The compounds studied were either single-phase layered structures with either primarily O2 or O3 stacking arrangements, or O2/O3 intergrowths, prepared from P2, P3 and P2/P3 sodium-containing precursors, respectively. The stacking arrangements are extremely sensitive to the Na/T. M. (T. M. = transition metal) ratios and the level of substitution. Phase diagrams showing the stability regions of the various arrangements for the Na-Ni-Mn-O system are presented. A possible correlation between vacancies and electrochemical performance is suggested. For high levels of substitution with Ni, fewer defects are possible for materials containing more O3 component and higher discharge capacities can be achieved, but spinel conversion upon cycling also occurs more rapidly as the O3 content increases. Intergrowths show intermediate behavior and represent a potential route towards designing stable, high capacity electrodes.

  7. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    NASA Astrophysics Data System (ADS)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  8. Multi-band reflectance spectroscopy of carbonaceous lithium iron phosphate battery electrodes versus state of charge

    NASA Astrophysics Data System (ADS)

    Norris, R.; Iyer, K.; Chabot, V.; Nieva, P.; Yu, A.; Khajepour, A.; Wang, J.

    2014-03-01

    This study aims to expand the body of knowledge about the optical properties of battery cathode materials. Although some studies have been conducted on the optical properties of Lithium Iron Phosphate (LiFePO4), to the authors' knowledge, this is the first study of its kind on electrodes extracted from commercially available LiFePO4 batteries. The use of Vis/NIR and FTIR spectroscopy provides for a methodology to study the optical properties of LiFePO4 and may allow for the characterization of other properties such as particle size and the proportions of LiFePO4 versus FePO4 material. Knowledge of these properties is important for the development of a mechanism to measure the state-of charge (SOC) in lithium ion batteries. These properties are also important in a host of other applications including battery modeling and materials characterization. Cylindrical LiFePO4 batteries (from A123 Systems Inc.) were acquired from the commercial market and charged to 10 different states between 30% and 80% of their nominal capacity using a constant-current, constant-voltage (CCCV) cycling method. Visual inspection of the extracted electrodes shows that the LiFePO4/C-cathodes display subtle changes in color (shades of grey) with respect to SOC. Vis/NIR measurements support the visual observation of uniform intensity variations versus SOC. FTIR measurements show an absorbance signature that varies with SOC and is distinct from results found in the literature for similar LiFePO4-based material systems, supporting the uniqueness of the absorbance fingerprint.

  9. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries.

    PubMed

    Breitung, Ben; Baumann, Peter; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten

    2016-08-01

    Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle size as well as electrode structure and height are visualized with high resolution. Furthermore, the formation and evolution of the solid-electrolyte interphase (SEI) can be followed and its thickness determined by phase imaging and nano-indentation, respectively. Major changes occur in the first lithiation cycle at potentials below 0.6 V with respect to Li/Li(+) due to increased SEI formation - which is a dynamic process - and alloying reactions. Overall, these results provide insight into the function of silicon-based composite electrodes and further show that AFM is a powerful technique that can be applied to important battery materials, without restriction to thin film geometries. PMID:27222212

  10. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries.

    PubMed

    Breitung, Ben; Baumann, Peter; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten

    2016-08-01

    Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle size as well as electrode structure and height are visualized with high resolution. Furthermore, the formation and evolution of the solid-electrolyte interphase (SEI) can be followed and its thickness determined by phase imaging and nano-indentation, respectively. Major changes occur in the first lithiation cycle at potentials below 0.6 V with respect to Li/Li(+) due to increased SEI formation - which is a dynamic process - and alloying reactions. Overall, these results provide insight into the function of silicon-based composite electrodes and further show that AFM is a powerful technique that can be applied to important battery materials, without restriction to thin film geometries.

  11. Electrode structure and method for making the same

    DOEpatents

    Affinito, John D.; Lowe, Gregory K.

    2015-05-26

    Electrode structures, and more specifically, electrode structures for use in electrochemical cells, are provided. The electrode structures described herein may include one or more protective layers. In one set of embodiments, a protective layer may be formed by exposing a lithium metal surface to a plasma comprising ions of a gas to form a ceramic layer on top of the lithium metal. The ceramic layer may be highly conductive to lithium ions and may protect the underlying lithium metal surface from reaction with components in the electrolyte. In some cases, the ions may be nitrogen ions and a lithium nitride layer may be formed on the lithium metal surface. In other embodiments, the protective layer may be formed by converting lithium to lithium nitride at high pressures. Other methods for forming protective layers are also provided.

  12. Impacts of Surface Energy on Lithium Ion Intercalation Properties of V2O5.

    PubMed

    Ma, Wenda; Zhang, Changkun; Liu, Chaofeng; Nan, Xihui; Fu, Haoyu; Cao, Guozhong

    2016-08-01

    Oxygen vacancies have demonstrated to be one of the most effective ways to alter electrochemical performance of electrodes for lithium ion batteries, though there is little information how oxygen vacancies affect the electrochemical properties. Vanadium pentoxide (V2O5) cathode has been investigated to explore the relationship among oxygen vacancies, surface energy, and electrochemical properties. The hydrogen-treated V2O5 (H-V2O5) sample synthesized via thermal treatment under H2 atmosphere possesses a high surface energy (63 mJ m(-2)) as compared to that of pristine V2O5 (40 mJ m(-2)) and delivers a high reversible capacity of 273.4 mAh g(-1) at a current density of 50 mA g(-1), retaining 189.0 mAh g(-1) when the current density increases to 2 A g(-1). It also displays a capacity retention of 92% after 100 cycles at 150 mA g(-1). The presence of surface oxygen vacancies increases surface energy and possibly serves as a nucleation center to facilitate phase transition during lithium ion intercalation and deintercalation processes.

  13. Impacts of Surface Energy on Lithium Ion Intercalation Properties of V2O5.

    PubMed

    Ma, Wenda; Zhang, Changkun; Liu, Chaofeng; Nan, Xihui; Fu, Haoyu; Cao, Guozhong

    2016-08-01

    Oxygen vacancies have demonstrated to be one of the most effective ways to alter electrochemical performance of electrodes for lithium ion batteries, though there is little information how oxygen vacancies affect the electrochemical properties. Vanadium pentoxide (V2O5) cathode has been investigated to explore the relationship among oxygen vacancies, surface energy, and electrochemical properties. The hydrogen-treated V2O5 (H-V2O5) sample synthesized via thermal treatment under H2 atmosphere possesses a high surface energy (63 mJ m(-2)) as compared to that of pristine V2O5 (40 mJ m(-2)) and delivers a high reversible capacity of 273.4 mAh g(-1) at a current density of 50 mA g(-1), retaining 189.0 mAh g(-1) when the current density increases to 2 A g(-1). It also displays a capacity retention of 92% after 100 cycles at 150 mA g(-1). The presence of surface oxygen vacancies increases surface energy and possibly serves as a nucleation center to facilitate phase transition during lithium ion intercalation and deintercalation processes. PMID:27400230

  14. Chemical State of Surface Oxygen on Carbon and Its Effects on the Capacity of the Carbon Anode in a Lithium-Ion Battery Investigated

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2001-01-01

    In a lithium-ion battery, the lithium-storage capacity of the carbon anode is greatly affected by a surface layer formed during the first half cycle of lithium insertion and release into and out of the carbon anode. The formation of this solid-electrolyte interface, in turn, is affected by the chemistry of the carbon surface. A study at the NASA Glenn Research Center examined the cause-and-effect relations. Information obtained from this research could contribute in designing a high-capacity lithium-ion battery and, therefore, small, powerful spacecraft. In one test, three types of surfaces were examined: (1) a surface with low oxygen content (1.5 at.%) and a high concentration of active sites, (2) a surface with 4.5 at.% -OH or -OC type oxygen, and (3) a surface with 6.5 at.% O=C type oxygen. The samples were made from the same precursor and had similar bulk properties. They were tested under a constant current of 10 mA/g in half cells that used lithium metal as the counter electrode and 0.5 M lithium iodide in 50/50 (vol%) ethylene carbonate and dimethyl carbonate as the electrolyte. For the first cycle of the electrochemical test, the graph describes the voltage of the carbon anode versus the lithium metal as a function of the capacity (amount of lithium insertion or release). From these data, it can be observed that the surface with low oxygen and a high concentration of active sites could result in a high irreversible capacity. Such a high irreversible capacity could be prevented if the active sites were allowed to react with oxygen in air, producing -OH or -OC type oxygen. The O=C type oxygen, on the other hand, could greatly reduce the capacity of lithium intercalation and, therefore, needs to be avoided during battery fabrication.

  15. Lithium

    USGS Publications Warehouse

    Ober, J.

    1998-01-01

    The lithium industry can be divided into two sectors: ore concentrate producers and chemical producers. Ore concentrate producers mine lithium minerals. They beneficiate the ores to produce material for use in ceramics and glass manufacturing.

  16. Surface studies of lithium-oxygen redox reactions over HOPG

    NASA Astrophysics Data System (ADS)

    Marchini, Florencia; Herrera, Santiago E.; Calvo, Ernesto J.; Williams, Federico J.

    2016-04-01

    The O2/Li2O2 electrode reaction has been studied on low surface area HOPG electrodes in 0.1 M LiPF6 in dimethyl sulfoxide (DMSO) electrolyte. Studies were performed using electrochemical cells coupled to a XPS spectrometer and to an AFM microscope. AFM images after electrochemical treatment at cathodic potentials exhibited 20 to 100 nm in height features, whereas anodic treatment showed a thin film of about 1 nm thickness deposited over the HOPG electrode. XPS spectra after electrochemical treatment showed surface species due to DMSO and LiPF6 decomposition. These findings indicate the high reactivity of oxygen reduction products towards the electrolyte and the solvent. The unwanted deposits formed under electrochemical operation cannot be completely eliminated from the surface even after applying high anodic potentials. This highlights the known loss of capacity of Li-air batteries, issue that must be overcome for successful applications.

  17. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  18. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Musheng, Wu; Bo, Xu; Chuying, Ouyang

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010 and 20142BAB212002), and the Foundation of Jiangxi Education Committee, China (Grant Nos. GJJ14254 and KJLD14024). C. Y. Ouyang is also supported by the “Gan-po talent 555” Project of Jiangxi Province, China.

  19. Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 2. Substitution with Al

    SciTech Connect

    Patoux, Sebastien; Dolle, Mickael; Doeff, Marca M.

    2004-09-08

    The structural and electrochemical characterization of layered Li{sub x}Al{sub y}Mn{sub 1-y}O{sub 2} compounds prepared from sodium-containing precursors is described. A quaternary phase diagram showing composition ranges for pure P2 and P3 structures and P2/P3 intergrowths obtained in the Na-Al-Mn-O system is presented. Upon ion exchange, these compounds change to O2, O3 or O2/O3 stacking arrangements, respectively. The oxygen array in O3 and spinel structures is similar, and most of the O3 structures convert to spinel rapidly upon electrochemical cycling in lithium cells. This process is delayed somewhat by increased Al substitution, but not completely inhibited. More effective suppression of the phase transformation is observed in O2/O3 intergrowth electrodes. Additionally, the capacity retention upon cycling and the rate behavior of cells containing intergrowth electrodes is superior to those with pure O2 structures.

  20. Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, C. R.; Wang, Y. Y.; Wan, C. C.

    This work examines the formation of a passive film on the carbon electrode of lithium-ion batteries. With a single solvent of EC (ethylene carbonate), the structure of the passive film is found to be (CH 2OCOOLi) 2. In a DEC (diethyl carbonate) or DMC (dimethyl carbonate) system, C 2H 5OCOOLi and Li 2CO 3 are formed on the surface of the carbon electrode. According to results from mass spectra, CO 2 gas is the main product when EC is decomposed. By contrast, DEC is decomposed into CO and C 2H 6, and DMC into CO and CH 4. These findings suggest that the composition of the passive film depends on the chosen solvent. In a binary solvent system which contains EC, the passive film contains chiefly (CH 2OCOOLi) 2, which is identical to a single EC solvent system.

  1. Spreading of lithium on a stainless steel surface at room temperature

    DOE PAGES

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2015-11-10

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separatemore » experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.« less

  2. Spreading of lithium on a stainless steel surface at room temperature

    SciTech Connect

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2015-11-10

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices and liquid lithium plasma facing components are under consideration for future machines. A key factor in the performance of liquid lithium components is the wetting by lithium of its container. We have observed the surface spreading of lithium from a mm-scale particle to adjacent stainless steel surfaces using a scanning Auger microprobe that has elemental discrimination. Here, the spreading of lithium occurred at room temperature (when lithium is a solid) from one location at a speed of 0.62 μm/day under ultrahigh vacuum conditions. Separate experiments using temperature programmed desorption (TPD) investigated bonding energetics between monolayer-scale films of lithium and stainless steel. While multilayer lithium desorption from stainless steel begins to occur just above 500 K (Edes = 1.54 eV), sub-monolayer Li desorption occurred in a TPD peak at 942 K (Edes = 2.52 eV) indicating more energetically favorable lithium-stainless steel bonding (in the absence of an oxidation layer) than lithium lithium bonding.

  3. Lithium intercalation behavior of surface modified carbonaceous materials

    SciTech Connect

    Tran, T.D.; Murguia, L.X.; Song, X.; Kinoshita, K.

    1997-07-17

    The surface properties of several well-characterized commercial carbon materials were modified by thermal and chemical treatments. The reversible capacities for lithium intercalation of a sponge green coke and a fuel green coke for lithium intercalation increased by as much as 25% after heat treatment in both reducing (5% H{sub 2}/Ar) and oxidizing (CO{sub 2}) environments. The irreversible capacity loss increased significantly with CO{sub 2} treatment at 800{degrees}C. The trend of larger capacity losses with CO{sub 2} treatment is also observed with a synthetic graphite (SFG6) which was produced by heat treatment at about 3000{degrees}C. Carbon fibers that were first impregnated with LiOH solution followed by reaction with CO{sub 2} to form Li{sub 2}CO{sub 3} tended to show lower irreversible capacity losses.

  4. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Rokusek, D. L.; Harilal, S. S.; Nieto-Perez, M.; Skinner, C. H.; Kugel, H. W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-06-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  5. Lithium wall conditioning and surface dust detection on NSTX, and dust removal

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Allain, J. P.; Bell, M. G.; Friesen, F. Q. L.; Heim, B.; Jaworski, M. A.; Kugel, H.; Maingi, R.; Rais, B.; Taylor, C. N.

    2011-12-01

    Lithium evaporation onto National Spherical Torus Experiment (NSTX) plasma-facing components (PFCs) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma-material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that the binding of D atoms to the polycrystalline graphite material of PFCs is fundamentally changed by lithium—in particular, deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high-voltage three-phase waveform was evaluated for its potential application to fusion reactors.

  6. Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.

    PubMed

    Ge, Hao; Hao, Tingting; Osgood, Hannah; Zhang, Bing; Chen, Li; Cui, Luxia; Song, Xi-Ming; Ogoke, Ogechi; Wu, Gang

    2016-04-13

    Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker agent and reducing agent during the synthesis. It was found to prevent the aggregation of LTO particles, and to yield mesoporous structures in nanocomposites. Moreover, GO is reduced to rGO by the hydroxyl groups on glucose during the hydrothermal process. When compared to previously reported LTO/graphene electrodes, the newly prepared LTO/rGO nanocomposite has mesoporous characteristics and provides additional surface lithium storage capability, superior to traditional LTO-based materials for LIBs. These unique properties lead to markedly improved electrochemical performance. In particular, the nanocomposite anode delivers an ultrahigh reversible capacity of 193 mA h g(-1) at 0.5 C and superior rate performance capable of retaining a capacity of 168 mA h g(-1) at 30 C between 1.0 and 2.5 V. Therefore, the newly prepared mesoporous LTO/rGO nanocomposite with increased surface lithium storage capability will provide a new opportunity to develop high-power anode materials for LIBs. PMID:27015357

  7. Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.

    PubMed

    Ge, Hao; Hao, Tingting; Osgood, Hannah; Zhang, Bing; Chen, Li; Cui, Luxia; Song, Xi-Ming; Ogoke, Ogechi; Wu, Gang

    2016-04-13

    Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker agent and reducing agent during the synthesis. It was found to prevent the aggregation of LTO particles, and to yield mesoporous structures in nanocomposites. Moreover, GO is reduced to rGO by the hydroxyl groups on glucose during the hydrothermal process. When compared to previously reported LTO/graphene electrodes, the newly prepared LTO/rGO nanocomposite has mesoporous characteristics and provides additional surface lithium storage capability, superior to traditional LTO-based materials for LIBs. These unique properties lead to markedly improved electrochemical performance. In particular, the nanocomposite anode delivers an ultrahigh reversible capacity of 193 mA h g(-1) at 0.5 C and superior rate performance capable of retaining a capacity of 168 mA h g(-1) at 30 C between 1.0 and 2.5 V. Therefore, the newly prepared mesoporous LTO/rGO nanocomposite with increased surface lithium storage capability will provide a new opportunity to develop high-power anode materials for LIBs.

  8. Virus enabled 3d nano-array electrodes for integrated Lithium/Sodium-ion microbatteries

    NASA Astrophysics Data System (ADS)

    Liu, Yihang

    Multilayers of functional materials (carbon/electrode/nickel) were hierarchically architectured over tobacco mosaic virus (TMV) templates that were genetically modified to self-assemble in a vertical manner on current-collectors for battery applications. The spaces formed between individual rods effectively accommodated the volume expansion and contraction of electrodes during charge/discharge, while surface carbon coating engineered over these nanorods further enhance the electronic conductivity. The microbattery based on self aligned nanoforests with precise arrangement of various auxiliary material layers including a central nanometric metal core as direct electronic pathway to current collector, can deliver high energy density and stable cycling stability. C/LiFePO4/Ni/TMV nanoforest cathodes for Li-ion batteries and C/Sn/Ni/TMV nanoforest anodes for Na-ion batteries were assembled using physical sputtering deposition. Both 3D nanoforest electrodes show exceptional cycling stability and rate capability.

  9. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.

    PubMed

    Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X

    2010-12-01

    Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.

  10. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut

    2016-03-01

    Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.

  11. Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes

    NASA Astrophysics Data System (ADS)

    Cao, W. J.; Zheng, J. P.

    2012-09-01

    A lithium-ion capacitor was developed using a mixture of stabilized lithium metal powder and hard carbon as the anode electrode, while activated carbon was used as the cathode. A specific energy of approximately 82 Wh kg-1 was obtained based on the weight of electrode materials; however, when the electrolyte, separator, and current collectors were included, the specific energy of an assembled Li-ion capacitor was about 25 Wh kg-1. The capacitor was able to deliver over 60% of the maximum energy at a discharge C-rate of 44C. Through continuous galvanostatic charge/discharge cycling, the capacitance of the Li-ion capacitor degraded less than 3% over 600 cycles.

  12. Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Menéndez, Rosa; Alvarez, Patricia; Botas, Cristina; Nacimiento, Francisco; Alcántara, Ricardo; Tirado, José L.; Ortiz, Gregorio F.

    2014-02-01

    Heterostructures composed of reduced graphene oxide and self-organized titania nanotubes (nt-TiO2) are examined as novel electrode material for lithium-ion batteries. The novelty here resides in the deposition of a graphene-like film on self-organized nanotubes and that, as compared with previous materials, the differences in behavior are significant as the heterostructure combines previously reported advantages of self-organized nt-TiO2 with those emerging from the graphene composites. The preparation of this nt-TiO2/graphene hybrid electrode material is described here. The deposition of a graphene film on self-arranged amorphous nt-TiO2 was confirmed by using SEM, Raman spectroscopy and mapping of composition. Lithium test cells display capacities that can exceed 300 mAh g-1 over 100 cycles and that are therefore superior to those of bare nt-TiO2 and anatase or rutile TiO2-graphene hybrid nanostructures. The excellent rate performance of these electrodes makes charge-discharge possible up to at least 300 C-rate. The impedance spectra show that the graphene-like film improves the interface properties in the hybrid electrode. In addition to the environmentally friendly nature of the active electrode material, the moderate working voltage offers an important safety advantage in that it protects the battery from the electroplating phenomena.

  13. Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High‐Speed Operando Tomography and Digital Volume Correlation

    PubMed Central

    Finegan, Donal P.; Tudisco, Erika; Scheel, Mario; Robinson, James B.; Taiwo, Oluwadamilola O.; Eastwood, David S.; Lee, Peter D.; Di Michiel, Marco; Bay, Brian; Hall, Stephen A.; Hinds, Gareth; Brett, Dan J. L.

    2015-01-01

    Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high‐speed operando synchrotron X‐ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real‐time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation to be identified. Continuum DVC of consecutive images during discharge is used to quantify local displacements and strains in 3D throughout discharge, facilitating tracking of the progression of swelling due to lithiation within the electrode material in a commercial, spiral‐wound battery during normal operation. Displacement of the rigid current collector and cell materials contribute to severe electrode detachment and crack formation during discharge, which is monitored by a separate DVC approach. Use of time‐lapse X‐ray computed tomography coupled with DVC is thus demonstrated as an effective diagnostic technique to identify causes of performance loss within commercial lithium batteries; this novel approach is expected to guide the development of more effective commercial cell designs.

  14. Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High‐Speed Operando Tomography and Digital Volume Correlation

    PubMed Central

    Finegan, Donal P.; Tudisco, Erika; Scheel, Mario; Robinson, James B.; Taiwo, Oluwadamilola O.; Eastwood, David S.; Lee, Peter D.; Di Michiel, Marco; Bay, Brian; Hall, Stephen A.; Hinds, Gareth; Brett, Dan J. L.

    2015-01-01

    Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high‐speed operando synchrotron X‐ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real‐time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation to be identified. Continuum DVC of consecutive images during discharge is used to quantify local displacements and strains in 3D throughout discharge, facilitating tracking of the progression of swelling due to lithiation within the electrode material in a commercial, spiral‐wound battery during normal operation. Displacement of the rigid current collector and cell materials contribute to severe electrode detachment and crack formation during discharge, which is monitored by a separate DVC approach. Use of time‐lapse X‐ray computed tomography coupled with DVC is thus demonstrated as an effective diagnostic technique to identify causes of performance loss within commercial lithium batteries; this novel approach is expected to guide the development of more effective commercial cell designs. PMID:27610334

  15. Diaphragmatic activity induced by cortical stimulation: surface versus esophageal electrodes.

    PubMed

    Gea, J; Espadaler, J M; Guiu, R; Aran, X; Seoane, L; Broquetas, J M

    1993-02-01

    Evoked responses of the diaphragm can be induced by magnetic cortical stimulation and recorded by either surface or esophageal electrodes. The former recording system is tolerated better by the patient but has potential problems with the specificity of the diaphragmatic signal. This study compares the responses of the diaphragm to cortical stimulation that were recorded simultaneously with surface and esophageal electrodes on seven patients (61 +/- 4 yr) with chronic obstructive pulmonary diseases. Stimuli were delivered in three ventilatory conditions: at baseline, during deep breathing, and during voluntary panting. No differences were observed between results recorded by surface and esophageal electrodes [amplitude of the compound motor of the action potential (CMAP), 0.8 +/- 0.1 vs. 0.8 +/- 0.1 mV, NS; latency, 13.1 +/- 0.4 vs. 12.6 +/- 0.5 ms, NS]. In addition, significant correlations were found (CMAP, r = 0.77, P < 0.001; latency, r = 0.71, P = 0.002). The concordance analysis, however, indicated some dissimilarity between the recordings of the electrodes (CMAP, R1 = 0.31; latency, R1 = 0.26). These differences may be due to the area of the muscle mainly recorded by each electrode and/or to the additional activity from other muscles recorded by surface electrodes. On the other hand, the diaphragmatic responses observed in these patients with chronic obstructive pulmonary diseases were similar to those previously reported in healthy subjects. PMID:8458780

  16. Polypyrrole-encapsulated vanadium pentoxide nanowires on a conductive substrate for electrode in aqueous rechargeable lithium battery.

    PubMed

    Liang, Chaowei; Fang, Dong; Cao, Yunhe; Li, Guangzhong; Luo, Zhiping; Zhou, Qunhua; Xiong, Chuanxi; Xu, Weilin

    2015-02-01

    Precursors of ammonium vanadium bronze (NH4V4O10) nanowires assembled on a conductive substrate were prepared by a hydrothermal method. After calcination at 360°C, the NH4V4O10 precursor transformed to vanadium pentoxide (V2O5) nanowires, which presented a high initial capacity of 135.0mA h g(-1) at a current density of 50mA g(-1) in 5M LiNO3 aqueous solution; while the specific capacity faded quickly over 50 cycles. By coating the surface of V2O5 nanowires with water-insoluble polypyrrole (PPy), the formed nanocomposite electrode exhibited a specific discharge capacity of 89.9mA h g(-1) at 50mA g(-1) (after 100 cycles). A V2O5@PPy //LiMn2O4 rechargeable lithium battery exhibited an initial discharge capacity of 95.2mA h g(-1); and after 100 cycles, a specific discharge capacity of 81.5mA h g(-1) could retain at 100mA g(-1).

  17. [Lithium].

    PubMed

    Sparsa, A; Bonnetblanc, J-M

    2004-03-01

    The mode of action of the cation lithium is not well known. It is at present used as a topical drug in dermatology. Lithium inhibits many enzymes: Na/K ATPase, adenylcyclase, enzymes of the prostaglandines E1 synthesis, inositol-1-phosphatase. It is active on neutrophils et T lymphocytes, explaining in part its anti-inflammatory activity. It has a dose-dependent action on levures. It has possibly a direct inhibitory activity on DNA synthesis of herpes viruses. Lithium has a good local safety. Percutaneous penetration is weak and plasma concentrations are very much lower than that observed after oral intake. Lithium has been studied in seborrhoeic dermatitis. Its efficacy was primarily observed in psychotic patients. An assay with oral lithium did not confirmed the first observations. Topical lithium was found more efficient. Topical lithium succinate associated with zinc sulfate and lithium gluconate had a greater efficacy than placebo. Comparison with topical ketoconazole showed a non inferiority of lithium gluconate. Oral lithium also showed a reduction of symptoms' duration of herpes simplex. Cutaneous side-effects of oral lithium are frequent and numerous. Some of them may be explained by a lithium pharmacological cell activity (such as psoriasis). Teratogenicity is observed in mice and rats. Drug interactions are not expected after topical application. Irritants side effects are mainly observed after topical application; they are moderate and transitory. Lithium gluconate treatment of seborrhoeic dermatitis is a bid application during at least 8 weeks. It may be used in renal insufficiency. It is not recommended in the first trimester of pregnancy.

  18. Surface analysis of retention and lithium wetting of Molybdenum

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Capece, A. M.; Roszell, J. P.; Koel, B. E.

    2013-10-01

    A quantitative understanding of the adsorption and retention of deuterium by lithium-conditioned materials is needed to optimize the performance of Li-PFCs, especially for the long duration discharges anticipated in NSTX-U. For liquid Li PFCs, wetting by Li of the substrate is a key factor in the design. We report UHV surface science experiments on these topics. The effects of impurities and grain boundaries in TZM is shown by comparing single crystal Mo substrates to Mo alloy (TZM). The substrate is coated with a known monolayer-scale thickness of Li and exposed to D thermal neutrals and ions from 5 eV to 500 eV with controlled amounts of residual vacuum gases. The surface composition is measured with Auger electron spectroscopy and D uptake by thermal desorption spectroscopy. Microscale wetting of stainless steel and TZM by lithium will be measured by Auger elemental microimaging. The results will connect atomistic surface science models to plasma surface interactions expected in tokamaks. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  19. A simple technique for measuring the fracture energy of lithiated thin-film silicon electrodes at various lithium concentrations

    NASA Astrophysics Data System (ADS)

    Choi, Yong Seok; Pharr, Matt; Oh, Kyu Hwan; Vlassak, Joost J.

    2015-10-01

    We have measured the fracture energy of lithiated silicon thin-film electrodes as a function of lithium concentration using a bending test. First, silicon thin-films on copper substrates were lithiated to various states of charge. Then, bending tests were performed by deforming the substrate to a pre-defined shape, producing a variation of the curvature along the length of the electrode. The bending tests allow determination of the critical strains at which cracks initiate in the lithiated silicon. Using the substrate curvature technique, we also measured the elastic moduli and the stresses that develop in the electrodes during electrochemical lithiation. From these measurements, the fracture energy was calculated as a function of lithium concentration using a finite element simulation of fracture of an elastic film on an elastic-plastic substrate. The fracture energy was determined to be Γ = 12.0 ± 3.0 J m-2 for amorphous silicon and Γ = 10.0 ± 3.6 J m-2 for Li3.28Si, with little variation in the fracture energy for intermediate Li concentrations. These results provide a guideline for the practical design of high-capacity lithium ion batteries to avoid fracture. The experimental technique described in this paper also provides a simple means of measuring the fracture energy of brittle thin-films.

  20. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.

    PubMed

    Elia, Giuseppe Antonio; Ulissi, Ulderico; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2016-05-10

    In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14 TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3 Co1/3 Mn1/3 O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14 TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g(-1) and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles. PMID:26990320

  1. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.

    PubMed

    Elia, Giuseppe Antonio; Ulissi, Ulderico; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2016-05-10

    In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14 TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3 Co1/3 Mn1/3 O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14 TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g(-1) and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles.

  2. Chemical and structural stability of lithium-ion battery electrode materials under electron beam.

    PubMed

    Lin, Feng; Markus, Isaac M; Doeff, Marca M; Xin, Huolin L

    2014-01-01

    The investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi(0.4)Mn(0.4)Co(0.18)Ti(0.02)O2 particles, repeated electron beam irradiation induced a phase transition from an layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.

  3. Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam

    PubMed Central

    Lin, Feng; Markus, Isaac M.; Doeff, Marca M.; Xin, Huolin L.

    2014-01-01

    The investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi0.4Mn0.4Co0.18Ti0.02O2 particles, repeated electron beam irradiation induced a phase transition from an layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results. PMID:25027190

  4. Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies

    NASA Astrophysics Data System (ADS)

    Beattie, Shane D.; Loveridge, M. J.; Lain, Michael J.; Ferrari, Stefania; Polzin, Bryant J.; Bhagat, Rohit; Dashwood, Richard

    2016-01-01

    Commercial Li-ion batteries are typically cycled between 3.0 and 4.2 V. These voltages limits are chosen based on the characteristics of the cathode (e.g. lithium cobalt oxide) and anode (e.g. graphite). When alternative anode/cathode chemistries are studied the same cut-off voltages are often, mistakenly, used. Silicon (Si) based anodes are widely studied as a high capacity alternative to graphite for Lithium-ion batteries. When silicon-based anodes are paired with high capacity cathodes (e.g. Lithium Nickel Cobalt Aluminium Oxide; NCA) the cell typically suffers from rapid capacity fade. The purpose of this communication is to understand how the choice of upper cut-off voltage affects cell performance in Si/NCA cells. A careful study of three-electrode cell data will show that capacity fade in Si/NCA cells is due to an ever-evolving silicon voltage profile that pushes the upper voltage at the cathode to >4.4 V (vs. Li/Li+). This behaviour initially improves cycle efficiency, due to liberation of new lithium, but ultimately reduces cycling efficiency, resulting in rapid capacity fade.

  5. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials.

    PubMed

    He, Kai; Xin, Huolin L; Zhao, Kejie; Yu, Xiqian; Nordlund, Dennis; Weng, Tsu-Chien; Li, Jing; Jiang, Yi; Cadigan, Christopher A; Richards, Ryan M; Doeff, Marca M; Yang, Xiao-Qing; Stach, Eric A; Li, Ju; Lin, Feng; Su, Dong

    2015-02-11

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni(2+) → Ni(0)) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a "shrinking-core" mode). However, the interior capacity for Ni(2+) → Ni(0) can be accessed efficiently following the nucleation of lithiation "fingers" that propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss and provides guidance for the further design of battery materials that favors high C-rate charging.

  6. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    SciTech Connect

    He, Kai; Xin, Huolin L.; Zhao, Kejie; Yu, Xiqian; Norlund, Dennis; Weng, Tsu-Chien; Li, Jing; Jiang, Yi; Cadigan, Christopher A.; Richards, Ryan M.; Doeff, Marca M.; Yang, Xiao-Qing; Stach, Eric A.; Li, Ju; Lin, Feng; Su, Dong

    2015-01-29

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²⁺→Ni⁰) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²⁺→Ni⁰ can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.

  7. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    DOE PAGES

    He, Kai; Xin, Huolin L.; Zhao, Kejie; Yu, Xiqian; Norlund, Dennis; Weng, Tsu-Chien; Li, Jing; Jiang, Yi; Cadigan, Christopher A.; Richards, Ryan M.; et al

    2015-01-29

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²⁺→Ni⁰) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²⁺→Ni⁰ can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubationmore » time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.« less

  8. Mesoporous silicon negative electrode for thin film lithium-ion microbatteries

    NASA Astrophysics Data System (ADS)

    Luais, Erwann; Ghamouss, Fouad; Wolfman, Jérôme; Desplobain, Sébastien; Gautier, Gaël; Tran-Van, François; Sakai, Joe

    2015-01-01

    Herein, a mesoporous silicon film (5 μm thick, diameter of pores ranging from 60 to 70 nm) was prepared through an electrochemical etching of a silicon wafer, and its performance for lithium-ion microbatteries was investigated. A sluggish penetration of the electrolyte into the pores of the material along its depth was clearly observed thanks to cyclic voltammetry measurements, as in fact, the lithiation and delithiation peaks raise during scanning. The penetration of the electrolyte in the mesoporous layer was monitored by elemental analysis and by energy-dispersive X-ray spectroscopy coupled with scanning electron microscopy. Herein, it is clearly reported that after 50 voltammetric cycles, electrochemical reactions take place in the whole depth of the porous silicon layer. In contrast, after only 10 cycles, the bottom part of the silicon pores seems to not be affected. Galvanostatic cycling at a rate of 300 μA cm-2 was performed for two different lower cut-off voltages. A charge limitation of 0.1 V resulted in a stable specific capacity of 1910 mAh g-1. For a deeper charge with a potential limitation of 0.07 V, a higher specific capacity of 2480 mAh g-1 was reached but, unfortunately, this was accompanied by a severe fading of the performances. This phenomenon was attributed to the strong mechanical damages in the porous structure of the silicon negative electrode.

  9. Molecular-Confinement of Polysulfide within Mesoscale Electrodes for the Practical Application of Lithium Sulfur Batteries

    SciTech Connect

    Chen, Junzheng; Wu, Dangxin; Walter, Eric D.; Engelhard, Mark H.; Bhattacharya, Priyanka; Pan, Huilin; Shao, Yuyan; Gao, Fei; Xiao, Jie; Liu, Jun

    2015-04-01

    Nitrogen-doped porous carbon (NPC) and multi-wall carbon nanotube (MWCNT) have been frequently studied to immobilize sulfur in lithium-sulfur (Li-S) batteries. However, neither NPC nor MWCNT itself can effectively confine the soluble polysufides if cathode thickness e.g. sulfur loading is increased. In this work, NPC was combined with MWCNT to construct an integrated host structure to immobilize sulfur at a relevant scale. The function of doped nitrogen atoms was revisited and found to effectively attract sulfur radicals generated during the electrochemical process. The addition of MWCNT facilitated the uniform coating of sulfur nanocomposites to a practically usable thickness and homogenized the distribution of sulfur particles in the pristine electrodes, while NPC provided sufficient pore volume to trap dissolved species. More importantly, the wetting issue, the critical challenge for thick sulfur cathodes, is also mitigated after the adoption of MWCNT, leading to a high areal capacity of ca. 2.5 mAh/cm2 with capacity retention of 81.6% over 100 cycles

  10. Incorporation of conductive polymer into soft carbon electrodes for lithium ion capacitors

    NASA Astrophysics Data System (ADS)

    Lim, Young-Geun; Park, Min-Sik; Kim, Ki Jae; Jung, Kyu-Sung; Kim, Jung Ho; Shahabuddin, Mohammed; Byun, Dongjin; Yu, Ji-Sang

    2015-12-01

    The positive effects of incorporating electrically conductive poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS) into the negative electrode (NE) of a lithium ion capacitor (LIC) is investigated. The binding material of the NE, styrene-butadiene rubber (SBR), is partially substituted by conductive PEDOT-PSS. The soft carbon NE with 1.0 wt% PEDOT-PSS exhibits enhanced capacity retention of 64% at a current density of 5 C by lowering its electrical and electrochemical charge transfer resistance. The rate capability increased with increasing amounts of PEDOT-PSS, with no variation in the Li+ diffusivity. This improved electrochemical performance of the NE is also reflected in the LIC full-cell configuration. An LIC employing a 1.0 wt% PEDOT-PSS NE delivers 6.6 F at a high current density of 100 C, which is higher than the 6.0 F measured for the LIC with a bare NE. Moreover, the LIC with the 1.0 wt% PEDOT-PSS NE retains 85% of its initial capacitance even after 5000 cycles. These results are mainly attributed to the favourable electrical network formed by the incorporation of PEDOT-PSS into the NE. Thus, we believe that the incorporation of conductive PEDOT-PSS is a viable approach for obtaining high-power LICs.

  11. Simultaneous fluorination of active material and conductive agent for improving the electrochemical performance of LiNi0.5Mn1.5O4 electrode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Song, Min Sang; Kim, Dae Sik; Park, Eunjun; Choi, Jae Man; Kim, Hansu

    2016-09-01

    High-voltage cathode materials have gained much attention as one of the promising electrode materials to increase power density of lithium ion batteries by raising the working voltage. However, the use of such high-voltage cathode materials is still challenging, because their working voltage is close to the electrochemical oxidation potential of organic electrolyte used in lithium ion batteries. In this work, we demonstrated that simultaneous fluorination of LiNi0.5Mn1.5O4 (LNMO) particles as well as conductive agent in the electrode could significantly improve the electrochemical stability of LNMO cathode. The resulting electrode showed better cycle performance both at room temperature and elevated temperature compared to both bare LNMO electrode and the electrode with only LNMO fluorinated. These results showed that direct fluorination of high voltage cathode can reduce the side reaction of high voltage cathode electrode with the electrolyte, thereby stabilizing the surface of carbon black as well as that of high voltage cathode material.

  12. Stability of aluminum in low-temperature lithium-ion battery electrolytes. Progress report, October 1997--September 1998

    SciTech Connect

    Behl, W.K.; Plichta, E.J.

    1999-03-01

    The authors investigated the stability of aluminum at the high positive potentials encountered during the charging of lithium-ion cells. The electrolyte in these cells consists of solutions of lithium hexafluorophosphate and lithium methide in binary- and ternary-solvent mixtures of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate. They performed the investigations with the controlled potential coulometry technique. They found that a protective surface film was formed on aluminum electrodes in these solutions and that this film protected the electrodes from further corrosion. The protective surface film was found to break down in lithium methide solutions at 4.25 V versus a lithium reference electrode, and this resulted in increased corrosion of the aluminum electrodes at higher potentials. In contrast to lithium methide solutions, the protective surface film formed on aluminum electrodes in lithium hexafluorophosphate solutions was found to be quite stable and did not break down at potentials up to [approximately]5 V.

  13. Binary iron-chromium oxide as negative electrode for lithium-ion micro-batteries - spectroscopic and microscopic characterization

    NASA Astrophysics Data System (ADS)

    Tian, Bingbing; Światowska, Jolanta; Maurice, Vincent; Zanna, Sandrine; Seyeux, Antoine; Marcus, Philippe

    2015-10-01

    (Fe,Cr)-binary oxide thin film electrodes were prepared as negative electrode material for lithium-ion micro-batteries by thermal growth on a stainless steel (AISI 410, FeCr12.5) current collector. The mechanisms of lithiation/delithiation were investigated by means of electrochemical (CV, galvanostatic cycling), spectroscopic (XPS, ToF-SIMS) and microscopic (SEM, AFM) analytical techniques. The as-prepared (Fe, Cr)-binary oxide electrodes exhibit a good cycling performance except the first discharge/charge cycle where a high irreversible capacity is observed due to formation of a solid electrolyte interphase (SEI) layer. The influence of substituting an oxidized iron by an oxidized chromium (CrxFe2-xO3 phase) was evaluated. The data show that the inferior electrochemical conversion activity of substituted oxidized chromium results in hindering lithium transport in the bulk thin film electrode. It was observed that the irreversible morphology modifications together with SEI evolution are critical to capacity degradation while retaining good coulombic efficiency.

  14. Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies

    SciTech Connect

    Vijayakumar, M.; Hu, Jian Z.

    2013-10-15

    To analyze the lithium ion interaction with realistic graphene surfaces, we carried out dispersion corrected DFT-D3 studies on graphene with common point defects and chemisorbed oxygen containing functional groups along with defect free graphene surface. Our study reveals that, the interaction between lithium ion (Li+) and graphene is mainly through the delocalized π electron of pure graphene layer. However, the oxygen containing functional groups pose high adsorption energy for lithium ion due to the Li-O ionic bond formation. Similarly, the point defect groups interact with lithium ion through possible carbon dangling bonds and/or cation-π type interactions. Overall these defect sites render a preferential site for lithium ions compared with pure graphene layer. Based on these findings, the role of graphene surface defects in lithium battery performance were discussed.

  15. Structural and electrochemical study of positive electrode materials for rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Jiang, Meng

    The research presented in this dissertation focuses on a combined study of the electrochemistry and the structure of positive electrode materials for Li ion batteries. Li ion batteries are one of the most advanced energy storage systems and have been the subject of numerous scientific studies in recent decades. They have been widely used for various mobile devices such as cell phones, laptop computers and power tools. They are also promising candidates as power sources for automotive applications. Although intensive research has been done to improve the performance of Li ion batteries, there are still many remaining challenges to overcome so that they can be used in a wider range of applications. In particular, cheaper and safer electrodes are required with much higher reversible capacity. The series of layered nickel manganese oxides [NixLi 1/3-2x/3Mn2/3- x/3]O2 (0 < x < 1/2) are promising alternatives for Li2CoO2, the commercial positive electrode materials in Li ion batteries, because of their lower cost and higher safety and abuse tolerance, when lithium is removed from their structure. Compounds with x<1/2, in which the total Li content is higher than transition metal content, are referred as "Li-excess" materials. The "Li2MnO3-like" region is always present in this type of materials, and the overcapacity is obtained in the first charge process, which is not reversible in the following cycles. A combined X-ray diffraction, solid state nuclear magnetic resonance and X-ray absorption spectroscopy study is performed to investigate the effect of synthetic methods on the structure, to probe the structural change of the materials during cycling and to understand the electrochemical reaction mechanism. The conversion compounds are also investigated because of their high capacities. Since the various compounds have different voltage windows, they can have potential applications as both cathodes and anodes. Solid state nuclear magnetic resonance is used to study the

  16. Field-free junctions for surface electrode ion traps

    NASA Astrophysics Data System (ADS)

    Jordens, Robert; Schmied, R.; Blain, M. G.; Leibfried, D.; Wineland, D.

    2015-05-01

    Intersections between transport guides in a network of RF ion traps are a key ingredient to many implementations of scalable quantum information processing with trapped ions. Several junction architectures demonstrated so far are limited by varying radial secular frequencies, a reduced trap depth, or a non-vanishing RF field along the transport channel. We report on the design and progress in implementing a configurable microfabricated surface electrode Y-junction that employs switchable RF electrodes. An essentially RF-field-free pseudopotential guide between any two legs of the junction can be established by applying RF potential to a suitable pair of electrodes. The transport channel's height above the electrodes, its depth and radial curvature are constant to within 15%. Supported by IARPA, Sandia, NSA, ONR, and the NIST Quantum Information Program.

  17. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    PubMed

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  18. Manufacturing of industry-relevant silicon negative composite electrodes for lithium ion-cells

    NASA Astrophysics Data System (ADS)

    Nguyen, B. P. N.; Chazelle, S.; Cerbelaud, M.; Porcher, W.; Lestriez, B.

    2014-09-01

    In this paper, Poly (acrylic-co-maleic) acid (PAMA) is used as a dispersant to improve the stability of electrodes slurries for large scale processing of Silicon based negative composite electrode. The stability and homogeneity of the slurries are characterized using different techniques. Sedimentation test, electrical measurement, SEM-EDX observations as well as rheological measurements show that a more homogeneous distribution of carbon black (CB) inside the stack of Si particles is reached with presence of PAMA. However, the amount of PAMA is limited due to the competition in the adsorption of PAMA and Carboxylmethyl cellulose (CMC) at the surface of the CB particles. Upon cycling with capacity limitation, the optimized electrode formulation at lab scale could achieve more than 400 cycles with surface capacity ∼2.5-3.3 mAh cm-2. At the pilot scale, the improvement of adhesion of the tape to the current collector by using Styrene-co-Butadiene rubber copolymer latex (SB) helps to maintain long cycle life while calendaring is detrimental to electrochemical properties.

  19. The Electrode as Organolithium Reagent: Catalyst-Free Covalent Attachment of Electrochemically Active Species to an Azide-Terminated Glassy Carbon Electrode Surface

    SciTech Connect

    Das, Atanu K.; Engelhard, Mark H.; Liu, Fei; Bullock, R. Morris; Roberts, John A.

    2013-12-02

    Glassy carbon electrodes have been activated for modification with azide groups and subsequent coupling with ferrocenyl reagents by a catalyst-free route using lithium acetylide-ethylenediamine complex, and also by the more common Cu(I)-catalyzed alkyne-azide coupling (CuAAC) route, both affording high surface coverages. Electrodes were preconditioned at ambient temperature under nitrogen, and ferrocenyl surface coverages obtained by CuAAC were comparable to those reported with preconditioning at 1000 °C under hydrogen/nitrogen. The reaction of lithium acetylide-ethylenediamine with the azide-terminated electrode affords a 1,2,3-triazolyllithium-terminated surface that is active toward covalent C-C coupling reactions including displacement at an aliphatic halide and nucleophilic addition at an aldehyde. For example, surface ferrocenyl groups were introduced by reaction with (6-iodohexyl)ferrocene; the voltammetry shows narrow, symmetric peaks indicating uniform attachment. Coverages are competitive with those obtained by the CuAAC route. X-ray photoelectron spectroscopic data, presented for each synthetic step, are consistent with the proposed reactions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  20. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design

    DOE PAGES

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; et al

    2016-04-05

    Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance.more » Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Lastly, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.« less

  1. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design

    PubMed Central

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-01-01

    Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides. PMID:27046216

  2. Solid solution lithium alloy cermet anodes

    DOEpatents

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  3. Potential applications of a small high-surface-area platinum electrode as an implanted impedance biosensor or recording electrode

    NASA Astrophysics Data System (ADS)

    Duan, Yvonne Y.; Millard, Rodney E.; Tykocinski, Michael; Lui, Xuguang; Clark, Graeme M.; Cowan, Robert S. C.

    2001-03-01

    A small Platinum (Pt) electrode (geometric area: ~0.43 mm2) was treated in an electrochemical etching process, to produce a highly porous columnar thin layer (~600 nm) on the surface of the electrode. The modified Pt electrode (Pt-p) showed similar electrical properties to a platinum-black electrode but with high mechanical integrity. Previous studies of chronic stimulation had also shown good biocompatibility and surface stability over several months implantation. This paper discusses the potential applications of the modified electrode as an implanted bio-sensor: (1) as a recording electrode compared to an untreated Pt electrode. (2) as a probe in detecting electrical characteristics of living biological material adjacent to the electrode in vivo, which may correlate to inflammation or trauma repair. Results of electrochemical impedance spectroscopy (EIS) revealed much lower electrode interface polarisation impedance, reduced overall electrode impedance, and a largely constant impedance above 100 Hz for the Pt-p electrode compared with untreated Pt electrodes. This provides a platform for recording biological events with low noise interference. Results of A.C. impedance spectroscopy of the high surface area electrode only reflect changes in the surrounding biological environment in the frequency range (1 k Hz to 100 k Hz), interference from electrode polarisation impedance can be neglected. The results imply that the surface-modified electrode is a good candidate for application to implantable biosensors for detecting bio-electric events. The modification procedure and its high surface area concept could have application to a smart MEMS device or microelectrode.

  4. Lithium

    MedlinePlus

    ... depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium is in a class of medications called antimanic agents. It works by decreasing abnormal activity in the brain.

  5. Adhesion of Germanium Electrode on Nickel Substrate for Lithium Ion Battery Applications

    NASA Astrophysics Data System (ADS)

    Jeyaranjan, Aadithya

    Lithium ion batteries (LIBs) have gained increasing popularity due to their high potential, low self-discharge, zero priming and minimal memory effect. However, the emergence of electrical vehicles and hybrid electrical vehicles in the automobile industry, where LIBs are predominantly in use, instilled a need to improve LIB batteries by experimenting with new materials. Graphite, the commonly used anode material for LIBs suffers from low theoretical capacity (372 mA h g-1) and torpid rate performance. Germanium (Ge) seems to be a promising substitute of carbon due to its high theoretical capacity, high Li+ diffusivity and electrical conductivity. However, Ge undergoes large volumetric change (+/-370%). This causes deboning of the thin film Ge electrode from the substrate current collector, causing a rapid decrease in the electrolytic performance. The process of ion beam mixing claims to have overcome this problem. In our current study, the adhesion strength of Ge thin film over Nickel (Ni) substrate (with and without ion beam mixing) is being measured using nanoindentation and the superlayer indentation test. Nanoindentation is one of the popular techniques to measure the mechanical properties and adhesion of thin film coatings. In this technique, a very small indenter of a desired geometry indents the film/substrate pair and the work of adhesion is calculated by knowing the plastic depth of indentation and the radius of indentation. Superlayer indentation is analogous to normal indentation but with a highly stressed superlayer on top to restrict the out-of-plane displacements, it reduces the plastic pile up around the indenter tip. The results from our study strongly suggest the possibility of dramatically increasing the adhesion strength by ion bombardment, which can be achieved by atomic level intermixing of the film/substrate pair. These, in turn, suggest that Ge could be an effective successor to graphite in the near future.

  6. Recent advances in nanocrystalline intermetallic tin compounds for the negative electrode of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Alcántara, Ricardo; Nwokeke, Uche G.; Nacimiento, Francisco; Lavela, Pedro; Tirado, José L.

    2011-06-01

    Intermetallic compounds of tin and first-row transition metals have been considered as potential anode materials for Li-ion batteries that could improve the performance of pure tin. Particularly, the solids dispersed at the nano scale provide interesting behavior. Thus CoSn, FeSn2 and CoSn3 nanocrystalline samples have been obtained at low temperatures. As compared with micrometric particles of CoSn, significantly higher reversible capacities are found for nanocrystalline CoSn. For nanocrystalline CoSn3 maximum reversible capacities of 690 mAh g-1 were observed in lithium test cells. Nanocrystalline products in the series CoSn2-FeSn2 could be prepared by chemical reduction in polyol solvents using a "one-pot" method. Superparamagnetic nanocrystalline FeSn2 delivers reversible capacities of ca. 600 mAhg-1 by the formation of LixSn phases and superparamagnetic iron nanoparticles. A comparison between the properties of nano- FeSn2 and micro-FeSn2 shows a significantly better electrochemical behavior and electrode stability for the nanocrystalline material. For Fe1-xCoxSn2 solid solutions with x= 0.25, 0.3, 0.5, 0.6 and 0.8, particle diameters of about 20 nm and different morphologies were obtained. The substitution of iron by cobalt induces a contraction of the unit cell volume and the hyperfine parameters of the 57Fe Mössbauer spectra reveal a superparamagnetic behavior. The intermediate compositions exhibit better electrochemical performance than the limit compositions CoSn2 and FeSn2. To improve the performance of CoSnx intermetallics, composites in which the nanocrystalline intermetallic material is embedded in an amorphous layer based on the polyacrylonitrile (PAN) polymer were used. The PAN shell contributes to stabilize the intermetallic phases upon electrochemical cycling.

  7. Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties.

    PubMed

    Sougrati, Moulay T; Darwiche, Ali; Liu, Xiaohiu; Mahmoud, Abdelfattah; Hermann, Raphael P; Jouen, Samuel; Monconduit, Laure; Dronskowski, Richard; Stievano, Lorenzo

    2016-04-11

    We report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on (57)Fe Mössbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe-NCN into Li/Na-NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not require heavy treatments (such as nanoscale tailoring, sophisticated textures, or coating) to obtain long cycle life with current density as high as 9 A g(-1) for hundreds of charge-discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides M(x)(NCN)y with M=Mn, Cr, Zn can cycle successfully versus lithium and sodium. Their electrochemical activity and performance open the way to the design of a novel family of anode materials.

  8. Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties

    DOE PAGES

    Sougrati, Moulay T.; Darwiche, Ali; Liu, Xiaohiu; Mahmoud, Abdelfattah; Hermann, Raphael P.; Jouen, Samuel; Monconduit, Laure; Dronskowski, Richard; Stievano, Lorenzo

    2016-03-16

    Here we report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as a negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on 57Fe M ssbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe NCN into Li/Na NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not requiremore » heavy treatments (nanoscale tailoring, sophisticated textures, coating etc.) to obtain long cycle life with density current as high as 9 A/g-1 for hundreds of charge/discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides Mx(NCN)y with M = Mn, Cr, Zn can cycle successfully versus lithium and sodium. Ultimately, their electrochemical activity and performances open the way to the design of a novel family of anode materials.« less

  9. Role of surface coating on cathode materials for lithium-ion batteries.

    SciTech Connect

    Chen, Z.; Qin, Y.; Amine, K.; Sun, Y.-K.

    2010-01-01

    Surface coating of cathode materials has been widely investigated to enhance the life and rate capability of lithium-ion batteries. The surface coating discussed here was divided into three different configurations which are rough coating, core shell structure coating and ultra thin film coating. The mechanism of surface coating in achieving improved cathode performance and strategies to carry out this surface modification is discussed. An outlook on atomic layer deposition for lithium ion battery is also presented.

  10. Probing and mapping electrode surfaces in solid oxide fuel cells.

    PubMed

    Blinn, Kevin S; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A; Liu, Meilin

    2012-09-20

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen (1-7). The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion(2). Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation(8-12). It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition(8, 10, 13, 14) ("coking") and sulfur poisoning(11, 15) and the manner in which surface modifications stave off this degradation(16). The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM

  11. Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells

    PubMed Central

    Blinn, Kevin S.; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A.; Liu, Meilin

    2012-01-01

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM

  12. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface

    SciTech Connect

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-15

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  13. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    NASA Astrophysics Data System (ADS)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  14. Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes

    NASA Technical Reports Server (NTRS)

    Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.

    2008-01-01

    Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.

  15. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures

    SciTech Connect

    Huang, C; Xiao, J; Shao, YY; Zheng, JM; Bennett, WD; Lu, DP; Saraf, LV; Engelhard, M; Ji, LW; Zhang, J; Li, XL; Graff, GL; Liu, J

    2014-01-09

    Lithium-sulphur batteries have high theoretical energy density and potentially low cost, but significant challenges such as severe capacity degradation prevent its widespread adoption. Here we report a new design of lithium-sulphur battery using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on lithium. Lithiated graphite placed in front of the lithium metal functions as an artificial, self-regulated solid electrolyte interface layer to actively control the electrochemical reactions and minimize the deleterious side reactions, leading to significant performance improvements. Lithium-sulphur cells incorporating this hybrid anodes deliver capacities of >800 mAhg(-1) for 400 cycles at a high rate of 1,737mAg(-1), with only 11% capacity fade and a Coulombic efficiency >99%. This simple hybrid concept may also provide scientific strategies for protecting metal anodes in other energy-storage devices.

  16. A long-life lithium ion sulfur battery exploiting high performance electrodes.

    PubMed

    Moreno, Noelia; Agostini, Marco; Caballero, Alvaro; Morales, Julián; Hassoun, Jusef

    2015-10-01

    A novel lithium ion sulfur battery is formed by coupling an activated ordered mesoporous carbon-sulfur (AOMC-S) cathode and a nanostructured tin-carbon anode. The lithium ion cell has improved reversibility, high energy content and excellent cycle life.

  17. Hot-rolling nanowire transparent electrodes for surface roughness minimization.

    PubMed

    Hosseinzadeh Khaligh, Hadi; Goldthorpe, Irene A

    2014-01-01

    Silver nanowire transparent electrodes are a promising alternative to transparent conductive oxides. However, their surface roughness presents a problem for their integration into devices with thin layers such as organic electronic devices. In this paper, hot rollers are used to soften plastic substrates with heat and mechanically press the nanowires into the substrate surface. By doing so, the root-mean-square surface roughness is reduced to 7 nm and the maximum peak-to-valley value is 30 nm, making the electrodes suitable for typical organic devices. This simple process requires no additional materials, which results in a higher transparency, and is compatible with roll-to-roll fabrication processes. In addition, the adhesion of the nanowires to the substrate significantly increases.

  18. Long-range surface plasmons in electrode structures

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1983-01-01

    Surface polaritons guided by symmetric double metal film structures are analyzed, with particular attention given to the attenuation of the two long-range modes that occur. It is found that long-range surface plasmon polariton modes do exist for double electrode structures over a limited range of material parameters. Guided by thin metal electrodes, surface plasmon polaritons can achieve millimeter plus propagation distances in the near infrared. It is pointed out that if the slab is electrooptic, then very low voltages will be needed to manipulate the waves. The fact that long-range modes exist simultaneously with junction tunnel plasmons may be of use in providing directional radiation from light-emitting junctions or the inverse process of light to electrical energy conversion.

  19. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure

    PubMed Central

    Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu; Shiiba, Hiromasa; Ogawa, Masahiro; Nakayama, Keisuke; Ohta, Toshiaki; Endo, Daisuke; Ozaki, Tetsuya; Inamasu, Tokuo; Sato, Kei; Komaba, Shinichi

    2015-01-01

    Rechargeable lithium batteries have rapidly risen to prominence as fundamental devices for green and sustainable energy development. Lithium batteries are now used as power sources for electric vehicles. However, materials innovations are still needed to satisfy the growing demand for increasing energy density of lithium batteries. In the past decade, lithium-excess compounds, Li2MeO3 (Me = Mn4+, Ru4+, etc.), have been extensively studied as high-capacity positive electrode materials. Although the origin as the high reversible capacity has been a debatable subject for a long time, recently it has been confirmed that charge compensation is partly achieved by solid-state redox of nonmetal anions (i.e., oxide ions), coupled with solid-state redox of transition metals, which is the basic theory used for classic lithium insertion materials, such as LiMeO2 (Me = Co3+, Ni3+, etc.). Herein, as a compound with further excess lithium contents, a cation-ordered rocksalt phase with lithium and pentavalent niobium ions, Li3NbO4, is first examined as the host structure of a new series of high-capacity positive electrode materials for rechargeable lithium batteries. Approximately 300 mAh⋅g−1 of high-reversible capacity at 50 °C is experimentally observed, which partly originates from charge compensation by solid-state redox of oxide ions. It is proposed that such a charge compensation process by oxide ions is effectively stabilized by the presence of electrochemically inactive niobium ions. These results will contribute to the development of a new class of high-capacity electrode materials, potentially with further lithium enrichment (and fewer transition metals) in the close-packed framework structure with oxide ions. PMID:26056288

  20. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure.

    PubMed

    Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu; Shiiba, Hiromasa; Ogawa, Masahiro; Nakayama, Keisuke; Ohta, Toshiaki; Endo, Daisuke; Ozaki, Tetsuya; Inamasu, Tokuo; Sato, Kei; Komaba, Shinichi

    2015-06-23

    Rechargeable lithium batteries have rapidly risen to prominence as fundamental devices for green and sustainable energy development. Lithium batteries are now used as power sources for electric vehicles. However, materials innovations are still needed to satisfy the growing demand for increasing energy density of lithium batteries. In the past decade, lithium-excess compounds, Li2MeO3 (Me = Mn(4+), Ru(4+), etc.), have been extensively studied as high-capacity positive electrode materials. Although the origin as the high reversible capacity has been a debatable subject for a long time, recently it has been confirmed that charge compensation is partly achieved by solid-state redox of nonmetal anions (i.e., oxide ions), coupled with solid-state redox of transition metals, which is the basic theory used for classic lithium insertion materials, such as LiMeO2 (Me = Co(3+), Ni(3+), etc.). Herein, as a compound with further excess lithium contents, a cation-ordered rocksalt phase with lithium and pentavalent niobium ions, Li3NbO4, is first examined as the host structure of a new series of high-capacity positive electrode materials for rechargeable lithium batteries. Approximately 300 mAh ⋅ g(-1) of high-reversible capacity at 50 °C is experimentally observed, which partly originates from charge compensation by solid-state redox of oxide ions. It is proposed that such a charge compensation process by oxide ions is effectively stabilized by the presence of electrochemically inactive niobium ions. These results will contribute to the development of a new class of high-capacity electrode materials, potentially with further lithium enrichment (and fewer transition metals) in the close-packed framework structure with oxide ions. PMID:26056288

  1. Effect of the specific surface area on thermodynamic and kinetic properties of nanoparticle anatase TiO2 in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Madej, Edyta; Klink, Stefan; Schuhmann, Wolfgang; Ventosa, Edgar; La Mantia, Fabio

    2015-11-01

    Anatase TiO2 nanoparticles with a specific surface area of 100 m2 g-1 and 300 m2 g-1 have been investigated as negative insertion electrode material for lithium-ion batteries. Galvanostatic intermittent titration (GITT) and electrochemical impedance spectroscopy (EIS) were used to investigate the effect of the specific surface area on the performance of the material. GITT was performed at C/10 rate, followed by an EIS measurement after each relaxation step. Separation of kinetic and thermodynamic contributions to the overpotential of the phase transformation on Li+ (de-)insertion allowed revealing a dependency of both terms on the specific surface area. The material with higher surface area undergoes intrinsic transformation during the initial cycles affecting the thermodynamics of (de-)insertion while the sample with lower surface area shows large and asymmetric kinetic hindrances. For the material with 15 nm particles, Li+ de-insertion appears to have a higher resistance than lithium insertion.

  2. High surface area, low weight composite nickel fiber electrodes

    NASA Technical Reports Server (NTRS)

    Johnson, Bradley A.; Ferro, Richard E.; Swain, Greg M.; Tatarchuk, Bruce J.

    1993-01-01

    The energy density and power density of light weight aerospace batteries utilizing the nickel oxide electrode are often limited by the microstructures of both the collector and the resulting active deposit in/on the collector. Heretofore, these two microstructures were intimately linked to one another by the materials used to prepare the collector grid as well as the methods and conditions used to deposit the active material. Significant weight and performance advantages were demonstrated by Britton and Reid at NASA-LeRC using FIBREX nickel mats of ca. 28-32 microns diameter. Work in our laboratory investigated the potential performance advantages offered by nickel fiber composite electrodes containing a mixture of fibers as small as 2 microns diameter (Available from Memtec America Corporation). These electrode collectors possess in excess of an order of magnitude more surface area per gram of collector than FIBREX nickel. The increase in surface area of the collector roughly translates into an order of magnitude thinner layer of active material. Performance data and advantages of these thin layer structures are presented. Attributes and limitations of their electrode microstructure to independently control void volume, pore structure of the Ni(OH)2 deposition, and resulting electrical properties are discussed.

  3. Insight on the surface polarisation for non-blocking electrodes

    NASA Astrophysics Data System (ADS)

    de Andrade, T.; Alexe-Ionescu, A. L.; Saracco, G.; Barbero, G.

    2016-03-01

    A complete phenomenological description of the electrode polarisation and of the non-blocking character of electrodes is theoretically discussed. To do this, the role of the ions on the electrical response of an electrolytic cell submitted to an external field of small amplitude is investigated. We assume that the conduction current across the electrodes is limited by energy barriers which determine the activation energy of the corresponding electrochemical reactions responsible for the processes of charge transfer between the solution containing ions and the external circuit. This assumption implies that the boundary conditions for the conduction current on the electrodes contain two terms: one proportional to the surface electric field, as in the Ohmic model, and the other proportional to the surface variation of the bulk concentration of ions, as in the Chang-Jaffe model. We deduce, in the one-mobile ion approximation, the expression for the electric impedance of the cell, in the shape of a slab, for mixed boundary conditions. Our expression contains, as particular cases, the Ohmic and Chang-Jaffe models. The equivalence between the general case considered in our analysis and previous models is discussed.

  4. LiCoO2 and SnO2 Thin Film Electrodes for Lithium-Ion Battery Applications

    NASA Technical Reports Server (NTRS)

    Maranchi, Jeffrey P.; Hepp, Aloysius F.; Kumta, Prashant N.

    2004-01-01

    There is an increasing need for small dimension, ultra-lightweight, portable power supplies due to the miniaturization of consumer electronic devices. Rechargeable thin film lithium-ion batteries have the potential to fulfill the growing demands for micro-energy storage devices. However, rechargeable battery technology and fabrication processes have not kept paced with the advances made in device technology. Economical fabrication methods lending excellent microstructural and compositional control in the thin film battery electrodes have yet to be fully developed. In this study, spin coating has been used to demonstrate the flexibility of the approach to produce both anode (SnO2) and cathode (LiCoO2) thin films. Results on the microstructure crystal structure and electrochemical properties of the thin film electrodes are described and discussed.

  5. In Situ Radiographic Investigation of (De)Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery.

    PubMed

    Sun, Fu; Markötter, Henning; Zhou, Dong; Alrwashdeh, Saad Sabe Sulaiman; Hilger, Andre; Kardjilov, Nikolay; Manke, Ingo; Banhart, John

    2016-05-10

    The lithiation and delithiation mechanisms of multiple-Sn particles in a customized flat radiography cell were investigated by in situ synchrotron radiography. For the first time, four (de)lithiation phenomena in a Sn-electrode battery system are highlighted: 1) the (de)lithiation behavior varies between different Sn particles, 2) the time required to lithiate individual Sn particles is markedly different from the time needed to discharge the complete battery, 3) electrochemical deactivation of originally electrochemically active particles is reported, and 4) a change of electrochemical behavior of individual particles during cycling is found and explained by dynamic changes of (de)lithiation pathways amongst particles within the electrode. These unexpected findings fundamentaly expand the understanding of the underlying (de)lithiation mechanisms inside commercial lithium-ion batteries (LIBs) and would open new design principles for high-performance next-generation LIBs.

  6. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Zhan, Chun; Wu, Tianpin; Wen, Jianguo; Lei, Yu; Kropf, A. Jeremy; Wu, Huiming; Miller, Dean J.; Elam, Jeffrey W.; Sun, Yang-Kook; Qiu, Xinping; Amine, Khalil

    2014-12-01

    The capacity fade of lithium manganate-based cells is associated with the dissolution of Mn from cathode/electrolyte interface due to the disproportionation reaction of Mn(III), and the subsequent deposition of Mn(II) on the anode. Suppressing the dissolution of Mn from the cathode is critical to reducing capacity fade of LiMn2O4-based cells. Here we report a nanoscale surface-doping approach that minimizes Mn dissolution from lithium manganate. This approach exploits advantages of both bulk doping and surface-coating methods by stabilizing surface crystal structure of lithium manganate through cationic doping while maintaining bulk lithium manganate structure, and protecting bulk lithium manganate from electrolyte corrosion while maintaining ion and charge transport channels on the surface through the electrochemically active doping layer. Consequently, the surface-doped lithium manganate demonstrates enhanced electrochemical performance. This study provides encouraging evidence that surface doping could be a promising alternative to improve the cycling performance of lithium-ion batteries.

  7. Three-Dimensional Cu2ZnSnS4 Films with Modified Surface for Thin-Film Lithium-Ion Batteries.

    PubMed

    Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang

    2015-08-12

    Cu2ZnSnS4 (CZTS) is an important material in low-cost thin film solar cells and is also a promising candidate for lithium storage. In this work, a novel three-dimensional CZTS film coated with a lithium phosphorus oxynitride (LiPON) film is fabricated for the first time and is applied to thin-film lithium-ion batteries. The modified film exhibits an excellent performance of ∼900 mAh g(-1) (450 μAh cm(-2) μm(-1)), even after 75 cycles. Morphology integrity is still maintained after repeated lithiation/delithiation, and the main reaction mechanism is analyzed in detail. The significant findings from this study indicate the striking advantages of modifying both the surface and structure of alloy-based electrodes for energy storage. PMID:26192026

  8. Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO4 Electrodes During Charge/Discharge Cycling of Lithium Batteries

    PubMed Central

    2014-01-01

    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate. PMID:24790684

  9. Modeling mass and density distribution effects on the performance of co-extruded electrodes for high energy density lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cobb, Corie L.; Blanco, Mario

    2014-03-01

    Utilizing an existing macro-homogeneous porous electrode model developed by John Newman, this paper aims to explore the potential energy density gains which can be realized in lithium-ion battery electrodes fabricated with co-extrusion printing technology. This paper conducts an analysis on two-dimensional electrode cross-sections and presents the electrochemical performance results, including calculated volumetric energy capacity for a general class of lithium cobalt oxide (LiCoO2) co-extruded cathodes, in the presence of a lithium metal anode, polymer separator and liquid ethylene carbonate, propylene carbonate, and dimethyl carbonate (EC:PC:DMC) electrolyte. The impact of structured electrodes on cell performance is investigated by varying the physical distribution of a fixed amount of cathode mass over a space of dimensions which can be fabricated by co-extrusion. By systematically varying the thickness and aspect ratio of the electrode structures, we present an optimal subset of geometries and design rules for co-extruded geometries. Modeling results demonstrate that ultra-thick LiCoO2 electrodes, on the order of 150-300 μm, can garner a substantial improvement in material utilization and in turn capacity through electrolyte channels and fine width electrode pillars which are 25-100 μm wide.

  10. Carbon electrode with NiO and RuO2 nanoparticles improves the cycling life of non-aqueous lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Tan, P.; Shyy, W.; Wu, M. C.; Huang, Y. Y.; Zhao, T. S.

    2016-09-01

    Carbon has been regarded as one of the most attractive cathode materials for non-aqueous lithium-oxygen batteries due to its excellent conductivity, high specific area, large porosity, and low cost. However, a key disadvantage of carbon electrodes lies in the fact that carbon may react with Li2O2 and electrolyte to form irreversible side products (e.g. Li2CO3) at the active surfaces, leading to a high charge voltage and a short cycling life. In this work, we address this issue by decorating NiO and RuO2 nanoparticles onto carbon surfaces. It is demonstrated that the NiO-RuO2 nanoparticle-decorated carbon electrode not only catalyzes both the oxygen reduction and evolution reactions, but also promotes the decomposition of side products. As a result, the battery fitted with the novel carbon cathode delivers a capacity of 3653 mAh g-1 at a current density of 400 mA g-1, with a charge plateau of 4.01 V. This performance is 440 mV lower than that of the battery fitted with a pristine carbon cathode. The present cathode is also able to operate for 50 cycles without capacity decay at a fixed capacity of 1000 mAh g-1, which is more than twice the cycle number of that of the pristine carbon cathode.

  11. Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors.

    PubMed

    Sennu, Palanichamy; Aravindan, Vanchiappan; Ganesan, Mahadevan; Lee, Young-Gi; Lee, Yun-Sung

    2016-04-21

    We report the fabrication of a carbon-based high energy density Li-ion hybrid electrochemical capacitor (Li-HEC) from low cost and eco-friendly materials. High surface area (2448±20 m(2)  g(-1) ) activated carbon (AC) is derived from the environmentally threatening plant, Prosopis juliflora, and used as the positive electrode in a Li-HEC assembly. Natural graphite is employed as negative electrode and electrochemically pre-lithiated prior to the Li-HEC fabrication. The Li-HEC delivers a specific energy of 162.3 Wh kg(-1) and exhibits excellent cyclability (i.e., ∼79 % of initial capacity is retained after 7000 cycles). The superior electrochemical performance of Li-HEC benefits from the tube-like unique structural features of the AC. Also, the presence of a graphitic nanocarbon network improves the ion transport, and the formed micro- and meso-porous network acts as reservoir for the accommodation of charge carriers.

  12. Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors.

    PubMed

    Sennu, Palanichamy; Aravindan, Vanchiappan; Ganesan, Mahadevan; Lee, Young-Gi; Lee, Yun-Sung

    2016-04-21

    We report the fabrication of a carbon-based high energy density Li-ion hybrid electrochemical capacitor (Li-HEC) from low cost and eco-friendly materials. High surface area (2448±20 m(2)  g(-1) ) activated carbon (AC) is derived from the environmentally threatening plant, Prosopis juliflora, and used as the positive electrode in a Li-HEC assembly. Natural graphite is employed as negative electrode and electrochemically pre-lithiated prior to the Li-HEC fabrication. The Li-HEC delivers a specific energy of 162.3 Wh kg(-1) and exhibits excellent cyclability (i.e., ∼79 % of initial capacity is retained after 7000 cycles). The superior electrochemical performance of Li-HEC benefits from the tube-like unique structural features of the AC. Also, the presence of a graphitic nanocarbon network improves the ion transport, and the formed micro- and meso-porous network acts as reservoir for the accommodation of charge carriers. PMID:26990699

  13. Cryogenic ion trapping systems with surface-electrode traps.

    PubMed

    Antohi, P B; Schuster, D; Akselrod, G M; Labaziewicz, J; Ge, Y; Lin, Z; Bakr, W S; Chuang, I L

    2009-01-01

    We present two simple cryogenic rf ion trap systems in which cryogenic temperatures and ultra high vacuum pressures can be reached in as little as 12 h. The ion traps are operated either in a liquid helium bath cryostat or in a low vibration closed cycle cryostat. The fast turn around time and availability of buffer gas cooling made the systems ideal for testing surface-electrode ion traps. The vibration amplitude of the closed cycled cryostat was found to be below 106 nm. We evaluated the systems by loading surface-electrode ion traps with (88)Sr(+) ions using laser ablation, which is compatible with the cryogenic environment. Using Doppler cooling we observed small ion crystals in which optically resolved ions have a trapped lifetime over 2500 min.

  14. Layered P3-NaxCo1/3Ni1/3Mn1/3O2 versus Spinel Li4Ti5O12 as a Positive and a Negative Electrode in a Full Sodium-Lithium Cell.

    PubMed

    Ivanova, Svetlana; Zhecheva, Ekaterina; Kukeva, Rositsa; Nihtianova, Diana; Mihaylov, Lyuben; Atanasova, Genoveva; Stoyanova, Radostina

    2016-07-13

    The development of lithium and sodium ion batteries without using lithium and sodium metal as anodes gives the impetus for elaboration of low-cost and environmentally friendly energy storage devices. In this contribution we demonstrate the design and construction of a new type of hybrid sodium-lithium ion cell by using unique electrode combination (Li4Ti5O12 spinel as a negative electrode and layered Na3/4Co1/3Ni1/3Mn1/3O2 as a positive electrode) and conventional lithium electrolyte (LiPF6 salt dissolved in EC/DMC). The cell operates at an average potential of 2.35 V by delivering a reversible capacity of about 100 mAh/g. The mechanism of the electrochemical reaction in the full sodium-lithium ion cell is studied by means of postmortem analysis, as well as ex situ X-ray diffraction analysis, HR-TEM, and electron paramagnetic resonance spectroscopy (EPR). The changes in the surface composition of electrodes are examined by ex situ X-ray photoelectron spectroscopy (XPS). PMID:27315402

  15. Layered P3-NaxCo1/3Ni1/3Mn1/3O2 versus Spinel Li4Ti5O12 as a Positive and a Negative Electrode in a Full Sodium-Lithium Cell.

    PubMed

    Ivanova, Svetlana; Zhecheva, Ekaterina; Kukeva, Rositsa; Nihtianova, Diana; Mihaylov, Lyuben; Atanasova, Genoveva; Stoyanova, Radostina

    2016-07-13

    The development of lithium and sodium ion batteries without using lithium and sodium metal as anodes gives the impetus for elaboration of low-cost and environmentally friendly energy storage devices. In this contribution we demonstrate the design and construction of a new type of hybrid sodium-lithium ion cell by using unique electrode combination (Li4Ti5O12 spinel as a negative electrode and layered Na3/4Co1/3Ni1/3Mn1/3O2 as a positive electrode) and conventional lithium electrolyte (LiPF6 salt dissolved in EC/DMC). The cell operates at an average potential of 2.35 V by delivering a reversible capacity of about 100 mAh/g. The mechanism of the electrochemical reaction in the full sodium-lithium ion cell is studied by means of postmortem analysis, as well as ex situ X-ray diffraction analysis, HR-TEM, and electron paramagnetic resonance spectroscopy (EPR). The changes in the surface composition of electrodes are examined by ex situ X-ray photoelectron spectroscopy (XPS).

  16. Electrocatalysis of Lithium Polysulfides: Current Collectors as Electrodes in Li/S Battery Configuration

    PubMed Central

    Babu, Ganguli; Ababtain, Khalid; Ng, K. Y. Simon; Arava, Leela Mohana Reddy

    2015-01-01

    Lithium Sulfur (Li/S) chemistries are amongst the most promising next-generation battery technologies due to their high theoretical energy density. However, the detrimental effects of their intermediate byproducts, polysulfides (PS), have to be resolved to realize these theoretical performance limits. Confined approaches on using porous carbons to entrap PS have yielded limited success. In this study, we deviate from the prevalent approach by introducing catalysis concept in Li/S battery configuration. Engineered current collectors were found to be catalytically active towards PS, thereby eliminating the need for carbon matrix and their processing obligatory binders, additives and solvents. We reveal substantial enhancement in electrochemical performance and corroborate our findings using a detailed experimental parametric study involving variation of several kinetic parameters such as surface area, temperature, current rate and concentration of PS. The resultant novel battery configuration delivered a discharge capacity of 700 mAh g−1 with the two dimensional (2D) planar Ni current collectors and an enhancement in the capacity up to 900 mAh g−1 has been realized using the engineered three dimensional (3D) current collectors. The battery capacity has been tested for stability over 100 cycles of charge-discharge. PMID:25740731

  17. DEMS study of gas evolution at thick graphite electrodes for lithium-ion batteries: the effect of γ-butyrolactone

    NASA Astrophysics Data System (ADS)

    Lanz, Martin; Novák, Petr

    Differential electrochemical mass spectrometry (DEMS) was used to study the reductive decomposition of an electrolyte based on ethylene carbonate/dimethyl carbonate (EC/DMC), as well as the formation of a solid electrolyte interphase (SEI) in this electrolyte, at thick (75-100 μm) porous graphite composite electrodes. A number of graphite electrodes differing in their electrochemical lithium intercalation properties were investigated in potential-sweep experiments. They proved to be similar with respect to the evolution of ethylene and hydrogen gas during the first two charge/discharge cycles. Due to an incomplete coulombic conversion, a high irreversible capacity, as well as slow diffusion kinetics and an enhanced ohmic resistance of the electrodes, SEI formation on these thick electrodes was not yet complete after the first charge/discharge cycle. Undesired gas evolution can be reduced by adding γ-butyrolactone (GBL) as an electrolyte co-solvent. The amount of ethylene and hydrogen gas evolved decreases with increasing percentages of GBL in an EC/DMC electrolyte, indicating that the SEI layer is built up from GBL rather than from EC decomposition products.

  18. Three dimensional Graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries

    PubMed Central

    Chen, Zhihang; Li, Hua; Tian, Ran; Duan, Huanan; Guo, Yiping; Chen, Yujie; Zhou, Jie; Zhang, Chunmei; DUGNANI, Roberto; Liu, Hezhou

    2016-01-01

    In this work it is shown how porous graphene aerogels fabricated by an eco-friendly and simple technological process, could be used as electrodes in lithium- ion batteries. The proposed graphene framework exhibited excellent performance including high reversible capacities, superior cycling stability and rate capability. A significantly lower temperature (75 °C) than the one currently utilized in battery manufacturing was utilized for self-assembly hence providing potential significant savings to the industrial production. After annealing at 600 °C, the formation of Sn-C-O bonds between the SnO2 nanoparticles and the reduced graphene sheets will initiate synergistic effect and improve the electrochemical performance. The XPS patterns revealed the formation of Sn-C-O bonds. Both SEM and TEM imaging of the electrode material showed that the three dimensional network of graphene aerogels and the SnO2 particles were distributed homogeneously on graphene sheets. Finally, the electrochemical properties of the samples as active anode materials for lithium-ion batteries were tested and examined by constant current charge–discharge cycling and the finding fully described in this manuscript. PMID:27265146

  19. Alkylphosphate-based nonflammable gel electrolyte for LiMn 2O 4 positive electrode in lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Nobuko; Gotoh, Daisuke; Egashira, Minato; Morita, Masayuki

    Polymeric gel containing alkylphosphate has been examined as nonflammable gel electrolyte for LiMn 2O 4 positive electrode of lithium-ion battery (LIB). The gel was composed of a polymer matrix of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) and a liquid component consisting of ternary solvent of trimethyl phosphate (TMP) mixed with ethylene carbonate (EC) and diethyl carbonate (DEC) that dissolves lithium salt (LiPF 6 or LiBF 4). The gel composition of 0.8 M (mol dm -3) LiX (X = PF 6 and BF 4) dissolved in EC + DEC + TMP (55:25:20) with PVdF-HFP showed excellent nonflammable characteristics and high ionic conductivity of ca. 3.1 mS cm -1 at room temperature (20 °C). The charge-discharge cycling test of LiMn 2O 4 positive electrode gave good reversibility with high capacitance in the gel electrolyte. With respect to the electrolyte salt, LiBF 4 was better than LiPF 6 due to its thermal stability during the gel preparation.

  20. Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.

    PubMed

    Liu, Yuping; He, Xiaoyun; Hanlon, Damien; Harvey, Andrew; Khan, Umar; Li, Yanguang; Coleman, Jonathan N

    2016-06-28

    Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage properties of solution-processed MoS2/carbon nanotube anodes. Nanotube addition gives up to 10(10)-fold and 40-fold increases in electrical conductivity and mechanical toughness, respectively. The increased conductivity results in up to a 100× capacity enhancement to ∼1200 mAh/g (∼3000 mAh/cm(3)) at 0.1 A/g, while the improved toughness significantly boosts cycle stability. Composites with 20 wt % nanotubes combine high reversible capacity with excellent cycling stability (e.g., ∼950 mAh/g after 500 cycles at 2 A/g) and high rate capability (∼600 mAh/g at 20 A/g). The conductivity, toughness, and capacity scale with nanotube content according to percolation theory, while the stability increases sharply at the mechanical percolation threshold. We believe that the improvements in conductivity and toughness obtained after addition of nanotubes can be transferred to other electrode materials, such as silicon nanoparticles. PMID:27203558

  1. Three dimensional Graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Zhihang; Li, Hua; Tian, Ran; Duan, Huanan; Guo, Yiping; Chen, Yujie; Zhou, Jie; Zhang, Chunmei; Dugnani, Roberto; Liu, Hezhou

    2016-06-01

    In this work it is shown how porous graphene aerogels fabricated by an eco-friendly and simple technological process, could be used as electrodes in lithium- ion batteries. The proposed graphene framework exhibited excellent performance including high reversible capacities, superior cycling stability and rate capability. A significantly lower temperature (75 °C) than the one currently utilized in battery manufacturing was utilized for self-assembly hence providing potential significant savings to the industrial production. After annealing at 600 °C, the formation of Sn-C-O bonds between the SnO2 nanoparticles and the reduced graphene sheets will initiate synergistic effect and improve the electrochemical performance. The XPS patterns revealed the formation of Sn-C-O bonds. Both SEM and TEM imaging of the electrode material showed that the three dimensional network of graphene aerogels and the SnO2 particles were distributed homogeneously on graphene sheets. Finally, the electrochemical properties of the samples as active anode materials for lithium-ion batteries were tested and examined by constant current charge–discharge cycling and the finding fully described in this manuscript.

  2. Three dimensional Graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries.

    PubMed

    Chen, Zhihang; Li, Hua; Tian, Ran; Duan, Huanan; Guo, Yiping; Chen, Yujie; Zhou, Jie; Zhang, Chunmei; Dugnani, Roberto; Liu, Hezhou

    2016-01-01

    In this work it is shown how porous graphene aerogels fabricated by an eco-friendly and simple technological process, could be used as electrodes in lithium- ion batteries. The proposed graphene framework exhibited excellent performance including high reversible capacities, superior cycling stability and rate capability. A significantly lower temperature (75 °C) than the one currently utilized in battery manufacturing was utilized for self-assembly hence providing potential significant savings to the industrial production. After annealing at 600 °C, the formation of Sn-C-O bonds between the SnO2 nanoparticles and the reduced graphene sheets will initiate synergistic effect and improve the electrochemical performance. The XPS patterns revealed the formation of Sn-C-O bonds. Both SEM and TEM imaging of the electrode material showed that the three dimensional network of graphene aerogels and the SnO2 particles were distributed homogeneously on graphene sheets. Finally, the electrochemical properties of the samples as active anode materials for lithium-ion batteries were tested and examined by constant current charge-discharge cycling and the finding fully described in this manuscript. PMID:27265146

  3. Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.

    PubMed

    Liu, Yuping; He, Xiaoyun; Hanlon, Damien; Harvey, Andrew; Khan, Umar; Li, Yanguang; Coleman, Jonathan N

    2016-06-28

    Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage properties of solution-processed MoS2/carbon nanotube anodes. Nanotube addition gives up to 10(10)-fold and 40-fold increases in electrical conductivity and mechanical toughness, respectively. The increased conductivity results in up to a 100× capacity enhancement to ∼1200 mAh/g (∼3000 mAh/cm(3)) at 0.1 A/g, while the improved toughness significantly boosts cycle stability. Composites with 20 wt % nanotubes combine high reversible capacity with excellent cycling stability (e.g., ∼950 mAh/g after 500 cycles at 2 A/g) and high rate capability (∼600 mAh/g at 20 A/g). The conductivity, toughness, and capacity scale with nanotube content according to percolation theory, while the stability increases sharply at the mechanical percolation threshold. We believe that the improvements in conductivity and toughness obtained after addition of nanotubes can be transferred to other electrode materials, such as silicon nanoparticles.

  4. Facile Preparation and Lithium Storage Properties of TiO2 @Graphene Composite Electrodes with Low Carbon Content.

    PubMed

    Guo, Sheng-Qi; Zhen, Meng-Meng; Liu, Lu; Yuan, Zhi-Hao

    2016-08-16

    Over the past decade, TiO2 /graphene composites as electrodes for lithium ion batteries have attracted a great deal of attention for reasons of safety and environmental friendliness. However, most of the TiO2 /graphene electrodes have large graphene content (9-40 %), which is bound to increase the cost of the battery. Logically, reducing the amount of graphene is a necessary part to achieve a green battery. The synthesis of TiO2 nanosheets under solvothermal conditions without additives is now demonstrated. Through mechanical mixing TiO2 nanosheets with different amount of reduced graphene (rGO), a series of TiO2 @graphene composites was prepared with low graphene content (rGO content 1, 2, 3, and 5 wt %). When these composites were evaluated as anodes for lithium ion batteries, it was found that TiO2 +3 wt % rGO manifested excellent cycling stability and a high specific capacity (243.7 mAh g(-1) at 1 C; 1 C=167.5 mA g(-1) ), and demonstrated superior high-rate discharge/charge capability at 20 C. PMID:27339820

  5. Three dimensional Graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Zhihang; Li, Hua; Tian, Ran; Duan, Huanan; Guo, Yiping; Chen, Yujie; Zhou, Jie; Zhang, Chunmei; Dugnani, Roberto; Liu, Hezhou

    2016-06-01

    In this work it is shown how porous graphene aerogels fabricated by an eco-friendly and simple technological process, could be used as electrodes in lithium- ion batteries. The proposed graphene framework exhibited excellent performance including high reversible capacities, superior cycling stability and rate capability. A significantly lower temperature (75 °C) than the one currently utilized in battery manufacturing was utilized for self-assembly hence providing potential significant savings to the industrial production. After annealing at 600 °C, the formation of Sn-C-O bonds between the SnO2 nanoparticles and the reduced graphene sheets will initiate synergistic effect and improve the electrochemical performance. The XPS patterns revealed the formation of Sn-C-O bonds. Both SEM and TEM imaging of the electrode material showed that the three dimensional network of graphene aerogels and the SnO2 particles were distributed homogeneously on graphene sheets. Finally, the electrochemical properties of the samples as active anode materials for lithium-ion batteries were tested and examined by constant current charge-discharge cycling and the finding fully described in this manuscript.

  6. Lithium intercalation and structural changes at the LiCoO2 surface under high voltage battery operation

    NASA Astrophysics Data System (ADS)

    Taminato, Sou; Hirayama, Masaaki; Suzuki, Kota; Tamura, Kazuhisa; Minato, Taketoshi; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Kanno, Ryoji

    2016-03-01

    An epitaxial-film model electrode of LiCoO2(104) was fabricated on SrRuO3(100)/Nb:SrTiO3(100) using pulsed laser deposition. The 50 nm thick LiCoO2(104) film exhibited lithium (de-)intercalation activity with a first discharge capacity of 119 mAh g-1 between 3.0 and 4.4 V, followed by a gradual capacity fading with subsequent charge-discharge cycles. In contrast, a 3.2 nm thick Li3PO4-coated film exhibited a higher intercalation capacity of 148 mAh g-1 with superior cycle retention than the uncoated film. In situ surface X-ray diffraction measurements revealed a small lattice change at the coated surface during the (de-)intercalation processes compared to the uncoated surface. The surface modification of LiCoO2 by the Li3PO4 coating could lead to improvement of the structural stability at the surface region during lithium (de-)intercalation at high voltage.

  7. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  8. Using electrochemical surface plasmon resonance for in-situ kinetic investigations of solid electrolyte interphase formation in lithium ion battery

    NASA Astrophysics Data System (ADS)

    Pradanawati, Sylvia Ayu; Wang, Fu-Ming; Su, Chia-Hung

    2016-10-01

    The solid electrolyte interphase (SEI) significantly affects the energy density and safety performance of lithium ion batteries. Previous studies have shown that conventional analyses cannot characterize the real-time molecule interactions of SEI formation on the surface of an electrode. In this study, a novel in situ electrochemical-surface plasmon resonance (EC-SPR) was developed for evaluating the kinetic changes of ionic dissociation, SEI formation, and Li-Au alloying reaction. The novel EC-SPR not only indicates the rates of each reaction stage but also reveals the characteristics of the passivated layers. This research demonstrates that the dissociation rates of ionic clusters are affected by several reactions on the surface of an electrode. The rate and mass of the SEI formation from the reduction of ethylene carbonate (EC) are calculated at 0.004 ngs-1 and 5.858 ng, respectively. The EC-SPR is a powerful tool for further in situ kinetic investigations of different electrolyte and electrode systems.

  9. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2015-12-01

    Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability. Electronic supplementary information

  10. Surface oxidized mesoporous carbons derived from porous silicon as dual polysulfide confinement and anchoring cathodes in lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Carter, Rachel; Ejorh, Dennis; Share, Keith; Cohn, Adam P.; Douglas, Anna; Muralidharan, Nitin; Tovar, Trenton M.; Pint, Cary L.

    2016-10-01

    Despite widespread focus on porous carbons for lithium-sulfur battery cathode materials, electrode design to preserve mass-specific performance and sustained extended cycling stability remains a challenge. Here, we demonstrate electrochemically etched porous silicon as a sacrificial template to produce a new class of functional mesoporous carbons optimized for dual chemical and physical confinement of soluble polysulfides in lithium-sulfur battery cathodes. Melt infiltration loading of sulfur at 60 wt% enables initial discharge capacity of 1350 mAh/gsulfur at rates of 0.1 C - approaching theoretical capacity of 1675 mAh/gsulfur. Cycling performance measured at 0.2 C indicates 81% capacity retention measured over 100 cycles with 830 mAh/gsulfur capacity. Unlike other carbons, this template combines structural properties necessary for sulfur containment and polysulfide confinement to achieve high specific capacity, but also boasts surface-bound oxygen-containing functional groups that are able to chemically anchor the soluble Li2Sn species on the interior of the mesoporous carbon to sustain cycling performance. In turn, this elucidates a scalable and competitive material framework that is capable, without the addition of additional membranes or inactive anchoring materials, of providing the simultaneous anchoring and confinement effects necessary to overcome performance limitations in lithium sulfur batteries.

  11. Synthese, etude structurale et electrochimique des materiaux d'electrode positive d'oxydes mixtes lithium cobalt nickel oxide (0 /= 1) pour les batteries rechargeables au lithium

    NASA Astrophysics Data System (ADS)

    Grincourt, Yves

    Depuis une dizaine d'annees, on observe un interet grandissant pour les batteries rechargeables au lithium de tension superieure a 4 volts. La commercialisation de ces batteries pour l'electronique grand marche tend de plus en plus a supplanter celle des accumulateurs Ni-Cd et Ni-MH, de tension nominate 1,2 V. Ces batteries au lithium font appel a des materiaux d'electrode positive (cathode a la decharge) du type oxydes mixtes de metaux de transition LiMnO 2, LiMn2O4, LiNiO2 ou LiCoO2. Si le compose LiCoO2 est relativement aise a synthetiser, il n'en demeure pas moins que le cobalt reste un metal plus couteux compare au nickel et au manganese. La synthese de LiNiO2, quart a elle, demeure un probleme du point de vue stoechiometrique. Un defaut de lithium (5 a 10% molaire) conduira a des proprietes electrochimiques mediocres de la batterie. Dans cette etude nous nous proposons donc de preparer par voie humide et par voie seche les materiaux d'electrode positive de la famille LiCoyNi1-yO2 aver (0 ≤ y ≤ 1) et d'etudier en detail l'influence du pourcentage de nickel et de cobalt sur les proprietes electrochimiques des oxydes mixtes Li-Ni-Co. Une des caracteristiques est la morphologie plus fine des poudres de materiaux, observes par microscopie electronique a balayage (MEB). Un traitement thermique a plus basse temperature (750°C) que pour LiCoO2 (850°C) ainsi qu'un leger exces de lithium dans la preparation, ont permis d'aboutir a un materiau de stoechiometrie quasi parfaite. Neanmoins, le role de pilfer joue par 2 a 4% de moles de Ni2+ presents sur les sites lithium, permet de conserver intacte la structure hexagonale de la maille entre deux cycles consecutifs. Afin de mieux comprendre l'influence du vieillissement dune demi-pile Li/LiMeO2 (Me = Ni, Co) a temperature ambiante, des etudes electrochimiques et d'impedance spectroscopique ont ete menees en parallele. Le vieillissement de la cellule s'accompagne seulement dune chute de son potentiel due a son auto

  12. Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials.

    PubMed

    Song, Gyujin; Ryu, Jaegeon; Ko, Seunghee; Bang, Byoung Man; Choi, Sinho; Shin, Myoungsoo; Lee, Sang-Young; Park, Soojin

    2016-06-01

    Surface modification of electrode active materials has garnered considerable attention as a facile way to meet stringent requirements of advanced lithium-ion batteries. Here, we demonstrated a new coating strategy based on dual layers comprising antimony-doped tin oxide (ATO) nanoparticles and carbon. The ATO nanoparticles are synthesized via a hydrothermal method and act as electronically conductive/electrochemically active materials. The as-synthesized ATO nanoparticles are introduced on natural graphite along with citric acid used as a carbon precursor. After carbonization, the carbon/ATO-decorated natural graphite (c/ATO-NG) is produced. In the (carbon/ATO) dual-layer coating, the ATO nanoparticles coupled with the carbon layer exhibit unprecedented synergistic effects. The resultant c/ATO-NG anode materials display significant improvements in capacity (530 mA h g(-1) ), cycling retention (capacity retention of 98.1 % after 50 cycles at a rate of C/5), and low electrode swelling (volume expansion of 38 % after 100 cycles) which outperform that of typical graphite materials. Furthermore, a full-cell consisting of a c/ATO-NG anode and an LiNi0.5 Mn1.5 O4 cathode presents excellent cycle retention (capacity retention of >80 % after 100 cycles). We envision that the dual-layer coating concept proposed herein opens a new route toward high-performance anode materials for lithium-ion batteries.

  13. Liquid Lithium Limiter Effects on Tokamak Plasmas and Plasma-Liquid Surface Interactions

    SciTech Connect

    R. Kaita; R. Majeski; R. Doerner; G. Antar; M. Baldwin; R. Conn; P. Efthimion; M. Finkenthal; D. Hoffman; B. Jones; S. Krashenninikov; H. Kugel; S. Luckhardt; R. Maingi; J. Menard; T. Munsat; D. Stutman; G. Taylor; J. Timberlake; V. Soukhanovskii; D. Whyte; R. Woolley; L. Zakharov

    2002-10-15

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors.

  14. Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime

    NASA Astrophysics Data System (ADS)

    Waller, G. H.; Brooke, P. D.; Rainwater, B. H.; Lai, S. Y.; Hu, R.; Ding, Y.; Alamgir, F. M.; Sandhage, K. H.; Liu, M. L.

    2016-02-01

    Aluminum oxide coatings deposited on LiMn2O4/carbon fiber electrodes by atomic layer deposition (ALD) are shown to enhance cathode performance in lithium-ion batteries. With a thin Al2O3 coating derived from 10 ALD cycles, the electrodes exhibit 2.5 times greater capacity retention over 500 cycles at a rate of 1C as well as enhanced rate capability and decreased polarization resistance. Structural and surface studies of the electrodes before and after cycling reveal that a near-surface phenomenon is responsible for the improved electrochemical performance. The crystal structure and overall morphology of the LiMn2O4 electrode are found to be unaffected by electrochemical cycling, both for coated and uncoated samples. However, evidence of Mn diffusion into the ALD coatings is observed from both transmission electron microscopy/energy-dispersive X-ray spectroscopy (TEM-EDS) and X-ray Photoelectron Spectroscopy (XPS) after electrochemical cycling. Furthermore, XPS analysis of the Al 2p photoemission peak for the ALD coated electrodes reveal a significant shift in binding energy and peak shape, suggesting the presence of an Al-O-F compound formed by sequestering HF in the electrolyte. These observations provide new insight toward understanding the mechanism in which ultrathin coatings of amphoteric oxides can inhibit capacity loss for LiMn2O4 cathodes in lithium-ion batteries.

  15. Ab initio study of radiation effects on the Li4Ti5O12 electrode used in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Samin, Adib; Kurth, Michael; Cao, Lei

    2015-04-01

    Lithium-ion batteries are currently in wide use owing to their high energy density and enhanced capabilities. Li4Ti5O12 is a promising anode material for lithium-ion batteries because of its advantageous properties. Lithium-ion batteries could be exposed to radiation occurring in various conditions such as during outer space exploration and nuclear accidents. In this study, we apply density functional theory to explore the effect of radiation damage on this electrode and, ultimately, on the performance of the battery. It was found that radiation could affect the structural stability of the material. Furthermore, the electrode was shown to undergo a transition from insulator to metal, following the defects due to radiation. In addition, the effect of radiation on the intercalation potential was found to be highly dependent on the nature of the defect induced.

  16. Ab initio study of radiation effects on the Li{sub 4}Ti{sub 5}O{sub 12} electrode used in lithium-ion batteries

    SciTech Connect

    Samin, Adib E-mail: cao.152@osu.edu; Kurth, Michael; Cao, Lei E-mail: cao.152@osu.edu

    2015-04-15

    Lithium-ion batteries are currently in wide use owing to their high energy density and enhanced capabilities. Li{sub 4}Ti{sub 5}O{sub 12} is a promising anode material for lithium-ion batteries because of its advantageous properties. Lithium-ion batteries could be exposed to radiation occurring in various conditions such as during outer space exploration and nuclear accidents. In this study, we apply density functional theory to explore the effect of radiation damage on this electrode and, ultimately, on the performance of the battery. It was found that radiation could affect the structural stability of the material. Furthermore, the electrode was shown to undergo a transition from insulator to metal, following the defects due to radiation. In addition, the effect of radiation on the intercalation potential was found to be highly dependent on the nature of the defect induced.

  17. Differential pulse anodic voltammetric determination of lithium ions in pharmaceutical formulations using a carbon paste electrode modified with spinel-type manganese oxide.

    PubMed

    Teixeira, Marcos F S; Moraes, Fernando C; Cavalheiro, Eder T G; Bocchi, Nerilso

    2003-03-10

    The use of the differential pulse voltammetry for the determination of lithium ions in pharmaceutical samples using a carbon paste electrode modified with spinel-type manganese oxide has been examined. The best voltammetric response was reached for a modified electrode in borate buffer solution of pH 9.0 and submitted to a scan rate of 5 mV s(-1) and a pulse amplitude of 50 mV. This electroanalytical procedure was able to determine lithium ions in the concentration range of 8.0 x 10(-5)-1.0 x 10(-2) mol l(-1) even in the presence of several alkali metals (1.0 x 10(-3) mol l(-1)) with a detection limit of 7.1 x 10(-7) mol l(-1). Rapidity, precise and good selectivity were also found for the determination of lithium ions in pharmaceutical formulations.

  18. A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Zhang, Sijie; Liu, Jie; Gu, Junjie

    2015-12-01

    Lithium ion (Li-ion) battery has emerged as an important power source for portable devices and electric vehicles due to its superiority over other energy storage technologies. A mild temperature variation as well as a proper operating temperature range are essential for a Li-ion battery to perform soundly and have a long service life. In this review paper, the heat generation and dissipation of Li-ion battery are firstly analyzed based on the energy conservation equations, followed by an examination of the hazardous effects of an above normal operating temperature. Then, advanced techniques in respect of electrode modification and systematic battery thermal management are inspected in detail as solutions in terms of reducing internal heat production and accelerating external heat dissipation, respectively. Specifically, variable parameters like electrode thickness and particle size of active material, along with optimization methods such as coating, doping, and adding conductive media are discussed in the electrode modification section, while the current development in air cooling, liquid cooling, heat pipe cooling, and phase change material cooling systems are reviewed in the thermal management part as different ways to improve the thermal performance of Li-ion batteries.

  19. Discontinuous and Continuous Processing of Low-Solvent Battery Slurries for Lithium Nickel Cobalt Manganese Oxide Electrodes

    NASA Astrophysics Data System (ADS)

    Dreger, Henning; Bockholt, Henrike; Haselrieder, Wolfgang; Kwade, Arno

    2015-11-01

    Different discontinuously and continuously working dispersing devices were investigated to determine their influence on the structural and electrochemical properties of electrodes made from commercial LiNi1/3Co1/3Mn1/3O2 (NCM) cathode active material. A laboratory-scale dispersing device was compared with a discontinuously working laboratory kneader and a continuously working extruder, both using 50% less solvent than the dissolver process. Rheological, mechanical, structural, conductive, imaging, and electrochemical analyses (C-rate test, long-term cycling) were carried out. The dispersing method and time were found to have a considerable impact on the structure and electrochemical performance. The continuous extrusion process resulted in good performance with more than 20% higher specific capacity at elevated C-rates compared with the discontinuous process. This can be attributed to better deagglomeration of the carbon black in the slurries, also resulting in 60% higher electrode conductivity. On top of these positive results, the changes in the drying step due to the reduced solvent use led to a 50% decrease in the time required for the constant-drying-rate period. The continuously working extrusion process was found to be most suitable for large-scale, cost-efficient, environmentally friendly production of slurries for lithium-ion battery electrodes.

  20. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    SciTech Connect

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Maingi; M. Maiorano; S. Smith

    2002-01-18

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance.

  1. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  2. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Li, Yazhuo; Dong, Wei; Wen, Yizhang; Pang, Kai; Zhan, Shuyue; Wang, Xiaoping

    2016-10-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions.

  3. Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries.

    PubMed

    Kim, Young-Soo; Lee, Hochun; Song, Hyun-Kon

    2014-06-11

    Non-flammability of electrolyte and tolerance of cells against thermal abuse should be guaranteed for widespread applications of lithium-ion batteries (LIBs). As a strategy to improve thermal stability of LIBs, here, we report on nitrile-based molecular coverage on surface of cathode active materials to block or suppress thermally accelerated side reactions between electrode and electrolyte. Two different series of aliphatic nitriles were introduced as an additive into a carbonate-based electrolyte: di-nitriles (CN-[CH2]n-CN with n = 2, 5, and 10) and mono-nitriles (CH3-[CH2]m-CN with m = 2, 5, and 10). On the basis of the strong interaction between the electronegativity of nitrile functional groups and the electropositivity of cobalt in LiCoO2 cathode, aliphatic mono- and di-nitrile molecules improved the thermal stability of lithium ion cells by efficiently protecting the surface of LiCoO2. Three factors, the surface coverage θ, the steric hindrance of aliphatic moiety within nitrile molecule, and the chain polarity, mainly affect thermal tolerance as well as cell performances at elevated temperature. PMID:24836760

  4. Effects of Lithium Plasma-Facing Surfaces on Particle Confinement in CDX-U

    NASA Astrophysics Data System (ADS)

    Gray, T.; Soukhanovskii, V.; Maingi, R.

    2005-10-01

    Recent experiments on the CDX-U spherical torus have successfully achieved a significant reduction in recycling with large-area liquid lithium plasma-facing surfaces. The effects of a liquid lithium toroidal limiter and evaporative lithium coatings on overall density and τp^* will be presented. Such conditions have also demonstrated the need to improve plasma fueling. To address this challenge, a supersonic gas injector, based on a Mach 8 Laval nozzle design,[1] has been installed on CDX-U. The fueling efficiency of the nozzle compared to standard gas puffing will be compared. [1] M. Baumgartner, Ph. D. thesis, Princeton University (1997)

  5. SnO{sub 2}/ZnO composite structure for the lithium-ion battery electrode

    SciTech Connect

    Ahmad, Mashkoor; Yingying, Shi; Sun, Hongyu; Shen, Wanci; Zhu, Jing

    2012-12-15

    In this article, SnO{sub 2}/ZnO composite structures have been synthesized by two steps hydrothermal method and investigated their lithium storage capacity as compared with pure ZnO. It has been found that these composite structures combining the large specific surface area, stability and catalytic activity of SnO{sub 2} micro-crystals, demonstrate the higher initial discharge capacity of 1540 mA h g{sup -1} with a Coulombic efficiency of 68% at a rate of 120 mA h g{sup -1} between 0.02 and 2 V and found much better than that of any previously reported ZnO based composite anodes. In addition, a significantly enhanced cycling performance, i.e., a reversible capacity of 497 mA h g{sup -1} is retained after 40 cycles. The improved lithium storage capacity and cycle life is attributed to the addition of SnO{sub 2} structure, which act as good electronic conductors and better accommodation of the large volume change during lithiation/delithiation process. - Graphical abstract: SnO{sub 2}/ZnO composite structures demonstrate the improved lithium storage capacity and cycle life as compared with pure ZnO nanostructure. Highlights: Black-Right-Pointing-Pointer Synthesis of SnO{sub 2}/ZnO composite structures by two steps hydrothermal approach. Black-Right-Pointing-Pointer Investigation of lithium storage capacity. Black-Right-Pointing-Pointer Excellent lithium storage capacity and cycle life of SnO{sub 2}/ZnO composite structures.

  6. Enzyme immobilisation on self-organised nanopatterned electrode surfaces.

    PubMed

    Gajdzik, Janine; Lenz, Jennifer; Natter, Harald; Hempelmann, Rolf; Kohring, Gert-Wieland; Giffhorn, Friedrich; Manolova, Mila; Kolb, Dieter M

    2010-10-21

    A new method is described for immobilisation of enzymes on polymer-coated Pt islands. These islands are deposited on top of a SAM-covered Au(111) electrode by a combination of electroless and electrochemical deposition, which allows for a variation of island size and distance between the islands. Here we describe the immobilisation of pyranose-2-oxidase (P2Ox) and the catalytic response to D-glucose on such a nanopatterned surface, which provides optimum access to the active centres of the enzyme.

  7. Experimental demonstration of a surface-electrode multipole ion trap

    NASA Astrophysics Data System (ADS)

    Maurice, Mark; Allen, Curtis; Green, Dylan; Farr, Andrew; Burke, Timothy; Hilleke, Russell; Clark, Robert

    2015-08-01

    We report on the design and experimental characterization of a surface-electrode multipole ion trap. Individual microscopic sugar particles are confined in the trap. The trajectories of driven particle motion are compared with a theoretical model, both to verify qualitative predictions of the model and to measure the charge-to-mass ratio of the confined particle. The generation of harmonics of the driving frequency is observed as a key signature of the nonlinear nature of the trap. We remark on possible applications of our traps, including to mass spectrometry.

  8. Lithium-ion capacitors using carbide-derived carbon as the positive electrode - A comparison of cells with graphite and Li4Ti5O12 as the negative electrode

    NASA Astrophysics Data System (ADS)

    Rauhala, Taina; Leis, Jaan; Kallio, Tanja; Vuorilehto, Kai

    2016-11-01

    The use of carbide-derived carbon (CDC) as the positive electrode material for lithium-ion capacitors (LICs) is investigated. CDC based LIC cells are studied utilizing two different negative electrode materials: graphite and lithium titanate Li4Ti5O12 (LTO). The graphite electrodes are prelithiated before assembling the LICs, and LTO containing cells are studied with and without prelithiation. The rate capability and cycle life stability during 1000 cycles are evaluated by galvanostatic cycling at current densities of 0.4-4 mA cm-2. The CDC shows a specific capacitance of 120 F g-1 in the organic lithium-containing electrolyte, and the LICs demonstrate a good stability over 1000 charge-discharge cycles. The choice of the negative electrode is found to have an effect on the utilization of the CDC positive electrode during cycling and on the specific energy of the device. The graphite/CDC cell delivers a maximum specific discharge energy of 90 Wh kg-1 based on the total mass of active material in the cell. Both the prelithiated and non-prelithiated LTO/CDC cells show a specific energy of around 30 Wh kg-1.

  9. The structural and electrochemical dynamics of the electrode-electrolyte interphase of metal fluoride nanocomposite positive electrodes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Gmitter, Andrew John

    Metal fluorides are attractive for use as positive electrodes in Li and Li-ion batteries because of their high gravimetric and volumetric energy densities. When synthesized into nanocomposites, these materials undergo conversion reactions and exhibit near theoretical specific capacity and good rate capability. Despite these positive attributes, metal fluorides nanocomposites generally exhibit unacceptable rates of capacity loss during cycling. This stands as a significant barrier to their realization as a viable battery technology. This thesis explored a candidate material, BiF3, and for the first time, the mechanisms by which metal fluoride nanocomposite positive electrode materials fail during cycling have been investigated. The chemistry of the electrode / electrolyte interface and its influence on the BiF3 material were of greatest interest. Early in the course of study, it was discovered that the Bi0 metal produced through the discharge reaction of BiF3 was a catalytically active site for the electrochemical reduction of ethylene carbonate (EC) at potentials exceeding 2 V vs. Li/Li+. This potential range is well above the values typically observed on carbonaceous negative electrodes on which preferential reduction of electrolyte species yields insoluble phases. These ionically conducting layers are deemed solid-electrolyte interphases (SEI), and in the case of carbonaceous materials, they are necessary for enabling functionality of the electrode and preventing deleterious interactions with the electrolyte. Thorough electrochemical and spectroscopic examinations identified Li2CO3 as the predominant SEI species formed on Bi0 from EC. In stark contrast to carbonaceous materials, the presence of SEI on Bi0 was detrimental to the cycling performance of BiF3. Elaboration of this topic identified instability of the SEI during the charging process of the BiF3 and the formation of BiOxF3-2x in the fully charged state. Electrolytes composed of linear

  10. High-strength clad current collector for silicon-based negative electrode in lithium ion battery

    NASA Astrophysics Data System (ADS)

    Kataoka, Riki; Oda, Yoshimitsu; Inoue, Ryouji; Kitta, Mitsunori; Kiyobayashi, Tetsu

    2016-01-01

    We develop a clad foil current collector with a high tensile strength that endures a large volume change in the active material during the charge and discharge, such as the Si-based materials. The nano-Si negative electrode with the clad current collector retains 76% of the initial capacity after 40 cycles, while the capacity of the nano-Si electrode with a conventional Cu foil drops to less than 70% only after 10 cycles. A full cell with the SiO negative electrode and the LiFePO4 positive electrode retains more than 90% of its capacity at the 10th cycle after 800 cycles. The conventional rolled Cu foil wrinkles during the cycling test. The high-strength clad current foil hardly deforms during the test regardless of the electrode size.

  11. Carbothermal synthesis of Sn-based composites as negative electrode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mouyane, M.; Ruiz, J.-M.; Artus, M.; Cassaignon, S.; Jolivet, J.-P.; Caillon, G.; Jordy, C.; Driesen, K.; Scoyer, J.; Stievano, L.; Olivier-Fourcade, J.; Jumas, J.-C.

    The composite [Sn-BPO 4/ xC] to be used as negative electrode material for the storage of electrochemical energy was obtained by dispersing electroactive tin species onto a BPO 4 buffer matrix by carbothermal reduction of a mixture of SnO 2 and nanosized BPO 4. This composite material was thoroughly characterized by X-ray diffraction, Scanning Electron Microscopy, 119Sn Mössbauer spectroscopy and Raman spectroscopy. The electrochemical tests of this new material highlight its very interesting electrochemical properties, i.e., a discharge capacity of 850 mAh g -1 for the first cycle and reversible capacity around 585 mAh g -1 at C/5 rate. These electrochemical performances are attributed to the very high dispersion and stabilisation of tin metal particles onto the BPO 4 matrix. The irreversible capacity observed for the first charge/discharge cycle is due the reduction of interfacial Sn II species and to the passivation of the anode surface by liquid electrolyte decomposition (formation of the SEI layer).

  12. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Sun, Li; Wang, Datao; Luo, Yufeng; Wang, Ke; Kong, Weibang; Wu, Yang; Zhang, Lina; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-01-26

    Sulfur-porous carbon nanotube (S-PCNT) composites are proposed as cathode materials for advanced lithium-sulfur (Li-S) batteries. Abundant mesopores are introduced to superaligned carbon nanotubes (SACNTs) through controlled oxidation in air to obtain porous carbon nanotubes (PCNTs). Compared to original SACNTs, improved dispersive behavior, enhanced conductivity, and higher mechanical strength are demonstrated in PCNTs. Meanwhile, high flexibility and sufficient intertube interaction are preserved in PCNTs to support binder-free and flexible electrodes. Additionally, several attractive features, including high surface area and abundant adsorption points on tubes, are introduced, which allow high sulfur loading, provide dual protection to sulfur cathode materials, and consequently alleviate the capacity fade especially during slow charge/discharge processes. When used as cathodes for Li-S batteries, a high sulfur loading of 60 wt % is achieved, with excellent reversible capacities of 866 and 526 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at a slow charge/discharge rate of 0.1C, revealing efficient suppression of polysulfide dissolution. Even with a high sulfur loading of 70 wt %, the S-PCNT composite maintains capacities of 760 and 528 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at 0.1C, outperforming the current state-of-the-art sulfur cathodes. Improved high-rate capability is also delivered by the S-PCNT composites, revealing their potentials as high-performance carbon-sulfur composite cathodes for Li-S batteries.

  13. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  14. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.

    PubMed

    Ahn, Wook; Lee, Dong Un; Li, Ge; Feng, Kun; Wang, Xiaolei; Yu, Aiping; Lui, Gregory; Chen, Zhongwei

    2016-09-28

    Highly oriented rGO sponge (HOG) can be easily synthesized as an effective anode for application in high-capacity lithium ion hybrid capacitors. X-ray diffraction and morphological analyses show that successfully exfoliated rGO sponge on average consists of 4.2 graphene sheets, maintaining its three-dimensional structure with highly oriented morphology even after the thermal reduction procedure. Lithium-ion hybrid capacitors (LIC) are fabricated in this study based on a unique cell configuration which completely eliminates the predoping process of lithium ions. The full-cell LIC consisting of AC/HOG-Li configuration has resulted in remarkably high energy densities of 231.7 and 131.9 Wh kg(-1) obtained at 57 W kg(-1) and 2.8 kW kg(-1). This excellent performance is attributed to the lithium ion diffusivity related to the intercalation reaction of AC/HOG-Li which is 3.6 times higher that of AC/CG-Li. This unique cell design and configuration of LIC presented in this study using HOG as an effective anode is an unprecedented example of performance enhancement and improved energy density of LIC through successful increase in cell operation voltage window.

  15. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.

    PubMed

    Ahn, Wook; Lee, Dong Un; Li, Ge; Feng, Kun; Wang, Xiaolei; Yu, Aiping; Lui, Gregory; Chen, Zhongwei

    2016-09-28

    Highly oriented rGO sponge (HOG) can be easily synthesized as an effective anode for application in high-capacity lithium ion hybrid capacitors. X-ray diffraction and morphological analyses show that successfully exfoliated rGO sponge on average consists of 4.2 graphene sheets, maintaining its three-dimensional structure with highly oriented morphology even after the thermal reduction procedure. Lithium-ion hybrid capacitors (LIC) are fabricated in this study based on a unique cell configuration which completely eliminates the predoping process of lithium ions. The full-cell LIC consisting of AC/HOG-Li configuration has resulted in remarkably high energy densities of 231.7 and 131.9 Wh kg(-1) obtained at 57 W kg(-1) and 2.8 kW kg(-1). This excellent performance is attributed to the lithium ion diffusivity related to the intercalation reaction of AC/HOG-Li which is 3.6 times higher that of AC/CG-Li. This unique cell design and configuration of LIC presented in this study using HOG as an effective anode is an unprecedented example of performance enhancement and improved energy density of LIC through successful increase in cell operation voltage window. PMID:27603692

  16. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.

    2008-01-01

    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  17. Fabricating solid carbon porous electrodes from powders

    DOEpatents

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  18. Fabricating solid carbon porous electrodes from powders

    DOEpatents

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  19. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (dLi ˜ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2 O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H 2 within minutes. For impurity sequestration, LTX plasma performance

  20. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Needham, S. A.; Wang, G. X.; Liu, H. K.

    Nickel oxide (NiO) nanotubes have been produced for the first time via a template processing method. The synthesis involved a two step chemical reaction in which nickel hydroxide (Ni(OH) 2) nanotubes were firstly formed within the walls of an anodic aluminium oxide (AAO) template. The template was then dissolved away using concentrated NaOH, and the freed nanotubes were converted to NiO by heat treatment in air at 350 °C. Individual nanotubes measured 60 μm in length with a 200 nm outer diameter and a wall thickness of 20-30 nm. The NiO nanotube powder was used in Li-ion cells for assessment of the lithium storage ability. Preliminary testing indicates that the cells demonstrate controlled and sustainable lithium diffusion after the formation of an SEI. Reversible capacities in the 300 mAh g -1 range were typical.

  1. Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes.

    PubMed

    Lee, Byoung-Sun; Seo, Jong-Hyun; Son, Seoung-Bum; Kim, Seul Cham; Choi, In-Suk; Ahn, Jae-Pyoung; Oh, Kyu Hwan; Lee, Se-Hee; Yu, Woong-Ryeol

    2013-07-23

    In the foreseeable future, there will be a sharp increase in the demand for flexible Li-ion batteries. One of the most important components of such batteries will be a freestanding electrode, because the traditional electrodes are easily damaged by repeated deformations. The mechanical sustainability of carbon-based freestanding electrodes subjected to repeated electrochemical reactions with Li ions is investigated via nanotensile tests of individual hollow carbon nanofibers (HCNFs). Surprisingly, the mechanical properties of such electrodes are improved by repeated electrochemical reactions with Li ions, which is contrary to the conventional wisdom that the mechanical sustainability of carbon-based electrodes should be degraded by repeated electrochemical reactions. Microscopic studies reveal a reinforcing mechanism behind this improvement, namely, that inserted Li ions form irreversible face-centered-cubic (FCC) crystals within HCNF cavities, which can reinforce the carbonaceous matrix as strong second-phase particles. These FCC Li crystals formed within the carbon matrix create tremendous potential for HCNFs as freestanding electrodes for flexible batteries, but they also contribute to the irreversible (and thus low) capacity of HCNFs.

  2. Sputtering properties of copper-lithium alloys at reactor-level temperatures and surface erosion rates

    SciTech Connect

    Krauss, A.R.; Gruen, D.M.; Lam, N.Q.; DeWald, A.B.

    1984-01-01

    Previous experiments on copper-lithium alloys at temperatures up to 250/sup 0/C and with erosion rates of .01 to .1 monolayer per second have shown that in the electric and magnetic field environment of a magnetic-confinement fusion reactor, it is possible to maintain a lithium overlayer which will significantly reduce the copper erosion rate. We have extended these experiments to the reactor-relevant regime of 350 to 400/sup 0/C, with erosion rates approaching one monolayer per second. By comparison with the lower flux experiments, it is found that radiation damage effects start to dominate both the surface concentration and depth profile of the lithium. The subsurface region of enhanced lithium concentration is broadened, while the surface concentration is not depleted as rapidly per incident ion as in the low flux case. The time-dependent lithium depth profile is calculated using a computer code developed at Argonne which includes both Gibbsian segregation and radiation-induced effects. The experimental results are compared with these calculations. It is found that the sputtering behavior of the copper-lithium alloy is highly dependent on the mass and energy spectrum of the incident particles, the sample temperature, subsurface structure, and the partial sputtering yields of the alloy components.

  3. Measurements of stress and fracture in germanium electrodes of lithium-ion batteries during electrochemical lithiation and delithiation

    NASA Astrophysics Data System (ADS)

    Pharr, Matt; Choi, Yong Seok; Lee, Dongwoo; Oh, Kyu Hwan; Vlassak, Joost J.

    2016-02-01

    We measure stresses that develop in sputter-deposited amorphous Ge thin films during electrochemical lithiation and delithiation. Amorphous LixGe electrodes are found to flow plastically at stresses that are significantly smaller than those of their amorphous LixSi counterparts. The stress measurements allow for quantification of the elastic modulus of amorphous LixGe as a function of lithium concentration, indicating a much-reduced stiffness compared to pure Ge. Additionally, we observe that thinner films of Ge survive a cycle of lithiation and delithiation, whereas thicker films fracture. By monitoring the critical conditions for crack formation, the fracture energy is calculated using an analysis from fracture mechanics. The fracture energies are determined to be Γ = 8.0 J m-2 for a-Li0.3Ge and Γ = 5.6 J m-2 for a-Li1.6Ge. These values are similar to the fracture energy of pure Ge and are typical for brittle fracture. Despite being brittle, the ability of amorphous LixGe to flow at relatively small stresses during lithiation results in an enhanced ability of Ge electrodes to endure electrochemical cycling without fracture.

  4. Computational, electrochemical and {sup 7}Li NMR studies of lithiated disordered carbons electrodes in lithium ion cells.

    SciTech Connect

    Sandi, G.; Gerald, R., II; Scanlon, L. G.; Carrado, K. A.; Winans, R. E.

    1998-01-07

    Disordered carbons that deliver high reversible capacity in electrochemical cells have been synthesized by using inorganic clays as templates to control the pore size and the surface area. The capacities obtained were much higher than those calculated if the resultant carbon had a graphitic-like structure. Computational chemistry was used to investigate the nature of lithium bonding in a carbon lattice unlike graphite. The lithium intercalated fullerene Li{sub n}-C{sub 60} was used as a model for our (non-graphitic) disordered carbon lattice. A dilithium-C{sub 60} system with a charge and multiplicity of (0,1) and a trilithium-C{sub 60} system with a charge and multiplicity of (0,4) were investigated. The spatial distribution of lithium ions in an electrochemical cell containing this novel disordered carbon material was investigated in situ by Li-7 NMR using an electrochemical cell that was incorporated into a toroid cavity nuclear magnetic resonance (NMR) imager. The concentration of solvated Li{sup +} ions in the carbon anode appears to be larger than in the bulk electrolyte, is substantially lower near the copper/carbon interface, and does not change with cell charging.

  5. Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Rongyu; Yang, Xu; Zhang, Dong; Qiu, Hailong; Fu, Qiang; Na, Hui; Guo, Zhendong; Du, Fei; Chen, Gang; Wei, Yingjin

    2015-07-01

    ZnFe2O4 nano particles as an anode material for lithium ion batteries are prepared by the glycine-nitrate combustion method. The mixture of styrene butadiene rubber and sodium carboxyl methyl cellulose (SBR/CMC) with the weight ratio of 1:1 is used as the binder for ZnFe2O4 electrode. Compared with the conventional polyvinylidene-fluoride (PVDF) binder, the SBR/CMC binder is much cheaper and environment benign. More significantly, this water soluble binder significantly improves the rate capability and cycle stability of ZnFe2O4. A discharge capacity of 873.8 mAh g-1 is obtained after 100 cycles at the 0.1C rate, with a very little capacity fading rate of 0.06% per cycle. Studies show that the SBR/CMC binder enhances the adhesion of the electrode film to the current collector, and constructs an effective three-dimensional network for electrons transport. In addition, the SBR/CMC binder helps to form a uniform SEI film thus prohibiting the formation of lithium dendrite. Electrochemical impedance spectroscopy shows that the SBR/CMC binder lowers the ohmic resistance of the electrode, depresses the formation of SEI film and facilitates the charge transfer reactions at the electrode/electrolyte interface. These advantages highlight the potential applications of SBR/CMC binder in lithium ion batteries.

  6. Modified carbon-free silver electrodes for the use as cathodes in lithium-air batteries with an aqueous alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Wittmaier, Dennis; Wagner, Norbert; Friedrich, K. Andreas; Amin, Hatem M. A.; Baltruschat, Helmut

    2014-11-01

    Gas diffusion electrodes with silver catalysts show a high activity towards oxygen reduction reaction in alkaline media but a rather poor activity towards oxygen evolution reaction. For the use in future lithium-air batteries with an aqueous alkaline electrolyte the activity of such electrodes must be improved significantly. As Co3O4 is a promising metal oxide catalyst for oxygen evolution in alkaline media, silver electrodes were modified with Co3O4. For comparison silver electrodes were also modified with IrO2. Due to the poor stability of carbon materials at high anodic potentials these gas diffusion electrodes were prepared without carbon support to improve especially the long-term stability. Gas diffusion electrodes were electrochemically investigated in an electrochemical half-cell arrangement. In addition to cyclic voltammograms electrochemical impedance spectroscopy (EIS) was carried out. SEM and XRD were used for the physical and morphological investigations. Investigations showed that silver electrodes containing 20 wt.% Co3O4 exhibited the highest performance and highest long-term stability. For comparison, rotating - ring - disc - electrode experiments have been performed using model electrodes with thin catalyst layers, showing that the amount of hydrogen peroxide evolved is negligible.

  7. Double-plasma enhanced carbon shield for spatial/interfacial controlled electrodes in lithium ion batteries via micro-sized silicon from wafer waste

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Hong; Chuang, Shang-I.; Duh, Jenq-Gong

    2016-11-01

    Using spatial and interfacial control, the micro-sized silicon waste from wafer slurry could greatly increase its retention potential as a green resource for silicon-based anode in lithium ion batteries. Through step by step spatial and interfacial control for electrode, the cyclability of recycled waste gains potential performance from its original poor retention property. In the stages of spatial control, the electrode stabilizers of active, inactive and conductive additives were mixed into slurries for maintaining architecture and conductivity of electrode. In addition, a fusion electrode modification of interfacial control combines electrolyte additive, technique of double-plasma enhanced carbon shield (D-PECS) to convert the chemical bond states and to alter the formation of solid electrolyte interphases (SEIs) in the first cycle. The depth profiles of chemical composition from external into internal electrode illustrate that the fusion electrode modification not only forms a boundary to balance the interface between internal and external electrodes but also stabilizes the SEIs formation and soothe the expansion of micro-sized electrode. Through these effect approaches, the performance of micro-sized Si waste electrode can be boosted from its serious capacity degradation to potential retention (200 cycles, 1100 mAh/g) and better meet the requirements for facile and cost-effective in industrial production.

  8. Lithium Redistribution in Lithium-Metal Batteries

    SciTech Connect

    Ferrese, A; Albertus, P; Christensen, J; Newman, J

    2012-01-01

    A model of a lithium-metal battery with a CoO2 positive electrode has been modeled in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. A finite-element approach was used to incorporate an intercalation positive electrode using superposition, electrode tabbing, transport using concentrated solution theory, as well as the net movement of the lithium electrode during cycling. From this model, it has been found that movement of lithium along the negative electrode/separator interface does occur during cycling and is affected by three factors: the cell geometry, the slope of the open-circuit-potential function of the positive electrode, and concentration gradients in both the solid and liquid phases in the cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.027210jes] All rights reserved.

  9. Laser printing and femtosecond laser structuring of electrode materials for the manufacturing of 3D lithium-ion micro-batteries

    NASA Astrophysics Data System (ADS)

    Smyrek, P.; Kim, H.; Zheng, Y.; Seifert, H. J.; Piqué, A.; Pfleging, W.

    2016-04-01

    Recently, three-dimensional (3D) electrode architectures have attracted great interest for the development of lithium-ion micro-batteries applicable for Micro-Electro-Mechanical Systems (MEMS), sensors, and hearing aids. Since commercial available micro-batteries are mainly limited in overall cell capacity by their electrode footprint, new processing strategies for increasing both capacity and electrochemical performance have to be developed. In case of such standard microbatteries, two-dimensional (2D) electrode arrangements are applied with thicknesses up to 200 μm. These electrode layers are composed of active material, conductive agent, graphite, and polymeric binder. Nevertheless, with respect to the type of active material, the active material to conductive agent ratio, and the film thickness, such thick-films suffer from low ionic and electronic conductivities, poor electrolyte accessibility, and finally, limited electrochemical performance under challenging conditions. In order to overcome these drawbacks, 3D electrode arrangements are under intense investigation since they allow the reduction of lithium-ion diffusion pathways in between inter-digitated electrodes, even for electrodes with enhanced mass loadings. In this paper, we present how to combine laser-printing and femtosecond laser-structuring for the development of advanced 3D electrodes composed of Li(Ni1/3Mn1/3Co1/3)O2 (NMC). In a first step, NMC thick-films were laser-printed and calendered to achieve film thicknesses in the range of 50 μm - 80 μm. In a second step, femtosecond laser-structuring was carried out in order to generate 3D architectures directly into thick-films. Finally, electrochemical cycling of laser-processed films was performed in order to evaluate the most promising 3D electrode designs suitable for application in long life-time 3D micro-batteries.

  10. Lithium titanate epitaxial coating on spinel lithium manganese oxide surface for improving the performance of lithium storage capability.

    PubMed

    Li, Jili; Zhu, Youqi; Wang, Lin; Cao, Chuanbao

    2014-11-12

    Spinel lithium titanate (Li4Ti5O12, LTO) is applied as an epitaxial coating layer on LiMn2O4 hollow microspheres (LMO) through solvothermal-assisted processing. The epitaxial interface between LTO and LMO can be clearly observed by high resolution transmission electron microscopy (HR-TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with atomic resolution images. The epitaxial coating cathode (EC-LMO@LTO) exhibits an excellent cyclability, thermal and rate capability for LIBs cathode due to the complete, thin LTO coating layer with strong adhesion to the host material. In addition, the small structure mismatch and high Li(+)-ion mobility of LTO can be beneficial to forming an efficient tunnel for Li(+)-ion transfer at the interface. It is suggested that EC-LMO@LTO can be recognized as a promising cathode material in electric vehicles (EVs) and plug-in hybrid electric vehicles (HEVs). PMID:25322171

  11. Lithium titanate epitaxial coating on spinel lithium manganese oxide surface for improving the performance of lithium storage capability.

    PubMed

    Li, Jili; Zhu, Youqi; Wang, Lin; Cao, Chuanbao

    2014-11-12

    Spinel lithium titanate (Li4Ti5O12, LTO) is applied as an epitaxial coating layer on LiMn2O4 hollow microspheres (LMO) through solvothermal-assisted processing. The epitaxial interface between LTO and LMO can be clearly observed by high resolution transmission electron microscopy (HR-TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with atomic resolution images. The epitaxial coating cathode (EC-LMO@LTO) exhibits an excellent cyclability, thermal and rate capability for LIBs cathode due to the complete, thin LTO coating layer with strong adhesion to the host material. In addition, the small structure mismatch and high Li(+)-ion mobility of LTO can be beneficial to forming an efficient tunnel for Li(+)-ion transfer at the interface. It is suggested that EC-LMO@LTO can be recognized as a promising cathode material in electric vehicles (EVs) and plug-in hybrid electric vehicles (HEVs).

  12. A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties

    NASA Astrophysics Data System (ADS)

    Bitsch, Boris; Dittmann, Jens; Schmitt, Marcel; Scharfer, Philip; Schabel, Wilhelm; Willenbacher, Norbert

    2014-11-01

    A novel slurry concept for the fabrication of Li-ion battery electrodes focusing on water based formulations is presented. Taking advantage of capillary forces inferred by adding a small fraction of a second fluid immiscible with the bulk continuous phase the low shear viscosity can be varied in a wide range without conventional polymeric rheology control agents disturbing the electric properties of the dry electrode. The new slurries provide superior storage stability and excellent shape accuracy of the final dry film. This reduces waste cut-off at the edges and increases the density of active ingredients, thus improving cost-efficiency. The viscosity at high shear rates remains unaffected, thus the slurries can be processed and coated using established equipment and process parameters. Adhesion to the conductor foil and electrochemical properties of the electrode layers and corresponding cells are similar to those made from conventional slurries.

  13. Increased bandwidth for dielectric spectroscopy of proteins through electrode surface preparation

    NASA Astrophysics Data System (ADS)

    Mellor, Brett L.; Cortés, Efrén Cruz; Khadka, Shiul; Mazzeo, Brian A.

    2012-01-01

    Dielectric spectroscopy measurements of liquids are often limited by electrode polarization. The influence of surface polishing and deposition of the conducting polymer polypyrrole/polystyrenesulfonate (PPy/PSS) on the polarization impedance is investigated. A quantitative description of the electrode polarization contribution to the real-valued permittivity spectrum is derived. This description explains the origin of the ω ^{-const}. (textrm {const}.>1) dependency commonly observed in permittivity measurements. Electrode surface roughness is correlated with both the magnitude and phase of the constant phase element. Generally, rougher electrodes have better performance, and an order of magnitude bandwidth improvement is achieved using PPy/PSS electrodes.

  14. First principle study of the surface reactivity of layered lithium oxides LiMO2 (M = Ni, Mn, Co)

    NASA Astrophysics Data System (ADS)

    Vallverdu, Germain; Minvielle, Marie; Andreu, Nathalie; Gonbeau, Danielle; Baraille, Isabelle

    2016-07-01

    LiNixMnyCo1 - x - yO2 compounds (NMC) are layered oxides widely used in commercial lithium-ion batteries at the positive electrode. Nevertheless surface reactivity of this material is still not well known. As a first step, based on first principle calculations, this study deals with the electronic properties and the surface reactivity of LiMO2 (M = Co, Ni, Mn) compounds, considering the behavior of each transition metal separately in the same R 3 ̅ mα-NaFeO2-type structure, the one of LiCoO2 and NMC. For each compound, after a brief description of the bare slab electronic properties, we explored the acido-basic and redox properties of the (110) and (104) surfaces by considering the adsorption of a gaseous probe. The chemisorption of SO2 produces both sulfite or sulfate species associated respectively to an acido-basic or a reduction process. These processes are localized on the transition metals of the first two layers of the surface. Although sulfate species are globally favored, a different behavior is obtained depending on both the surface and the transition metal considered. We conclude with a simple scheme which describes the reduction processes on the both surfaces in terms of formal oxidation degrees of transition metals.

  15. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    SciTech Connect

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  16. Binder-free network-enabled MoS2-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage

    NASA Astrophysics Data System (ADS)

    Xie, D.; Wang, D. H.; Tang, W. J.; Xia, X. H.; Zhang, Y. J.; Wang, X. L.; Gu, C. D.; Tu, J. P.

    2016-03-01

    A unique MoS2-based composite composed of MoS2 nanosheets wrapped by a conductive polypyrrole (PPY) layer and closely incorporated within reduced graphene oxide (rGO) nanosheets is prepared by all-solution method. As a free-binder electrode for lithium-ion batteries, the ternary electrode delivers an initial discharge capacity of 1428 mAh g-1, maintains 1070 mAh g-1 after 400 cycles at a current density of 200 mA g-1, and also exhibits superior rate capacity of 600 mAh g-1 at a high current density of 2000 A g-1. The enhanced electrochemical performance is attributed to the advantageous combination of the 3D hierarchically rGO skeleton and in-situ formed conductive PPY coating. This design route represents a new direction for high-performance lithium ion batteries and related energy storage application with advanced nanostructured materials.

  17. Template synthesis and characterization of nanostructured lithium insertion electrodes and nanogold/porous aluminum oxide composite membranes

    NASA Astrophysics Data System (ADS)

    Patrissi, Charles John

    A membrane-based template synthesis method was used to prepare nanostructured Li-ion battery electrodes and nanogold/porous aluminum oxide composite membranes. Membrane-based template synthesis is a general method for the preparation of nanomaterials which entails deposition of the material of interest, or a suitable precursor, within the nanometer-diameter pores in a porous template membrane. This method allows for control of nanoparticle size and shape and is compatible with many methods of synthesis for bulk materials. The template membranes used in this work were commercially available porous polycarbonate filtration membranes and nanoporous aluminum oxide membranes that were prepared in-house. Nanostructured electrodes of orthorhombic V2O5, prepared using membrane-based template synthesis, were used to investigate the effects of Li-ion diffusion distance and V2O5 surface area on electrode rate capability. Nanowires of V2O5 were prepared by depositing a precursor in the pores of microporous polycarbonate filtration membranes. The result was an ensemble of 115 nm diameter, 2 mum long nanowires of V2O5 which protruded from a V 2O5 surface layer like the bristles of a brush. The Li + storage capacity of the nanostructured electrode was compared to a thin film control electrode at high discharge rates. Results show that the nanostructured electrode delivered three to four times the capacity of the thin film electrode at discharge rates above 500 C. A membrane based template synthesis method was also used to prepare crystalline V2O5 electrodes which have high volumetric charge capacities, at high discharge rates, compared to a thin-film control electrode. In order to obtain high volumetric rate capability, the as-received polycarbonate template membranes were chemically etched to increase membrane porosity. Nanofibrous electrodes of crystalline V2O5 were then prepared by depositing an alkoxide precursor in the pores of the etched membranes. Electrode volumetric

  18. A hierarchical porous electrode using a micron-sized honeycomb-like carbon material for high capacity lithium-oxygen batteries.

    PubMed

    Li, Jing; Zhang, Huamin; Zhang, Yining; Wang, Meiri; Zhang, Fengxiang; Nie, Hongjiao

    2013-06-01

    A micron-sized honeycomb-like carbon material (MHC) is prepared in a facile way using nano-CaCO3 as a hard template. A novel electrode for lithium-oxygen batteries is fabricated and displays a superior discharge capacity as high as 5862 mA h g(-1). The higher electrode space utilization is attributed to its hierarchical pore structure, with intrinsic mesopores in the MHC particles for Li2O2 depositions and macropores among them for oxygen transport.

  19. Synthesis and electrochemical properties of Li(1.3)Nb(0.3)V(0.4)O2 as a positive electrode material for rechargeable lithium batteries.

    PubMed

    Yabuuchi, Naoaki; Takeuchi, Mitsue; Komaba, Shinichi; Ichikawa, Shinnosuke; Ozaki, Tetsuya; Inamasu, Tokuo

    2016-02-01

    The binary system, xLi3NbO4-(1 - x)LiVO2, was first examined as an electrode material for rechargeable lithium batteries. The sample (x = 0.43) crystallizes into a cation-disordered rocksalt structure and delivers a reversible capacity of ca. 230 mA h g(-1), which originates from V(3+)/V(5+) redox with electrochemically inactive niobium ions. PMID:26686804

  20. 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam

    PubMed Central

    Um, Ji Hyun; Choi, Myounggeun; Park, Hyeji; Cho, Yong-Hun; Dunand, David C.; Choe, Heeman; Sung, Yung-Eun

    2016-01-01

    A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g−1 at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g−1 at 2 C, which is close to the best performance of Sn-based nanoscale material so far. PMID:26725652

  1. 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam

    NASA Astrophysics Data System (ADS)

    Um, Ji Hyun; Choi, Myounggeun; Park, Hyeji; Cho, Yong-Hun; Dunand, David C.; Choe, Heeman; Sung, Yung-Eun

    2016-01-01

    A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g-1 at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g-1 at 2 C, which is close to the best performance of Sn-based nanoscale material so far.

  2. X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade

    SciTech Connect

    Herstedt, Marie; Abraham, Daniel P.; Kerr, John B.

    2004-02-28

    High-power lithium-ion cells for transportation applications are being developed and studied at Argonne National Laboratory. The current generation of cells containing LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}-based cathodes, graphite-based anodes, and LiPF6-based electrolytes show loss of capacity and power during accelerated testing at elevated temperatures. Negative electrode samples harvested from some cells that showed varying degrees of power and capacity fade were examined by X-ray photoelectron spectroscopy (XPS). The samples exhibited a surface film on the graphite, which was thicker on samples from cells that showed higher fade. Furthermore, solvent-based compounds were dominant on samples from low power fade cells, whereas LiPF{sub 6}-based products were dominant on samples from high power fade cells. The effect of sample rinsing and air exposure is discussed. Mechanisms are proposed to explain the formation of compounds suggested by the XPS data.

  3. Repeatability of phasic muscle activity: performance of surface and intramuscular wire electrodes in gait analysis.

    PubMed

    Kadaba, M P; Wootten, M E; Gainey, J; Cochran, G V

    1985-01-01

    Repeatability is an important consideration for gait analysis data that are being used as an adjunct to clinical decision making. An index of repeatability may be based on a statistical criterion (variance ratio) that reflects similarity of wave forms over a number of identical cycles. The purpose of this study was to use the variance ratio to assess the repeatability of phasic muscle activity recorded with surface and bipolar intramuscular wire electrodes during gait on 10 normal subjects. Variance ratios were calculated using rectified and smoothed electromyographic data recorded simultaneously from the two types of electrodes. Three measures of repeatability (reproducibility, reliability, and constancy--defined as the cycle-to-cycle, run-to-run, and day-to-day repeatability of phasic muscle activity) were used to compare the performance of the two electrode techniques. Results show that the reproducibility and reliability were better for surface electrodes than for intramuscular wire electrodes, and constancy was good for surface electrodes and poor for intramuscular wire electrodes. Repeatability improved with increasing smoothing window lengths but was better for surface electrodes than wire electrodes, irrespective of the smoothing window. This study indicates that surface electrode data represent a more consistent measure of activity of superficial muscles, if comparisons are to be made between gait data from different test days.

  4. A Spectroscopic Measurement of Recycling on the Surface of a Liquid Lithium Limiter in CDX-U

    NASA Astrophysics Data System (ADS)

    Marfuta, P.; Kaita, R.; Majeski, R.; Soukhanovskii, V.; Maingi, R.

    2003-10-01

    Spectroscopic measurements of lithium plasma-facing surfaces should give a quantitative assessment of the local recycling in CDX-U. We will use both a 1-D CCD camera with an interference filter and a pair of fiber-optic filterscopes focused on different parts of a fully-toroidal liquid lithium limiter tray. Additional filterscope data will be taken along a sightline immediately above the tray, so that the edge plasma emission can be subtracted from the direct views of the lithium surface. The diagnostics will measure the H-alpha line both with and without lithium in the limiter tray to assess the reduction of neutral hydrogen recycling, as well as the Li-I emission to observe the level of lithium introduced into the plasma, and the C-III and O-II lines to measure the effect of the lithium on plasma impurities.

  5. Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage

    NASA Astrophysics Data System (ADS)

    Xie, D.; Tang, W. J.; Xia, X. H.; Wang, D. H.; Zhou, D.; Shi, F.; Wang, X. L.; Gu, C. D.; Tu, J. P.

    2015-11-01

    Scrupulous design and fabrication of advanced anode materials are of great importance for developing high-performance lithium ion batteries. Herein, we report a facile strategy for construction of free-standing and free-binder 3D porous carbon coated MoS2/nitrogen-doped graphene (C-MoS2/N-G) integrated electrode via a hydrothermal-induced self-assembly process. The preformed carbon coated MoS2 is strongly anchored on the porous nitrogen-doped graphene aerogel architecture. As an anode for lithium ion batteries, the C-MoS2/N-G electrode delivers a high first discharge capacity of 1600 mAh g-1 and maintains 900 mAh g-1 after 500 cycles at a current density of 200 mA g-1. Impressively, superior high-rate capability is achieved for the C-MoS2/N-G with a reversible capacity of 500 mAh g-1 at a high current density of 4000 mA g-1. Furthermore, the lithium storage mechanism of the obtained integrated electrode is investigated by ex-situ X-ray photoelectron spectroscopy and transmission electron microscopy in detail.

  6. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures

    SciTech Connect

    Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D.; Lu, Dongping; Saraf, Laxmikant V.; Engelhard, Mark H.; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L.; Liu, Jun

    2014-01-09

    Lithium-sulfur (Li-S) batteries have recently attracted extensive attention due to the high theoretical energy density and potential low cost. Even so, significant challenges prevent widespread adoption, including continuous dissolution and consumption of active sulfur during cycling. Here we present a fundamentally new design using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on the anode. The lithiated graphite placed in front of the lithium metal functions as an artificial self-regulated solid electrolyte interface (SEI) layer to actively control the electrochemical reaction while minimizing the deleterious side reactions on the surface and bulk lithium metal. Continuous corrosion and contamination of lithium anode by dissolved polysulfides is largely mitigated. Excellent electrochemical performance has been observed. Li-S cell incorporating the hybrid design retain a capacity of more than 800 mAh g-1 for 400 cycles, corresponding to only 11% fade and a Coulombic efficiency above 99%. This simple hybrid concept may also provide new lessons for protecting metal anodes in other energy storage devices.

  7. Restructuring of an Ir(210) electrode surface by potential cycling

    PubMed Central

    Soliman, Khaled A; Kolb, Dieter M; Jacob, Timo

    2014-01-01

    Summary This study addresses the electrochemical surface faceting and restructuring of Ir(210) single crystal electrodes. Cyclic voltammetry measurements and in situ scanning tunnelling microscopy are used to probe structural changes and variations in the electrochemical behaviour after potential cycling of Ir(210) in 0.1 M H2SO4. Faceted structures are obtained electrochemically as a function of time by cycling at a scanrate of 1 V·s−1 between −0.28 and 0.70 V vs SCE, i.e., between the onset of hydrogen evolution and the surface oxidation regime. The electrochemical behaviour in sulfuric acid solution is compared with that of thermally faceted Ir(210), which shows a sharp characteristic voltammetric peak for (311) facets. Structures similar to thermally-induced faceted Ir(210) are obtained electrochemically, which typically correspond to polyoriented facets at nano-pyramids. These structures grow anisotropically in a preferred direction and reach a height of about 5 nm after 4 h of cycling. The structural changes are reflected in variations of the electrocatalytic activity towards carbon monoxide adlayer oxidation. PMID:25247118

  8. Surface functionality and electrochemical investigations of a graphitic electrode as a candidate for alkaline energy conversion and storage devices

    PubMed Central

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Hassan, Hamdy H.

    2016-01-01

    Graphite is a typical electrocatalyst support in alkaline energy conversion and storage devices such as fuel cells, supercapacitores and lithium ion batteries. The electrochemical behaviour of a graphite electrode in 0.5 M NaOH was studied to elucidate its surface structure/electrochemical activity relationship. Graphite voltammograms are characterized by an anodic shoulder AI and a cathodic peak CI in addition to the oxygen reduction reaction plateaus, PI and PII. AI and CI were attributed to oxidation and reduction of some graphite surface function groups, respectively. Rotating ring disk electrode (RRDE) study revealed two different oxygen types assigned as inner and outer oxygen. The inner oxygen was reduced via the more efficient 4-electron pathway. The outer oxygen reduction proceeded with a lower efficient 2-electron pathway. The calculated percentages of the 4-electron pathway were ranged from 70% to 90%. A full mechanism for the graphite surface function groups changes over the studied potential window was suggested through the combination between the voltammetric, FT-IR and Raman results. PMID:26916054

  9. Surface functionality and electrochemical investigations of a graphitic electrode as a candidate for alkaline energy conversion and storage devices

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Hassan, Hamdy H.

    2016-02-01

    Graphite is a typical electrocatalyst support in alkaline energy conversion and storage devices such as fuel cells, supercapacitores and lithium ion batteries. The electrochemical behaviour of a graphite electrode in 0.5 M NaOH was studied to elucidate its surface structure/electrochemical activity relationship. Graphite voltammograms are characterized by an anodic shoulder AI and a cathodic peak CI in addition to the oxygen reduction reaction plateaus, PI and PII. AI and CI were attributed to oxidation and reduction of some graphite surface function groups, respectively. Rotating ring disk electrode (RRDE) study revealed two different oxygen types assigned as inner and outer oxygen. The inner oxygen was reduced via the more efficient 4-electron pathway. The outer oxygen reduction proceeded with a lower efficient 2-electron pathway. The calculated percentages of the 4-electron pathway were ranged from 70% to 90%. A full mechanism for the graphite surface function groups changes over the studied potential window was suggested through the combination between the voltammetric, FT-IR and Raman results.

  10. Surface functionality and electrochemical investigations of a graphitic electrode as a candidate for alkaline energy conversion and storage devices.

    PubMed

    Soliman, Ahmed B; Abdel-Samad, Hesham S; Abdel Rehim, Sayed S; Hassan, Hamdy H

    2016-01-01

    Graphite is a typical electrocatalyst support in alkaline energy conversion and storage devices such as fuel cells, supercapacitores and lithium ion batteries. The electrochemical behaviour of a graphite electrode in 0.5 M NaOH was studied to elucidate its surface structure/electrochemical activity relationship. Graphite voltammograms are characterized by an anodic shoulder AI and a cathodic peak CI in addition to the oxygen reduction reaction plateaus, PI and PII. AI and CI were attributed to oxidation and reduction of some graphite surface function groups, respectively. Rotating ring disk electrode (RRDE) study revealed two different oxygen types assigned as inner and outer oxygen. The inner oxygen was reduced via the more efficient 4-electron pathway. The outer oxygen reduction proceeded with a lower efficient 2-electron pathway. The calculated percentages of the 4-electron pathway were ranged from 70% to 90%. A full mechanism for the graphite surface function groups changes over the studied potential window was suggested through the combination between the voltammetric, FT-IR and Raman results. PMID:26916054

  11. Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes

    PubMed Central

    2011-01-01

    In this study, we report the high-yield synthesis of 2-dimensional cupric oxide (CuO) nanodiscs through dehydrogenation of 1-dimensional Cu(OH)2 nanowires at 60°C. Most of the nanodiscs had a diameter of approximately 500 nm and a thickness of approximately 50 nm. After further prolonged reaction times, secondary irregular nanodiscs gradually grew vertically into regular nanodiscs. These CuO nanostructures were characterized using X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. The possible growth mechanism of the interlaced disc CuO nanostructures is systematically discussed. The electrochemical performances of the CuO nanodisc electrodes were evaluated in detail using cyclic voltammetry and galvanostatic cycling. Furthermore, we demonstrate that the incorporation of multiwalled carbon nanotubes enables the enhanced reversible capacities and capacity retention of CuO nanodisc electrodes on cycling by offering more efficient electron transport paths. PMID:21711916

  12. Study on microstructures of electrodes in lithium-ion batteries using variational multi-scale enrichment

    NASA Astrophysics Data System (ADS)

    Lee, Sangmin; Sastry, Ann Marie; Park, Jonghyun

    2016-05-01

    Performance and degradation of a Li-ion battery reflect the transport and kinetics of related species within the battery's electrode microstructures. The variational multi-scale principle is adapted to a Li-ion battery system in order to improve the predictions of battery performance by including multi-scale and multiphysics phenomena among the particle aggregates in the electrode; this physics cannot be addressed by conventional homogenized approaches. The developed model is verified through the direct numerical solutions and compared with the conventional pseudo-2D (P2D) model method. The developed model has revealed more dynamic battery behaviors related to the variation of the microstructure-such as particle shape, tortuosity, and material composition-while the corresponding result from P2D shows a monotonous change within different structures.

  13. Diffusional protection of electrode surfaces using regular arrays of immobilised droplets: overcoming interferences in electroanalysis.

    PubMed

    Simm, Andrew O; Ordeig, Olga; Del Campo, Javier; Muñoz, Francesc Xavier; Compton, Richard G

    2006-09-01

    Regular arrays of ca. micron sized droplets on a gold electrode surface can block diffusion to the electrode surface of one metal ion (which binds with the material in the droplet) whilst having no significant effect on another (which does not), so allowing interference effects in electroanalysis to be eliminated.

  14. Understanding Structure-Function Relationship in Hybrid Co3O4-Fe2O3/C Lithium-Ion Battery Electrodes.

    PubMed

    Sultana, Irin; Rahman, Md Mokhlesur; Ramireddy, Thrinathreddy; Sharma, Neeraj; Poddar, Debasis; Khalid, Abbas; Zhang, Hongzhou; Chen, Ying; Glushenkov, Alexey M

    2015-09-23

    A range of high-capacity Li-ion anode materials (conversion reactions with lithium) suffer from poor cycling stability and limited high-rate performance. These issues can be addressed through hybridization of multiple nanostructured components in an electrode. Using a Co3O4-Fe2O3/C system as an example, we demonstrate that the cycling stability and rate performance are improved in a hybrid electrode. The hybrid Co3O4-Fe2O3/C electrode exhibits long-term cycling stability (300 cycles) at a moderate current rate with a retained capacity of approximately 700 mAh g(-1). The reversible capacity of the Co3O4-Fe2O3/C electrode is still about 400 mAh g(-1) (above the theoretical capacity of graphite) at a high current rate of ca. 3 A g(-1), whereas Co3O4-Fe2O3, Fe2O3/C, and Co3O4/C electrodes (used as controls) are unable to operate as effectively under identical testing conditions. To understand the structure-function relationship in the hybrid electrode and the reasons for the enhanced cycling stability, we employed a combination of ex situ and in situ techniques. Our results indicate that the improvements in the hybrid electrode originate from the combination of sequential electrochemical activity of the transition metal oxides with an enhanced electronic conductivity provided by percolating carbon chains.

  15. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOEpatents

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  16. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    SciTech Connect

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-03-20

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter.

  17. Galvanostatic interruption of lithium insertion into magnetite: Evidence of surface layer formation

    NASA Astrophysics Data System (ADS)

    Brady, Nicholas W.; Knehr, K. W.; Cama, Christina A.; Lininger, Christianna N.; Lin, Zhou; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; West, Alan C.

    2016-07-01

    Magnetite is a known lithium intercalation material, and the loss of active, nanocrystalline magnetite can be inferred from the open-circuit potential relaxation. Specifically, for current interruption after relatively small amounts of lithium insertion, the potential first increases and then decreases, and the decrease is hypothesized to be due to a formation of a surface layer, which increases the solid-state lithium concentration in the remaining active material. Comparisons of simulation to experiment suggest that the reactions with the electrolyte result in the formation of a thin layer of electrochemically inactive material, which is best described by a nucleation and growth mechanism. Simulations are consistent with experimental results observed for 6, 8 and 32-nm crystals. Furthermore, simulations capture the experimental differences in lithiation behavior between the first and second cycles.

  18. Galvanostatic interruption of lithium insertion into magnetite: Evidence of surface layer formation

    DOE PAGES

    Nicholas W. Brady; Takeuchi, Esther S.; Knehr, K. W.; Cama, Christina A.; Lininger, Christianna N.; Lin, Zhou; Marschilok, Amy C.; Takeuchi, Kenneth J.; West, Alan C.

    2016-05-05

    Magnetite is a known lithium intercalation material, and the loss of active, nanocrystalline magnetite can be inferred from the open-circuit potential relaxation. Specifically, for current interruption after relatively small amounts of lithium insertion, the potential first increases and then decreases, and the decrease is hypothesized to be due to a formation of a surface layer, which increases the solid-state lithium concentration in the remaining active material. Comparisons of simulation to experiment suggest that the reactions with the electrolyte result in the formation of a thin layer of electrochemically inactive material, which is best described by a nucleation and growth mechanism.more » Simulations are consistent with experimental results observed for 6, 8 and 32-nm crystals. As a result, simulations capture the experimental differences in lithiation behavior between the first and second cycles.« less

  19. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode.

    PubMed

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming

    2016-06-29

    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.

  20. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode.

    PubMed

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming

    2016-06-29

    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively. PMID:26961230

  1. Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy.

    PubMed

    Kitta, Mitsunori; Akita, Tomoki; Maeda, Yasushi; Kohyama, Masanori

    2012-08-21

    Spinel lithium titanate (Li(4)Ti(5)O(12), LTO) is a promising anode material for a lithium ion battery because of its excellent properties such as high rate charge-discharge capability and life cycle stability, which were understood from the viewpoint of bulk properties such as small lattice volume changes by lithium insertion. However, the detailed surface reaction of lithium insertion and extraction has not yet been studied despite its importance to understand the mechanism of an electrochemical reaction. In this paper, we apply both atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the changes in the atomic and electronic structures of the Li(4)Ti(5)O(12) surface during the charge-discharged (lithium insertion and extraction) processes. The AFM observation revealed that irreversible structural changes of an atomically flat Li(4)Ti(5)O(12) surface occurs at the early stage of the first lithium insertion process, which induces the reduction of charge transfer resistance at the electrolyte/Li(4)Ti(5)O(12) interface. The TEM observation clarified that cubic rock-salt crystal layers with a half lattice size of the original spinel structure are epitaxially formed after the first charge-discharge cycle. Electron energy loss spectroscopy (EELS) observation revealed that the formed surface layer should be α-Li(2)TiO(3). Although the transformation of Li(4)Ti(5)O(12) to Li(7)Ti(5)O(12) is well-known as the lithium insertion reaction of the bulk phase, the generation of surface product layers should be inevitable in real charge-discharge processes and may play an effective role in the stable electrode performance as a solid-electrolyte interphase (SEI).

  2. Surface analysis of supercapacitor electrodes after long-lasting constant current tests

    NASA Astrophysics Data System (ADS)

    Jänes, Alar; Eskusson, Jaanus; Lust, Enn

    2013-12-01

    FIB-SEM, XPS, TOF-SIMS and electrochemical methods have been used for the characterisation of physical properties and chemical composition of microporous carbide derived carbon electrodes, prepared from TiC at 950 °C (noted as TiC-CDC) after 40000 charge/discharge cycles. Changes in surface chemical composition of TiC-CDC electrodes, includes partial contamination with reaction intermediates (F2, CHO-, CN-, organic radicals), and Al current collectors, like partial dissolution of Al from positively charged electrode and deposition of Al onto the negatively charged TiC-CDC electrode surface, have been analysed.

  3. Radiation effects on the electrode and electrolyte of a lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Tan, Chuting; Lyons, Daniel J.; Pan, Ke; Leung, Kwan Yee; Chuirazzi, William C.; Canova, Marcello; Co, Anne C.; Cao, Lei R.

    2016-06-01

    The performance degradation and durability of a Li-ion battery is a major concern when it is operated under radiation conditions, for instance, in deep space exploration, in high radiation field, or rescuing or sampling equipment in a post-nuclear accident scenario. This paper examines the radiation effects on the electrode and electrolyte materials separately and their effects on a battery's capacity loss and resistance increase. A60Co irradiator (34.3 krad/h) was used to provide 0.8, 4.1, and 9.8 Mrad dose to LiFePO4 electrodes and 0.8, 1.6, and 5.7 Mrad to 1 M LiPF6 in 1:1 wt% EC:DMC electrolytes. This study shows that the coin cells assembled with irradiated components have higher failure rate (ca. 70%) than that of control group (ca. 14%). A significant battery capacity fade post irradiation was observed. The electrolyte also shows a darkened color a few weeks or months after irradiation. The discovery of this latent effect may be significant because a battery may degrade significantly even showing no sign of degradation immediately after exposure. We investigated electrolyte composition by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and nuclear magnetic resonance spectroscopy prior and post irradiation. Polymerization reactions and HF formation are considered as the cause of the discoloration.

  4. Germanium microflower-on-nanostem as a high-performance lithium ion battery electrode

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Hee; Kwon, S. Joon; Park, Kyung-Soo; Kang, Jin-Gu; Park, Jae-Gwan; Lee, Sungjun; Kim, Jae-Chan; Shim, Hyun-Woo; Kim, Dong-Wan

    2014-11-01

    We demonstrate a new design of Ge-based electrodes comprising three-dimensional (3-D) spherical microflowers containing crystalline nanorod networks on sturdy 1-D nanostems directly grown on a metallic current collector by facile thermal evaporation. The Ge nanorod networks were observed to self-replicate their tetrahedron structures and form a diamond cubic lattice-like inner network. After etching and subsequent carbon coating, the treated Ge nanostructures provide good electrical conductivity and are resistant to gradual deterioration, resulting in superior electrochemical performance as anode materials for LIBs, with a charge capacity retention of 96% after 100 cycles and a high specific capacity of 1360 mA h g-1 at 1 C and a high-rate capability with reversible capacities of 1080 and 850 mA h g-1 at the rates of 5 and 10 C, respectively. The improved electrochemical performance can be attributed to the fast electron transport and good strain accommodation of the carbon-filled Ge microflower-on-nanostem hybrid electrode.

  5. Germanium microflower-on-nanostem as a high-performance lithium ion battery electrode

    PubMed Central

    Lee, Gwang-Hee; Kwon, S. Joon; Park, Kyung-Soo; Kang, Jin-Gu; Park, Jae-Gwan; Lee, Sungjun; Kim, Jae-Chan; Shim, Hyun-Woo; Kim, Dong-Wan

    2014-01-01

    We demonstrate a new design of Ge-based electrodes comprising three-dimensional (3-D) spherical microflowers containing crystalline nanorod networks on sturdy 1-D nanostems directly grown on a metallic current collector by facile thermal evaporation. The Ge nanorod networks were observed to self-replicate their tetrahedron structures and form a diamond cubic lattice-like inner network. After etching and subsequent carbon coating, the treated Ge nanostructures provide good electrical conductivity and are resistant to gradual deterioration, resulting in superior electrochemical performance as anode materials for LIBs, with a charge capacity retention of 96% after 100 cycles and a high specific capacity of 1360 mA h g−1 at 1 C and a high-rate capability with reversible capacities of 1080 and 850 mA h g−1 at the rates of 5 and 10 C, respectively. The improved electrochemical performance can be attributed to the fast electron transport and good strain accommodation of the carbon-filled Ge microflower-on-nanostem hybrid electrode. PMID:25363317

  6. Porous ZnO thin films as anode electrodes for lithium ion batteries.

    PubMed

    Guler, Mehmet Oguz; Cevher, Ozgur; Akbulut, Hatem

    2012-12-01

    Zinc oxide (ZnO) nano structured thin films were prepared on Cr coated stainless substrates via a simple thermal chemical reactions vapor transport deposition method in air with a mixture of Zinc acetate anhydrate as reactants. The growth process was carried out at 200 degrees C, 300 degrees C and 400 degrees C in a stainless steel reactor with one side opened to the air. High purity oxygen gas was used as the carrier gas and kept at 1 L/min flow rate during the deposition process. There is no other metal catalyst and carrier gas in the process. The materials are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM). Their electrochemical properties as anodes of lithium ion batteries are examined by galvanostatic discharge-charge tests. The results show that porous ZnO nano structured thin films exhibit higher reversible capacities and better cyclabilities than those of commercial ZnO powders. When cycled at 0.958 mA (1 C = 1 hour charge + 1 hour discharge) for the films deposited at 200 degrees C, these nano structured pyramid-like structures deliver initial discharge and charge capacities of 954, in addition, good rate capabilities have also obtained after 20 cycles. It is believed that the porous sheet nano structure plays an important role in the electrochemical performance.

  7. Improved discharge characteristics of tunnel-containing manganese oxide electrodes for rechargeable lithium battery applications

    SciTech Connect

    Doeff, Marca M.; Richardson, Thomas J.; Hwang, Kwang-Taek; Anapolsky, Abraham

    2000-05-01

    LixMnO2 made from Na0.44MnO2 has an unusual tunnel structure which allows ion insertion processes to occur with minimal strain. It cycles very reversibly at an average voltage of about 3.2 vs. Li without undergoing phase conversion. The stability of this material makes it a promising candidate for use in electric vehicle applications, which not only have severe cost constraints, but also require long cycle life and abuse-tolerance. In practical lithium cells, however, the demonstrated capacity is typically less than the predicted 200 mAh/g for LixMnO2 cathode materials made by conventional solid-state reactions. This is due to kinetic limitations and to the sloping discharge characteristics. Attritor-milling of conventionally-made LixMnO2 and glycine-nitrate combustion synthesis have been used to produce powders with average particle size below 1 mm, improved rate capability, and a 15 percent improvement in utilization. Up to 55 percent of the Mn in LixMnO2 with the Na0.44MnO2 structure can also be replaced with Ti. Ti-doped analogs have modified discharge characteristics, with some exhibiting better utilization between set voltage limits than the parent compound.

  8. Electrode and solid electrolyte thin films for secondary lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Kelder, E. M.; Schoonman, J.

    Electrostatic spray deposition (ESD) was employed to prepare thin layers of Li 1.2Mn 2O 4 (nominal composition) and BPO 4:0.035Li 2O for all-solid-state thin film lithium-ion batteries. The relationships between layer morphologies and deposition conditions such as solvent composition of the precursor solutions and substrate temperature were investigated. It was found that a low substrate temperature and/or high boiling point of the solvent may lead to a relatively dense structure. Reticular porous structures are formed, if films were deposited at 250°C and a mixture of 85 vol.% butyl carbitol and 15 vol.% ethanol was used as the solvent. The Li 1.2Mn 2O 4 layers, formed in the 250-400°C temperature range, were amorphous or micro-crystalline. After annealing beyond 600 °C, they could be crystallized into a spinel-structured material. Glassy BPO 4:0.035Li 2O layers could fill the pores of porous Li 1.2Mn 2O 4 layers to form a dense intermediate electrolyte layer. Thin-film rocking-chair batteries, Li 1.2Mn 2O 4|BPO 4:0.035Li 2O|Li 1.2Mn 2O 4|Al, were prepared and revealed an open-circuit voltage of about 1.2 V after charging.

  9. Platinum electrode modification: Unique surface carbonization approach to improve performance and sensitivity.

    PubMed

    Lee, Hwi Yong; Barber, Cedrick; Minerick, Adrienne R

    2015-08-01

    Many microfluidic devices, also known as lab-on-a-chip devices, employ electrochemical detection methods using microelectrodes. Miniaturizing electrodes inevitably reduces electrode sensitivity and decreases the S/N, which limits applications within microfluidic devices. However, microelectrode surface modification can increase the surface area and sensitivity. In the present work, we report substantial improvement in platinum electrode performance and sensitivity by coating with carbon from red blood cells. The larger goal of this work was to measure DC electrical resistances of red blood cell suspensions in a microchannel for hematocrit determination. It was observed that as current responses of red blood cell suspensions were measured, the platinum electrode performance (reproducibility and S/N) improved with time. The platinum electrode electrocatalytic activity for red blood cell current measurements improved by 140%. Systematic experimentation revealed that red blood cells adsorb and carbonize the platinum electrode surfaces. The electrode surfaces before and after performance improvements were analyzed by field emission scanning electron microscopy, energy dispersive spectrometry, and Raman spectrometry. The formed carbon layers on the electrode surfaces were found to be proteomic and increased surface area with a porous three-dimensional structure, thus improving performance and stabilizing currents.

  10. Design and simulation of lithium rechargeable batteries

    SciTech Connect

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  11. Surface-enhanced Raman scattering of single-walled carbon nanotubes on modified silver electrode

    NASA Astrophysics Data System (ADS)

    Hou, Xiaomiao; Fang, Yan

    2008-04-01

    A roughed silver electrode modified with gold/silver nanoparticles is used as a substrate, on which high quality SERS of SWCNTs are obtained, indicating that the modified silver electrode is a high-quality SERS-active substrate for SWCNTs. Some new bands that indicate the structure of SWCNTs were obtained. The gold/silver nanoparticles modified on the roughed silver electrode surface can not only make sure the strong adsorption of SWCNTs in this system but also play an important role in magnifying the surface local electric field near the silver electrode surface through resonant surface plasmon excitation. From the rich information on the modified silver electrode obtained from the SERS and the potential dependent SERS, we may deduce the probable SERS mechanism in the process. The theory and experiment results indicate that it is can be used as a new technique for monitoring synthesis quality of SWCNTs. The probable reasons are given.

  12. Ethanol oxidation on Pt single-crystal electrodes: surface-structure effects in alkaline medium.

    PubMed

    Busó-Rogero, Carlos; Herrero, Enrique; Feliu, Juan M

    2014-07-21

    Ethanol oxidation in 0.1 M NaOH on single-crystal electrodes has been studied using electrochemical and FTIR techniques. The results show that the activity order is the opposite of that found in acidic solutions. The Pt(111) electrode displays the highest currents and also the highest onset potential of all the electrodes. The onset potential for the oxidation of ethanol is linked to the adsorption of OH on the electrode surface. However, small (or even negligible) amounts of CO(ads) and carbonate are detected by FTIR, which implies that cleavage of the C-C bond is not favored in this medium. The activity of the electrodes diminishes quickly upon cycling. The diminution of the activity is proportional to the measured currents and is linked to the formation and polymerization of acetaldehyde, which adsorbs onto the electrode surface and prevents further oxidation. PMID:24782218

  13. High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Zhang, Xingwang; Lei, Lecheng

    2013-06-01

    Although electrohydraulic discharge is effective for wastewater treatment, its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment, water-surface discharge is the preferred choice. However, the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water. As a result, the efficiency of the water treatment might be affected and the service life of the reactor might be shortened. In order to avoid the corrosion problem, nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study. Carbon-felt and water were used as the high voltage electrode and ground electrode, respectively. A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy efficiency, and furthermore, the corrosion of metal electrodes was avoided.

  14. Synthesis of 2D/2D Structured Mesoporous Co3O4 Nanosheet/N-Doped Reduced Graphene Oxide Composites as a Highly Stable Negative Electrode for Lithium Battery Applications.

    PubMed

    Sennu, Palanichamy; Kim, Hyo Sang; An, Jae Youn; Aravindan, Vanchiappan; Lee, Yun-Sung

    2015-08-01

    Mesoporous Co3O4 nanosheets (Co3 O4 -NS) and nitrogen-doped reduced graphene oxide (N-rGO) are synthesized by a facile hydrothermal approach, and the N-rGO/Co3O4 -NS composite is formulated through an infiltration procedure. Eventually, the obtained composites are subjected to various characterization techniques, such as XRD, Raman spectroscopy, surface area analysis, X-ray photoelectron spectroscopy (XPS), and TEM. The lithium-storage properties of N-rGO/Co3O4 -NS composites are evaluated in a half-cell assembly to ascertain their suitability as a negative electrode for lithium-ion battery applications. The 2D/2D nanostructured mesoporous N-rGO/Co3O4 -NS composite delivered a reversible capacity of about 1305 and 1501 mAh g(-1) at a current density of 80 mA g(-1) for the 1st and 50th cycles, respectively. Furthermore, excellent cyclability, rate capability, and capacity retention characteristics are noted for the N-rGO/Co3O4 -NS composite. This improved performance is mainly related to the existence of mesoporosity and a sheet-like 2D hierarchical morphology, which translates into extra space for lithium storage and a reduced electron pathway. Also, the presence of N-rGO and carbon shells in Co3O4 -NS should not be excluded from such exceptional performance, which serves as a reliable conductive channel for electrons and act as synergistically to accommodate volume expansion upon redox reactions. Ex-situ TEM, impedance spectroscopy, and XPS, are also conducted to corroborate the significance of the 2D morphology towards sustained lithium storage.

  15. Surface micro-structuring of intercalation cathode materials for lithium-ion batteries: a study of laser-assisted cone formation

    NASA Astrophysics Data System (ADS)

    Pfleging, W.; Smyrek, P.; Hund, J.; Bergfeldt, T.; Pröll, J.

    2015-03-01

    Strong efforts are currently undertaken in order to further improve the electrochemical performance of high energy lithium-ion batteries containing thick composite electrode materials. The properties of these electrode materials such as active surface area, film thickness, and film porosity strongly impact the cell life-time and cycling stability. A rather new approach is to generate hierarchical architectures into cathode materials by laser direct ablation as well as by laserassisted formation of self-organized structures. It could be shown that appropriate surface structures can lead to a significant improvement of lithium-ion diffusion kinetics leading to higher specific capacities at high charging and discharging currents. In this paper, the formation of self-organized conical structures in intercalation materials such as LiCoO2 and LiNi1/3Mn1/3Co1/3O2 is investigated in detail. For this purpose, the cathode materials are exposed to excimer laser radiation with wavelengths of 248 nm and 193 nm leading to cone structures with outer dimensions in the micrometer range. The process of cone formation is investigated using laser ablation inductively coupled plasma mass spectrometry and laser-induced breakdown spectroscopy (LIBS). Cone formation can be initiated for laser fluences up to 3 J/cm2 while selective removal of lithium was observed to be one of the key issues for starting the cone formation process. It could be shown that material re-deposition supports the cone-growth process leading to a low loss of active material. Besides the cone formation process, laser-induced chemical surface modification will be analysed by LIBS.

  16. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries Using Synchrotron Radiation Techniques

    PubMed Central

    Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-01-01

    Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done. PMID:24300777

  17. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.

    PubMed

    Doeff, Marca M; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C; Conry, Thomas

    2013-01-01

    Intercalation compounds such as transition metal oxides or phosphates are the most commonly used electrode materials in Li-ion and Na-ion batteries. During insertion or removal of alkali metal ions, the redox states of transition metals in the compounds change and structural transformations such as phase transitions and/or lattice parameter increases or decreases occur. These behaviors in turn determine important characteristics of the batteries such as the potential profiles, rate capabilities, and cycle lives. The extremely bright and tunable x-rays produced by synchrotron radiation allow rapid acquisition of high-resolution data that provide information about these processes. Transformations in the bulk materials, such as phase transitions, can be directly observed using X-ray diffraction (XRD), while X-ray absorption spectroscopy (XAS) gives information about the local electronic and geometric structures (e.g. changes in redox states and bond lengths). In situ experiments carried out on operating cells are particularly useful because they allow direct correlation between the electrochemical and structural properties of the materials. These experiments are time-consuming and can be challenging to design due to the reactivity and air-sensitivity of the alkali metal anodes used in the half-cell configurations, and/or the possibility of signal interference from other cell components and hardware. For these reasons, it is appropriate to carry out ex situ experiments (e.g. on electrodes harvested from partially charged or cycled cells) in some cases. Here, we present detailed protocols for the preparation of both ex situ and in situ samples for experiments involving synchrotron radiation and demonstrate how these experiments are done.

  18. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    PubMed

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  19. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Markus, Isaac M.; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D.; Xin, Huolin L.; Doeff, Marca M.

    2014-03-01

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNixMnxCo1-2xO2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNixMnxCo1-2xO2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  20. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  1. Further observations of the surface enhanced Raman spectrum of water on silver and copper electrodes

    NASA Astrophysics Data System (ADS)

    Pettinger, B.; Philpott, Michael R.; Gordon, Joseph G.

    1981-04-01

    Two methods useful for detecting surface enhanced Raman (SER) spectra of water on Ag and Cu electrodes are described. The first method uses potential difference spectroscopy to record the SER spectrum of water on a Cu electrode. The second method obtains a SER spectrum of water on an emersed silver electrode. Emersion is a promising technique for reducing the interference from the Raman scattering of bulk water.

  2. Study of passive film formation on graphite surface lithiated in the polysiloxane based electrolyte for the application to lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Nakahara, Hiroshi

    The solid electrolyte interface (SEI) which passivates the carbonaceous material in an organic electrolyte is at the forefront of battery research because the nature of the SEI strongly affects lithium ion battery performance. Aside from lithium ion cells, the lithium cell with polymer electrolyte has received considerable attention because of efforts to improve lithium cell safety. However, the nature of the SEI on the carbonaceous material in a polymer electrolyte is not understood in depth to the same extent as the SEI in organic electrolytes. In this project, siloxane-based electrolyte was studied to improve safety and performance of lithium secondary cells, and the SEI on the carbonaceous materials charged in the siloxane-based electrolyte was investigated. Two types of SEI films were observed to form on the highly oriented pyrolytic graphite (HOPG) lithiated in the siloxane-based electrolyte. These films were morphologically and compositionally distinct, and were described as island-like and gel-like. In addition, electrochemical impedance analysis was performed with an electrochemical cell containing a thin graphite electrode to clarify the electrical characteristics of the SEI. The value of the charge transfer resistance, Rct, for siloxane-based electrolyte was two orders of greater than conventional carbonate-based electrolytes. Electrolyte additives, such as vinyl ethylene carbonate (VEC), the type of electrolyte salt, and siloxane molecule structure reduced the value of Rct. Based on FT-IR spectra, the SEI was composed of the flexible groups -Si-O- and -C-O-. These flexible function groups are expected to absorb the volumetric changes of graphite particles during lithiating and delithiating in an electrochemical cell, which will prevent continuous decomposition of siloxane electrolyte on the graphite surface. In addition, the surface species on the lithium transition metal oxide (LiMeO2) delithiated in the polysiloxane-based electrolyte was investigated

  3. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    SciTech Connect

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  4. In situ plasma removal of surface contaminants from ion trap electrodes

    SciTech Connect

    Haltli, Raymond A.

    2015-05-01

    In this thesis, the construction and implementation of an in situ plasma discharge designed to remove surface contaminants from electrodes in an ion trapping experimental system is presented with results. In recent years, many advances have been made in using ion traps for quantum information processing. All of the criteria defined by DiVincenzo for using ion traps for implementing a quantum computer have been individually demonstrated, and in particular surface traps provide a scalable platform for ions. In order to be used for quantum algorithms, trapped ions need to be cooled to their motional (quantum mechanical) ground state. One of the hurdles in integrating surface ion traps for a quantum computer is minimizing electric field noise, which causes the ion to heat out of its motional ground state and which increases with smaller ion-to-electrode distances realized with surface traps. Surface contamination of trap electrodes is speculated to be the primary source of electric field noise. The main goal achieved by this work was to implement an in situ surface cleaning solution for surface electrode ion traps, which would not modify the ion trap electrode surface metal. Care was taken in applying the RF power in order to localize a plasma near the trap electrodes. A method for characterizing the energy of the plasma ions arriving at the ion trap surface is presented and results for plasma ion energies are shown. Finally, a method for quantifying the effectiveness of plasma cleaning of trap electrodes, using the surface analysis technique of X-ray photoelectron spectroscopy for measuring the amount and kind of surface contaminants, is described. A significant advantage of the trap electrode surface cleaning method presented here is the minimal changes necessary for implementation on a working ion trap experimental system.

  5. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  6. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode.

    PubMed

    Takino, Hideo; Yamamura, Kazuya; Sano, Yasuhisa; Mori, Yuzo

    2012-01-20

    We propose a plasma chemical vaporization machining device with a hemispherical tip electrode for optical fabrication. Radio-frequency plasma is generated close to the electrode under atmospheric conditions, and a workpiece is scanned relative to the stationary electrode under three-axis motion control to remove target areas on a workpiece surface. Experimental results demonstrate that surface removal progresses although process gas is not forcibly supplied to the plasma. The correction of shape errors on conventionally polished spheres is performed. As a result, highly accurate smooth surfaces with the desired rms shape accuracy of 3 nm are successfully obtained, which confirms that the device is effective for the fabrication of optics.

  7. Electrode-electrolyte impedance due to polarization: influence of surface roughness

    NASA Astrophysics Data System (ADS)

    Mazzeo, Brian; Cruz Cortes, Efren; Mellor, Brett

    2011-10-01

    Many new measurement paradigms make use of microelectrodes for interrogating liquids and biological tissues. Double-layer formation at the electrode-electrolyte interface contributes to the measured impedance of the electrode surface in series with the substance that is being measured. An empirical constant phase element is often used to model the impedance of the interface. Engineering the surface thus provides a path to reduce the influence of electrode polarization in liquid measurements. Here, the surface roughness is used to modify the interfacial impedance, greatly increasing the available bandwidth for dielectric spectroscopy of protein solutions.

  8. Understanding sodium versus lithium intercalation potentials of electrode materials for alkali-ion batteries

    NASA Astrophysics Data System (ADS)

    Arroyo-de Dompablo, M. Elena

    2014-08-01

    Differences in average voltages for the alkali ion intercalation (Li, Na) in a variety of electrode materials are investigated. The average Li and Na insertion potentials in the cavities of ◻ReO3-perovskite, ramsdellite-◻Ti2O4, layered-◻2A2Ti3O7 (A = Li, Na) and NASICON-◻Na3Ti2(PO4)3 have been calculated by first principles calculations at the density functional theory level. The results identify the type of site occupied by the inserted ion as the relevant structural parameter. Occupation of large sites (c.n. = 12, 8) might yield Na insertion voltages higher than Li ones. On the other extreme, occupation of tetrahedral sites raises the Li insertion voltage as much as 0.8 V above the Na one. For octahedral sites the higher polarizing character of Li ions vs. Na ions acts as a key-factor to bring the Li intercalation voltage above that of Na intercalation.

  9. Sn-0.4BPO 4 composite as a promising negative electrode for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Aboulaich, Abdelmaula; Womes, Manfred; Olivier-Fourcade, Josette; Willmann, Patrick; Jumas, Jean-Claude

    2010-01-01

    The structural and textural properties of a Sn-0.4BPO 4 composite material synthesized by ex situ dispersion of β-Sn in a BPO 4 matrix were investigated by using several complementary techniques to study the global order (XRD, TGA-DSC, SEM-XEDS) and the local order (FT-IR, 119Sn Mössbauer spectroscopy and X-ray absorption spectroscopy). The results reveal that the composite material consists of three main components: an electrochemically active species "Sn", an inactive matrix "BPO 4", and an amorphous Sn(II) borophosphate which acts as a link between the two former and which improves the cohesion of the composite. The electrochemical performances of the composite material were tested in Swagelok-type cells with metallic Li as counter-electrode. It shows a high reversible capacity of about 500 mAh g -1 at a C/20 rate, and a very good stability under cycling even at very fast rates of C or C/1.3.

  10. Specific and efficient adsorption of phosphorothioated DNA on Au-based surfaces and electrodes

    NASA Astrophysics Data System (ADS)

    Ghabboun, Jamal; Sowwan, Mukhles; Cohen, Hezy; Molotsky, Tatiana; Borovok, Natalia; Dwir, Benjamin; Kapon, Eli; Kotlyar, Alexander; Porath, Danny

    2007-10-01

    Efficient attachment of DNA to metal surfaces or electrodes is essential for charge-transport measurements, scanning tunneling microscopy, and for devices and sensors. To optimize DNA deposition on Au-based surfaces and electrodes, we synthesized DNA with phosphorothioate (PT) groups attached to the G strand of poly(deoxyguanine)-poly(deoxycytosine) [poly(dG)-poly(dC)]. This procedure strongly improves the DNA anchoring to Au-based surfaces by sulfur-gold interaction. Much higher molecular surface density on Au substrates was observed for PT poly(dG)-poly(dC) compared to "bare" molecules. Deposition of PT poly(dG)-poly(dC) on Au-based electrodes, followed by thorough washing, showed that they specifically attach to the electrodes and are not spread on the surrounding SiO2 surface.

  11. Polymer-Derived Ceramic Functionalized MoS2 Composite Paper as a Stable Lithium-Ion Battery Electrode

    PubMed Central

    David, L.; Bhandavat, R.; Barrera, U.; Singh, G.

    2015-01-01

    A facile process is demonstrated for the synthesis of layered SiCN-MoS2 structure via pyrolysis of polysilazane functionalized MoS2 flakes. The layered morphology and polymer to ceramic transformation on MoS2 surfaces was confirmed by use of electron microscopy and spectroscopic techniques. Tested as thick film electrode in a Li-ion battery half-cell, SiCN-MoS2 showed the classical three-stage reaction with improved cycling stability and capacity retention than neat MoS2. Contribution of conversion reaction of Li/MoS2 system on overall capacity was marginally affected by the presence of SiCN while Li-irreversibility arising from electrolyte decomposition was greatly suppressed. This is understood as one of the reasons for decreased first cycle loss and increased capacity retention. SiCN-MoS2 in the form of self-supporting paper electrode (at 6 mg·cm−2) exhibited even better performance, regaining initial charge capacity of approximately 530 mAh·g−1 when the current density returned to 100 mA·g−1 after continuous cycling at 2400 mA·g−1 (192 mAh·g−1). MoS2 cycled electrode showed mud-cracks and film delamination whereas SiCN-MoS2 electrodes were intact and covered with a uniform solid electrolyte interphase coating. Taken together, our results suggest that molecular level interfacing with precursor–derived SiCN is an effective strategy for suppressing the metal-sulfide/electrolyte degradation reaction at low discharge potentials. PMID:25851595

  12. Polymer-Derived Ceramic Functionalized MoS2 Composite Paper as a Stable Lithium-Ion Battery Electrode.

    PubMed

    David, L; Bhandavat, R; Barrera, U; Singh, G

    2015-04-08

    A facile process is demonstrated for the synthesis of layered SiCN-MoS2 structure via pyrolysis of polysilazane functionalized MoS2 flakes. The layered morphology and polymer to ceramic transformation on MoS2 surfaces was confirmed by use of electron microscopy and spectroscopic techniques. Tested as thick film electrode in a Li-ion battery half-cell, SiCN-MoS2 showed the classical three-stage reaction with improved cycling stability and capacity retention than neat MoS2. Contribution of conversion reaction of Li/MoS2 system on overall capacity was marginally affected by the presence of SiCN while Li-irreversibility arising from electrolyte decomposition was greatly suppressed. This is understood as one of the reasons for decreased first cycle loss and increased capacity retention. SiCN-MoS2 in the form of self-supporting paper electrode (at 6 mg·cm(-2)) exhibited even better performance, regaining initial charge capacity of approximately 530 mAh·g(-1) when the current density returned to 100 mA·g(-1) after continuous cycling at 2400 mA·g(-1) (192 mAh·g(-1)). MoS2 cycled electrode showed mud-cracks and film delamination whereas SiCN-MoS2 electrodes were intact and covered with a uniform solid electrolyte interphase coating. Taken together, our results suggest that molecular level interfacing with precursor-derived SiCN is an effective strategy for suppressing the metal-sulfide/electrolyte degradation reaction at low discharge potentials.

  13. Polymer-Derived Ceramic Functionalized MoS2 Composite Paper as a Stable Lithium-Ion Battery Electrode

    NASA Astrophysics Data System (ADS)

    David, L.; Bhandavat, R.; Barrera, U.; Singh, G.

    2015-04-01

    A facile process is demonstrated for the synthesis of layered SiCN-MoS2 structure via pyrolysis of polysilazane functionalized MoS2 flakes. The layered morphology and polymer to ceramic transformation on MoS2 surfaces was confirmed by use of electron microscopy and spectroscopic techniques. Tested as thick film electrode in a Li-ion battery half-cell, SiCN-MoS2 showed the classical three-stage reaction with improved cycling stability and capacity retention than neat MoS2. Contribution of conversion reaction of Li/MoS2 system on overall capacity was marginally affected by the presence of SiCN while Li-irreversibility arising from electrolyte decomposition was greatly suppressed. This is understood as one of the reasons for decreased first cycle loss and increased capacity retention. SiCN-MoS2 in the form of self-supporting paper electrode (at 6 mg.cm-2) exhibited even better performance, regaining initial charge capacity of approximately 530 mAh.g-1 when the current density returned to 100 mA.g-1 after continuous cycling at 2400 mA.g-1 (192 mAh.g-1). MoS2 cycled electrode showed mud-cracks and film delamination whereas SiCN-MoS2 electrodes were intact and covered with a uniform solid electrolyte interphase coating. Taken together, our results suggest that molecular level interfacing with precursor-derived SiCN is an effective strategy for suppressing the metal-sulfide/electrolyte degradation reaction at low discharge potentials.

  14. A Metal-Free, Free-Standing, Macroporous Graphene@g-C₃N₄ Composite Air Electrode for High-Energy Lithium Oxygen Batteries.

    PubMed

    Luo, Wen-Bin; Chou, Shu-Lei; Wang, Jia-Zhao; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-06-01

    The nonaqueous lithium oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg(-1)), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high energy density, long cycling stability, and low cost, the air electrode structure and the electrocatalysts play important roles. Here, a metal-free, free-standing macroporous graphene@graphitic carbon nitride (g-C3N4) composite air cathode is first reported, in which the g-C3N4 nanosheets can act as efficient electrocatalysts, and the macroporous graphene nanosheets can provide space for Li2O2 to deposit and also promote the electron transfer. The electrochemical results on the graphene@g-C3N4 composite air electrode show a 0.48 V lower charging plateau and a 0.13 V higher discharging plateau than those of pure graphene air electrode, with a discharge capacity of nearly 17300 mA h g(-1)(composite) . Excellent cycling performance, with terminal voltage higher than 2.4 V after 105 cycles at 1000 mA h g(-1)(composite) capacity, can also be achieved. Therefore, this hybrid material is a promising candidate for use as a high energy, long-cycle-life, and low-cost cathode material for lithium oxygen batteries.

  15. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  16. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  17. Effects of electrode surface roughness on motional heating of trapped ions

    NASA Astrophysics Data System (ADS)

    Lin, Kuan-Yu; Low, Guang Hao; Chuang, Isaac L.

    2016-07-01

    Electric-field noise is a major source of motional heating in trapped-ion quantum computation. While the influence of trap-electrode geometries on electric-field noise has been studied in patch potential and surface adsorbate models, only smooth surfaces are accounted for by current theory. The effects of roughness, a ubiquitous feature of surface electrodes, are poorly understood. We investigate its impact on electric-field noise by deriving a rough-surface Green's function and evaluating its effects on adsorbate-surface binding energies. At cryogenic temperatures, heating-rate contributions from adsorbates are predicted to exhibit an exponential sensitivity to local surface curvature, leading to either a large net enhancement or suppression over smooth surfaces. For typical experimental parameters, orders-of-magnitude variations in total heating rates can occur depending on the spatial distribution of adsorbates. Through careful engineering of electrode surface profiles, our results suggests that heating rates can be tuned over orders of magnitudes.

  18. Electrochemical oxidation of hydrazine and its derivatives on the surface of metal electrodes in alkaline media

    NASA Astrophysics Data System (ADS)

    Asazawa, Koichiro; Yamada, Koji; Tanaka, Hirohisa; Taniguchi, Masatoshi; Oguro, Keisuke

    Electrochemical oxidation of hydrazine and its derivatives on the surface of various metal electrodes in alkaline media was investigated. A comparison of various polycrystalline metal electrodes (Ni, Co, Fe, Cu, Ag, Au, and Pt) showed that Co and Ni electrodes have a lower onset potential for hydrazine oxidation than the Pt electrode. The onset oxidation potential of APA (aminopolyacrylamide), a hydrazine derivative (-0.127 V vs. reversible hydrogen electrode, RHE), was similar to that of hydrazine hydrate (-0.178 V vs. RHE) in the case of the Co electrode. APA oxidation was possible because of hydrazine desorption that was caused by APA hydrolysis. The hydrolysis reaction was brought about by a heat treatment. This result suggests that the hydrazine hydrolysis reaction of hydrazine derivatives makes it possible to store hydrazine hydrate safely.

  19. Effects of Surface Oxygen on the Performance of Carbon as an Anode in Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Clark, Gregory W.

    2001-01-01

    Carbon materials with similar bulk structure but different surface oxygen were compared for their performance as anodes in lithium-ion battery. The bulk structure was such that the graphene planes were perpendicular to the surface. Three types of surfaces were examined: surface containing C=O type oxygen. surface containing -O-C type oxygen, and surface containing high concentration of active sites. The test involved cycles of lithium insertion into and release from the carbon materials, which was in the half cells of carbon/saturated LiI-50/50 (vol %) EC and DMC/lithium. During the first cycle of lithium insertion, the presence of adsorbed oxygen, -O-C type oxygen, active carbon sites, and C=O type oxygen resulted in the formation of solid-electrolyte interface (SEI) when the carbon's voltage relative to lithium metal was >1.35, 1 to 1.35, 0.5 to 1, and 0.67 to 0.7 V, respectively. An optimum -O-C type oxygen and a minimum C=O type oxygen was found to increase the reversible and decrease the irreversible capacity of carbon. Active sites on the carbon surface result in a large irreversible capacity and a second lithium insertion-release mechanism. However, this new mechanism has a short cycle life.

  20. Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?

    PubMed

    Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu

    2013-01-17

    Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom. PMID:26283432

  1. Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?

    PubMed

    Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu

    2013-01-17

    Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.

  2. Nature of the Surface-Exposed Cytochrome-Electrode Interactions in Electroactive Biofilms of Desulfuromonas acetoxidans.

    PubMed

    Alves, A; Ly, H K; Hildebrandt, P; Louro, R O; Millo, D

    2015-06-25

    Metal-respiring bacteria are microorganisms capable of oxidizing organic pollutants present in wastewater and transferring the liberated electrons to an electrode. This ability has led to their application as catalysts in bioelectrochemical systems (BESs), a sustainable technology coupling bioremediation to electricity production. Crucial for the functioning of these BESs is a complex protein architecture consisting of several surface-exposed multiheme proteins, called outer membrane cytochromes, wiring the cell metabolism to the electrode. Although the role of these proteins has been increasingly understood, little is known about the protein-electrode interactions and their impact on the performance of BESs. In this study, we used surface-enhanced resonance Raman spectroscopy in combination with electrochemical techniques to unravel the nature of the protein-electrode interaction for the outer membrane cytochrome OmcB from Desulfuromonas acetoxidans (Dace). Comparing the spectroelectrochemical properties of OmcB bound directly to the electrode surface with those of the same protein embedded inside an electroactive biofilm, we have shown that the surface-exposed cytochromes of Dace biofilms are in direct contact with the electrode surface. Even if direct binding causes protein denaturation, the biofilm possesses the ability to minimize the extent of the damage maximizing the amount of cells in direct electrical communication with the electrode.

  3. Silver nanowire/polyaniline composite transparent electrode with improved surface properties

    SciTech Connect

    Kumar, A.B.V. Kiran; Jiang, Jianwei; Bae, Chang Wan; Seo, Dong Min; Piao, Longhai Kim, Sang-Ho

    2014-09-15

    Highlights: • AgNWs/PANI transparent electrode was prepared by layer-by-layer coating method. • The surface roughness of the electrode reached to 6.5 nm (root mean square). • The electrode had reasonable sheet resistance (25 Ω/□) and transmittance (83.5%). - Abstract: Silver nanowires (AgNWs) are as potential candidates to replace indium tin oxide (ITO) in transparent electrodes because of their preferred conducting and optical properties. However, their rough surface properties are not favorable for the fabrication of optoelectronic devices, such as displays and thin-film solar cells. In the present investigation, AgNWs/polyaniline composite transparent electrodes with better surface properties were successfully prepared. AgNWs were incorporated into polyaniline:polystyrene sulfonate (PANI:PSS) by layer-by-layer coating and mechanical pressing. PANI:PSS decreased the surface roughness of the AgNWs electrode by filling the gap of the random AgNWs network. The transparent composite electrode had decreased surface roughness (root mean square 6.5 nm) with reasonable sheet resistance (25 Ω/□) and transmittance (83.5%)

  4. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium-Oxygen Batteries.

    PubMed

    Liu, Bin; Xu, Wu; Yan, Pengfei; Bhattacharya, Priyanka; Cao, Ruiguo; Bowden, Mark E; Engelhard, Mark H; Wang, Chong-Min; Zhang, Ji-Guang

    2015-11-01

    The development of highly efficient catalysts is critical for the practical application of lithium-oxygen (Li-O2) batteries. Nanosheet-assembled ZnCo2O4 (ZCO) microspheres and thin films grown in situ on single-walled carbon nanotube (ZCO/SWCNT) composites as high-performance air electrode materials for Li-O2 batteries are reported. The in situ grown ZCO/SWCNT electrodes delivered high discharge capacities, decreased the onset of the oxygen evolution reaction by 0.9 V during the charging process, and led to longer cycling stability. These results indicate that in situ grown ZCO/SWCNT composites can be used as highly efficient air electrode materials for oxygen reduction and evolution reactions. The enhanced catalytic activity displayed by the uniformly dispersed ZCO catalyst on nanostructured electrodes is expected to inspire further development of other catalyzed electrodes for Li-O2 batteries and other applications. PMID:26457378

  5. In situ SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery.

    PubMed

    Tsuda, Tetsuya; Kanetsuku, Tsukasa; Sano, Teruki; Oshima, Yoshifumi; Ui, Koichi; Yamagata, Masaki; Ishikawa, Masashi; Kuwabata, Susumu

    2015-06-01

    By exploiting characteristics such as negligible vapour pressure and ion-conductive nature of an ionic liquid (IL), we established an in situ scanning electron microscope (SEM) method to observe the electrode reaction in the IL-based Li-ion secondary battery (LIB). When 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)amide ([C2mim][FSA]) with lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]) was used as the electrolyte, the Si negative electrode exhibited a clear morphology change during the charge process, without any solid electrolyte interphase (SEI) layer formation, while in the discharge process, the appearance was slightly changed, suggesting that a morphology change is irreversible in the charge-discharge process. On the other hand, the use of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mim][TFSA]) with Li[TFSA] did not induce a change in the Si negative electrode. It is interesting to note this distinct contrast, which could be attributed to SEI layer formation from the electrochemical breakdown of [C2mim](+) at the Si negative electrode|separator interface in the [C2mim][TFSA]-based LIB. This in situ SEM observation technique could reveal the effect of the IL species electron-microscopically on the Si negative electrode reaction.

  6. Surface tension of molten mixtures of fluorides of lithium, beryllium, and thorium

    SciTech Connect

    Klimenkov, A.A.; Chevinskii, Y.F.; Kurbatov, N.N.; Raspopin, S.P.

    1984-12-01

    Melts of mixtures of fluorides of lithium, beryllium, thorium and uranium satisfy most completely the many requirements imposed on fuel composites and breeder-zone materials in a liquid-salt nuclear reactor, and therefore there is a need for information on the physicochemical properties of such melts. This paper reports on a study in which the surface tension of three-component melts containing fluorides of thorium, beryllium and lithium were measured by the maximum-pressure method in a gas bubble. The salts investigated were placed in glass carbon crucibles. The material used for the capillaries was nickel, which is resistant to the action of fluoride melts. As the working gas, the authors used argon from which the traces of moisture and oxygen had been removed. The surface tension was calculated by the Cantor-Schrodinger method and in the investigations close attention was paid to the preparation of the appropriate anhydrous salts.

  7. in situ plasma removal of surface contaminants from ion trap electrodes

    SciTech Connect

    Haltli, Raymond A.

    2015-04-01

    This research resulted in a construction and implementation of an in situ plasma discharge to remove surface contaminants from electrodes in an ion trapping experimental system is presented with results.

  8. Simple fabrication of flexible electrodes with high metal-oxide content: electrospun reduced tungsten oxide/carbon nanofibers for lithium ion battery applications

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyuk; Jo, Changshin; Park, Bangrock; Hwang, Woonbong; Lee, Hyung Ik; Yoon, Songhun; Lee, Jinwoo

    2014-08-01

    A one-step and mass-production synthetic route for a flexible reduced tungsten oxide-carbon composite nanofiber (WOx-C-NF) film is demonstrated via an electrospinning technique. The WOx-C-NF film exhibits unprecedented high content of metal-oxides (~80 wt%) and good flexibility (the tensile strength of the specimen was 6.13 MPa) without the use of flexible support materials like CNTs or graphene. The WOx-C-NF film is directly used as an anode in a lithium ion battery (LIB). Compared with previously reported tungsten oxide electrodes, the WOx-C-NF film exhibits high reversible capacity (481 mA h g-1total electrode), stable cycle, and improved rate performance, without the use of additive carbon, a polymeric binder and a current collector. Moreover, control electrodes fabricated by conventional processes support the positive effects of both the freestanding electrode and metal-oxide embedded carbon 1-D nanofiber structure.A one-step and mass-production synthetic route for a flexible reduced tungsten oxide-carbon composite nanofiber (WOx-C-NF) film is demonstrated via an electrospinning technique. The WOx-C-NF film exhibits unprecedented high content of metal-oxides (~80 wt%) and good flexibility (the tensile strength of the specimen was 6.13 MPa) without the use of flexible support materials like CNTs or graphene. The WOx-C-NF film is directly used as an anode in a lithium ion battery (LIB). Compared with previously reported tungsten oxide electrodes, the WOx-C-NF film exhibits high reversible capacity (481 mA h g-1total electrode), stable cycle, and improved rate performance, without the use of additive carbon, a polymeric binder and a current collector. Moreover, control electrodes fabricated by conventional processes support the positive effects of both the freestanding electrode and metal-oxide embedded carbon 1-D nanofiber structure. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01033g

  9. Modeling diffusion-induced stress in nanowire electrode structures

    NASA Astrophysics Data System (ADS)

    Deshpande, Rutooj; Cheng, Yang-Tse; Verbrugge, Mark W.

    There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, a large volume change on the order of a few to several hundred percent, can occur. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the active electrode materials. Our work is aimed at developing a mathematical model relating surface energy with diffusion-induced stresses in nanowire electrodes. With decreasing size of the electrode, the ratio of surface area to volume increases. Thus, surface energy and surface stress can play an important role in mitigating DISs in nanostructured electrodes. In this work, we establish relationships between the surface energy, surface stress, and the magnitude of DISs in nanowires. We find that DISs, especially the tensile stresses, can decrease significantly due to the surface effects. Our model also establishes a relationship between stress and the nanowire radius. We show that, with decreasing size, the electrode material will be less prone to mechanical degradation, leading to an increase in the life of lithium ion batteries, provided other phenomena are unaffected by increased surface area (e.g., chemical degradation reactions). Also we show that, in the case of nanostructures, surface strain energy is significant in magnitude comparing with bulk strain energy. A mathematical tool to calculate total strain energy is developed that can be used to compare strain energy with the fracture energy of that material in electrode system.

  10. Conducting Polymer Coated Graphene Oxide Electrode for Rechargeable Lithium-Sulfur Batteries.

    PubMed

    Lee, Hee-Yoon; Jung, Yongju; Kim, Seok

    2016-03-01

    Poly(diallyldimethylammonium chloride) (PDDA)/graphene oxide-sulfur composites were prepared by a chemical oxidation method. For the PDDA-GO composites, conducting polymers (PDDA) were coated on the surface of GO sheets. PDDA-GO composites could be expected to increase electrical conductivity and protect restacking of graphene sheets. And then, sulfur particles were dispersed into the PDDA-GO composites by mixing in the CS2 solvent. It is expected the PDDA-GO/S composites show the limited release of polysulfides due to the fact that it can provide high surface area, because conducting polymer can be used as spacer between graphene sheets. Electrochemical performances of prepared composites were characterized by cyclic voltammetry (CV). The PDDA-GO/S composites showed a high discharge capacity of 1102 mAh g(-1) at the first cycle and a good cycle retention of 60% after 100 cycles. PMID:27455691

  11. Conducting Polymer Coated Graphene Oxide Electrode for Rechargeable Lithium-Sulfur Batteries.

    PubMed

    Lee, Hee-Yoon; Jung, Yongju; Kim, Seok

    2016-03-01

    Poly(diallyldimethylammonium chloride) (PDDA)/graphene oxide-sulfur composites were prepared by a chemical oxidation method. For the PDDA-GO composites, conducting polymers (PDDA) were coated on the surface of GO sheets. PDDA-GO composites could be expected to increase electrical conductivity and protect restacking of graphene sheets. And then, sulfur particles were dispersed into the PDDA-GO composites by mixing in the CS2 solvent. It is expected the PDDA-GO/S composites show the limited release of polysulfides due to the fact that it can provide high surface area, because conducting polymer can be used as spacer between graphene sheets. Electrochemical performances of prepared composites were characterized by cyclic voltammetry (CV). The PDDA-GO/S composites showed a high discharge capacity of 1102 mAh g(-1) at the first cycle and a good cycle retention of 60% after 100 cycles.

  12. Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide.

    PubMed

    Ponraj, Rubha; Kannan, Aravindaraj G; Ahn, Jun Hwan; Kim, Dong-Won

    2016-02-17

    Trapping lithium polysulfides formed in the sulfur positive electrode of lithium-sulfur batteries is one of the promising approaches to overcome the issues related to polysulfide dissolution. In this work, we demonstrate that intrinsically hydrophilic magnesium oxide (MgO) nanoparticles having surface hydroxyl groups can be used as effective additives to trap lithium polysulfides in the positive electrode. MgO nanoparticles were uniformly distributed on the surface of the active sulfur, and the addition of MgO into the sulfur electrode resulted in an increase in capacity retention of the lithium-sulfur cell compared to a cell with pristine sulfur electrode. The improvement in cycling stability was attributed to the strong chemical interactions between MgO and lithium polysulfide species, which suppressed the shuttling effect of lithium polysulfides and enhanced the utilization of the sulfur active material. To the best of our knowledge, this report is the first demonstration of MgO as an effective functional additive to trap lithium polysulfides in lithium-sulfur cells. PMID:26808673

  13. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    DOEpatents

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  14. Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade.

    PubMed

    Zheng, Fenghua; Yang, Chenghao; Xiong, Xunhui; Xiong, Jiawen; Hu, Renzong; Chen, Yu; Liu, Meilin

    2015-10-26

    Lithium-rich layered oxides are promising cathode materials for lithium-ion batteries and exhibit a high reversible capacity exceeding 250 mAh g(-1) . However, voltage fade is the major problem that needs to be overcome before they can find practical applications. Here, Li1.2 Mn0.54 Ni0.13 Co0.13 O2 (LLMO) oxides are subjected to nanoscale LiFePO4 (LFP) surface modification. The resulting materials combine the advantages of both bulk doping and surface coating as the LLMO crystal structure is stabilized through cationic doping, and the LLMO cathode materials are protected from corrosion induced by organic electrolytes. An LLMO cathode modified with 5 wt % LFP (LLMO-LFP5) demonstrated suppressed voltage fade and a discharge capacity of 282.8 mAh g(-1) at 0.1 C with a capacity retention of 98.1 % after 120 cycles. Moreover, the nanoscale LFP layers incorporated into the LLMO surfaces can effectively maintain the lithium-ion and charge transport channels, and the LLMO-LFP5 cathode demonstrated an excellent rate capacity.

  15. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate

    PubMed Central

    Wang, Hao; Zhao, Hua; Hu, Guangwei; Li, Siren; Su, Hang; Zhang, Jingwen

    2015-01-01

    We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studied when monolayer graphene was tuned by down polarization direction ferroelectric domain with different polarization levels. The length of the ferroelectric domain was optimized to be 90 nm for a wavelength of 5.0 μm with signal extinction per unit 14.7 dB/μm, modulation depth 474.1 dB/μm and figure of merit 32.5. This work may promote the study of highly efficient modulators and other ultra-compact nonvolatile electronic and photonic devices in which two-dimensional materials and ferroelectric materials are combined. PMID:26657622

  16. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate.

    PubMed

    Wang, Hao; Zhao, Hua; Hu, Guangwei; Li, Siren; Su, Hang; Zhang, Jingwen

    2015-01-01

    We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studied when monolayer graphene was tuned by down polarization direction ferroelectric domain with different polarization levels. The length of the ferroelectric domain was optimized to be 90 nm for a wavelength of 5.0 μm with signal extinction per unit 14.7 dB/μm, modulation depth 474.1 dB/μm and figure of merit 32.5. This work may promote the study of highly efficient modulators and other ultra-compact nonvolatile electronic and photonic devices in which two-dimensional materials and ferroelectric materials are combined.

  17. Commissioning of an ECR Plasma Source for Lithium Surface Science Studies and Initial Results

    NASA Astrophysics Data System (ADS)

    Norval, Ryan; Capece, Angie; Faroranti, Oluseyi; Skinner, Charles; Koel, Bruce

    2012-10-01

    Lithium-conditioned plasma facing components reduce hydrogen recycling in plasmas by readily forming hydride compounds, which results in improved plasma confinement and performance. A new ultrahigh vacuum (UHV)-compatible electron cyclotron resonance (ECR) plasma source, which allows surface spectroscopic studies, was recently commissioned at the Princeton Plasma Physics Laboratory to study the uptake of deuterium by lithium coatings on single crystal molybdenum as a precursor to NSTX experiments. The ECR plasma source is capable of delivering deuterium ions to the surface at energies of 50-2000 eV and current densities between 0.05 and 2.0 mA/cm^2. Surface science studies will be performed on clean Li films on Mo(100) substrates before and after D+ irradiation under UHV conditions at base pressures of 10-10 Torr. X-ray photoelectron spectroscopy will be used to determine the chemical state of lithium, and thermal desorption spectroscopy will be used to measure the amount of deuterium retained in the sample as a function of ion fluence and temperature.

  18. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    SciTech Connect

    Gallego, Nidia C; Contescu, Cristian I; Meyer III, Harry M; Howe, Jane Y; Meisner, Roberta Ann; Payzant, E Andrew; Lance, Michael J; Yoon, Steve; Denlinger, Matthew; Wood III, David L

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  19. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  20. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  1. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  2. Tailored lithium storage performance of graphene aerogel anodes with controlled surface defects for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shan, Hui; Xiong, Dongbin; Li, Xifei; Sun, Yipeng; Yan, Bo; Li, Dejun; Lawes, Stephen; Cui, Yanhua; Sun, Xueliang

    2016-02-01

    Three dimensional self-assembled graphene aerogel (GA) anode materials with some surface defects have been successfully generated through a facile hydrothermal procedure using graphene oxide as precursor. The morphologies and textural properties of as-obtained GA were investigated by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman and other spectroscopy techniques. The surface defects and electrical conductivities of GA can be controlled by adjusting the hydrothermal reaction time. The results indicate that GA with a reaction time of 6 h exhibits extremely high reversible capacity (1430 mAh g-1 at the current density of 100 mA g-1) and superior rate capability (587 mAh g-1 at 800 mA g-1) with excellent cycling stability (maintaining a reversible capacity of 960 mAh g-1 at 100 mA g-1 after 100 cycles). It is demonstrated that the 3D porous network with increased defect density, as well as the considerable electrical conductivity, results in the excellent electrochemical performance of the as-made GA anodes in lithium-ion batteries.

  3. Shaping of steel mold surface of lens array by electrical discharge machining with single rod electrode.

    PubMed

    Takino, Hideo; Hosaka, Takahiro

    2014-11-20

    We propose a method for fabricating a lens array mold by electrical discharge machining (EDM). In this method, the tips of rods are machined individually to form a specific surface, and then a number of the machined rods are arranged to construct an electrode for EDM. The repetition of the EDM process using the electrode enables a number of lens elements to be produced on the mold surface. The effectiveness of our proposed method is demonstrated by shaping a lens array mold made of stainless steel with 16 spherical elements, in which the EDM process with a single rod electrode is repeatedly conducted.

  4. Electrochemical assembling of methionine-gold nanoparticles and catalysis on the surface of glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Wang, J. H.; Zhang, X. M.; Cao, W.; Ge, A.; Zhou, L.

    2014-12-01

    In this paper cyclic voltammetry was used for the synthesis of linear array spherical gold nanoparticles on the surface of glassy carbon electrode using methionine as a stable reagent. The methionine-gold nanoparticles on the surface of glassy electrode were obtained. The methionine-gold nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy, energy dispersive spectrometry and powder X-ray diffraction. Electrochemical behavior of methionine at methionine-gold nanoparticle modified electrode was investigated. It was demonstrated that the methionine-gold nanoparticles can catalyze electrochemical transformations of methionine.

  5. Insulator and electrode mass erosion and surface voltage holdoff recovery for transient, high current surface discharges

    NASA Astrophysics Data System (ADS)

    Engel, T. G.; Dickens, J. C.; Kristiansen, M.

    1993-01-01

    Several polymeric insulator materials commonly used as sidewall insulators in EM accelerators are subjected to repetitive, high current transient surface discharges. The insulator materials tested include the thermosetting polymers G-9, G-10, and G-11 (i.e., fiberglass reinforced melamine and epoxy) and the thermoplastic polymers Lexan (i.e, polycarbonate) and Delrin (i.e., polyacetyl). Empirical scaling relationships are given that relate the total amount of insulator and electrode (i.e., molybdenum) mass erosion versus the total amount of arc energy transferred. Scaling relationships are also given that relate the 'lifetime' of the given polymer as a function of the initial discharge current. The 'lifetime' of an insulator material is defined as the number of discharges required to reduce the initial surface holdoff voltage to its half-power level for three consecutive discharges, and is a useful parameter when specifying insulator materials to be used in high power switching devices.

  6. A motion artifact generation and assessment system for the rapid testing of surface biopotential electrodes.

    PubMed

    Cömert, Alper; Hyttinen, Jari

    2015-01-01

    Dry electrodes can reduce cost while increasing the usability and comfort of wearable monitoring systems. They are, however, susceptible to motion artifacts. The present electrode testing methods lack reliability and do not separate the factors that affect the motion artifact. In this paper, we introduce a first generation motion artifact generation and assessment system that generates the speed, amplitude, and pattern-wise programmable movement of the electrode. The system simultaneously measures electrode-skin impedance, the motion artifact, and one channel of an electrocardiogram that contains the motion artifact and monitors the mounting force applied to the electrode. We demonstrate the system by comparing the applied movement and the measured signals for electrode movements up to 6 mm and movement frequencies from 0.4 Hz to 4 Hz. Results show that the impedance change and surface potential are visually clearly related to the applied motion, with average correlations of 0.89 and 0.64, respectively. The applied force, electrode location, and electrode structure all affect the motion artifact. The setup enables the motion of the electrode to be accurately controlled. The system can be used as a precursor to the testing of integrated systems because it enables thorough, repeatable, and robust motion artifact studies. The system allows a deeper insight into motion artifacts and the interplay of the various factors that affect them.

  7. Mechanical Behavior of Free-Standing Fuel Cell Electrodes on Water Surface.

    PubMed

    Kim, Sanwi; Kim, Jae-Han; Oh, Jong-Gil; Jang, Kyung-Lim; Jeong, Byeong-Heon; Hong, Bo Ki; Kim, Taek-Soo

    2016-06-22

    Fundamental understanding of the mechanical behavior of polymer electrolyte fuel cell electrodes as free-standing materials is essential to develop mechanically robust fuel cells. However, this has been a significant challenge due to critical difficulties, such as separating the pristine electrode from the substrate without damage and precisely measuring the mechanical properties of the very fragile and thin electrodes. We report the mechanical behavior of free-standing fuel cell electrodes on the water surface through adopting an innovative ice-assisted separation method to separate the electrode from decal transfer film. It is found that doubling the ionomer content in electrodes increases not only the tensile stress at the break and the Young's modulus (E) of the electrodes by approximately 2.1-3.5 and 1.7-2.4 times, respectively, but also the elongation at the break by approximately 1.5-1.7 times, which indicates that stronger, stiffer, and tougher electrodes are attained with increasing ionomer content, which have been of significant interest in materials research fields. The scaling law relationship between Young's modulus and density (ρ) has been unveiled as E ∼ ρ(1.6), and it is compared with other materials. These findings can be used to develop mechanically robust electrodes for fuel cell applications.

  8. Mechanical Behavior of Free-Standing Fuel Cell Electrodes on Water Surface.

    PubMed

    Kim, Sanwi; Kim, Jae-Han; Oh, Jong-Gil; Jang, Kyung-Lim; Jeong, Byeong-Heon; Hong, Bo Ki; Kim, Taek-Soo

    2016-06-22

    Fundamental understanding of the mechanical behavior of polymer electrolyte fuel cell electrodes as free-standing materials is essential to develop mechanically robust fuel cells. However, this has been a significant challenge due to critical difficulties, such as separating the pristine electrode from the substrate without damage and precisely measuring the mechanical properties of the very fragile and thin electrodes. We report the mechanical behavior of free-standing fuel cell electrodes on the water surface through adopting an innovative ice-assisted separation method to separate the electrode from decal transfer film. It is found that doubling the ionomer content in electrodes increases not only the tensile stress at the break and the Young's modulus (E) of the electrodes by approximately 2.1-3.5 and 1.7-2.4 times, respectively, but also the elongation at the break by approximately 1.5-1.7 times, which indicates that stronger, stiffer, and tougher electrodes are attained with increasing ionomer content, which have been of significant interest in materials research fields. The scaling law relationship between Young's modulus and density (ρ) has been unveiled as E ∼ ρ(1.6), and it is compared with other materials. These findings can be used to develop mechanically robust electrodes for fuel cell applications. PMID:27183314

  9. Intracardiac electrogram parameters, electrode surface area and pacer input impedance: their correlations.

    PubMed

    Antonioli, E G; Baggioni, F G; Grassi, G

    1980-01-01

    Small surface area electrodes are accused of sensing defects which were related to alterations that they induce in the endocardiac electrograms. Since several factors affect the cardiac signal coming from electrode to sensing circuit, i.e. electrode surface area, electrode-tissue interface, pacemaker input impedance and sensing amplifier pass-band, Authors present their studies performed on 252 implanted electrodes of various type. Study was carried out by connecting in parallel to the recorder a variable resistor in order to simulate different pacer input impedances. The results showed a significant reduction in RS amplitude when recorder was paralleled with resistor values lower than 40 K. Slew rates showed a similar behaviours since RS steep tract did not change his duration with load, while total QRS duration is reduced. High speed analysis has shown that the RS segment is not linear in about 40% of cases: the main tract is used for calculations. The most significant attenuations and distortions of endocardial electrogram were observed with smallest electrodes and lowest resistances parallel connected: in these cases the sensing impedance at the electrode-tissue interface appears to be between 3 to 5 K ohms. The results suggest that the most of the alledged sensing faults experienced in the past were probably due to small tip electrodes connected to low input impedance generators or to impending failure situations. The AA. conclude that the main question does not concerne a true electrode inefficiency but a wrongly chosen pacemaker-electrode combination, i.e. small tip electrode connected with old generator models. To avoid the evaluation error, it would be instrumental that the pacemaker manufacturers would specify input characteristics of their generators. So, the implanting clinician becomes able to exactly evaluate the true signal arriving to the sensing circuit by connecting in parallel with the recorder input a resistor whose value approximates the input

  10. Alteration of Surface EMG amplitude levels of five major trunk muscles by defined electrode location displacement.

    PubMed

    Huebner, Agnes; Faenger, Bernd; Schenk, Philipp; Scholle, Hans-Christoph; Anders, Christoph

    2015-04-01

    Exact electrode positioning is vital for obtaining reliable results in Surface EMG. This study aimed at systematically assessing the influence of defined electrode shifts on measured Surface EMG amplitudes of trunk muscles in a group of 15 middle aged healthy male subjects. The following leftsided muscles were investigated: rectus abdominis muscle, internal and external oblique abdominal muscles, lumbar multifidus muscle, and longissimus muscle. In addition to the recommended electrode positions, extra electrodes were placed parallel to these and along muscle fiber direction. Measurements were performed under isometric conditions in upright body position. Gradually changing, but defined loads were applied considering subject's upper body weight. For the abdominal muscles amplitude differences varied considerably depending on load level, magnitude, and direction. For both back muscles amplitudes dropped consistently but rather little for parallel electrode displacements. However, for the longissimus muscle a caudal electrode shift resulted in an amplitude increase of similar extent and independent from load level. Influence of electrode position variations can be proven for all trunk muscles but are more evident in abdominal than back muscles. Those muscle-specific effects confirm the necessity for an exact definition of electrode positioning to allow comparisons between individual subjects, groups of subjects, and studies.

  11. Nanostructured materials for lithium-ion batteries: surface conductivity vs. bulk ion/electron transport.

    PubMed

    Ellis, B; Subramanya Herle, P; Rho, Y H; Nazar, L F; Dunlap, R; Perry, Laura K; Ryan, D H

    2007-01-01

    Lithium metal phosphates are amongst the most promising cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic conductivity, it is essential to optimize their properties to minimize defect concentration and crystallite size (down to the submicron level), control morphology, and to decorate the crystallite surfaces with conductive nanostructures that act as conduits to deliver electrons to the bulk lattice. Here, we discuss factors relating to doping and defects in olivine phosphates LiMPO4 (M = Fe, Mn, Co, Ni) and describe methods by which in situ nanophase composites with conductivities ranging from 10(-4)-10(-2) S cm(-1) can be prepared. These utilize surface reactivity to produce intergranular nitrides, phosphides, and/or phosphocarbides at temperatures as low as 600 degrees C that maximize the accessibility of the bulk for Li de/insertion. Surface modification can only address the transport problem in part, however. A key issue in these materials is also to unravel the factors governing ion and electron transport within the lattice. Lithium de/insertion in the phosphates is accompanied by two-phase transitions owing to poor solubility of the single phase compositions, where low mobility of the phase boundary limits the rate characteristics. Here we discuss concerted mobility of the charge carriers. Using Mössbauer spectroscopy to pinpoint the temperature at which the solid solution forms, we directly probe small polaron hopping in the solid solution Li(x)FePO4 phases formed at elevated temperature, and give evidence for a strong correlation between electron and lithium delocalization events that suggests they are coupled.

  12. Nanostructured TiO2/carbon nanosheet hybrid electrode for high-rate thin-film lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Moitzheim, S.; Nimisha, C. S.; Deng, Shaoren; Cott, Daire J.; Detavernier, C.; Vereecken, P. M.

    2014-12-01

    Heterogeneous nanostructured electrodes using carbon nanosheets (CNS) and TiO2 exhibit high electronic and ionic conductivity. In order to realize the chip level power sources, it is necessary to employ microelectronic compatible techniques for the fabrication and characterization of TiO2-CNS thin-film electrodes. To achieve this, vertically standing CNS grown through a catalytic free approach on a TiN/SiO2/Si substrate by plasma enhanced chemical vapour deposition (PECVD) was used. The substrate-attached CNS is responsible for the sufficient electronic conduction and increased surface-to-volume ratio due to its unique morphology. Atomic layer deposition (ALD) of nanostructured amorphous TiO2 on CNS provides enhanced Li storage capacity, high rate performance and stable cycling. The amount of deposited TiO2 masks the underlying CNS, thereby controlling the accessibility of CNS, which gets reflected in the total electrochemical performance, as revealed by the cyclic voltammetry and charge/discharge measurements. TiO2 thin-films deposited with 300, 400 and 500 ALD cycles on CNS have been studied to understand the kinetics of Li insertion/extraction. A large potential window of operation (3-0.01 V); the excellent cyclic stability, with a capacity retention of 98% of the initial value; and the remarkable rate capability (up to 100 C) are the highlights of TiO2/CNS thin-film anode structures. CNS with an optimum amount of TiO2 coating is proposed as a promising approach for the fabrication of electrodes for chip compatible thin-film Li-ion batteries.

  13. Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium ion batteries

    SciTech Connect

    Shim, Joongpyo; Striebel, Kathryn A.

    2002-12-02

    The effect of electrode thickness and density for unpressed and pressed natural graphite electrodes were studied using electrochemical characterization. Pressing the graphite electrode decreases the reversible capacity and the irreversible capacity loss during formation. As electrode density increased, the capacity retention at high rate increased until 0.9g/cm{sup 3}, and then decreased. The cycle performances of the pressed graphite electrodes were more stable than the unpressed one. Pressing graphite electrode affected on its electrochemical characterization such as irreversible capacity loss, high rate cycling and cycle performance.

  14. Kilohertz organic complementary inverters driven by surface-grafting conducting polypyrrole electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Zhang, Suna; Li, Liqiang; Chen, Xiaosong; Xu, Zeyang; Wu, Kunjie; Li, Hongwei; Meng, Yancheng; Wang, Wenchong; Hu, Wenping; Chi, Lifeng

    2016-09-01

    Surface-grafting conducting polymer has advantage to circumvent the difficulty in patterning as well as the weak interface adhesion on substrate of the conventional conducting polymer, which would be desirable for its application as electrodes in electronic devices. In this work, the patterned surface-grafting polypyrrole (PPY) is used as electrode, which shows merits such as strong interface adhesion, robustness against solvent treatment, easy scaling-up, and good conductivity. Remarkably, the surface-grafting PPY electrodes can efficiently drive both p-type and n-type organic field-effect transistors. By combining p-/n-type transistors, organic complementary inverters are constructed with PPY electrodes, which exhibit low operational voltage (<8 V), high gain (6-17), and low power dissipation (several tens of nW). The switching voltage is approximately 0.5Vdd with a high noise margin (>70% of 0.5Vdd). Dynamic switching measurements indicate that the inverter has an operational frequency of about 3.3 kHz. This is the first report on kilohertz organic complementary inverter driven with surface-grafting conducting polymer electrodes. High device performance, together with the facile patternability and other merits, may promote the application of surface-grafting conducting polymer electrode in the field of organic electronics.

  15. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  16. Enhanced surface production in H{sup -} ion sources by introducing a negatively biased secondary electrode

    SciTech Connect

    An, Young Hwa; Jung, Bong Ki; Hwang, Y. S.

    2010-02-15

    A transformer coupled plasma negative hydrogen ion source with an external rf antenna has been developed at SNU, which is capable of continuous operation with long lifetime. A positively biased plasma electrode (PE) has been successfully used for the optimization of H{sup -} extraction. With molybdenum-coated stainless steel PE, the enhancement of H{sup -} production at the electrode surface was observed at the bias voltage lower than the plasma potential. However, the low bias voltage is unfavorable to H{sup -} beam extraction since the negative ions are repelled. A second electrode is inserted in front of the PE to enhance H{sup -} production at the electrode surface without impeding beam extraction. By biasing the secondary electrode (SE) more negatively, H{sup -} production is clearly enhanced although the SE itself reduces H{sup -} beam currents because of suppressed electron transport in front of the PE. In this configuration enhancement of surface productions is most pronounced in tantalum electrode among various electrode materials.

  17. Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries

    NASA Astrophysics Data System (ADS)

    Patel, Manu U. M.; Luong, Nguyen Dang; Seppälä, Jukka; Tchernychova, Elena; Dominko, Robert

    2014-05-01

    Graphene/cellulose composites were prepared and studied as potential host matrixes for sulphur impregnation and use in Li-S batteries. We demonstrate that with the proper design of a relatively low surface area graphene/cellulose composite, a high electrochemical performance along with good cyclability can be achieved. Graphene cellulose composites are built from two constituents: a two-dimensional electronic conductive graphene and cellulose fibres as a structural frame; together they form a laminar type of pore. The graphene sheets that uniformly anchor sulphur molecules provide confinement ability for polysulphides, sufficient space to accommodate sulphur volumetric expansion, a large contact area with the sulphur and a short transport pathway for both electrons and lithium ions. Nano-cellulose prevents the opening of graphene sheets due to the volume expansion caused by dissolved polysulphides during battery operation. This, in turn, prevents the diffusion of lithium polysulphides into the electrolyte, enabling a long cycle life.

  18. Lithium inclusion in indium metal-organic frameworks showing increased surface area and hydrogen adsorption

    SciTech Connect

    Bosch, Mathieu; Zhang, Muwei; Feng, Dawei; Yuan, Shuai; Wang, Xuan; Chen, Ying-Pin; Zhou, Hong-Cai

    2014-12-01

    Investigation of counterion exchange in two anionic In-Metal-Organic Frameworks (In-MOFs) showed that partial replacement of disordered ammonium cations was achieved through the pre-synthetic addition of LiOH to the reaction mixture. This resulted in a surface area increase of over 1600% in (Li [In(1,3 − BDC){sub 2}]){sub n} and enhancement of the H{sub 2} uptake of approximately 275% at 80 000 Pa at 77 K. This method resulted in frameworks with permanent lithium content after repeated solvent exchange as confirmed by inductively coupled plasma mass spectrometry. Lithium counterion replacement appears to increase porosity after activation through replacement of bulkier, softer counterions and demonstrates tuning of pore size and properties in MOFs.

  19. A Lithographically-Patterned, Elastic Multi-electrode Array for Surface Stimulation of the Spinal Cord

    PubMed Central

    Meacham, Kathleen W.; Giuly, Richard J.; Guo, Liang; Hochman, Shawn; DeWeerth, Stephen P.

    2008-01-01

    A new, scalable process for microfabrication of a silicone-based, elastic multi-electrode array (MEA) is presented. The device is constructed by spinning poly(dimethylsiloxane) (PDMS) silicone elastomer onto a glass slide, depositing and patterning gold to construct wires and electrodes, spinning on a second PDMS layer, and then micropatterning the second PDMS layer to expose electrode contacts. The micropatterning of PDMS involves a custom reactive ion etch (RIE) process that preserves the underlying gold thin film. Once completed, the device can be removed from the glass slide for conformal interfacing with neural tissue. Prototype MEAs feature electrodes smaller than those known to be reported on silicone substrate (60 μm diameter exposed electrode area) and were capable of selectively stimulating the surface of the in vitro isolated spinal cord of the juvenile rat. Stretchable serpentine traces were also incorporated into the functional PDMS-based MEA, and their implementation and testing is described. PMID:17914674

  20. Polymer Coatings of Cochlear Implant Electrode Surface - An Option for Improving Electrode-Nerve-Interface by Blocking Fibroblast Overgrowth.

    PubMed

    Hadler, C; Aliuos, P; Brandes, G; Warnecke, A; Bohlmann, J; Dempwolf, W; Menzel, H; Lenarz, T; Reuter, G; Wissel, K

    2016-01-01

    Overgrowth of connective tissue and scar formation induced by the electrode array insertion increase the impedance and, thus, diminish the interactions between neural probes as like cochlear implants (CI) and the target tissue. Therefore, it is of great clinical interest to modify the carrier material of the electrodes to improve the electrode nerve interface for selective cell adhesion. On one side connective tissue growth needs to be reduced to avoid electrode array encapsulation, on the other side the carrier material should not compromise the interaction with neuronal cells. The present in vitro-study qualitatively and quantitatively characterises the interaction of fibroblasts, glial cells and spiral ganglion neurons (SGN) with ultrathin poly(N,N-dimethylacrylamide) (PDMAA), poly(2-ethyloxazoline) (PEtOx) and poly([2-methacryloyloxy)ethyl]trimethylammoniumchlorid) (PMTA) films immobilised onto glass surfaces using a photoreactive anchor layer. The layer thickness and hydrophilicity of the polymer films were characterised by ellipsometric and water contact angle measurement. Moreover the topography of the surfaces was investigated using atomic force microscopy (AFM). The neuronal and non-neuronal cells were dissociated from spiral ganglions of postnatal rats and cultivated for 48 h on top of the polymer coatings. Immunocytochemical staining of neuronal and intermediary filaments revealed that glial cells predominantly attached on PMTA films, but not on PDMAA and PEtOx monolayers. Hereby, strong survival rates and neurite outgrowth were only found on PMTA, whereas PDMAA and PEtOx coatings significantly reduced the SG neuron survival and neuritogenesis. As also shown by scanning electron microscopy (SEM) SGN strongly survived and retained their differentiated phenotype only on PMTA. In conclusion, survival and neuritogenesis of SGN may be associated with the extent of the glial cell growth. Since PMTA was the only of the polar polymers used in this study bearing