Science.gov

Sample records for lithium ion battery

  1. Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lithium ion batteries, which use a new battery chemistry, are being developed under cooperative agreements between Lockheed Martin, Ultralife Battery, and the NASA Lewis Research Center. The unit cells are made in flat (prismatic) shapes that can be connected in series and parallel to achieve desired voltages and capacities. These batteries will soon be marketed to commercial original-equipment manufacturers and thereafter will be available for military and space use. Current NiCd batteries offer about 35 W-hr/kg compared with 110 W-hr/kg for current lithium ion batteries. Our ultimate target for these batteries is 200 W-hr/kg.

  2. Membranes in lithium ion batteries.

    PubMed

    Yang, Min; Hou, Junbo

    2012-07-04

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  3. Advanced lithium ion battery charger

    SciTech Connect

    Teofilo, V.L.; Merritt, L.V.; Hollandsworth, R.P.

    1997-12-01

    A lithium ion battery charger has been developed for four and eight cell batteries or multiples thereof. This charger has the advantage over those using commercial lithium ion charging chips in that the individual cells are allowed to be taper charged at their upper charging voltage rather than be cutoff when all cells of the string have reached the upper charging voltage limit. Since 30--60% of the capacity of lithium ion cells maybe restored during the taper charge, this charger has a distinct benefit of fully charging lithium ion batteries by restoring all of the available capacity to all of its cells.

  4. Modeling the Lithium Ion Battery

    ERIC Educational Resources Information Center

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  5. Novel Electrolytes for Lithium Ion Batteries

    SciTech Connect

    Lucht, Brett L.

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  6. Electrolytes for lithium ion batteries

    SciTech Connect

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  7. Lithium Ion Battery Design and Safety

    NASA Technical Reports Server (NTRS)

    Au, George; Locke, Laura

    2001-01-01

    This viewgraph presentation makes several recommendations to ensure the safe and effective design of Lithium ion cell batteries. Large lithium ion cells require pressure switches and small cells require pressure disconnects and other safety devices with the ability to instantly interrupt flow. Other suggestions include specifications for batteries and battery chargers.

  8. Origami lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Song, Zeming; Ma, Teng; Tang, Rui; Cheng, Qian; Wang, Xu; Krishnaraju, Deepakshyam; Panat, Rahul; Chan, Candace K.; Yu, Hongyu; Jiang, Hanqing

    2014-01-01

    There are significant challenges in developing deformable devices at the system level that contain integrated, deformable energy storage devices. Here we demonstrate an origami lithium-ion battery that can be deformed at an unprecedented high level, including folding, bending and twisting. Deformability at the system level is enabled using rigid origami, which prescribes a crease pattern such that the materials making the origami pattern do not experience large strain. The origami battery is fabricated through slurry coating of electrodes onto paper current collectors and packaging in standard materials, followed by folding using the Miura pattern. The resulting origami battery achieves significant linear and areal deformability, large twistability and bendability. The strategy described here represents the fusion of the art of origami, materials science and functional energy storage devices, and could provide a paradigm shift for architecture and design of flexible and curvilinear electronics with exceptional mechanical characteristics and functionalities.

  9. Anode materials for lithium-ion batteries

    DOEpatents

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  10. Ionic Liquids in Lithium-Ion Batteries.

    PubMed

    Balducci, Andrea

    2017-04-01

    Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.

  11. Lithium ion batteries based on nanoporous silicon

    DOEpatents

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  12. International Space Station Lithium-Ion Battery

    NASA Technical Reports Server (NTRS)

    Dalton, Penni J.; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-ion cell life testing project. This paper will include an overview of the ISS Li-Ion battery system architecture and the progress of the Li-ion battery design and development.

  13. Lithium ion battery with improved safety

    DOEpatents

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  14. Lithium Ion Batteries in Electric Drive Vehicles

    SciTech Connect

    Pesaran, Ahmad A.

    2016-05-16

    This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: long calendar life (greater than 10 years); sufficient cycle life; reliable operation under hot and cold temperatures; safe performance under extreme conditions; end-of-life recycling. To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.

  15. Material requirements for lithium-ion batteries

    SciTech Connect

    Xie, L.; Fouchard, D.; Megahed, S.

    1995-12-31

    Lithium-ion (or rocking-chair) batteries with lithiated oxide cathodes and carbon anodes are finding increasing acceptance in many electronic applications including low rates (e.g., memory backup, real time clock, bridge function) and high rates (e.g, laptop computers, cellular phones, camcorders, etc.). This technology offers significant improvements in safety relative to cells using lithium metal anodes, with only a modest reduction in energy density. In general, materials for lithium-ion cells are chosen to minimize the energy density penalties associated with replacing the lithium electrode with an intercalation electrode. In this review paper, the authors describe the properties of the cathode, anode and electrolyte, and discuss requirements for improved materials for advanced lithium-ion systems. Consideration is given to energy density, rate capability, cycleability and thermal stability.

  16. Electrochemical stiffness in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tavassol, Hadi; Jones, Elizabeth M. C.; Sottos, Nancy R.; Gewirth, Andrew A.

    2016-11-01

    Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite-lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.

  17. Intercalation Dynamics in Lithium-Ion Batteries

    DTIC Science & Technology

    2009-09-01

    issues, batteries have become much more complex systems. As an illustration, consider the “ voltaic pile ” invented by Alessandro Volta in 1800. This was... voltaic pile , practical lithium-ion batteries are necessarily much more complicated. The electrode materials are present in the form of a fine powder...it is shown that the smaller particles tend to phase separate first , a phenomenon seen in experiments but difficult to explain with any other

  18. High-discharge-rate lithium ion battery

    DOEpatents

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  19. 78 FR 19024 - Lithium Ion Batteries in Transportation Public Forum

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... SAFETY BOARD Lithium Ion Batteries in Transportation Public Forum On Thursday and Friday, April 11-12, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Lithium Ion... Inquiry. The forum is organized into three topic areas: Lithium ion battery design, development, and...

  20. Size effects in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hu-Rong, Yao; Ya-Xia, Yin; Yu-Gao, Guo

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. Project supported by the National Natural Science Foundation of China (Grant Nos. 51225204 and 21303222), the Shandong Taishan Scholarship, China, the Ministry of Science and Technology, China (Grant No. 2012CB932900), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010000).

  1. Lithium-ion batteries having conformal solid electrolyte layers

    DOEpatents

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  2. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOEpatents

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  3. Lithium-Ion Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.

    1999-01-01

    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.

  4. Advances in lithium-ion batteries

    SciTech Connect

    Kerr, John B.

    2003-06-24

    The editors state in their introduction that this book is intended for lithium-ion scientists and engineers but they hope it may be of interest to scientists from other fields. Their main aim was to provide a snapshot of the state of the Lithium-ion art and in this they have largely succeeded. The book is comprised of a collection of very current reviews of the lithium ion battery literature by acknowledged experts that draw heavily on the authors' own research but are sufficiently general to provide the lithium ion researcher with enough guidance to the current literature and the current thinking in the field. Some of the literature references may be too current as there are numerous citations of conference proceedings which may be easily accessible to the lithium ion scientist or engineer but are not likely to be available to the interested chemist coming to the field for the first time. One author expresses the hope and expectation that properly peer-reviewed articles will appear in due course and the interested reader should look out for them in future. From the point of view of the lithium ion battery scientist and engineer, the book covers most of the topics that are of current interest. Two areas are treated by inference in the various chapters but are not specifically granted chapters of their own. One of these is safety and abuse tolerance and the other is cost. Since there are a number of groups active in the investigation of abuse tolerance of these batteries this is a curious omission and obviously the cost factor is a driver for commercial development. The book should be instructive to the chemical community provided the average chemist can obtain some guidance from an electrochemist or battery engineer. Many of the measurements and techniques referred to (e.g. impedance, capacities, etc.) may be somewhat unfamiliar and confusing in the context they are used. Chemists who persevere and can obtain some guidance will find some rich opportunities for the

  5. Thermal characteristics of Lithium-ion batteries

    NASA Technical Reports Server (NTRS)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter

  6. Lithium ion batteries and their manufacturing challenges

    DOE PAGES

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less

  7. Lithium ion batteries and their manufacturing challenges

    SciTech Connect

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, and solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.

  8. Energetics of lithium ion battery failure.

    PubMed

    Lyon, Richard E; Walters, Richard N

    2016-11-15

    The energy released by failure of rechargeable 18-mm diameter by 65-mm long cylindrical (18650) lithium ion cells/batteries was measured in a bomb calorimeter for 4 different commercial cathode chemistries over the full range of charge using a method developed for this purpose. Thermal runaway was induced by electrical resistance (Joule) heating of the cell in the nitrogen-filled pressure vessel (bomb) to preclude combustion. The total energy released by cell failure, ΔHf, was assumed to be comprised of the stored electrical energy E (cell potential×charge) and the chemical energy of mixing, reaction and thermal decomposition of the cell components, ΔUrxn. The contribution of E and ΔUrxn to ΔHf was determined and the mass of volatile, combustible thermal decomposition products was measured in an effort to characterize the fire safety hazard of rechargeable lithium ion cells.

  9. Materials for rechargeable lithium-ion batteries.

    PubMed

    Hayner, Cary M; Zhao, Xin; Kung, Harold H

    2012-01-01

    The lithium-ion battery is the most promising battery candidate to power battery-electric vehicles. For these vehicles to be competitive with those powered by conventional internal combustion engines, significant improvements in battery performance are needed, especially in the energy density and power delivery capabilities. Recent discoveries and advances in the development of electrode materials to improve battery performance are summarized. Promising substitutes for graphite as the anode material include silicon, tin, germanium, their alloys, and various metal oxides that have much higher theoretical storage capacities and operate at slightly higher and safer potentials. Designs that attempt to accommodate strain owing to volumetric changes upon lithiation and delithiation are presented. All known cathode materials have storage capacities inferior to those of anode materials. In addition to variations on known transition metal oxides and phosphates, other potential materials, such as metal fluorides, are discussed as well as the effects of particle size and electrode architecture. New electrolyte systems and additives as well as their effects on battery performance, especially with regard to safety, are described.

  10. Parameter estimation for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Santhanagopalan, Shriram

    With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of

  11. A PSPICE macromodel for lithium-ion batteries

    SciTech Connect

    Gold, S.

    1997-12-01

    Battery models for simulation are useful for estimating operating life, stability, transient response, and related characteristics in circuits and systems. This paper presents a parametric PSPICE macromodel for simulating Lithium-Ion batteries. Comparisons of the simulation with experimental data from 1.25 Ah Lithium-Ion cells are then made.

  12. Prismatic cell lithium-ion battery using lithium manganese oxide

    SciTech Connect

    Ehrlich, G.M.; Hellen, R.M.; Reddy, T.B.

    1997-12-01

    Lithium-ion (Li-ion) batteries have demonstrated the ability to fulfill the energy storage needs of many new technologies. The most significant drawbacks of currently available technologies, such as LiCoO{sub 2} based Li-ion cells, is their high cost and significant environmental hazards. Li-ion cells which use a lithium manganese oxide (LiMn{sub 2}O{sub 4}) spinel based cathode material should be much less costly and safer than LiCoO{sub 2} based cells. Performance data from prismatic design cells which use a LiMn{sub 2}O{sub 4} based cathode material is presented and shown to meet many military performance criteria. The most significant drawback of this technology, at the present time, is the short cycle life.

  13. Metal hydrides for lithium-ion batteries.

    PubMed

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

  14. Ceramic and polymeric solid electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.

  15. Fast formation cycling for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    An, Seong Jin; Li, Jianlin; Du, Zhijia; Daniel, Claus; Wood, David L.

    2017-02-01

    The formation process for lithium ion batteries typically takes several days or more, and it is necessary for providing a stable solid electrolyte interphase on the anode (at low potentials vs. Li/Li+) for preventing irreversible consumption of electrolyte and lithium ions. An analogous layer known as the cathode electrolyte interphase layer forms at the cathode at high potentials vs. Li/Li+. However, several days, or even up to a week, of these processes result in either lower LIB production rates or a prohibitively large size of charging-discharging equipment and space (i.e. excessive capital cost). In this study, a fast and effective electrolyte interphase formation protocol is proposed and compared with an Oak Ridge National Laboratory baseline protocol. Graphite, NMC 532, and 1.2 M LiPF6 in ethylene carbonate: diethyl carbonate were used as anodes, cathodes, and electrolytes, respectively. Results from electrochemical impedance spectroscopy show the new protocol reduced surface film (electrolyte interphase) resistances, and 1300 aging cycles show an improvement in capacity retention.

  16. Electrolyte compositions for lithium ion batteries

    SciTech Connect

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  17. The role of SEI in lithium and lithium ion batteries

    SciTech Connect

    Peled, E.; Golodnitsky, D.; Ardel, G.; Menachem, C.; Bar-Tow, D.; Eshkenazy, V.

    1995-12-31

    This paper presents and discusses fundamental processes taking place at the lithium and Li{sub x}C{sub 6} electrode/electrolyte interphases and models for these interphases. The authors deal with both nonaqueous and polymer (dry and gel) electrolytes, graphitized and nongraphitized carbonaceous materials as anodes for Li-ion batteries. Each electrode/electrolyte combination has its own unique features and problems but there are some general phenomena common to all of them. Issues to be reviewed include SEI composition, morphology and formation reactions, graphite surface modifications including chemical bonded SEI and micro channels formation, electrode degradation processes, lithium deposition-dissolution and intercalation-deintercalation mechanisms, rate-determining steps (RDS), electrolyte and electrode parameters and conditions affecting the above mentioned processes. Technology-related issues are emphasized.

  18. New Horizons for Conventional Lithium Ion Battery Technology.

    PubMed

    Erickson, Evan M; Ghanty, Chandan; Aurbach, Doron

    2014-10-02

    Secondary lithium ion battery technology has made deliberate, incremental improvements over the past four decades, providing sufficient energy densities to sustain a significant mobile electronic device industry. Because current battery systems provide ∼100-150 km of driving distance per charge, ∼5-fold improvements are required to fully compete with internal combustion engines that provide >500 km range per tank. Despite expected improvements, the authors believe that lithium ion batteries are unlikely to replace combustion engines in fully electric vehicles. However, high fidelity and safe Li ion batteries can be used in full EVs plus range extenders (e.g., metal air batteries, generators with ICE or gas turbines). This perspective article describes advanced materials and directions that can take this technology further in terms of energy density, and aims at delineating realistic horizons for the next generations of Li ion batteries. This article concentrates on Li intercalation and Li alloying electrodes, relevant to the term Li ion batteries.

  19. Bipolar and Monopolar Lithium-Ion Battery Technology at Yardney

    NASA Technical Reports Server (NTRS)

    Russell, P.; Flynn, J.; Reddy, T.

    1996-01-01

    Lithium-ion battery systems offer several advantages: intrinsically safe; long cycle life; environmentally friendly; high energy density; wide operating temperature range; good discharge rate capability; low self-discharge; and no memory effect.

  20. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    DTIC Science & Technology

    2015-01-01

    Tojo T, Sakurai Y. Synthesis and lithium - ion conductivity for perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by powder-bed sintering...battery performance is limited by the electrolytic membrane, which needs high Li-ionic conductivity. Lithium lanthanum titanate (Li3xLa(2/3)-xTiO3, or...of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67-xLi3xTiO3 (x=0.11). Journal of Solid State Ionics. 1999;121

  1. Non-aqueous electrolytes for lithium ion batteries

    DOEpatents

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  2. Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries.

    PubMed

    Paolella, Andrea; Faure, Cyril; Bertoni, Giovanni; Marras, Sergio; Guerfi, Abdelbast; Darwiche, Ali; Hovington, Pierre; Commarieu, Basile; Wang, Zhuoran; Prato, Mirko; Colombo, Massimo; Monaco, Simone; Zhu, Wen; Feng, Zimin; Vijh, Ashok; George, Chandramohan; Demopoulos, George P; Armand, Michel; Zaghib, Karim

    2017-04-10

    Recently, intensive efforts are dedicated to convert and store the solar energy in a single device. Herein, dye-synthesized solar cell technology is combined with lithium-ion materials to investigate light-assisted battery charging. In particular we report the direct photo-oxidation of lithium iron phosphate nanocrystals in the presence of a dye as a hybrid photo-cathode in a two-electrode system, with lithium metal as anode and lithium hexafluorophosphate in carbonate-based electrolyte; a configuration corresponding to lithium ion battery charging. Dye-sensitization generates electron-hole pairs with the holes aiding the delithiation of lithium iron phosphate at the cathode and electrons utilized in the formation of a solid electrolyte interface at the anode via oxygen reduction. Lithium iron phosphate acts effectively as a reversible redox agent for the regeneration of the dye. Our findings provide possibilities in advancing the design principles for photo-rechargeable lithium ion batteries.

  3. Lithium iron phosphates as cathode materials in lithium ion batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Gaojun; Chen, Linfeng; Mathur, Gyanesh N.; Varadan, Vijay K.

    2012-04-01

    Olivine-structured lithium iron phosphates are promising cathode materials in the development of high power lithium ion batteries for electric vehicles. However, the low electronic conductivity and ionic conductivity of lithium iron phosphates hinder their commercialization pace. This work aims to verify the approaches for improving the electrochemical properties of lithium iron phosphates. In this work, sol-gel method was used to synthesize carbon coated lithium iron phosphates and nickel doped lithium iron phosphates, and their particle sizes were controlled in the nanometer to sub-micrometer range. The crystalline structures of the synthesized lithium iron phosphates were characterized by X-ray diffraction, and their morphologies were analyzed by scanning electron microscopy. To study their electrochemical properties, prototype lithium ion batteries were assembled with the synthesized lithium iron phosphates as cathode active materials, and with lithium metal discs as the anodes, and the discharge / charge properties and cycling behaviors of the prototype batteries were tested at different rates. The synthesized lithium iron phosphate materials exhibited high capacity and high cycling stability. It was confirmed that particle size reduction, carbon coating and metal doping are three effective approaches for increasing the conductivity of lithium iron phosphates, and thus improving their electrochemical properties. Experimental results show that by combing the three approaches for improving the electrochemical properties, lithium iron phosphate composites with characteristics favorable for their applications in lithium ion batteries for electric vehicles can be developed, including high specific capacity, high rate capacity, flat discharge voltage plateau and high retention ratio.

  4. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    PubMed

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.

  5. Nickel-Hydrogen and Lithium Ion Space Batteries

    NASA Technical Reports Server (NTRS)

    Reid, Robert O., II

    2004-01-01

    The tasks of the Electrochemistry Branch of NASA Glenn Research Center are to improve and develop high energy density and rechargeable, life-long batteries. It is with these batteries that people across the globe are able to power their cell phones, laptop computers, and cameras. Here, at NASA Glenn Research Center, the engineers and scientists of the Electrochemistry branch are leading the way in the development of more powerful, long life batteries that can be used to power space shuttles and satellites. As of now, the cutting edge research and development is being done on nickel-hydrogen batteries and lithium ion batteries. Presently, nickel-hydrogen batteries are common types of batteries that are used to power satellites, space stations, and space shuttles, while lithium batteries are mainly used to power smaller appliances such as portable computers and phones. However, the Electrochemistry Branch at NASA Glenn Research Center is focusing more on the development of lithium ion batteries for deep space use. Because of the limitless possibilities, lithium ion batteries can revolutionize the space industry for the better. When compared to nickel-hydrogen batteries, lithium ion batteries possess more advantages than its counterpart. Lithium ion batteries are much smaller than nickel-hydrogen batteries and also put out more power. They are more energy efficient and operate with much more power at a reduced weight than its counterpart. Lithium ion cells are also cheaper to make, possess flexibility that allow for different design modifications. With those statistics in hand, the Electrochemistry Branch of NASA Glenn has decided to shut down its Nickel-Hydrogen testing for lithium ion battery development. Also, the blackout in the summer of 2003 eliminated vital test data, which played a part in shutting down the program. from the nickel-hydrogen batteries and compare it to past data. My other responsibilities include superheating the electrolyte that is used in the

  6. Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jung, Sung-Kyun; Kim, Hyunchul; Cho, Min Gee; Cho, Sung-Pyo; Lee, Byungju; Kim, Hyungsub; Park, Young-Uk; Hong, Jihyun; Park, Kyu-Young; Yoon, Gabin; Seong, Won Mo; Cho, Yongbeom; Oh, Myoung Hwan; Kim, Haegyeom; Gwon, Hyeokjo; Hwang, Insang; Hyeon, Taeghwan; Yoon, Won-Sub; Kang, Kisuk

    2017-01-01

    Lithium-ion batteries based on intercalation compounds have dominated the advanced portable energy storage market. The positive electrode materials in these batteries belong to a material group of lithium-conducting crystals that contain redox-active transition metal and lithium. Materials without lithium-conducting paths or lithium-free compounds could be rarely used as positive electrodes due to the incapability of reversible lithium intercalation or the necessity of using metallic lithium as negative electrodes. These constraints have significantly limited the choice of materials and retarded the development of new positive electrodes in lithium-ion batteries. Here, we demonstrate that lithium-free transition metal monoxides that do not contain lithium-conducting paths in their crystal structure can be converted into high-capacity positive electrodes in the electrochemical cell by initially decorating the monoxide surface with nanosized lithium fluoride. This unusual electrochemical behaviour is attributed to a surface conversion reaction mechanism in contrast with the classic lithium intercalation reaction. Our findings will offer a potential new path in the design of positive electrode materials in lithium-ion batteries.

  7. Safer lithium ion batteries based on nonflammable electrolyte

    NASA Astrophysics Data System (ADS)

    Zeng, Ziqi; Wu, Bingbin; Xiao, Lifen; Jiang, Xiaoyu; Chen, Yao; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-04-01

    The safety of lithium ion batteries has long been a critical obstacle for their high-power and large-scale applications because of the flammable nature of their carbon anode and organic carbonate electrolytes. To eliminate the potential safety hazards, lithium ion batteries should be built up with thermal-stable electrodes and nonflammable electrolytes. Here we report safer lithium ion batteries using nonflammable phosphonate electrolyte, thermal-stable LiFePO4 cathode and alloy anodes. Benefiting from the electrochemical compatibility and strong fire-retardancy of the phosphonate electrolyte, the cathode and anode materials in the nonflammable phosphonate electrolyte demonstrate similar charge-discharge performances with those in the conventional carbonate electrolyte, showing a great prospect for large-scale applications in electric vehicles and grid-scale electric energy storage.

  8. Testing Conducted for Lithium-Ion Cell and Battery Verification

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  9. Mitigating Thermal Runaway Risk in Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Jeevarajan, Judy; Russell, Samuel

    2014-01-01

    The JSC/NESC team has successfully demonstrated Thermal Runaway (TR) risk reduction in a lithium ion battery for human space flight by developing and implementing verifiable design features which interrupt energy transfer between adjacent electrochemical cells. Conventional lithium ion (li-Ion) batteries can fail catastrophically as a result of a single cell going into thermal runaway. Thermal runaway results when an internal component fails to separate electrode materials leading to localized heating and complete combustion of the lithium ion cell. Previously, the greatest control to minimize the probability of cell failure was individual cell screening. Combining thermal runaway propagation mitigation design features with a comprehensive screening program reduces both the probability, and the severity, of a single cell failure.

  10. A Self-Healing Aqueous Lithium-Ion Battery.

    PubMed

    Zhao, Yang; Zhang, Ye; Sun, Hao; Dong, Xiaoli; Cao, Jingyu; Wang, Lie; Xu, Yifan; Ren, Jing; Hwang, Yunil; Son, In Hyuk; Huang, Xianliang; Wang, Yonggang; Peng, Huisheng

    2016-11-07

    Flexible lithium-ion batteries are critical for the next-generation electronics. However, during the practical application, they may break under deformations such as twisting and cutting, causing their failure to work or even serious safety problems. A new family of all-solid-state and flexible aqueous lithium ion batteries that can self-heal after breaking has been created by designing aligned carbon nanotube sheets loaded with LiMn2 O4 and LiTi2 (PO4 )3 nanoparticles on a self-healing polymer substrate as electrodes, and a new kind of lithium sulfate/sodium carboxymethylcellulose serves as both gel electrolyte and separator. The specific capacity, rate capability, and cycling performance can be well maintained after repeated cutting and self-healing. These self-healing batteries are demonstrated to be promising for wearable devices.

  11. Renewable-Biomolecule-Based Full Lithium-Ion Batteries.

    PubMed

    Hu, Pengfei; Wang, Hua; Yang, Yun; Yang, Jie; Lin, Jie; Guo, Lin

    2016-05-01

    A renewable-biomolecule-based full lithium-ion battery is successfully fabricated for the first time. Naturally derivable emodin and humic acid based electrodes are used as cathode and anode, respectively. The as-assembled batteries exhibit superb specific capacity and substantial operating voltage capable of powering a wearable electronic watch, suggesting the great potential for practical applications with the significant merits of sustainability and biocompatibility.

  12. Memory effect in a lithium-ion battery.

    PubMed

    Sasaki, Tsuyoshi; Ukyo, Yoshio; Novák, Petr

    2013-06-01

    Memory effects are well known to users of nickel-cadmium and nickel-metal-hydride batteries. If these batteries are recharged repeatedly after being only partially discharged, they gradually lose usable capacity owing to a reduced working voltage. Lithium-ion batteries, in contrast, are considered to have no memory effect. Here we report a memory effect in LiFePO4-one of the materials used for the positive electrode in Li-ion batteries-that appears already after only one cycle of partial charge and discharge. We characterize this memory effect of LiFePO4 and explain its connection to the particle-by-particle charge/discharge model. This effect is important for most battery uses, as the slight voltage change it causes can lead to substantial miscalculations in estimating the state of charge of batteries.

  13. Non-aqueous electrolyte for lithium-ion battery

    SciTech Connect

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  14. Organometallic-inorganic hybrid electrodes for lithium-ion batteries

    DOEpatents

    Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia

    2016-09-13

    Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

  15. Graphene composites as anode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, M.; Kovacevic, R.

    2013-03-01

    Since the world of mobile phones and laptops has significantly altered by a big designer named Steve Jobs, the electronic industries have strived to prepare smaller, thinner and lower weight products. The giant electronic companies, therefore, compete in developing more efficient hardware such as batteries used inside the small metallic or polymeric frame. One of the most important materials in the production lines is the lithium-based batteries which is so famous for its ability in recharging as many times as a user needs. However, this is not an indication of being long lasted, as many of the electronic devices are frequently being used for a long time. The performance, chemistry, safety and above all cost of the lithium ion batteries should be considered when the design of the compounds are at the top concern of the engineers. To increase the efficiency of the batteries a combination of graphene and nanoparticles is recently introduced and it has shown to have enormous technological effect in enhancing the durability of the batteries. However, due to very high electronic conductivity, these materials can be thought of as preparing the anode electrode in the lithiumion battery. In this paper, the various approaches to characterize different types of graphene/nanoparticles and the process of preparing the anode for the lithium-ion batteries as well as their electrical properties are discussed.

  16. Optimal charging profiles for mechanically constrained lithium-ion batteries

    SciTech Connect

    Suthar, B; Ramadesigan, V; De, S; Braatz, RD; Subramanian, VR

    2014-01-01

    The cost and safety related issues of lithium-ion batteries require intelligent charging profiles that can efficiently utilize the battery. This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery using a single-particle model while incorporating intercalation-induced stress generation. In this paper, we focus on the problem of maximizing the charge stored in a given time while restricting the development of stresses inside the particle. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage) were not derived by considering capacity fade mechanisms. These charging profiles are not only inefficient in terms of lifetime usage of the batteries but are also slower since they do not exploit the changing dynamics of the system. Dynamic optimization based approaches have been used to derive optimal charging and discharging profiles with different objective functions. The progress made in understanding the capacity fade mechanisms has paved the way for inclusion of that knowledge in deriving optimal controls. While past efforts included thermal constraints, this paper for the first time presents strategies for optimally charging batteries by guaranteeing minimal mechanical damage to the electrode particles during intercalation. In addition, an executable form of the code has been developed and provided. This code can be used to identify optimal charging profiles for any material and design parameters.

  17. Solar photovoltaic charging of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  18. Costs of lithium-ion batteries for vehicles

    SciTech Connect

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  19. High capacity anode materials for lithium ion batteries

    DOEpatents

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  20. Lithium ion batteries with titania/graphene anodes

    SciTech Connect

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  1. A closed loop process for recycling spent lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan

    2014-09-01

    As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.

  2. Chemical Shuttle Additives in Lithium Ion Batteries

    SciTech Connect

    Patterson, Mary

    2013-03-31

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher

  3. Hectorite-based nanocomposite electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Riley, Michael William

    Hectorite clay is presented in this work as a promising component for electrolytes for lithium-ion batteries. This negatively-charged, plate-shaped (250 nm diameter by 1 nm thickness) clay has exchangeable cations for which lithium may be substituted. When properly dispersed in high-dielectric solvents such as the carbonates (ethylene carbonate and propylene carbonate) typically used in lithium-ion cells, a shear-thinning physical gel is created possessing a good conductivity (as high as 2 x 10-4 S/cm at room temperature has been measured) with near unity lithium-ion transference numbers. As a result, hectorite-based electrolytes could drastically reduce concentration polarization and present an inherently safer electrolyte as toxic salts such as LiPF6 that are typically used could be eliminated. Hectorite clay dispersions in aqueous and non-aqueous (1:1 (v:v) ethylene carbonate: poly(ethylene)glycol dimethyl ether 250 MW) solvents have been studied using rheology (dynamic and steady) and conductivity. The aqueous dispersions show a highly-exfoliated microstructure (fractal dimension, Df ≈ 1.6) created primarily through electrostatic repulsive forces which recovers after shear deformation by reorientation of the clay platelets. The non-aqueous dispersions form gel structures with a much higher degree of aggregation (Df ≈ 2.5), and recovery after shear deformation appears to be an aggregation controlled process as well. TEM imaging of non-aqueous clay dispersions shows the clay to be uniformly distributed, with the platelets existing in aggregates of 3 to 5 layers. Use of the hectorite-based electrolytes in lithium-ion cells requires electrodes that contain a single-ion conductor in the typically porous structures. Cathodes based on LiCoO2 that contain various lithium-conducting species (lithium hectorite, lithium LaponiteRTM, and lithium-exchanged NAFIONRTM) have been studied. AC impedance spectroscopy was used to probe the cells and equivalent circuits were

  4. An Advanced Battery Management System for Lithium Ion Batteries

    DTIC Science & Technology

    2011-08-01

    preliminary cycle life data of the 18650 1100 mAh, and 26650 2200 mAh Lithium Iron Phosphate (LiFePO4) cells from Tenergy Battery Corp. (Manufacturer...10 shows how the data might be used to estimate SOL of a 18650 cell. The plot shows the analytical life cycle curve (blue) superimposed on actual...of equation 3 result with real 18650 Tenergy cell cycle life data. REFERENCES [1] Z. Filipi, L. Louca, A. Stefanopoulou, J. Pukrushpan, B

  5. Safety focused modeling of lithium-ion batteries: A review

    NASA Astrophysics Data System (ADS)

    Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F.

    2016-02-01

    Safety issues pertaining to Li-ion batteries justify intensive testing all along their value chain. However, progress in scientific knowledge regarding lithium based battery failure modes, as well as remarkable technologic breakthroughs in computing science, now allow for development and use of prediction tools to assist designers in developing safer batteries. Subsequently, this paper offers a review of significant modeling works performed in the area with a focus on the characterization of the thermal runaway hazard and their relating triggering events. Progress made in models aiming at integrating battery ageing effect and related physics is also discussed, as well as the strong interaction with modeling-focused use of testing, and the main achievements obtained towards marketing safer systems. Current limitations and new challenges or opportunities that are expected to shape future modeling activity are also put in perspective. According to market trends, it is anticipated that safety may still act as a restraint in the search for acceptable compromise with overall performance and cost of lithium-ion based and post lithium-ion rechargeable batteries of the future. In that context, high-throughput prediction tools capable of screening adequate new components properties allowing access to both functional and safety related aspects are highly desirable.

  6. Oral Exposure of a Child to a Lithium Ion Battery.

    PubMed

    Townsend, Janice A; Curran, Ronald

    2016-01-01

    Battery exposure has the potential for severe morbidity and possible mortality. Accidental exposure is rising with the increased use of button batteries, and young children and older adults are at highest risk for accidental exposure. The purpose of this paper is to report a case of mouth exposure to a lithium ion battery in a boy. A review of the current literature on incidence, diagnosis, and outcomes of battery exposure is presented. When symptoms such as diarrhea, vomiting, and abdominal distress of non-specific origin are present, battery ingestion should be included in the differential diagnosis. Dentists may be the first health professionals to encounter battery exposure, especially in the case of mouth exposures. Knowledge of signs and symptoms are necessary to properly diagnose and refer for medical management.

  7. Characterization of commercially available lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Johnson, Bradley A.; White, Ralph E.

    With the aggressive growth of the lithium-ion battery market, several companies have recently offered their version of the lithium-ion battery for consumer purchase. This paper describes the physical design, rate, cycle-lifetime, and self-discharge performance of cells from Sony, Matsushita, A&T, Moli, and Sanyo lithium-ion batteries. The study used a total of 85 lithium-ion cells from these manufacturers. All cells performed as indicated by manufacturers' specifications and the performance and design differences are discussed. The design differences include discussion of gas chrornatography-mass spectroscopy (GC-MS) analysis of the electrolytes, a differential scanning calorimetry (DSC) analysis of separators, the activation of a positive temperature coefficient (PTC), and a comparison of the basic physical parameters of each cell. Performance characterization shows an excellent high discharge rale performance of the A&T and Matsushita cells, an excellent cycle-lifetime performance for Sony cells, and negligible effects of self-discharge.

  8. Modified natural graphite as anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Y. P.; Jiang, C.; Wan, C.; Holze, R.

    A concentrated nitric acid solution was used as an oxidant to modify the electrochemical performance of natural graphite as anode material for lithium ion batteries. Results of X-ray photoelectron spectroscopy, electron paramagnetic resonance, thermogravimmetry, differential thermal analysis, high resolution electron microscopy, and measurement of the reversible capacity suggest that the surface structure of natural graphite was changed, a fresh dense layer of oxides was formed. Some structural imperfections were removed, and the stability of the graphite structure increased. These changes impede decomposition of electrolyte solvent molecules, co-intercalation of solvated lithium ions and movement of graphene planes along the a-axis direction. Concomitantly, more micropores were introduced, and thus, lithium intercalation and deintercalation were favored and more sites were provided for lithium storage. Consequently, the reversible capacity and the cycling behavior of the modified natural graphite were much improved by the oxidation. Obviously, the liquid-solid oxidation is advantageous in controlling the uniformity of the products.

  9. Guidelines on Lithium-ion Battery Use in Space Applications

    NASA Technical Reports Server (NTRS)

    Mckissock, Barbara; Loyselle, Patricia; Vogel, Elisa

    2009-01-01

    This guideline discusses a standard approach for defining, determining, and addressing safety, handling, and qualification standards for lithium-ion (Li-Ion) batteries to help the implementation of the technology in aerospace applications. Information from a variety of other sources relating to Li-ion batteries and their aerospace uses has been collected and included in this document. The sources used are listed in the reference section at the end of this document. The Li-Ion chemistry is highly energetic due to its inherent high specific energy and its flammable electrolyte. Due to the extreme importance of appropriate design, test, and hazard control of Li-ion batteries, it is recommended that all Government and industry users and vendors of this technology for space applications, especially involving humans, use this document for appropriate guidance prior to implementing the technology.

  10. Lithium Storage Mechanisms in Purpurin Based Organic Lithium Ion Battery Electrodes

    DTIC Science & Technology

    2012-12-11

    Advances in Lithium-ion batteries (Kluwer Academic/Plenum, New York, 2002). 7. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough , J. B. LixCoO2 (0...P. G. & Goodenough , J. B. Electrochemical extraction of lithium from LiMn2O4. Mat. Res. Bull. 18, 461 (1983). 9. Recham, N., Chotard, J. N., Dupont

  11. Metal-organic frameworks for lithium ion batteries and supercapacitors

    SciTech Connect

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  12. Electrochemical studies of lithium-ion battery anode materials in lithium-ion battery electrolytes

    NASA Astrophysics Data System (ADS)

    Zhao, Mingchuan

    The stability of uncoated copper (Cu) foils and graphite-coated copper (Cu-C) foils in lithium-ion battery electrolytes were extensively studied in this dissertation. At first, the electrochemical behavior and stability of the Cu foils and Cu-C foils were studied. Cyclic voltammetry was used to study the redox behavior of the foils in the electrolyte solutions. The reduction of electrolyte and its effect on the oxidation of copper was also studied. Bulk electrolysis was used to quantitatively study the dissolution of the foils in dry electrolytes and in electrolytes doped with impurities of H2O or HF. It was found that the graphite coating greatly influenced the redox behavior of the copper substrate and provided some protection to the copper from oxidation. Impurities increased the oxidation tendency of both Cu foils and Cu-C foils and may influence the integrity of the Cu-C foil electrode. During these studies, the open-circuit voltage (OCV) of Cu foil and Cu-C foil electrodes in Li-ion battery electrolytes was found to be a variable value over time. A detailed study showed that the OCV first rapidly decreased until reaching a minimum, and then gradually increased until reaching a meta-steady or steady state. These results were compared with OCV studies of Al foil, Pt wire, glassy carbon and Cu disk and wire electrodes. The OCV variation appeared to correlate to a surface change on the electrode after being immersed into the electrolyte solutions. The influence of aging of the reference electrode, the surface condition and edge effect of the copper foil, and solution impurities on the stability of the OCV was also studied. Atomic absorption spectroscopy (AAS) was used to quantitatively evaluate the stability of Cu and Cu-C foils in lithium-ion battery electrolytes at open-circuit. Results showed that the stability of Cu and Cu-C foils was different in "fresh" electrolytes whereas it was similar in "aged" electrolytes. For Cu foils, in the "fresh" electrolyte, the

  13. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  14. Model-based condition monitoring for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Taesic; Wang, Yebin; Fang, Huazhen; Sahinoglu, Zafer; Wada, Toshihiro; Hara, Satoshi; Qiao, Wei

    2015-11-01

    Condition monitoring for batteries involves tracking changes in physical parameters and operational states such as state of health (SOH) and state of charge (SOC), and is fundamentally important for building high-performance and safety-critical battery systems. A model-based condition monitoring strategy is developed in this paper for Lithium-ion batteries on the basis of an electrical circuit model incorporating hysteresis effect. It systematically integrates 1) a fast upper-triangular and diagonal recursive least squares algorithm for parameter identification of the battery model, 2) a smooth variable structure filter for the SOC estimation, and 3) a recursive total least squares algorithm for estimating the maximum capacity, which indicates the SOH. The proposed solution enjoys advantages including high accuracy, low computational cost, and simple implementation, and therefore is suitable for deployment and use in real-time embedded battery management systems (BMSs). Simulations and experiments validate effectiveness of the proposed strategy.

  15. Measurement of interfacial thermal conductance in Lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gaitonde, Aalok; Nimmagadda, Amulya; Marconnet, Amy

    2017-03-01

    Increasing usage and recent accidents due to Lithium ion (Li-ion) batteries exploding or catching on fire has inspired research on the thermal management of these batteries. In cylindrical 18650 cells, heat generated during the charge/discharge cycle must dissipate to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work develops a technique to measure the thermal resistance across the case-separator interface, which ultimately limits heat transfer out of the jelly roll. Commercial 18650 batteries are discharged and opened using a battery disassembly tool, and the 25 μm thick separator and the 200 μm thick metallic case are harvested to make samples. A miniaturized version of the conventional reference bar method

  16. Application of PVDF composite for lithium-ion battery separator

    NASA Astrophysics Data System (ADS)

    Sabrina, Q.; Majid, N.; Prihandoko, B.

    2016-11-01

    In this study a composite observed in PVDF composite as lithium ion battery separator. Observation of performance cell battery with cyclic voltametry and charge discharge capacity. Surface morphology PVDF separator and commercial separator observed with Scanning electron microscopy (SEM). Cyclic Voltamerty test (CV) and Charge Discharge (CD) showed a capacity value on the coin cell. Coin cell is composed of material LiFePO4 cathode, anode material of lithium metal and varies as graphite, liquid electrolyte varied use LiBOB and LiPF6. While the PVDF as compared to the commercial separator. Coin cell commercial separator has a better high capacity value when compared with Coin cell with the PVDF separator. Life cycle coin cell with the commercial separator material is still longer than coin cell separator with PVDF Copolymer. Development of PVDF as separator remains to be done in order to improve the performance of the battery exceeds the usage of commercial material.

  17. Coupled Mechanical and Electrochemical Phenomena in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Cannarella, John

    Lithium-ion batteries are complee electro-chemo-mechanical systems owing to a number of coupled mechanical and electrochemical phenomena that occur during operation. In this thesis we explore these phenomena in the context of battery degradation, monitoring/diagnostics, and their application to novel energy systems. We begin by establishing the importance of bulk stress in lithium-ion batteries through the presentation of a two-year exploratory aging study which shows that bulk mechanical stress can significantly accelerate capacity fade. We then investigate the origins of this coupling between stress and performance by investigating the effects of stress in idealized systems. Mechanical stress is found to increase internal battery resistance through separator deformation, which we model by considering how deformation affects certain transport properties. When this deformation occurs in a spatially heterogeneous manner, local hot spots form, which accelerate aging and in some cases lead to local lithium plating. Because of the importance of separator deformation with respect to mechanically-coupled aging, we characterize the mechanical properties of battery separators in detail. We also demonstrate that the stress state of a lithium-ion battery cell can be used to measure the cell's state of health (SOH) and state of charge (SOC)--important operating parameters that are traditionally difficult to measure outside of a laboratory setting. The SOH is shown to be related to irreversible expansion that occurs with degradation and the SOC to the reversible strains characteristic of the cell's electrode materials. The expansion characteristics and mechanical properties of the constituent cell materials are characterized, and a phenomenological model for the relationship between stress and SOH/SOC is developed. This work forms the basis for the development of on-board monitoring of SOH/SOC based on mechanical measurements. Finally we study the coupling between mechanical

  18. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery

    NASA Astrophysics Data System (ADS)

    Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng

    2017-03-01

    Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion...carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.

  19. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  20. Managing voids of Si anodes in lithium ion batteries.

    PubMed

    Li, Xianglong; Zhi, Linjie

    2013-10-07

    The implementation of silicon (Si) in practical lithium ion battery electrodes has been hindered due to its large volume change and consequent structural and interfacial instabilities. Coating nanostructured Si with a second phase (e.g., carbon (C)) represents a very promising strategy for dealing with these critical issues facing Si-based electrodes. In this review article, we will outline recent advances in coating Si with engineered C matrices. By exemplifying hollow core-shell, core-hollow shell, and core-shell structured Si-C hybrid nanomaterials, we aim to highlight the importance of managing voids in designing such Si-C hybrid electrodes, and provide some scientific insights into the development of advanced Si-based anodes for next-generation lithium ion batteries.

  1. Carbon Nanotube Anodes Being Evaluated for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Gennett, Tom; VanderWal, Randy L.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center is evaluating the use of carbon nanotubes as anode materials for thin-film lithium-ion (Li) batteries. The motivation for this work lies in the fact that, in contrast to carbon black, directed structured nanotubes and nanofibers offer a superior intercalation media for Li-ion batteries. Carbon lamellas in carbon blacks are circumferentially oriented and block much of the particle interior, rendering much of the matrix useless as intercalation material. Nanofibers, on the other hand, can be grown so as to provide 100-percent accessibility of the entire carbon structure to intercalation. These tubes can be visualized as "rolled-up" sheets of carbon hexagons (see the following figure). One tube is approximately 1/10,000th the diameter of a human hair. In addition, the high accessibility of the structure confers a high mobility to ion-exchange processes, a fundamental for the batteries to respond dynamically because of intercalation.

  2. Modified carbon black materials for lithium-ion batteries

    SciTech Connect

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  3. Olivine Composite Cathode Materials for Improved Lithium Ion Battery Performance

    SciTech Connect

    Ward, R.M.; Vaughey, J.T.

    2006-01-01

    Composite cathode materials in lithium ion batteries have become the subject of a great amount of research recently as cost and safety issues related to LiCoO2 and other layered structures have been discovered. Alternatives to these layered materials include materials with the spinel and olivine structures, but these present different problems, e.g. spinels have low capacities and cycle poorly at elevated temperatures, and olivines exhibit extremely low intrinsic conductivity. Previous work has shown that composite structures containing spinel and layered materials have shown improved electrochemical properties. These types of composite structures have been studied in order to evaluate their performance and safety characteristics necessary for use in lithium ion batteries in portable electronic devices, particularly hybrid-electric vehicles. In this study, we extended that work to layered-olivine and spinel-olivine composites. These materials were synthesized from precursor salts using three methods: direct reaction, ball-milling, and a coreshell synthesis method. X-ray diffraction spectra and electrochemical cycling data show that the core-shell method was the most successful in forming the desired products. The electrochemical performance of the cells containing the composite cathodes varied dramatically, but the low overpotential and reasonable capacities of the spinel-olivine composites make them a promising class for the next generation of lithium ion battery cathodes.

  4. Methacrylate based gel polymer electrolyte for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Isken, P.; Winter, M.; Passerini, S.; Lex-Balducci, A.

    2013-03-01

    A methacrylate based gel polymer electrolyte (GPE) was prepared and electrochemically investigated. The polymer was synthesized as a statistical co-polymer of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and benzyl methacrylate (BnMA) by free radical polymerization. The ethylene glycol side chain of OEGMA should be able to interact with the liquid electrolyte, thus keeping it inside the GPE, whereas BnMA was used to enhance the mechanical stability of the GPE. Such a polymer was able to retain liquid electrolyte up to 400% of its own weight, while the mechanical stability of the GPE was still high enough to be used as separator in lithium-ion batteries. The GPE displayed a conductivity of 1.8 mS cm-1 at 25 °C and an electrochemical stability window comparable to that of a standard liquid electrolyte. When used in lithium-ion batteries, such a GPE allowed a performance comparable to that obtained using conventional liquid electrolytes. Therefore the reported electrolyte was identified as a promising candidate as electrolyte for lithium-ion batteries.

  5. Kirigami-based stretchable lithium-ion batteries.

    PubMed

    Song, Zeming; Wang, Xu; Lv, Cheng; An, Yonghao; Liang, Mengbing; Ma, Teng; He, David; Zheng, Ying-Jie; Huang, Shi-Qing; Yu, Hongyu; Jiang, Hanqing

    2015-06-11

    We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces.

  6. Kirigami-based stretchable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Song, Zeming; Wang, Xu; Lv, Cheng; An, Yonghao; Liang, Mengbing; Ma, Teng; He, David; Zheng, Ying-Jie; Huang, Shi-Qing; Yu, Hongyu; Jiang, Hanqing

    2015-06-01

    We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces.

  7. Kirigami-based stretchable lithium-ion batteries

    PubMed Central

    Song, Zeming; Wang, Xu; Lv, Cheng; An, Yonghao; Liang, Mengbing; Ma, Teng; He, David; Zheng, Ying-Jie; Huang, Shi-Qing; Yu, Hongyu; Jiang, Hanqing

    2015-01-01

    We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces. PMID:26066809

  8. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  9. Fabrication and Optimization of Carbon Nanomaterial-Based Lithium-Ion Battery Anodes

    DTIC Science & Technology

    2012-03-01

    carbons , carbon onions and carbon nanotubes , used in lithium-ion battery electrodes can exhibit a much higher specific...SUBJECT TERMS Lithium-Ion Batteries, Amorphous Carbon , Carbide-Derived Carbon , Carbon Onions, Carbon Nanotubes , Multi-Walled Carbon Nanotubes 15. NUMBER...nanomaterials, such as carbide-derived carbons , carbon onions and carbon nanotubes , used in lithium-ion battery electrodes can exhibit a much

  10. Evaluation of slurry characteristics for rechargeable lithium-ion batteries

    SciTech Connect

    Cho, Ki Yeon; Kwon, Young Il; Youn, Jae Ryoun; Song, Young Seok

    2013-08-01

    Graphical abstract: - Highlights: • Lithium-ion battery slurries are prepared for rechargeable batteries. • The dispersion state of slurry constituents is identified. • Thermal, morphological, rheological, and electrical properties of slurries are analyzed. - Abstract: A multi-component slurry for rechargeable batteries is prepared by dispersing LiCoO{sub 2}, conductive additives, and polymeric binders in a solvent. The physical properties, including rheological, morphological, electrical, and spectroscopic features of battery slurries are investigated. The relationship between the measured physical properties and the internal structure of the slurry is analyzed. It is found that the rheological behavior of the slurry is determined by the interaction of active materials and binding materials (e.g., network structure) and that the dispersion state of conductive additives (e.g., agglomeration) also depends on the binder–carbon interaction.

  11. A Pulsed Power System Design Using Lithium-ion Batteries and One Charger per Battery

    DTIC Science & Technology

    2009-12-01

    provide this flexibility by providing the capability to change charging methodologies and types of batteries with only a change of the FPGA software...three functions the BMS has several elements to include the power source, the charger, the batteries, the FPGA controller, and the discharge mechanism...TERMS Pulsed Power, Charger, Buck Converter, Field Programmable Gate Array ( FPGA ), Lithium- ion Batteries 16. PRICE CODE 17. SECURITY

  12. Lithium-ion batteries with intrinsic pulse overcharge protection

    DOEpatents

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  13. Cold neutron depth profiling of lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Lamaze, G. P.; Chen-Mayer, H. H.; Becker, D. A.; Vereda, F.; Goldner, R. B.; Haas, T.; Zerigian, P.

    We report the characterization of two thin-film battery materials using neutron techniques. Neutron depth profiling (NDP) has been employed to determine the distribution of lithium and nitrogen simultaneously in lithium phosphorous oxynitride (LiPON) deposited by ion beam assisted deposition (IBAD). The depth profiles are based on the measurement of the energy of the charged particle products from the 6Li(n,α) 3H and 14N(n,p) 14C reactions for lithium and nitrogen, respectively. Lithium at the level of 10 22 atoms/cm 3 and N of 10 21 atoms/cm 3, distributed in the film thickness on the order of 1 μm, have been determined. This information provides insights into nitrogen incorporation and lithium concentration in the films under various fabrication conditions. NDP of lithium has also been performed on IBAD LiCoO 2 films, in conjunction with instrumental neutron activation analysis (INAA) to determine the cobalt concentration. The Li/Co ratio thus obtained serves as an ex situ control for the thin-film evaporation process. The non-destructive nature of the neutron techniques is especially suitable for repeated analysis of these materials and for actual working devices.

  14. Fast Equalization for Large Lithium Ion Batteries

    DTIC Science & Technology

    2008-09-01

    that in Figure 7. The cell charger , CH1, is simply a Cosel ZUS251205 DC - DC converter, which has an output rating of 5VDC/4ADC. Because each cell...Wiegman, D. Divan, and D. Novotny (1995), “ Design considerations for charge equalization of an electric vehicle battery system,” IEEE 1995 Applied...VA, June 2002. [8] Y. Lee and G. Cheng (2006) “Quasi-resonant zero-current switching bidirectional converter for battery equalization applications

  15. NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

  16. Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials

    SciTech Connect

    Wood, III, D. L.; Yoon, S.

    2012-10-25

    The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000°C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, which is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.

  17. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction

    NASA Astrophysics Data System (ADS)

    von Lüders, Christian; Zinth, Veronika; Erhard, Simon V.; Osswald, Patrick J.; Hofmann, Michael; Gilles, Ralph; Jossen, Andreas

    2017-02-01

    In this work, lithium plating is investigated by means of voltage relaxation and in situ neutron diffraction in commercial lithium-ion batteries. We can directly correlate the voltage curve after the lithium plating with the ongoing phase transformation from LiC12 to LiC6 according to the neutron diffraction data during the relaxation. Above a threshold current of C/2 at a temperature of -2 °C, lithium plating increases dramatically. The results indicate that the intercalation rate of deposited lithium seems to be constant, independent of the deposited amount. It can be observed that the amount of plating correlates with the charging rate, whereas a charging current of C/2 leads to a deposited amount of lithium of 5.5% of the charge capacity and a current of 1C to 9.0%.

  18. Lithium-Ion Battery Program Status

    SciTech Connect

    Surampudi, S.; Huang, C.K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.

    1996-02-01

    The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.

  19. Lithium-Ion Battery Program Status

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Huang, C. K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.

    1996-01-01

    The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.

  20. Selective Recovery of Lithium from Cathode Materials of Spent Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Higuchi, Akitoshi; Ankei, Naoki; Nishihama, Syouhei; Yoshizuka, Kazuharu

    2016-10-01

    Selective recovery of lithium from four kinds of cathode materials, manganese-type, cobalt-type, nickel-type, and ternary-type, of spent lithium ion battery was investigated. In all cathode materials, leaching of lithium was improved by adding sodium persulfate (Na2S2O8) as an oxidant in the leaching solution, while the leaching of other metal ions (manganese, cobalt, and nickel) was significantly suppressed. Optimum leaching conditions, such as pH, temperature, amount of Na2S2O8, and solid/liquid ratio, for the selective leaching of lithium were determined for all cathode materials. Recovery of lithium from the leachate as lithium carbonate (Li2CO3) was then successfully achieved by adding sodium carbonate (Na2CO3) to the leachate. Optimum recovery conditions, such as pH, temperature, and amount of Na2CO3, for the recovery of lithium as Li2CO3 were determined for all cases. Purification of Li2CO3 was achieved by lixiviation in all systems, with purities of the Li2CO3 higher than 99.4%, which is almost satisfactory for the battery-grade purity of lithium.

  1. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    SciTech Connect

    Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

    2012-01-01

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.

  2. 77 FR 28259 - Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... for mailpieces containing lithium metal or lithium-ion cells or batteries and applies regardless of...'' instead of ``lithium content'' for secondary lithium-ion batteries when describing maximum quantity limits...-ion (Rechargeable) Cells and Batteries Small consumer-type lithium-ion cells and batteries like...

  3. Characteristics of lithium-ion batteries during fire tests

    NASA Astrophysics Data System (ADS)

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Lorén, Anders; Mellander, Bengt-Erik

    2014-12-01

    Commercial lithium-ion battery cells are exposed to a controlled propane fire in order to evaluate heat release rate (HRR), emission of toxic gases as well as cell temperature and voltage under this type of abuse. The study includes six abuse tests on cells having lithium-iron phosphate (LFP) cathodes and, as a comparison, one test on conventional laptop battery packs with cobalt based cathode. The influence of different state of charge (SOC) is investigated and a limited study of the effect of water mist application is also performed. The total heat release (THR) per battery energy capacity are determined to be 28-75 kJ Wh-1 and the maximum HRR values to 110-490 W Wh-1. Hydrogen fluoride (HF) is found in the released gases for all tests but no traceable amounts of phosphorous oxyfluoride (POF3) or phosphorus pentafluoride (PF5) are detected. An extrapolation of expected HF emissions for a typical automotive 10 kWh battery pack exposed to fire gives a release of 400-1200 g HF. If released in a confined environment such emissions of HF may results in unacceptable exposure levels.

  4. Electrolyte Suitable for Use in a Lithium Ion Cell or Battery

    NASA Technical Reports Server (NTRS)

    McDonald, Robert C. (Inventor)

    2014-01-01

    Electrolyte suitable for use in a lithium ion cell or battery. According to one embodiment, the electrolyte includes a fluorinated lithium ion salt and a solvent system that solvates lithium ions and that yields a high dielectric constant, a low viscosity and a high flashpoint. In one embodiment, the solvent system includes a mixture of an aprotic lithium ion solvating solvent and an aprotic fluorinated solvent.

  5. Electrode architectures for enhanced lithium ion battery performance

    NASA Astrophysics Data System (ADS)

    Kotz, Sharon Loeffler

    Increasing prevalence of portable electronic devices and growing concern over the consumption of fossil fuels have led to a growing demand for more efficient energy storage options. Lithium ion chemistry has grown to dominate the battery market, but still requires improvement to meet the increasing need for smaller, cheaper, better performing batteries. The use of nanomaterials has garnered much attention in recent years as a potential way of improving battery performance while decreasing the size. However, new problems are introduced with these materials such as low packing density and high reactivity with the electrolyte. This research focuses on the development of an electrode architecture using nanomaterials which will decrease lithium ion transport distance while enhancing electrical conductivity within the cell. The proposed architecture consists of a stacked, 2D structure composed of layers of carbon nanotubes and active material particles, and can be applied to both the anode and the cathode. The process also has the advantage of low cost because it can be performed under normal laboratory conditions (e.g. temperature and pressure) and easily adapted to a commercial scale.

  6. Redox shuttles for lithium ion batteries

    SciTech Connect

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  7. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; Dai, Sheng; Goodenough, John B.; Sun, Xiao-Guang

    2015-01-01

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  8. Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge and Overdischarge Abuse

    DTIC Science & Technology

    2012-11-16

    hexafluorophosphate EC: ethylene carbonate DEC: diethyl carbonate DMC: dimethyl carbonate PC: propylene carbonate     2    2. Introduction  Lithium -ion...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--12-9455 Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge and

  9. UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors

    SciTech Connect

    Voelker, Gary

    2012-04-30

    the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

  10. Analysis of capacity fade in a lithium ion battery

    NASA Astrophysics Data System (ADS)

    Stamps, Andrew T.; Holland, Charles E.; White, Ralph E.; Gatzke, Edward P.

    Two parameter estimation methods are presented for online determination of parameter values using a simple charge/discharge model of a Sony 18650 lithium ion battery. Loss of capacity and resistance increase are both included in the model. The first method is a hybrid combination of batch data reconciliation and moving-horizon parameter estimation. A discussion on the selection of tuning parameters for this method based on confidence intervals is included. The second method uses batch data reconciliation followed by application of discrete filtering of the resulting parameters. These methods are demonstrated using cycling data from an experimental cell with over 1600 charge-discharge cycles.

  11. Advances in Wearable Fiber-Shaped Lithium-Ion Batteries.

    PubMed

    Zhang, Ye; Zhao, Yang; Ren, Jing; Weng, Wei; Peng, Huisheng

    2016-06-01

    It is highly desirable to develop flexible and efficient energy-storage systems for widely used wearable electronic products. To this end, fiber-shaped lithium-ion batteries (LIBs) attract increasing interest due to their combined superiorities of miniaturization, adaptability, and weavability, compared with conventional bulky and planar structures. Recent advances in the fabrication, structure, mechanism, and properties of fiber-shaped LIBs are summarized here, with a focus on the electrode material. Remaining challenges and future directions are also highlighted to provide some useful insights from the viewpoint of practical applications.

  12. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxin

    Lithium ion batteries provide a high energy density, higher voltage as well as a long shelf life compared to traditionally used lead acid, NiMH and NiCd batteries. Thus, they are a very promising energy storage system for our daily life. As one of the most important components in a battery, cathode materials have been investigated intensively in recent years as they play a key role in determining the cell voltage and discharge capacity in a battery. Both layered Li(Ni1/3Co1/3Mn1/3)O 2 (NCM) and olivine-structured LiFePO4 (LFP) materials are promising cathode candidates. However, these cathodes also have some disadvantages that have hindered further commercialization. The main issue with NCM is its rapid performance decay upon cycling. In addition, LFP is hindered by a low rate capacity and low lithium ion diffusivity. We studied the crystal growth behavior and performance of both Li(Ni 1/3Co1/3Mn1/3)O2 and LiFePO4 cathodes in order to develop synthesis-structure-function relationships. Three different crystal growth behaviors were observed for the NCM annealing process: surface, volume and grain boundary diffusion. Further exploration of the mechanism of NCM performance decay revealed that microstructural changes were related to the strain accommodation ability in this system and that nanostructured materials were more stable during cycling. In the LFP synthesis, we observed both oriented attachment (OA) and Ostwald ripening (OR) during growth in a triethylene-glycol system. Both polycrystalline and single crystalline particles evolved as a function of a time-dependent pH change. Thus, the lithium ion diffusion rate of LiFePO4 was improved by tailoring the morphology and size though our modification of the precursor environment, revealing that polycrystalline LFP displayed better performance than single crystalline particles. Finally, the electronic conductivity of LiFePO4 was successfully increased via a polymer solution coating method. By producing more uniform

  13. Lithium-Ion rechargeable batteries on Mars Rover

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Smart, M. C.; Ewell, R. C.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.

    2004-01-01

    NASA's Mars Rovers, Spirit and Opportunity, have been roving on the surface of Mars, capturing impressive images of its terrain and analyzing the drillings from Martian rocks, to answer the ever -puzzling questions of life beyond Earth and origin of our planets. These rovers are being enabled by an advanced rechargeable battery system, lithium-ion, for the first time on a space mission of this scale, for keeping the rover electronics warm, and for supporting nighttime experimentation and communications. These rover Li-ion batteries are characterized by their unique low temperature capability, in addition to the usual advantages associated with Li-ion chemistry in terms of mass, volume and energy efficiency. To enable a rapid insertion of this advanced Li-ion chemistry into flight missions, we have performed several performance assessment studies on several prototype cells over the last few years. These tests mainly focused primarily on the long-term performance characteristics, such as cycling and storage, as described in our companion paper. In addition, various tests have been performed on MER cells and engineering and proto flight batteries; under conditions relevant to these missions. For example, we have examined the performance of the cells in: a) an inverted orientation, as during integration and launch, and b) conditions of low rate discharge, between 3.0-2.5 V to support the mission clock. Likewise, we have determined the impedance of the proto-flight Rover battery assembly unit in detail, with a view to asses whether a current-limiting resistor would be unduly stressed, in the event of a shorting induced by a failed pyro. In this paper we will describe these studies in detail, as well as the performance of Li-ion batteries in Spirit and Opportunity rovers, during cruise and on Mars.

  14. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM

    PubMed Central

    Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping

    2015-01-01

    Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately. PMID:26413090

  15. 76 FR 57627 - Special Conditions: Cessna Aircraft Company Model M680 Airplane; Rechargeable Lithium-Ion Battery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Airplane; Rechargeable Lithium-Ion Battery Installations AGENCY: Federal Aviation Administration (FAA), DOT... lithium-ion batteries. The applicable airworthiness regulations do not contain adequate or appropriate... lithium-ion batteries in the Model 680. Type Certification Basis Under the provisions of Title 14, Code...

  16. Microscale Alloy Type Lithium Ion Battery Anodes

    DTIC Science & Technology

    2015-09-01

    The fabrication of microscale anodes designed for in situ atomic force microscopy testing is discussed. The anodes are partially confined in a nickel......test bed structures . a) A Ni film is evaporated on the Si handle wafer. b) Photoresist is coated and patterned on the Ni film. c) The Ni film is ion

  17. Electroanalytical Evaluation of Lithium Ion Batteries and Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Crain, Daniel Jacob

    Efficient solar energy conversion and electrical energy storage have been studied widely for decades. However, as materials development and process engineering for these devices have advanced through the years, some of the traditional characterization techniques have gradually fallen short of providing quantitative information that is necessary for further significant advancements in these fields. In this work a modern electroanalytical framework for characterization of silicon solar cells and lithium ion batteries is presented. Electroanalytical characterization of lithium ion battery electrodes is achieved through a strategic combination of the D.C. techniques of slow scan cyclic voltammetry, galvanostatic charge/discharge, Ragone Analysis with the A.C. technique of impedance spectroscopy (IS) coupled with complex nonlinear least squares (CNLS) analysis of impedance spectra. Primarily this investigation focuses on characterization of intercalating composite electrodes where the active material is either lithium manganese oxide (cathode,LiMn2O4) or lithium titanate (anode, Li4Ti5O12). Aspects of high power limitations are studied in detail to elucidate physical parameters that control electrode performance under rapid charge/discharge conditions. Electroanalytical evaluation of the p-n junction silicon solar cell with a back surface field (BSF) is accomplished through the use of linear sweep voltammetry (LSV) and IS combined with CNLS analysis. Although LSV has been previously used for characterization of silicon solar cells the use of impedance techniques is relatively new. Temperature and voltage dependence of the series resistance (Rs), diode quality factor (m), minority carrier lifetime and BSF electrical parameters obtained through IS are examined. The temperature dependence of results obtained from LSV such as the open circuit potential (Voc), short circuit current (Jsc), fill factor (FF) and conversion efficiency are also explored. Finally, a parative

  18. Anode materials for lithium-ion batteries

    DOEpatents

    Manthiram, Arumugam; Applestone, Danielle; Yoon, Sukeun

    2017-03-21

    The current disclosure relates to an anode material with the general formula M.sub.ySb-M'O.sub.x--C, where M and M' are metals and M'O.sub.x--C forms a matrix containing M.sub.ySb. It also relates to an anode material with the general formula M.sub.ySn-M'C.sub.x--C, where M and M' are metals and M'C.sub.x--C forms a matrix containing M.sub.ySn. It further relates to an anode material with the general formula Mo.sub.3Sb.sub.7--C, where --C forms a matrix containing Mo.sub.3Sb.sub.7. The disclosure also relates to an anode material with the general formula M.sub.ySb-M'C.sub.x--C, where M and M' are metals and M'C.sub.x--C forms a matrix containing M.sub.ySb. Other embodiments of this disclosure relate to anodes or rechargeable batteries containing these materials as well as methods of making these materials using ball-milling techniques and furnace heating.

  19. Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery.

    PubMed

    Wang, Yuhang; Zeng, Jiren; Cui, Xiaoqi; Zhang, Lijuan; Zheng, Gengfeng

    2016-02-24

    A separator-integrated, reversely connectable, symmetric lithium-ion battery is developed based on carbon-coated Li3V2(PO4)3 nanoparticles and polyvinylidene fluoride-treated separators. The Li3V2(PO4)3 nanoparticles are synthesized via a facile solution route followed by calcination in Ar/H2 atmosphere. Sucrose solution is used as the carbon source for uniform carbon coating on the Li3V2(PO4)3 nanoparticles. Both the carbon and the polyvinylidene fluoride treatments substantially improve the cycling life of the symmetric battery by preventing the dissolution and shuttle of the electroactive Li3V2(PO4)3. The obtained symmetric full cell exhibits a reversible capacity of ≈ 87 mA h g(-1), good cycling stability, and capacity retention of ≈ 70% after 70 cycles. In addition, this type of symmetric full cell can be operated in both forward and reverse connection modes, without any influence on the cycling of the battery. Furthermore, a new separator integration approach is demonstrated, which enables the direct deposition of electroactive materials for the battery assembly and does not affect the electrochemical performance. A 10-tandem-cell battery assembled without differentiating the electrode polarity exhibits a low thickness of ≈ 4.8 mm and a high output voltage of 20.8 V.

  20. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    NASA Astrophysics Data System (ADS)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale

  1. Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries.

    PubMed

    Kalaga, Kaushik; Rodrigues, Marco-Tulio F; Gullapalli, Hemtej; Babu, Ganguli; Arava, Leela Mohana Reddy; Ajayan, Pulickel M

    2015-11-25

    Rechargeable batteries capable of operating at high temperatures have significant use in various targeted applications. Expanding the thermal stability of current lithium ion batteries requires replacing the electrolyte and separators with stable alternatives. Since solid-state electrolytes do not have a good electrode interface, we report here the development of a new class of quasi-solid-state electrolytes, which have the structural stability of a solid and the wettability of a liquid. Microflakes of clay particles drenched in a solution of lithiated room temperature ionic liquid forming a quasi-solid system has been demonstrated to have structural stability until 355 °C. With an ionic conductivity of ∼3.35 mS cm(-1), the composite electrolyte has been shown to deliver stable electrochemical performance at 120 °C, and a rechargeable lithium battery with Li4Ti5O12 electrode has been tested to deliver reliable capacity for over several cycles of charge-discharge.

  2. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  3. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  4. Mechanics of high-capacity electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ting, Zhu

    2016-01-01

    Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research. Project support by the NSF (Grant Nos. CMMI 1100205 and DMR 1410936).

  5. Strain-tolerant High Capacity Silicon Anodes via Directed Lithium Ion Transport for High Energy Density Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Goldman, Jason

    2012-02-01

    Energy storage is an essential component of modern technology, with applications including public infrastructure, transportation systems, and consumer electronics. Lithium-ion batteries are the preeminent form of energy storage when high energy / moderate power densities are required. Improvements to lithium-ion battery energy / power density through the adoption of silicon anodes—with approximately an order of magnitude greater gravimetric capacity than traditional carbon-based anodes--have been limited by ˜300% strains during electrochemical lithium insertion which result in short operational lifetimes. In two different systems we demonstrated improvements to silicon-based anode performance via directed lithium ion transport. The first system demonstrated a crystallographic-dependent anisotropic electrochemical lithium insertion in single-crystalline silicon anode microstructures. Exploiting this anisotropy, we highlight model silicon anode architectures that limit the maximum strain during electrochemical lithium insertion. This self-strain-limiting is a result of selecting a specific microstructure design such that during lithiation the anisotropic evolution of strain, above a given threshold, blocks further lithium intercalation. Exemplary design rules have achieved self-strain-limited charging capacities ranging from 677 mAhg-1 to 2833 mAhg-1. A second system with variably encapsulated silicon-based anodes demonstrated greater than 98% of their initial capacity after 130+ cycles. This anode also can operate stably at high energy/power densities. A lithium-ion battery with this anode was able to continuously (dis)charge in 10 minutes, corresponding to a power / energy density of ˜1460 W/kg and ˜243 Wh/kg--up to 780% greater power density and 220% higher energy density than conventional lithium-ion batteries. Anodes were also demonstrated with areal capacities of 12.7 mAh/cm^2, two orders of magnitude greater than traditional thin-film silicon anodes.[4pt

  6. Mesoporous Cladophora cellulose separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pan, Ruijun; Cheung, Ocean; Wang, Zhaohui; Tammela, Petter; Huo, Jinxing; Lindh, Jonas; Edström, Kristina; Strømme, Maria; Nyholm, Leif

    2016-07-01

    Much effort is currently made to develop inexpensive and renewable materials which can replace the polyolefin microporous separators conventionally used in contemporary lithium-ion batteries. In the present work, it is demonstrated that mesoporous Cladophora cellulose (CC) separators constitute very promising alternatives based on their high crystallinity, good thermal stability and straightforward manufacturing. The CC separators, which are fabricated using an undemanding paper-making like process involving vacuum filtration, have a typical thickness of about 35 μm, an average pore size of about 20 nm, a Young's modulus of 5.9 GPa and also exhibit an ionic conductivity of 0.4 mS cm-1 after soaking with 1 M LiPF6 EC: DEC (1/1, v/v) electrolyte. The CC separators are demonstrated to be thermally stable at 150 °C and electrochemically inert in the potential range between 0 and 5 V vs. Li+/Li. A LiFePO4/Li cell containing a CC separator showed good cycling stability with 99.5% discharge capacity retention after 50 cycles at a rate of 0.2 C. These results indicate that the renewable CC separators are well-suited for use in high-performance lithium-ion batteries.

  7. Efficiently photo-charging lithium-ion battery by perovskite solar cell.

    PubMed

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-27

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  8. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  9. Graphene-based nanocomposite anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Wang, Yong

    2014-09-01

    Graphene-based nanocomposites have been demonstrated to be promising high-capacity anodes for lithium ion batteries to satisfy the ever-growing demands for higher capacity, longer cycle life and better high-rate performance. Synergetic effects between graphene and the introduced second-phase component are generally observed. In this feature review article, we will focus on the recent work on four different categories of graphene-based nanocomposite anodes by us and others: graphene-transitional metal oxide, graphene-Sn/Si/Ge, graphene-metal sulfide, and graphene-carbon nanotubes. For the supported materials on graphene, we will emphasize the non-zero dimensional (non-particle) morphologies such as two dimensional nanosheet/nanoplate and one dimensional nanorod/nanofibre/nanotube morphologies. The synthesis strategies and lithium-ion storage properties of these highlighted electrode morphologies are distinct from those of the commonly obtained zero dimensional nanoparticles. We aim to stress the importance of structure matching in the composites and their morphology-dependent lithium-storage properties and mechanisms.

  10. Graphene-based nanocomposite anodes for lithium-ion batteries.

    PubMed

    Sun, Weiwei; Wang, Yong

    2014-10-21

    Graphene-based nanocomposites have been demonstrated to be promising high-capacity anodes for lithium ion batteries to satisfy the ever-growing demands for higher capacity, longer cycle life and better high-rate performance. Synergetic effects between graphene and the introduced second-phase component are generally observed. In this feature review article, we will focus on the recent work on four different categories of graphene-based nanocomposite anodes by us and others: graphene-transitional metal oxide, graphene-Sn/Si/Ge, graphene-metal sulfide, and graphene-carbon nanotubes. For the supported materials on graphene, we will emphasize the non-zero dimensional (non-particle) morphologies such as two dimensional nanosheet/nanoplate and one dimensional nanorod/nanofibre/nanotube morphologies. The synthesis strategies and lithium-ion storage properties of these highlighted electrode morphologies are distinct from those of the commonly obtained zero dimensional nanoparticles. We aim to stress the importance of structure matching in the composites and their morphology-dependent lithium-storage properties and mechanisms.

  11. Space Technology-5 Lithium-Ion Battery Design, Qualification and Integration and Testing

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakishna M.; Stewart, Karen; Ameen, Syed; Banfield, Peter K.

    2005-01-01

    This document is a viewgraph presentation that reviews the Lithium Ion Battery for the Space Technology-5 (ST-5) mission. Included in the document is a review of the ST-5 Mission, a review of the battery requirements, a description of the battery and the battery materials. The testing and the integration and qualification data is reviewed.

  12. Liquid Cooling of Tractive Lithium Ion Batteries Pack with Nanofluids Coolant.

    PubMed

    Li, Yang; Xie, Huaqing; Yu, Wei; Li, Jing

    2015-04-01

    The heat generated from tractive lithium ion batteries during discharge-charge process has great impacts on the performances of tractive lithium ion batteries pack. How to solve the thermal abuse in tractive lithium ion batteries pack becomes more and more urgent and important for future development of electrical vehicles. In this work, TiO2, ZnO and diamond nanofluids are prepared and utilized as coolants in indirect liquid cooling of tractive lithium ion batteries pack. The results show that nanofluids present superior cooling performance to that of pure fluids and the diamond nanofluid presents relatively excellent cooling abilities than that of TiO2 and ZnO nanofluids. During discharge process, the temperature distribution of batteries in batteries pack is uniform and stable, due to steady heat dissipation by indirect liquid cooling. It is expected that nanofluids could be considered as a potential alternative for indirect liquid cooling in electrical vehicles.

  13. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  14. Advanced Nanofiber-Based Lithium-Ion Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Toprakci, Ozan

    Among various energy storage technologies, rechargeable lithium-ion batteries have been considered as effective solution to the increasing need for high-energy density electrochemical power sources. Rechargeable lithium-ion batteries offer energy densities 2 - 3 times and power densities 5 - 6 times higher than conventional Ni-Cd and Ni-MH batteries, and as a result, they weigh less and take less space for a given energy delivery. However, the use of lithium-ion batteries in many large applications such as electric vehicles and storage devices for future power grids is hindered by the poor thermal stability, relatively high toxicity, and high cost of lithium cobalt oxide (LiCoO2) powders, which are currently used as the cathode material in commercial lithium-ion batteries. Recently, lithium iron phosphate (LiFePO 4) powders have become a favorable cathode material for lithium-ion batteries because of their low cost, high discharge potential (around 3.4 V versus Li/Li+), large specific capacity (170 mAh g -1), good thermal stability, and high abundance with the environmentally benign and safe nature. As a result, there is a huge demand for the production of high-performance LiFePO4. However, LiFePO4 also has its own limitation such as low conductivity (˜10-9 S cm -1), which results in poor rate capability. To address this problem, various approaches can be used such as decreasing particle size of LiFePO 4, doping LiFePO4 with metal ions or coating LiFePO 4 surface with carboneous materials. Formation of conductive layer on LiFePO4 and decreasing particle size are promising approaches due to their superior contribution to electrical conductivity and electrochemical performance of LiFePO4. Although different approaches can be used for surface coating and particle size decrement, electrospinning can be potentially considered as an efficient, simple and inexpensive way. In this study, LiFePO 4/carbon and carbon nanotube- and graphene-loaded electrospun LiFePO 4/carbon

  15. Failure propagation in multi-cell lithium ion batteries

    DOE PAGES

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; ...

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module.more » Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.« less

  16. Prototype Lithium-Ion Battery Developed for Mars 2001 Lander

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2000-01-01

    In fiscal year 1997, NASA, the Jet Propulsion Laboratory, and the U.S. Air Force established a joint program to competitively develop high-power, rechargeable lithium-ion battery technology for aerospace applications. The goal was to address Department of Defense and NASA requirements not met by commercial battery developments. Under this program, contracts have been awarded to Yardney Technical Products, Eagle- Picher Technologies, LLC, BlueStar Advanced Technology Corporation, and SAFT America, Inc., to develop cylindrical and prismatic cell and battery systems for a variety of NASA and U.S. Air Force applications. The battery systems being developed range from low-capacity (7 to 20 A-hr) and low-voltage (14 to 28 V) systems for planetary landers and rovers to systems for aircraft that require up to 270 V and for Unmanned Aerial Vehicles that require capacities up to 200 A-hr. Low-Earth-orbit and geosynchronousorbit spacecraft pose additional challenges to system operation with long cycle life (>30,000 cycles) and long calendar life (>10 years), respectively.

  17. An electrochemical modeling of lithium-ion battery nail penetration

    NASA Astrophysics Data System (ADS)

    Chiu, Kuan-Cheng; Lin, Chi-Hao; Yeh, Sheng-Fa; Lin, Yu-Han; Chen, Kuo-Ching

    2014-04-01

    Nail penetration into a battery pack, resulting in a state of short-circuit and thus burning, is likely to occur in electric car collisions. To demonstrate the behavior of a specific battery when subject to such incidents, a standard nail penetration test is usually performed; however, conducting such an experiment is money consuming. The purpose of this study is to propose a numerical electrochemical model that can simulate the test accurately. This simulation makes two accurate predictions. First, we are able to model short-circuited lithium-ion batteries (LIBs) via electrochemical governing equations so that the mass and charge transfer effect could be considered. Second, the temperature variation of the cell during and after nail penetration is accurately predicted with the help of simulating the temperature distribution of thermal runaway cells by thermal abuse equations. According to this nail penetration model, both the onset of battery thermal runaway and the cell temperature profile of the test are obtained, both of which are well fitted with our experimental results.

  18. Novel in situ cell for Raman diagnostics of lithium-ion batteries.

    PubMed

    Gross, T; Giebeler, L; Hess, C

    2013-07-01

    A novel in situ cell for Raman diagnostics of working lithium-ion batteries is described. The design closely mimics that of standard battery testing cells and therefore allows to obtain Raman spectra under representative electrochemical conditions. Both cathode and anode materials can be studied. First results on the intercalation of a Li1-xCoO2 cathode material demonstrate the potential of the experimental approach for structural studies and underline the importance of studying lithium-ion batteries at work.

  19. Lithium use in batteries

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  20. Thigh burns from exploding e-cigarette lithium ion batteries: First case series.

    PubMed

    Nicoll, K J; Rose, A M; Khan, M A A; Quaba, O; Lowrie, A G

    2016-06-01

    E-cigarette (EC) use has risen meteorically over the last decade. The majority of these devices are powered by re-chargeable lithium ion batteries, which can represent a fire hazard if damaged, over-heated, over-charged or stored inappropriately. There are currently no reports in the medical literature of lithium ion battery burns related to EC use and no guidance on the appropriate management of lithium ion battery associated injuries. We report two individual cases of burn resulting from explosion of EC re-chargeable lithium ion batteries. Both patients required in-patient surgical management. We provide evidence that lithium ion battery explosions can be associated with mixed thermal and alkali chemical burns, resulting from the significant discharge of thermal energy and the dispersal of corrosive lithium ion compounds. We would recommend, as with other elemental metal exposures, caution in exposing lithium ion battery burns to water irrigation. Early and thorough cleaning and debridement of such burns, to remove residual lithium contamination, may limit the risk of burn wound extension and potentially improve outcomes.

  1. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    PubMed Central

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  2. Silver: high performance anode for thin film lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Taillades, G.; Sarradin, J.

    Among metals and intermetallic compounds, silver exhibits a high specific capacity according to the formation of different Ag-Li alloys (up to AgLi 12) in a very low voltage range versus lithium (0.250-0 V). Electrochemical results including Galvanostatic Intermittent Titration Technique (GITT) as well as cycling behaviour experiments confirmed the interesting characteristics of silver thin film electrodes prepared by radio frequency (r.f.) sputtering. XRD patterns recorded at different electrochemical stages of the alloying/de-alloying processes showed the complexity of the silver-lithium system under dynamic conditions. Cycling life depends on several parameters and particularly of the careful choice of cut-off voltages. In very well monitored conditions, galvanostatic cycles exhibited flat reversible plateaus with a minimal voltage value (0.050 V) between charge and discharge, a feature of great interest in the use of an electrode. The first results of a lithium ion battery with both silver and LiMn 1.5Ni 0.5O 4 thin films are presented.

  3. Iron phosphates as cathodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Shijun

    High performance lithium ion batteries are essential to meeting the requirements of both portable electronic equipment for personal use and large-scale applications like hybrid electric and all-electric vehicles. Iron-based materials combined with phosphate groups are promising cathode candidates, with their rich structural chemistry and the relatively high Fe3+/Fe2+ redox potential vs. Li/Li+. This study investigated primarily two iron phosphate frameworks: the olivine-type all-ferrous LiFePO4 and the all-ferric lipscombite. Both were synthesized at low temperatures using a hydrothermal or solvothermal method. The structure and morphology were evaluated by XRD, TGA, SEM, TEM and electrochemical studies. The olivine-type LiFePO4 contains isolated chains of corner-sharing FeO6 octahedra, forming a 1-D tunnel structure through which lithium can be intercalated/deintercalated. Pure ordered LiFePO4 was achieved at an optimized synthesis condition by adding hydrazine at a pH of 6. It was found that the pH significantly affects the morphology. The reversible capacity was less than ideal, mainly due to the relatively large particle size. Lithium ion diffusivity was determined to be around 10-14 cm 2 s-1. The all-ferric lipscombite structure Fe3+4/3-z/3⊘2/ 3+z/3 (PO4)(OH)1-z (H2O)z ( z = 0 or 0.46, O = vacancy) contains interconnecting chains of face-sharing FeO6 octahedra, with about 2/3 (Fe-2/3-T) and 60% (Fe-60%) iron occupancy with a "stacking-log-like" structure. Lithium can diffuse within one tunnel as well as possibly jump between tunnels through vacancies in the FeO6 octahedra, making pseudo 3-D diffusion paths. On metal substitution, high valence ions increased the capacity when compared to its parent compound. Lithium ion-exchanged compounds significantly improve the capacity in Fe-2/3-T while minimally doing so in Fe-60%.

  4. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  5. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOEpatents

    Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  6. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOEpatents

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  7. Electrochemical characterization of electrolytes for lithium-ion batteries based on lithium difluoromono(oxalato)borate

    NASA Astrophysics Data System (ADS)

    Zugmann, Sandra; Moosbauer, Dominik; Amereller, Marius; Schreiner, Christian; Wudy, Franz; Schmitz, René; Schmitz, Raphael; Isken, Philipp; Dippel, Christian; Müller, Romek; Kunze, Miriam; Lex-Balducci, Alexandra; Winter, Martin; Gores, Heiner Jakob

    The salt lithium difluoromono(oxalato)borate (LiDFOB) showed some promising results for lithium-ion-cells. It was synthesized via a new synthetic route that avoids chloride impurities. Here we report the properties of its solutions (solvent blend ethylene carbonate/diethyl carbonate (3:7, mass ratio), including its conductivity, cationic transference number, hydrolysis, Al-current collector corrosion-protection ability and its cycling performance with some electrode materials. Some Al-corrosion studies were also performed with the help of our recently developed computer controlled impedance scanning electrochemical quartz crystal microbalance (EQCM) that proofed to be a useful tool for battery material investigations.

  8. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode.

    PubMed

    Hassoun, Jusef; Bonaccorso, Francesco; Agostini, Marco; Angelucci, Marco; Betti, Maria Grazia; Cingolani, Roberto; Gemmi, Mauro; Mariani, Carlo; Panero, Stefania; Pellegrini, Vittorio; Scrosati, Bruno

    2014-08-13

    We report an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, we demonstrate an optimal battery performance in terms of specific capacity, that is, 165 mAhg(-1), of an estimated energy density of about 190 Wh kg(-1) and a stable operation for over 80 charge-discharge cycles. The components of the battery are low cost and potentially scalable. To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development.

  9. Extending battery life: A low-cost practical diagnostic technique for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Merla, Yu; Wu, Billy; Yufit, Vladimir; Brandon, Nigel P.; Martinez-Botas, Ricardo F.; Offer, Gregory J.

    2016-11-01

    Modern applications of lithium-ion batteries such as smartphones, hybrid & electric vehicles and grid scale electricity storage demand long lifetime and high performance which typically makes them the limiting factor in a system. Understanding the state-of-health during operation is important in order to optimise for long term durability and performance. However, this requires accurate in-operando diagnostic techniques that are cost effective and practical. We present a novel diagnosis method based upon differential thermal voltammetry demonstrated on a battery pack made from commercial lithium-ion cells where one cell was deliberately aged prior to experiment. The cells were in parallel whilst being thermally managed with forced air convection. We show for the first time, a diagnosis method capable of quantitatively determining the state-of-health of four cells simultaneously by only using temperature and voltage readings for both charge and discharge. Measurements are achieved using low-cost thermocouples and a single voltage measurement at a frequency of 1 Hz, demonstrating the feasibility of implementing this approach on real world battery management systems. The technique could be particularly useful under charge when constant current or constant power is common, this therefore should be of significant interest to all lithium-ion battery users.

  10. Construction and testing of coin cells of lithium ion batteries.

    PubMed

    Kayyar, Archana; Huang, Jiajia; Samiee, Mojtaba; Luo, Jian

    2012-08-02

    Rechargeable lithium ion batteries have wide applications in electronics, where customers always demand more capacity and longer lifetime. Lithium ion batteries have also been considered to be used in electric and hybrid vehicles or even electrical grid stabilization systems. All these applications simulate a dramatic increase in the research and development of battery materials, including new materials, doping, nanostructuring, coatings or surface modifications and novel binders. Consequently, an increasing number of physicists, chemists and materials scientists have recently ventured into this area. Coin cells are widely used in research laboratories to test new battery materials; even for the research and development that target large-scale and high-power applications, small coin cells are often used to test the capacities and rate capabilities of new materials in the initial stage. In 2010, we started a National Science Foundation (NSF) sponsored research project to investigate the surface adsorption and disordering in battery materials (grant no. DMR-1006515). In the initial stage of this project, we have struggled to learn the techniques of assembling and testing coin cells, which cannot be achieved without numerous help of other researchers in other universities (through frequent calls, email exchanges and two site visits). Thus, we feel that it is beneficial to document, by both text and video, a protocol of assembling and testing a coin cell, which will help other new researchers in this field. This effort represents the "Broader Impact" activities of our NSF project, and it will also help to educate and inspire students. In this video article, we document a protocol to assemble a CR2032 coin cell with a LiCoO2 working electrode, a Li counter electrode, and (the mostly commonly used) polyvinylidene fluoride (PVDF) binder. To ensure new learners to readily repeat the protocol, we keep the protocol as specific and explicit as we can. However, it is important

  11. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries

    PubMed Central

    Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk

    2014-01-01

    Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg−1total electrode while also retaining a high energy density of 225 Wh kg−1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices. PMID:24923290

  12. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries.

    PubMed

    Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk

    2014-06-13

    Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg(-1)(total electrode) while also retaining a high energy density of 225 Wh kg(-1)(total electrode), which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices.

  13. Nanocomposites with embedded structures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zichao

    Lithium-ion batteries (LIBs) have been widely employed in portable electronics and are rapidly expanding into emerging markets such as hybrid and electric vehicles and potentially electric grid storage. These new opportunities create new challenges for LIBs and further improvement of specific energy, cycling performance and rate capability are required. A major strategy in performance enhancement for the electrode materials involves the creation of carbon composites to provide mechanical buffering of active material and to improve electrical conductivity. In the current work, a platform is developed for creating functional hybrid materials by copolymerization of organic molecules and inorganic compounds followed by thermal pyrolysis, and the approach yields nanostructured composites in which nanoparticles are uniformly embedded in a porous, partially graphitic carbon matrix. Depending upon the chemistry of the starting materials, nanocomposites with embedded structures created using the approach are attractive as anode or cathode materials for next-generation rechargeable lithium battery systems. The platform is very versatile and through ex situ conversion or utilization of multiple precursors, can be applied to various classes of materials including metal oxides (single or mixed), metals, metal sulfides, alloys, metalloids, phosphates, etc. The approach also lends itself to the development of scalable processes for production of nanostructured battery materials. Mechanistic analysis was performed and reveals that the performance enhancement of the embedded nanocomposite configuration is mainly brought about by the mechanical buffering effect offered by the carbon matrix. The active material loading was shown to be an important factor in the design of the composites as electrode materials. In addition to the polymerization-based approach, other in situ methods such as one based on spray pyrolysis are also explored and demonstrate the versatility of the in situ

  14. Multiscale modeling of lithium ion batteries: thermal aspects.

    PubMed

    Latz, Arnulf; Zausch, Jochen

    2015-01-01

    The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory.

  15. Multiscale modeling of lithium ion batteries: thermal aspects

    PubMed Central

    Zausch, Jochen

    2015-01-01

    Summary The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory. PMID:25977870

  16. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  17. A lithium ion battery using an aqueous electrolyte solution.

    PubMed

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-22

    Energy and environmental pollution have become the two major problems in today's society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg(-1). It will be a promising energy storage system with good safety and efficient cooling effects.

  18. A lithium ion battery using an aqueous electrolyte solution

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg‑1. It will be a promising energy storage system with good safety and efficient cooling effects.

  19. A lithium ion battery using an aqueous electrolyte solution

    PubMed Central

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg−1. It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  20. Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries

    SciTech Connect

    Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

    2011-10-01

    There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

  1. Redox-assisted Li+-storage in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qizhao, Huang; Qing, Wang

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e- and h+) and ionic species (Li+) at the electrode-electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li+ storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. Project supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Competitive Research Program (CRP Award No. NRF-CRP8-2011-04).

  2. Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries.

    PubMed

    Xie, Xiuqiang; Wang, Shijian; Kretschmer, Katja; Wang, Guoxiu

    2017-03-20

    Rechargeable batteries, such as lithium-ion and sodium-ion batteries, have been considered as promising energy conversion and storage devices with applications ranging from small portable electronics, medium-sized power sources for electromobility, to large-scale grid energy storage systems. Wide implementations of these rechargeable batteries require the development of electrode materials that can provide higher storage capacities than current commercial battery systems. Within this greater context, this review will present recent progresses in the development of the 2D material as anode materials for battery applications represented by studies conducted on graphene, molybdenum disulfide, and MXenes. This review will also discuss remaining challenges and future perspectives of 2D materials in regards to a full utilization of their unique properties and interactions with other battery components.

  3. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter

    NASA Astrophysics Data System (ADS)

    Fu, Yangyang; Lu, Song; Li, Kaiyuan; Liu, Changchen; Cheng, Xudong; Zhang, Heping

    2015-01-01

    Numerous of lithium ion battery fires and explosions enhance the need of precise risk assessments on batteries. In the current study, 18650 lithium ion batteries at different states of charge are tested using a cone calorimeter to study the burning behaviors under an incident heat flux of 50 kW m-2. Several parameters are measured, including mass loss rate, time to ignition, time to explosion, heat release rate (HRR), the surface temperature and concentration of toxic gases. Although small quantities of oxygen are released from the lithium ion battery during burning, it is estimated that the energy, consuming oxygen released from the lithium ion battery, accounts for less than 13% of total energy released by a fully charged lithium ion battery. The experimental results show that the peak HRR and concentration of toxic gases rise with the increasing the states of charge, whereas the time to ignition and time to explosion decrease. The test results of the fully charged lithium ion batteries at three different incident heat fluxes show that the peak HRR increases from 6.2 to 9.1 kW and the maximum surface temperature increases from 662 to 934 °C as the incident heat flux increases from 30 to 60 kW m-2.

  4. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery.

    PubMed

    Nishimura, Shin-ichi; Nakamura, Megumi; Natsui, Ryuichi; Yamada, Atsuo

    2010-10-06

    A new pyrophosphate compound Li(2)FeP(2)O(7) was synthesized by a conventional solid-state reaction, and its crystal structure was determined. Its reversible electrode operation at ca. 3.5 V vs Li was identified with the capacity of a one-electron theoretical value of 110 mAh g(-1) even for ca. 1 μm particles without any special efforts such as nanosizing or carbon coating. Li(2)FeP(2)O(7) and its derivatives should provide a new platform for related lithium battery electrode research and could be potential competitors to commercial olivine LiFePO(4), which has been recognized as the most promising positive cathode for a lithium-ion battery system for large-scale applications, such as plug-in hybrid electric vehicles.

  5. Meso-scale characterization of lithium distribution in lithium-ion batteries using ion beam analysis techniques

    NASA Astrophysics Data System (ADS)

    Gonzalez-Arrabal, R.; Panizo-Laiz, M.; Fujita, K.; Mima, K.; Yamazaki, A.; Kamiya, T.; Orikasa, Y.; Uchimoto, Y.; Sawada, H.; Okuda, C.; Kato, Y.; Perlado, J. M.

    2015-12-01

    The performance of a Li-ion battery (LIB) is mainly governed by the diffusion capabilities of lithium in the electrodes. Thus, for LIB improvement it is essential to characterize the lithium distribution. Most of the traditionally used techniques for lithium characterization give information about the local scale or in the macroscopic scale. However, the lithium behavior at the local scale is not mirrored at the macroscopic scale. Therefore, the lithium characterization in the mesoscopic scale would be of help to understand and to connect the mechanisms taking place in the two spatial scales. In this paper, we show a general description of the capabilities and limitations of ion beam analysis techniques to study the distributions of lithium and other elements present in the electrodes in the mesoscopic scale. The potential of the 7Li(p,α0)4He nuclear reaction to non-invasively examine the lithium distribution as a function of depth is illustrated. The lithium spatial distribution is characterized using particle induced γ-ray (μ-PIGE) spectroscopy. This technique allows estimating the density of the active particles in the electrode effectively contributing to the Li intercalation and/or de-intercalation. The advantages of the use of ion beam analysis techniques in comparison to more traditional techniques for electrode characterization are discussed.

  6. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries

    SciTech Connect

    2016-06-01

    Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodates volumetric expansion of silicon electrodes.

  7. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.

    PubMed

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ.

  8. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    SciTech Connect

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  9. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery.

    PubMed

    Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng

    2017-03-08

    Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.

  10. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery

    PubMed Central

    Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng

    2017-01-01

    Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level. PMID:28272396

  11. Photovoltaic lithium-ion battery fabricated by molecular precursor method

    NASA Astrophysics Data System (ADS)

    Nagai, Hiroki; Suzuki, Tatsuya; Takahashi, Yoshihisa; Sato, Mitsunobu

    2016-06-01

    A novel thin-film lithium-ion battery (LIB) which can be charged by the light irradiation was fabricated by molecular precursor method. The unprecedented, translucent thin-film LIB, fabricated on a fluorine-doped tin oxide pre-coated glass substrate, was attained by using the active materials, titania for anode and LiCoO2 for cathode, respectively. The averaged potential at 2.04V was observed by applying a constant current of 0.2mA. Then, that at 1.82V was detected after 60s during the sequential self-discharge process. The charging voltage of the assembled battery was 1.38V with irradiation of 1-sun, the self-discharge voltage was 1.37V. Based on the calibration curve of the charging voltages over constant currents ranging from 0-1.0mA, the detected value can be theoretically reduced to the charging operation by applying a constant current of approximately 60μA. The charge and discharge of this device was stable voltage at least 30 cycles. The two-in-one device can simultaneously generate and store electricity from solar light, the renewable energy source, and may be applied in smart windows for distributed power system according to on-site demand.

  12. Safety Evaluation of Two Commercial Lithium-ion Batteries for Space Applications

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Collins, Jacob; Cook, Joseph S.

    2004-01-01

    Lithium-ion batteries have been used for applications on the Shuttle and Station for the past six years. A majority of the li-ion batteries flown are Commercial-off-the-shelf (COTS) varieties. The COTS batteries and cells were tested under nominal and abusive conditions for performance and safety characterization. Within the past six months two batteries have been certified for flight and use on the Space Station. The first one is a Hand Spring PDA battery that had a single prismatic li-ion cell and the second is an Iridium satellite phone that had a two-cell pack with prismatic li-ion cells.

  13. Interpretation of Simultaneous Mechanical-Electrical-Thermal Failure in a Lithium-Ion Battery Module: Preprint

    SciTech Connect

    Zhang, Chao; Santhanagopalan, Shriram; Stock, Mark J.; Brunhart-Lupo, Nicholas; Gruchalla, Kenny

    2016-12-01

    Lithium-ion batteries are currently the state-of- the-art power sources for electric vehicles, and their safety behavior when subjected to abuse, such as a mechanical impact, is of critical concern. A coupled mechanical-electrical-thermal model for simulating the behavior of a lithium-ion battery under a mechanical crush has been developed. We present a series of production-quality visualizations to illustrate the complex mechanical and electrical interactions in this model.

  14. Reducing of internal resistance lithium ion battery using glucose addition

    SciTech Connect

    Salim, Andri Pratama; Hafidlullah, Noor; Purwanto, Agus

    2016-02-08

    There are two indicators of battery performance, i.e : capacity and the internal resistance of battery. In this research, the affect of glucose addition to decrease the internal resistance of lithium battery was investigated. The ratio of glucose addition were varied at weight ratio 1%, 3%, and 5% and one mixtures without glucose addition. Lithium ferri phosphate (LiFePO{sub 4}), polyvinylidene fluoride (PVDF), acetylene black (AB) and glucose were materials that used in this study. Both of mixtures were mixed in the vacuum mixer until became homogeneous. The slurry was coated on an aluminium foil sheet and the coated thickness was 200 µm. The performance of battery lithium was examined by Eight Channel Battery Analyzer and the Internal resistance was examined by Internal Resistance of Battery Meter. The result from all analyzer were showed that the internal resistance reduced as well as the battery capacity. The best internal resistance value is owned by mixtures with 3wt% ratio glucose addition. It has an internal resistance value about 64 miliohm.

  15. High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries

    DTIC Science & Technology

    2015-04-24

    nitrogen as the cathode material. Cycles were performed at rates of C/10, C/2, C/10, 2C, and C/10 for 10 cycles each. UNCLASSIFIED UNCLASSIFIED...batteries but their mechanical and thermal properties can lead to safety and reliability (e.g. cycle life) challenges in particular for military vehicle...reduce stresses caused by lithium insertion and enhance lithium diffusion thereby improving cycle -life, high rate capacities and resistance to thermal

  16. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    SciTech Connect

    Kartini, Evvy; Manawan, Maykel

    2016-02-08

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  17. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    NASA Astrophysics Data System (ADS)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  18. Phosphoryl-rich flame-retardant ions (FRIONs): towards safer lithium-ion batteries.

    PubMed

    Rectenwald, Michael F; Gaffen, Joshua R; Rheingold, Arnold L; Morgan, Alexander B; Protasiewicz, John D

    2014-04-14

    The functionalized catecholate, tetraethyl (2,3-dihydroxy-1,4-phenylene)bis(phosphonate) (H2 -DPC), has been used to prepare a series of lithium salts Li[B(DPC)(oxalato)], Li[B(DPC)2], Li[B(DPC)F2], and Li[P(DPC)3]. The phosphoryl-rich character of these anions was designed to impart flame-retardant properties for their use as potential flame-retardant ions (FRIONs), additives, or replacements for other lithium salts for safer lithium-ion batteries. The new materials were fully characterized, and the single-crystal structures of Li[B(DPC)(oxalato)] and Li[P(DPC)3] have been determined. Thermogravimetric analysis of the four lithium salts show that they are thermally stable up to around 200 °C. Pyrolysis combustion flow calorimetry reveals that these salts produce high char yields upon combustion.

  19. Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.

    SciTech Connect

    Nelson, P. A.; Henriksen, G. L.; Amine, K.

    2000-12-04

    In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

  20. Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries

    PubMed Central

    Thakur, Madhuri; Sinsabaugh, Steven L.; Isaacson, Mark J.; Wong, Michael S.; Biswal, Sibani Lisa

    2012-01-01

    One of the most exciting areas in lithium ion batteries is engineering structured silicon anodes. These new materials promise to lead the next generation of batteries with significantly higher reversible charge capacity than current technologies. One drawback of these materials is that their production involves costly processing steps, limiting their application in commercial lithium ion batteries. In this report we present an inexpensive method for synthesizing macroporous silicon particulates (MPSPs). After being mixed with polyacrylonitrile (PAN) and pyrolyzed, MPSPs can alloy with lithium, resulting in capacities of 1000 mAhg−1 for over 600+ cycles. These sponge-like MPSPs with pyrolyzed PAN (PPAN) can accommodate the large volume expansion associated with silicon lithiation. This performance combined with low cost processing yields a competitive anode material that will have an immediate and direct application in lithium ion batteries. PMID:23139860

  1. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  2. Graft copolymer-based lithium-ion battery for high-temperature operation

    NASA Astrophysics Data System (ADS)

    Hu, Qichao; Osswald, Sebastian; Daniel, Reece; Zhu, Yan; Wesel, Steven; Ortiz, Luis; Sadoway, Donald R.

    The use of conventional lithium-ion batteries in high temperature applications (>50 °C) is currently inhibited by the high reactivity and volatility of liquid electrolytes. Solvent-free, solid-state polymer electrolytes allow for safe and stable operation of lithium-ion batteries, even at elevated temperatures. Recent advances in polymer synthesis have led to the development of novel materials that exhibit solid-like mechanical behavior while providing the ionic conductivities approaching that of liquid electrolytes. Here we report the successful charge and discharge cycling of a graft copolymer electrolyte (GCE)-based lithium-ion battery at temperatures up to 120 °C. The GCE consists of poly(oxyethylene) methacrylate-g-poly(dimethyl siloxane) (POEM-g-PDMS) doped with lithium triflate. Using electrochemical impedance spectroscopy (EIS), we analyze the temperature stability and cycling behavior of GCE-based lithium-ion batteries comprised of a LiFePO 4 cathode, a metallic lithium anode, and an electrolyte consisting of a 20-μm-thick layer of lithium triflate-doped POEM-g-PDMS. Our results demonstrate the great potential of GCE-based Li-ion batteries for high-temperature applications.

  3. Fabricating high performance lithium-ion batteries using bionanotechnology.

    PubMed

    Zhang, Xudong; Hou, Yukun; He, Wen; Yang, Guihua; Cui, Jingjie; Liu, Shikun; Song, Xin; Huang, Zhen

    2015-02-28

    Designing, fabricating, and integrating nanomaterials are key to transferring nanoscale science into applicable nanotechnology. Many nanomaterials including amorphous and crystal structures are synthesized via biomineralization in biological systems. Amongst various techniques, bionanotechnology is an effective strategy to manufacture a variety of sophisticated inorganic nanomaterials with precise control over their chemical composition, crystal structure, and shape by means of genetic engineering and natural bioassemblies. This provides opportunities to use renewable natural resources to develop high performance lithium-ion batteries (LIBs). For LIBs, reducing the sizes and dimensions of electrode materials can boost Li(+) ion and electron transfer in nanostructured electrodes. Recently, bionanotechnology has attracted great interest as a novel tool and approach, and a number of renewable biotemplate-based nanomaterials have been fabricated and used in LIBs. In this article, recent advances and mechanism studies in using bionanotechnology for high performance LIBs studies are thoroughly reviewed, covering two technical routes: (1) Designing and synthesizing composite cathodes, e.g. LiFePO4/C, Li3V2(PO4)3/C and LiMn2O4/C; and (2) designing and synthesizing composite anodes, e.g. NiO/C, Co3O4/C, MnO/C, α-Fe2O3 and nano-Si. This review will hopefully stimulate more extensive and insightful studies on using bionanotechnology for developing high-performance LIBs.

  4. Fabricating high performance lithium-ion batteries using bionanotechnology

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Hou, Yukun; He, Wen; Yang, Guihua; Cui, Jingjie; Liu, Shikun; Song, Xin; Huang, Zhen

    2015-02-01

    Designing, fabricating, and integrating nanomaterials are key to transferring nanoscale science into applicable nanotechnology. Many nanomaterials including amorphous and crystal structures are synthesized via biomineralization in biological systems. Amongst various techniques, bionanotechnology is an effective strategy to manufacture a variety of sophisticated inorganic nanomaterials with precise control over their chemical composition, crystal structure, and shape by means of genetic engineering and natural bioassemblies. This provides opportunities to use renewable natural resources to develop high performance lithium-ion batteries (LIBs). For LIBs, reducing the sizes and dimensions of electrode materials can boost Li+ ion and electron transfer in nanostructured electrodes. Recently, bionanotechnology has attracted great interest as a novel tool and approach, and a number of renewable biotemplate-based nanomaterials have been fabricated and used in LIBs. In this article, recent advances and mechanism studies in using bionanotechnology for high performance LIBs studies are thoroughly reviewed, covering two technical routes: (1) Designing and synthesizing composite cathodes, e.g. LiFePO4/C, Li3V2(PO4)3/C and LiMn2O4/C; and (2) designing and synthesizing composite anodes, e.g. NiO/C, Co3O4/C, MnO/C, α-Fe2O3 and nano-Si. This review will hopefully stimulate more extensive and insightful studies on using bionanotechnology for developing high-performance LIBs.

  5. Lithium-ion batteries for hearing aid applications: I. Design and performance

    NASA Astrophysics Data System (ADS)

    Passerini, S.; Owens, B. B.; Coustier, F.

    Rechargeable batteries have been designed for powering hearing aid devices (HAD). The cells, based on the lithium-ion chemistry, were designed in a size that is compatible with the existing HAD. The 10 mA h batteries were tested to characterize the design and the electrochemical performance from the point of view of a typical HAD application. Results are presented for constant-current tests, first-cycle conditions, charge voltage cut-off, rate performance, and cycle life. The pulse capabilities and the preliminary safety tests of the batteries will be presented in a following report. The results of the lithium-ion HAD cells developed in this project are compared with other battery chemistries: lithium-alloy and nickel-metal hydride secondary batteries and Zn-air primary batteries.

  6. SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect

    Trulove, Paul C.; Foley, Matthew P.

    2012-09-30

    The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

  7. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.

    PubMed

    Jha, Manis Kumar; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-01

    In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2M sulfuric acid with the addition of 5% H(2)O(2) (v/v) at a pulp density of 100 g/L and 75°C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H(2)O(2) in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1-(1-X)(1/3)=k(c)t. Leaching kinetics of cobalt fitted well to the model 'ash diffusion control dense constant sizes spherical particles' i.e. 1-3(1-X)(2/3)+2(1-X)=k(c)t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  8. New promising lithium malonatoborate salts for high voltage lithium ion batteries

    DOE PAGES

    Sun, Xiao -Guang; Wan, Shun; Guang, Hong Yu; ...

    2016-12-01

    Here, three new lithium salts, lithium difluoro-2-methyl-2-fluoromalonaoborate (LiDFMFMB), lithium difluoro-2-ethyl-2-fluoromalonaoborate (LiDFEFMB), and lithium difluoro-2-propyl-2-fluoro malonaoborate (LiDFPFMB), have been synthesized and evaluated for application in lithium ion batteries. These new salts are soluble in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.) and 1.0 M salt solutions can be easily prepared. The ionic conductivities of these new salts are close to those of LiBF4 and LiPF6. Cyclic voltammograms reveal that these new salt based electrolytes can passivate both natural graphite and high voltage spinel LiNi0.5Mn1.5O4 (LNMO) to form effective solid electrolyte interphases (SEIs). In addition,more » these new salts based electrolytes exhibit good cycling stability with high coulombic efficiencies in both LiNi0.5Mn1.5O4 and graphite based half-cells and full cells.« less

  9. New promising lithium malonatoborate salts for high voltage lithium ion batteries

    SciTech Connect

    Sun, Xiao -Guang; Wan, Shun; Guang, Hong Yu; Fang, Youxing; Reeves, Kimberly Shawn; Chi, Miaofang; Dai, Sheng

    2016-12-01

    Here, three new lithium salts, lithium difluoro-2-methyl-2-fluoromalonaoborate (LiDFMFMB), lithium difluoro-2-ethyl-2-fluoromalonaoborate (LiDFEFMB), and lithium difluoro-2-propyl-2-fluoro malonaoborate (LiDFPFMB), have been synthesized and evaluated for application in lithium ion batteries. These new salts are soluble in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.) and 1.0 M salt solutions can be easily prepared. The ionic conductivities of these new salts are close to those of LiBF4 and LiPF6. Cyclic voltammograms reveal that these new salt based electrolytes can passivate both natural graphite and high voltage spinel LiNi0.5Mn1.5O4 (LNMO) to form effective solid electrolyte interphases (SEIs). In addition, these new salts based electrolytes exhibit good cycling stability with high coulombic efficiencies in both LiNi0.5Mn1.5O4 and graphite based half-cells and full cells.

  10. Lithium Ion Vehicle Start Batteries - Power for the Future

    DTIC Science & Technology

    2011-08-09

    results in less power being available as the battery state of charge (and voltage) is decreased. Lithium Nanophosphate ( LiFePO4 ) exhibits this to...a much lesser extent. As shown in figure 1, the voltage v. SOC curve for LiFePO4 is nearly flat throughout most of its state of charge.[1] This

  11. Investigation into key interfacial reactions within lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Vissers, Daniel Richard

    Given the concern of global climate change and the understanding that carbon dioxide emissions are driving this change, much effort has been invested into lowering carbon dioxide emissions. One approach to reduce carbon dioxide emissions is to curtail the carbon dioxide emissions from vehicles through the introduction of hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. Today, lithium cobalt oxide materials are widely used in consumer electronic applications, yet these materials are cost prohibitive for larger scale vehicle applications. As a result, alternative materials with higher energy densities and lower costs are being investigated. One key alternative to cobalt that has received much attention is manganese. Manganese is of interest for its lower cost and favorable environmental friendliness. The use of manganese has led to numerous cathode materials such as Li 1-deltaMn2O4 (4V spinel), Li1-deltaMn 1.5Ni0.25O4 (5V spinel), Li1-(Mn 1-x-yNiyCox)O2 (layered), Li2MnO 3-Li1-delta(Mn1-x-yNiyCox)O 2 (layered-layered), and Li2MnO3-Li1-delta (Mn1-x-yNiyCox)1O2 -Li1-deltaMn2O4 (layered-layered-spinel). The work disclosed in the dissertation focuses on two topics associated with these manganese based cathodes. The first topic is the exceptional cyclic-ability of a high power, high energy density, 5V spinel cathode material (Li 1-deltaMn1.5Ni0.25O4) with a core-shell architecture, and the second is the severe capacity fade associated with manganese dissolution from cathodes at elevated operating temperatures. Both topics are of interest to the Li-ion battery industry. For instance, a 5V spinel cathode represents a viable path to increase both the power and energy density of Li-ion batteries. As its name implies, the 5V spinel operates at 5V that is higher than the conventional 4V lithium ion batteries. Since power and energy are directly proportional to the potential, moving from an operating potential of 4V to 5V represents an increase

  12. Demonstration of Experimental Infrastructure for Studying Cell-to-Cell Failure Propagation in Lithium-Ion Batteries

    DTIC Science & Technology

    2014-09-11

    Love, C. T.; Swider-Lyons, K. “Impedance diagnostic for overcharged lithium -ion batteries.” Electrochem. Solid -State Lett. 15 (2012) A53-A56. [21...Failure Propagation in Lithium -ion Batteries September 11, 2014 Approved for public release; distribution is unlimited. Christopher r. Field Mark h...for Studying Cell-to-Cell Failure Propagation in Lithium -ion Batteries Christopher R. Field, Mark H. Hammond, Steven G. Tuttle, Bradley A. Williams

  13. In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    PubMed Central

    Finegan, Donal P.; Scheel, Mario; Robinson, James B.; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J.; Millichamp, Jason; Di Michiel, Marco; Offer, Gregory J.; Hinds, Gareth; Brett, Dan J.L.; Shearing, Paul R.

    2015-01-01

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features. PMID:25919582

  14. In-operando high-speed tomography of lithium-ion batteries during thermal runaway.

    PubMed

    Finegan, Donal P; Scheel, Mario; Robinson, James B; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J; Millichamp, Jason; Di Michiel, Marco; Offer, Gregory J; Hinds, Gareth; Brett, Dan J L; Shearing, Paul R

    2015-04-28

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features.

  15. In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    NASA Astrophysics Data System (ADS)

    Finegan, Donal P.; Scheel, Mario; Robinson, James B.; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J.; Millichamp, Jason; di Michiel, Marco; Offer, Gregory J.; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2015-04-01

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features.

  16. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOEpatents

    Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  17. Neutron scattering for analysis of processes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Balagurov, A. M.; Bobrikov, I. A.; Samoylova, N. Yu; Drozhzhin, O. A.; Antipov, E. V.

    2014-12-01

    The review is concerned with analysis and generalization of information on application of neutron scattering for elucidation of the structure of materials for rechargeable energy sources (mainly lithium-ion batteries) and on structural rearrangements in these materials occurring in the course of electrochemical processes. Applications of the main methods including neutron diffraction, small-angle neutron scattering, inelastic neutron scattering, neutron reflectometry and neutron introscopy are considered. Information on advanced neutron sources is presented and a number of typical experiments are outlined. The results of some studies of lithium-containing materials for lithium-ion batteries, carried out at IBR-2 pulsed reactor, are discussed. The bibliography includes 50 references.

  18. Sinusoidal current and stress evolutions in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Guang; Bauer, Christoph; Wang, Chao-Yang

    2016-09-01

    Mechanical breakdown of graphite materials due to diffusion-induced stress (DIS) is a key aging mechanism of lithium-ion batteries. In this work, electrochemical-thermal coupled model along with a DIS model is developed to study the DIS distribution across the anode thickness. Special attention is paid to the evolution behavior of surface tangential stress (STS) in the discharge process for graphite at different locations of the anode. For the first time, we report that the evolution of STS, as well as local current, at all locations of the anode, evolve like sinusoidal waves in the discharge process with several crests and troughs. The staging behavior of graphite active material, in particular the sharp change of open-circuit potential (OCP) of graphite in the region between two plateaus, is found to be the root cause for the sinusoidal patterns of current and stress evolution. Furthermore, the effects of various parameters, such as starting state of charge, discharge C-rate and electrode thickness on the current and stress evolutions are investigated.

  19. Quantifying Cell-to-Cell Variations in Lithium Ion Batteries

    SciTech Connect

    Santhanagopalan, S.; White, R. E.

    2012-01-01

    Lithium ion batteries have conventionally been manufactured in small capacities but large volumes for consumer electronics applications. More recently, the industry has seen a surge in the individual cell capacities, as well as the number of cells used to build modules and packs. Reducing cell-to-cell and lot-to-lot variations has been identified as one of the major means to reduce the rejection rate when building the packs as well as to improve pack durability. The tight quality control measures have been passed on from the pack manufactures to the companies building the individual cells and in turn to the components. This paper identifies a quantitative procedure utilizing impedance spectroscopy, a commonly used tool, to determine the effects of material variability on the cell performance, to compare the relative importance of uncertainties in the component properties, and to suggest a rational procedure to set quality control specifications for the various components of a cell, that will reduce cell-to-cell variability, while preventing undue requirements on uniformity that often result in excessive cost of manufacturing but have a limited impact on the cells performance.

  20. Prospects for reducing the processing cost of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wood, David L.; Li, Jianlin; Daniel, Claus

    2015-02-01

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from 502.8 kW h-1-usable to 370.3 kW h-1-usable, a savings of 132.5/kWh (or 26.4%).

  1. Graphite Recycling from Spent Lithium-Ion Batteries.

    PubMed

    Rothermel, Sergej; Evertz, Marco; Kasnatscheew, Johannes; Qi, Xin; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2016-12-20

    The present work reports on challenges in utilization of spent lithium-ion batteries (LIBs)-an increasingly important aspect associated with a significantly rising demand for electric vehicles (EVs). In this context, the feasibility of anode recycling in combination with three different electrolyte extraction concepts is investigated. The first method is based on a thermal treatment of graphite without electrolyte recovery. The second method additionally utilizes a subcritical carbon-dioxide (subcritical CO2 )-assisted electrolyte extraction prior to thermal treatment. And the final investigated approach uses supercritical carbon dioxide (scCO2 ) as extractant, subsequently followed by the thermal treatment. It is demonstrated that the best performance of recycled graphite anodes can be achieved when electrolyte extraction is performed using subcritical CO2 . Comparative studies reveal that, in the best case, the electrochemical performance of recycled graphite exceeds the benchmark consisting of a newly synthesized graphite anode. As essential efforts towards electrolyte extraction and cathode recycling have been made in the past, the electrochemical behavior of recycled graphite, demonstrating the best performance, is investigated in combination with a recycled LiNi1/3 Co1/3 Mn1/3 O2 cathode.

  2. Silicon oxide based high capacity anode materials for lithium ion batteries

    DOEpatents

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  3. Development of cooling strategy for an air cooled lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Sun, Hongguang; Dixon, Regan

    2014-12-01

    This paper describes a cooling strategy development method for an air cooled battery pack with lithium-ion pouch cells used in a hybrid electric vehicle (HEV). The challenges associated with the temperature uniformity across the battery pack, the temperature uniformity within each individual lithium-ion pouch cell, and the cooling efficiency of the battery pack are addressed. Initially, a three-dimensional battery pack thermal model developed based on simplified electrode theory is correlated to physical test data. An analytical design of experiments (DOE) approach using Optimal Latin-hypercube technique is then developed by incorporating a DOE design model, the correlated battery pack thermal model, and a morphing model. Analytical DOE studies are performed to examine the effects of cooling strategies including geometries of the cooling duct, cooling channel, cooling plate, and corrugation on battery pack thermal behavior and to identify the design concept of an air cooled battery pack to maximize its durability and its driving range.

  4. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect

    Jha, Manis Kumar Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 − (1 − X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 − 3(1 − X){sup 2/3} + 2(1 − X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  5. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    SciTech Connect

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  6. On the choice of graphite for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Simon, B.; Flandrois, S.; Guerin, K.; Fevrier-Bouvier, A.; Teulat, I.; Biensan, P.

    Graphites as active materials for negative electrode in lithium batteries are particularly attractive because of their large capacity of lithium intercalation and their low average voltage. In some conditions, they are known to suffer from low reversibility of the initial intercalation process. This phenomenon is shown to be unambiguously related to an exfoliation of graphene layers, that can occur even in EC based electrolytes. Occurrence of a clear correlation between the extent of irreversible behaviour and rhombohedral phase content of graphites is discussed. Milling or thermal treatment of pristine graphites are also shown to influence electrochemical properties.

  7. Performance and Comparison of Lithium-Ion Batteries Under Low-Earth-Orbit Mission Profiles

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Smart, Marshall C.; Bugga, Ratnakumar V.; Manzo, Michelle A.; Miller, Thomas B.; Gitzendanner, Rob

    2007-01-01

    The performance of two 28 V, 25 Ah lithium-ion batteries is being evaluated under low-Earth-orbit mission profiles for satellite and orbiter applications. The batteries are undergoing life testing and have achieved over 12,000 cycles to 40 percent depth-of-discharge.

  8. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.

    PubMed

    Zheng, Shiyou; Chen, Yvonne; Xu, Yunhua; Yi, Feng; Zhu, Yujie; Liu, Yihang; Yang, Junhe; Wang, Chunsheng

    2013-12-23

    Highly stable sulfur/microporous carbon (S/MC) composites are prepared by vacuum infusion of sulfur vapor into microporous carbon at 600 °C, and lithium sulfide/microporous carbon (Li2S/MC) cathodes are fabricated via a novel and facile in situ lithiation strategy, i.e., spraying commercial stabilized lithium metal powder (SLMP) onto a prepared S/MC film cathode prior to the routine compressing process in cell assembly. The in situ formed Li2S/MC film cathode shows high Coulombic efficiency and long cycling stability in a conventional commercial Li-ion battery electrolyte (1.0 M LiPF6 + EC/DEC (1:1 v/v)). The reversible capacities of Li2S/MC cathodes remain about 650 mAh/g even after 900 charge/discharge cycles, and the Coulombic efficiency is close to 100% at a current density of 0.1C, which demonstrates the best electrochemical performance of Li2S/MC cathodes reported to date. Furthermore, this Li2S/MC film cathode fabricated via our in situ lithiation strategy can be coupled with a Li-free anode, such as graphite, carbon/tin alloys, or Si nanowires to form a rechargeable Li-ion cell. As the Li2S/MC cathode is paired with a commercial graphite anode, the full cell of Li2S/MC-graphite (Li2S-G) shows a stable capacity of around 600 mAh/g in 150 cycles. The Li2S/MC cathodes prepared by high-temperate sulfur infusion and SLMP prelithiation before cell assembly are ready to fit into current Li-ion batteries manufacturing processes and will pave the way to commercialize low-cost Li2S-G Li-ion batteries.

  9. Surface modifications of electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fu, L. J.; Liu, H.; Li, C.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H. Q.

    2006-02-01

    Since the birth of the lithium ion battery in the early 1990s, its development has been very rapid and it has been widely applied as power source for a lot of light and high value electronics due to its significant advantages over traditional rechargeable battery systems. Recent research demonstrates the importance of surface structural features of electrode materials for their electrochemical performance, and in this paper the latest progress on this aspect is reviewed. Electrode materials are either anodic or cathodic ones. The former mainly include graphitic carbons, whose surfaces can be modified by mild oxidation, deposition of metals and metal oxides, coating with polymers and other kinds of carbons. Through these modifications, the surface structures of the graphitic carbon anodes are improved, and these improvements include: (1) smoothing the active edge surfaces by removing some reactive sites and/or defects on the graphite surface, (2) forming a dense oxide layer on the graphite surface, and (3) covering active edge structures on the graphite surface. Meanwhile, other accompanying changes occur: (1) production of nanochannels/micropores, (2) an increase in the electronic conductivity, (3) an inhibition of structural changes during cycling, (4) a reduction of the thickness of the SEI (solid-electrolyte-interface) layer, and (5) an increase in the number of host sites for lithium storage. As a result, the direct contact of graphite with the electrolyte solution is prevented, its surface reactivity with electrolytes, the decomposition of electrolytes, the co-intercalation of the solvated lithium ions and the charge-transfer resistance are decreased, and the movement of graphene sheets is inhibited. When the surfaces of cathode materials, mainly including LiCoO 2, LiNiO 2 and LiMn 2O 4, are coated with oxides such as MgO, Al 2O 3, ZnO, SnO 2, ZrO 2, Li 2Oṡ2B 2O 3 glass and other electroactive oxides, the coating can prevent their direct contact with the

  10. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

    PubMed

    Zeng, Xianlai; Li, Jinhui; Shen, Bingyu

    2015-09-15

    With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle.

  11. A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries.

    PubMed

    Zhu, Xiaoming; Jiang, Xiaoyu; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-11-04

    The safety concern is a critical obstacle to large-scale energy storage applications of lithium-ion batteries. A thermostable separator is one of the most effective means to construct the safe lithium-ion batteries. Herein, we demonstrate a novel ceramic (SiO2)-grafted PE separator prepared by electron beam irradiation. The separator shows similar thickness and pore structure to the bare separator, while displaying strong dimensional thermostability, as the shrinkage ratio is only 20% even at an elevated temperature of 180 °C. Besides, the separator is highly electrochemically inert, showing no adverse effect on the energy and power output of the batteries. Considering the excellent electrochemical and thermal stability, the SiO2-grafted PE separator developed in this work is greatly beneficial for constructing safer lithium-ion batteries.

  12. Innovative manufacturing and materials for low cost lithium ion batteries

    SciTech Connect

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator and any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability

  13. Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Croy, Jason R.; Park, Joong Sun; Shin, Youngho; Yonemoto, Bryan T.; Balasubramanian, Mahalingam; Long, Brandon R.; Ren, Yang; Thackeray, Michael M.

    2016-12-01

    Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich "layered-layered-spinel" (LLS) material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (∼200 mAh g-1) and good energy densities (>700 Wh kgoxide-1) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.

  14. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  15. Infrared thermography non-destructive evaluation of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  16. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  17. Spectroscopic studies of cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Totir, Dana Alexa

    2000-10-01

    Structural changes that occur during electrochemical cycling of lithium-ion battery cathode materials have been investigated using in situ spectroscopic techniques. A new method was developed for the preparation of carbon and binder free cathodes utilizing powder materials of interest for commercial batteries. The extraordinary quality of the cyclic voltammetric curves recorded for this type of electrodes during the in situ measurements allows direct correlations to be made between the state of charge of the material and its structural and electronic characteristics. LiCoO2, LiMn2O4 and LiCo0.15Ni 0.85O2 electrodes were evaluated using cycling voltammetry and the mean diffusion coefficient for Li-ions in the lattice (DLi) was calculated for LiMn2O4. LiMn2O4 electrodes prepared by this technique have been studied in situ using Mn K-edge XAS. Data analysis for the species formed at different potentials indicated a contraction of the lattice associated with the increase in the oxidation state of manganese. In situ Raman spectra of particles of LiMn2O 4, and LiCoO2 embedded in Au and also of KS-44 graphite and carbon microfibers MCF28 embedded in thermally annealed Ni have been recorded as a function of the applied potential. Fe K-edge XAFS of pyrite electrodes in a Li/PEO(LiClO4)/FeS 2 cell and S K-edge XANES measurements of a FeS2 electrode in a non-aqueous electrolyte have been acquired as a function of the state of charge. The studies have clearly evidenced the formation of metallic Fe and Li2S as intermediates after 4 e- discharge and the formation of Li2FeS2 after 2 e- recharge. While Fe K-edge studies have indicated that there is no change in the Fe environment and oxidation state upon 4 e- recharge, the results obtained from S K-edge studies are inconclusive for this stage. Finally, in situ Co K-edge XAFS data were obtained for the first time during the electrochemical cycling of electrodeposited Co(OH) 2 films in alkaline solutions. The results support

  18. State-of-the-art characterization techniques for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Wu, Tianpin; Amine, Khalil

    2017-03-01

    To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.

  19. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.

    PubMed

    Sun, Yige; Tang, Jie; Zhang, Kun; Yuan, Jinshi; Li, Jing; Zhu, Da-Ming; Ozawa, Kiyoshi; Qin, Lu-Chang

    2017-02-16

    Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g(-1), which is about three times of 372 mA h g(-1), the value expected for the LiC6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.

  20. Smart multifunctional fluids for lithium ion batteries: enhanced rate performance and intrinsic mechanical protection.

    PubMed

    Ding, Jie; Tian, Tongfei; Meng, Qing; Guo, Zaiping; Li, Weihua; Zhang, Peng; Ciacchi, Fabio T; Huang, Jewel; Yang, Wenrong

    2013-01-01

    Lithium ion batteries are attractive power sources for the consumer electronics market and are being aggressively developed for road transportation. Nevertheless, issues with safety and reliability need to be solved prior to the large-scale uptake of these batteries. There have recently been significant development and assessment of materials with resistance to mechanical abuse, with the aims of reinforcing the battery and preventing puncturing during a crash. Most of the work on battery mechanical safety has concentrated on the external packaging of batteries, with little attention being paid to the enclosed electrolyte. We report on smart multifunctional fluids that act as both highly conductive electrolytes and intrinsic mechanical protectors for lithium ion batteries. These fluids exhibit a shear thickening effect under pressure or impact and thus demonstrate excellent resistance to crushing. Also, the fluids show higher ionic conductivities and comparable redox stability windows to the commercial liquid electrolytes.

  1. Plasticized Polymer Composite Single-Ion Conductors for Lithium Batteries.

    PubMed

    Zhao, Hui; Asfour, Fadi; Fu, Yanbao; Jia, Zhe; Yuan, Wen; Bai, Ying; Ling, Min; Hu, Heyi; Baker, Gregory; Liu, Gao

    2015-09-02

    Lithium bis(trifluoromethane) sulfonamide (TFSI) is a promising electrolyte salt in lithium batteries, due to its good conductivity and high dissociation between the lithium cation and its anion. By tethering N-pentane trifluoromethane sulfonamide (C5NHTf), a TFSI analogue molecule, onto the surface of silica nanoparticle as a monolayer coverage should increase the Li(+) transference number to unity since anions bound to particles have reduced mobilities. Silica polymer composite has better mechanical property than that of the pure PEO. Analogously trifluoromethane sulfonic aminoethyl methacrylate (TfMA), a TFSI analogue vinyl monomer, was polymerized on silica nanoparticle surface as a multilayer coverage. Anchored polyelectrolytes to particle surfaces offer multiple sites for anions, and in principle the carrier concentration would increase arbitrarily and approach the carrier concentration of the bulk polyelectrolyte. Monolayer grafted nanoparticles have a lithium content of 1.2 × 10(-3) g Li/g, and multilayer grafted nanoparticles have a lithium content over an order higher at 2 × 10(-2) g Li/g. Electrolytes made from monolayer grafted particles exhibit a weak conductivity dependence on temperature, exhibiting an ionic conductivity in the range of 10(-6) S/cm when temperatures increase to 80 °C. While electrolytes made from multilayer grafted particles show a steep increase in conductivity with temperature with an ionic conductivity increase to 3 × 10(-5) S/cm at 80 °C, with an O/Li ratio of 32.

  2. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    PubMed

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications.

  3. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 20 Wh for a lithium ion cell or 100 Wh for a lithium ion battery. After December 31, 2015, each lithium ion battery subject to this provision must be marked with the Watt-hour rating on the outside case... cell and 25 g for a lithium metal battery and 60 Wh for a lithium ion cell or 300 Wh for a lithium......

  4. Hazards, Safety and Design Considerations for Commercial Lithium-ion Cells and Batteries

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2007-01-01

    This viewgraph presentation reviews the features of the Lithium-ion batteries, particularly in reference to the hazards and safety of the battery. Some of the characteristics of the Lithium-ion cell are: Highest Energy Density of Rechargeable Battery Chemistries, No metallic lithium, Leading edge technology, Contains flammable electrolyte, Charge cut-off voltage is critical (overcharge can result in fire), Open circuit voltage higher than metallic lithium anode types with similar organic electrolytes. Intercalation is a process that places small ions in crystal lattice. Small ions (such as lithium, sodium, and the other alkali metals) can fit in the interstitial spaces in a graphite lattice. These metallic ions can go farther and force the graphitic planes apart to fit two, three, or more layers of metallic ions between the carbon sheets. Other features of the battery/cell are: The graphite is conductive, Very high energy density compared to NiMH or NiCd, Corrosion of aluminum occurs very quickly in the presence of air and electrolyte due to the formation of HF from LiPF6 and HF is highly corrosive. Slides showing the Intercalation/Deintercalation and the chemical reactions are shown along with the typical charge/discharge for a cylindrical cell. There are several graphs that review the hazards of the cells.

  5. Lithium-Ion Polymer Rechargeable Battery Developed for Aerospace and Military Applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, orman H.

    1999-01-01

    A recently completed 3 -year project funded by the Defense Advanced Research Projects Agency (DARPA) under the Technology Reinvestment Program has resulted in the development and scaleup of new lithium-ion polymer battery technology for military and aerospace applications. The contractors for this cost-shared project were Lockheed Martin Missiles & Space and Ultralife Batteries, Inc. The NASA Lewis Research Center provided contract management and technical oversight. The final products of the project were a portable 15-volt (V), 10-ampere-hour (A-hr) military radio battery and a 30-V, 50-A-hr marine/aerospace battery. Lewis will test the 50-A-hr battery. The new lithium-ion polymer battery technology offers a threefold or fourfold reduction in mass and volume, relative to today s commonly used nickel-cadmium, nickel-hydrogen, and nickel-metal hydride batteries. This is of special importance for orbiting satellites. It has been determined for a particular commercial communications satellite that the replacement of 1 kg of battery mass with 1 kg of transponder mass could increase the annual revenue flow by $100 000! Since this lithium-ion polymer technology offers battery mass reductions on the order of hundreds of kilograms for some satellites, the potential revenue increases are impressive.

  6. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    PubMed

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-03-02

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm(-2) ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable.

  7. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    PubMed

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  8. High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery

    NASA Astrophysics Data System (ADS)

    Liu, Ming; He, Yan-Bing; Lv, Wei; Zhang, Chen; Du, Hongda; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2014-12-01

    It has been indicated that anatase TiO2 is a promising anode material for lithium ion power battery from many previous researches. Whereas, in this work, we find that the anatase TiO2, when used as an anode for lithium ion battery, has high catalytic activity to initiate the decarboxylation reaction of electrolyte solution, resulting in the large generation of sole gaseous component, CO2. The ROLi species and the new phase of flake-like Li2TiF6 material are the main reaction products between anatase TiO2 and LiPF6 based electrolyte solution. This work provides important and urgent information that the surface chemistry of anatase TiO2 used as the anode material of lithium ion battery must be modified to suppress its catalytic activity for the decomposition of solvents.

  9. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  10. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries

    PubMed Central

    Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing

    2017-01-01

    Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405

  11. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries.

    PubMed

    Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing

    2017-01-01

    Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries.

  12. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  13. Zinc naphthalenedicarboxylate coordination complex: A promising anode material for lithium and sodium-ion batteries with good cycling stability.

    PubMed

    Fei, Hailong; Feng, Wenjing; Xu, Tan

    2017-02-15

    It is important to discover new, cheap and environmental friendly electrode materials with high capacity and good cycling stability for lithium and sodium-ion batteries. Zinc 1,4-naphthalenedicarboxylate was firstly found to be stable anode materials for lithium and sodium-ion batteries. The discharge capacity can be up to 468.9mAhg(-1) after 100 cycles at a current density of 100mAg(-1) for lithium-ion batteries, while the second discharge capacity of 320.7mAhg(-1) was achieved as anode materials for sodium-ion batteries. A possible electrochemical reaction mechanism was discussed.

  14. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    SciTech Connect

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  15. Electrospun Nanofiber-Coated Membrane Separators for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lee, Hun

    Lithium-ion batteries are widely used as a power source for portable electronic devices and hybrid electric vehicles due to their excellent energy and power densities, long cycle life, and enhanced safety. A separator is considered to be the critical component in lithium-ion rechargeable batteries. The separator is placed between the positive and negative electrodes in order to prevent the physical contact of electrodes while allowing the transportation of ions. In most commercial lithium-ion batteries, polyolefin microporous membranes are commonly used as the separator due to their good chemical stability and high mechanical strength. However, some of their intrinsic natures, such as low electrolyte uptake, poor adhesion property to the electrodes, and low ionic conductivity, can still be improved to achieve higher performance of lithium-ion batteries. In order to improve these intrinsic properties, polyolefin microporous membranes can be coated with nanofibers by using electrospinning technique. Electrospinning is a simple and efficient method to prepare nanofibers which can absorb a significant amount of liquid electrolyte to achieve low internal resistance and battery performance. This research presents the preparation and investigation of composite membrane separators prepared by coating nanofibers onto polyolefin microporous membranes via electrospinning technique. Polyvinylidene fluoride polymers and copolymers were used for the preparation of electrospun nanofiber coatings because they have excellent electrochemical stability, good adhesion property, and high temperature resistance. The nanofiber coatings prepared by electrospinning form an interconnected and randomly orientated structure on the surface of the polyolefin microporous membranes. The size of the nanofibers is on a scale that does not interfere with the micropores in the membrane substrates. The resultant nanofiber-coated membranes have the potential to combine advantages of both the polyolefin

  16. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth; Elwasif, Wael R.; Kalnaus, Sergiy; Simunovic, Srdjan; Kumar, Abhishek; Billings, Jay Jay; Wang, Hsin; Nanda, Jagjit

    2015-08-19

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The model development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.

  17. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    DOE PAGES

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth; ...

    2015-08-19

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The modelmore » development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.« less

  18. Silicon clathrates for lithium ion batteries: A perspective

    NASA Astrophysics Data System (ADS)

    Warrier, Pramod; Koh, Carolyn A.

    2016-12-01

    Development of novel energy storage techniques is essential for the development of sustainable energy resources. Li-ion batteries have the highest rated energy density among rechargeable batteries and have attracted a lot of attention for energy storage in the last 15-20 years. However, significant advancements are required in anode materials before Li-ion batteries become viable for a wide variety of applications, including in renewable energy storage, grid storage, and electric vehicles. While graphite is the current standard anode material in commercial Li-ion batteries, it is Si that exhibits the highest specific energy density among all materials considered for this purpose. Si, however, suffers from significant volume expansion/contraction and the formation of a thick solid-electrolyte interface layer. To resolve these issues, Si clathrates are being considered for anode materials. Clathrates are inclusion compounds and contain cages in which Li could be captured. While Si clathrates offer promising advantages due to their caged structure which enables negligible volume change upon Li insertion, there remains scientific challenges and knowledge gaps to be overcome before these materials can be utilized for Li-ion battery applications, i.e., understanding lithiation/de-lithiation mechanisms, optimizing guest concentrations, as well as safe and economic synthesis routes.

  19. An approach to beneficiation of spent lithium-ion batteries for recovery of materials

    NASA Astrophysics Data System (ADS)

    Marinos, Danai

    Lithium ion batteries are one of the most commonly used batteries. A large amount of these have been used over the past 25 years and the use is expected to rise more due to their use in automotive batteries. Lithium ion batteries cannot be disposed into landfill due to safety reasons and cost. Thus, over the last years, there has been a lot of effort to find ways to recycle lithium ion batteries. A lot of valuable materials are present in a lithium ion battery making their recycling favorable. Many attempts, including pyrometallurgical and hydrometallurgical methods, have been researched and some of them are already used by the industry. However, further improvements are needed to the already existing processes, to win more valuable materials, use less energy and be more environmentally benign. The goal of this thesis is to find a low-temperature, low-energy method of recovering lithium from the electrolyte and to develop pathways for complete recycling of the battery. The research consists of the following parts: Pure LiPF6 powder, which is the electrolyte material, was characterized using x- ray diffraction analysis and DSC/TGA analysis. The LiPF6 powder was titrated using acid (HCl, HNO3, H2SO4), bases (NH4 OH) and distilled water. It was concluded that distilled water was the best solvent to selectively leach lithium from lithium-ion batteries. Leaching conditions were optimized including time, temperature, solid/liquid ratio and stirring velocity. All the samples were tested using ICP for chemical composition. Because leaching could be performed at room temperature, leaching was conducted in a flotation machine that was able to separate plastics by creating bubbles with no excess reagents use. The solution that contained lithium had to be concentrated more in order for lithium to be able to precipitate and it was shown that the solution could be concentrated by using the same solution over and over again. The next set of experiments was composed of battery

  20. Synthesis and characterization of nanostructured cathode materials for rechargeable lithium/lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Jingsi

    The rapidly increasing markets of portable electronic devices and electric/hybrid vehicles have raised worldwide R&D efforts in developing high-energy rechargeable lithium and lithium ion batteries. High performance intercalation cathodes are key to the success of these batteries. The nanotechnology has endowed the electrode materials with a variety of improved features as well as unique characteristics. Synthesis approaches were designed in this thesis work to utilize these advantages and investigate the exceptional phenomena raised by the nanostructured materials. A novel sol-gel method was designed for the synthesis of carbon-coated phase-pure lithium iron phosphate with submicron particle sizes and uniform size distribution. The surface carbon coating was formed in-situ through pyrolysis of the precursor gel, which improved the apparent electronic conductivity of the as prepared material to 10-2 S/cm compared with 10-9-10-10 S/cm of the pristine LiFePO 4. The favorable physical characteristics of the synthesized LiFePO 4 particles and the improved electronic conductivity through the carbon coating led to electrochemical properties comparable to the best performances reported so far. Amorphous manganese oxide cryogels with nanoarchitecture were obtained by freeze-drying Mn (IV) oxide hydrogels. The combination of the advantages of the amorphous structure and the nano-architecture of the materials gave high capacities and excellent rate capabilities. This work led to the finding of a nanocrystalline Li2MnO3-like compound with a surprising electrochemical activity, which is in sharp contrast to the microcrystalline rock-salt Li2MnO3 that has been known to be electrochemically inactive. The study highlights the possibility of qualitative difference in intercalation behavior of nanostructured intercalation compounds compared with their microcrystalline counterparts. Bismuth and copper modified amorphous manganese oxides were synthesized by aqueous coprecipitation

  1. Cell balancing considerations for lithium-ion battery systems

    SciTech Connect

    Bentley, W.F.

    1997-12-01

    Charge algorithms for Li-Ion batteries require that charging current stop once a maximum voltage threshold is reached. Each battery in a Li-Ion pack must be individually monitored for this condition, so charging of the entire pack ceases as soon as one cell reaches this voltage limitation. Cell balancing algorithms seek to remove charge from the offending cell to equalize voltage and enable additional charging of the pack. This paper considers the technical merits of this approach and the issues associated with its implementation.

  2. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  3. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  4. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  5. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  6. Solid-state lithium battery

    SciTech Connect

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  7. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    DTIC Science & Technology

    2016-08-22

    review of thermal issues in lithium-ion batteries.” J. Electrochem . Soc. 158 (2011) R1-R25. 20. Y. Fu, S. Lu, K. Li, C. Liu, X. Cheng and H. Zhang, “An...Larsson and B.-E. Mellander, “Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells.” J. Electrochem . Soc... Electrochem . Soc. 162 (2015) A2789- 2795. 24. S. J. Drake, D. A. Wetz, J. K. Ostanek, S. P. Miller, J. M. Heinzel and A. Jain, “Measurement of anisotropic

  8. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion.

    PubMed

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C

    2017-04-12

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

  9. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.

    PubMed

    Okamoto, Eiji; Nakamura, Masatoshi; Akasaka, Yuhta; Inoue, Yusuke; Abe, Yusuke; Chinzei, Tsuneo; Saito, Itsuro; Isoyama, Takashi; Mochizuki, Shuichi; Imachi, Kou; Mitamura, Yoshinori

    2007-07-01

    We have developed internal battery systems for driving an undulation pump ventricular assist device using two kinds of lithium ion rechargeable batteries. The lithium ion rechargeable batteries have high energy density, long life, and no memory effect; however, rise in temperature of the lithium ion rechargeable battery is a critical issue. Evaluation of temperature rise by means of numerical estimation is required to develop an internal battery system. Temperature of the lithium ion rechargeable batteries is determined by ohmic loss due to internal resistance, chemical loss due to chemical reaction, and heat release. Measurement results of internal resistance (R(cell)) at an ambient temperature of 37 degrees C were 0.1 Omega in the lithium ion (Li-ion) battery and 0.03 Omega in the lithium polymer (Li-po) battery. Entropy change (DeltaS) of each battery, which leads to chemical loss, was -1.6 to -61.1 J/(mol.K) in the Li-ion battery and -9.6 to -67.5 J/(mol.K) in the Li-po battery depending on state of charge (SOC). Temperature of each lithium ion rechargeable battery under a discharge current of 1 A was estimated by finite element method heat transfer analysis at an ambient temperature of 37 degrees C configuring with measured R(cell) and measured DeltaS in each SOC. Results of estimation of time-course change in the surface temperature of each battery coincided with results of measurement results, and the success of the estimation will greatly contribute to the development of an internal battery system using lithium ion rechargeable batteries.

  10. Single potential electrodeposition of nanostructured battery materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mosby, James Matthew

    The increasing reliance on portable electronics is continuing to fuel research in the area of low power lithium-ion batteries, while a new surge in research for high power lithium-ion batteries has been sparked by the demand for plug-in hybrid electric vehicles (PHEV) and plug-in electric vehicles (PEV). To compete with current lead-acid battery chemistry, a few of the shortcomings of lithium-ion battery chemistry need to be addressed. The three main drawbacks of lithium-ion batteries for this application are: (1) low power density, (2) safety, and (3) the high cost of manufacturing. This dissertation covers the development of a low cost fabrication technique for an alternative anode material with high surface area geometries. The anode material is safer than the conventional anode material in lithium-ion batteries and the high surface area geometries permit higher power densities to be achieved. Electrodeposition is an inexpensive alternative method for synthesizing materials for electronics, energy conversion and energy storage applications relative to traditional solid state techniques. These techniques led to expensive device fabrication. Unlike most solid state synthesis routes, electrodeposition can usually be performed from common solutions and at moderate conditions. Three other benefits of using electrodeposition are: (1) it allows precise control of composition and crystallinity, (2) it provides the ability to deposit on complex shapes, and (3) it can deposit materials with nanoscale dimensions. The use of electrodeposition for alternative anode materials results in the deposition of the material directly onto the current collector that is used for the battery testing and applications without the need of additional binders and with excellent electrical contact. While this improves the characterization of the material and lowers the weight of the non-active materials within a battery, it also allows the anode to be deposited onto current collectors with

  11. Tunneling holes in microparticles to facilitate the transport of lithium ions for high volumetric density batteries.

    PubMed

    Zhu, Jian; Ng, K Y Simon; Deng, Da

    2015-09-14

    Microscale materials generally have a higher tap density than that of random nanoparticles. Therefore, microparticles have been attracting much attention for application as high volumetric density electrodes for lithium ion batteries. However, microparticles have much longer electrolyte diffusion and Li-ion migration length and less accessibility to the electrolyte than that of nanoparticles. Therefore, it will be interesting to tunnel-holes in the high volumetric density microparticles to facilitate the reversible storage of lithium ions. Here, tunnel-like holes were generated in microparticles to dramatically increase the accessibility of the active materials to facilitate the lithium ion transfer. A plausible formation mechanism to explain the generation of tunnel-like holes was proposed based on time-course experiments and intensive characterization. Impressively, the as-prepared microbeads with tunnels demonstrated dramatically improved performance compared to the solid microbeads without tunnels in lithium ion storage. The microparticles with tunnels could achieve comparable electrochemical performances to those nanoparticles reported in the literature, suggesting that microparticles, properly tuned, could be promising candidates as negative electrodes for lithium-ion batteries and worthy of further studies. We also directly measured the volumetric density of the microparticles. We would like to highlight that a superior volumetric capacity of 514 mA h cm(-3) has been achieved. We hope to promote more frequent use of the unit mA h cm(-3) in addition to the conventional unit mA h g(-1) in the battery community.

  12. Lithium-ion Battery Charge Methodologies Observed with Portable Electronic Equipment

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2009-01-01

    Commercial lithium-ion batteries in portable electronic equipment has been used by NASA for space applications since 1999. First battery that was certified for flight and flown for Shuttle use was the Canon BP 927 (2.7 Ah) battery pack. Since then, numerous portable equipment with li-ion batteries have been certified and flown and remain on-orbit for crew usage. Laptops (two generations with third one being worked on now) Camcorder Camera PDA 2 versions (second one being li-ion polymer cells) Satellite Phone Due to expense and time, certified batteries are used with different equipment with the help of adapters or by working with the manufacturer of the equipment to build the appropriate battery compartment and connector. Certified and dedicated chargers are available on Shuttle and on the ISS for safe charging.

  13. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.

    PubMed

    Yao, Fei; Pham, Duy Tho; Lee, Young Hee

    2015-07-20

    A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed.

  14. Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries.

    PubMed

    Vogl, T; Menne, S; Balducci, A

    2014-12-07

    In this study we investigated the chemical-physical properties of mixtures containing the protic ionic liquid (PIL) N-butyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRH4TFSI), propylene carbonate (PC) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in view of their use as electrolytes for lithium-ion batteries (LIBs). We showed that these electrolytic solutions might display conductivity and viscosity comparable to those of conventional electrolytes. Depending on the amount of PIL present inside the mixtures, such mixtures might also display the ability to suppress the anodic dissolution of Al. Furthermore, we showed that the coordination of lithium ions by TFSI in PIL-PC mixtures appears to be different than the one observed for mixtures of PC and aprotic ionic liquids (AILs). When used in combination with a battery electrode, e.g. lithium iron phosphate (LFP), these mixtures allow the achievement of high performance also at a very high C-rate.

  15. Development of Lithium-ion Battery as Energy Storage for Mobile Power Sources Applications

    NASA Astrophysics Data System (ADS)

    Sulaiman, Mohd Ali; Hasan, Hasimah

    2009-09-01

    In view of the need to protect the global environment and save energy, there has been strong demand for the development of lithium-ion battery technology as a energy storage system, especially for Light Electric Vehicle (LEV) and electric vehicles (EV) applications. The R&D trend in the lithium-ion battery development is toward the high power and energy density, cheaper in price and high safety standard. In our laboratory, the research and development of lithium-ion battery technology was mainly focus to develop high power density performance of cathode material, which is focusing to the Li-metal-oxide system, LiMO2, where M=Co, Ni, Mn and its combination. The nano particle size material, which has irregular particle shape and high specific surface area was successfully synthesized by self propagating combustion technique. As a result the energy density and power density of the synthesized materials are significantly improved. In addition, we also developed variety of sizes of lithium-ion battery prototype, including (i) small size for electronic gadgets such as mobile phone and PDA applications, (ii) medium size for remote control toys and power tools applications and (iii) battery module for high power application such as electric bicycle and electric scooter applications. The detail performance of R&D in advanced materials and prototype development in AMREC, SIRIM Berhad will be discussed in this paper.

  16. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems

    SciTech Connect

    Wu, Bingbin; Wang, Shanyu; Evans IV, Willie J.; Deng, Daniel Z.; Yang, Jihui; Xiao, Jie

    2016-01-01

    In recent years room temperature Li+ ion conductors have been intensively revisited in order to develop safe lithium ion (Li-ion) batteries and beyond that can be deployed in the electrical vehicles. Through careful modification on materials synthesis, promising solid Li+ conductors with high ionic conductivity, competitve with liquid electrolytes, have been demonstrated. However, the integration of those highly conductive solid electrolytes into the whole system is still very challenging mainly due to the high impedance existing in the different interfaces throughout the entire battery structure. Herein , this review paper focuses on the overview of the interfacial behaviors between Li+ conductors and cathode/anode materials. The origin, evolution and potential solutions to reuce these interfacial impedances are reviewed for various battery systems spanning from Li-ion, lithium sulfur (Li-S), lithium oxygen (Li-O2) batteries to lithium metal protection. The predicted gravimetric and volumetric energy densities at different scenarios are also discussed along with the prospectives for further development of solid state batteries.

  17. Understanding and improving lithium ion batteries through mathematical modeling and experiments

    NASA Astrophysics Data System (ADS)

    Deshpande, Rutooj D.

    There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. For improvement of battery technology understanding the capacity fading mechanism in batteries is of utmost importance. Novel electrode material and improved electrode designs are needed for high energy- high power batteries with less capacity fading. Furthermore, for applications such as automotive applications, precise cycle-life prediction of batteries is necessary. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, there is a volume change associated with insertion or de-insertion. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the batteries. With different mathematical models we studied the behavior of diffusion induces stresses and effects of electrode shape, size, concentration dependent material properties, pre-existing cracks, phase transformations, operating conditions etc. on the diffusion induced stresses. Thus we develop tools to guide the design of the electrode material with better mechanical stability for durable batteries. Along with mechanical degradation, chemical degradation of batteries also plays an important role in deciding battery cycle life. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although SEI formation contributes to irreversible capacity loss, the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition. SEI layer and diffusion induced stresses are inter-dependent and affect each-other. We study coupled chemical

  18. Electrolyte and Cathode Degradation Mechanisms in Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Tebbe, Jonathon

    Lithium ion battery technologies suffer from limitations in performance, such as capacity fading, due in part to degradation of the cathode and electrolyte materials. Quantum chemical simulations were employed to investigate the reactions leading to degradation of LiCoO2 cathodes and the electrolyte molecules. Formation of HF in the electrolyte resulting from reaction between PF5 and H2O impurities was first investigated. This research predicts HF is produced as a result of PF5 complexing with H2O, then reacting through ligand exchange to form HF and PF4OH with an activation barrier of 1.18 eV and reaction enthalpy of 0.15 eV. HF undergoes dissociative adsorption at that the (101¯4) surface of LiCoO2 without a barrier, leading to formation of LiF-Li+ precipitates and H 2O on the surface with a reaction energy of -2.41 eV. The formation of H2O is of particular concern because H2O drives further formation of HF in the electrolyte, resulting in an autocatalytic cycle of degradation. These findings indicate that HF initially occurs in low concentrations rapidly increases due to H2O generation upon HF attack. Reduction in capacity fading is observed in alumina ALD coated LiCoO2 cathodes and we have investigated a monolayer alumina coating on the LiCoO2 (101¯4) surface to identify the mechanism by which the alumina coating protects the cathode surface. We have found that HF will preferentially dissociate at the alumina coating with a reaction energy of -2.84 eV and without any resolvable barrier to dissociation. Additionally, our calculations predict that H2O does not form as a result of HF dissociation at the alumina monolayer; instead HF dissociation produces neighboring hydroxyl sites on the alumina surface. Consequently, the alumina coating prevents the autocatalytic degradation of the cathode by sequestering HF impurities in the alumina film. Finally, we found that Lewis acid-base complexation between ethylene carbonate (EC) electrolyte molecules and PF5 or the Li

  19. Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries

    SciTech Connect

    Gu, Meng; Belharouak, Ilias; Genc, Arda; Wang, Zhiguo; Wang, Dapeng; Amine, Khalil; Gao, Fei; Zhou, Guangwen; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

    2012-09-17

    A variety of approaches are being made to enhance the performance of lithium ion batteries. Incorporating multi-valence transition metal ions into metal oxide cathodes has been identified as an essential approach to achieve the necessary high voltage and high capacity. However, the fundamental mechanism that limits their power rate and cycling stability remains unclear. The power rate strongly depends on the lithium ion drift speed in the cathode. Crystallographically, these transition metal-based cathodes frequently have a layered structure. In the classic wisdom, it is accepted that lithium ion travels swiftly within the layers moving out/in of the cathode during the charge/discharge. Here, we report the unexpected discovery of a thermodynamically driven, yet kinetically controlled, surface modification in the widely explored lithium nickel manganese oxide cathode material, which may inhibit the battery charge/discharge rate. We found that during cathode synthesis and processing before electrochemical cycling in the cell nickel can preferentially move along the fast diffusion channels and selectively segregate at the surface facets terminated with a mix of anions and cations. This segregation essentially blocks the otherwise fast out/in pathways for lithium ions during the charge/discharge. Therefore, it appears that the transition metal dopant may help to provide high capacity and/or high voltage, but can be located in a “wrong” location that blocks or slows lithium diffusion, limiting battery performance. In this circumstance, limitations in the properties of Li-ion batteries using these cathode materials can be determined more by the materials synthesis issues than by the operation within the battery itself.

  20. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    SciTech Connect

    West, Hannah Elise

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  1. Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks

    NASA Astrophysics Data System (ADS)

    He, Zhiwei; Gao, Mingyu; Ma, Guojin; Liu, Yuanyuan; Chen, Sanxin

    2014-12-01

    Li-ion batteries are widely used in energy storage systems, electric vehicles, communication systems, etc. The State of Health (SOH) of batteries is of great importance to the safety of these systems. This paper presents a novel online method for the estimation of the SOH of Lithium (Li)-ion batteries based on Dynamic Bayesian Networks (DBNs). The structure of the DBN model is built according to the experience of experts, with the state of charges used as hidden states and the terminal voltages used as observations in the DBN. Parameters of the DBN model are learned based on training data collected through Li-ion battery aging experiments. A forward algorithm is applied for the inference of the DBN model in order to estimate the SOH in real-time. Experimental results show that the proposed method is effective and efficient in estimating the SOH of Li-ion batteries.

  2. Ultralife's polymer electrolyte rechargeable lithium-ion batteries for use in the mobile electronics industry

    NASA Astrophysics Data System (ADS)

    Cuellar, Edward A.; Manna, Michael E.; Wise, Ralph D.; Gavrilov, Alexei B.; Bastian, Matthew J.; Brey, Rufus M.; DeMatteis, Jeffrey

    Ultralife Polymer™ brand batteries for cellular phones as made by Nokia Mobile Phones Incorporated were introduced in July 2000. Characteristics of the UBC443483 cell and UB750N battery are described and related to the power and battery requirements of these cellular phones and chargers. Current, power, and pulse capability are presented as functions of temperature, depth of discharge, and storage at the cell level. Safety protection devices and chargers are discussed at the battery pack level, as well as performance in cellular phones under various wireless communication protocols. Performance is competitive with liquid lithium-ion systems while offering opportunity for non-traditional form factors.

  3. Fumed Silica-Based Single-Ion Nanocomposite Electrolyte for Lithium Batteries.

    PubMed

    Zhao, Hui; Jia, Zhe; Yuan, Wen; Hu, Heyi; Fu, Yanbao; Baker, Gregory L; Liu, Gao

    2015-09-02

    A composite lithium electrolyte composed of polyelectrolyte-grafted nanoparticles and polyethylene glycol dimethyl ether (PEGDME) is synthesized and characterized. Polyanions immobilized by the silica nanoparticles have reduced anion mobility. Composite nanoparticles grafted by poly(lithium 4-styrenesulfonate) only have moderate conductivity at 60 °C. Almost an order increase of the conductivity to ∼10(-6) S/cm is achieved by co-polymerization of the poly(ethylene oxide) methacrylate with sodium 4-styrenesulfonate, which enhances dissociation between lithium cation and polyanion and facilitates lithium ion transfer from the inner part of the polyelectrolyte layer. This composite electrolyte has the potential to suppress lithium dendrite growth and enable the use of lithium metal anode in rechargeable batteries.

  4. Origins of Lithium-Carbon Binding in Carbon-based Lithium-ion Battery Anodes

    NASA Astrophysics Data System (ADS)

    Wood, Brandon; Liu, Yuanyue; Wang, Morris; Yakobson, Boris

    2014-03-01

    Many key performance characteristics of carbon-based lithium-ion battery anodes are determined by the strength of binding between lithium (Li) and sp2 carbon (C). Using extensive density functional theory calculations, we investigate the detailed interaction of Li with a wide variety of sp2 C substrates, including pristine, defective, and strained graphene; planar C clusters; nanotubes; C edges; and multilayer stacks. We find that in almost all cases, the Li-C binding energy scales is determined largely by the work required to fill unoccupied carbon states, suggesting that intrinsic quantum capacitance is important for predicting Li capacity. This allows the binding energy and capacity to be estimated based solely on the electronic structure of the substrate. It also provides a connection to carbon-based supercapacitors, and underscores the role of electronic structure in interfacial electrochemical systems. Implications for improving the effective capacity of carbon-based anodes will be discussed. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  5. The role of mechanically induced separator creep in lithium-ion battery capacity fade

    NASA Astrophysics Data System (ADS)

    Peabody, Christina; Arnold, Craig B.

    2011-10-01

    Lithium-ion batteries are well-known to be plagued by a gradual loss of capacity and power which occur regardless of use and can be limiting factors in the development of emerging energy technologies. Here we show that separator deformation in response to mechanical stimuli that arise under normal operation and storage conditions, such as external stresses on the battery stack or electrode expansion associated with lithium insertion/deinsertion, leads to increased internal resistance and significant capacity fade. We find this mechanically induced capacity fade to be a result of viscoelastic creep in the electrochemically inactive separator which reduces ion transport via a pore closure mechanism. By applying compressive stress on the battery structure we are able to accelerate aging studies and identify this unexpected, but important and fundamental link between mechanical properties and electrochemical performance. Furthermore, by making simple modifications to the electrode structure or separator properties, these effects can be mitigated, providing a pathway for improved battery performance.

  6. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  7. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  8. A review of nanofibrous structures in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pampal, Esra Serife; Stojanovska, Elena; Simon, Bálint; Kilic, Ali

    2015-12-01

    Materials for harvesting and storing energy have been extensively studied in the last decade. Many inorganic materials have already been developed and utilized in products for electrochemical energy-storage systems. The nature of these complex materials requires further investigation from several approaches in order to improve specific characteristics of batteries, such as storage capacity and environmental impact. Fiber scientists have also introduced original solutions using mostly inorganic novel materials. Nanofibers and nanofibrous materials have found applications in the three battery components of anodes, cathodes, and separators. Many methods produce nanofibers; out of these, electrospinning is seen as the most adaptable technique because of the versatility and scalability of the process. The present review collates recent studies on nanofibers for applications in Li-ion batteries, with a focus on the electrospinning technique. The advantages of the investigated fibrous materials are explored in detail.

  9. Performance analysis of lithium-ion battery/electrochemical capacitor hybrid systems

    NASA Astrophysics Data System (ADS)

    Sikha, Godfrey

    Electrochemical double layer capacitors are the most suitable power sources for high powered applications such as electric vehicles, power distribution systems, uninterrupted power supply, hybrid vehicles and other electronic devices due to their high power densities. However, their energy densities are considerably lower than those of high energy battery systems such as Lithium-ion. Although advanced battery systems and double layer electrochemical capacitors contrast with regard to energy-power relationship, in combination they can be utilized as an effective power source for various applications. So a systematic study of the performance of the combination of these energy sources (hybrid system) is indispensable. In this thesis, a hybrid system consisting of a lithium-ion battery coupled with a network of electrochemical capacitors was constructed and investigated in detail under pulse type of discharge. The impact of various operating parameters such as duty ratio, frequency, pulse current amplitude, number of capacitors in the capacitor network on the performance of the hybrid system was studied. To further understand and optimize the hybrid system a mathematical model for a lithium-ion/electrochemical capacitor network hybrid was developed from first principles. The prominent features of the model were its capability to predict the current shared by the battery and the capacitor network during discharge and its versatility to include any number of identical capacitors/batteries in series/parallel configuration. Specific energy and power relationships were simulated to identify the regime where the performance of the hybrids was better than the battery on a mass basis. The validity of the model was also tested against experimental data obtained from a Sony US 18650 lithium-ion battery/Maxwell PC100F electrochemical capacitor hybrid system. Finally a case study on the performance of the battery-alone system against a hybrid system was done for two different high

  10. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.

    PubMed

    Fu, Kun; Wang, Yibo; Yan, Chaoyi; Yao, Yonggang; Chen, Yanan; Dai, Jiaqi; Lacey, Steven; Wang, Yanbin; Wan, Jiayu; Li, Tian; Wang, Zhengyang; Xu, Yue; Hu, Liangbing

    2016-04-06

    All-component 3D-printed lithium-ion batteries are fabricated by printing graphene-oxide-based composite inks and solid-state gel polymer electrolyte. An entirely 3D-printed full cell features a high electrode mass loading of 18 mg cm(-2) , which is normalized to the overall area of the battery. This all-component printing can be extended to the fabrication of multidimensional/multiscale complex-structures of more energy-storage devices.

  11. Synthesis and Characterization of Thin Film Lithium-Ion Batteries Using Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Maranchi, Jeffrey P.; Kumta, Prashant N.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    The present paper describes the integration of thin film electrodes with polymer electrolytes to form a complete thin film lithium-ion battery. Thin film batteries of the type, LiCoO2 [PAN, EC, PC, LiN(CF3SO2)2] SnO2 have been fabricated. The results of the synthesis and characterization studies will be presented and discussed.

  12. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations

    SciTech Connect

    Chung, Donald; Elgqvist, Emma; Santhanagopalan, Shriram

    2015-06-01

    This study highlights the U.S. foothold in automotive lithium-ion battery (LIB) production, globally. U.S.-based manufacturers comprise 17% of global production capacity. With increasing demand for electric and hybrid electric vehicles and U.S. vehicle manufacturers' proximity to customers, there is a growing opportunity for the United States to compete globally in the automotive LIB market.

  13. Highly lithium-ion conductive battery separators from thermally rearranged polybenzoxazole.

    PubMed

    Lee, Moon Joo; Kim, Ji Hoon; Lim, Hyung-Seok; Lee, So Young; Yu, Hyung Kyun; Kim, Jong Hun; Lee, Joo Sung; Sun, Yang-Kook; Guiver, Michael D; Suh, Kyung Do; Lee, Young Moo

    2015-02-07

    High power density lithium ion battery (HLIB) separators were fabricated for the first time from thermally rearranged poly(benzoxazole-co-imide) (TR-PBOI) nanofibrous membranes coated with TR-PBOI nanoparticles, which show distinct thermal and dimensional stabilities as well as excellent cycle retention and rate capability.

  14. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOEpatents

    Neudecker, Bernd J.; Bates, John B.

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  15. Si composite electrode with Li metal doping for advanced lithium-ion battery

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  16. Reaction between Lithium Anode and Polysulfide Ions in a Lithium-Sulfur Battery

    SciTech Connect

    Zheng, Dong; Yang, Xiao-Qing; Qu, Deyang

    2016-08-18

    Here, the reaction between polysulfides and a lithium anode in a Li–S battery was examined using HPLC. The results demonstrated that the polysulfide species with six sulfur atoms or more were reactive with regard to lithium metal. Although the reaction can be greatly inhibited by the addition of LiNO3 in the electrolyte, LiNO3 cannot form a stable protection layer on the Li anode to prevent the reaction during storage.

  17. Reaction between Lithium Anode and Polysulfide Ions in a Lithium-Sulfur Battery

    DOE PAGES

    Zheng, Dong; Yang, Xiao-Qing; Qu, Deyang

    2016-08-18

    Here, the reaction between polysulfides and a lithium anode in a Li–S battery was examined using HPLC. The results demonstrated that the polysulfide species with six sulfur atoms or more were reactive with regard to lithium metal. Although the reaction can be greatly inhibited by the addition of LiNO3 in the electrolyte, LiNO3 cannot form a stable protection layer on the Li anode to prevent the reaction during storage.

  18. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries.

    PubMed

    Kil, Eun-Hye; Choi, Keun-Ho; Ha, Hyo-Jeong; Xu, Sheng; Rogers, John A; Kim, Mi Ri; Lee, Young-Gi; Kim, Kwang Man; Cho, Kuk Young; Lee, Sang-Young

    2013-03-13

    A class of imprintable, bendable, and shape-conformable polymer electrolyte with excellent electrochemical performance in a lithium battery system is reported. The material consists of a UV-cured polymer matrix, high-boiling point liquid electrolyte, and Al2 O3 nanoparticles, formulated for use in lithium-ion batteries with 3D-structured electrodes or flexible characteristics. The unique structural design and well-tuned rheological characteristics of the UV-curable electrolyte mixture, in combination with direct UV-assisted nanoimprint lithography, allow the successful fabrication of polymer electrolytes in geometries not accessible with conventional materials.

  19. In-situ measurement of the lithium distribution in Li-ion batteries using micro-IBA techniques

    NASA Astrophysics Data System (ADS)

    Yamazaki, A.; Orikasa, Y.; Chen, K.; Uchimoto, Y.; Kamiya, T.; Koka, M.; Satoh, T.; Mima, K.; Kato, Y.; Fujita, K.

    2016-03-01

    Direct observation of lithium concentration distribution in lithium-ion battery composite electrodes has been performed for the first time. Lithium-ion battery model cells for particle induced X-ray emission (PIXE) and particle induced gamma ray emission (PIGE) measurements were designed and fabricated. Two dimensional images of lithium concentration in LiFePO4 composite electrodes were obtained with PIXE and PIGE by scanning the proton microbeam for various charged states of the electrodes. Lithium concentration in LiFePO4 composite electrodes was decreased from the contact interface between LiFePO4 electrode and liquid electrolyte during the charge reaction.

  20. Mechanochemical approaches to employ silicon as a lithium-ion battery anode

    SciTech Connect

    Shimoi, Norihiro Bahena-Garrido, Sharon; Tanaka, Yasumitsu; Qiwu, Zhang

    2015-05-15

    Silicon is essential as an active material in lithium-ion batteries because it provides both high-charge and optimal cycle characteristics. The authors attempted to realize a composite by a simple mechanochemical grinding approach of individual silicon (Si) particles and copper monoxide (CuO) particles to serve as an active material in the anode and optimize the charge-discharge characteristics of a lithium-ion battery. The composite with Si and CuO allowed for a homogenous dispersion with nano-scale Si grains, nano-scale copper-silicon alloy grains and silicon monoxide oxidized the oxide from CuO. The authors successfully achieved the synthesis of an active composite unites the structural features of an active material based on silicon composite as an anode in Li-ion battery with high capacity and cyclic reversible charge properties of 3256 mAh g{sup −1} after 200 cycles.

  1. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  2. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE PAGES

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; ...

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  3. Khalil Amine on Lithium-air Batteries

    SciTech Connect

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  4. Michael Thackeray on Lithium-air Batteries

    ScienceCinema

    Thackeray, Michael

    2016-07-12

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  5. Khalil Amine on Lithium-air Batteries

    ScienceCinema

    Khalil Amine

    2016-07-12

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  6. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples

    NASA Astrophysics Data System (ADS)

    Mutyala, Madhu Santosh K.; Zhao, Jingzhou; Li, Jianyang; Pan, Hongen; Yuan, Chris; Li, Xiaochun

    2014-08-01

    Temperature monitoring is important for improving the safety and performance of Lithium Ion Batteries (LIB). This paper presents the feasibility study to insert flexible polymer embedded thin film thermocouples (TFTCs) in a lithium ion battery pouch cell for in-situ temperature monitoring. A technique to fabricate polyimide embedded TFTC sensors on glass substrates and later transfer it onto thin copper foils is presented. The sensor transfer process can be easily integrated into the assembly process of a pouch cell, thus holding promise in implementing in Battery Management Systems (BMS). Internal temperature of the LIB pouch cell was measured in-situ when the sensor embedded battery was operated at high rate charge-discharge cycles. The polyimide embedded TFTCs survived the battery assembly process and the battery electrolyte environment. It is observed that the heat generation inside the battery is dominant during the high-rate of discharges. The developed technique can serve to improve the battery safety and performance when implemented in battery management systems and enhance the understanding of heat generation and its effects.

  7. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    NASA Astrophysics Data System (ADS)

    Inda, Yasushi; Katoh, Takashi; Baba, Mamoru

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10 -3 S cm -1 or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO 2 positive electrode, a Li 4Ti 5O 12 negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic.

  8. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.

    PubMed

    Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing

    2013-02-14

    Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.

  9. Prussian blues as a cathode material for lithium ion batteries.

    PubMed

    Shen, Lian; Wang, Zhaoxiang; Chen, Liquan

    2014-09-22

    Prussian blues (or iron cyanides) and their analogues are attractive in both fundamental studies and industrial applications owing to their chemical and structural diversity. The large open space in their framework provides tunnels and space for the transport and storage of lithium ions. Two Prussian blues were synthesized by a co-precipitation method. The nanosized Fe4 [Fe(CN)6 ]3 and cubic FeFe(CN)6 deliver reversible capacities of 95 mAh g(-1) and 138 mAh g(-1) , respectively. In comparison, FeFe(CN)6 shows cycling and rate performances superior to Fe4 [Fe(CN)6 ]3 .

  10. Multiphysics modeling of lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics

    NASA Astrophysics Data System (ADS)

    Xie, Yuanyuan; Li, Jianyang; Yuan, Chris

    2014-02-01

    A pseudo two-dimensional mathematical model is developed for a lithium ion battery, integrating the elementary reaction based solid-electrolyte interphase (SEI) growth model with multiple transport processes. The model is validated using the experimental data. Simulation results indicate that the operating temperature has great effect on the SEI layer generation and growth. Under different charging-discharging rates, it is found that high charging-discharging rate can intensify the battery capacity fading process. Different cooling conditions are then applied and show that enhanced surface convective cooling condition can effectively slow down the battery capacity fading. After that, the effect of electrolyte salt concentration and exchange current density are studied. It is found that raising the electrolyte salt concentration can improve the diffusion property of lithium ions, and stabilize the battery performance under lithium ion consumption induced resistance rising. It also suggests that improving exchange current density could greatly decrease the lithium ion battery capacity fading.

  11. Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries.

    PubMed

    Zhang, Yunfeng; Rohan, Rupesh; Cai, Weiwei; Xu, Guodong; Sun, Yubao; Lin, An; Cheng, Hansong

    2014-10-22

    A novel protocol to generate and control porosity in polymeric structures is presented for fabrication of single ion polymer electrolyte (SIPE) membranes for lithium ion batteries. A series of SIPEs with varying ratios of aliphatic and aromatic segments was successfully synthesized and subsequently blended with PVDF-HFP to fabricate membranes of various sizes of pores. The membranes were characterized using techniques including SEM, solvent uptake capacity measurement and ionic conductivity. We demonstrate that appropriate membrane porosity enhances ionic conductivity, reduces interfacial resistance between electrodes and electrolyte and ultimately boosts performance of Li-ion batteries. The implication of the structure-performance relationship for battery design is discussed.

  12. Silicon nanowires used as the anode of a lithium-ion battery

    SciTech Connect

    Prosini, Pier Paolo; Rufoloni, Alessandro; Rondino, Flaminia; Santoni, Antonino

    2015-06-23

    In this paper the synthesis and characterization of silicon nanowires to be used as the anode of a lithium-ion battery cell are reported. The nanowires were synthesized by CVD and characterized by SEM. The nanostructured material was used as an electrode in a lithium cell and its electrochemical properties were investigated by galvanostatic charge/discharge cycles at C/10 rate as a function of the cycle number and at various rates as a function of the charge current. The electrode was then coupled with a LiFePO{sub 4} cathode to fabricate a lithium-ion battery cell and the cell performance evaluated by galvanostatic charge/discharge cycles.

  13. Facial-shape controlled precursors for lithium cobalt oxides and the electrochemical performances in lithium ion battery

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Hyun; Cho, Sang-Woo; Missiul, Aleksandr; Jung, Hyun-Ok; Lee, Sanghun

    2015-01-01

    Two types of lithium cobalt oxides (LiCoO2) as cathode materials for lithium ion batteries are synthesized from two cobalt sources of different facial-shapes (octahedral and truncated-octahedral Co3O4) and Li2CO3 using solid state synthesis. From X-ray diffraction and scanning electron microscopy measurements, the reaction mechanism of the formation of LiCoO2 is investigated. It is revealed that LiCoO2 from octahedral Co3O4 with only {111} surfaces grows in one direction whereas the crystal orientation of LiCoO2 from truncated-octahedral Co3O4 with {111} and {100} surfaces is not unique and the spinel intermediates of LixCo2O4 are formed during synthesis. They show largely unequal rate and cycling performances for lithium ion battery, even though their outer appearances are nearly identical. Almost single-crystalline LiCoO2 from octahedral precursors shows much better electrochemical performances than LiCoO2 from truncated-octahedral precursors as a lithium ion battery cathode. By studying crystal orientation, it is shown that the poor electrochemical performances of LiCoO2 from truncated-octahedral Co3O4 are originated by crystal-mismatch between crystallites.

  14. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-02-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates.

  15. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte.

    PubMed

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-02-22

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known "polysulfide shuttle" effect. Here, we report a novel cell design by sandwiching a sp(3) boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates.

  16. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    PubMed Central

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  17. Characterization of large format lithium ion battery exposed to extremely high temperature

    NASA Astrophysics Data System (ADS)

    Feng, Xuning; Sun, Jing; Ouyang, Minggao; He, Xiangming; Lu, Languang; Han, Xuebing; Fang, Mou; Peng, Huei

    2014-12-01

    This paper provides a study on the characterizations of large format lithium ion battery cells exposed to extreme high temperature but without thermal runaway. A unique test is set up: an extended volume-accelerating rate calorimetry (EV-ARC) test is terminated at a specific temperature before thermal runaway happens in the battery. The battery was cooled down after an EV-ARC test with early termination. The performances of the battery before and after the EV-ARC test are investigated in detail. The results show that (a) the melting point of the separator dictates the reusability of the 25 Ah NCM battery after a near-runaway event. The battery cannot be reused after being heated to 140 °C or higher because of the exponential rise in ohmic resistance; (b) a battery can lose up to 20% of its capacity after being heated to 120 °C just one time; (c) if a battery is cycled after a thermal event, its lost capacity may be recovered partially. Furthermore, the fading and recovery mechanisms are analyzed by incremental capacity analysis (ICA) and a prognostic/mechanistic model. Model analysis confirms that the capacity loss at extremely high temperature is caused by the increase of the resistance, the loss of lithium ion (LLI) at the anode and the loss of active material (LAM) at the cathode.

  18. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries.

    PubMed

    Liu, Wen; Oh, Pilgun; Liu, Xien; Lee, Min-Joon; Cho, Woongrae; Chae, Sujong; Kim, Youngsik; Cho, Jaephil

    2015-04-07

    High energy-density lithium-ion batteries are in demand for portable electronic devices and electrical vehicles. Since the energy density of the batteries relies heavily on the cathode material used, major research efforts have been made to develop alternative cathode materials with a higher degree of lithium utilization and specific energy density. In particular, layered, Ni-rich, lithium transition-metal oxides can deliver higher capacity at lower cost than the conventional LiCoO2 . However, for these Ni-rich compounds there are still several problems associated with their cycle life, thermal stability, and safety. Herein the performance enhancement of Ni-rich cathode materials through structure tuning or interface engineering is summarized. The underlying mechanisms and remaining challenges will also be discussed.

  19. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    PubMed

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

  20. Fail-safe design for large capacity lithium-ion battery systems

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Heon; Smith, Kandler; Ireland, John; Pesaran, Ahmad

    2012-07-01

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

  1. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    SciTech Connect

    Kim, G. H.; Smith, K.; Ireland, J.; Pesaran, A.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

  2. Molten Salt Electrolytically Produced Carbon/Tin Nanomaterial as the Anode in a Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Das Gupta, Rajshekar; Schwandt, Carsten; Fray, Derek J.

    2017-03-01

    A carbon/tin nanomaterial, consisting of predominantly Sn-filled carbon nanotubes and nanoparticles, is prepared by molten salt electrochemistry, using electrodes of graphite and an electrolyte of LiCl salt containing a small admixture of SnCl2. The C/Sn hybrid material generated is incorporated into the active anode material of a lithium ion battery and tested with regard to storage capacity and cycling behavior. The results demonstrate that the C/Sn material has favorable properties, in terms of energy density and in particular long-term stability, that exceed those of the individual components alone. The initial irreversible capacity of the material is somewhat larger than that of conventional battery graphite which is due to its unique nanostructure. Overall the results would indicate the suitability of this material for use in the anodes of lithium ion batteries with high rate capability.

  3. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries

    PubMed Central

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-01-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries. PMID:25907411

  4. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-04-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries.

  5. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  6. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries.

    PubMed

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-04-24

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries.

  7. Polyethylene-supported polyvinylidene fluoride-cellulose acetate butyrate blended polymer electrolyte for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Liu, Jiansheng; Li, Weishan; Zuo, Xiaoxi; Liu, Shengqi; Li, Zhao

    2013-03-01

    The polyethylene (PE)-supported polymer membranes based on the blended polyvinylidene fluoride (PVDF) and cellulose acetate butyrate (CAB) are prepared for gel polymer electrolyte (GPE) of lithium ion battery. The performances of the prepared membranes and the resulting GPEs are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, linear potential sweep, and charge-discharge test. The effect of the ratio of PVDF to CAB on the performance of the prepared membranes is considered. It is found that the GPE based on the blended polymer with PVDF:CAB = 2:1 (in weight) has the largest ionic conductivity (2.48 × 10-3 S cm-1) and shows good compatibility with anode and cathode of lithium ion battery. The LiCoO2/graphite battery using this GPE exhibits superior cyclic stability at room temperature, storage performance at elevated temperature, and rate performance.

  8. Probing lithium-ion batteries' state-of-charge using ultrasonic transmission - Concept and laboratory testing

    NASA Astrophysics Data System (ADS)

    Gold, Lukas; Bach, Tobias; Virsik, Wolfgang; Schmitt, Angelika; Müller, Jana; Staab, Torsten E. M.; Sextl, Gerhard

    2017-03-01

    For electrically powered applications such as consumer electronics and especially for electric vehicles a precise state-of-charge estimation for their lithium-ion batteries is desired to reduce aging, e.g. avoiding detrimental states-of-charge. Today, this estimation is performed by battery management systems that solely rely on charge bookkeeping and cell voltage measurements. In the present work we introduce a new, physical probe for the state-of-charge based on ultrasonic transmission. Within the simple experimental setup raised cosine pulses are applied to lithium-ion battery pouch cells, whose signals are sensitive to changes in porosity of the graphite anode during charging/dis-charging and, therefore, to the state-of-charge. The underlying physical principle can be related to Biot's theory about propagation of waves in fluid saturated porous media and by including scattering by boundary layers inside the cell.

  9. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    PubMed

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  10. Study of a lithium-ion battery charge-discharge test unit characteristics*

    NASA Astrophysics Data System (ADS)

    Kopylov, E. A.; Mizrah, E. A.; Fedchenko, A. S.; Lobanov, D. K.

    2016-04-01

    The article describes the structure of a charge-discharge unit which allows to perform electrical, resource and thermal testing of several lithium-ion batteries simultaneously. The principle of operation of a one battery research channel (BRC) is shown. This study evaluated the stabilization error and rate of change of charge/discharge currents, the switching time from the charge mode to the discharge mode and vice versa for a single BRC and parallel BRCs. The possibility of increasing the maximum battery testing current due to the parallel connection of multiple BRCs without using a current alignment device between channels was discussed.

  11. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries.

    PubMed

    Sun, Liang; Qiu, Keqiang

    2012-08-01

    Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalate leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO(2) and CoO directly as CoC(2)O(4)·2H(2)O with 1.0 M oxalate solution at 80°C and solid/liquid ratio of 50 g L(-1) for 120 min. The reaction efficiency of more than 98% of LiCoO(2) can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.

  12. Air Force Space Command. Space and Missile Systems Center Standard. Lithium-Ion Battery for Launch Vehicle Applications

    DTIC Science & Technology

    2008-06-13

    charge/discharge cycles to condition the surface of the electrodes and stabilize capacity. 3.2 Battery A battery is an assembly of battery cells or...positive and negative electrode plates. 6 3.7 Charge Cycle A charge cycle is defined by recharge to an initial state of charge, following a...connected battery cells. Multiple modules are connected to form a battery . 3.15 Negative Electrode The negative electrode in lithium-ion cells is

  13. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  14. Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method

    NASA Astrophysics Data System (ADS)

    Rahman, Md Ashiqur; Anwar, Sohel; Izadian, Afshin

    2016-03-01

    In this paper, a gradient-free optimization technique, namely particle swarm optimization (PSO) algorithm, is utilized to identify specific parameters of the electrochemical model of a Lithium-Ion battery with LiCoO2 cathode chemistry. Battery electrochemical model parameters are subject to change under severe or abusive operating conditions resulting in, for example, over-discharged battery, over-charged battery, etc. It is important for a battery management system to have these parameter changes fully captured in a bank of battery models that can be used to monitor battery conditions in real time. Here the PSO methodology has been successfully applied to identify four electrochemical model parameters that exhibit significant variations under severe operating conditions: solid phase diffusion coefficient at the positive electrode (cathode), solid phase diffusion coefficient at the negative electrode (anode), intercalation/de-intercalation reaction rate at the cathode, and intercalation/de-intercalation reaction rate at the anode. The identified model parameters were used to generate the respective battery models for both healthy and degraded batteries. These models were then validated by comparing the model output voltage with the experimental output voltage for the stated operating conditions. The identified Li-Ion battery electrochemical model parameters are within reasonable accuracy as evidenced by the experimental validation results.

  15. Lithium Battery Diaper Ulceration.

    PubMed

    Maridet, Claire; Taïeb, Alain

    2016-01-01

    We report a case of lithium battery diaper ulceration in a 16-month-old girl. Gastrointestinal and ear, nose, and throat lesions after lithium battery ingestion have been reported, but skin involvement has not been reported to our knowledge.

  16. One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium ion battery anodes.

    PubMed

    Wang, Bin; Li, Xianglong; Luo, Bin; Jia, Yuying; Zhi, Linjie

    2013-02-21

    A unique silicon-based anode for lithium ion batteries is developed via the facile hybridization of one-dimensional silicon nanowires and two-dimensional graphene sheets. The resulting paper-like film holds advantages highly desirable for not only accommodating the volume change of silicon, but also facilitating the fast transport of electron and lithium ions.

  17. Lithium-Ion Battery Demonstrated for NASA Desert Research and Technology Studies

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2008-01-01

    Lithium-ion batteries have attractive performance characteristics that are well suited to a number of NASA applications. These rechargeable batteries produce compact, lightweight energy-storage systems with excellent cycle life, high charge/discharge efficiency, and low self-discharge rate. NASA Glenn Research Center's Electrochemistry Branch designed and produced five lithium-ion battery packs configured to power the liquid-air backpack (LAB) on spacesuit simulators. The demonstration batteries incorporated advanced, NASA-developed electrolytes with enhanced low-temperature performance characteristics. The objectives of this effort were to (1) demonstrate practical battery performance under field-test conditions and (2) supply laboratory performance data under controlled laboratory conditions. Advanced electrolyte development is being conducted under the Exploration Technology Development Program by the NASA Jet Propulsion Laboratory. Three field trials were successfully completed at Cinder Lake from September 10 to 12, 2007. Extravehicular activities of up to 1 hr and 50 min were supported, with residual battery capacity sufficient for 30 min of additional run time. Additional laboratory testing of batteries and cells is underway at Glenn s Electrochemical Branch.

  18. Capacity fade modelling of lithium-ion battery under cyclic loading conditions

    NASA Astrophysics Data System (ADS)

    Ashwin, T. R.; Chung, Yongmann M.; Wang, Jihong

    2016-10-01

    A pseudo two-dimensional (P2D) electro-chemical lithium-ion battery model is presented in this paper to study the capacity fade under cyclic charge-discharge conditions. The Newman model [1,2] has been modified to include a continuous solvent reduction reaction responsible for the capacity fade and power fade. The temperature variation inside the cell is accurately predicted using a distributed thermal model coupled with the internal chemical heat generation. The model is further improved by linking the porosity variation with the electrolyte partial molar concentration, thereby proving a stronger coupling between the battery performance and the chemical properties of electrolyte. The solid electrolyte interface (SEI) layer growth is estimated for different cut-off voltages and charging current rates. The results show that the convective heat transfer coefficient as well as the porosity variation influences the SEI layer growth and the battery life significantly. The choice of an electrolyte decides the conductivity and partial molar concentration, which is found to have a strong influence on the capacity fade of the battery. The present battery model integrates all essential electro-chemical processes inside a lithium-ion battery under a strong implicit algorithm, proving a useful tool for computationally fast battery monitoring system.

  19. Tunneling holes in microparticles to facilitate the transport of lithium ions for high volumetric density batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Ng, K. Y. Simon; Deng, Da

    2015-08-01

    Microscale materials generally have a higher tap density than that of random nanoparticles. Therefore, microparticles have been attracting much attention for application as high volumetric density electrodes for lithium ion batteries. However, microparticles have much longer electrolyte diffusion and Li-ion migration length and less accessibility to the electrolyte than that of nanoparticles. Therefore, it will be interesting to tunnel-holes in the high volumetric density microparticles to facilitate the reversible storage of lithium ions. Here, tunnel-like holes were generated in microparticles to dramatically increase the accessibility of the active materials to facilitate the lithium ion transfer. A plausible formation mechanism to explain the generation of tunnel-like holes was proposed based on time-course experiments and intensive characterization. Impressively, the as-prepared microbeads with tunnels demonstrated dramatically improved performance compared to the solid microbeads without tunnels in lithium ion storage. The microparticles with tunnels could achieve comparable electrochemical performances to those nanoparticles reported in the literature, suggesting that microparticles, properly tuned, could be promising candidates as negative electrodes for lithium-ion batteries and worthy of further studies. We also directly measured the volumetric density of the microparticles. We would like to highlight that a superior volumetric capacity of 514 mA h cm-3 has been achieved. We hope to promote more frequent use of the unit mA h cm-3 in addition to the conventional unit mA h g-1 in the battery community.Microscale materials generally have a higher tap density than that of random nanoparticles. Therefore, microparticles have been attracting much attention for application as high volumetric density electrodes for lithium ion batteries. However, microparticles have much longer electrolyte diffusion and Li-ion migration length and less accessibility to the

  20. Synthesis, strctural and electrochemical characterizations of lithium- manganese- rich composite cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng

    The electrification trend for transportation systems requires alternative cathode materials to LiCoO2 with improved safety, lowered cost and extended cycle life. Lithium- manganese- rich composite cathode materials, which can be presented in a two component notation as xLi2MnO3·(1-x)LiMO 2, (M= Ni, Co or Mn) have superior cost and energy density advantages. These cathode materials have shown success in laboratory scale experiments, but are still facing challenges such as voltage fade, moderate rate capacity and tap density for commercialization. The synthesis of precursors with high packing density and suitable physical properties is critical to achieve high energy density as well as the other acceptable electrochemical performance for the next generation lithium ion batteries. The aim of this study is to correlate the electrochemical properties of materials to their structural, morphological, and physical properties by coordinating the science of synthesis with the science of function, in order to enable the use of these compounds in vehicle technologies. Three different precursors including carbonate, hydroxide and oxalate were synthesized by co-precipitation reactions using continuous stirred tank reactor (CSTR) under various conditions. Research focused on areas such as nucleation and growth mechanisms, synthesis optimizations, and intrinsic limitations of each co-precipitation method. A combination of techniques such as PSA, BET, SEM, EDX FIB, TEM, Raman, FTIR, TGA-DSC, XRD, and ICP-MS, as well as electrochemical test methods such as cycling, CV, EIS and HPPC tests were used in correlation with each other in order to deepen our understanding to these materials. Related topics such as the composite structure formation process during the solid state reaction, lithium and nickel content effects on the cathode properties were also discussed. Additionally, the side reactions between the active materials and electrolyte as a result of the high charge potential were

  1. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance.

    PubMed

    Ren, Jing; Zhang, Ye; Bai, Wenyu; Chen, Xuli; Zhang, Zhitao; Fang, Xin; Weng, Wei; Wang, Yonggang; Peng, Huisheng

    2014-07-21

    A stretchable wire-shaped lithium-ion battery is produced from two aligned multi-walled carbon nanotube/lithium oxide composite yarns as the anode and cathode without extra current collectors and binders. The two composite yarns can be well paired to obtain a safe battery with superior electrochemical properties, such as energy densities of 27 Wh kg(-1) or 17.7 mWh cm(-3) and power densities of 880 W kg(-1) or 0.56 W cm(-3), which are an order of magnitude higher than the densities reported for lithium thin-film batteries. These wire-shaped batteries are flexible and light, and 97 % of their capacity was maintained after 1000 bending cycles. They are also very elastic as they are based on a modified spring structure, and 84 % of the capacity was maintained after stretching for 200 cycles at a strain of 100 %. Furthermore, these novel wire-shaped batteries have been woven into lightweight, flexible, and stretchable battery textiles, which reveals possible large-scale applications.

  2. Silicon-based porous nanocomposite thin-films as an active anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mazaletskiy, L. A.; Rudy, A. S.; Metlitskaya, A. V.

    2016-08-01

    The results of experimental studies of porous silicon nanocomposite materials for future usage as an anode material of lithium-ion batteries are presented. Comparison between original and porous structures in terms of their qualitative and quantitative characteristics is given.

  3. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    SciTech Connect

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  4. Operando X-ray scattering and spectroscopic analysis of germanium nanowire anodes in lithium ion batteries.

    PubMed

    Silberstein, Katharine E; Lowe, Michael A; Richards, Benjamin; Gao, Jie; Hanrath, Tobias; Abruña, Héctor D

    2015-02-17

    X-ray diffraction (XRD) and Fourier transform extended X-ray absorption fine structure (EXAFS) analysis of X-ray absorption spectroscopy (XAS) measurements have been employed to determine structural and bonding changes, as a function of the lithium content/state of charge, of germanium nanowires used as the active anode material within lithium ion batteries (LIBs). Our data, collected throughout the course of battery cycling (operando), indicate that lithium incorporation within the nanostructured germanium occurs heterogeneously, preferentially into amorphous regions over crystalline domains. Maintenance of the molecular structural integrity within the germanium nanowire is dependent on the depth of discharge. Discharging to a shallower cutoff voltage preserves partial crystallinity for several cycles.

  5. Solid-State Electrode Engineering and Material Processing for All-Solid-State Lithium and Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Yersak, Thomas A.

    In this dissertation we demonstrate the full rechargeability of a FeS 2/lithium metal battery at 60°C. To enable the reversibility of the FeS2 redox chemistry we utilize a bulk all-solid-state battery architecture based upon the Li2S-P2S5 glass-ceramic electrolyte. The glass-ceramic electrolyte's non-volatility and non-flammability allows us to use a lithium metal anode safely, while its solid nature confines FeS2's intermediate electroactive species to prevent active material loss and capacity fade. Based only on the weight of the active materials our battery stands to triple the specific energy (Wh kg-1) of conventional state-of-the-art Li-ion batteries. We also observe ortho-FeS2 as a charge product and propose a new discharge mechanism which revises 30 years of research on the subject. Unfortunately, our laboratory FeS2/Li battery could not achieve a practical cell-level specific energy because the composite electrode was nearly 70 wt. % glass-ceramic electrolyte and carbon black. We also found that our batteries were not durable because the formation of lithium dendrites through the glass-ceramic electrolyte separator membrane frequently internally shorted test cells upon charge. The remainder of this dissertation outlines our work to develop an all-solid-state Li-ion battery to address the shorting issue and the work done to engineer better active material-electrolyte solid-solid interfaces in the composite electrode for high cell-level specific energy.

  6. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress.

    PubMed

    Xiang, Yinyu; Li, Junsheng; Lei, Jiaheng; Liu, Dan; Xie, Zhizhong; Qu, Deyu; Li, Ke; Deng, Tengfei; Tang, Haolin

    2016-11-09

    Li-ion and Li-S batteries find enormous applications in different fields, such as electric vehicles and portable electronics. A separator is an indispensable part of the battery design, which functions as a physical barrier for the electrode as well as an electrolyte reservoir for ionic transport. The properties of the separators directly influence the performance of the batteries. Traditional polyolefin separators showed low thermal stability, poor wettability toward the electrolyte, and inadequate barrier properties to polysulfides. To improve the performance and durability of Li-ion and Li-S batteries, development of advanced separators is required. In this review, we summarize recent progress on the fabrication and application of novel separators, including the functionalized polyolefin separator, polymeric separator, and ceramic separator, for Li-ion and Li-S batteries. The characteristics, advantages, and limitations of these separators are discussed. A brief outlook for the future directions of the research in the separators is also provided.

  7. Online estimation of lithium-ion battery capacity using sparse Bayesian learning

    NASA Astrophysics Data System (ADS)

    Hu, Chao; Jain, Gaurav; Schmidt, Craig; Strief, Carrie; Sullivan, Melani

    2015-09-01

    Lithium-ion (Li-ion) rechargeable batteries are used as one of the major energy storage components for implantable medical devices. Reliability of Li-ion batteries used in these devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, patients and physicians. To ensure a Li-ion battery operates reliably, it is important to develop health monitoring techniques that accurately estimate the capacity of the battery throughout its life-time. This paper presents a sparse Bayesian learning method that utilizes the charge voltage and current measurements to estimate the capacity of a Li-ion battery used in an implantable medical device. Relevance Vector Machine (RVM) is employed as a probabilistic kernel regression method to learn the complex dependency of the battery capacity on the characteristic features that are extracted from the charge voltage and current measurements. Owing to the sparsity property of RVM, the proposed method generates a reduced-scale regression model that consumes only a small fraction of the CPU time required by a full-scale model, which makes online capacity estimation computationally efficient. 10 years' continuous cycling data and post-explant cycling data obtained from Li-ion prismatic cells are used to verify the performance of the proposed method.

  8. A review of nanostructured lithium ion battery materials via low temperature synthesis.

    PubMed

    Chen, Jiajun

    2013-01-01

    Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.

  9. Review of porous silicon preparation and its application for lithium-ion battery anodes.

    PubMed

    Ge, M; Fang, X; Rong, J; Zhou, C

    2013-10-25

    Silicon is of great interest for use as the anode material in lithium-ion batteries due to its high capacity. However, certain properties of silicon, such as a large volume expansion during the lithiation process and the low diffusion rate of lithium in silicon, result in fast capacity degradation in limited charge/discharge cycles, especially at high current rate. Therefore, the use of silicon in real battery applications is limited. The idea of using porous silicon, to a large extent, addresses the above-mentioned issues simultaneously. In this review, we discuss the merits of using porous silicon for anodes through both theoretical and experimental study. Recent progress in the preparation of porous silicon through the template-assisted approach and the non-template approach have been highlighted. The battery performance in terms of capacity and cyclability of each structure is evaluated.

  10. Power System Electronics Accommodation for a Lithium Ion Battery on the Space Technology 5 (ST5) Mission

    NASA Technical Reports Server (NTRS)

    Castell, Karen; Day, John H. (Technical Monitor)

    2001-01-01

    ST5 mission requirements include validation of Lithium-ion battery in orbit. Accommodation in the power system for Li-ion battery can be reduced with smaller amp-hour size, highly matched cells when compared to the larger amp-hour size approach. Result can be lower system mass and increased reliability.

  11. Improving the Performance of Lithium Ion Batteries at Low Temperature

    SciTech Connect

    Trung H. Nguyen; Peter Marren; Kevin Gering

    2007-04-20

    The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below –10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of –20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

  12. Lithium and lithium ion batteries towards micro-applications: a review

    SciTech Connect

    Wang, Yuxing; Liu, Bo; Li, Qiuyan; Cartmell, Samuel S.; Ferrara, Seth A.; Deng, Zhiqun; Xiao, Jie

    2015-07-01

    Batteries employing lithium chemistry have been intensively investigated because of their high energy attributes which may be deployed for vehicle electrification and large-scale energy storage applications. Another important direction of battery research for micro-electronics, however, is relatively less discussed in the field but growing fast in recent years. This paper reviews chemistry and electrochemistry in different microbatteries along with their cell designs to meet the goals of their various applications. The state-of-the-art knowledge and recent progress of microbatteries for emerging micro-electronic devices may shed light on the future development of microbatteries towards high energy density and flexible design.

  13. Lithium and lithium ion batteries for applications in microelectronic devices: A review

    NASA Astrophysics Data System (ADS)

    Wang, Yuxing; Liu, Bo; Li, Qiuyan; Cartmell, Samuel; Ferrara, Seth; Deng, Zhiqun Daniel; Xiao, Jie

    2015-07-01

    Batteries employing lithium chemistry have been intensively investigated because of their high energy attributes which may be deployed for vehicle electrification and large-scale energy storage applications. Another important direction of battery research for micro-electronics, however, is relatively less discussed in the field but growing fast in recent years. This paper reviews chemistry and electrochemistry in different microbatteries along with their cell designs to meet the goals of their various applications. The state-of-the-art knowledge and recent progress of microbatteries for emerging micro-electronic devices may shed light on the future development of microbatteries towards high energy density and flexible design.

  14. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect

    Pannala, S. Turner, J. A.; Allu, S.; Elwasif, W. R.; Kalnaus, S.; Simunovic, S.; Kumar, A.; Billings, J. J.; Wang, H.; Nanda, J.

    2015-08-21

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. Gaining an understanding of the role of these processes as well as development of predictive capabilities for design of better performing batteries requires synergy between theory, modeling, and simulation, and fundamental experimental work to support the models. This paper presents the overview of the work performed by the authors aligned with both experimental and computational efforts. In this paper, we describe a new, open source computational environment for battery simulations with an initial focus on lithium-ion systems but designed to support a variety of model types and formulations. This system has been used to create a three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. This paper also provides an overview of the experimental techniques to obtain crucial validation data to benchmark the simulations at various scales for performance as well as abuse. We detail some initial validation using characterization experiments such as infrared and neutron imaging and micro-Raman mapping. In addition, we identify opportunities for future integration of theory, modeling, and experiments.

  15. Role of Manganese Deposition on Graphite in the Capacity Fading of Lithium Ion Batteries

    SciTech Connect

    Vissers, Daniel R.; Chen, Zonghai; Shao, Yuyan; Engelhard, Mark H.; Das, Ujjal; Redfern, Paul C.; Curtiss, Larry A.; Pan, Baofei; Liu, Jun; Amine, Khalil

    2016-05-06

    Lithium-ion batteries utilizing manganese based cathodes have received considerable interest in recent years for their lower cost and favorable environmental friendliness relative to their cobalt counterparts. However, Li-ion batteries using manganese based cathodes and graphite anodes suffer from severe capacity fading at higher operating temperature. In this article, we report on an astute investigation into how the dissolution of manganese impacts the capacity fading within the Li-ion batteries. Our investigation reveals that the manganese dissolves from the cathode, transports to the graphite electrode, and deposits onto the outer surface of the inner most solid electrolyte interphase (SEI) layer which is known to be a mixture of inorganic salts (e.g. Li2CO3, LiF, and Li2O). In this location, the manganese facilitates the reduction of the electrolyte and the subsequent formation of lithium containing products on the graphite which removes lithium ions from the normal operation of the cell and thereby induces the severe capacity fade.

  16. Lithium-ion battery structure that self-heats at low temperatures.

    PubMed

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-28

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the 'all-climate battery' cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  17. Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Qiu, Yongfu; Han, Yi; Guo, Yan; Cheng, Faliang

    2016-08-01

    Nanostructure materials often achieve low capacity when the active material mass loading is high. In this communication, high mass-loading tungsten nitride nanowires (WNNWs) were fabricated on a flexible carbon cloth by hydrothermal method and post annealing. The prepared electrode exhibited remarkable cyclic stability and attractive rate capability for lithium storage. It delivers at a current density of 200 mA g-1, a high capacity of 418 mAh g-1, which is higher than that of conventional graphite. This research opens more opportunity for the fabrication of three-dimensional metal nitrides as negative electrode material for flexible lithium ion batteries.

  18. Nb2O5 microstructures: a high-performance anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Sainan; Zhou, Jiang; Cai, Zhenyang; Fang, Guozhao; Pan, Anqiang; Liang, Shuquan

    2016-11-01

    We report the synthesis of three-dimensional (3D) urchin-like Nb2O5 microstructures by a facile hydrothermal approach with subsequent annealing treatment. As anode materials for lithium-ion batteries, the 3D urchin-like Nb2O5 microstructures exhibit superior electrochemical performance with excellent rate capability as well as long-term cycling stability. The electrode delivers high capacity of 131 mA h g-1 after 1000 cycles at a high current density of 1 A g-1. The excellent electrochemical performance suggests the 3D urchin-like Nb2O5 microstructures may be a promising anode candidate for high-power lithium ion batteries.

  19. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries.

    PubMed

    Liu, Jian; Qiao, Shi Zhang; Chen, Jun Song; Lou, Xiong Wen; Xing, Xianran; Lu, Gao Qing

    2011-12-21

    Yolk/shell or 'rattle-typed' nanomaterials with nanoparticle cores inside hollow shells are interesting among the complex hollow nanostructures. Yolk/shell nanoparticles (YSNs) are promising functional nanomaterials for a variety of applications such as catalysis, delivery, lithium-ion batteries and biosensors due to their tailorability and functionality in both the cores and hollow shells. This feature article provides an overview of advances in this exciting area of YSNs, covering systematic synthesis approaches and key promising applications based on the literature and our own recent work. We present some strategies for the synthesis of YSNs with controllable sizes, compositions, geometries, structures and functionalities. Applications of these new materials in a wide range of potential areas are discussed including nanoreactors, biomedicine and lithium-ion batteries. Promising future directions of this active research field are also highlighted.

  20. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.

    PubMed

    Yu, Seung-Ho; Lee, Soo Hong; Lee, Dong Jun; Sung, Yung-Eun; Hyeon, Taeghwan

    2016-04-27

    Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications.

  1. Nanoscale visualization of redox activity at lithium-ion battery cathodes.

    PubMed

    Takahashi, Yasufumi; Kumatani, Akichika; Munakata, Hirokazu; Inomata, Hirotaka; Ito, Komachi; Ino, Kosuke; Shiku, Hitoshi; Unwin, Patrick R; Korchev, Yuri E; Kanamura, Kiyoshi; Matsue, Tomokazu

    2014-11-17

    Intercalation and deintercalation of lithium ions at electrode surfaces are central to the operation of lithium-ion batteries. Yet, on the most important composite cathode surfaces, this is a rather complex process involving spatially heterogeneous reactions that have proved difficult to resolve with existing techniques. Here we report a scanning electrochemical cell microscope based approach to define a mobile electrochemical cell that is used to quantitatively visualize electrochemical phenomena at the battery cathode material LiFePO4, with resolution of ~100 nm. The technique measures electrode topography and different electrochemical properties simultaneously, and the information can be combined with complementary microscopic techniques to reveal new perspectives on structure and activity. These electrodes exhibit highly spatially heterogeneous electrochemistry at the nanoscale, both within secondary particles and at individual primary nanoparticles, which is highly dependent on the local structure and composition.

  2. Unique interconnected graphene/SnO2 nanoparticle spherical multilayers for lithium-ion battery applications.

    PubMed

    Shao, Qingguo; Tang, Jie; Sun, Yige; Li, Jing; Zhang, Kun; Yuan, Jinshi; Zhu, Da-Ming; Qin, Lu-Chang

    2017-03-16

    We have designed and synthesized a unique structured graphene/SnO2 composite, where SnO2 nanoparticles are inserted in between interconnected graphene sheets which form hollow spherical multilayers. The hollow spherical multilayered structure provides much flexibility to accommodate the configuration and volume changes of SnO2 in the material. When it is used as an anode material for lithium-ion batteries, such a novel nanostructure can not only provide a stable conductive matrix and suppress the mechanical stress, but also eliminate the need of any binders for constructing electrodes. Electrochemical tests show that the unique graphene/SnO2 composite electrode as designed could exhibit a large reversible capacity over 1000 mA h g(-1) and long cycling life with 88% retention after 100 cycles. These results indicate the great potential of the composite for being used as a high performance anode material for lithium-ion batteries.

  3. Higher energy and safety of lithium-ion batteries with ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Komaba, Shinichi; Yabuuchi, Naoaki; Katayama, Yasushi; Miura, Takashi

    2010-04-01

    Ionic liquid has been utilized as safe electrolyte solution for lithium-ion batteries. Reversible charge / discharge cycling of the graphite electrode in the ionic liquid has been achieved with polyacrylic acid polymer binder, which can suppress the organic cation intercalation to the graphite. Cycleability of the graphite-silicon composite electrodes prepared with polyacrylate binder was significantly improved in comparison to the conventional PVdF binder, and it has been demonstrated that the reversible cycling with 1000 mAh g-1 for 30 cycling test is possible in ionic liquid. The possibility of the safe and high-energy lithium-ion battery is discussed through the preliminary study on Li2MnO3-LiCo1/3Ni1/3Mn1/3O2 based positive electrode and graphite-silicon-polyacrylate composite negative electrode with the ionic liquid electrolyte.

  4. Graphdiyne as a high-capacity lithium ion battery anode material

    NASA Astrophysics Data System (ADS)

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Lee, Hosik; Nam, Jaewook; Kwon, Yongkyung; Lee, Hoonkyung

    2013-12-01

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp2 hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer α-graphdiyne was C6Li7.31 and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719 mAh g-1/2032 mAh cm-3, much greater than the values of ˜372 mAh g-1/˜818 mAh cm-3, ˜1117 mAh g-1/˜1589 mAh cm-3, and ˜744 mAh g-1 for graphite, graphynes, and γ-graphdiyne, respectively. Our calculations suggest that multilayer α-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  5. Effects of size and concentration on diffusion-induced stress in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Zengsheng; Gao, Xiang; Wang, Yan; Lu, Chunsheng

    2016-07-01

    Capacity fade of lithium-ion batteries induced by chemo-mechanical degradation during charge-discharge cycles is the bottleneck in design of high-performance batteries, especially high-capacity electrode materials. Stress generated due to diffusion-mechanical coupling in lithium-ion intercalation and deintercalation is accompanied by swelling, shrinking, and even micro-cracking. In this paper, we propose a theoretical model for a cylindrical nanowire electrode by combining the bond-order-length-strength and diffusion theories. It is shown that size and concentration have a significant influence on the stress fields in radial, hoop, and axial directions. This can explain why a smaller electrode with a huge volume change survives in the lithiation/delithiation process.

  6. Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Yang, Mingshan; Wang, Wenjun; Wang, Feijun; Xie, Long; Lv, Shaoyi; Zhang, Yunhua

    2013-07-01

    Cellulose derivative CMCAB was synthesized, and nanometer fiber composite material was obtained from lithium iron phosphate (LiFePO4, LFP)/CMCAB by electrospinning. Under the protection of inert gas, modified LFP/carbon nanofibers (CNF) nanometer material was obtained by carbonization in 600°C. IR, TG-DSC, SEM and EDS were performed to characterize their morphologies and structures. LFP/CNF composite materials were assembled into lithium-ion battery and tested their performance. Specific capacity was increased from 147.6 mAh g(-1) before modification to 160.8 mAh g(-1) after modification for the first discharge at the rate of 2C. After 200 charge-discharge cycles, when discharge rate was increased from 2C to 5C to 10C, modified battery capacity was reduced from 152.4 mAh g(-1) to 127.9 mAh g(-1) to 106 mAh g(-1). When the ratio was reduced from 10C to 5C to 2C, battery capacity can be quickly approximate to the original level. Cellulose materials that were applied to lithium battery can improve battery performance by electrospinning.

  7. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    SciTech Connect

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-15

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC{sub 2}O{sub 4}⋅2H{sub 2}O and Li{sub 2}CO{sub 3} using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  8. A dense transparent polymeric single ion conductor for lithium ion batteries with remarkable long-term stability

    NASA Astrophysics Data System (ADS)

    Pan, Qiyun; Chen, Yazhou; Zhang, Yunfeng; Zeng, Danli; Sun, Yubao; Cheng, Hansong

    2016-12-01

    We report an outstanding electrochemical performance of a gel type lithium ion battery with long cycle life enabled by a dense transparent polymeric single ion conductor. The polymer electrolyte was synthesized by a side chain grafting method with 4-amino-4'-trifluoromethyl bis(benzene sulfonyl)imide grafted on side chains of poly(ethylene-alt-maleic anhydride) with a grafting ratio of 50%. Blending lithiated iononmers with poly(vinylidene fluoride-co-hexafluoropropylene) via a solution cast method results in a dense transparent film. The fabricated blend polymer electrolyte film has an ionic conductivity of 0.104 mS cm-1 at room temperature, a tensile strength of 15.5 MPa and percent elongation at break of 5%. A gel type single ion conductive polymeric lithium ion battery was assembled using the blend film as the separator as well as the electrolyte, LiFePO4/C mixed with ionomers as the cathode and a lithium foil as the anode. The battery delivers a reversible discharge capacity of 100 mAh g-1 at 1 C under room temperature for 1000 cycles without obvious decay. The stable cyclic imide and comb-like structure of the polymer is largely responsible for the excellent battery performance. The side chain grafted single ion conducting polymer electrolyte is well suited for large-scale production.

  9. Navy Lithium Battery Safety

    DTIC Science & Technology

    2010-07-14

    lithium -sulfur dioxide (Li-SO2), lithium - thionyl chloride (Li- SOCL2), and lithium -sulfuryl chloride (Li-S02CL2...and 1980’s with active primary cells: Lithium -sulfur dioxide (Li-SO2) Lithium - thionyl chloride (Li-SOCL2) Lithium -sulfuryl chloride (Li-S0 CL ) 2 2...DISTRIBUTION A. Approved for public release; distribution unlimited. NAVY LITHIUM BATTERY SAFETY John Dow1 and Chris Batchelor2 Naval

  10. Cycle life testing of lithium-ion batteries for small satellite LEO space missions

    SciTech Connect

    Mayer, S.T.; Feikert, J.H.; Kaschmitter, J.L.

    1993-08-16

    In 1990, Sony corporation announced their intention to manufacture a rechargeable lithium ion battery, based on the intercalation of lithium ions into a carbonaceous anode. The cells were first introduced for portable telephone use in June, 1991. (1) A 3.6V average cell voltage (4.1-2.75V range); (2) Excellent cycle life (1200 @ 100% DOD); (3) Good capacity retention (70% after 6 months); (4) Wide temperature range performance ({minus}20 to +60{degrees}C); (5) Excellent Discharge rate (82% capacity at 30 min. discharge rate); (6) Excellent Charge rate (100% Charge in <3 hrs); and (7) High energy density (264 W*hr/1 and 120 Whr/kg for ``D`` size cell. These specifications show significant promise for application of these batteries in low earth orbit (LEO) small satellites, particularly when compared to existing NiH{sub 2} and NiCd technology. The very high energy density and specific energy will reduce power system volume and weight. The wide temperature range enables simpler thermal design, particularly for new, small, high power satellites. The materials used in the lithium ion batteries are relatively inexpensive and benign, so that we expect costs to come down substantially in the future. The specified cycle life at 100% DOD is also 50% longer than most NiCds, so low DOD (depth of discharge) performance could be substantial. This study was undertaken to: (a) assess the feasibility for using lithium ion cells on small satellite LEO missions and (b) verify the claims of the manufacturer. This was accomplished by performing a detailed autopsy and various depth of discharge and rate tests on the cells. Of special interest was the cycle life performance of these cell at various depths of discharge DOD`s, to get an initial measure of the reduction in capacity fade with cycle conditions. Low DOD`s are used to extend the life of all batteries used in a space application.

  11. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Santhanagopalan, Shriram.; Yang, Chuanbo.; Pesaran, Ahmad

    2013-07-01

    This report documents the successful completion of the NREL July milestone entitled “Modeling Lithium-Ion Battery Safety - Complete Case-Studies on Pouch Cell Venting,” as part of the 2013 Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy (DOE). This work aims to bridge the gap between materials modeling, usually carried out at the sub-continuum scale, and the

  12. Electrochemical Study of Hollow Carbon Nanospheres as High-Rate and Low Temperature Negative Electrodes for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Cox, Jonathan David

    The continued advancements in portable electronics have demanded more advanced power sources. To date, lithium ion batteries have been the state-of-the-art for portable devices. One significant drawback of lithium ion batteries is the slow charging times and their performance at low temperatures. In this dissertation, we explore the electrochemical behavior of a new lithium ion, negative electrode active material, hollow carbon nanospheres (HCNS). HCNS are ˜50 nm in diameter hollow spheres with ˜5 - 10 nm graphic walls which have a nominal reversible capacity of ˜220 mAh/g. We assembled and cycled HCNS as a lithium ion anode material and compared it to graphite, currently used as the anode material in most commercial lithium ion batteries. The charging mechanism of HCNS is an intercalation of the lithium ions into the graphitic walls of the spheres, similar to graphite, determined by diffraction and electroanalytical techniques. However, the HCNS electrodes cycled at much higher charge and discharge rates than graphite. Additionally, we demonstrated HCNS cycling at low temperatures (-20 *C) in electrolytes not obtainable by graphite due to material exfoliation during cycling. Although, due to the large surface area of HCNS, the first cycle coulombic losses are very high. This work has resulted in an understanding of a potentially new lithium ion battery anode material with significantly better cycling attributes than the current anode material.

  13. Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Zhu, Lu; Wu, Feng; Li, Li; Zhang, Rong; Chen, Shi

    2014-01-01

    Lithium difluoromono(oxalato)borate (LiODFB) has been used as a novel lithium salt for battery in recent studies. In this study, a series of novel electrolytes has been prepared by adding 30 vol% dimethyl sulfite (DMS) or dimethyl carbonate (DMC) as co-solvent into an ethylene carbonate (EC)/ethyl methyl carbonate (EMC) + LiX mixture, in which the LiX could be LiClO4, LiODFB, LiBOB, LiTFSI, or LiCF3SO3. These ternary electrolytes have been investigated for use in lithium ion batteries. FT-IR spectroscopy analysis shows that characteristic functional groups (-CO3, -SO3) undergo red-shift or blue-shift with the addition of different lithium salts. The LiODFB-EC/EMC/DMS electrolyte exhibits high ionic conductivity, which is mainly because of the low melting point of DMS, and LiODFB possessing high solubility. The Li/MCMB cells containing this novel electrolyte exhibit high capacities, good cycling performance, and excellent rate performance. These performances are probably because both LiODFB and DMS can assist in the formation of SEI films by reductive decomposition. Additionally, the discharge capacity of Li/LiCoO2 half cell containing LiODFB-EC/EMC/DMS electrolyte is 130.9 mAh g-1 after 50 cycles, and it is very comparable with the standard-commercial electrolyte. The results show that this study produces a promising electrolyte candidate for lithium ion batteries.

  14. Improved Positive Electrode Materials for Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Conry, Thomas Edward

    The introduction of the first commercially produced Li-ion battery by Sony in 1990 sparked a period of unprecedented growth in the consumer electronics industry. Now, with increasing efforts to move away from fossil-fuel-derived energy sources, a substantial amount of current research is focused on the development of an electrified transportation fleet. Unfortunately, existent battery technologies are unable to provide the necessary performance for electric vehicles (EV's) and plug-in hybrid electric vehicles (PHEV's) vehicles at a competitive cost. The cost and performance metrics of current Li-ion batteries are mainly determined by the positive electrode materials. The work here is concerned with understanding the structural and electrochemical consequences of cost-lowering mechanisms in two separate classes of Li-ion cathode materials; the LiMO2 (M = Ni, Mn, Co) layered oxides and the LiMPO4 olivine materials; with the goal of improving performance. Al-substitution for Co in LiNizMnzCo1-2zO 2 ("NMC") materials not only decreases the costly Co-content, but also improves the safety aspects and, notably, enhances the cycling stability of the layered oxide electrodes. The structural and electrochemical effects of Al-substitution are investigated here in a model NMC compound, LiNi0.45 Mn0.45Co0.1-yAlyO2. In addition to electrochemical measurements, various synchrotron-based characterization methods are utilized, including high-resolution X-ray diffraction (XRD), in situ X-ray diffraction, and X-ray absorption spectroscopy (XAS). Al-substitution causes a slight distortion of the as-synthesized hexagonal layered oxide lattice, lowering the inherent octahedral strain within the transition metal layer. The presence of Al also is observed to limit the structural variation of the NMC materials upon Li-deintercalation, as well as extended cycling of the electrodes. Various olivine materials, Li

  15. Novel Non-Vacuum Fabrication of Solid State Lithium Ion Battery Components

    SciTech Connect

    Oladeji, I.; Wood, D. L.; Wood, III, D. L.

    2012-10-19

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Planar Energy Devices, Inc. was to develop large-scale electroless deposition and photonic annealing processes associated with making all-solid-state lithium ion battery cathode and electrolyte layers. However, technical and processing difficulties encountered in 2011 resulted in the focus of the CRADA being redirected solely to annealing of the cathode thin films. In addition, Planar Energy Devices de-emphasized the importance of annealing of the solid-state electrolytes within the scope of the project, but materials characterization of stabilized electrolyte layers was still of interest. All-solid-state lithium ion batteries are important to automotive and stationary energy storage applications because they would eliminate the problems associated with the safety of the liquid electrolyte in conventional lithium ion batteries. However, all-solid-state batteries are currently produced using expensive, energy consuming vacuum methods suited for small electrode sizes. Transition metal oxide cathode and solid-state electrolyte layers currently require about 30-60 minutes at 700-800°C vacuum processing conditions. Photonic annealing requires only milliseconds of exposure time at high temperature and a total of <1 min of cumulative processing time. As a result, these processing techniques are revolutionary and highly disruptive to the existing lithium ion battery supply chain. The current methods of producing all-solid-state lithium ion batteries are only suited for small-scale, low-power cells and involve high-temperature vacuum techniques. Stabilized LiNixMnyCozAl1-x-y-zO2 (NMCA) nanoparticle films were deposited onto stainless steel substrates using Planar Energy Devices’ streaming process for electroless electrochemical deposition (SPEED). Since successful SPEED trials were demonstrated by Planar Energy Devices with NMCA prior to 2010, this

  16. Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Wierzbicki, Tomasz

    2015-04-01

    Most of the literature on lithium-ion battery cells is concerned with modeling of jellyroll with little attention to properties of shell casing. However, shell casing provides substantial strength and fracture resistance under mechanical loading and therefore must be an important part of modeling of lithium-ion batteries. The paper reports on a comprehensive test program on commercially available empty shell casing of 18650 lithium-ion cylindrical cells. Part of the tests was used to determine plastic and fracture properties from sub-size specimens cut from lateral part of the cans. The other part served to validate plasticity and fracture models under various loading conditions. The associated flow rule was used to simulate plasticity behavior and Modified Mohr-Coulomb (MMC) fracture model was adopted to predict crack initiation and propagation of shell casing. Simulation results confirmed that present plasticity and fracture models could predict global plastic behavior of the cells under different loading conditions. The jellyroll model with volumetric hardening was introduced to compare the performance of empty shell casing, bare jellyroll and complete battery cell. It was shown that in many loading situations, for example, three point bending of the cylindrical cells, the metallic shell casing provides most of mechanical resistance.

  17. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-08-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm-1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance.

  18. Computational multiobjective topology optimization of silicon anode structures for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mitchell, Sarah L.; Ortiz, Michael

    2016-09-01

    This study utilizes computational topology optimization methods for the systematic design of optimal multifunctional silicon anode structures for lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such this work considers two design objectives, the first being minimum compliance under design dependent volume expansion, and the second maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the influence of the minimum structural feature size and prescribed volume fraction are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the structural and conduction design criteria. The weighted sum method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. A rigid frame structure was found to be an excellent compromise between the structural and conduction design criteria, providing both the required structural rigidity and direct conduction pathways. The developments and results presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.

  19. Lithium-Ion Small Cell Battery Shorting Study

    NASA Technical Reports Server (NTRS)

    Pearson, Chris; Curzon, David; Blackmore, Paul; Rao, Gopalakrishna

    2006-01-01

    Positive Temperature Coefficient (PTC) provides adequate sustained hard short protection for AEA batteries with up to 8 cells in series. PTC cannot protect against sustained hard short in AEA batteries with 10 cells or more in series. Protective fused connector is a proven way to protect larger batteries from hard short damage: a) Hard short not credible in unmanned missions; b) However, recommended during ground handling; c) Inexpensive item. Preliminary diode protection scheme has passed manned space safety requirements for high voltage batteries. SCM confirmed fused connector did not affect battery health, however, this affect of hard short on the its long calendar and cycle life performance needs to be verified.

  20. Lithium-ion battery structure that self-heats at low temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-01

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the ‘all-climate battery’ cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  1. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    PubMed

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-07

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  2. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter.

    PubMed

    Jhu, Can-Yong; Wang, Yih-Wen; Shu, Chi-Min; Chang, Jian-Chuang; Wu, Hung-Chun

    2011-08-15

    Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO(2)) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO(2) cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T(0)), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T(max)) and pressure (P(max)). The T(max) and P(max) of the charged Li-ion battery during the runaway reaction reach 903.0°C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO(2) batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.

  3. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Yapeng; Huang, Miaohua; Chen, Yupu; Tao, Ye

    2016-07-01

    Prediction of lithium-ion batteries remaining useful life (RUL) plays an important role in an intelligent battery management system. The capacity and internal resistance are often used as the batteries health indicator (HI) for quantifying degradation and predicting RUL. However, on-line measurement of capacity and internal resistance are hardly realizable due to the not fully charged and discharged condition and the extremely expensive cost, respectively. Therefore, there is a great need to find an optional way to deal with this plight. In this work, a novel HI is extracted from the operating parameters of lithium-ion batteries for degradation modeling and RUL prediction. Moreover, Box-Cox transformation is employed to improve HI performance. Then Pearson and Spearman correlation analyses are utilized to evaluate the similarity between real capacity and the estimated capacity derived from the HI. Next, both simple statistical regression technique and optimized relevance vector machine are employed to predict the RUL based on the presented HI. The correlation analyses and prediction results show the efficiency and effectiveness of the proposed HI for battery degradation modeling and RUL prediction.

  4. Lithium-ion cell-to-cell variation during battery electric vehicle operation

    NASA Astrophysics Data System (ADS)

    Schuster, Simon F.; Brand, Martin J.; Berg, Philipp; Gleissenberger, Markus; Jossen, Andreas

    2015-11-01

    484 new and 1908 aged lithium-ion cells out of two identical battery electric vehicles (i.e. 954 cells each) were characterized by capacity and impedance measurements to yield a broad set of data for distribution fit analysis. Results prove alteration from normal to Weibull distribution for the parameters of lithium-ion cells with the progress of aging. Cells with abnormal characteristics in the aged state mostly exhibit lower capacities as compared to the distribution mode which is typical for the left-skewed Weibull shape. In addition, the strength of variation and the amount of outliers both are generally increased with the aging progress. Obtained results are compared to vehicles' operational data to provide recommendations with the aim to minimize the increasing parameter spread. However, neither temperature gradients in the battery pack nor an insufficient balancing procedure were determined. As the appearance of cells with suspicious parameters could not be assigned to local weak spots of the battery pack, a random and inevitable type of origin is assumed. Hence, the battery management system must ensure to detect outliers in a reliable manner and to balance resulting drifts of cells' states of charge to guarantee a safe battery storage operation.

  5. Lithium-ion batteries for hearing aid applications. II. Pulse discharge and safety tests

    NASA Astrophysics Data System (ADS)

    Passerini, S.; Coustier, F.; Owens, B. B.

    Rechargeable lithium-ion batteries were designed to meet the power requirements of hearing aid devices (HADs). The batteries were designed in a 312-button cell size, compatible with existing hearing aids. The batteries were tested to evaluate the design and the electrochemical performance, as they relate to a typical hearing aid application. The present report covers the pulse capabilities, cycle life and preliminary safety tests. The results are compared with other battery chemistries: secondary lithium-alloy and nickel-metal hydride batteries and primary Zn-air batteries. The cell AC impedance was stable over the frequency range between 1 and 50 kHz, ranging between 5 Ω at the higher frequency and 12 Ω at the lower extreme. Pulse tests were consistent with these values, as the cells were capable of providing a series of 100 mA pulses of 10-s duration. The safety tests suggest that the design is intrinsically safe with respect to the most common types of abuse conditions.

  6. Engineering and Abuse Testing of Panasonic Lithium-Ion Battery and Cells

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Bragg, Bobby J.

    2000-01-01

    This viewgraph presentation reviews the performance testing of Lithium Ion batteries and cells under different conditions of charge and discharge. The tests show that the 0.5 C rate of charge and discharge might be the ideal condition for long term cycling. It reviews the issues of overcharge and overdischarge of the cells. The cells and the battery have adequate protection under both conditions to prevent any catastrophic occurrences. Temperatures above 150 C are required to vent the cells or cause a thermal runaway, Since this situation is non-credible in the cabin of the Space Shuffle or ISS this should not pose a problem. The presentation includes graphs and charts showing the charge and discharge capacities of the battery and also the current and voltage profiles. A view of a circuit board which contains the controlling mechanism for the battery is also shown.

  7. Promise and reality of post-lithium-ion batteries with high energy densities

    NASA Astrophysics Data System (ADS)

    Choi, Jang Wook; Aurbach, Doron

    2016-04-01

    Energy density is the main property of rechargeable batteries that has driven the entire technology forward in past decades. Lithium-ion batteries (LIBs) now surpass other, previously competitive battery types (for example, lead-acid and nickel metal hydride) but still require extensive further improvement to, in particular, extend the operation hours of mobile IT devices and the driving mileages of all-electric vehicles. In this Review, we present a critical overview of a wide range of post-LIB materials and systems that could have a pivotal role in meeting such demands. We divide battery systems into two categories: near-term and long-term technologies. To provide a realistic and balanced perspective, we describe the operating principles and remaining issues of each post-LIB technology, and also evaluate these materials under commercial cell configurations.

  8. Application of spouted bed elutriation in the recycling of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Bertuol, Daniel A.; Toniasso, Camila; Jiménez, Bernardo M.; Meili, Lucas; Dotto, Guilherme L.; Tanabe, Eduardo H.; Aguiar, Mônica L.

    2015-02-01

    The growing environmental concern, associated with the continuous increase in electronic equipment production, has induced the development of new technologies to recycle the large number of spent batteries generated in recent years. The amount of spent lithium-ion batteries (LIBs) tends to grow over the next years. These batteries are composed by valuable metals, such as Li, Co, Cu and Al, which can be recovered. Thus, the present work is carried out in two main steps: In the first step, a characterization of the LIBs is performed. Batteries from different brands and models are dismantled and their components characterized regarding to the chemical composition and main phases. In the second step, a sample of LIBs is shredded and the different materials present are separated by spouted bed elutriation. The results show that spouted bed elutriation is a simple and inexpensive way to obtain the separation of the different materials (polymers, metals, active electrode materials) present in spent LIBs.

  9. In situ NMR of lithium ion batteries: bulk susceptibility effects and practical considerations.

    PubMed

    Trease, Nicole M; Zhou, Lina; Chang, Hee Jung; Zhu, Ben Yunxu; Grey, Clare P

    2012-04-01

    The application of in situ nuclear magnetic resonance (NMR) to investigate batteries in real time (i.e., as they are cycling) provides fruitful insight into the electrochemical structural changes that occur in the battery. A major challenge for in situ static NMR spectroscopy of a battery is, however, to separate the resonances from the different components. Many resonances overlap and are broadened since spectra are acquired, to date, in static mode. Spectral analysis is also complicated by bulk magnetic susceptibility (BMS) effects. Here we describe some of the BMS effects that arise in lithium ion battery (LIB) materials and provide an outline of some of the practical considerations associated with the application of in situ NMR spectroscopy to study structural changes in energy materials.

  10. Characteristics and thermal behavior analysis of lithium-ion batteries for application in hybrid locomotives

    NASA Astrophysics Data System (ADS)

    Chatterjee, Krishnashis

    The locomotive industry accounts for 2.5 % of the total fuel consumption in the US. Thus the necessity for reducing fuel consumption and emissions led to the development of the concept of hybrid locomotive which is dual powered by the diesel engine and electric motors. But the energy dissipated in braking such a locomotive in a year is enough to power over 9100 average US households over the same period of time. Recovering this energy using regenerative braking system and storing it in a electric battery is of great interest among researchers for improving overall efficiency and reducing consumption of fuels. In the present study, LiFePO4 batteries, a type of the state-of-art lithium-ion batteries, have been tested under different environmental and load conditions. Environmental temperatures were varied to analyze their effects on the charging and discharging patterns of the battery by using the CADEX battery analyzer in order to find the temperature range for optimum battery performance. The fluctuations of temperature of the battery surface were monitored along the length of the tests, using Infra-Red imaging and thermocouple probes at different points on the battery surface. Both battery performance characteristics and the variation of the battery surface temperature were also recorded for different load cycles in order to get a comprehensive picture of the heat generation and its effect on the behavior of the battery under different load conditions. Lastly a practical Load Cycle analysis of the battery has been performed which gave a picture of the heat generated by the battery and also the performance characteristics as it is subjected to a practical Load Cycle.

  11. 76 FR 53056 - Outbound International Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... requirements established for mailpieces containing equipment with lithium metal or lithium-ion batteries in... exposure of the contents during normal handling in the mail. 135.63 Secondary Lithium-ion (Rechargeable) Cells and Batteries. Small consumer-type lithium-ion cells and batteries like those used to power...

  12. Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jokar, Ali; Rajabloo, Barzin; Désilets, Martin; Lacroix, Marcel

    2016-09-01

    Over the last decade, many efforts have been deployed to develop models for the prediction, the control, the optimization and the parameter estimation of Lithium-ion (Li-ion) batteries. It appears that the most successful electrochemical-based model for Li-ion battery is the Pseudo-two-Dimensional model (P2D). Due to the fact that the governing equations are complex, this model cannot be used in real-time applications like Battery Management Systems (BMSs). To remedy the situation, several investigations have been carried out to simplify the P2D model. Mathematical and physical techniques are employed to reduce the order of magnitude of the P2D governing equations. The present paper is a review of the studies on the modeling of Li-ion batteries with simplified P2D models. The assumptions on which these models rest are stated, the calculation methods are examined, the advantages and the drawbacks of the models are discussed and their applications are presented. Suggestions for overcoming the shortcomings of the models are made. Challenges and future directions in the modeling of Li-ion batteries are also discussed.

  13. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction

    NASA Astrophysics Data System (ADS)

    Nan, Junmin; Han, Dongmei; Zuo, Xiaoxi

    This paper describes a new recycling process of metal values from spent lithium-ion batteries (LIBs). After the dismantling of the spent batteries steel crusts, the leaching of battery internal substances with alkaline solution and the dissolving of the residues with H 2SO 4 solution were carried out. Then mass cobalt was chemically deposited as oxalate, and Acorga M5640 and Cyanex272 extracted the small quantities of copper and cobalt, respectively. Lithium was recovered as deposition of lithium carbonate. It is shown that about 90% cobalt was deposited as oxalate with less than 0.5% impurities, and Acorga M5640 and Cyanex272 were efficient and selective for the extraction of copper and cobalt in sulfate solution. Over 98% of the copper and 97% of the cobalt was recovered in the given process. In addition, the waste solution was treated innocuously, and LiCoO 2 positive electrode material with good electrochemical performance was also synthesized by using the recovered compounds of cobalt and lithium as precursors. The process is feasible for the recycling of spent LIBs in scale-up.

  14. Composite gel polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their

  15. Solution-grown germanium nanowire anodes for lithium-ion batteries.

    PubMed

    Chockla, Aaron M; Klavetter, Kyle C; Mullins, C Buddie; Korgel, Brian A

    2012-09-26

    Solution-grown germanium (Ge) nanowires were tested as high capacity anodes in lithium ion (Li-ion) batteries. Nanowire films were formulated and cast as slurries with conductive carbon (7:1 Ge:C w/w), PVdF binder and 1.0 M LiPF(6) dissolved in various solvents as electrolyte. The addition of fluorethylene carbonate (FEC) to the electrolyte was critical to achieving stable battery cycling and reversible capacities as high as 1248 mA h g(-1) after 100 cycles, which is close to the theoretical capacity of 1,384 mA h g(-1). Ge nanowire anodes also exhibited high rate capability, with reversible cycling above 600 mA h g(-1) for 1200 cycles at a rate of 1C. The batteries could also be discharged at 10C with a capacity of 900 mA h g(-1) when charged at 1C.

  16. Cycle life performance of rechargeable lithium ion batteries and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Ning, Gang

    Capacity fade of commercial Sony US 18650 Li-ion batteries cycled at high discharge rates was studied at ambient temperature. Battery cycled at the highest discharge rate (3 C) shows the largest internal resistance increase of 27.7% relative to the resistance of fresh battery. It's been observed anode carbon loses 10.6% of its capability to intercalate or deintercalate Li+ after it was subjected to 300 cycles at discharge rate of 3 C. This loss dominates capacity fade of full battery. A mechanism considering continuous parasitic reaction at anode/electrolyte interface and film thickening has been proposed. First principles based charge-discharge models to simulate cycle life behavior of rechargeable Li-ion batteries have been developed. In the generalized model, transport in both electrolyte phase and solid phase were simultaneously taken into account. Under mild charge-discharge condition, transport of lithium in the electrolyte phase has been neglected in the simplified model. Both models are based on loss of the active lithium ions due to the electrochemical parasitic reaction at anode/electrolyte interface and on rise of the anode film resistance. The effect of parameters such as depth of discharge (DOD), end of charge voltage (EOCV) and overvoltage of the parasitic reaction on the cycle life behavior of a battery has been analyzed. The experimental results obtained at a charge rate of 1 C, discharge rate of 0.5 C, EOCV of 4.0 V and DOD of 0.4 have been used to validate cycle life models. Good agreement between the simulations and the experiments has been achieved up to 1968 cycles with both models. Simulation of cycle life of battery under multiple cycling regimes has also been demonstrated.

  17. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    PubMed

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for

  18. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries.

    PubMed

    Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid; Aboulaich, Abdelmaula; Lienafa, Livie; Bonnet, Jean-Pierre; Phan, Trang N T; Bertin, Denis; Gigmes, Didier; Devaux, Didier; Denoyel, Renaud; Armand, Michel

    2013-05-01

    Electrochemical energy storage is one of the main societal challenges of this century. The performances of classical lithium-ion technology based on liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues. Solid polymer electrolytes would be a perfect solution to those safety issues, miniaturization and enhancement of energy density. However, as in liquids, the fraction of charge carried by lithium ions is small (<20%), limiting the power performances. Solid polymer electrolytes operate at 80 °C, resulting in poor mechanical properties and a limited electrochemical stability window. Here we describe a multifunctional single-ion polymer electrolyte based on polyanionic block copolymers comprising polystyrene segments. It overcomes most of the above limitations, with a lithium-ion transport number close to unity, excellent mechanical properties and an electrochemical stability window spanning 5 V versus Li(+)/Li. A prototype battery using this polyelectrolyte outperforms a conventional battery based on a polymer electrolyte.

  19. A Lithium-Ion Battery with Enhanced Safety Prepared using an Environmentally Friendly Process.

    PubMed

    Mueller, Franziska; Loeffler, Nicholas; Kim, Guk-Tae; Diemant, Thomas; Behm, R Jürgen; Passerini, Stefano

    2016-06-08

    A new lithium-ion battery chemistry is presented based on a conversion-alloying anode material, a carbon-coated Fe-doped ZnO (TMO-C), and a LiNi1/3 Mn1/3 Co1/3 O2 (NMC) cathode. Both electrodes were fabricated using an environmentally friendly cellulose-based binding agent. The performance of the new lithium-ion battery was evaluated with a conventional, carbonate-based electrolyte (ethylene carbonate:diethyl carbonate-1 m lithium hexafluorophosphate, EC:DEC 1 m LiPF6 ) and an ionic liquid (IL)-based electrolyte (N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide-0.2 m lithium bis(trifluoromethanesulfonyl)imide, Pyr14 TFSI 0.2 m LiTFSI), respectively. Galvanostatic charge/discharge tests revealed a reduced rate capability of the TMO-C/Pyr14 TFSI 0.2 m LiTFSI/NMC full-cell compared to the organic electrolyte, but the coulombic efficiency was significantly enhanced. Moreover, the IL-based electrolyte substantially improves the safety of the system due to a higher thermal stability of the formed anodic solid electrolyte interphase and the IL electrolyte itself. While the carbonate-based electrolyte shows sudden degradation reactions, the IL exhibits a slowly increasing heat flow, which does not constitute a serious safety risk.

  20. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries.

    PubMed

    Shi, Feifei; Song, Zhichao; Ross, Philip N; Somorjai, Gabor A; Ritchie, Robert O; Komvopoulos, Kyriakos

    2016-06-14

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  1. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  2. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    PubMed Central

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  3. Microbatteries for Combinatorial Studies of Conventional Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Bugga, Ratnakumar

    2003-01-01

    Integrated arrays of microscopic solid-state batteries have been demonstrated in a continuing effort to develop microscopic sources of power and of voltage reference circuits to be incorporated into low-power integrated circuits. Perhaps even more importantly, arrays of microscopic batteries can be fabricated and tested in combinatorial experiments directed toward optimization and discovery of battery materials. The value of the combinatorial approach to optimization and discovery has been proven in the optoelectronic, pharmaceutical, and bioengineering industries. Depending on the specific application, the combinatorial approach can involve the investigation of hundreds or even thousands of different combinations; hence, it is time-consuming and expensive to attempt to implement the combinatorial approach by building and testing full-size, discrete cells and batteries. The conception of microbattery arrays makes it practical to bring the advantages of the combinatorial approach to the development of batteries.

  4. A lithium-ion sulfur battery using a polymer, polysulfide-added membrane

    PubMed Central

    Agostini, Marco; Hassoun, Jusef

    2015-01-01

    In this paper we report the performances of a lithium-ion sulfur battery characterized by a polymer configuration. The cell, based on a sulfur-carbon cathode, a Li-Sn-C nanostructured anode and a PEO-based, polysulfide-added electrolyte, shows very good electrochemical performances in terms of stability and delivered capacity. The remarkable cell performances are ascribed to the mitigation of the cathode dissolution process due to the buffer action ensured by the polysulfide added to the polymer electrolyte. This electrolyte configuration allows the achievement of a stable capacity ranging from 500 to 1500 mAh gS-1, depending on the cycling rate. The use of a polymer electrolyte and the replacement of the lithium metal with a Li-Sn-C nanostructured alloy are expected to guarantee high safety content, thus suggesting the battery here studied as advanced energy storage system. PMID:25558001

  5. A lithium-ion sulfur battery using a polymer, polysulfide-added membrane.

    PubMed

    Agostini, Marco; Hassoun, Jusef

    2015-01-05

    In this paper we report the performances of a lithium-ion sulfur battery characterized by a polymer configuration. The cell, based on a sulfur-carbon cathode, a Li-Sn-C nanostructured anode and a PEO-based, polysulfide-added electrolyte, shows very good electrochemical performances in terms of stability and delivered capacity. The remarkable cell performances are ascribed to the mitigation of the cathode dissolution process due to the buffer action ensured by the polysulfide added to the polymer electrolyte. This electrolyte configuration allows the achievement of a stable capacity ranging from 500 to 1500 mAh gS(-1), depending on the cycling rate. The use of a polymer electrolyte and the replacement of the lithium metal with a Li-Sn-C nanostructured alloy are expected to guarantee high safety content, thus suggesting the battery here studied as advanced energy storage system.

  6. An innovative approach to recover the metal values from spent lithium-ion batteries.

    PubMed

    Barik, S P; Prabaharan, G; Kumar, B

    2016-05-01

    A new approach to recover metal values from spent lithium-ion batteries with a simple and environmentally friendly method is investigated. Two stages of water washing of the mixed black powder resulted in satisfactory separation of cobalt and lithium. Lithium in the wash liquor is precipitated using saturated sodium carbonate solution. Cobalt oxide in the residue is purified by removing organic matrix through roasting followed by dilute acid washing. The purities of the products obtained during the processes are analyzed by Microwave Plasma-Atomic Emission Spectrophotometer and confirmed from X-ray diffraction analysis. The overall process is safe, economic and can be scaled up for commercial production. Based on the process steps involved, a flow sheet is proposed for industrial application.

  7. Hierarchical surface atomic structure of a manganese-based spinel cathode for lithium-ion batteries.

    PubMed

    Lee, Sanghan; Yoon, Gabin; Jeong, Minseul; Lee, Min-Joon; Kang, Kisuk; Cho, Jaephil

    2015-01-19

    The increasing use of lithium-ion batteries (LIBs) in high-power applications requires improvement of their high-temperature electrochemical performance, including their cyclability and rate capability. Spinel lithium manganese oxide (LiMn2O4) is a promising cathode material because of its high stability and abundance. However, it exhibits poor cycling performance at high temperatures owing to Mn dissolution. Herein we show that when stoichiometric lithium manganese oxide is coated with highly doped spinels, the resulting epitaxial coating has a hierarchical atomic structure consisting of cubic-spinel, tetragonal-spinel, and layered structures, and no interfacial phase is formed. In a practical application of the coating to doped spinel, the material retained 90% of its capacity after 800 cycles at 60 °C. Thus, the formation of an epitaxial coating with a hierarchical atomic structure could enhance the electrochemical performance of LIB cathode materials while preventing large losses in capacity.

  8. Lithium-ion battery diagnostic and prognostic techniques

    DOEpatents

    Singh, Harmohan N.

    2009-11-03

    Embodiments provide a method and a system for determining cell imbalance condition of a multi-cell battery including a plurality of cell strings. To determine a cell imbalance condition, a charge current is applied to the battery and is monitored during charging. The charging time for each cell string is determined based on the monitor of the charge current. A charge time difference of any two cell strings in the battery is used to determine the cell imbalance condition by comparing with a predetermined acceptable charge time difference for the cell strings.

  9. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Musheng, Wu; Bo, Xu; Chuying, Ouyang

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010 and 20142BAB212002), and the Foundation of Jiangxi Education Committee, China (Grant Nos. GJJ14254 and KJLD14024). C. Y. Ouyang is also supported by the “Gan-po talent 555” Project of Jiangxi Province, China.

  10. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    PubMed

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction.

  11. Overcharge Protection And Cell Voltage Monitoring For Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Altemose, George; Salim, Abbas

    2011-10-01

    This paper describes a new Battery Interface and Electronics (BIE) assembly used to monitor battery and cell voltages, as well as provide overvoltage (overcharge) protection for Lithium Ion batteries with up to 8-cells in series. The BIE performs accurate measurement of the individual cell voltages, the total battery voltage, and the individual cell temperatures. In addition, the BIE provides an independent over-charge protection (OCP) circuit that terminates the charging process by isolating the battery from the charging source in the event that the voltage of any cell exceeds a preset limit of +4.500V. The OCP circuit utilizes dual redundancy, and is immune to single-point failures in the sense that no single-point failure can cause the battery to become isolated inadvertently. A typical application of the BIE in a spacecraft electrical power subsystem is shown in Figure 1. The BIE circuits have been designed with Chip On Board (COB) technology. Using this technology, integrated circuit die, Field Effect Transistors (FETs) and diodes are mounted and wired directly on a multi-layer printed wiring board (PWB). For those applications where long term reliability can be achieved without hermeticity, COB technology provides many benefits such as size and weight reduction while lowering production costs. The BIE was designed, fabricated and tested to meet the specifications provided by Orbital Sciences Corporation (OSC) for use with Lithium-Ion batteries in the Commercial Orbital Transportation System (COTS). COTS will be used to deliver cargo to the International Space Station at low earth orbit (LEO). Aeroflex has completed the electrical and mechanical design of the BIE and fabricated and tested the Engineering Model (EM), as well as the Engineering Qualification Model (EQM). Flight units have also been fabricated, tested and delivered to OSC.

  12. Chemical and structural stability of lithium-ion battery electrode materials under electron beam.

    PubMed

    Lin, Feng; Markus, Isaac M; Doeff, Marca M; Xin, Huolin L

    2014-07-16

    The investigation of chemical and structural dynamics in battery materials is essential to elucidation of structure-property relationships for rational design of advanced battery materials. Spatially resolved techniques, such as scanning/transmission electron microscopy (S/TEM), are widely applied to address this challenge. However, battery materials are susceptible to electron beam damage, complicating the data interpretation. In this study, we demonstrate that, under electron beam irradiation, the surface and bulk of battery materials undergo chemical and structural evolution equivalent to that observed during charge-discharge cycling. In a lithiated NiO nanosheet, a Li2CO3-containing surface reaction layer (SRL) was gradually decomposed during electron energy loss spectroscopy (EELS) acquisition. For cycled LiNi(0.4)Mn(0.4)Co(0.18)Ti(0.02)O2 particles, repeated electron beam irradiation induced a phase transition from an layered structure to an rock-salt structure, which is attributed to the stoichiometric lithium and oxygen removal from 3a and 6c sites, respectively. Nevertheless, it is still feasible to preserve pristine chemical environments by minimizing electron beam damage, for example, using fast electron imaging and spectroscopy. Finally, the present study provides examples of electron beam damage on lithium-ion battery materials and suggests that special attention is necessary to prevent misinterpretation of experimental results.

  13. An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method

    NASA Astrophysics Data System (ADS)

    Han, Pengfei; Zhu, Yuewu; Liu, Jin

    2015-06-01

    A cross-linked polymer electrolyte membrane (SPE) was fabricated by a solvent-free hot-pressing method for all-solid-state lithium ion battery. The ionic conductivity of the electrolyte is 1.34 × 10-3 S cm-1 and the decomposition potential is 4.87 V at the ethylene oxide (EO):LiN(SO2CF3)2 (LiTFSI) molar ratio of 20:1 and 120 °C. TG-DSC results show that the SPE is thermally stable up to 230 °C in argon atmosphere. The assembled LiFePO4/SPE/Li all-solid-state battery can stably work in the temperature range of 80-140 °C. At 120 °C, the initial discharge capacity of the battery is 156.7 mAh g-1 at 1C which is close to the theoretical capacity of the cathode material, showing that the solvent-free filming method is low-cost and environment-friendly for solid polymer electrolyte and all-solid-state lithium ion battery.

  14. Online estimation of lithium-ion battery remaining discharge capacity through differential voltage analysis

    NASA Astrophysics Data System (ADS)

    Liu, Guangming; Ouyang, Minggao; Lu, Languang; Li, Jianqiu; Han, Xuebing

    2015-01-01

    The estimation of battery remaining discharge capacity (QRDC) is essential for the remaining driving range prediction on pure electric vehicles. A traditional QRDC estimation method is based on the determination of battery state of charge (SOC), in which the estimation accuracy could be affected by the variation in discharge conditions. In this research, a novel QRDC estimation method through differential voltage (dV/dQ) analysis is introduced for lithium-ion batteries. Through analyzing the characteristics of terminal voltage variation, the present QRDC could be estimated by the dV/dQ value, which is capable to provide an accurate estimation result under various discharge conditions. On a commercial lithium-ion battery, the dV/dQ method is implemented for QRDC estimation under pulse discharge profiles and dynamic profiles. The result shows that the dV/dQ method could provide accurate QRDC estimation results under various discharge profiles in the latter part of the discharge process, and the QRDC estimation accuracy could hence be improved by combining the differential voltage analysis with the SOC-based method. Owing to the simple computation process, the dV/dQ-based estimation method is very competitive in onboard applications.

  15. Representative-Sandwich Model for Mechanical-Crush and Short-Circuit Simulation of Lithium-ion Batteries

    SciTech Connect

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-07-28

    Lithium-ion batteries are currently the state-of-the-art power sources for a variety of applications, from consumer electronic devices to electric-drive vehicles (EDVs). Being an energized component, failure of the battery is an essential concern, which can result in rupture, smoke, fire, or venting. The failure of Lithium-ion batteries can be due to a number of external abusive conditions (impact/crush, overcharge, thermal ramp, etc.) or internal conditions (internal short circuits, excessive heating due to resistance build-up, etc.), of which the mechanical-abuse-induced short circuit is a very practical problem. In order to better understand the behavior of Lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, thermal and electrical response has been developed for predicting short circuit under external crush.

  16. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).

    PubMed

    Guo, Yang; Li, Feng; Zhu, Haochen; Li, Guangming; Huang, Juwen; He, Wenzhi

    2016-05-01

    Spent lithium-ion batteries (LIBs) are considered as an important secondary resource for its high contents of valuable components, such as lithium and cobalt. Currently, studies mainly focus on the recycling of cathode electrodes. There are few studies concentrating on the recovery of anode electrodes. In this work, based on the analysis result of high amount of lithium contained in the anode electrode, the acid leaching process was applied to recycle lithium from anode electrodes of spent LIBs. Hydrochloric acid was introduced as leaching reagent, and hydrogen peroxide as reducing agent. Within the range of experiment performed, hydrogen peroxide was found to have little effect on lithium leaching process. The highest leaching recovery of 99.4wt% Li was obtained at leaching temperature of 80°C, 3M hydrochloric acid and S/L ratio of 1:50g/ml for 90min. The graphite configuration with a better crystal structure obtained after the leaching process can also be recycled.

  17. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    PubMed Central

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-01-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety. PMID:27354162

  18. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    PubMed Central

    Hwang, Jeongwoon; Ihm, Jisoon; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-01-01

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV). As the incident energy decreases, the ratio of sp2 carbons increases, that of sp3 decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  19. Interconnected Nanoflake Network Derived from a Natural Resource for High-Performance Lithium-Ion Batteries.

    PubMed

    Cheng, Fei; Li, Wen-Cui; Lu, An-Hui

    2016-10-06

    Numerous natural resources have a highly interconnected network with developed porous structure, so enabling directional and fast matrix transport. Such structures are appealing for the design of efficient anode materials for lithium-ion batteries, although they can be challenging to prepare. Inspired by nature, a novel synthesis route from biomass is proposed by using readily available auricularia as retractable support and carbon coating precursor to soak up metal salt solution. Using the swelling properties of the auricularia with the complexation of metal ions, a nitrogen-containing MnO@C nanoflake network has been easily synthesized with fast electrochemical reaction dynamics and a superior lithium storage performance. A subsequent carbonization results in the in situ synthesis of MnO nanoparticles throughout the porous carbon flake network. When evaluated as an anode material for lithium-ion batteries, an excellent reversible capacity is achieved of 868 mA h g(-1) at 0.2 A g(-1) over 300 cycles and 668 mA h g(-1) at 1 A g(-1) over 500 cycles, indicating a high tolerance to the volume expansion. The approach investigated opens up new avenues for the design of high performance electrodes with highly cross-linked nanoflake structures, which may have great application prospects.

  20. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-06-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety.

  1. Electrode architectures for efficient electronic and ionic transport pathways in high power lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Faulkner, Ankita Shah

    As the demand for clean energy sources increases, large investments have supported R&D programs aimed at developing high power lithium ion batteries for electric vehicles, military, grid storage and space applications. State of the art lithium ion technology cannot meet power demands for these applications due to high internal resistances in the cell. These resistances are mainly comprised of ionic and electronic resistance in the electrode and electrolyte. Recently, much attention has been focused on the use of nanoscale lithium ion active materials on the premise that these materials shorten the diffusion length of lithium ions and increase the surface area for electrochemical charge transfer. While, nanomaterials have allowed significant improvements in the power density of the cell, they are not a complete solution for commercial batteries. Due to their large surface area, they introduce new challenges such as a poor electrode packing densities, high electrolyte reactivity, and expensive synthesis procedures. Since greater than 70% of the cost of the electric vehicle is due to the cost of the battery, a cost-efficient battery design is most critical. To address the limitations of nanomaterials, efficient transport pathways must be engineered in the bulk electrode. As a part of nanomanufacturing research being conducted the Center for High-rate Nanomanufacturing at Northeastern University, the first aim of the proposed work is to develop electrode architectures that enhance electronic and ionic transport pathways in large and small area lithium ion electrodes. These architectures will utilize the unique electronic and mechanical properties of carbon nanotubes to create robust electrode scaffolding that improves electrochemical charge transfer. Using extensive physical and electrochemical characterization, the second aim is to investigate the effect of electrode parameters on electrochemical performance and evaluate the performance against standard commercial

  2. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries.

    PubMed

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-12-23

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn(4+) with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g(-1) based on solid-state redox reaction of oxide ions.

  3. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries

    PubMed Central

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-01-01

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g−1 based on solid-state redox reaction of oxide ions. PMID:28008955

  4. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-12-01

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g-1 based on solid-state redox reaction of oxide ions.

  5. Development of lithium-ion batteries from micro-structured to nanostructured materials: its issues and challenges.

    PubMed

    Kumar, Harish; Rajan, Sundar; Shukla, Ashok K

    2012-01-01

    Lithium-ion batteries are the systems of choice, offering high energy density, flexibility, lightness in weight, design and longer lifespan than comparable battery technologies. A brief historical review is given of the development of Li-ion rechargeable batteries, highlighting the ongoing research strategies, and highlighting the challenges regarding synthesis, characterization, electrochemical performance and safety of these systems. This work is primarily focused on development of Li-ion batteries from micro-structured to nanostructured materials and some of the critical issues namely, electrode preparation, synthesis, and electrochemical characterization. The purpose of this review is to act as a reference for future work in this area.

  6. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20

  7. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  8. Microcapsule-based techniques for improving the safety of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Baginska, Marta

    Lithium-ion batteries are vital energy storage devices due to their high specific energy density, lack of memory effect, and long cycle life. While they are predominantly used in small consumer electronics, new strategies for improving battery safety and lifetime are critical to the successful implementation of high-capacity, fast-charging materials required for advanced Li-ion battery applications. Currently, the presence of a volatile, combustible electrolyte and an oxidizing agent (Lithium oxide cathodes) make the Li-ion cell susceptible to fire and explosions. Thermal overheating, electrical overcharging, or mechanical damage can trigger thermal runaway, and if left unchecked, combustion of battery materials. To improve battery safety, autonomic, thermally-induced shutdown of Li-ion batteries is demonstrated by depositing thermoresponsive polymer microspheres onto battery anodes. When the internal temperature of the cell reaches a critical value, the microspheres melt and conformally coat the anode and/or separator with an ion insulating barrier, halting Li-ion transport and shutting down the cell permanently. Charge and discharge capacity is measured for Li-ion coin cells containing microsphere-coated anodes or separators as a function of capsule coverage. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and re-solidification of polyethylene (PE) into the anode and polymer film formation at the anode/separator interface. As an extension of this autonomic shutdown approach, a particle-based separator capable of performing autonomic shutdown, but which reduces the shorting hazard posed by current bi- and tri-polymer commercial separators, is presented. This dual-particle separator is composed of hollow glass microspheres acting as a physical spacer between electrodes, and PE microspheres to impart autonomic shutdown functionality. An oil-immersion technique is

  9. Mechanism of Silicon Electrode Aging upon Cycling in Full Lithium-Ion Batteries.

    PubMed

    Delpuech, Nathalie; Dupre, Nicolas; Moreau, Philippe; Bridel, Jean-Sebastian; Gaubicher, Joel; Lestriez, Bernard; Guyomard, Dominique

    2016-04-21

    Understanding the aging mechanism of silicon-based negative electrodes for lithium-ion batteries upon cycling is essential to solve the problem of low coulombic efficiency and capacity fading and further to implement this new high-capacity material in commercial cells. Nevertheless, such studies have so far focused on half cells in which silicon is cycled versus an infinite reservoir of lithium. In the present work, the aging mechanism of silicon-based electrodes is studied upon cycling in a full Li-ion cell configuration with LiCoO2 as the positive electrode. Postmortem analyses of both electrodes clearly indicate that neither one of them contains lithium and that no discernible degradation results from the cycling. The aging mechanism can be explained by the reduction of solvent molecules. Electrons extracted from the positive electrode are responsible for an internal imbalance in the cell, which results in progressive slippage of the electrodes and reduces the compositional range of cyclable lithium ions for both electrodes.

  10. Deformation and failure characteristics of four types of lithium-ion battery separators

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-09-01

    Mechanical properties and failure mechanisms of battery separators play a crucial role in integrity of Lithium-ion batteries during an electric vehicle crash event. In this study, four types of commonly used battery separators are characterized and their mechanical performance, strength, and failure are compared. This includes two dry-processed polyethylene (PE) and trilayer separators, a wet-processed ceramic-coated separator, and a nonwoven separator. In detail, uniaxial tensile tests were performed along machine direction (MD), transverse direction (TD) and diagonal direction (DD). Also, through-thickness compression tests and biaxial punch tests were conducted. Comprehensive mechanical tests revealed interesting deformation and failure patterns under extreme mechanical loads. Last, a finite element model of PE separator was developed in LSDYNA based on the uniaxial tensile and through-thickness compression test data. The model succeeded in predicting the response of PE separator under punch tests with different sizes of punch head.

  11. Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries

    SciTech Connect

    Wu, H

    2011-08-18

    Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

  12. Synthesis and electrochemical characterization of Silicon clathrates as anode materials for Lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Raghavan, Rahul

    Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the low specific capacities of the active materials in the electrodes. In the search for high-performance anode materials for Li-ion batteries, many alternatives to carbonaceous materials have been studied. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical capacity of 3500 mAh/g, making silicon a potential high density anode material. However, a large volume expansion of 300% occurs due to changes in the structure during lithium insertion, often leading to pulverization of the silicon. To this end, a class of silicon based cage compounds called clathrates are studied for electrochemical reactivity with lithium. Silicon-clathrates consist of silicon covalently bonded in cage structures comprised of face sharing Si20, Si24 and/or Si28 clusters with guest ions occupying the interstitial positions in the polyhedra. Prior to this, silicon clathrates have been studied primarily for their superconducting and thermoelectric properties. In this work, the synthesis and electrochemical characterization of two categories of silicon clathrates - Type-I silicon clathrate with aluminum framework substitution and barium guest ions (Ba8AlxSi46-x) and Type-II silicon clathrate with sodium guest ions (Nax Si136), are explored. The Type-I clathrate, Ba8AlxSi46-x consists of an open framework of aluminium and silicon, with barium (guest) atoms occupying the interstitial positions. X-ray diffraction studies have shown that a crystalline phase of clathrate is obtained from synthesis, which is powdered to a fine particle size to be used as the anode material in a Li-ion battery. Electrochemical measurements of these type of clathrates have shown

  13. Exothermic behaviors of mechanically abused lithium-ion batteries with dibenzylamine

    NASA Astrophysics Data System (ADS)

    Shi, Yang; Noelle, Daniel J.; Wang, Meng; Le, Anh V.; Yoon, Hyojung; Zhang, Minghao; Meng, Ying Shirley; Qiao, Yu

    2016-09-01

    A thermal-runaway retardant (TRR) of lithium-ion batteries (LIBs), dibenzylamine (DBA), is investigated. In a TRR-modified LIB, DBA can be encapsulated in packages made of inert materials. When the LIB is subjected to mechanical abuse, the packages would be broken apart and the TRR is released. In nail penetration and impact tests, addition of 4 wt% DBA reduces the temperature increase of fully charged LIR-2450 cells by nearly 50%. The influence of TRR packages on the cycling performance of LIBs is negligible. The working mechanism of DBA is associated with the decrease in electrolyte conductivity, the increase in charge transfer resistance, and the reduction in lithium ion (Li+) transference numbers.

  14. Solid state NMR study of SEI formation in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Dachun

    Recently, rechargeable lithium ion batteries, which offer high energy density and long cycle life, are in great demand as power sources for our mobile electronic society. The formation of a solid electrolyte interphase (SEI) on the surface of electrodes in lithium ion batteries plays an essential role in their performance. This thesis presents solid state NMR and MAS NMR results on the SEI, which contribute to our understanding of SEI formation on both cathodes and anodes. This thesis is organized as following: Chapter 1 surveys the history of batteries and the challenges to further development of the lithium ion battery. Fundamental aspects and SEI formation mechanisms are also included in Chapter l. Chapter 2 deals with the principles and experimental techniques of solid state NMR. Chapter 3 presents studies of SEI formation on anode and cathode in lithium ion batteries using electrochemical impedance spectroscopy (EIS) and NMR. The results provide EIS and NMR evidence that cells containing electrolytes with high EC content display less irreversible capacity after high temperature storage. The irreversible capacity is attributed to SEI growth on electrode surfaces. NMR results on cathodes, on the other hand, imply that the presence of Ni in the cathode may reduce cell performance due to the oxidation of Ni 3+ to Ni4+. Our simulations show that a lower EC/DMC ratio is associated with a smaller SEI intensity for the cathode and higher intensity for the anode. Chapter 4 discusses the effect of temperature on SEI formation on anodes and cathodes. NMR measurements show that MCMB graphite based anodes exhibit high stability no chemical shift is evident over a wide temperature range. On cathodes, however, NMR does reveal changes in SEI intensity as a function of temperature. These changes are believed to be the result of decomposition of the SEI. Evidently, then, changes in the performance of the cell as a factor of temperature are, at least in part, due to changes in

  15. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.

    PubMed

    Zhang, Tao; He, Yaqun; Wang, Fangfang; Ge, Linhan; Zhu, Xiangnan; Li, Hong

    2014-06-01

    Mineral processing operation is a critical step in any recycling process to realize liberation, separation and concentration of the target parts. Developing effective recycling methods to recover all the valuable parts from spent lithium-ion batteries is in great necessity. The aim of this study is to carefully undertake chemical and process mineralogical characterizations of spent lithium-ion batteries by coupling several analytical techniques to provide basic information for the researches on effective mechanical crushing and separation methods in recycling process. The results show that the grade of Co, Cu and Al is fairly high in spent lithium ion batteries and up to 17.62 wt.%, 7.17 wt.% and 21.60 wt.%. Spent lithium-ion batteries have good selective crushing property, the crushed products could be divided into three parts, they are Al-enriched fraction (+2 mm), Cu and Al-enriched fraction (-2+0.25 mm) and Co and graphite-enriched fraction (-0.25 mm). The mineral phase and chemical state analysis reveal the electrode materials recovered from -0.25 mm size fraction keep the original crystal forms and chemical states in lithium-ion batteries, but the surface of the powders has been coated by a certain kind of hydrocarbon. Based on these results a flowsheet to recycle spent LiBs is proposed.

  16. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries.

    PubMed

    Liu, Xiaolin; Yang, Jun; Hou, Wenhua; Wang, Jiulin; Nuli, Yanna

    2015-08-24

    Herein, MoO2 nanoplates have been facilely prepared through a hydrothermal process by using MoO3 microbelts as the intercalation host. The obtained MoO2 nanoplates manifest excellent electrochemical properties when the discharge cutoff voltage is simply set at 1.0 V to preclude the occurrence of conversion reactions. Its initial reversible capacity reaches 251 mAh g(-1), which is larger than that of Li4Ti5O12 , at a current rate of 0.2 C. The average capacity decay is only 0.0465 mAh g(-1) per cycle, with a coulombic efficiency of 99.5% (from the 50th cycle onward) for 2000 cycles at 1 C. Moreover, this MoO2 electrode demonstrates an outstanding high power performance. When the current rate is increased from 0.2 to 50 C, about 54% of the capacity is retained. The superior electrochemical performance can be attributed to the metallic conductivity of MoO2, short Li(+) diffusion distance in the nanoplates, and reversible crystalline phase conversion of the addition-type reaction of MoO2. The prepared MoO2 nanoplates may hopefully replace their currently used analogues, such as Li4Ti5O12 , in high power lithium-ion batteries.

  17. Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models

    NASA Astrophysics Data System (ADS)

    Rothenberger, Michael J.

    This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input

  18. Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries

    SciTech Connect

    Liu, Bin; Zhang, Ji-Guang; Shen, Guozhen

    2016-02-01

    Stretchable/flexible electronics provide a foundation for various emerging applications that beyond the scope of conventional wafer/circuit board technologies due to their unique features that can satisfy a broad range of applications such as wearable devices. Stretchable electronic and optoelectronics devices require the bendable/wearable rechargeable Li-ion batteries, thus these devices can operate without limitation of external powers. Various two-dimensional (2D) nanomaterials are of great interest in flexible energy storage devices, especially Li-ion batteries. This is because 2D materials exhibit much more exposed surface area supplying abundant Li-insertion channels and shortened paths for fast lithium ion diffusion. Here, we will review the recent developments on the flexible Li-ion batteries based on two dimensional nanomaterials. These researches demonstrated advancements in flexible electronics by incorporating various 2D nanomaterials into bendable batteries to achieve high electrochemical performance, excellent mechanical flexibility as well as electrical stability under stretching/bending conditions.

  19. An experimental study of lithium ion battery thermal management using flexible hydrogel films

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Zhang, Sijie; Gu, Junjie; Liu, Jie; Carkner, Steve; Lanoue, Eric

    2014-06-01

    Many portable devices such as soldier carrying devices are powered by low-weight but high-capacity lithium ion (Li-ion) batteries. An effective battery thermal management (BTM) system is required to keep the batteries operating within a desirable temperature range with minimal variations, and thus to guarantee their high efficiency, long lifetime and great safety. However, the rigorous constraints imposed by the budgets in weight and volume for this specific application eliminate the possible consideration of many existing classical cooling approaches and make the development of BTM system very challenging in this field. In this paper, a flexible hydrogel-based BTM system is developed to address this challenge. The proposed BTM system is based on cost-effective sodium polyacrylate and can be arbitrarily shaped and conveniently packed to accommodate any Li-ion stacks. This BTM system is tested through a series of high-intensity discharge and abnormal heat release processes, and its performance is compared with three classical BTM systems. The test results demonstrate that the proposed low-cost, space-saving, and contour-adaptable BTM system is a very economic and efficient approach in handling the thermal surge of Li-ion batteries.

  20. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema

    Chamberlain, Jeff

    2016-07-12

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  1. Biologically activated noble metal alloys at the nanoscale: for lithium ion battery anodes.

    PubMed

    Lee, Yun Jung; Lee, Youjin; Oh, Dahyun; Chen, Tiffany; Ceder, Gerbrand; Belcher, Angela M

    2010-07-14

    We report the synthesis and electrochemical activity of gold and silver noble metals and their alloy nanowires using multiple virus clones as anode materials for lithium ion batteries. Using two clones, one for specificity (p8#9 virus) and one versatility (E4 virus), noble metal nanowires of high-aspect ratio with diameters below 50 nm were successfully synthesized with control over particle sizes, morphologies, and compositions. The biologically derived noble metal alloy nanowires showed electrochemical activities toward lithium even when the electrodes were prepared from bulk powder forms. The improvement in capacity retention was accomplished by alloy formation and surface stabilization. Although the cost of noble metals renders them a less ideal choice for lithium ion batteries, these noble metal/alloy nanowires serve as great model systems to study electrochemically induced transformation at the nanoscale. Given the demonstration of the electrochemical activity of noble metal alloy nanowires with various compositions, the M13 biological toolkit extended its utility for the study on the basic electrochemical property of materials.

  2. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Börner, M.; Friesen, A.; Grützke, M.; Stenzel, Y. P.; Brunklaus, G.; Haetge, J.; Nowak, S.; Schappacher, F. M.; Winter, M.

    2017-02-01

    Established safety of lithium ion batteries is key for the vast diversity of applications. The influence of aging on the thermal stability of individual cell components and complete cells is of particular interest. Commercial 18650-type lithium ion batteries based on LiNi0.5Co0.2Mn0.3O2/C are investigated after cycling at different temperatures. The variations in the electrochemical performance are mainly attributed to aging effects on the anode side considering the formation of an effective solid-electrolyte interphase (SEI) during cycling at 45 °C and a thick decomposition layer on the anode surface at 20 °C. The thermal stability of the anodes is investigated including the analysis of the evolving gases which confirmed the severe degradation of the electrolyte and active material during cycling at 20 °C. In addition, the presence of metallic lithium deposits could strongly affect the thermal stability. Thermal safety tests using quasi-adiabatic conditions show variations in the cells response to elevated temperatures according to the state-of-charge, i.e. a reduced reactivity in the discharged state. Furthermore, it is revealed that the onset of exothermic reactions correlates with the thermal stability of the SEI, while the thermal runaway is mainly attributed to the decomposition of the cathode and the subsequent reactions with the electrolyte.

  3. One-step electrolytic preparation of Si-Fe alloys as anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Sun, Diankun; Song, Qiqi; Xie, Wenqi; Jiang, Xu; Zhang, Bo

    2016-06-01

    One-step electrolytic formation of uniform crystalline Si-Fe alloy particles was successfully demonstrated in direct electro-reduction of solid mixed oxides of SiO2 and Fe2O3 in molten CaCl2 at 900∘C. Upon constant voltage electrolysis of solid mixed oxides at 2.8V between solid oxide cathode and graphite anode for 5h, electrolytic Si-Fe with the same Si/Fe stoichimetry of the precursory oxides was generated. The firstly generated Fe could function as depolarizers to enhance reduction rate of SiO2, resulting in the enhanced reduction kinetics to the electrolysis of individual SiO2. When evaluated as anode for lithium ion batteries, the prepared SiFe electrode showed a reversible lithium storage capacity as high as 470mAh g-1 after 100 cycles at 200mA g-1, promising application in high-performance lithium ion batteries.

  4. Development of Novel Metal Hydride-Carbon Nanomaterial Based Nanocomposites as Anode Electrode Materials for Lithium Ion Battery

    DTIC Science & Technology

    2014-06-30

    and pG-f-MWNT after the first cycle. These may be attributed to the lithium ion consumption during the electrolyte decomposition and formation of... solid electrolyte interface film around the electrodes with large surface areas.25 After the 30th and the 100th cycle SEG yielded a reversible discharge...anode electrode materials for Lithium ion battery Objectives:- The aim of this study is to develop metal hydride–carbon nanomaterial based

  5. High voltage cathode compositions for lithium-ion batteries

    DOEpatents

    Lu, Zhonghua; Eberman, Kevin W

    2017-03-21

    A lithium transition metal oxide composition. The composition has the formula Li.sub.a[Li.sub.bNi.sub.cMn.sub.dCo.sub.e]O.sub.2, where a.gtoreq.0.9, b.gtoreq.0, c>0, d>0, e>0, b+c+d+e=1, 1.05.ltoreq.c/d.ltoreq.1.4, 0.05.ltoreq.e.ltoreq.0.30, 0.9.ltoreq.(a+b)/M.ltoreq.1.06, and M=c+d+e. The composition has an O3 type structure.

  6. Silicon and Carbon Nanocomposite Spheres with Enhanced Electrochemical Performance for Full Cell Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Favors, Zachary; Li, Changling; Liu, Chueh; Ye, Rachel; Fu, Chengyin; Bozhilov, Krassimir; Guo, Juchen; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2017-03-01

    Herein, facile synthesis of monodisperse silicon and carbon nanocomposite spheres (MSNSs) is achieved via a simple and scalable surface-protected magnesiothermic reduction with subsequent chemical vapor deposition (CVD) process. Li-ion batteries (LIBs) were fabricated to test the utility of MSNSs as an anode material. LIB anodes based on MSNSs demonstrate a high reversible capacity of 3207 mAh g‑1, superior rate performance, and excellent cycling stability. Furthermore, the performance of full cell LIBs was evaluated by using MSNS anode and a LiCoO2 cathode with practical electrode loadings. The MSNS/LiCoO2 full cell demonstrates high gravimetric energy density in the order of 850 Wh L‑1 with excellent cycling stability. This work shows a proof of concept of the use of monodisperse Si and C nanocomposite spheres toward practical lithium-ion battery applications.

  7. Silicon and Carbon Nanocomposite Spheres with Enhanced Electrochemical Performance for Full Cell Lithium Ion Batteries

    PubMed Central

    Wang, Wei; Favors, Zachary; Li, Changling; Liu, Chueh; Ye, Rachel; Fu, Chengyin; Bozhilov, Krassimir; Guo, Juchen; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2017-01-01

    Herein, facile synthesis of monodisperse silicon and carbon nanocomposite spheres (MSNSs) is achieved via a simple and scalable surface-protected magnesiothermic reduction with subsequent chemical vapor deposition (CVD) process. Li-ion batteries (LIBs) were fabricated to test the utility of MSNSs as an anode material. LIB anodes based on MSNSs demonstrate a high reversible capacity of 3207 mAh g−1, superior rate performance, and excellent cycling stability. Furthermore, the performance of full cell LIBs was evaluated by using MSNS anode and a LiCoO2 cathode with practical electrode loadings. The MSNS/LiCoO2 full cell demonstrates high gravimetric energy density in the order of 850 Wh L−1 with excellent cycling stability. This work shows a proof of concept of the use of monodisperse Si and C nanocomposite spheres toward practical lithium-ion battery applications. PMID:28322285

  8. A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries.

    PubMed

    Shi, Ye; Zhang, Jun; Bruck, Andrea M; Zhang, Yiman; Li, Jing; Stach, Eric A; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S; Yu, Guihua

    2017-03-22

    This study develops a tunable 3D nanostructured conductive gel framework as both binder and conductive framework for lithium ion batteries. A 3D nanostructured gel framework with continuous electron pathways can provide hierarchical pores for ion transport and form uniform coatings on each active particle against aggregation. The hybrid gel electrodes based on a polypyrrole gel framework and Fe3 O4 nanoparticles as a model system in this study demonstrate the best rate performance, the highest achieved mass ratio of active materials, and the highest achieved specific capacities when considering total electrode mass, compared to current literature. This 3D nanostructured gel-based framework represents a powerful platform for various electrochemically active materials to enable the next-generation high-energy batteries.

  9. A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries

    NASA Astrophysics Data System (ADS)

    Qi, Zhaoxiang; Koenig, Gary M.

    2016-08-01

    A new type of non-aqueous redox couple without carbon additives for flow batteries is proposed and the target anolyte chemistry is demonstrated. The so-called "Solid Dispersion Redox Couple" incorporates solid electroactive materials dispersed in organic lithium-ion battery electrolyte as its flowing suspension. In this work, a unique and systematic characterization approach has been used to study the flow battery redox couple in half cell demonstrations relative to a lithium electrode. An electrolyte laden with Li4Ti5O12 (LTO) has been characterized in multiple specially designed lithium half cell configurations. The flow battery redox couple described in this report has relatively low viscosity, especially in comparison to other flow batteries with solid active materials. The lack of carbon additive allows characterization of the electrochemical properties of the electroactive material in flow without the complication of conductive additives and unambiguous observation of the electrorheological coupling in these dispersed particle systems.

  10. All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes.

    PubMed

    Lago, Nerea; Garcia-Calvo, Oihane; Lopez del Amo, Juan Miguel; Rojo, Teofilo; Armand, Michel

    2015-09-21

    Lithium-based rechargeable batteries offer superior specific energy and power, and have enabled exponential growth in industries focused on small electronic devices. However, further increases in energy density, for example for electric transportation, face the challenge of harnessing the lithium metal as negative electrode instead of limited-capacity graphite and its heavy copper current collector. All-solid-state batteries utilize solid polymer electrolytes (SPEs) to overcome the safety issues of liquid electrolytes. We demonstrate an all-solid-state lithium-ion battery by using plasticized poly(ethylene oxide)-based SPEs comprising anions grafted or co-grafted onto ceramic nanoparticles. This new approach using grafted ceramic nanoparticles enables the development of a new generation of nanohybrid polymer electrolytes with high ionic conductivity as well as high electrochemical and mechanical stability, enabling Li-ion batteries with long cycle life.

  11. Simulation of abuse tolerance of lithium-ion battery packs

    NASA Astrophysics Data System (ADS)

    Spotnitz, Robert M.; Weaver, James; Yeduvaka, Gowri; Doughty, D. H.; Roth, E. P.

    A simple approach for using accelerating rate calorimetry data to simulate the thermal abuse resistance of battery packs is described. The thermal abuse tolerance of battery packs is estimated based on the exothermic behavior of a single cell and an energy balance than accounts for radiative, conductive, and convective heat transfer modes of the pack. For the specific example of a notebook computer pack containing eight 18650-size cells, the effects of cell position, heat of reaction, and heat-transfer coefficient are explored. Thermal runaway of the pack is more likely to be induced by thermal runaway of a single cell when that cell is in good contact with other cells and is close to the pack wall.

  12. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Horeh, N. Bahaloo; Mousavi, S. M.; Shojaosadati, S. A.

    2016-07-01

    In this paper, a bio-hydrometallurgical route based on fungal activity of Aspergillus niger was evaluated for the detoxification and recovery of Cu, Li, Mn, Al, Co and Ni metals from spent lithium-ion phone mobile batteries under various conditions (one-step, two-step and spent medium bioleaching). The maximum recovery efficiency of 100% for Cu, 95% for Li, 70% for Mn, 65% for Al, 45% for Co, and 38% for Ni was obtained at a pulp density of 1% in spent medium bioleaching. The HPLC results indicated that citric acid in comparison with other detected organic acids (gluconic, oxalic and malic acid) had an important role in the effectiveness of bioleaching using A. niger. The results of FTIR, XRD and FE-SEM analysis of battery powder before and after bioleaching process confirmed that the fungal activities were quite effective. In addition, bioleaching achieved higher removal efficiency for heavy metals than the chemical leaching. This research demonstrated the great potential of bio-hydrometallurgical route to recover heavy metals from spent lithium-ion mobile phone batteries.

  13. Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengcheng; Dong, Jian; West, Robert; Amine, Khalil

    Functionalized disiloxane compounds were synthesized by attaching oligo(ethylene glycol) chains, -(CH 2CH 2O)- n, n = 2-7, via hydrosilation, dehydrocoupling, and nucleophilic substitution reactions and were examined as non-aqueous electrolyte solvents in lithium-ion cells. The compounds were fully characterized by 1H, 13C, and 29Si nuclear magnetic resonance (NMR) spectroscopy. Upon doping with lithium bis(oxalato)borate (LiBOB) or LiPF 6, the disiloxane electrolytes showed conductivities up to 6.2 × 10 -4 S cm -1 at room temperature. The thermal behavior of the electrolytes was studied by differential scanning calorimetry, which revealed very low glass transition temperatures before and after LiBOB doping and much higher thermal stability compared to organic carbonate electrolytes. Cyclic voltammetry measurements showed that disiloxane-based electrolytes with 0.8 M LiBOB salt concentration are stable to 4.7 V. The LiBOB/disiloxane combinations were found to be good electrolytes for lithium-ion cells; unlike LiPF 6, LiBOB can provide a good passivation film on the graphite anode. The LiPF 6/disiloxane electrolyte was enabled in lithium-ion cells by adding 1 wt% vinyl ethylene carbonate (VEC). Full cell performance tests with LiNi 0.80Co 0.15Al 0.05O 2 as the cathode and mesocarbon microbead (MCMB) graphite as the anode show stable cyclability. The results demonstrate that disiloxane-based electrolytes have considerable potential as electrolytes for use in lithium-ion batteries.

  14. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study.

    PubMed

    Zhao, Kejie; Wang, Wei L; Gregoire, John; Pharr, Matt; Suo, Zhigang; Vlassak, Joost J; Kaxiras, Efthimios

    2011-07-13

    Silicon can host a large amount of lithium, making it a promising electrode for high-capacity lithium-ion batteries. Recent experiments indicate that silicon experiences large plastic deformation upon Li absorption, which can significantly decrease the stresses induced by lithiation and thus mitigate fracture failure of electrodes. These issues become especially relevant in nanostructured electrodes with confined geometries. On the basis of first-principles calculations, we present a study of the microscopic deformation mechanism of lithiated silicon at relatively low Li concentration, which captures the onset of plasticity induced by lithiation. We find that lithium insertion leads to breaking of Si-Si bonds and formation of weaker bonds between neighboring Si and Li atoms, which results in a decrease in Young's modulus, a reduction in strength, and a brittle-to-ductile transition with increasing Li concentration. The microscopic mechanism of large plastic deformation is attributed to continuous lithium-assisted breaking and re-forming of Si-Si bonds and the creation of nanopores.

  15. Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; Susarla, Naresh; Dees, Dennis W.

    2017-02-01

    The price of the cathode active materials in lithium ion batteries is a key cost driver and thus significantly impacts consumer adoption of devices that utilize large energy storage contents (e.g. electric vehicles). A process model has been developed and used to study the production process of a common lithium-ion cathode material, lithiated nickel manganese cobalt oxide, using the co-precipitation method. The process was simulated for a plant producing 6500 kg day-1. The results indicate that the process will consume approximately 4 kWh kgNMC-1 of energy, 15 L kgNMC-1 of process water, and cost 23 to produce a kg of Li-NMC333. The calculations were extended to compare the production cost using two co-precipitation reactions (with Na2CO3 and NaOH), and similar cathode active materials such as lithium manganese oxide and lithium nickel cobalt aluminum oxide. A combination of cost saving opportunities show the possibility to reduce the cost of the cathode material by 19%.

  16. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries.

    PubMed

    Ye, Jianchao; Baumgaertel, Andreas C; Wang, Y Morris; Biener, Juergen; Biener, Monika M

    2015-02-24

    Much progress has recently been made in the development of active materials, electrode morphologies and electrolytes for lithium ion batteries. Well-defined studies on size effects of the three-dimensional (3D) electrode architecture, however, remain to be rare due to the lack of suitable material platforms where the critical length scales (such as pore size and thickness of the active material) can be freely and deterministically adjusted over a wide range without affecting the overall 3D morphology of the electrode. Here, we report on a systematic study on length scale effects on the electrochemical performance of model 3D np-Au/TiO2 core/shell electrodes. Bulk nanoporous gold provides deterministic control over the pore size and is used as a monolithic metallic scaffold and current collector. Extremely uniform and conformal TiO2 films of controlled thickness were deposited on the current collector by employing atomic layer deposition (ALD). Our experiments demonstrate profound performance improvements by matching the Li(+) diffusivity in the electrolyte and the solid state through adjusting pore size and thickness of the active coating which, for 200 μm thick porous electrodes, requires the presence of 100 nm pores. Decreasing the thickness of the TiO2 coating generally improves the power performance of the electrode by reducing the Li(+) diffusion pathway, enhancing the Li(+) solid solubility, and minimizing the voltage drop across the electrode/electrolyte interface. With the use of the optimized electrode morphology, supercapacitor-like power performance with lithium-ion-battery energy densities was realized. Our results provide the much-needed fundamental insight for the rational design of the 3D architecture of lithium ion battery electrodes with improved power performance.

  17. Forming gas treatment of lithium ion battery anode graphite powders

    DOEpatents

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  18. PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries.

    PubMed

    Seidel, S M; Jeschke, S; Vettikuzha, P; Wiemhöfer, H-D

    2015-08-04

    Improved hybrid polymer electrolyte membranes are introduced based on ether-modified polysiloxanes and poly(vinylidene fluoride-co-hexafluoropropylene) yielding a safe separator membrane, which is able to be sprayed directly onto lithium ion battery active materials, with an active role for enhanced ion transport.

  19. Phase-field modeling of stress generation in electrode particles of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huttin, Magalie; Kamlah, Marc

    2012-09-01

    Many cathode materials in lithium ion batteries show capacity fade due to particle crackings even at low applied charge and discharge current (C-rate). The promising candidate material LixMn2O4 exhibits such effects on the 4 V-plateau when the state of charge 0

  20. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    NASA Astrophysics Data System (ADS)

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-05-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.

  1. Facile synthesis and electrochemical properties of Fe2SeS for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Jiabin; Yang, Yin; Liu, Xiaojiang; Xue, Mingzhe; Liu, Jingsong; Cui, Yanhua

    2016-02-01

    Fe2SeS is successfully synthesized by facile solid-state reaction and the electrochemical investigation of Fe2SeS as anode for lithium ion batteries is reported for the first time. Fe2SeS deliverers a large initial discharge capacity of 471 mAh g-1. The initial coulombic efficiency (92.56%) is higher than most of double-anion compounds reported previously. It is unexpected to find that Fe reacts simultaneously with Li2S and Li2Se to reform Fe2SeS during charging process, which is different from most double-anion compounds.

  2. Evaluation residual moisture in lithium-ion battery electrodes and its effect on electrode performance

    DOE PAGES

    Li, Jianlin; Daniel, Claus; Wood, III, David L.; ...

    2016-01-11

    Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi0.5Mn0.3Co0.2O2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. As a result, it has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.

  3. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    PubMed Central

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-01-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448

  4. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.

    PubMed

    Hou, Junbo; Shao, Yuyan; Ellis, Michael W; Moore, Robert B; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  5. Evaluation residual moisture in lithium-ion battery electrodes and its effect on electrode performance

    SciTech Connect

    Li, Jianlin; Daniel, Claus; Wood, III, David L.; An, Seong Jin

    2016-01-11

    Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi0.5Mn0.3Co0.2O2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. As a result, it has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.

  6. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application

    NASA Astrophysics Data System (ADS)

    Ming, Jun; Wu, Yingqiang; Park, Jin-Bum; Lee, Joong Kee; Zhao, Fengyu; Sun, Yang-Kook

    2013-10-01

    New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP nanoparticles preserve the intriguing properties of nanocrystals and possess desirable surface area and pore volume that enhance the active surface, which ultimately benefits applications such as lithium-ion batteries. The DHP Co3O4 nanoparticles demonstrated an enhanced capacity of 1168 mA h g-1 at 100 mA g-1vs. 590 mA h g-1 of powders and stable cycling performance greater than 250 cycles when used as an anode material. Most importantly, the electrochemical performance of DHP Co3O4 nanoparticles in a lithium-O2 battery was also investigated for the first time. A low charge potential of ~4.0 V, a high discharge voltage near 2.74 V and a long cycle ability greater than 100 cycles at a delivered capacity of 2000 mA h g-1 (current density, 200 mA g-1) were observed. The performances were considerably improved compared to recent results of mesoporous Co3O4, Co3O4 nanoparticles and a composite of Co3O4/RGO and Co3O4/Pd. Therefore, it would be promising to investigate such properties of DHP nanoparticles or other hollow metal (oxide) particles for the popular lithium-air battery.New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP

  7. General strategy for designing core-shell nanostructured materials for high-power lithium ion batteries.

    PubMed

    Shen, Laifa; Li, Hongsen; Uchaker, Evan; Zhang, Xiaogang; Cao, Guozhong

    2012-11-14

    Because of its extreme safety and outstanding cycle life, Li(4)Ti(5)O(12) has been regarded as one of the most promising anode materials for next-generation high-power lithium-ion batteries. Nevertheless, Li(4)Ti(5)O(12) suffers from poor electronic conductivity. Here, we develop a novel strategy for the fabrication of Li(4)Ti(5)O(12)/carbon core-shell electrodes using metal oxyacetyl acetonate as titania and single-source carbon. Importantly, this novel approach is simple and general, with which we have successfully produce nanosized particles of an olivine-type LiMPO(4) (M = Fe, Mn, and Co) core with a uniform carbon shell, one of the leading cathode materials for lithium-ion batteries. Metal acetylacetonates first decompose with carbon coating the particles, which is followed by a solid state reaction in the limited reaction area inside the carbon shell to produce the LTO/C (LMPO(4)/C) core-shell nanostructure. The optimum design of the core-shell nanostructures permits fast kinetics for both transported Li(+) ions and electrons, enabling high-power performance.

  8. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates

    PubMed Central

    Li, Na; Chen, Zongping; Ren, Wencai; Li, Feng; Cheng, Hui-Ming

    2012-01-01

    There is growing interest in thin, lightweight, and flexible energy storage devices to meet the special needs for next-generation, high-performance, flexible electronics. Here we report a thin, lightweight, and flexible lithium ion battery made from graphene foam, a three-dimensional, flexible, and conductive interconnected network, as a current collector, loaded with Li4Ti5O12 and LiFePO4, for use as anode and cathode, respectively. No metal current collectors, conducting additives, or binders are used. The excellent electrical conductivity and pore structure of the hybrid electrodes enable rapid electron and ion transport. For example, the Li4Ti5O12/graphene foam electrode shows a high rate up to 200 C, equivalent to a full discharge in 18 s. Using them, we demonstrate a thin, lightweight, and flexible full lithium ion battery with a high-rate performance and energy density that can be repeatedly bent to a radius of 5 mm without structural failure and performance loss. PMID:23045691

  9. Nanostructured Fe3O4@C as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zeng, Zhipeng; Zhao, Hailei; Wang, Jie; Lv, Pengpeng; Zhang, Tianhou; Xia, Qing

    2014-02-01

    The active particle cracking and electrode pulverization of iron oxide anode material as a result of volume expansion during charge/discharge process cause poor reversibility and significant capacity fading in rechargeable lithium-ion batteries. Here, we demonstrate a facile solvothermal route to immobilize the Fe3O4 particles on the porous active carbon. The present method enables us to obtain nano-porous and mosaic structured Fe3O4@C spheres with an average size of ca. 100 nm. The porous active carbon plays an important role in the improvement of electrochemical properties of Fe3O4. It not only acts as a host for the deposition of Fe3O4 particles, but also provides void spaces for active Fe3O4 to buffer the volume expansion. The good contact between Fe3O4 and active carbon ensures the fast electron/Li-ion transport. As a result, the porous Fe3O4@C shows a high reversible specific capacity of ∼1000 mAh g-1, good cycle stability and excellent rate capability. Therefore, we believe that this composite is a potential candidate for anode material of high-energy lithium-ion battery.

  10. (7)Li in situ 1D NMR imaging of a lithium ion battery.

    PubMed

    Klamor, S; Zick, K; Oerther, T; Schappacher, F M; Winter, M; Brunklaus, G

    2015-02-14

    The spatial distribution of charge carriers in lithium ion batteries during current flow is of fundamental interest for a detailed understanding of transport properties and the development of strategies for future improvements of the electrolyte-electrode interface behaviour. In this work we explored the potential of (7)Li 1D in situ NMR imaging for the identification of concentration gradients under constant current load in a battery cell. An electrochemical cell based on PTFE body and a stack of glass microfiber discs that are soaked with a technically relevant electrolyte suitable for high-temperature application and squeezed between a Li metal and a nano-Si-graphite composite electrode was assembled to acquire (7)Li 1D in situ NMR profiles with an improved NMR pulse sequence as function of time and state of charge, thereby visualizing the course of ion concentration during charge and discharge. Surface localized changes of Li concentration were attributed to processes such as solid electrolyte interphase formation or full lithiation of the composite electrode. The method allows the extraction of lithium ion transport properties.

  11. Boehmite particle coating modified microporous polyethylene membrane: A promising separator for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Chongwen; Tong, Hua; Luo, Chuanpeng; Yuan, Shuanglong; Chen, Guorong; Yang, Yunxia

    2017-04-01

    To exploit high-quality separators for lithium ion batteries, current research activities are mainly focused on the modification of microporous polyolefin membranes by coating them with inorganic particles to achieve comprehensive improvements in their thermal stability, electrochemical compatibility, and overcharge protection. Here, we report a separator made by coating boehmite (AlOOH) particles on microporous polyethylene (PE) membranes. Compared to the commercially applied coating materials, e.g., aluminum oxide (Al2O3), AlOOH allows for a substantial reduction in the coating thickness, while ensuring excellent thermal stability of the modified PE membrane. Our study shows that this is due to the formation of an interlocking interface structure that interconnects the PE membrane and AlOOH coating layer as soon as PE melts at about 140 °C, preventing the modified PE membrane from shrinking at subsequently elevated temperatures. The modified PE membrane exhibits suitable electrolyte wettability to facilitate ion transport through it. Thus, the lithium ion batteries employing it as a separator could attain substantially improved electrochemical performance. Furthermore, the AlOOH-coated PE separator was also found to provide an excellent overcharge protection.

  12. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates.

    PubMed

    Li, Na; Chen, Zongping; Ren, Wencai; Li, Feng; Cheng, Hui-Ming

    2012-10-23

    There is growing interest in thin, lightweight, and flexible energy storage devices to meet the special needs for next-generation, high-performance, flexible electronics. Here we report a thin, lightweight, and flexible lithium ion battery made from graphene foam, a three-dimensional, flexible, and conductive interconnected network, as a current collector, loaded with Li(4)Ti(5)O(12) and LiFePO(4), for use as anode and cathode, respectively. No metal current collectors, conducting additives, or binders are used. The excellent electrical conductivity and pore structure of the hybrid electrodes enable rapid electron and ion transport. For example, the Li(4)Ti(5)O(12)/graphene foam electrode shows a high rate up to 200 C, equivalent to a full discharge in 18 s. Using them, we demonstrate a thin, lightweight, and flexible full lithium ion battery with a high-rate performance and energy density that can be repeatedly bent to a radius of 5 mm without structural failure and performance loss.

  13. Layered cathode materials for lithium ion rechargeable batteries

    DOEpatents

    Kang, Sun-Ho; Amine, Khalil

    2007-04-17

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  14. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries

    PubMed Central

    Liu, Kai; Liu, Wei; Qiu, Yongcai; Kong, Biao; Sun, Yongming; Chen, Zheng; Zhuo, Denys; Lin, Dingchang; Cui, Yi

    2017-01-01

    Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. During thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes. PMID:28097221

  15. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries.

    PubMed

    Liu, Kai; Liu, Wei; Qiu, Yongcai; Kong, Biao; Sun, Yongming; Chen, Zheng; Zhuo, Denys; Lin, Dingchang; Cui, Yi

    2017-01-01

    Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel "smart" nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. During thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.

  16. Synthesis, characterization, and electrochemical investigation of novel electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Kerr, Tracy Alexandra

    2002-08-01

    As the demand for better energy storage devices increases, finding new materials capable of improvement on existing technology becomes essential. Within this body of work, several new electrode materials of different structure type have been synthesized, characterized, and evaluated for their lithium insertion/deinsertion behavior in lithium ion batteries. Nanocomposites of novel alloy, and convertible oxide anode materials have been studied. Nanoparticles of Ge and Sn that are able to form lithium rich alloys have been synthesized, and their low potential lithium insertion behavior studied. In order to inhibit agglomeration of the tiny particles, a novel synthesis route was designed to attach ionically conducting polymers to their surfaces. Characterization by a combination of techniques (XRD, TEM, SEM and FTIR spectroscopy) verified the existence of nanoparticles embedded in a polymer matrix, albeit with some impurities. Electrochemical data show that even when the lithium insertion capacity within these materials is high, the process is extremely irreversible as lithium ions become trapped within the matrix, and only a very small anodic capacity is realized. The first convertible polymer/oxide nanocomposite (poly(para-phenylene)/MoO 3) to be evaluated as an anode material was synthesized using a novel surfactant mediated method. XRD data indicated a 5.2 A increase in the MoO3 layer spacing to 12.1 A after polymer incorporation. Low potential electrochemical insertion properties show that the polymer/oxide nanocomposite behaves in a similar manner to the host MoO3 material. A variety of cathode materials were also synthesized and evaluated for their high potential lithium insertion properties. A comparative study on the effect that synthetic procedure may have on the electrochemical properties of the poly(aniline)/MoO3 cathode material have been studied. Poly(aniline)/MoO 3 nanocomposites have been synthesized from a solution insertion route and via hydrothermal

  17. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-03-01

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g‑1, long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials.

  18. Selection of charge methods for lithium ion batteries by considering diffusion induced stress and charge time

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Song, Yicheng; Zhang, Junqian

    2016-07-01

    This article demonstrates the design of charging strategies for lithium ion batteries with considering the balance between diffusion induced stress and total charge time for two- and three-stage charge methods. For the two-stage galvanostatic-potentiostatic charge method the low mechanical stress can be achieved without increasing total charge time by switching the galvanostatic to the potentiostatic at the time moment when the lithium concentration at the surface of particles reaches the limit cbarsurf = 0 . A three-stage method, which consists of an initial galvanostatic stage of high current, a galvanostatic stage of low current and a potentiostatic ending stage, is suggested. Employing the initial galvanostatic stage of high current is helpful not only in accelerating the charge process, but also in controlling the mechanical stress once the electrical current and time duration of the initial galvanostatic stage are properly designed.

  19. Advanced electrolyte/additive for lithium-ion batteries with silicon anode

    SciTech Connect

    Zhang, Shuo; He, Meinan; Su, Chi-Cheung; Zhang, Zhengcheng

    2016-08-01

    State-of-the-art lithium-ion batteries (LIBs) are based on a lithium transition metal oxide cathode, a graphite anode and a nonaqueous carbonate electrolyte. To further increase the energy and power density of LIBs, silicon anodes have been intensively explored due to their high theoretical capacity, low operation potential, and low cost. However, the main challenges for Si anode are the large volume change during lithiation/delithiation process and the instability of the solid-electrolyte-interphase associated with this process. Recently, significant progress has been achieved via advanced material fabrication technologies and rational electrolyte design in terms of improving the Coulombic efficiency and capacity retention. In this paper, new developments in advanced electrolyte and additive for LIBs with Si anode were systematically reviewed, and perspectives over future research were suggested.

  20. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries.

    PubMed

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-03-15

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g(-1), long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials.

  1. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries

    PubMed Central

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-01-01

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g−1, long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials. PMID:28294179

  2. TiO2 anode materials for lithium-ion batteries with different morphology and additives

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Ng, Yip Hang; Leung, Yu Hang; Liu, Fangzhou; Djurišic, Aleksandra B.; Xie, Mao Hai; Chan, Wai Kin

    2014-03-01

    Electrochemical performances of different TiO2 nanostructures, TiO2/CNT composite and TiO2 with titanium isopropoxide (TTIP) treatment anode were investigated. For different TiO2 nanostructures, we investigated vertically aligned TiO2 nanotubes on Ti foil and TiO2 nanotube-powders fabricated by rapid breakdown anodization technique. The morphology of the prepared samples was characterized by scanning probe microscopy (SEM). The electrochemical lithium storage abilities were studied by galvanostatic method. In addition, carbon nanotubes (CNT) additives and solution treatment process of TiO2 anode were investigated, and the results show that the additives and treatment could enhance the cycling performance of the TiO2 anode on lithium ion batteries.

  3. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application.

    PubMed

    Ming, Jun; Wu, Yingqiang; Park, Jin-Bum; Lee, Joong Kee; Zhao, Fengyu; Sun, Yang-Kook

    2013-11-07

    New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP nanoparticles preserve the intriguing properties of nanocrystals and possess desirable surface area and pore volume that enhance the active surface, which ultimately benefits applications such as lithium-ion batteries. The DHP Co3O4 nanoparticles demonstrated an enhanced capacity of 1168 mA h g(-1) at 100 mA g(-1)vs. 590 mA h g(-1) of powders and stable cycling performance greater than 250 cycles when used as an anode material. Most importantly, the electrochemical performance of DHP Co3O4 nanoparticles in a lithium-O2 battery was also investigated for the first time. A low charge potential of ∼4.0 V, a high discharge voltage near 2.74 V and a long cycle ability greater than 100 cycles at a delivered capacity of 2000 mA h g(-1) (current density, 200 mA g(-1)) were observed. The performances were considerably improved compared to recent results of mesoporous Co3O4, Co3O4 nanoparticles and a composite of Co3O4/RGO and Co3O4/Pd. Therefore, it would be promising to investigate such properties of DHP nanoparticles or other hollow metal (oxide) particles for the popular lithium-air battery.

  4. A long life 4 V class lithium-ion polymer battery with liquid-free polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yo; Shono, Kumi; Kobayashi, Takeshi; Ohno, Yasutaka; Tabuchi, Masato; Oka, Yoshihiro; Nakamura, Tatsuya; Miyashiro, Hajime

    2017-02-01

    Ether-based solid polymer electrolyte (SPE) is one of the most well-known lithium ion conductors. Unlike the other inorganic electrolytes, SPE exhibits advantages of flexibility and large-area production, enabling low cost production of large size batteries. However, because the ether group is oxidized at 4 V versus Li/Li+ cathode, and due to its high irreversibility with the carbon anode, ether-based SPE was believed to be inapplicable to 4 V class lithium-ion batteries with carbon anode. Here we report a remarkably stable SPE in combination with a 4 V class cathode and carbon anode achieved by the proper design at the interface. The introduced boron-based lithium salt prohibits further oxidation of SPE at the cathode interface. The surface modification of graphite by the annealing of polyvinyl chloride mostly prohibits the continuous consumption of lithium at the graphite anode. Using above interface design, we achieved 60% capacity retention after 5400 cycles. The proposed battery provides a possible approach for realizing flammable electrolyte-free lithium-ion batteries, which achieve innovative safety improvements of large format battery systems for stationary use.

  5. Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density.

    PubMed

    Dong, Xiaoli; Chen, Long; Su, Xiuli; Wang, Yonggang; Xia, Yongyao

    2016-06-20

    A flexible and wearable aqueous lithium-ion battery is introduced based on spinel Li1.1 Mn2 O4 cathode and a carbon-coated NASICON-type LiTi2 (PO4 )3 anode (NASICON=sodium-ion super ionic conductor). Energy densities of 63 Wh kg(-1) or 124 mWh cm(-3) and power densities of 3 275 W kg(-1) or 11.1 W cm(-3) can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li-ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self-chargeable unit is realized by integrating a single flexible aqueous Li-ion battery with a commercial flexible solar cell, which may facilitate the long-time outdoor operation of flexible and wearable electronic devices.

  6. Challenges and approaches for high-voltage spinel lithium-ion batteries.

    PubMed

    Kim, Jung-Hyun; Pieczonka, Nicholas P W; Yang, Li

    2014-07-21

    Lithium-ion (Li-ion) batteries have been developed for electric vehicle (EV) applications, owing to their high energy density. Recent research and development efforts have been devoted to finding the next generation of cathode materials for Li-ion batteries to extend the driving distance of EVs and lower their cost. LiNi(0.5)Mn(1.5)O(4) (LNMO) high-voltage spinel is a promising candidate for a next-generation cathode material based on its high operating voltage (4.75 V vs. Li), potentially low material cost, and excellent rate capability. Over the last decade, much research effort has focused on achieving a fundamental understanding of the structure-property relationship in LNMO materials. Recent studies, however, demonstrated that the most critical barrier for the commercialization of high-voltage spinel Li-ion batteries is electrolyte decomposition and concurrent degradative reactions at electrode/electrolyte interfaces, which results in poor cycle life for LNMO/graphite full cells. Despite scattered reports addressing these processes in high-voltage spinel full cells, they have not been consolidated into a systematic review article. With this perspective, emphasis is placed herein on describing the challenges and the various approaches to mitigate electrolyte decomposition and other degradative reactions in high-voltage spinel cathodes in full cells.

  7. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    PubMed

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  8. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs.

    PubMed

    Zhang, Ye; Bai, Wenyu; Cheng, Xunliang; Ren, Jing; Weng, Wei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Peng, Huisheng

    2014-12-22

    The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium-ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium-ion batteries have a flexible fiber shape that enables promising applications in electronic textiles.

  9. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.

    PubMed

    Fu, Kun Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D; Hu, Liangbing

    2016-06-28

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  10. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10-4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  11. Soft X-ray Spectroscopy for Understanding the Cycling Mechanism of Novel Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Qiao, Ruimin; Kostecki, Robert; Lucas, Ivan; Persson, Kristin; Chen, Wei; Li, Hong; Wang, Rui; Yang, Wanli

    2014-03-01

    Energy and environment are two major concerns of the modern world. Transition to the sustainable clean energy globally in the future, however, depends on the development of next generation electrical energy storage systems. Among the energy storage techniques considered at present, rechargeable lithium-ion batteries, which are ubiquitous in today's portable electronic devices and now enable the electric vehicles, remain promising to facilitate the use of renewable energy on a large scale. For such application, transformational changes in battery technologies are critically needed, which require a fundamental understanding of the complex, interrelated physical and chemical processes between electrode materials and electrolytes Soft x-ray absorption spectroscopy(sXAS) is a powerful tool to probe the chemical species and the electronic states with elemental sensitivity. This presentation will discuss examples on using sXAS to study battery materials for both fundamental understanding and practical developments. We will showcase how sXAS fingerprints the battery operation by detecting the evolving electron states. Recent results on SEIs and Li-rich cathode materials will be discussed. Our results offer important information for improving Li batteries.

  12. Comprehensive Equivalent Circuit Based Modeling and Model Based Management of Aged Lithium ion Batteries

    NASA Astrophysics Data System (ADS)

    Tong, Shijie

    Energy storage is one of society's grand challenges for the 21st century. Lithium ion batteries (LIBs) are widely used in mobile devices, transportation, and stationary energy storages due to lowering cost combined with excellent power/energy density as well as cycle durability. The need for a battery management system (BMS) arises from a demand to improve cycle life, assure safety, and optimize the full pack performance. In this work, we proposed a model based battery on-line state of charge (SoC) and state of health (SoH) estimator for LIBs. The estimator incorporates a comprehensive Equivalent Circuit Model (ECM) as reference, an Extended Kalman Filter (EKF) as state observer, a Recursive Least Square (RLS) algorithm as parameter identifier, and Parameter Varying Approach (PVA) based optimization algorithms for the parameter function regressions. The developed adaptive estimator was applied to a 10kW smart grid energy storage application using retired electric vehicle batteries. The estimator exhibits a high numerical efficiency as well as an excellent accuracy in estimating SoC and SoH. The estimator also provides a novel method to optimize the correlation between battery open circuit voltage (OCV) and SoC, which further improves states estimation accuracy.

  13. Novel thermal management system design methodology for power lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Nieto, Nerea; Díaz, Luis; Gastelurrutia, Jon; Blanco, Francisco; Ramos, Juan Carlos; Rivas, Alejandro

    2014-12-01

    Battery packs conformed by large format lithium-ion cells are increasingly being adopted in hybrid and pure electric vehicles in order to use the energy more efficiently and for a better environmental performance. Safety and cycle life are two of the main concerns regarding this technology, which are closely related to the cell's operating behavior and temperature asymmetries in the system. Therefore, the temperature of the cells in battery packs needs to be controlled by thermal management systems (TMSs). In the present paper an improved design methodology for developing TMSs is proposed. This methodology involves the development of different mathematical models for heat generation, transmission, and dissipation and their coupling and integration in the battery pack product design methodology in order to improve the overall safety and performance. The methodology is validated by comparing simulation results with laboratory measurements on a single module of the battery pack designed at IK4-IKERLAN for a traction application. The maximum difference between model predictions and experimental temperature data is 2 °C. The models developed have shown potential for use in battery thermal management studies for EV/HEV applications since they allow for scalability with accuracy and reasonable simulation time.

  14. An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Zhang, Chenbin; Chen, Zonghai

    2016-02-01

    With the growing number of electric vehicle (EV) applications, the function of the battery management system (BMS) becomes more sophisticated. The accuracy of remaining energy estimation is critical for energy optimization and management in EVs. Therefore the state-of-energy (SoE) is defined to indicate the remaining available energy of the batteries. Considering that there are inevitable accumulated errors caused by current and voltage integral method, an adaptive SoE estimator is first established in this paper. In order to establish a reasonable battery equivalent model, based on the experimental data of the LiFePO4 battery, a data-driven model is established to describe the relationship between the open-circuit voltage (OCV) and the SoE. What is more, the forgetting factor recursive least-square (RLS) method is used for parameter identification to get accurate model parameters. Finally, in order to analyze the robustness and the accuracy of the proposed approach, different types of dynamic current profiles are conducted on the lithium-ion batteries and the performances are calculated and compared. The results indicate that the proposed approach has robust and accurate SoE estimation results under dynamic working conditions.

  15. Design and synthesis of new electrolyte systems for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Amartya

    Rechargeable lithium-ion batteries are extensively used in consumer electronic products, including laptop computers, cellular phones, cameras, camcorders, and medical devices. They have great potential for application in electric and hybrid electric vehicles by virtue of their high energy and power density. Research and development in this direction have been focused all around the globe. The major challenges include the higher cost, safety issues related to the solvents, and conductivities at lower ambient temperature of the solvent-free solid polymer electrolyte (SPE) systems. In this dissertation, three different approaches are presented to achieve an improved electrolyte system for lithium-ion batteries. A plasticizer was synthesized and incorporated into a conventional poly(ethylene oxide) (PEO)-based solid polymer electrolyte system. The ambient temperature ionic conductivity observed at room temperature was noteworthy, due to the decrease of the glass transition temperature of the polymer. Secondly, a branched polymer was synthesized and used as the base matrix in SPEs. Polymers with a higher order of branching remained undissolved in common organic solvents, thereby limiting the scope of their use for making films for the study. The ones with a lower order of branching exhibited ionic conductivities comparable to regular PEO-based electrolytes. The third and most successful approach involved the strategic design and synthesis of a series of low lattice energy lithium salts and their chemical, thermal and electrochemical characterization. In this methodology, the two-to-three step synthetic strategy involved chlorosulfonation of an activated aromatic ring, reaction of the corresponding sulfonyl chloride with trifluoromethanesulfonamide in the presence of triethylamine as a base, followed by lithiation of the resulting triethylammonium salt to generate monolithium, dilithium and scaffolded polylithium salts. The mono- and dilithium salts were tested in

  16. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Howard, Wilmont F.; Spotnitz, Robert M.

    Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.

  17. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.

    PubMed

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J; Lee, Younghee; Liu, Nian; Piper, Daniela Molina; Lee, Se-Hee; Zhao, Peng; George, Steven M; Zhang, Ji-Guang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong-Min

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found that nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (∼5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a "V-shaped" lithiation front of the SiNWs, while the Al2O3 coating yields an "H-shaped" lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk lithiation rate of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  18. Poly(ethylenglycol)dimethylether-lithium bis(trifluoromethanesulfonyl)imide, PEG500DME-LiTFSI, as high viscosity electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Bernhard, Rebecca; Latini, Alessandro; Panero, Stefania; Scrosati, Bruno; Hassoun, Jusef

    2013-03-01

    In this paper we report a poly(ethylenglycol)dimethylether-lithium bis(trifluoromethanesulfonyl) imide (PEG500DME-LiTFSI) as high viscosity, safe electrolyte for lithium ion batteries. The high molecular weight of the end-capped ether solvent is reflected as low vapor pressure and excellent thermal stability of the electrolyte, as demonstrated by thermogravimetry, this resulting in remarkable safety content. The electrochemical impedance spectroscopy study of the electrolyte demonstrates a Li-transference number of 0.48, a conductivity of the order of 10-3 S cm-1, and a high interphase stability with the lithium metal, the linear sweep voltammetry indicates an electrochemical stability window extending up to 4.8 V vs. Li/Li+. Furthermore, promising electrochemical performances in terms of reversibility, cycling stability and low charge-discharge polarization are observed using the electrolyte in lithium and in lithium ion batteries using lithium cobalt oxide (LCO) as cathode and titanium dioxide (TiO2) as anode. Hence, this electrolyte is a promising candidate for applications in safe, high performance lithium ion batteries.

  19. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect

    Nelson, P. A. Gallagher, K. G. Bloom, I. Dees, D. W.

    2011-10-20

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the

  20. Novel Nanofiber-based Membrane Separators for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Yanilmaz, Meltem

    Lithium-ion batteries have been widely used in electronic devices including mobile phones, laptop computers, and cameras due to their high specific energy, high energy density, long cycling lifetime, and low self-discharge rate. Nowadays, lithium-ion batteries are finding new applications in electric/hybrid vehicles and energy storage for smart grids. To be used in these new applications, novel battery components are needed so that lithiumion batteries with higher cell performance, better safety, and lower cost can be developed. A separator is an important component to obtain safe batteries and its primary function is to prevent electronic contact between electrodes while regulating cell kinetics and ionic flow. Currently, microporous membranes are the most commonly used separator type and they have good mechanical properties and chemical stability. However, their wettability and thermal stabilities are not sufficient for applications that require high operating temperature and high performance. Due to the superior properties such as large specific surface area, small pore size and high porosity, electrospun nanofiber membranes can be good separator candidate for highperformance lithium-ion batteries. In this work, we focus our research on fabricating nanofiber-based membranes to design new high-performance separators with good thermal stability, as well as superior electrochemical performance compared to microporous polyolefin membranes. To combine the good mechanical strength of PP nonwovens with the excellent electrochemical properties of SiO2/polyvinylidene fluoride (PVDF) composite nanofibers, SiO 2/PVDF composite nanofiber-coated PP nonwoven membranes were prepared. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber-coated nonwoven membranes. Although ceramic/polymer composites can be prepared by encapsulating ceramic particles directly into polymer nanofibers, the performance

  1. An online model-based method for state of energy estimation of lithium-ion batteries using dual filters

    NASA Astrophysics Data System (ADS)

    Dong, Guangzhong; Chen, Zonghai; Wei, Jingwen; Zhang, Chenbin; Wang, Peng

    2016-01-01

    The state-of-energy of lithium-ion batteries is an important evaluation index for energy storage systems in electric vehicles and smart grids. To improve the battery state-of-energy estimation accuracy and reliability, an online model-based estimation approach is proposed against uncertain dynamic load currents and environment temperatures. Firstly, a three-dimensional response surface open-circuit-voltage model is built up to improve the battery state-of-energy estimation accuracy, taking various temperatures into account. Secondly, a total-available-energy-capacity model that involves temperatures and discharge rates is reconstructed to improve the accuracy of the battery model. An extended-Kalman-filter and particle-filter based dual filters algorithm is then developed to establish an online model-based estimator for the battery state-of-energy. The extended-Kalman-filter is employed to update parameters of the battery model using real-time battery current and voltage at each sampling interval, while the particle-filter is applied to estimate the battery state-of-energy. Finally, the proposed approach is verified by experiments conducted on a LiFePO4 lithium-ion battery under different operating currents and temperatures. Experimental results indicate that the battery model simulates battery dynamics robustly with high accuracy, and the estimates of the dual filters converge to the real state-of-energy within an error of ±4%.

  2. Gas evolution behaviors for several cathode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kong, Weihe; Li, Hong; Huang, Xuejie; Chen, Liquan

    Several 18650 lithium-ion batteries using LiCoO 2, LiMn 2O 4, and LiFePO 4 as cathode materials were assembled separately. Gas species of these batteries under normal cycling and overcharging to 4.5 and 5.0 V conditions were examined by means of GC-MS method. Under the normal charge and discharge voltage range, it is found that gas components are independent to the cathode materials. C 2H 5F gas was detected in all cases. A formation mechanism is proposed. Under overcharging condition, it is found that the gas components are different and there is a correlation between the C 2H 2 product and the oxidation ability of various delithiated cathode materials.

  3. An intuitive and efficient method for cell voltage prediction of lithium and sodium-ion batteries.

    PubMed

    Saubanère, M; Ben Yahia, M; Lebègue, S; Doublet, M-L

    2014-11-24

    The voltage delivered by rechargeable Lithium- and Sodium-ion batteries is a key parameter to qualify the device as promising for future applications. Here we report a new formulation of the cell voltage in terms of chemically intuitive quantities that can be rapidly and quantitatively evaluated from the alkaliated crystal structure with no need of first-principles calculations. The model, which is here validated on a wide series of existing cathode materials, provides new insights into the physical and chemical features of a crystal structure that influence the material potential. In particular, we show that disordered materials with cationic intermixing must exhibit higher potentials than their ordered homologues. The present method is utilizable by any solid-state chemist, is fully predictive and allows rapid assessement of material potentials, thus opening new directions for the challenging project of material design in rechargeable batteries.

  4. Control of a lithium-ion battery storage system for microgrid applications

    NASA Astrophysics Data System (ADS)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  5. State of charge estimation of lithium-ion batteries using fractional order sliding mode observer.

    PubMed

    Zhong, Qishui; Zhong, Fuli; Cheng, Jun; Li, Hui; Zhong, Shouming

    2017-01-01

    This paper presents a state of charge (SOC) estimation method based on fractional order sliding mode observer (SMO) for lithium-ion batteries. A fractional order RC equivalent circuit model (FORCECM) is firstly constructed to describe the charging and discharging dynamic characteristics of the battery. Then, based on the differential equations of the FORCECM, fractional order SMOs for SOC, polarization voltage and terminal voltage estimation are designed. After that, convergence of the proposed observers is analyzed by Lyapunov's stability theory method. The framework of the designed observer system is simple and easy to implement. The SMOs can overcome the uncertainties of parameters, modeling and measurement errors, and present good robustness. Simulation results show that the presented estimation method is effective, and the designed observers have good performance.

  6. Electromobility concept for racing cars based on lithium-ion batteries and supercapacitors

    NASA Astrophysics Data System (ADS)

    Frenzel, B.; Kurzweil, P.; Rönnebeck, H.

    For the construction of an all-electric race car, all aspects from engineering design over cost estimation up to the road capability are illuminated. From the most promising batteries for electric vehicle propulsion, the state-of-the art and commercial availability of lithium-ion secondary batteries is critically discussed with respect to cycle-life and unfavorable charge-discharge conditions. A market-overview is given with respect to a small electric car. Different combinations of electric motors and a recuperation system have been investigated. Weight aspects of central drive systems were considered and compared with decentralized wheel-hub drives. As a result, a centralized high-speed drive train based on a permanent-magnet synchronous engine with high-energy magnets seems to be superior due to limited space for assembly.

  7. Synergistic Effect of Blended Components in Nonaqueous Electrolytes for Lithium Ion Batteries.

    PubMed

    Cekic-Laskovic, Isidora; von Aspern, Natascha; Imholt, Laura; Kaymaksiz, Serife; Oldiges, Kristina; Rad, Babak Razaei; Winter, Martin

    2017-04-01

    Application of different electrolyte components as blends in nonaqueous electrolyte formulations represents a viable approach towards improving the overall performance and reliability of a lithium ion battery cell. By combining the advantages of different electrolyte constituents, cell chemistry can be optimized and tailored for a specific purpose. In this paper, the current progress on possibilities, advantages, as well as limitations of blended nonaqueous electrolyte formulations, including solvent, salt and additive blends is reviewed and discussed. Emphasis is set on the physicochemical, electrochemical, and safety aspects. In addition, the aim of this review is to provide perspective and possible strategy for further and future development of blended nonaqueous electrolytes with long life, high energy density, high power, and adequate safety at competitive manufacturing costs. The provided overview and perspective on blended nonaqueous electrolyte formulations should encourage researchers to proceed with further and deeper investigations in this promising field of advanced batteries.

  8. Lithium battery management system

    DOEpatents

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  9. Synthesis of nickel doped anatase titanate as high performance anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gong, Yuxuan; Mellott, Nathan P.; Liu, Dawei; Li, Jiangang

    2015-02-01

    Novel Ni-doped titanate derived from protonated layered titanate has been fabricated via a simple ion-exchange process at room temperature. The as-synthesized product was calcined at 400 °C for 3 h to obtain the Ni-TiO2 (anatase). The crystal structure of Ni-TiO2 was studied by X-ray diffraction (XRD) and the surface chemistry was studied by X-ray photoelectron spectroscopy (XPS). It was found that doped nickel ions had inhibition effects on the crystallization of TiO2 during calcination. The electrochemical properties of Ni-TiO2 and undoped TiO2 were both tested as anode materials for lithium-ion batteries at room temperature. While the undoped sample exhibited a mediocre performance, having a discharge capacity of 132 mAhg-1 after 50 cycles, the nickel-ion doped sample demonstrated noticeable improvement in both of its discharge capacity and rate capability; with a high capacity value of 226 mAhg-1 after 50 cycles. This improvement of lithium ion storage capability of Ni-TiO2 can be ascribed to the Ni-doping effect on crystallinity and the modification of electrode/electrolyte interface of the TiO2 structure.

  10. Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage

    NASA Astrophysics Data System (ADS)

    Manthiram, Arumugam

    2011-03-01

    Electrical energy storage has emerged as a topic of national and global importance with respect to establishing a cleaner environment and reducing the dependence on foreign oil. Batteries are the prime candidates for electrical energy storage. They are the most viable near-term option for vehicle applications and the efficient utilization of intermittent energy sources like solar and wind. Lithium-ion batteries are attractive for these applications as they offer much higher energy density than other rechargeable battery systems. However, the adoption of lithium-ion battery technology for vehicle and stationary storage applications is hampered by high cost, safety concerns, and limitations in energy, power, and cycle life, which are in turn linked to severe materials challenges. This presentation, after providing an overview of the current status, will focus on the physics and chemistry of new materials that can address these challenges. Specifically, it will focus on the design and development of (i) high-capacity, high-voltage layered oxide cathodes, (ii) high-voltage, high-power spinel oxide cathodes, (iii) high-capacity silicate cathodes, and (iv) nano-engineered, high-capacity alloy anodes. With high-voltage cathodes, a critical issue is the instability of the electrolyte in contact with the highly oxidized cathode surface and the formation of solid-electrolyte interfacial (SEI) layers that degrade the performance. Accordingly, surface modification of cathodes with nanostructured materials and self-surface segregation during the synthesis process to suppress SEI layer formation and enhance the energy, power, and cycle life will be emphasized. With the high-capacity alloy anodes, a critical issue is the huge volume change occurring during the charge-discharge process and the consequent poor cycle life. Dispersion of the active alloy nanoparticles in an inactive metal oxide-carbon matrix to mitigate this problem and realize long cycle life will be presented.

  11. Conductive Polymer Binder-Enabled SiO-SnxCoyCz Anode for High-Energy Lithium-Ion Batteries.

    PubMed

    Zhao, Hui; Fu, Yanbao; Ling, Min; Jia, Zhe; Song, Xiangyun; Chen, Zonghai; Lu, Jun; Amine, Khalil; Liu, Gao

    2016-06-01

    A SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm(2) is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. By achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries.

  12. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries.

    PubMed

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-09-27

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m(-1)·K(-1) with a bulk density of 453 kg·m(-3) at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m(-1)·K(-1)) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g(-1) at a current density of 100 mA·g(-1), and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes.

  13. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Tingkai; She, Shengfei; Ji, Xianglin; Guo, Xinai; Jin, Wenbo; Zhu, Ruoxing; Dang, Alei; Li, Hao; Li, Tiehu; Wei, Bingqing

    2016-09-01

    The development of high capacity and long-life lithium-ion batteries is a long-term pursuing and under a close scrutiny. Most of the researches have been focused on exploring electrode materials and structures with high store capability of lithium ions and at the same time with a good electrical conductivity. Thermal conductivity of an electrode material will also have significant impacts on boosting battery capacity and prolonging battery lifetime, which is, however, underestimated. Here, we present the development of an expanded graphite embedded with Al metal nanoparticles (EG-MNPs-Al) synthesized by an oxidation-expansion process. The synthesized EG-MNPs-Al material exhibited a typical hierarchical structure with embedded Al metal nanoparticles into the interspaces of expanded graphite. The parallel thermal conductivity was up to 11.6 W·m‑1·K‑1 with a bulk density of 453 kg·m‑3 at room temperature, a 150% improvement compared to expanded graphite (4.6 W·m‑1·K‑1) owing to the existence of Al metal nanoparticles. The first reversible capacity of EG-MNPs-Al as anode material for lithium ion battery was 480 mAh·g‑1 at a current density of 100 mA·g‑1, and retained 84% capacity after 300 cycles. The improved cycling stability and system security of lithium ion batteries is attributed to the excellent thermal conductivity of the EG-MNPs-Al anodes.

  14. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    SciTech Connect

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  15. Cu3P/RGO Nanocomposite as a New Anode for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Liu, Shuling; He, Xiaodong; Zhu, Jianping; Xu, Liqiang; Tong, Jianbo

    2016-10-01

    Cu3P/reduced graphene oxide (Cu3P/RGO) nanocomposite was successfully synthesized by a facile one-pot method as an advanced anode material for high-performance lithium-ion batteries. Cu3P nanostructures with a polyhedral shape with the mean diameter (80–100 nm) were homogeneously anchored on the surface of RGO. The flexible RGO sheets acted as elastic buffering layer which not only reduced the volume change, but also prevented the aggregation of Cu3P nanostructures, the cracking and crumbing of electrodes. On the other hand, the presence of Cu3P nanostructures could also avoid the agglomeration of RGO sheets and retain their highly active surface area. Therefore, as an advanced anode material for high-performance lithium-ion batteries, the as-prepared Cu3P/RGO exhibited high capacity of 756.15 mAhg‑1 at the current density 500 mAg‑1 after 80 cycles, superior cyclic stability and good rate capability.

  16. Cu3P/RGO Nanocomposite as a New Anode for Lithium-Ion Batteries.

    PubMed

    Liu, Shuling; He, Xiaodong; Zhu, Jianping; Xu, Liqiang; Tong, Jianbo

    2016-10-11

    Cu3P/reduced graphene oxide (Cu3P/RGO) nanocomposite was successfully synthesized by a facile one-pot method as an advanced anode material for high-performance lithium-ion batteries. Cu3P nanostructures with a polyhedral shape with the mean diameter (80-100 nm) were homogeneously anchored on the surface of RGO. The flexible RGO sheets acted as elastic buffering layer which not only reduced the volume change, but also prevented the aggregation of Cu3P nanostructures, the cracking and crumbing of electrodes. On the other hand, the presence of Cu3P nanostructures could also avoid the agglomeration of RGO sheets and retain their highly active surface area. Therefore, as an advanced anode material for high-performance lithium-ion batteries, the as-prepared Cu3P/RGO exhibited high capacity of 756.15 mAhg(-1) at the current density 500 mAg(-1) after 80 cycles, superior cyclic stability and good rate capability.

  17. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet

    2016-03-01

    Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm-2) delivers a charge capacity of ~588 mAh g-1electrode (~393 mAh cm-3electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries.

  18. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries

    PubMed Central

    David, Lamuel; Bhandavat, Romil; Barrera, Uriel; Singh, Gurpreet

    2016-01-01

    Silicon and graphene are promising anode materials for lithium-ion batteries because of their high theoretical capacity; however, low volumetric energy density, poor efficiency and instability in high loading electrodes limit their practical application. Here we report a large area (approximately 15 cm × 2.5 cm) self-standing anode material consisting of molecular precursor-derived silicon oxycarbide glass particles embedded in a chemically-modified reduced graphene oxide matrix. The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The paper electrode (mass loading of 2 mg cm−2) delivers a charge capacity of ∼588 mAh g−1electrode (∼393 mAh cm−3electrode) at 1,020th cycle and shows no evidence of mechanical failure. Elimination of inactive ingredients such as metal current collector and polymeric binder reduces the total electrode weight and may provide the means to produce efficient lightweight batteries. PMID:27025781

  19. Aerosol-Assisted Extraction of Silicon Nanoparticles from Wafer Slicing Waste for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Jang, Hee Dong; Kim, Hyekyoung; Chang, Hankwon; Kim, Jiwoong; Roh, Kee Min; Choi, Ji-Hyuk; Cho, Bong-Gyoo; Park, Eunjun; Kim, Hansu; Luo, Jiayan; Huang, Jiaxing

    2015-03-01

    A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing.

  20. Materials insights into low-temperature performances of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Gaolong; Wen, Kechun; Lv, Weiqiang; Zhou, Xingzhi; Liang, Yachun; Yang, Fei; Chen, Zhilin; Zou, Minda; Li, Jinchao; Zhang, Yuqian; He, Weidong

    2015-12-01

    Lithium-ion batteries (LIBs) have been employed in many fields including cell phones, laptop computers, electric vehicles (EVs) and stationary energy storage wells due to their high energy density and pronounced recharge ability. However, energy and power capabilities of LIBs decrease sharply at low operation temperatures. In particular, the charge process becomes extremely sluggish at temperatures below -20 °C, which severely limits the applications of LIBs in some cold areas during winter. Extensive research has shown that the electrolyte/electrode composition and microstructure are of fundamental importance to low-temperature performances of LIBs. In this report, we review the recent findings in the role of electrolytes, anodes, and cathodes in the low temperature performances of LIBs. Our overview aims to understand comprehensively the fundamental origin of low-temperature performances of LIBs from a materials perspective and facilitates the development of high-performance lithium-ion battery materials that are operational at a large range of working temperatures.